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1. Introduction

A manifold is, in general terms, “a space which, locally, looks like some
simple space, although it may, in the large, look quite di↵erent from that
simple space”. Di↵erent choices of this “simple space” lead to di↵erent
types of manifolds. By far the most common such choice is Rn (the finite-
dimensional vector space consisting of n�tuples of real numbers). In this
case, the corresponding manifolds are said to be finite-dimensional (specifi-
cally, n�dimensional), and the study of such manifolds and their structure is
called di↵erential geometry.

Finite-dimensional manifolds are important in both mathematics and
physics. In mathematics, the study of finite-dimensional manifolds, di↵eren-
tial geometry, is an end in itself. However, there exist in addition applications
of manifolds to other areas of mathematics. An outstanding example is that
of ordinary di↵erential equations. The question of the existence, unique-
ness, and structure of the solutions of ordinary di↵erential equations can
be reduced to the study of vector fields and their integral curves on mani-
folds. In this way, one recasts the subject of ordinary di↵erential equations
into an elegant, geometrical, and remarkably simple form. In physics, for
example, the space-time of general relativity is found to have the structure
of a finite-dimensional (in fact, four-dimensional) manifold. As a second
example from physics, the space of configurations of a mechanical system
becomes a manifold (where the dimension is what is called the number of
degrees of freedom of the system).

One can also introduce manifolds based on spaces which are “larger than
finite-dimensional vector spaces”, i.e., on “infinite-dimensional spaces”. Al-
though it is perhaps true that the possible applications of such manifolds have
not yet been exploited fully, there are already clear indications that these
applications will be rich and far-ranging. One may expect, for example,
that the subject of partial di↵erential equations (particularly, hyperbolic and
parabolic equations) can be formulated in the same geometrical language
as was possible for ordinary di↵erential equations. In physics, infinitive-
dimensional manifolds have already found their way into such areas as gen-
eral relativity and quantum field theory.

1



2 1.

One might, therefore, wish to learn about infinite-dimensional manifolds.
The next issue one must resolve is this: On what “simple (but infinite-
dimensional) spaces” should these manifolds be based? There is only one
such choice for which, as far as I am aware, the subject has been worked out
in any detail, namely, that in which the simple space is what is called a Ba-
nach space. It is my own view that manifolds based on Banach spaces might
be “too right in structure” for certain applications. That is to say, although
one obtains a large number of strong theorems in this case, it may some-
times turn out to be the case that it is not possible to make the space one is
considering in some application into a manifold based on a Banach space.
Nonetheless, one has to begin this subject somewhere, and it seems advisable
to begin in that regime in which i) many theorems are available, and ii) the
subject has been worked out in detail. If one should later decide that other
types of manifolds will be more fruitful, then one will at least have a feeling
for the kinds of things which are and are not likely to be true, the techniques
which are likely to lead to proofs, and where to look for counterexamples.

We shall here study manifolds based on Banach spaces: their structure,
and the kinds of objects which can be placed on them.



2. Banach Spaces

In this section, we define a Banach space, give a few examples and introduce
related notions.

A Banach space consists of two things:
1. A real vector space E. That is to say, E is a set (whose elements are

called vectors), together with a rule which assigns to any two vectors another
(called their sum), and another rule which assigns to any vector and any real
number a vector (called the product of the number and the vector), subject
to the usual conditions for a vector space (namely, addition is commutative
and associative, there is an additive identity, there are additive inverses, mul-
tiplication of vectors by numbers is distributive, and 1 · x = x for any vector
x).

2. A norm on the vector space E. That is to say, we are given a mapping
from the vector space E to the reals. The real number which is the image of
the vector x under this mapping is written |x|, and is called the norm of x.
This mapping must satisfy the following three conditions: i) for any vector
x, |x| � 0, with equality if and only if x = 0, ii) for any two vectors x and y,
|x + y|  |x| + |y|, and iii) for any vector x and any number a, |ax| = |a| |x|.
[These three conditions are perhaps rather natural if one interprets the norm
of a vector as its “length”.]

Finally, in order that E, | | be a Banach space, it is necessary that it be
complete, as described below.

Let E be a real vector space, with norm | |. Let x1, x2, . . . be a sequence
of vectors in E. This sequence is called a Cauchy sequence if the following
property is satisfied: given any positive number ✏, there exists an integer N
such that |xi � x j|  ✏ whenever i � N and j � N. [In intuitive terms, the
elements of a Cauchy sequence “get closer and closer to each other along
the sequence.” This sequence is said to converge to vector x if the limit of
|x� x j| as j goes to infinity is zero (i.e., in intuitive terms, if “the elements of
the sequence get closer and closer to x”). It is easily checked that a sequence
that converges to some x is automatically a Cauchy sequence. Our E, | | is
said to be complete if the converse also holds therein, i.e., if every Cauchy
sequence in E, | | converges to some vector in E.

3



4 2.

Thus, a Banach space is a complete normed vector space. We now give
some examples.
Example. Let E be the vector space of real numbers (so addition of vec-
tors is addition of real numbers; and multiplication of vectors by numbers
is multiplication of real numbers). Let the norm of vector (real number) x
be the absolute value. The three properties of the norm are elementary facts
about the absolute value; completeness is a basic fact about the real number
system. Thus, we obtain a Banach space.

γ  p M
 γ '

γ 
1 

  a0

 z

 x
 y

 O

 B

 q

  ax + 1− a( )Example. Let E be any finite-dimensional vector
space. Choose any subset B of E which has the
following two properties: i) B is convex, i.e., given
any vectors x and y in B, and any number a with
0  a  1, the vector ax + (1 � a)y is in B, and ii)
B is radial, i.e., given any non-zero vector x, there
is a number a0 > 0 such that ax is in B whenever
0 < a < a0 and ax is not in B whenever a > a0. [The first property requires
that “the line segment joining any two vectors in B lies entirely within B”;
the second requires that “any ray emanating from 0 is within B for a while,
and then leaves and remains outside of B”.] We use this B to define a norm
on E as follows; for x any nonzero vector in E, set |x| = 1/a0, where a0 is the
number in property ii) above. Then the first and third properties for a norm
follow from the fact that B is radial, while the second follows from the fact
that B is convex. Completeness is easily checked. Thus, we obtain a Banach
space. [For example, if B is the “unit sphere” about 0, then the norm of a
vector is just its “Euclidean length”.]

Indeed, it is not di�cult to show that this last example yields the “generic”
finite-dimensional Banach space, in the sense that every such Banach space
arises as in the example. [Sketch of proof: Given a finite-dimensional space,
E, | |, denote by B the set of all vectors x with |x| < 1. This set B satisfies the
two conditions above, and generates, by the construction above, the original
norm on E.]
Example. Denote by E the collection of all sequences of real numbers,
(r1, r2, . . .), which are bounded. Define addition and multiplication by num-
bers component-wise (i.e., (r1, r2, . . .) + a(r01, r02, . . .) = (r1 + a r01 · r2 +
a r02, . . .)). Then E is a vector space. Next, define a norm on E as follows:
(r1, r2, . . . = lub|r1| (noting that the least upper bound on the right exists,
since the ri must be bounded for membership in E). That this is indeed a
norm is an easy check. Finally, one must check completeness. To this end,
let x = (r1, r2, . . .), x0 = (r01, r02, . . .), x00 = · · · be a Cauchy sequence of
elements of E. Then the sequence of real numbers, r1, r01, r001, . . . is Cauchy,
whence it converges to some real number s1; the sequence r2, r02, . . . of real
number is Cauchy, whence it converges to some real number s2: etc. In this
way, one constructs a sequence (s1, s2, . . .). Since (r1, r2, . . .) is bounded, and
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since x, x0, x00, . . . is Cauchy, the sequence (s1, s2, . . .) s bounded: hence, it
defines some element y of E. Finally, one observes that, by the construc-
tion by which y was obtained, the sequence x, x0, x00, . . . in E converges to y.
Thus, we have sketched the proof that E is complete: hence, it is a Banach
space.
Example. If, in the example above, one had restricted E to consist only of
sequences (r1, r2, . . .) for which limri (as i! 1) exists, using the same norm
as above, then one would again have obtained a Banach space. Similarly, one
could have restricted to (r1, r2, . . .) with limr1 = 0, and would still obtain a
Banach space. If, however, one had let E consist of sequences (r1, r2, · · · )
with the property that, for some N, ri = 0 for i � N, one would still obtain
a vector space E, and one would still have the above norm. However, this
would not be a Banach space, for it would not be complete. [For example,
let x = (1, 0, 0, . . .), x0 = (1, 1/2, 0, 0, . . .), x00 = (1, 1/2, 1/4, 0 . . .), etc, Then
x, x0, x00, · · · is a cauchy sequence, but converges to no element of this E (for
(1, 1/2, 1/4, 1/8, . . .) is not in this case an element of E).]
Example. Let E consist of all bounded, real-valued functions on the reals.
For f such a function, let | f | = lub| f |. This is a vector space (where addition
of functions and multiplication by numbers are point-wise), with norm. In
fact, this is a Banach space. [The proof of completeness is identical with
that at the bottom of previous page.] If E had consisted only of the continues
bounded functions, we would still have a Banach space. Suppose, however,
that E had consisted of the di↵erentiable bounded functions. Then, although
we would still have a vector space norm, completeness would fail, and we
would not obtain a Banach space.

Indeed, consider the sequence of di↵erentiable functions illustrated on
the right. These are a Cauchy sequence, but it converges to no di↵erentiable
function (the only candidate being the non-di↵erentiable function shown).

ua   

va   
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ξ�  

c < 0  

u = 4  
u = 4  

distance  

M 

η�  

ξ�  

γ  γ �  

η�  

c = 0  

c > 0  t 1  
  2

  1
 f r( )

  y = x2

  (x,y )

  f (x)

candidate 
for limit  

perpendiculars  

  y -axis

 x

 x

 x

  f1   f2

  f3

Example Let E consist of all Cn, real-
valued functions on the reals, such that the
values of the function and of its first n
derivatives are all bounded. Let the norm
of such a function be f = lub| f | + lub| f 0| +
. . .+ lub| f n|. This is a Banach space. [If the
last term were left o↵ the expression for the
norm, completeness would fail.]
Example. Let E consist of all sequences, (r1, r2, . . .), of real numbers, for
which the sum ⌃|ri| is finite. Let the norm of such a sequence be this sum.
This is a Banach space. More generally, fixing any numbers p � 1, let E
consists of (r1, r2, . . .) with ⌃|ri|p finite. Let the norm of an of an element of
E be the p�th root of this sum. [The taking of root is necessary in order to
have |ax| = |a||x|.] We obtain a Banach space.

There is apparently no natural way to make spaces of C1 functions into
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Banach spaces, although there is for analytic functions. It is important that
one understand the examples above completely.

γ  p M
 γ '

γ 
1 

  a0

 r
 x

 y

 O

 K

 q

  ax + 1− a( )

!!!!!!!!!!!!

Ball  We next consider a few additional defini-
tions associated with Banach spaces. Let E, | |
be a Banach space. For x any vector in E, and r
any positive number, the ball with center x and
radius r is the subset of E consisting of all vec-
tors y with |x � y| < r. The intuitive meaning
is that suggested by these terms. [For example,
in the second example on 4, the ball with center
0 and radius 1 is essentially the set B of that example.] A subset K of our
Banach space is said to be open if, given any vector x in K, there is some
ball with center x which lies entirely within K. For example, every ball is it-
self open (a fact whose proof requires use of the second property of a norm).
[Those familiar with topology will notice that these are the open sets for a
topology on E.] A subset K of E is said to be closed if its component in E
is open, i.e., if, given any vector x not in K, there is some ball centered at x
which does not intersect K.

Now let E be a vector space, and let | | and { } be two norms on E, such
that both E, | | and E, { } are Banach spaces. These two norms will be said
to be equivalent if there are positive numbers a and b such that, for every
vector x, |x|  a{x} and {x}  b|x|. [In intuitive terms, if each norm, after a
suitable rescaling, bounds the other.] Note that equivalence of norms is an
equivalence relation, and that two norms are equivalent if and only if they
define precisely the same open sets on E. It normally happens in practice
that the actual numerical values associated with a norm are not relevant to
one’s particular problem, but rather only that norm up to equivalence. In-
deed, it is possible to treat our subject referring only to the open sets (i.e.,
to equivalence classes of norms), rather than to any particular norm. The re-
sulting treatment is more elegant, and occasionally more awkward. We shall
not proceed in this way, however, because it would require a brief retour into
topology. As an example of equivalence, we may note the following fact:
any two B0s in the second example on page 4 give rise to equivalent norms.

Let E, | | be a Banach space. A subset F of E is called a subspace if the
following two conditions are satisfied: i) F is a vector subspace of vector
space E (i.e., sums and numerical multiplies of vectors in F are again in F),
and ii) F is a closed subset of E. As motivation for this definition, we make
the following observation. Let F be a subspace of Banach space E. Then, by
condition i), F is itself a vector space. Since every vector in F is also a vector
in E, the norm on E also defines a norm on F. We now claim that condition
ii) implies that this vector space F, with this norm, is complete (i.e., is a
Banach space). [Sketch of proof: Since the norm in F comes from that in
E, every Cauchy sequence in F is also a Cauchy sequence in E. Since E is
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complete, every such sequence converges to some vector in E. Since F is a
closed subset of E, this vector must in fact be in F. Hence, F is complete.]

We see here the first of several di↵erences we shall encounter between
finite-dimensional and infinite-dimensional Banach spaces. In the finite-
dimensional case, condition ii) for a subspace follows already from con-
dition i), i.e., every vector subspace of finite-dimensional E is necessary
closed. [Geometrically, e.g., a plane through the origin in Euclidean 3�space
is necessarily closed.] This property does not hold, however, for infinite-
dimensional Banach spaces:
Example. Let E be the Banach space of the example on page 4 (bounded
sequences of real). Let F be the subset of E consisting of all sequences,
(r1, r2, . . .) such that r = 0 for all i � N for some N. [That is, F consists of
sequences which are “all zeroes after a while”.] Then, since the sum of two
sequences in F is again in F, and since a numerical multiple of a sequence in
F is again in F, F is a vector subspace of vector space E. We claim, however,
that this subset F is not closed. Consider the element x = (1, 1/2, 1/4, . . .) of
E. This x is not an element of F. If F is to be closed, then there must exist a
ball, centered at x, which fails to intersect F. We show that there is no such
ball, whence F cannot be closed. Let r be any positive number, and let B
be the ball centered at x, with radius r. We must find a vector common to B
and F. Set y = (1, 1/2, 1/4, . . . , 1/2n, 0, 0, . . .), where n is chosen su�ciently
large that 1/2n  r. Then |x � y| = (0, 0, . . . , 0, 1/2n+1, 1/2n+2, . . .), whence
|x � y| = 1/2n+1. Thus, the vector y is in the ball B. But y is also in F (since
F consists of sequences which are 0 after a while). Hence, this y is common
to B and F. [Compare this argument with the argument, in the first part of
page 5 that F itself is not a Banach space.]
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3. Banach Spaces from
Banach Spaces

In this section, we discuss two methods for constructing Banach spaces from
Banach spaces. In particular, applied to our examples these methods yield
numerous new examples.

Let E and F be Banach spaces. Denote by G the collection of all ordered
pairs, (x, y), with x a vector in E and y in F. The set G is made into a
vector space by defining addition and scalar multiplication component-wise,
i.e., (x, y) + a(x0, y0) = (x + ax0, y + ay0). We now wish to make this vector
space G into a Banach space, i.e., we wish to define a norm on G. Set
|(x, y)| = |x| + |y|. The three conditions for a norm are immediate from those
conditions in E and F: e.g., |a(x, y)| = |(ax, ay)| = |ax|+ |ay| = |a| |x|+ |a| |y| =
|a|(|x| + |y|) = |a||(x, y)|. Thus, to show that G is a Banach space, we must
only check completeness. Let (x1, y1), (x2, y2), . . . be a Cauchy sequence in
G. Then, for every positive ✏ there is an N such that |(xi, yi) � (x j, y j)|  ✏
whenever i, j � N. But |(xi, yi)�(x j, y j)| = |xi�x j|+ |yi�y j|. Hence, x1, x2, . . .
is a Cauchy sequence in E (whence it converges to some vector x in E), and
y1, y2, . . . is a Cauchy sequence in F (whence it converges to some vector
y in F). Consider now the vector (x, y) in G. We have |(x, y) � (xi, yi)| =
|x � xi| + |y � yi|. Since limit

i!1
|x � xi| = limit

i!1
|y � yi| = 0 (convergence in E

and F), we have limit
i!1
|(x, y) � (xi, yi)| = 0. Hence, our sequence converges to

(x, y). We have shown that G is complete; hence, is a Banach space. This G
is called the product of Banach spaces E and F, written G = E ⇥ F, Note,
for example, that each of E and F may be regarded as a subspace of E ⇥ F.

The second construction is like an “inverse” of the first. Let E be a
Banach space, and let F be a subspace of E. Then in particular F is a vector
subspace of vector space E, and so we may take the quotient of vector spaces;
denote the resulting vector space by G. [In more detail: take two vectors x
and x0 of E as equivalent if their di↵erence, x� x0, is an element of subspace
F. This is an equivalence relation, and G is the set of equivalence classes.
To add two elements of G (equivalence classes), find the equivalence class
which includes the sum of one representative from each summand (noting

9
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that this is independent of the choice of representative), and similarly for
scalar multiplication.] We next introduce a norm on this vector space G.
For ↵ any element of G (equivalence class), let |↵| be the greatest lower
bound of |x|, as x varies over the equivalence class ↵. This is indeed a norm
on G. [The third condition for a norm is immediate, and the second is not
hard. For the first, first note that always |↵| � 0. If |↵| = 0, then there is a
sequence x1, x2, . . . in ↵ with limit |xi| = 0. Since F is closed, therefore, the
vector 0 in E must be in ↵. Hence, since ↵ has representative 0, we have
↵ = 0.] Finally, we show that this G is complete. Let ↵1,↵2, . . . be a Cauchy
sequence in G: By choosing a subsequence if necessary, we may suppose
that |↵i+1�↵i|  1/2i. Choose any vector x1 in ↵1. Choose vector x2 in ↵2�↵1
with |x2|  |↵2 � ↵1| + 1/2, vector x3 in ↵3 � ↵2 with |x3|  |↵3 � ↵2| + 1/4,
etc. [These choices are possible by definition of the norm in G.] Thus, for
i � 2 we have |xi|  1/2i+2. Next, set, for each i, yi = xi + x2 + . . . + xi.
Then, for each i, yi is in ↵i. Further, by the bounds above on the norms of the
x’s, the yi form a Cauchy sequence in E. Hence, this sequence converges to
some vector y in E. Denote by ↵ the equivalence class containing y. Then
|↵�↵i|  |y�yi| (by definition of the norm in G), and so, since the yi converge
to y in E, the ↵i must converge to ↵ in G. We have shown that every Cauchy
sequence in G converges to some vector in G, i.e., that G is complete. This
Banach space G is called the quotient of Banach space E by subspace F, and
is written E/F.

The sense in which these two constructions invert each other is this. Let
E and F be Banach spaces. Then E is a subspace of the Banach space E ⇥ F
(namely, the subspace consisting of pairs (x, y) with y = 0). Hence, we may
take the quotient of E⇥F by this subspace E. The result is what one expects;
(E ⇥ F)/E = F



4. Open Mapping Theorem

In this section we establish an important property of Banach spaces. This
property is not only useful in applications, but also gives insight into the
structure of the definition of a Banach space.

We shall regard the open mapping theorem as a criterion for equivalence
of norms.
Theorem (open mapping). Let E, | | and E, { } be two Banach spaces (based
on the same vector space E), and suppose that there is a positive number a
such that {x}  a|x| for every vector x. Then these two norms are equivalent,
i.e., also |x|  b{x} for some b.
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Proof: First note that no gener-
ality is lost by setting a = 1.
Next, introduce a copy, F, | |, of
Banach space E, { }, and let T
denote that mapping from E to
F which arises from the identity
mapping on E. Then T is linear,
one-to-one, onto, and norm-decreasing (i.e., |T (x)|  |x| for every x in E).
Denote by B the ball with radius one and center 0 in E, by B0 the subset
T (B) of F, and by B0 the closure of B0 in F (i.e., the set of all vectors in F
every sphere centered at which intersects B0). We must show that the subset
B0 of F contains some ball centered at 0 (for, if 1/b is the radius of such a
ball, then we shall have |x|  1 whenever |T (x)|  1/b, which implies im-
mediately that |T (x)|  b|x| for every x in E). We divide the proof into three
steps.
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The set B0 in F contain some ball. Suppose not.
We obtain a contradiction. Choose vector x1 not in B0.
Then, since B0 is closed, there is some ball B1, centered
at x1, whose closure B1 does not intersect B0. The set
2B0 (the set of all vectors of the form 2x with x in B0)
cannot contain a ball (since B0 does not), and hence in
particular cannot contain B1. Choose, therefore, vector
x2 in B1 but not in 2B0. Since 2B0 is closed, there is some ball B2 centered

11
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at x2 such that B2 does not intersect 2B0. Choose B2 a subset of B1, and with
radius less than half that of B1. Now 3B0 cannot contain B2: choose x3 in
B2 but not in 3B0. Then, choose ball B3 centered at x3, not intersecting 3B0,
a subset of B2, and having radius less than half of that of B2. Continuing in
this way, we obtain a sequence x1, x2, . . . in F, which, by construction, must
be a Cauchy sequence. Hence, this sequence converges to some vector x in
F. By construction, this x cannot be in B0 (since B1\B0 = ;) or in 2B0 (since
B2 \ 2B0 = ;), etc. But this is a contradiction, for B0 [ 2B0 [ 3B0 . . . = F
(which follows from the fact that B[ 2B[ 3B[ . . . = E, and that T is onto).

The set B0 in F contains some ball centered at 0. Let B0 contain a ball
centered at T (x), where x is some vector in E. Then B0 �T (x) contains a ball
centered at 0. But B0 � T (x) = T (B) � T (x) = (T (B) � T (x)) = T (B � x).
Choose positive number n such that B � x is a subset of nB. Then T (nB) =
nT (B) = nB0 contains a ball centered at 0 (since T (B � x) does). Hence, B0
also contains a ball centered at 0.
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The set B0 in F contains some ball centered
at 0. Suppose not: We obtain a contradiction.
Let B0 contain the ball of radius ✏ centered at
0. Since B0 contains no ball centered at 0, nei-
ther does 3B0. But B0 does contain a ball cen-
tered at 0: Hence, we may choose a vector
T (x) in B0, but not in 3B0. Since T (x) is in
B0, we may choose a vector T (x1) in B0 with
|T (x) � T (x1)|  ✏/4. Denote by B1 the ball of radius 1/2 about x1. Then
(since |T (x) � T (x1)|  ✏/4 and T (B1) contains the ball of radius ✏/2 about
T (x1)) T (B1) contains the ball of radius ✏/4 about T (x). Hence, we may
choose vector T (x2) in T (B1) with |T (x) � T (x2)|  ✏/8. Denote by B2 the
ball of radius 1/4 about x2. Then T (B2) contains a ball of radius ✏/8 about
x. Hence, we may choose vector T (x3) in T (B2) with |T (x) � T (x3)|  ✏/16.
Denote by B3 the ball of radius 1/8 about x3. Continuing in this way, we
obtain a sequence of vectors x1, x2, . . . in E. Since |T (x) � T (xi)|  ✏/2i+1,
the T (xi) converge to T (x). Since T (xi) is in T (Bi�1), xi must be in Bi�1, i.e.,
we have |xi � xi�1|  1/2i�1. Hence, x1, x2, . . . is a Cauchy sequence in E.
Denote by y the vector in E to which it converges. Then, since x1 is in B
(i.e., since |x1| < 1), and since |xi � xi�1|  1/2i�1, we must have |y| < 3, i.e.,
y must be in 3B. Furthermore, since T is norm-decreasing, and since limit
|y � xi| = 0, we must have limit |T (y) � T (xi)| = 0, i.e., the sequence T (xi)
in F converges to T (y). But we have already seen that the T (xi) converges to
T (x): Hence, T (x) = T (y). Thus, since T (y) is in 3B0, T (x) must also be in
3B0. This is a contradiction with our original choice of T (x).

This completes the proof of the theorem.
The result above is beautiful and intricate. To see what it means, consider

first the finite-dimensional case. Imagine that we have one norm on our vec-
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tor space, and wish to construct a smaller one. One could imagine obtaining
a new norm by “scaling down the original norm by a positive factor, one for
each direction (i.e., for each dimension) in the vector space”. If there are
only a finite number of dimensions, then these “scaling factors” will have a
minimum, and so the new norm will also bound (up to a factor) the old one.
In the infinite-dimensional case, however, things are di↵erent. Now, one
could imagine “choosing di↵erent factors for the various directions, such
that these factors approach zero”, thus obtaining a new norm which does not
bound the old norm. Suppose, however, that one wants ones new norm to
yield a Banach space: Then one must be careful about completeness, for
scaling down the old norm “too much” may lead to new Cauchy sequences
with nothing to converge to. Is it necessary to actually have the “scaling fac-
tors” bounded away from zero in order to avoid destroying completeness?
The theorem says yes.

The open mapping theorem is somewhat analogous to a theorem in topol-
ogy: Given a compact, Hausdor↵ topological space, then no finer and no
coarser topology can be both compact and Hausdor↵. The open mapping
theorem says, similarly: Given a Banach space, then no larger and no smaller
norm (except for equivalence) can also give a Banach space. In fact, when-
ever, in an argument about Banach spaces, one is tempted to try to use com-
pactness (which is almost never available in this subject), one should try
instead to apply the open mapping theorem.
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5. Splitting

An important issue about a subspace of a Banach space is that of whether
or not it has the property called splitting. In this section, we introduce this
property, show that it is always satisfied in certain cases, and give an example
in which it is not satisfied.
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Let E be a Banach space, and F
a subspace of E. A subspace G of E
is said to be complementary to F if
the following property is satisfied:
every vector in E can be written in
one and only one way as the sum of
one vector in F and one in G.
Example. Let E be the Banach space of all sequences, (r1, r2, . . .), of real
numbers, such that the ri converge, and let the norm of such a sequence be the
least upper bound of the absolute values of its entries. Let E be the subspace
consisting of sequences which converge to zero, and let G be the subspace
consisting of constant sequences. Then F and G are complementary.

Let F and G be complementary subspaces of Banach space E. We de-
fine a mapping from G to the quotient (Banach) space E/F as follows: This
mapping takes the vector x in G to the equivalence class (element of E/F)
which contains x. This mapping is clearly linear, one-to-one, and onto. Fur-
thermore, this mapping is norm-decreasing (since the norm of x in G is just
the norm of x in E, while the norm of an equivalence class (in E/F) is the
greatest lower bound of the norms of the representatives (including x) of that
class). By the open mapping theorem, therefore, this mapping is an isomor-
phism of Banach spaces. Thus, if G is complementary to F in E, then G
represents “a realization of E/F in E”, The Banach space E/F starts out
as just an abstract Banach space: it does not “live” in E. The finding of a
complementary subspace (to F) “realizes E/F”.

Let E be a Banach space, and F a subspace of E. The subspace F is said
to split if there exists in E a subspace complementary to F. The purpose of
this section is to understand this definition.

We first show that “very small” subspaces do split.

15
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Theorem. Let F be a one-dimensional subspace of Banach space F. Then

x0 

C 

B 

- x0 

Proof: Choose vector x0, with |x0| = 1, in F.
Denote by B the ball with center x0 and radius
1/2. Next, denote by ⇣ the collection of all sub-
sets C of E having the following properties: i)
C is convex (i.e., the line segment joining any
two vectors in C lies within C), ii) C is radial
(i.e., if x is in C and a is a positive number,
then ax is in C, iii) C contains the ball B, and
iv) C does not contain the vector – x0. There
certainly exists at least one subset in ⇣, namely, that consisting of all positive
multiples of vectors in B. Partially order the set ⇣ by inclusion (i.e., C1  C2
if C1 ⇢ C2). We next note that this partially ordered set ⇣ satisfies the con-
dition for Zorn’s Lemma (namely, that every totally ordered subset of ⇣ is
bounded above), for, given a totally ordered subset of ⇣, their union gives
such a bound. [Conditions i)–iv) for this union are all immediate from those
conditions for the C’s in the totally ordered subset.] So, by Zorn’s Lemma,
there exists a maximal element, C, of ⇣.

We next obtain two properties of this set C. First, C [ (�C) = E. In-
deed, if there were some vector x in E, with x in neither C nor �C, then
we could consider the set C0, consisting of the union of all line segments
joining a positive multiple of x to a vector in C. This C0 would clearly
satisfy conditions i), ii), and iii) above. It would, furthermore, satisfy con-
dition iv), for if �x0 were in C0, say �x0 = ax + y (a positive, y in C),
then we would have x = �1/a(x0 + y), whence x would be in �C. But the
existence of this C0 (an element of ⇣, since it satisfies all four conditions
for membership) would violate maximality of C. Hence C [ (�C) = E.
The second property is that C is closed. Indeed, if not, we could let C0
be the closure of C. Then this C0 clearly satisfies conditions i), ii), and
iii) above. Furthermore, it would satisfy condition iv), for, were �x0 in
C0, there would have to be some vector y in C with |y + x0|  1/4. But
�y � 1/8 x0 must be in C (for |(�y � 1/8 x � 0) � x0| = |y + x0 + 1/8 x0| 
|y + x0| + |1/8 x0|  3/8, whence �y � 1/8 x0 is already in B). Hence, since
C is convex, 1/2(y) + 1/2(�y � 1/8 x0) = �1/16 x0 would be in C, whence
�x0 would be in C; a contradiction. Thus, the closure C0 of C must also be
an element of ⇣. This violates maximality of C unless C is already closed
(so C0 = C).

Now set G = C\ (�C). This subset G of E is a vector subspace of vector
space E (since, for x and y in G, ax+(z�a)y is in G (for 0  a  1; convexity
of C and �C), ax is in G (for a > 0; radialness of C and �C), and �x is in
G (since, for x in G, x is in both C and �C, whence �x is also in both).
Furthermore, this subset G is closed (as the intersection of closed subsets C
and �C). Thus, G is actually a subspace of Banach space E. This subspace
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G is our candidate for a subspace complementary to F.
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First note that no vector can be
written in more than one way as a
linear combination of x0 and a vec-
tor in G, for, were this possible, x0
itself would have to be in G (a con-
tradiction, since x0 is not in �C).
Thus, we have only to show that ev-
ery vector in E can be written in
some way as a linear combination
of x0 and a vector in G. Let x be any vector in E (say, x in C). Denote by
� the straight line in E through x parallel to the vector x0 (i.e., the set of all
vectors of the form x plus a multiple of x0). Choose vector y a little beyond
x0 on the line joining x and x0. By making the “little” small enough, we
can have y in B (i.e., we can have |y � x0|  1/2). Clearly, there is a point z
on the line � such that the line segment joining z and y contains �x0. Then
this z cannot be in C (for y, being in B, is necessary in C, and if z were also
in C then, by convexity, �x0 would be in C, contradicting definition of C).
Hence, the line � has some points in C and some in �C. Therefore, there
must exist some point w on � “at the interface” (i.e., such that, given any ✏,
the intersection of � with the ball of radius ✏ about w intersects both C and
�C). Since C and �C are closed, this w must be in both C and �C, i.e., w
must be in G. But x can be written as a linear combination of x0 and w. Thus,
the subspaces G and F are indeed complementary, completing the proof.

It is immediate from this result that every finite-dimensional subspace of
a Banach space split. Indeed, let F be such a subspace, and let x1, . . . , xn
be a basis for F. Denote by G1, . . . ,Gn a subspace complementary to that
spanned by x1, . . . , xn, respectively. Then G\ . . .\Gn is a subspace comple-
mentary to F. It is also easy to show that any subspace of finite co-dimension
(codimension of F in E equals dimension of R/F, i.e., is the dimension of
“what is left over in E after F”) splits. Indeed, choose basis ↵1, . . .↵n for
E/F, and representatives x1, . . . , xn or these equivalence classes in E. Let
G be the subspace spanned by x1, . . . , xn. Then, G is complementary to F.
[This same argument does not work when E/F is infinite-dimensional, for
then the G, so constructed, may not be closed.]

We thus conclude that, given Banach space E, “very large” subspaces
(finite co-dimension) and “very small” subspaces (finite dimension) split.
Thus, if any subspaces are to fail to split, they must be of “intermediate size”
(infinite in both dimension and co-dimension). It is perhaps not even obvious
that there exists an example of a subspace which fails to split. It turns out
that such examples do exist, but that it is surprisingly di�cult to display one.
We now give such an example (an example we shall not use again, but which
is nonetheless perhaps worthwhile, since it gives some insight into the nature
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of the notion of splitting).
Examples. For purposes of this example, we define a functional on Banach
space E as a linear mapping f from E to the reals such that | f (x)|  |x| for
every x in E.

Denote by E1 the Banach space consisting of all sequences, (r1, r2, . . .),
of real numbers the sum of whose absolute values, ⌃|ri| is finite, where the
norm of such a sequence is this sum. We next wish to claim that this Banach
space E1 has the following property: Given any sequence, x1, x2, . . ., of unit
vectors in E1, there is some functional f on E1 such that the sequence of
numbers f (x1), f (x2). . . . fails to converge to zero. The proof is as follows.
For any finite subset L of the positive integers, and any positive integer i,
denote by S i

L the real number obtained by taking the sum ⌃Lr j, where xi =
(r1, r2, . . .). If, for any finite L, we did not have limit

i!1
S i

L = 0, then we would
be done: let f be the functional which assigns to x = (s1.s2, . . .) the number
f (x) = ⌃Ls j. So, we may suppose that limit

i!1
S i

L = 0 for every L. Choose

finite L1 such that |S 1
L1 | � 1/4. Then, find integer n1 such that |S j

L1 |  1/16
whenever j � n1. Next, choose finite L2, disjoint from L1, such that |S n1

L2 | �
1/4.

Then, find integer n2 > n1 such that |S j
L2 |  1/32 whenever j � n2. Next,

choose finite L3, disjoint from L1, such that |S n2
L3 | � 1/4. Continuing in this

way, we obtain disjoint finite sets L1, L2, . . .. We next introduce a sequence
(a1, a2, . . .) of real numbers according o the following rule: ai = 0 if i is none
of L1, L2, . . . ai = +1 if i is in some L j with S n j�1

L j positive, and ai = �1 if
i is in some L j with S nj�1

L j negative. Now let f be the following functional
on Banach space E1, for x = (r1, r2, . . .) in E1, f (x) = r1a1 + r2a2,+ . . .
(noting that this sum converges, since the sum of the absolute values of the
ri is finite, and the |ai| are bounded). But, by construction, | f (xi)| � 1/8 for i
one of the n j. Hence, f (x1), f (x2), . . . cannot converge to zero.

We next denote by E2 the Banach space consisting of all sequences
(r1, r2, . . .) of real numbers for which the sum ⌃|ri|2 is finite, where the norm
of such a sequence is the square root of this sum. We claim that the Banach
space E2 fails to satisfy the property that we just showed for E1. That is:
there exists a sequence x1, x2, . . . of unit vectors in E2 such that f (xi) goes to
zero for every functional f . Indeed, let x1 = (1, 0, 0, . . .), x2 = (0, 1, 0, 0, . . .),
x3 = (0, 0, 1, 0, . . .), etc. Set ai = f (xi), where f is some functional. then for
any numbers r1, r2, . . . with ⌃|ri|2 finite, the sequence in E whose nth term is
yn = r1x1 + . . . + rnxn is Cauchy, whence it converges to some vector y in E.
Then, since f is a functional, the sequence f (yi) of real numbers must con-
verge, whence the sum ⌃riai must converge. That is to say, the numbers ai
must be such that ⌃riai is finite whenever ⌃|ri|2 is finite. But this is possible
only if ⌃|ai|2 is finite. But this, in turn, requires that the ai converge to zero.
We conclude: f (xi) approaches zero. But this is what we wanted to show.
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Thus, we now have two Banach spaces which di↵er in a certain respect.
[In particular, we know that there exists no isomorphism from E1 to E2.]

The next step is the introduction of a certain mapping from E1 to E2. Let
x1, x2, . . . be the sequence (ordered in some way) of all vectors in E2 of the
following form: a(r1, r2, . . . , rn, 0, 0, . . .), where r1, . . . , rn are rational, and
the number a is so chosen that these are unit vectors in E2. The mapping  is
now defined as follows. Given any element x = (s1, s2, . . .) in E1, let  (x) be
that element of E2 which is the limit y of the Cauchy sequence in E2 whose
nth term is yn = s1x1 + . . . + snxn (noting that y1, y2, . . . is indeed a Cauchy
sequence since |xi| = 1 for every i, while ⌃|s j| is finite). This mapping  is
clearly linear. Furthermore, it is onto E2 (for finite linear combinations of
the xi are dense in E2). Furthermore, this mapping is even norm-decreasing
(for, since the xi are unit, |s1x1 + . . . + snxn|  |s � 1| + . . . + |sn|).

Denote by K the kernel of the mapping  , i.e., the set of all vectors x in
E1 with  (x) = 0. Then, since  is linear, K is a vector subspace of vector
space E1. Further, since  is norm-decreasing, K is a closed subset of E1 (for,
given sequence z1, z2, . . . in K, converging to z, then | (z) �  (zi)|  |z � zi|,
whence, since the zi converge to z, the  (zi) converge to  (z). But  (zi) = 0
and so we must have  (z) = 0, i.e., x must also be in K.)

Thus, we now have Banach space E1, and subspace K. We claim, finally,
that this subspace of E1 does not split. Suppose that it did, say with com-
plementary subspace G: We obtain a contradiction. Since the mapping  is
onto, the subspace G must be isomorphic with Banach space E2. Choose
a sequence of vectors in E2, each unit, but such that for any functional f
on E2, f , applied to this sequence, approaches zero. Since E2 is isomor-
phic with G, we obtain a similar sequence in E1. The resulting sequence in
E1,w1,w2, . . . will have the property that, for every functional f on E1, limit
f (wi) = 0 (since every functional on E1 can also be regarded as a functional
on the subspace G). Furthermore, the norms of the vectors w1, . . . will be
bounded below (since the wi arose originally from a sequence of unit vectors
in E2). But, (after rescaling the wi) so that they are unit) this contradicts the
property of E1 that we showed at the beginning: whenever f (wi) ! 0 for
every f , |wi| ! 0. This contradiction establishes that the subspace K of E1

has no complementary subspace, completing the example.
The subspace of converging sequences in the Banach space of bounded

sequences also has no complementary subspace. Every subspace of E2 has
a complementary subspace.

The general rule seems to be that either one can discover with relative
ease some explicit complementary subspace, or none exists. Note, inciden-
tally, that, in the finite-dimensional case, every subspace splits. It is for this
reason that splitting is not normally mentioned in the finite-dimensional case.
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6. Bounded Linear Mappings

The “structure-preserving” (and, therefore, the useful, and interesting) map-
pings between Banach spaces are what are called bounded linear mappings.
In this section, we introduce these, and give some examples and properties.

Let E and F be Banach spaces. A mapping T from E to F is called a
bounded linear mapping provided i) T is a linear mapping of vector spaces
(i.e., for every x and y in E, and every real number b, T (x + by) = T (x) +
bT (y)), and ii)T is bounded (i.e., there exists a number a such that, for every
x in E, |T (x)|  a|x|).

We have already used this notion, although not this term, several times.
what was called a functional on page 18 was precisely a bounded linear
mapping from E to R. Banach spaces E, | | and E, { } are equivalent (page 6)
if and only if both the identity mapping from E, | | to E, { } and its inverse are
bounded linear mappings. the open mapping theorem can be restated thus:
if a bounded linear mapping from one Banach space to another is one-to-one
and onto (so its inverse exists), then that inverse is also a bounded linear
mapping.

For T a bounded linear mapping from Banach space E to Banach space
F, the smallest (necessarily non-negative) number a such that T |(x)|  a|x|
for every x is called the norm or bound of T , and is written |T |.
Example. Let E be the Banach space of bounded sequences (with norm the
least upper bound of absolute values of entries), and F the Banach space
of convergent sequences (same norm). The identity mapping from F to E
(every element of F is automatically an element of E) is a bounded linear
mapping. The mapping from F to R which assigns to each sequence its
limit is a bounded linear mapping. The mapping from E to R which assigns
to (r1, r2, . . .) the number r137 is a bounded linear mapping. Each of these
mappings has norm one.
Example. Let E be the Banach space of sequences the sum of the absolute
values of whose entries converges, and let F be the same, with the sum of the
squares of absolute values. The identity mapping from E to F is a bounded
linear mapping, with norm one. The mapping  in the beginning of page
19 is a bounded linear mapping: the remarks of that paragraph show that its
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norm less than or equal to one.
Example. Let E be the Banach space of Cn functions on the reals, the value
of whose first n derivatives are bounded (page 5). Let F be the Banach space
of Cn�1 functions. Let T be the mapping “take the derivative” from E to F.
Then T is a bounded linear mapping (with norm one). The mapping from
E to R given by “evaluate the derivative at real number 7” is also a bounded
linear mapping with norm one (note that in this case, however, there is no
nonzero x with |T (x)| = |T | |x|).

In the finite-dimensional case, the second condition for a bounded linear
mapping is unnecessary: every linear mapping from one finite-dimensional
Banach space to another is necessarily bounded. It turns out that bound-
edness does not follow from linearity in the infinite-dimensional case, but
examples seem to be rather di�cult to display.
Example. Let each of E and F be the Banach space of bounded sequences of
real numbers. Denote by A the subset of E consisting of sequences which are
zeros after a while. Then A is a vector subspace of vector space E (but not
a Banach subspace). For (r1, . . . , rn, 0, 0, . . .) in A, set T (r1, . . . , rn, 0, . . . =
(r1, 2r2, 3r3, . . . nrn, 0, . . .). Clearly, if we can extend the action of this T lin-
early to all of E, we shall have our counterexample. Consider the collection
of all vector subspace E having in common with A only the zero vector. Or-
dering by inclusion, we have that the hypothesis of Zorn’s lemma is satisfied.
Let B be a maximal element: Then, by maximality, every vector in E can be
written in one and only one way as the sum of one vector in A and one in B.
For x = y+ z in E, with y in A and z in B, set T (x) = T (y). This is the desired
extension.

Finally, we consider candidates for subspaces defined by a bounded lin-
ear mapping. Let E and F be Banach spaces, and let T be a bounded linear
mapping from E to F. We denote by Ker T , the kernel of T , the set of all
vectors x in E such that T (x) = 0. Then Ker T is clearly a vector subspace
of vector space E. We claim, furthermore, that Ker T is closed. Indeed,
let x1, x2, . . . be a sequence in Ker T , converging to x in E. Then, since
|T (x) � T (xi)|  |T | |x � xi|, the sequence T (x1),T (x2), . . . in F converges to
T (x) in F. But the T (xi) are zero, whence T (x) = 0, whence x is also in Ker
T . Thus, Ker T is a subspace of E. Next, denote by Im T , the image under
T , the set of all vectors in F of the form T (x) for some x in E. Then Im T is
clearly a vector subspace of vector space F. However, Im T is not in general
closed.
Example. Let E be the Banach space of bounded sequences, and F that of
convergent sequences. Let T be the bounded linear mapping from E to F
with action T (r1, r2, . . .) = (r1, r2/2, r3/3, . . .) (so |T | = 1). Then the vector
(1/
p

1, 1/
p

2, 1/
p

3, . . .) in F is certainly in the closure of Im T , but is the
image of no vector in E (for the only candidate is

p
1,
p

2,
p

3, . . .), which
is not in E. In the finite-dimensional case, Im T , as a vector subspace, is
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always closed.
We shall next be concerned with spaces of bounded linear mappings.

Fix Banach spaces E and F. We denote by L(E; F) the set of all bounded
linear mappings from E to F. We define addition and multiplication by
reals within this set L(E; F) thus: For T and T 0 in L(E : F), and a a real
number, let T + a T 0 be that mapping with (T + a T 0)(x) = T (x) + a T 0(x).
[Note that the linear mapping T + a T 0, so defined, is indeed bounded, for
|(T + a T 0)(x)| = |T (x) + a T 0(x)|  |T (x)| + |a| |T 0(x)|  (|T | + |a| |T 0|) |x|.
Thus, |T + a T 0|  |T | + |a| |T 0|.] With these operations, the set L(E; F)
becomes a vector space. We next note that “take the norm” is a norm on
the vector space L(E; F), the three properties for a norm being immediate
from the little formula just derived. In fact, this vector space with norm,
L(E; F) is even a Banach space, i.e., it is complete under its norm. Proof:
Let T1,T2, . . . be a Cauchy sequence inL(E; F). Then for each vector x in E,
we have, since |Ti(x)�T j(x)|  |Ti �T j| |x|, that T1(x),T2(x), . . . is a Cauchy
sequence in F. Hence, this sequence converges to some vector in F, which
we denote T (x), thus defining a (clearly linear) mapping T from E to F. We
next note that this T is bounded, for, for any x in E, |T (x)| = lim|Ti(x)| =
lim|T1(x)� (T1�Ti)(x)|  |T1(x)|+ lim|(T1�Ti)(x)|  (|T1|+ lim|T1�Ti|) |x|.
We show that the Ti converge to T in L(E; F). Given positive ✏, choose i so
that |Ti�T j|  ✏ for j � i. Then |(T�Ti)(x)|  limit

j!1
|(T�T j)(x)+(T j�Ti)(x)| 

lim|(T � T j)(x)| + lim|(T j � Ti)(x)|  ✏|x|, whence |T � Ti|  ✏. Thus, we
conclude thatL(E; F) is a Banach space. This construction yields many new
Banach spaces from those we have considered already.

One generalizes the notion of a bounded linear mapping to several in-
dependent variables as follows. Let E1, . . . , En and F be Banach spaces. A
mapping T which assigns to an n�tuple of vectors, one from each of the Ei, a
vector in F is called a bounded multilinear mapping provided, i) T is multi-
linear, i.e., linear in each variable separately (e.g., T (x1, x2+ax02, x3, . . . , xn)
= T (x1, x2, . . . , xn) + aT (x1, x02, . . . xn)), and ii) T is bounded, i.e., there is
a number a such that |T (x1, . . . , xn)|  a |x1||x2| . . . |xn|. The smallest such
number is called the bound, or norm, of T , and is again denoted |T |. The vari-
ous properties of bounded linear mappings carry over almost immediately to
similar properties of bounded multilinear mappings. In particular, the set of
all such form E1, . . . , En to F, denoted L(E1, . . . , En; F), is a Banach space.

There is a certain sense, which we now explain, in which multilinear
mappings are extraneous. Let E, F, and G be Banach spaces. We define
a mapping  from the Banach space L(E, F; G) to L(E;L(F; G)) as fol-
lows: For T in L(E, F; G), let  (T ) be that element of L(E;L(F; G)) which
sends the vector x in E to that element of L(F; G) whose action on vector
y in F is the vector T (x, y) in G. This mapping is clearly linear. It is, in
fact, invertible: Indeed,  �1 sends the element W of L(E;L(F; G)) to that
element pf L(E, F; G) whose action on x, y (x in E,; y in F) is the element
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[W(x)](y) of G (nothing that W(x) is an element of L(F; G)). It is further-
more immediate from the definitions (although confusing in detail) that  
is norm-preserving. Thus, the Banach spaces L(E, F; G) and L(E;L(F; G))
are equivalent. Those who likeL’s will note that our  is a preferred element
of Z(L(E, F; G);L(E;L(F; G)). Spaces of multilinear mappings can thus
always be expressed in terms of iterated L’s.

We conclude this section with the introduction of two additional “pre-
ferred objects”. Let E and F be Banach spaces. Denote by ↵ the following
element of L(E,L(E; F); F): For x in E and T in L(E; F), ↵(x,T ) = T (x)
(an element of F). Thus, ↵ is the multilinear mapping whose action is “action
of an element ofL(E; F) on an element of E”. Multilinearity of ↵ is obvious;
we have only to show roundedness. But we have |↵(x,T )| = |T (x)|  |T | |x|.
Thus, not only is ↵ bounded, but its norm is one. For the second object,
let E, F and G be Banach spaces. Let � denote the following element of
L(L(E; F), L(F; G); L(E; G)): For T in L(E; F) and U in L(F; G), let
�(T,U) = U · T (composition of mappings: a mapping from E to G). We
must first show that the linear mapping U · T is actually in L(E; G), i.e., that
it is bounded. For x in E, |(U · T )(x)| = |U | [T (x)]|  |U | |T (x)|  |U | |T | |x|,
whence |U | · |T |  |U | |T |. Thus, U · T is indeed in L(E; G), and so our
mapping � is indeed well-defined. It is obviously that this � is multilinear.
Thus, we have only to show that � is bounded. But for T in L(E; F) and U
in L(F; G), we have |�(T,U)| = |U · T | = |U · T |  |U | |T |. Thus, is indeed
bounded, and in fact we have |�| = 1. This �, of course, just performs for us
the operation of “composition of bounded linear mappings”. That � is itself a
bounded multilinear mapping expresses the basic properties of composition.

What is so nice about all this is that everything in sight is a Banach
space: Everything one tries to do with Banach spaces yields just other Ba-
nach spaces. The result is that one has to learn in detail but a single kind of
mathematical object.



7. Derivatives

Elementary di↵erential calculus (of several variables) is of course carried
out in Rn. But Rn is a particular example of a Banach space. In this section,
we shall see that finite-dimensionality plays essentially no role in di↵erential
calculus: We shall, indeed, repeat the basic ideas of this subject for Banach
spaces.

Fix Banach spaces E and F, Fix an open subset U of E (so, for every
point x in U, there is a ball centered at x in U). Let f be a mapping from
the set U to the set F. [In the finite-dimensional case, with E n�dimensional
and F m�dimensional, f is represented as m functions of n real variable.]
[Note that f is only defined on U. whenever we speak of the action of f on
a ball centered at a point of U, we shall suppose implicitly that this ball is
small enough so that it is within U.]

Fix a point x0 of U. The mapping f will be said to be continuous at
x0 provided that, for every positive number ✏, there is a positive number �
such that | f (x) � f (x0)|  ✏, whenever |x � x0|  �. This f is said to be just
continuous, or C0, if it is continuous at every point of U.

We next wish to get hold of the “rate of change of f (x) with x”. We
first introduce the notion of “zero rate of change”. The mapping f is said
to be tangent at x0 provided that, for every positive number ✏, there is a
positive number � such that | f (x) � f (x0)|  ✏|x � x0| whenever |x � x0|  �.
Thus, f is tangent at x0 provided “the deviation of f (x) from f (x0) relative
to the deviation of x from x0 becomes as small as we wish (✏) whenever
x is su�ciently close (�) to x0.” Note that, if f is tangent at x0, then f
is automatically continuous at x0 (although the converse, as we shall see
shortly, is false).

The mapping f is said to be di↵erentiable at x0 provided that there exists
a bounded linear mapping T from E to F such that f (x) � f (x0) � T (x � x0)
is tangent at x0. In other words, we require that, given any positive ✏, there
is a positive � such that | f (x) � f (x0) � T (x � x0)|/|x � x0|  ✏ whenever
x , x0 and |x � x0|  �. Thus, for di↵erentiability we require that “ f � f (x0)
can be approximated, up to tangency, by a bounded linear mapping”. This
T , called the derivative of f at x0, is written D f (x0), so D f (x0) is an element
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of L(E; F). [This is what we expect. In the finite-dimensional case, D f (x0)
is represented by n partial derivatives of the m functions representing f . But
this n ⇥ m matrix can be regarded as a linear mapping from n�dimensional
E to m�dimensional F.] We shall see shortly that the derivative is unique
if it exists. If f is di↵erentiable at every point x0 of U, then f is said to
be just di↵erentiable. In this case D f assigns, to each point x0 of U, an
element D f (x0) of L(E; F). Thus, D f is a mapping from U (an open subset
of Banach space E) to L(E; F) (a Banach space). If this mapping D f is
continuous (examples in finite dimensions show that it need not always be),
then f is said to be continuously di↵erentiable, or C1.

In the finite-dimensional case, continuous, di↵erentiable, and continu-
ously di↵erentiable reduce, of course, to their usual meanings.
Example. Let E and F be Banach spaces, and fix bounded linear mapping
T from E to F. Set U = E, and let f be the mapping from U to F with
f (x) = T (x). Then, for any given x0 in U, we have for all x | f (x) � f (x0)| 
|T | |x � x0|. Thus, f is continuous (given ✏, choose � = ✏/|T |). By definition
of the norm, we have that, for fixed x0 in U and for any number a > 1, there
is an x in U such that | f (x) � f (x0)| � a|T | |x � x0|. But by linearity this
inequality continues to hold if x is replaced by any vector on the line joining
x and x0. Hence, f cannot be tangent at x0 unless f is the zero linear mapping
(a mapping which is necessarily tangent at every x0). We next verify that f
is di↵erentiable at x0. Indeed, f (x)� f (x0)� T (x� x0) = 0 for all x, whence
the left side is certainly tangent at x0. Hence, D f (x0) = T . Thus, D f assigns
to the element x0 of U the fixed element T of L(E; F). Since this (constant)
mapping D f from U to L(E; F) is certainly continuous, our f is C1.
Example. Let f and f 0 both be continuous. Then so is f + f 0 (with action
( f + f 0)(x) = f (x)+ f 0(x)). Indeed, given ✏, find �1 such that | f (x)� f (x0)| 
✏/2 whenever |x � x0|  �1, and �2 such that | f 0(x) � f 0(x0)|  ✏/2 whenever
|x�x0|  �2. Then, whenever |x�x0| min (�1, �2), we have |( f + f 0)(x)�( f +
f 0)(x0)|  ✏. By a similar argument, the sum of two functions tangent at x0
is again tangent at x0. Next, suppose that each of f and f 0 is di↵erentiable
at x0. Then, since the functions with action f (x) � f (x0) � D f (x)(x � x0)
and f 0(x) � f 0(x0) � D f 0(x0)(x � x0) are both tangent at x0, so is their sum,
( f + f 0)(x) � ( f + f 0)(x0) � (D f (x0) + D f 0(x0))(x � x0). Hence, f + f 0 is
also di↵erentiable at x0, and, furthermore, D( f + f 0)(x0) = D f (x0)+D f 0(x0).
But now, since the sum of continuous functions is continuous, it is immediate
from D( f + f 0) = D f + D f 0 that the sum of two C1 functions is C1.

It follows from these two example that the derivative D f (x0), if it exists,
is unique. Indeed, let T and T 0 be two (so each is in L(E; F)). Then both
f (x)� f (x)�T (x� x0) and f (x)� f (x0)�T 0(x� x0) are tangent at x0, whence
their di↵erence, the mapping T � T 0, is also tangent. But the only bounded
linear mapping which is tangent at x0 is the zero one, whence T = T 0.
Example. Let each of E and F be the Banach space of continuous, bounded,
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real-valued functions on the reals. Let U = E, and let f be the mapping
from U to F which function ' to '2 (noting that the square of a continuous
bounded function is another). Fix element '0 of U. Then f continuous
at '0. Indeed, | f (') � f ('0)| = |'2 � '2

0| = |(' � '0 + 2'0) (' � '0)| 
(|'�'0|+2|'0|) |'�'0|. Hence, by making |'�'0| su�ciently small we also
make | f (') � f ('0)| as small as we wish. We next show that this f is in fact
di↵erentiable at '0. As a general rule, it is di�cult ro show di↵erentiability
without first making a guess as to what the derivative is to be. Taking our cue
from elementary calculus, we guess as follows: Let ↵ be the bounded linear
mapping from E to F which sends element ' of E to element ↵(') = 2''0 of
F. Then we have f (')� f ('0)�↵('�'0) = '2�'0

2�2'0('�'0) = ('�'0)2.
Thus, | f (') � f ('0) � ↵(' � '0)|  |' � '0|2. Clearly, then, (choose � = ✏),
the mapping on the left is tangent at '0. We conclude that f is di↵erentiable,
and D f ('0) = ↵. Finally, we claim that this mapping D f from U to L(E; F)
is itself continuous. Indeed, |D f (') � D f ('0)| = |D f (' � '0)|  2|' � '0|.
Thus, the mapping f is C1.
Example. Let E be any Banach space, and let F be the Banach space of
reals. Set U = E, and let f be the mapping from U to F which sends x in U
to f (x) = |x|. Then, given x0 in U, f is continuous at x0, for | f (x) � f (x0)| =
||x| � |x0||  |x � x0| [Choose � = ✏.]. However, f need not necessarily be
di↵erentiable at x0, even for x0 , 0. For example, let E be R2, with norm
|(r, r0)| = max (|r|, |r0|). Then f is not di↵erentiable, e.g., at x0 = (1, 1).

Let E and F be Banach spaces, U an open subset of E, and f a C1

mapping from U to F. Then D f is a continuous mapping from U toL(E; F).
But this D f is a mapping from an open subset (U) of a Banach space to a
Banach space. If this mapping is in fact di↵erentiable, and if its derivative,
DD f is continuous, then f is said to be twice continuously di↵erentiable, or
C2. In this case, DD f is a continuous mapping from U to L(E;L(E; F)).
Similarly, if this mapping is C1 (so DDD f exists as a continuous mapping
from U to L(E;L(E;L(E; : F)))), then f is said to be C3. Similarly for Cp,
p a non-negative integer. Finally, f is said to be C1 if f is Cp for every p.
Example. The mapping of the first example on page 26 is C1. Since D f is
constant (D f (x0) = T for every x0), DD f = 0 DDD f = 0, etc.
Example. The sum of two Cp mappings is Cp. This is immediate from the
facts that the sum of two C1 mappings is C1, that the derivative of the sum is
the sum of the derivatives.
Example. The mapping of the first example on page 26 (beginning on the
previous page) is C1. Indeed, DD f is that element of DD f is that element of
L(E;L(E; P)) which sends ' in E to the mapping from E to P which sends
'0 to the element 2''0 of F. Hence, DD f is constant. So, DDD f = 0, etc.
[Just what one expects of a “quadratic mapping”.]
Example. Let E and F be Banach spaces, and T an element ofL(E, . . . , E; F).
Set f (x) = T (x, . . . , x). Then f is C1.
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We next show that composition of Cp mapping is Cp.
Theorem. Let E, F and G be Banach spaces, U an open subset of E and V
an open subset of F. Let f be a Cp mapping from U to F with f (U) ⇢ V and
g a Cp mapping from V to G. Then the mapping g · f from U to G is also Cp.
Proof: suppose first that f and g are C0. Then, given x0 in U and positive ✏,
first choose �0 such that |g(y) � g( f (x0))|  ✏ whenever |x � x0|  �0. Then
choose �, such that | f (x) � f (x0)|  �0 whenever |x � x0|  �. Then, for
|x � x0|  �, we have |g · f (x) � g · f (X0)|  ✏. That is, g · f is C0.

Next, suppose that f and g are C1, Fix x0 in U. Then Dg( f (x0)) is an
element of L(F; G), while D f (x0) is an element of L(E; F). Their compo-
sition is thus an element of L(E; G). Note first that the mapping with action
f (x) � f (x0) � D f (x0)(x � x0) is tangent at x = x0. Applying Dg( f (x0))
to this expression, using the fact that the composition of a bounded lin-
ear mapping with a function tangent is a function tangent, we have that
Dg( f (x0))( f (x)� f (x0))�Dg( f (x0))D f (x0)(x� x0) is tangent at x = x0. But,
since g(y)�g( f (x0))�Dg( f (x0))(y� f (x0)) is tangent at y = f (x0), and since f
is continuous, g( f (x))�g( f (x0))�Dg( f (x0))( f (x)� f (x0)) is tangent at x = x0.
Adding these two, we obtain: g( f (x)) � g( f (x0)) � Dg( f (x0))D f (x0)(x � x0)
is tangent at x = x0. But this is precisely the statement that g · f is di↵er-
entiable at x0, with D(g · f )(x0) = Dg( f (x0))D f (x0). Next note that f (x)
is continuous in x and Dg(y) is continuous in y, whence their composition,
Dg( f (x)) is continuous in x. Further, D f (x) is continuous in x. But the el-
ement of L(L(E; F),L(F; G);L(E; G)) which composes is also continuous
(pp 24). Hence, Dg( f (x))D f (x) is a continuous mapping from U toL(E; G).
We conclude that g · f is C1.

Now suppose that both f and g are C2. Since f (x) is C1 in x, and Dg(y)
is C1 in y, Dg( f (x)) is C1 in x (last paragraph). Also, D f (x) is C1 in x. But
composition is also C1 (since it is bilinear). Hence, Dg( f (x)) D f (x) is C1 in
x. That is, D(g · f ) is C1, whence g · f is C2. Continue in the obvious way to
Cp.

We next show that operation “taking the inverse” is also C1.
Example. Let E and F be Banach spaces. Denote by U the subset ofL(E; F)
consisting of all T therein which are invertible. We first show that this subset
U is open. Fix T0 in U. Then T0 is an isomorphism from E to F. Con-
sider the isomorphism from L(E; F) to L(E; E) which sends T in L(E; F)
to T T0

�1. Under this isomorphism, T0 itself is sent to I, the identity on E.
It su�ces, therefore, to show that there is some ball centered at I in L(E; E)
every element of which is invertible. Let B be the ball with radius 1/2. Let
W be an element of B. Consider the sequence V � 1 = I,V � 2 = I + (I �W),
V3 = I + (I � W) + (I � W)(I � W), etc. This is a Cauchy sequence in
L(E; E), for |Vi+1 � Vi| = |(I �W)i|  |I �W |i  1/2i. Hence, this sequence
converges to some element V of L(E; E). We now have, by direct compu-
tation, WVi � I = Vi � Vi+1. Taking the limit of each side as i increases,
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noting that that on the right is zero, we obtain WV = I, and, similarly,
VW = I. Thus, V is the inverse of W, and so W is invertible. We have
shown so far that our subset U of L(E; F) is open. Note also that, above,
|W�1|  1 + 1/2 + 1/4 + . . . = 2.

Next, introduce the mapping f from U to L(F; E) with the following
action: For T in U, f (T ) = T�1. We next show that this mapping f is
continuous. Fixing T0 in U, we have for T in U, f (T ) � f (T0) = T�1 �
T0
�1 = �T�1(T � T0)T0

�1, whence | f (T ) � f (T0)|  |T�1||T � T0||T0
�1|.

Given positive ✏, choose � such that, whenever |T �T0|  �, |T�1|  M, some
constant (possible, from the observation above that, whenever |I �W |  1/2,
|W�1|  2), and such that �  ✏/MT0

�1. Then, for |T � T0|  �, we have
| f (T ) � f (T0)|  ✏. Thus, f is continuous at T0, which is arbitrary in U, and
so f is continuous.

We next show that this mapping f is in fact di↵erentiable at T = T0.
Its derivative at T0 must be an element of L(L(E; F);L(F; E)). From ele-
mentary calculus, we guess the derivative as follows: Let ↵ be the bounded
linear mapping fromL(E; F) toL(F; E) which sends T inL(E; F) to ↵(T ) =
�T0

�1TT0
�1. Then f (T )� f (T0)�↵(T�T0) = T�1

�1�T0
�1+T0

�1(T�T0)T0
�1 =

T�1(T � T0)T0(T � T0)T0
�1. Hence, we have | f (T ) � f (T0) � ↵(T � T0)| 

|T�1||T0|�1/2|T � T0|2. Now, given positive ✏, choose � such that, when-
ever |T � T0|  �, we have |T�1|  M (some constant), and such that
�  ✏/M|T0

�1|2. Then, for |T �T0|  �, we have | f (T )� f (T0)�↵(T �T0)| 
✏|T � T0|. We conclude that the mapping f from U to L(F; E) is indeed
di↵erentiable at T0 in U, and that its derivative is ↵.

For each T0 in U, we obtain, as above, the derivative of f at T0, D f (T0).
Since “take the inverse” and “compose” are continuous operations, this D f
is a continuous mapping from U to L(F; E). So, f is C1. But now, since
“take the inverse” and “compose” are C1 operations, D f is C1, whence f is
C2. etc. So f is Cp.

All of the little calculations above are identical to those one is familiar
with in the finite-dimensional case.

Finally, we establish the result in the present context which generalizes
the finite-dimensional statement that “mixed partials commute”. For this
purpose, we note that DD f maps U toL(E;L(E; F)), and that (E; F)) is iso-
morphic with the Banach space L(E, E; F). Hence, we may regard DD f (x0)
as an element of L(E, E; F).
Theorem. Let E and F be Banach spaces, U open is E, and f a C2 map-
ping from U to F. Then DD f is symmetric: For x0 in U and x, y in E,
DD f (x0)(x, y) = DD f (x0)(y, x).
Proof : Fix an element ↵ of L(F;R). Let h be the function of two real vari-
ables a and b with action h(a, b) = ↵( f (x0 + ax + by)). [Thus, h is only
defined for a and b small enough that x0 + ax = by is in U.] Using the chain
rule (preceding theorem), we have @h/@a = ↵(D f (x0 + ax + by)(x)), and
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thus @2h/@a @b = ↵(DD f (x0 + ax + by)(y, x)). Evaluating at a = b = 0, we
have @2h/@a @b|a=b=0 = ↵(DD f (x0)(y, x)), and similarly @2h/@b @a|a=b=0 =
↵(DD f (x0)(x, y)). But the left sides are equal (equality of mixed partials for
real functions of two real variables), and so ↵(DD f (x0)(y, x)�DD f (x0)(x, y) =
0 for every ↵. Thus, we shall be done if we can show that the only element
z of F such that ↵(z) = 0 for every ↵ in L(F;R) is z = 0. Given z in F,
choose complementary subspace G in F to the subspace spanned by z. Then
any vector u in F can be written uniquely in the form u = az+ v with v in G.
Let ↵ have action ↵(u) = a. Then ↵ is bounded linear mapping (obviously
linear, and bounded since ↵ is bounded on both G and the subspace spanned
by z, and since F is isomorphic with the product of these, by the open map-
ping theorem). but ↵(z) = 1. So, this ↵ is the thing we wanted to find. This
completes the proof.

The proof above is rather tacky, because it uses itself in the finite-dimensional
case, which is taken as known. Unfortunately, the proof of this theorem in
finite-dimensions does not seem to be directly generalizable to infinite di-
mensions. I am aware of no more direct proof of the theorem above.

It follows immediately by repeated application of this result that higher
mixed partials are also symmetric. For example, DDD f (x0), an element of
L(E;L(E;L(E; F))), can also be regarded as an element ofL(E, E, E; F). In
this case we have, for x, y, and z in E and for fC3, that DDD f (x0)(x, y, z) =
DDD f (x0)(y, x, z) = DDD f (x0)(z, y, x), etc.



8. Mean Value Theorem;
Inverse Mapping Theorem

We complete our treatment of elementary calculus in infinite dimensions by
proving the two titled theorems.

The mean value theorem states that the derivative of a function, a mea-
sure of its rate of change, in fact bounds the actual changes in the value of
the function.
Theorem (mean value). Let E and F be Banach spaces, U an open subset
of E, and f a C1 mapping from U to F. Let x and y be points of U such
that the line segment � joining x and y lies within U. Then | f (y) � f (x)| 
lub
z in �
|D f (x)||y � x|.
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Proof: [Of course, � is the set of vectors of the
form ax + (1 � a)y, with 0  a  1.] Fix, once
and for all, positive number ✏. Given z0 on �, the
function with action f (z)� f (z0)�D f (z0)(z� z0) is
tangent at z = z0. Hence, there is a positive � such
that, whenever |z� z0|  �, we have | f (z)� f (z0)| 
(|D f (z0)| + ✏)|z � z0|. Thus, for every z0 on � we
have such a �. Since � is compact, we can find
points z1, . . . , zn on � such that z1 = x, zn = y, zi  zi+1, (in the obvious
sense:   z1 = x

  
p
~

 p
 p

 M

 zn = y  z3  z2   z4 ), and such that |zi � zi+1| is less than the �
appropriate to zi+1. Now, we have | f (y) � f (x)|  | f (zn) � f (z1)| | f (zn) �
f (zn�1)|+ . . .+ | f (z2)� f (z1)|. But | f (zi+1)� f (zi)|  |(D f (zi)| = ✏)|zi+1 � zi| 
(lub |Df(z)|+ ✏)|zi+1 � zi|. Hence, | f (y)� f (x)|  (lub |Df(z)|+ ✏)(|zn � zn�1|+
. . .+ |z2 � z1|). But the sum on the right is just |zn � z1| = |y� x|. So, we have
| f (y)� f (x)|  (lub |Df(z)|+ ✏)|y� x|. Since, ✏ is arbitrary, the result follows.

One might imagine that another version of the mean value theorem,
which on the one hand would be stronger and on the other would be more
closely analogous to the one-dimensional mean value theorem, might be
true: Under the conditions of the theorem above, there is a point z0 of �
such that f (y) � f (x) = D f (z)(y � x). This, however, is false.
Example. Let E be the reals, and F = R3. Then a C1 mapping f from U = E

31
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to F represents a curve in R3. D f (z) is the tangent vector to this curve at z in
R.
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  f (x)

  !3
On the other hand, f (y)� f (x), is the vector joining

these two points in R3. Thus, we must find a curve
joining two points in R3, whose tangent vector is never
parallel to the vector joining those points (for then we
shall never have f (y) � f (x) = D f (z)(y � x)). But a
spiral, as in the figure above, does the job.
Example. Let D f = 0. Then, by the mean value the-
orem, f is constant (i.e., f (x) = f (y) for all x, y such
that the line segment joining them lies in U). Similarly,
if DD f = 0, then the action of f is f (x) = T (x) + x0,
for some x0 in E and T in L(E; F) (for D f is some
constant T , and then D( f � T (x)) = 0, whence this is some constant x0.)

The inverse function theorem states that, if a mapping is “invertible to
first order some point, then it is actually invertible in some ball about that
point”. As a prerequisite to this theorem, we need a little fact about map-
pings (a fact which, indeed, is the basis for all existence and most unique-
ness theorems about di↵erential equations). Let C be a closed subset of a
Banach space, and f a mapping from C to C such that, for some number
a < 1, | f (x) � f (y)|  a|x � y| for every x, y in C. Then there is one and
only one x in C with f (x) = x Proof: First note that, if there were two, x
and y, then we would have |y � x| = | f (y) � f (x)|  a|y � x|, whence, since
a < 1, |y � x| = 0, so y = x. Thus, we have only to show that f (x) = x for
some x. Choose y in C, and let y1 = y, y2 = f (y1), y3 = f (y2), etc. Then,
since |yi+1�yi| = | f (yi)� f (yi�1)|  a|yi�yi�1|, we have |yi�y j|  a j+. . .+a j�1

(for j > i), whence the yi form a Cauchy sequence. Since the yi are in a Ba-
nach space, this sequence converges to some vector x; since C is closed and
the yi are in C, x is in C. But now f (yi) � x = yi+1 � x. Taking the limit
of each side as x increases, noting that that on the right is zero, we obtain
f (x) = x.
Theorem (inverse mapping). Let E and F be Banach spaces, U open in E.
and f a Cp mapping from U to F, with p � 1. Let, for some x0 in U. the
element D f (x0) of L(E; F) be invertible. Then there is some open subset V
of U containing x0 such that i) f [V] is open in F, ii) f is one-to-one on V ,
and iii) the inverse mapping f from f [V] to E is also Cp.
Proof: Let ↵ be the mapping from F to E with action ↵(y) = (D f (x0)�1(y �
f (x0)) + x0. Then ↵ is C1. Furthermore, the C1 � from E to F with action
�(x) = D f (x0)(x � x0) + f (x0) is its inverse, i.e., ↵ · � is the identity on E
and � · ↵ is the identity on F. We may consider, instead of f , ↵ · f . that is
to say, we may assume that f maps U to E, that x0 = 0, that f (x0) = 0, and
that D f (0) is the identity element of L(E; E).

Let g be the mapping from U to E which sends x in U to g(x) = x� f (x).
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Then g(0) = 0, and Dg(0) = D (identity) (0) � D f (0) = 0. Since g is C1,
there is a positive ✏ such that, whenever |x| < 2✏, |Dg(x) < 1/2. Then, from
the mean value theorem, we have, for |x| < 2✏, |g(x)| < 1/2 |x|.

Next, fix y in E with |y|  ✏/2. Denote by gy the mapping from U to E
with action gy(x) = y+x� f (x). Then, for |x|  ✏ we have |gy(x)| = |y+g(x)| 
|y| + |g(x)|  1/2✏ + 1/2|x|  ✏. Thus, denoting by B the set of all vectors x
with |x|  ✏, we have that gy is a mapping from B to B. Furthermore, for x
and x0 in B, we have |gy(x) � gy(x0)| = |g(x) � g(x0)|  1/2 |x � x0|, again by
the mean value theorem (and the fact that |Dg(x)| < 1/2 for |x| < 2). Thus,
gy, as a mapping from the closed subset B of E to itself, a mapping with the
contraction property of the previous page. Hence, there is one and only one
x in B with gy(x) = x, i.e., with y + x � f (x) = x, i.e., with y = f (x).

Now let V consist of all x in U with |x| < ✏ and | f (x)| < ✏/2. Then V (as
the intersection of U, an open ball, and the inverse image by f of an open
ball) is open. Furthermore, f [V] is just the set of y with |y| < ✏/2, and so is
open in E. In addition, f is one-to-one on V (for, as we showed above, given
y with |y|  ✏/2, there is one and only one x with |x|  ✏ and f (x) = y)

Denote by f̂ the inverse of f , defined on W = f [V]. Then, for x and x0
in V , |x � x0| = | f (x) + g(x) � f (x0) � g(x0)|  | f (x) � f (x0)| + |g(x) � g(x0)| 
| f (x)� f (x0)|+ 1/2|x� x0|, whence |x� x0|  2| f (x)� f (x0)|. Setting y = f (x)
and y0 = f (x0), this becomes | f̂ (y)� f̂ (y0)|  2|y� y0|. That is to say, this f is
continuous.

With x, x0, y and y0 as above, we have | f̂ (y)� f̂ (y0)� (D f (x0))�1(y� y0)| =
|(D f (x0))�1(D f (x0)(x � x0) � f (x) + f (x0))|  |(D f (x0))�1| |D f (x0)(x � x0) �
f (x) + f (x0)|. Fixing x0, the right side, regarded as a function of x, is tangent
at x0, since f̂ is di↵erentiable. Hence, by continuity of f̂ , the left side is
tangent at y = y0. We conclude, therefore, that f̂ is di↵erentiable, and that
D f̂ (y) = (D f ( f̂ (y))�1. Since f̂ is continuous, D f is continuous, composition
is continuous, and “take the inverse” is continuous, D f̂ is continuous. That
is, f̂ is C1.

If f is C2, then, since f̂ is C1, D f is C1, composition is C1, and “take the
inverse” is C1, D f̂ is C1, and so f̂ is C2. Continuing in this way, if f is Cp,
then so is f̂ .

There is a corollary of the inverse function theorem, called the implicit
function theorem. It states that one can, under certain circumstances, “solve”
equations of the form f (x, y) = 0 for x as a function of y. More precisely,
let E and F be Banach spaces, and let U and V be open subsets of E and
F, respectively. For each y in V , let fy be a mapping from U to G. [We
may thus regard f as a mapping from U ⇥ V to G; above, we write f (x, y)
for fy(x).] Suppose that i) y(x) is continuous on U ⇥ V , ii) for each y in
V , fy is C1, and D fy(x) is continuous on U ⇥ V , and iii) for some x0 in
U and y0 in V , we have fy0 (x0) = 0 and D fy0 (x0), an element of L(E; G), is
invertible. Then there is an open subset V0 of V containing y0, and a mapping
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g from V0 to U, such that fy(g(y)) = 0 for every y in V0. [Thus, x = g(y)
is the “solution” of fy(x) = 0.] Proof: Set hy(x) = fy(x) � fy(x0). Then
hy(x0) = 0 for every y. Furthermore, Dhy = D fy. Hence, since D fy0 (x0)
is invertible, since D fy(x) is continuous, and since the invertible elements of
L(E; G) form an open subset ofL(E; G), we have that Dhy(x�0) is invertible
for all y su�ciently close to y0. Applying the inverse function theorem to hy,
for each y, we have: There is an open subset W of G containing 0, and a
mapping sy from W to E, for y su�ciently close to y0, such that hy · sy is the
identity on W. [We may choose W independent of y because the size of the
”V” in the inverse function theorem is dictated by the size of ’0D f ” in that
theorem, and here D fy(x) is continuous.] Since fy(x) is continuous in y and
x, it follows that, for y su�ciently close to y0, fy(x0) is in this W. Now set
g(y) = sy( fy(x0)). Then, since hy · · ·y = identity, hy(g(y)) = fy(x0). That is to
say, fy(g(y)) � fy(x0) = � fy(x0), or fy(g(y)) = 0.

Note that in the above E and G must be isomorphic as Banach spaces.
This requires, essentially, that the “number of equations” (represented by the
“size” of G) be the same as the “number of unknowns” (represented by the
size of E).



9. Manifolds

We have now completed our discussion of di↵erential calculus on Banach
spaces. We turn next to that mathematical object – a manifold – which be at
the center of all we do hereafter. In this section, we define manifolds, give
some examples, and give some constructions which yield manifolds.

A manifold is, roughly speaking, a space having the “local smoothness
structure” of some Banach space. The idea, then, is to isolate, from the very
rich structure of a Banach space (e.g., its vector-space structure, its norm
structure) that one type of structure we call “local smoothness”.

We first introduce a mechanism by which structure can be carried from
Banach spaces to other things. Fix a set M and a Banach space E. A chart
(or E�chart) on M consists of a subset U of M together with a mapping  
from U to E, such that i) the mapping  is one-to-one, and ii) the subset  [U]
of E, the image of U by  , is open in E. Thus, a chart sets up a one-to-one
correspondence between a certain subset, U, of M and a certain open subset,
 [U], of E. It is by means of this correspondence that structure is carried
from E to M.
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We next introduce a notion of “agreement between two charts as regards
their induced smoothness structures on M”. Let U, and U0, 0 be two E-
charts on the set M. Then on the intersection of their U’s, V = U \ U0,
there are induced two “smoothness structures”, one from  (which defines a
correspondence between V and the subset  [V] of E) and the other from  0

(which defines a correspondence between V and the subset  0[V] of E). We
wish to compare these.

To this and, introduce the mapping  0 ·  �1 from  [V] to  0[V], and its

35
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inverse,  ·  0�1, from  0[V] to  [V]. These mapping represent the interac-
tion between U, , and U0, 0. [Note that M has now been eliminated: The
mappings are between subsets of Banach spaces.]

Now fix a symbol p, either a non-negative integer or the symbol “1”.
We are led to the following definition: The charts U, and U0, 0 on M are
said to be compatible (or Cp�compatible) if i)  [V] and  0[V] are both open
subsets of E, and ii) the mapping  0 ·  �1 from  [V] to E, and  ·  0�1,
from  0[V] to E, are both Cp mappings. The second condition is the crucial
one. Note that we do not require that our mappings preserve vector-space
structure, or norm structure. Rather, they need only preserve Cp di↵erential
structure. It is in this way that a single “type of structure” is isolated. Note
also that two charts are necessarily compatible if their U’s a fail to intersect.
Example. Let U, be an E�chart on M, let U0 be a subset of U such that
 [U0] is an open subset of  [U], and let  0 be  restricted to U0. Then U, 
and U0, 0 are compatible.

A manifold consists of a non-empty set M, a Banach space E, a symbol
p, and a collection ⇣ of E�charts on M, satisfying the following conditions:

1. Any two charts in the collection ⇣ are Cp compatible.
2. The charts in ⇣ cover M, i.e., every point of M is in at least one of the

U0s.
3. Any chart on M which is compatible with all the charts in ⇣ is itself in

⇣.
4. The charts separate points of M in the following sense: Given distinct

points p and p0 of M, there are charts U, and U0, 0 in ⇣ such that p is
in U and p0 in U0, and such that there is a ball B centered at  (p) in  [U]
and a ball B0 centered at  0(p0) in  0[U0], with  �1[B] and  0�1[B0] not
intersecting in M.

These conditions – or at least the first three – are exactly what one might
have expected intuitively. The first requires that “whenever two charts in
⇣ induce smoothness structures in the same region of M, these structures
agree”. The second requires that “smoothness structure has been induced
over all of M”. The third guarantees that we have not induced any additional
structure on M by cutting down the number of charts. Finally, the fourth
condition (which is normally automatically satisfied in practice) eliminates
certain pathological object, called non-Hausdor↵ manifolds, which are of
little interest.

The manifold defined above is sometimes called a Cp manifold based on
Banach space E. The charts in ⇣ are called the admissible charts, or just the
charts. We often denote a manifold just “M”, the rest understood. A subset O
of manifold M is said to be open if, for every admissible chart U, ,  [U\O]
is open in E. These are of course, the open sets for a topology on M. The
fourth condition then requires that this topological space be Hausdor↵. Our
third condition is often omitted, and our fourth occasionally.
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One might imagine that it would be very di�cult to give any examples
of manifolds, for, by the third condition above, there will be an enormous
collection of charts, and it might be awkward to write all these down. The
possibility of giving examples easily arises from the following fact.
Lemma. Let M be a non-empty set, E a Banach space, p a symbol (a non-
negative integer or “1”), and ⇣̂ a collection of E�charts on M satisfying
conditions one, two, and four above. Denote by ⇣ the collection of all charts
on M compatible with all those in ⇣̂. Then ⇣ satisfies all four conditions.
Proof: First note that, since every chart in ⇣̂ is necessarily in ⇣, this ⇣ au-
tomatically satisfies the second and third conditions. Similarly, the fourth
condition is also automatic. Thus, we need only verify the first. Let U, and
U0, 0 be two charts in ⇣, and set V = U \ U0. Fix point p of V , and choose
chart Û,  ̂ in ⇣̂, with p in Û (possible, by second condition). By compatibil-
ity of Û,  ̂ and U , and of Û,  ̂ and U0, 0, there is a ball B centered at  ̂(p)
such that B is in  ̂[V] (=  ̂[U] ̂[U0]). By compatibility of Û,  ̂ and U, ,
 ·  ̂�1[B], a subset of  ̂[V], contains a ball centered at  (p). Thus,  [V] is
open in E, and similarly for  0[V]. Finally, since  ·  ̂�1 and  ̂ ·  0�1 are Cp,
so is their composition,  ·  0�1 and similarly for  0 ·  �1. We conclude that
U, and U0, 0 are compatible.

Thus, to obtain a manifold, one need only find charts satisfying the first,
second, and fourth conditions: Something which is often rather easy to do.
Examples. Let M be a Cp manifold based on E, and let q  p (where, of
course, the non-negative integers are ordered in the usual way, q  1 for
every q, and 1  p only if p = 1). Then, since charts Cp�compatible
are also Cq�compatible, the admissible charts on M satisfy the first, second,
and fourth condition with p replaced by q. By the Lemma, we obtain a Cq

manifold based on E. The question of whether, given a Cq manifold and
p > q, one can throw away some charts to get a Cp manifold is very di�cult.
Example. Let E be a Banach space, and let M be the set E. Introduce
a chart with U = M (a subset of M), and  the identity mapping (from
U = M = E to E). This single chart satisfies the first condition, since every
chart is compatible with itself, and obviously the second. This chart also
satisfies the fourth condition, since given distinct points of a Banach space,
one can find non-intersecting balls centered at those points. By the Lemma,
we obtain a C1 manifold based on E.
Example. Let M denote the set of all sequences, (r1, r2, . . .), of real numbers
with (r1)2 + (r2)2 + . . . = 1. Let E be the Banach space of all sequences
(s1, s2, . . .) the sum of the squares of whose entries converges. We introduce
some E�charts on M. Let U be the subset of M consisting of all elements
with r1 > 0. For (r1, r2, . . .) in U, set  (r1, . . .) = (r2, r3, . . .) (an element
of E, since the sum of the squares of the entries converges). We claim that
this is a chart. Indeed, for  (r1, r2, . . .) =  (r01, r02, . . .), we must certainly
have r2 = r0@, r3 = r03, etc. But we must also have r1 = r01, for each is
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the positive square root of one minus the sum of the squares of the other
entries. That is,  is one-to-one. We next claim that  [U] is the subset of
E consisting all (s1, s2, . . .) with (s1)2 + . . . < 1, a claim which is obvious
from the observation that  (

p
1 � ⌃(si)2, s1, s2, . . .) = (s1, s2, . . .). But this

 [U] is an open subset of E (in fact, is the ball of radius one centered at the
origin). Thus, we have a chart.

Similarly, we obtain a chart with U consisting of (r1, r2, . . .) with r1 < 0,
and the same  . Doing the same thing with r2, and then with r3, etc., we
obtain still more charts on M.

We next claim that these charts satisfy conditions one, two, and four,
for p = 1. The second and fourth are immediate, and so we have only to
check compatibility. Let us consider, e.g., the chart U, (where U requires
r1 > 0) and U0, 0 (where U0 requires r2 > 0). Then V = U \ U0 consists of
(r1, r2, . . .) in M with r1 > 0 and r2 > 0, whence  [V] consists of (s1, s2, . . .)
with (s1)2 + . . . < 1 and with s1 > 0. But this is certainly an open subset of
E. Similarly for  0[V]. Now, for (s1, s2, . . .) in  0[V], we have  �1(s1, . . .) =
(
p

1 � ⌃(si)2, s1, s2, . . .), whence  0 ·  �1(s1, . . .) = (
p

1 � ⌃(si)2, s2, s3, . . .).
We claim that this mapping  0 ·  �1 from  [V] to E is C1. It is derivative
at (s1, s2, . . .) in  [V], for example, sends (t1, t2, . . .) in E to the element
(✓(1 � ⌃(si)2)�1/2(s1t1 + s2t2 + . . .), t2, t3, . . .) of E. [This guess is made, of
course, from ordinary calculus.]
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Thus, our charts satisfy the first, second, and
fourth conditions. By the Lemma, we obtain a
manifold. [This is the infinite-dimensional sphere.
Similarly, one obtains the finite-dimensional
sphere.]
Example. Let F be the Banach space of continu-
ous, real-valued functions f on the closed interval
[0, 1] with f (0) = f (1) = 0. Let E = F⇥F, product
of Banach spaces. Next, denote by M the set of all curves in the plane which
begin at (0,�2), end at (0,+2), and which avoid the closed disk of radius
one centered at the origin. [That is, M is the set of all continuous maps �
from [0, 1] to R2 with �(0) = (0,�2), �(1) = (0,+2), and with |�(r)|  1 for
no r.] We introduce an E�chart on this set M. Fix an element �(0) of M.
Let U = M, and let  be the mapping from U to E which sends � in M to
the element �(r) � �0(r) of E (noting that � � �0 as a continuous map from
[0, 1] to R2 beginning and ending at the origin, is an element of E). This  
is clearly one-to-one. Furthermore,  [U] is open in E, for, given  (�) in E,
one can find an ✏ such that, whenever | (�)� ⌧|  ✏, ⌧ is also in  [U]. Thus,
this is a chart.

Again, this single chart satisfies the first, second, and fourth conditions
for a manifold. By the Lemma, we obtain a manifold.

We shall later display some more interesting examples of manifolds.
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There are two elementary techniques for constructing new manifolds from
old. These techniques are of interest, first because they give some insight
into what a manifold is, second because they yield a rich source of exam-
ples, and third because the techniques themselves often arise in practice. We
now discuss these techniques.
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Let M be a manifold
based on Banach space E,
and let N be a subset of
M and F a subspace of
E. We suppose that these
objects are related as fol-
lows: Given any point p
of N, there is an admissi-
ble chart U, on M such
that p is in U, and such that  [U \ N] =  [U] \ F. Of course, such a chart
will not in general exist: our requirement of its existence represents an addi-
tional condition on N and F. this condition requires essentially that “N in M
look like F in E”.

We next introduce some F�charts on this set N. Let U, be an admissi-
ble chart on M, with  [U \N] =  [U]\ F. Set W = U \N, and let ' be the
restriction of  to W. Then W is certainly a subset of N, and ' certainly maps
this W to Banach space F. Furthermore, since '[W] =  [U] \ F, this '[W]
is an open subset of F, while, since  is one-to-one, so is '. We conclude
that W,' is an F�chart on N.

The F�charts on N, so obtained, clearly satisfy the fourth condition for
a manifold (since the admissible charts on M do). The second condition
follows from the condition above (since the above is precisely the statement
that our charts cover N). We next verify the first condition, i.e., we show
that any two such charts are compatible. Let W,' and W 0,' be two F�charts
on N, obtained from charts U, and U0, 0 on M, respectively. Then, since
'[W \W 0] =  [U \U0]\ F, and since the right side is an open subset of F,
so is the left side. Similarly, '0[W \W 0] is an open subset of F. Thus, there
remains only to show that the mapping '0 · '�1 from '[W \W 0] to F is Cp.
To this end, fix x0 in '[W \W 0], and write ↵ for '0 · '�1 and � for  0 ·  �1.
Then, since � is di↵erentiable at x0, we have that �(x)��(x0)�D�(x0)(x�x0)
(as x ranges over points of E su�ciently close to x0) is tangent at x = x0).
Now fix x in F: Then (x � x0), �(x), and �(x0) are all in F, We claim that,
therefore, D�(x0)(x� x0) must also be in F. [Proof: Suppose not. Then there
is a positive ✏ such that |D�(x0)(x � x0) � y| � ✏ for every y in F. Then, for
all positive a, we have |�(ax + (1 � a)x0) � �(x0) � D�(x0)(ax � ax0)| � a✏,
since the first two terms are in F. But, setting, x0 = ax + (1 � a)x0 and
letting a go to zero, this last inequality violates tangency of �(x0) � �(x0) �
D�(x0)(x0 � x0) at x0 = x0.]. Denote by T the mapping D�(x0) restricted to
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F, so T is a bounded linear mapping from F to F. Then we have, for x in F,
�(x) � �(x0) � D�(x0)(x � x0) = ↵(x) � ↵(x0) � T (x � x0). Since the left side
is tangent at x = x0 for x ranging over E, it is also tangent for x ranging over
F. Hence, the right side is also tangent at x = x0, x ranging over F. Thus, ↵
is di↵erentiable at x = x0, and D↵(x0) = T . Similarly, if � is Cp, then ↵ is
also Cp.

Thus, we have obtained a collection of F�charts on the set N, satisfying
the first, second, and forth condition for a manifold. By the Lemma, there-
fore, we have a manifold N based on F. The manifold so obtained is called
a submanifold of M. [For some reason that I do not understand, this term is
normally reserved for the case when F splits in E.]
Example. Let M be a a manifold based on Banach space E, and let O be an
open subset of M. We claim that this O is a sub manifold of M, i.e., that O
satisfies the condition on N at the top of the previous page (with F = E).
Indeed, let p be any point of O, and let U, be any admissible chart with
p in U. Then, setting U0 = U \ O and letting  0 be the restriction of  
to U0, we obtain an admissible chart U0, 0. But, for this chart, we have
 0[U0 \ O] =  0[U0] \ E. Thus, we obtain a manifold O based on E.
Example. Regard the manifold M of the third example on page 37 as a subset
of the manifold E (consisting of (r1, r � 2, . . .) the sum of whose squares
converges). Then M is a sub manifold.

We turn, finally, to the second method for constructing manifolds from
manifolds. Let M1 and M2 be Cp manifolds, based on Banach spaces E1 and
E2, respectively. We obtain a new manifold. Let M = M1 ⇥ M2, Cartesian
product of sets (so an element of M is a pair, (m1,m2), with m1 in M1 and m2
in M2). Next, let E = E1 ⇥ E2, product of Banach spaces. we now introduce
some E�charts on this set M. Let U1, 1 and U2, 2 be admissible charts on
M1 and M2, respectively. Set U = U1 ⇥ U2, a subset of M (so (m1,m2) in M
is in U provided m1 is in U1 and m2 is in U2). Let  be the mapping from U
to E with action  (m1,m2) = ( 1(m1), 2(m2)), noting that the object on the
right is indeed in E.

 U1 ×U2

 M1 ×M2

 M1

 U2

 M2

 M

 U1

We now claim that this U, 
is an E�chart on M. Indeed,  
is one-to-one, for  (m1,m2) =
 (m01,m0 � 2) implies  1(m1) =
 1(m01) and  2(m2) =  2(m02),
whence, since  1 and  2 are one-
to-one, we have m1 = m01 and
m2 = m02, whence (m1,m02) =
m2,m02). Next, note that  [U] is
open in E, for  [U] is the subset
 1[U1] ⇥  2[U2] of E, while each
factor is open in its respective Ba-
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nach space. Thus, U, is indeed a chart on M.
We have so far a set M, together with some charts on this set. We claim,

next, that this collection of charts satisfies the first, second, and fourth con-
ditions for a manifold. For the second condition, note that, given (m1,m2) in
M, we have, choosing U1,  1 with m1 in U1 and U2,  2 with m2 in U2, that
(m1,m2) is in the corresponding U. Similarly, the fourth condition follows
from that condition on M1 and M2. Thus, we have only to verify the first
condition, i.e., to show that any two of our charts are compatible. LetU, 
and U0, 0 be two such, coming from U1, 1 and U2, 2 and U01, 01 and
U02, 02, respectively. Then, setting V1 = U1 \ U01 and V2 = U2 \ U02, we
have that U\U0 = V1⇥V2. Thus,  �1[U\U0 =  �1

1 [V1]⇥ �1
2 [V2], whence,

since each factor on the right is open in its Banach space,  �1[U\U0] is open
in E, and similarly for  0�1[U \ U0]. Next, consider the mapping  0 ·  �1

from  [U] to E. It is action on x1, x2) in E (so x1 is a vector in E1 and x2
a vector in E2) is  0 ·  �1(x1, x2) = ( 01 ·  �1

1 (x1), 02 ·  �1
2 (x2)). But, since

 01 · �1
1 (from  1[U1] to E1) is Cp and  02 · �1

2 is Cp, so is this  0 · �1. We
conclude that, indeed, any two of our charts are Cp�compatible.

Thus, we so far have a set M, and a collection of E�charts on M satis-
fying the first, second, and fourth conditions for a manifold. By the Lemma,
therefore, we have a Cp manifold M based on E. This manifold is called the
product of M1 and M2, written M1 ⇥ M2.
Example, Let E1 and E2 be Banach spaces. Then the product of the manifold
E1 (second example, page 37) with the manifold E2 is the manifold E1 ⇥ E2
(product of Banach spaces).
Example Let M1 and M2 be Cp manifolds, and let M be the Cp manifold
M1 ⇥ M2. Fix once and for all a point m2 of M2. Denote by N the subset of
M consisting of all elements of the form (m1,m2) with m1 in M1. Then N
is a submanifold of M (where the corresponding subspace F of E is just the
subspace E1 of E). Clearly, the resulting manifold N (based on E1) is just a
copy of the original manifold M1. In this sense, then, M1 ⇥ M2 is “sliced by
submanifolds which are copies of M1, and also by copies of M2”, just as one
might expect of a product.

A characteristic feature of these two constructions should be noted. A
manifold “looks locally like a certain Banach space”. In each case, one sim-
ply takes a construction applicable to Banach spaces (“taking a subspace”
and “taking a product”, respectively) and performs essentially that same con-
struction for manifolds, using the charts to “pull over” the construction from
Banach spaces to the manifolds. This general theme persists throughout the
subject; Things done to or on Banach spaces, “localized and pulled over via
charts”, yield things done to or on manifolds.
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10. Mappings of Manifolds

Each kind of mathematical object normally comes equipped with the notion
of a “structure-preserving mapping” between two such objects. For vector
spaces, the mappings are linear mappings; for groups, homomorphisms, for
topological spaces, continuous mappings; for Banach spaces, bounded linear
mappings. Manifolds are a “kind of mathematical object”. We now intro-
duce the corresponding mappings.

q = u1 = u2 
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Let M and M0 be Cp manifolds, based on Banach spaces E and E0, re-
spectively. Let ' be a mapping from set M to set M0. This ' is said to be
a Cp mapping (of manifolds) provided the following condition is satisfied:
Given any admissible charts U, and U0, 0 on M and M0, respectively, i)
the subset  [U \ '�1[U0]] of E is open, and ii) the mapping  0 · ' · �1 from
this  [U \ '�1[U0]] to E0 is Cp. We first check that these subsets and map-
pings make sense. First, '�1[U0] is some subset of M. Hence, U \ '�1[U0]
is some possibly smaller subset of M, and indeed is subset of U. Hence,
 [U \ '�1[U0]] is well-defined, and is a subset of E. For x in this subset,
 �1(x) is in U \ '�1[U0], and so, in particular,  �1(x) is in '�1[U0]. Hence,
'( �1(x)) makes sense, and is an element of M0 – indeed, is actually an ele-
ment of the subset U0 of M0. Hence,  0('( �1(x))) makes sense and is an el-
ement of E0. Thus, everything makes sense. In condition i), let us fix U0, 0,
and vary U, . Then condition i) requires precisely that '�1[U0] be an open
subset of M. In topological terms, a Cp mapping must be a continuous map-
ping of topological spaces. In the case – p = 0, this is the only condition, for
condition ii) then follows (since compositions of continuous mappings are
continuous) from condition i). For other p, however, we require still more:
Roughly speaking, we require that, “if the mapping ' is pulled back via the

43



44 10.

charts to a mapping of Banach spaces (so we know what Cp means), then the
result is a Cp mapping between those Banach spaces”. Thus, this definition
can be viewed as another instance of our general program: We know what
“Cp” mapping” means for Banach spaces, and we carry over that notion to
manifold via charts.
Example. Let M be a Cp manifold, and N a submanifold, so N is also a Cp

manifold in its own right. Let ' be the mapping from set N to set M with
'(n) = n, i.e., which “inserts N into M”. Then this ' is a Cp mapping of
manifolds.
Example. Let M1 and M2 be Cp manifolds, so M1⇥M2 is also a Cp manifold.
Let ' be the mapping from M1 ⇥ M2 to M1 with action '(m1,m2) = m1
(“projection onto the first factor”). Then ' is a Cp mapping of manifolds.
Example. Let M be a Cp manifold, and consider the Cp manifold R (a Ba-
nach space, and hence a C1 manifold, and hence a Cp manifold). A Cp

mapping � from R to M is called a curve in M.
Example Let M be a Cp manifold, and let U, be an admissible chart on M.
Set K =  [U], so K is an open subset of Banach space E. We may regard K
as Cp manifold (since E, as a Banach space, is a manifold, and K is an open
subset of E: first example, page 40). Then  is a mapping from manifold K
to manifold M. This is a Cp mapping.

Let M and M0 be Cp manifolds, and let ' be a Cp mapping from M to M0.
If ' happens to have an inverse, i.e., if there is a Cp mapping � from M0 to M
such that �·' is the identity mapping on M and '·� is the identity mapping on
M0, then ' is called a di↵eomorphism (or Cp di↵eomorphism) from M to M0.
Then necessarily � is a di↵eomorphism from M0 to M. A di↵eomorphism
from M to M0 “makes M and M0 identical as manifolds” (i.e., is analogous
to an isomorphism of groups or of Banach spaces, a homeomorphism of
topological spaces, etc.). If there exists a di↵eomorphism from M to M0
then M and M0 are said to be di↵eomorphic (or Cp di↵eomorphic).
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 (−1,0,0,...)

 (1,0,0,...)Example. Consider the
manifold M of the third
example on page 37. Let
O be the subset of M
consisting of all points
thereof except (1, 0, 0, . . .).
Then O, as an open subset
of M, is also a manifold.
The Banach space E of that example is, as a Banach space, also a mani-
fold. Let ' be the mapping from O to E which sends (r1, e2, . . .) in ) to
(1/(1 � r1))(r2, r3, . . .) in E. This is a di↵eomorphism of manifolds. [For ex-
ample, a two-dimensional sphere, minus a point, is di↵eomorphic with the
plane.]

The composition of two Cp mappings of Banach space is Cp. As one
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expects, this carries over directly to manifolds.
Theorem. Let M, M0, and M00 be Cp manifolds, and let ' be a Cp mapping
from M to M0, and '0 a Cp mapping from M0 to M00. Then the mapping '0 ·'
from M to M00 is also a Cp mapping of manifolds.
Proof: Let E, E0, and E00 be the Banach spaces on which these manifolds
are based. Choose charts, U, , U0, 0, and U00, 00. Then, since  0[U0 \
'0�1[U00]] is open in E0, for every U0, 0, [U \ ('0 · ')�1[U00]] is open in E.
Since the mapping of Banach spaces  0 · ' ·  �1 and  00 · '0 ·  0�1 are Cp, so
is their composition,  00 · '0 · ' ·  �1.
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Example The composition of two di↵eomorphism is a di↵eomorphism, for,
if � and �0 are the inverses of ' and '0, respectively, than �·�0 is the inverse of
'0·', and Cp�ness is preserved under composition. Hence, “is di↵eomorphic
with” is an equivalence relation on manifolds.
Example. Given a curve � on M (so � is a Cp mapping from R to M), and a
Cp mapping ' from M to M0, then ' · �, as a Cp mapping from R to M0, is a
curve on M0.



46 10.



11. Scalar Fields

We have now completed, in the last two sections, our discussion of what a
manifold is and is like: We have the notion of a manifold, and of a structure-
preserving mapping between manifolds. It turns out, however, that mani-
folds, viewed as simply objects by themselves, are not all that interesting.
What is perhaps more interesting is the various objects which live naturally
in the environment of a manifold. Among these objects are what will be
called tensor fields. We now begin, therefore, a program of defining and
finding the properties of these tensor fields. Our approach will be to first
treat scalar fields and vector fields (by far the two most important examples).
These two examples out of the way, we shall then look at the entire situation
regarding tensor fields from a more systematic viewpoint. We begin, then,
with the scalar fields.

Fix a Cp manifold M, based on Banach space E. A scalar field (or Cp

scalar field) on M is a Cp mapping f from M to R (where R is here regarded
as a Cp manifold). That is, a scalar field on M is just a real-valued function
on M, a function which happens to be smooth in a certain sense.
Example. Regard Banach space E as a Cp manifold. Then a bounded linear
mapping from E to R is a scalar field on E.
Example. Let f be a Cp scalar field on M, and � a Cp curve. Then f · � is
one real function of one real variable (representing “evaluation of the scalar
field along the curve”). As composition of Cp mappings of manifolds, this
function is also Cp.

Fix Cp manifold M. Let f and f 0 be two Cp scalar fields on M, and
consider the function f + f 00 of M with action ( f + f 00)(p) = f (p) + f 0(p).
Then this function is also a Cp scalar field (since the sum of two Cp functions
on a Banach space is a Cp function). Furthermore, for a a real number, the
function a f with action (a f ) (p) = a f (p) is a Cp scalar field. That is to
say, the set of all Cp scalar fields on M has the structure of a real vector
space. Finally, for f and f 0 Cp scalar fields , the function f f 0 with action
( f f 0)(p) = f (p) f 0(p) is also Cp (since true on Banach spaces). Thus, we
have available a “multiplication” within our vector space. The collection of
all Cp scalar fields on M thus becomes a ring (and, indeed, a commutative,
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associative algebra with unit).
Next, we consider the behavior of scalar fields under mappings of man-

ifolds. Let M and M0 be Cp manifolds, and let ' be a Cp mapping from
M to M0. Then, given any Cp scalar field f on M0, we have that f · ' is
a real-valued function on M. But, as the composition of Cp mappings, this
function is also Cp, and hence is a Cp scalar field on M. Thus, we can “pull
back” scalar fields from M0 to M under mappings from M to M0. Clearly,
the “pull-back” of the sum of two fields is the sum of their pull-backs, the
pull-back of a numerical multiple is that multiple of the pull-back, and the
pull-back of the product is the product of the pull-backs. In other words, ', a
structure-preserving mapping from M to M0, defines a structure-preserving
mapping from scalar fields on M0 to those on M. [In algebraic language, this
last mapping is a homomorphism of rings.]
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Finally, we give some examples
of some interesting – and perhaps a
bit surprising – di↵erence between the
properties of scalar fields in the finite
– and infinite-dimensional cases. Con-
sider first the following statement: for
E a Banach space, and r1 and r2 pos-
itive numbers with r1, r2 there is a C1
real-valued function f on E with f (x) =
1 whenever |x|  r1 and f (x) = 0
whenever |x| � r2. We first note that
this statement is true if E is finite-
dimensional: Indeed, for (r1, . . . , rn) in
Rn, set r = [(r1)2 + . . . + (rn)2]1/2, and let f be a C1 function of r which has
value one for r  r1 and zero for r � r2. In fact, this statement in the finite-
dimensional case represents an important and frequently used property of Rn:
It allows one to “localize arguments” by choosing functions which do what
one wants in some small region, but which, since they are zero farther away,
do not do anything very nasty outside of that small region. For example, one
can easily show from our fact that a finite-dimensional manifold admits a
“reasonable number” of C1 scalar fields, in, e.g., the following sense: Given
distinct points p and p! of finite-dimensional M, and any numbers a and a0,
there exists a C1 scalar field f on M with f (p) = a and f (p0) = a0.

Is the statement of the previous paragraph true in general, i.e., is it also
true in the infinite-dimensional case? It turns out that the answer is no.
Example. Let E be the Banach space of all sequences of reals the sum of
whose absolute values converges, with norm this sum. Fix positive r, and let
f be a C1 scalar field on the ball B of radius r centered at 0. Also, let U be an
open subset of E whose closure, U is in B. Then, given any point p of U and
any positive ✏, there is a point p̂ of B, not in U, such that | f ( p̂) � f (p)|  ✏.
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Proof: Nothing is lost be setting r = 1 and
f (p) = 0. Fix, once and for all, positive num-
ber ✏. Denote by � the collection of all pairs
(t0, �), where t0 is a non-negative number and �
is a continuous mapping from the closed interval
[0, t0] to U, satisfying the following conditions:
i) �(0) = �, and |�(t0) � �(0)| � t0/2, ii) for any
t and t0 in [0, t0], |�(t) � �(t0)  |t � t0|, and iii)
f (�(t))  ✏t0. [Think of the curve as a “moving point in U whose location
at time t is �(t)”. The first condition then requires that “the point begin at
p, and manage to achieve distance at least t0/2 from p by time t � 0”; the
second that “the speed of the moving point not exceed one”; the third that
“the function f not be too large where the curve ends.] We now partially or-
der this set � by the relation “is an extension of”: (t0, �)  (t00, �0) provided
t0  t00 and � = �0 on [0, t0]. Note that, by condition i) and the fact that U is
a subset of a ball of radius one, we have t0  4 for every (t0, �) in �.

We next claim that this partially ordered set � satisfies the condition for
Zorn’s Lemma. Indeed, given any totally ordered subset of �, we certainly
obtain, by “stringing these extensions together”, a t0 (the lub of the y00s of the
totally ordered subset), and a continuous mapping � from [0, t0] to U satis-
fying the first part of condition i) and condition ii). But, by condition ii), the
sequence �(t0/2), �(3t0/4), �(7t0/8), . . . in U is Cauchy, whence, since U is
closed, this sequence converges to some element of U. Denote this element
�(t0), so we now have � a mapping from [0, t0] to U. But this (t0, �) is in �,
the three conditions following from continuity. Thus, we have obtained our
upper bound, and so verified the condition for Zorn’s Lemma.

By Zorn’s lemma, there is a maximal element, (t0, �), of �. If �(t0) (nec-
essarily in U were not in U, then we would be done (for, setting p̂ = �(t0),
we would have | f ( p̂)|  ✏t0  4✏, where the first inequality is from condition
iii) and the second from t0  4). Thus, we have only to show that assumption
that x0 = �(t0) is in U leads to a contradiction. Make this assumption, and
first note that, since f is C1 at x0, there is a positive � such that, whenever
|z|  �, | f (x0 + z) � f (x0) � D f (x0)(z)|  ✏�. We next claim that there is a
vector z in E such that |z| = �, |x0 � p+ z| � |x0 � p|+ �/2, and D f (x0)(z) = 0.
[Proof: Since x0 � p is in E, it is represented by a sequence, (r1, r2, . . .), of
reals the sum of whose absolute values converges. Choose two entries of
this sequence, say r2 and r5, with |r2|  �/4 and |r5|  �/4. Consider the
subspace of E consisting of elements all of whose entries, except possibly
the second and fifth, are zero. Since D f (x0) is a linear mapping from this
subspace to the reals, and since this subspace is two-dimensional, there is
some element, z, of this subspace with |z| = � and D f (x0)(z) = 0. But now,
since z is of the form (0, u, 0, 0, v, 0, . . .), and since x0 � p = (r1, e2, . . .) has
|r2|  �/4, we have also |x0 � p+ z| � |x0 � p|+ �/2. This z, then, is what we
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wanted.]

!!!!!!!!!!!!

!!!!!!!!!!!!
0

1
f=1 

r1 

r2 
f=0 

f(r) 

0

r1 
r r2 

 z

  p̂

 p
γ

 B

 U
  γ (t0 )

  γ̂ (t̂0 )

Now set t̂0 = t0 + �, and let �̂ be the
mapping from [0, t̂0] with �̂(t) = �(t) for
t in [0, t0], and �̂(t) = �(t0) + (t � t0)/�
z for t � t0. We show that this (t̂0, �̂) is
also in �, violating maximality of (t0, �),
and thus giving us our desired contradic-
tion. Condition i): Clearly, �̂(0) = p. Also,
|�̂(t̂0)� �̂(0)| = |�(t0)+ z��(0)| = |x0 � p+ z| � |x0 � p|+ �/2 � 1/2(t0 + �) =
1/2t̂0, where we used a property of z above in the third step, and condition i)
on (t0, �) in the fourth. Condition ii):

For, e.g., t in [t0, t̂0] and t0 in [0, t0], we have |�̂(t) � �̂(t0)| = |�(t0) + (t �
t0)/�z � �(t0)|  |�(t0) � �(t0)| + (t � t0)/��  (t0 � t0) + (t � t0) = |t � t0|,
where we used |z| = � in the second step, and condition ii) on (t0, �) in
the third. Condition iii): Since D f (x0)(z) = 0 and |z| = �, we have, by the
paragraph above, that | f (x0+z)� f (x0)|  ✏�. Hence, | f (�̂(t̂0))| = | f (x0+z)| 
| f (x0)| + | f (x0 + z) � f (x0)|  ✏t0 + ✏� = ✏ t̂0. This completes the proof of the
result claimed in our example.

The crucial step in the proof above is finding the “direction z, motion
along which gets one significantly further from p, but along which the func-
tion f does not increase too much”. The statement itself asserts that “the C1

function f tastes outside of U any value that it assumes inside of U”. This
behavior of C1 functions in infinite dimensions is rather like the well-known
behavior of harmonic functions in finite dimensions. One concludes, then,
that C1 functions on certain infinite-dimensional spaces are similar in their
behavior to harmonic functions on finite-dimensional spaces. Indeed, we
can push this analogy still further. The only harmonic functions on a finite-
dimensional sphere are the constants. In infinite dimensions, we have the
following.

!!!!!!!!!!!!  ψ '
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ω
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Example. Let E be the Banach
space of the example above. Let
Ẽ be a copy of the set E (with
' a one-to-one, onto mapping
from Ẽ to E), and let M be
the union of Ẽ with one addi-
tional point !We introduce two
E�charts on the set M. For one,
set U = Ẽ, and  = '. For
the other, set U0 the subset of M
consisting of !, together with those  in Ẽ with '() =, 0 and let  0(!) = 0
and  0()'()/|'()|2, for  in Ẽ. These two charts make M a C manifold
based on E. [This M is “like a sphere”, in, e.g., the sense that the same
construction in the finite-dimensional case yields a sphere.]
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We now claim that the only C1 scalar fields f on this manifold M are
those which are constant. Indeed, let f be such a field, and let f (!) = a.
Then f ·  0�1 is a C1 function on E, with f ·  0�1(0) = a. Fix positive
✏. Then, by continuity, there is a positive � such that whenever |x|  �,
| f · 0�1(x)� f · 0�1(0)| � ✏. Now, f · �1 is a C1 function on E. By what we
have just shown, whenever |x|  1/�, | f ·  �1(x) � a|  ✏. But, by the result
of the previous example, it follows that | f ·  �1(x) � a|  ✏ for every x in E.
Hence, | f (p) � a|  ✏ for every p in M. Since ✏ is arbitrary, we must have
f (p) = a for every p in M.

Thus, the manifold of this example, at least, has no interesting C1 scalar
field whatever.
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12. Vector Fields

We have now completed our discussion of the first example of a field on a
manifold: scalar fields. We turn now to the second example.

Let M be a Cp manifold (p � 1) based on Banach space E. Fix a point p
of M. Consider now the collection of all pairs, (x; U ), where x is a vector
in E and U, is an admissible chart on M with p in U. Given two such, write
(x; U, ) ⇡ (x0; U0, 0) if D( 0 ·  �1)( (p)(x) = x0. We now claim that this
⇡ is an equivalence relation. [Proof: Clear, (x; U, ), ⇡ (x; U, ). Next, let
(x; U, ) ⇡ (x0; U0, 0). We have that ( 0t �1) · ( ·  0�1) is the identity map-
ping. Taking the derivative of this equation, using the chain rule, we have
D( 0 · �1)( (p))D( · 0�1)( 0(p)) = I, the identity on E. Hence, since D( 0 ·
 �1)( (p))(x) = x0 we have D( ·  0�1)( 0(p))(x0) = x, i.e., (x0; U0, 0) ⇡
(x; U, ). Finally, let (x; U, ) ⇡ (x0; U0, 0) and (x0; U0, 0) ⇡ (x00; U00, 00).
Taking the derivative of ( 00 · 0�1) · ( 0 · �1) =  00 · �1, we have that D( 00 ·
 0�1)( 0(p))D( 0 ·  �1)( (p)) = D( 00 ·  �1( (p)). Applying each side to x,
we have D( 00 ·  �1)( (p))(x) = D( 00 ·  0�1)( 0(p))(D( 0 ·  �1( (p))(x)) =
D( 00 ·  0�1)( 0(p))(x0) = x00. hence, (x; U, ) ⇡ (x00; U00, 00).] An equiva-
lence class is called a tangent vector (to M, at p), or just vector in M.
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Intuitively, a tangent vector at p represents “an infinitesimal displace-
ment from p, in M”. We support this intuitive picture, and thus motivate
the definition above, by the following “first order calculation”. Fix point
p̂ in M “near p”. Let us represent the relationship between these points
in terms of chart U, , with p in U. This representation can be accom-
plished by considering the vector x =  (p̂) �  (p) in E. A di↵erent chart
gives a di↵erent representation, namely, U0, 0 gives x0 =  0( p̂) �  0(p).
To compare these two “representations of the same displacement in M”,
we note that x0 =  0( p̂) �  0(p) = ( 0 ·  �1)( ( p̂)) � ( 0 ·  �1)( (p)) m
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D( 0 ·  �1)( (p))( (p̂) �  (p)) = D( 0 ·  �1)( (p))(x), where “m” means
”ignoring a mapping tangent at  (p)”. But this formula is precisely the
equivalence relation above. The “term ignored becomes negligible as the
displacement between p̂ and p goes to zero”. Thus, we interpret our equiva-
lence relation as requiring that “various representation in terms of charts all
correspond to the same infinitesimal displacement in M”.
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Further support for our
intuitive picture comes from
the following.
Example. Let M be a Cp

manifold (p � 1), and let �
be a curve in M, i.e., a Cp

mapping from R to M. Let
p be the point �(0) of M. We obtain a tangent vector at p. Given any chart
U, in M with p in U, we have that  · � is a mapping from R to E, whence
its derivative at 0,D( · �)(0) is a linear mapping from R to E, whence
x = D( ·�)(0)(1) is a vector in E. Given another such chart, we similarly set
x0 = D( 0 · �)(0)(1). But, taking the derivative of  0 · � = ( 0 · �1) · ( · �) at
0, we have D( 0 ·�)(0) = D( 0 · �1)( ·�(0)) D( ·�)(0). applying this to the
number “1” in R, we see that x0 = D( 0 ·  �1( (�(0)))(x). That is to say, we
have that (x; U, ) ⇡ (x0; U0, 0). We thus obtain in this way an equivalence
class as on the previous page. This tangent vector is called the tangent to the
curve � at �(0).

This last example gives what we might expect: Since a curve “moves in
M”, it should define, at each point of the curve, a tangent vector giving the
“direction of motion in M”.
Example. Let M be a Cp manifold (p � 1), p a point of M, ⇠ a tangent vector
at p, and f a Cp scalar field on M. Let (x; U, ) be any representative of the
equivalence class ⇠, and consider the number a = D( f · �1)( (p))(x). Given
any other (x0; U0, 0) in this equivalence class, we similarly define a0. But,
taking the derivative of the identity ( f ·  0�1)( 0 ·  �1) = ( f ·  �1), and using
the fact that (x; U, ) ⇡ (x0; U0, 0), we have that a = a0. Thus, we obtain,
from vector ⇠ and scalar field f , a unique number, independent of choice
of chart used to define this number. This number is called the directional
derivative of f in the direction ⇠. Intuitively, this number is “ the rate of
change of f under the infinitesimal displacement in M defined by ⇠”.

The set of all tangent vectors at p is called the tangent space (to M)
at p. Our next goal is to determine what structure there is on this set. To
this end, we first note the following fact: If ⇠ is any tangent vector at p,
and U0, 0 is ant chart with p in U0, then there is one and only one vector
x0 in E with (x0; U0, 0) in the equivalence class ⇠. Indeed, for (x; U, )
any representative of ⇠, the required unique x0 is that given by x0 = D( 0 ·
 �1)( (p))(x). Thus, given a chart U, with p in U, we obtain a one-to-one,
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onto mapping ↵ from the tangent space at p to the Banach space E (namely,
↵(⇠) is that x in E such that (x; U, ) is in the equivalence class ⇠). This
correspondence ↵ thus induces on the tangent space all the structure of the
Banach space E (i.e., a vector-space structure and norm structure). We are
of course interested only in that part of all this structure on the tangent space
which is independent of the choice of chart. So, let U0, 0 be another. Then
we obtain immediately (since, for any ⇠, (↵(⇠); U, 0) ⇡ (↵0(⇠) : U0 0)) that
↵0 = D( 0 ·  �1)( (p)) · ↵. Clearly, then, the vector-space structure on the
tangent space is chart-independent (i.e., if ↵(⌧) = ↵(⇠) + ↵(⌘), then ↵0(⌧) =
↵0(⇠) + a↵0(⌘)). The norm structure, however, does depend on the chart, for
|↵0(⇠)| = |D( 0 ·  �1)( (p))(↵(⇠))|, which is not in general equal to |↵(⇠)|.
We have, however, that |↵0(⇠)|  |D( 0 ·  �1)( (p))| |↵(⇠)|, and similarly,
reversing the roles of ↵ and ↵0. That is to say, any two norms obtained on
the tangent space, from two charts, are equivalent to each other: It is only
the actual numerical values of the norms which are chart-dependent. This
structure on the tangent space – a vector space, together with a collection
of norms theorem which make the vector space a Banach space and which
are all equivalent to each other – is called a Banachable space. We can, in
the tangent space, speak of sums of tangent vectors, numerical multiplies of
tangent vectors, limits of a sequence of tangent vectors, Cauchy sequences of
tangent vectors (all notions which depend only on the vector-space structure
or on the norm up to equivalence): We cannot, for example, speak of the
norm of a tangent vector (as a real number).

In the finite-dimensional case, there are a number of equivalent defini-
tions of tangent vectors. It is of some interest to see which of these defini-
tions agree with ours above in general (i.e., also in infinite dimensions). We
consider two.

γ

 p

 M

 γ '

Let M be a Cp manifold (p � 1), and fix a point
p of M. Given any Cp curve � on M with �(0) = p,
and any Cp scalar field f on M, denote by s(�, f )
the number D( f ·�)(0)(1) (l.e., the ordinary deriva-
tive, at zero, of the real function f · � of one real
variable). [In our language, this is the directional
derivative of f in the direction of the tangent to � at
zero.] One then calls two curves, � and �0, equiv-
alent if s(�, f ) = s(�0, f ) for every f (i.e., if, in
intuitive terms, the two curves are “tangent to each other at p”). Tangent
vectors are then defined as the equivalence classes. This definition is not, in
general, the same as ours, but for a minor technical reason: As we saw in
the previous section, there are manifolds which admit only the constant Cp

scalar fields, and for these, for example, we would obtain only one equiv-
alence class (since we would have s(�, f ) = 0 always). We can avoid this
di�culty, however, by considering instead Cp scalar fields defined on a suf-
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ficiently small open sub manifold of M containing p. [Choosing, e.g., this
open subset to be the “U” of a chart, we will obtain enough Cp scalar fields.]
With this one modification, the two definitions will coincide. [Any tangent
vector in this sense defines one in our sense, since equivalent curves have
the same tangent. Conversely, give a tangent vector in our sense, one con-
structs a curve whose tangent at p is that tangent vector (using a chart), and
thus obtains an equivalence class of curves and hence a tangent vector in this
sense.]

For the second definition, again let M be a Cp manifold (p � 1), and
let p be a point of M. Denote by J the collection of all Cp scalar fields on
M, so J is a vector space with products. A derivation on J is a mapping �
from J to the reals, satisfying the following conditions: i) For f and f 0 in J,
�( f + f 0) = �( f ) + �( f 0), ii) For f a constant function, �( f ) = 0, and iii) For
f and f 0 in J�( f f 0) = f (p)�( f 0)+ f 0(p)�( f ). As an example of a derivation,
we have the following: Fix a tangent vector ⇠ to M at p, and denote by
� the mapping from J to R with the following action: For f in J, �( f ) is
the number given by the directional derivative of f in the ⇠ direction. Then
this � is a derivation (the three properties above being just properties of the
directional derivative). For the second definition, tangent vectors are defined
as derivations on J. This definition also does not agree with ours, for the
same technical reason as above: Not enough scalar fields in general. Again,
we can avoid this di�culty by choosing for J the scalar fields in some small
open set containing p. This having been done, does the present coincide with
our original definition? It turns out that the answer is still no.
Example. Let the manifold M be the Banach space E itself (regarded as a
manifold), and let the point p be the zero vector in E. Then, since M comes
equipped naturally with a chart, the tangent space at p can be identified with
E. Given any scalar field f on M, denote by ⌧ f the element of L(E;R)
which sends x in E to the real number the directional derivative of f in the x
direction (regarding x as a tangent vector at 0. Then, clearly, ⌧ f+ f 0 = ⌧ f +⌧ f 00

for f a constant scalar field, ⌧ f = 0, and ⌧ f f 0 = f (0) ⌧ f 0 + f 0(0)⌧ f .
Now let ↵ be any element of L(L(E;R);R). Then for each f ↵(⌧ f ) is

just a real number. Hence, the mapping � from J to R with �( f ) = ↵(⌧ f ) is
a derivative on J. Thus, so far we have a construction which yields, from
an element ↵ of L(L(E;R);R), a derivation. In particular, every element x
of E determines a certain ↵x in L(L(E;R) : R), namely, with the following
action: For ⌧ in L(E;R) let ↵x(⌧) = ⌧(x). Thus, since an element of E yields
an element of L(L(E;R);R), and since an element of L(L(E;R);R) yields
a derivation, each element of E yields a derivation. This, of course, is just
the example we remarked on in the second paragraph of this page.

Is every ↵ in L(L(E;R) : R) a ↵x for some x in E? If not, we shall have
an example of a derivation (namely, that which comes from this ↵) which
arises from no tangent vector. We now find, for a specific choice of E, such



57

an ↵.
Let E be the Banach space of all sequences of real numbers which con-

verge to zero, with norm the lub of the absolute values of the entries. We
now claim that L(E;R) is precisely the Banach space F of all sequences of
reals the sum of the absolute values of whose entries converges (with norm
this sum). Indeed, for y = (s1, s2, . . .) in F, let ⌧y be the element of L(E;R)
which sends x = (r1, r2, . . .) in E to the number ⌧y(x) = s1r1 + s2r2 + . . .
(noting that the sum of the right converges, since the ri converge to zero, and
the sum of the absolute values of the si is finite). Conversely, let ⌧ be an ele-
ment of L(E;R). Set s1 = ⌧(1, 0, . . .), s2 = ⌧(0, 1, 0, . . .), etc. Then, for any
x = (r1, r2, . . .) in E, we must have ⌧(x) = s1r1 + s2r2 + . . .) (for the sequence
in E whose nth element is (r1, r2, . . . , rn, 0, 0, . . .) converges to x, whence ⌧ of
each element of this sequence must converge to ⌧(x). But ⌧ of the nth element
above is s1r1 + . . . + snrn). Furthermore, this s1, s2, . . . must be such that the
sum of their absolute values converges. [Proof: Suppose not. Then, say , we
have |s1| + . . . + |s7| � 1, |s8| + . . . + |s13| � 1, etc. Let ri, i = 1, . . . 7 each
have absolute value 1/2, and let the sign of ri be the same as that of the cor-
responding si; let ri, i = 8, . . . 13 each have absolute value 1/3, each with the
same sign as the corresponding si; etc. Then this (r1, r2, . . .) is in E, whereas
s1r1 + s2r2 + . . . fails to converge: A contradiction.] Hence, y = (s1, s2, . . .)
is an element of F. Clearly, we have ⌧ = ⌧y. We have shown, therefore, that
every element of F defines an element of L(E;R), and conversely. That is,
we have shown that F = L(E;R).

Now, finally, we are ready to choose our element ↵ of L(L(E;R); |F|.
Let ↵ have the following action on L(E;R) = F. For y = (s1, s2, . . .) in F,
set ↵(y) = s1 + s2 + . . . (noting that the sum converges, since the sum of the
absolute values converges). For any x = (r1, r2, . . .) in E, the corresponding
↵x has action ↵x(y) = s1r1 + s2r2 + . . .. We now claim, finally, that there
is no x in E such that ↵ = ↵x (the only reasonable candidate being x =
(1, 1, 1, . . .), which won’t do, since this candidate is not in E). This completes
our example.

The final topic, involving tangent vectors at a point, with which we shall
deal is the question of their behaviour under mappings of manifolds. Let
M and m0 be Cp manifolds (p � 1), based on Banach spaces E and E0, re-
spectively. Let ' be a Cp mapping from M to M0. Fix a point p of M, set
p0 = '(p), and let ⇠ be a tangent vector to M at p. we obtain, using the map-
ping ', a “corresponding” tangent vector at ⇠0 to M0 at p0. [Intuitively, one
expects such to be obtainable. Think of ⇠ as an “infinitesimal displacement
at p in M”. Then � takes these “two nearby points in M to two nearby points
in M0, thus yielding a tangent vector at p0 in M0”.] The construction itself
is this. Let U, be a chart on M with p in U, and U0, 0 a chart on M0 with
p0 in U0. Then  0 · ' ·  �1 is a Cp mapping from an open subset of E to E0.
Hence, D( 0 · ' ·  �1)( (p)) is in L(E; E0).
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Now let x be that vector in E such that (x; U, ) is in the equivalence class
⇠. Then x0 = D( 0 · ' ·  �1)( )(p))(x) is some vector in E0. We claim, first,
that this x0 is independent of the choice of the chart (U, ). [Indeed, given
another, Û,  ̂, we must replace x by x̂ such that (x̂; Û,  ̂) ⇡ (x; U, ). That
is, we have x̂ = D( ̂ · �1)( (p))(x), which, by the chain rule, implies imme-
diately that x0 is unchanged.] Second, we claim that, if the chart U0, 0 on
M0 is changed to Û0, ˆ 0�1, then x0 is changed to x̂0 = D( ̂0 ·  0�1)( 0(p))(x0)
(again, by the chain rule and the defining equation for x0). That is to say, we
have that (x̂0; Û0,  ̂0) ⇡ (x0; U0, 0). Thus, we obtain an equivalence class of
pairs for p0 in M0. That is, we obtain a tangent vector ⇠0 at p0. [Note that
there is only one idea, and one kind of argument, in this business, which one
keeps using over and over.]
Example. Regard the reals as a manifold. Then, using the obvious chart on
this manifold, we may identify a tangent vector theorem with a real number.
Consider now a Cp curve � in manifold M, with �(0) = p. By the construc-
tion above, this Cp mapping � of manifolds takes the tangent vector “1” at
0 in R to some tangent vector at p in M. This tangent vector is, of course,
what we on page 54 called the tangent vector to the curve �.
Examples. Keep in force the first two sentences of the previous example.
Let f be a Cp scalar field on manifold M, and fix a point p of M. Given any
tangent vector ⇠ at p in M, we obtain, by the construction above, since f is
a Cp mapping of manifolds, a tangent vector at f (p) in R. We may identify
this latter whit a real number. Thus, from f and ⇠ we obtain a real number.
This number is of course what we called the directional derivative on page
54.

It is clear from these two examples why we kept using the same argu-
ment: We were doing exactly the same thing.

The final topic to be discussed in this section is that of tangent vector
fields.
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Let M be a Cp manifold (p � 1). A
tangent vector field (or vector field) on
M is a mapping which assigns, to each
point p of M, a tangent vector at p in
M. Thus, if ⇠ is a tangent vector field
on M, then, for each point p in M, ⇠(p)
is an element of the tangent space at p.
If one represents a tangent vector at p as an arrow drawn on M at p, then a
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tangent vector field would be a field of arrows all over M.
As with scalar fields, the fields themselves are less interesting than the

smooth ones. Let ⇠ be any tangent vector field on Cp M, and let U, be any
chart. Then, for any point y of the open subset  [U] of E,  �1(y) is some
point of M,. whence ⇠( �1(y)) is a tangent vector at  �1(y). Let x be that
(unique) vector in E such that (x; U, ) is in the equivalence class �( �1(y)).
Thus, we have constructed a mapping  from the open subset  [U] of E to
E (y goes to x = (y)). Our tangent vector field ⇠ on M is said to be Cp�1

if this mapping  is Cp�1 for every admissible chart U, on M. [That is, we
“pull the vector field back to E by a chart, where we know what smoothness
means”.]

Why do we only define Cp�1 vector fields on Cp manifold, and not Cp

fields, or even Cq fields for arbitrary q? One could certainly make such a
definition, but the di�culty would be that, unless q  p � 1, the only thing
satisfying that definition would be the zero vector field. The reason for this
di�culty is that, for a Cp manifold, the chart-maps are only Cp related. but
the equivalence relation which defines tangent vectors has in it a derivative.
Hence, given a vector field on Cp M, and a chart U, on M such that the
“pull-back” of the field to  [U] looks, say Cp, then, for a second chart Cp –
but not Cp+1 – related to this one, the corresponding pull-back will not look
Cp. But on a Cp manifold one must admit all Cp�compatible charts (even
those which are only Cp – but not Cp+1�related to others). Hence, given a
candidate for a Cp vector field on a Cp manifold (i.e., the field looks Cp in
some charts), one expects to be able to find other admissible charts in which
that candidate does not look Cp. The same question does not arise for scalar
fields, for there there is no “equivalence relation involving one derivative”.
This behaviour is perhaps not unexpected, since a tangent vector already
“looks at things to first order in M”, i.e., a tangent vector has already within
it “one derivative”. Of course, if ⇠ is a Cp�1 vector field on Cp M, and if
q  p, then we may also regard M as a Cq manifold, whence this same ⇠ will
be a Cq�1 field theorem.

We now have a set of things to study: The set of tangent vector fields
on M. As usual, the study consists of finding what structure there is on
this set. Let ⇠ and ⌘ be Cp�1 tangent vector fields on the Cp manifold M.
Then, for each point p of M, ⇠(p) and ⌘(p) are tangent vectors at p, whence
their sum, ⇠(p) + ⌘(p), is well-defined, and is also a tangent vector at p.
repeating for each p, we obtain a new tangent vector field on M, which we
write ⇠ + ⌘. We claim that this ⇠ + ⌘ is in fact Cp�1 (immediate, since the
sum of the pull-backs of ⇠ and ⌘ via a chart is the pull-back of the sum,
on since, by the third example on page 27, the sum of Cp mappings on
Banach spaces is Cp). Further, for ⇠ a Cp�1 vector field on M, and a real
number, the vector field with action (a⇠)(p) = a⇠(p) is also Cp�1. Thus, the
set of Cp�1 tangent vector fields on M has the structure of a vector space.
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Next, let ⇠ be a Cp�1 vector field, and f a Cp�1 scalar field, on M. Then
action ( f ⇠)(p) = f (p)⇠(p) defines another vector field on M, f ⇠. This f ⇠ is
also Cp�1 (since multiplication of Cp�1 mappings of Banach spaces by Cp�1

functions yields Cp�1 mappings). That is, we can multiply vector fields by
scalar fields. It is immediate that facts true pointwise are true for fields, i.e.,
( f + f 0)⇠ = f ⇠ + f 0⇠, f (⇠ + ⌘) = f ⇠ + f⌘. In algebraic language, the vector
fields are a module over the ring J.



13. Tensor Products

We have now discussed two examples of fields. We shall shortly begin our
program of obtaining the most general type of tensor field which can exist
on a manifold. As a prerequisite for this program, we need a certain con-
struction for obtaining Banach spaces from Banach spaces, a construction
we now introduce.

Let E and Ê be Banach spaces. Denote by G the collection of all ex-
pressions of the form a1 x1 ⌦ x̂1 + a2 x2 ⌦ x̂2 + . . . such that i) the expression
consists of a countably infinite, or possibly finite, or possibly zero, number
of terms, ii) each of a1, a2, . . . is a nonzero real number, each of x1, x2, . . .
a nonzero element of E, and each of x̂1, x̂2 . . . a nonzero element of Ê, iii)
for no distinct i and j does both xi = x j and X̂i = x̂ j (though, of course, we
could have xi = x j, provided x̂i , x̂ j), iv) the sum of positive real numbers,
|a1| |x1| |x̂1| + |a2| |x2| |x̂2| + . . . converges, and v) two such expressions which
di↵er only in the order of terms are taken as representing the same element of
G. [We are being a bit sloppy here. More precisely: Consider the collection
of all pairs, (S , �), where S is a set whose cardinally is at most countable,
and � is a mapping from S to the product set R⇥E⇥ Ê, subject to appropriate
conditions. Write (S , �) ⇡ (S 0, �0) is there exists a one-to-one, onto mapping
⇢ from S to S 0 such that �0 · ⇢ = �. This is an equivalence relation: The set
of equivalence classes is written G.]

We next wish to introduce structure on this set G which makes it into a
Banach space. We first define addition. For a1 x1⌦ x̂1+ . . . and b1 y1⌦ ŷ1+ . . .
in G, define their sum as follows: First, “interlace terms”, i.e., write a1 x1 ⌦
x̂1 + b1 y1 ⌦ ŷ1 + a2 x2 ⌦ x̂2 + b2 y2 ⌦ ŷ2 + . . . if then any two terms have the
same “x ⌦ x̂”, i.e., if both ai x ⌦ x̂ and b j x ⌦ x̂ appear, replace these two
terms by (ai + bi) x⌦ x̂ if ai + b j is nonzero, and just remove the two terms if
ai + b j = 0. Doing this for all repetitions, we obtain finally an element of G.
[Examples: 3 x ⌦ x̂ + (�3) x ⌦ x̂ = 0; 2 x ⌦ x̂ + 1 (�2x) ⌦ x̂ is just itself, for
there are no repetitions.] Next, we define multiplication by real numbers as
follows; a(a1 x1 ⌦ x̂ + a2 x2 ⌦ x̂2 + . . .) = (aa1) x1 ⌦ x̂1 + (aa2) x2 ⌦ x̂2 + . . .
(for a , 0; if a = 0, replace the right side by 0). This set G, with these
two operations, is a vector space. [Think of the set of all expressions of the
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form “x ⌦ x̂”, with x , 0 and x̂ , 0, as a “basis for G, so every vector in G
can be written as a linear combination of these basis vectors”. The quotes
in the sentence above would be unnecessary if we had considered only finite
expressions.]

Thus, we so far have constructed a vector space G. We next define a
norm on this vector space as follows; |a1 x1 ⌦ x̂1 + . . . | = |a1||x1||x̂1| + . . .
(noting condition iv) above). This is indeed a norm on G. [Clearly, |a1x+1⌦
x̂1+. . . | � 0, and for equality, by ii), we must have no terms in the expression
on the left. The third condition for a norm is obvious. For the second, note
that in the operation of addition, one only combines or eliminates terms, and
these combinations or eliminations serve only to decrease the norm of the
sum of the norms.]

Thus, we now have a vector space with norm. We claim finally that
this is complete, i.e., that we have a Banach. [Sketch of proof: Consider
a Cauchy sequence in G, a1 x1 ⌦ x̂1 + . . . , a01x01 ⌦ ˆx01 + . . .. Consider any
expression x⌦ x̂ which appears in at least one of the expressions representing
the elements of this Cauchy sequence. Consider the sequence r� 1, r� 2, . . .
of reals, where ri is the coe�cient of x ⌦ x̂ in the ith expression (or zero,
if x ⌦ x̂ does not appear in the ith expression). Since our sequence in G is
Cauchy, this sequence of real numbers must be Cauchy, whence it converges
to some number r. Repeating for each choice (only a countable number need
be tried) of x ⌦ x̂, we obtain a countable collection of x ⌦ x̂’s, each with a
number r. Forgetting the x ⌦ x̂’s whose r’s are zero, put the rest together in
the expression r x ⌦ x̂ + r0 x0 ⌦ x̂0 + . . .. But this expression satisfies all the
conditions for membership in G. This is our candidate, then, for the element
of G to which our original Cauchy sequence converges. There only remains,
therefore, the (completely standard) check of convergence.]

So, we obtain a Banach space G. This G, unfortunately, is not quite the
thing we are looking for. What we would really like to have be true in G is
that operation ⌦ be distributive, and that “numerical factors can be brought
inside and applied to the x’s without changing the element”. That is to say,
we would like to have the following four equations in G be true:

x ⌦ (x̂0 + x̂0) � x ⌦ x̂ � x ⌦ x̂0 = 0
(x + x0) ⌦ x̂ � x ⌦ x̂ � x0 ⌦ x̂ = 0
a x ⌦ x̂ � (ax) ⌦ x̂ = 0
a x ⌦ x̂ � x ⌦ (ax̂) = 0

for all choices of the symbols which appear (where, of course, “x⌦ x̂” means
“1 x ⌦ x̂”, and “�x ⌦ x̂” means “(�1) x ⌦ x̂). But these four equations are
not true in general in G: We want, therefore, to somehow “force” them to be
true. This is accomplished as follows. First note that the intersection of any
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collection of subspaces of a Banach space is also a subspace. [Given vectors
in the intersection, those vectors are in each subspace, whence any linear
combination of them is in each subspace, whence that linear combination is
in the intersection. So, the intersection is a vector subspace. Furthermore,
the intersection, as the intersection of closed subset, is a closed subset. So,
the intersection is a subspace.] Now, denote by H the intersection of all
subspaces of G which contain all elements of the form of the left sides of the
four equations above. This H is a subspace of G, and it consists precisely of
“the things we would really rather have to zero in G”. Finally, set G/H =
E ⌦ Ê, a Banach space called the tensor product of Banach spaces E and Ê.

We introduce the following notational conventions. Any expression sat-
isfying the rules on page 61 defines an element of G, hence an element of
G/H, hence an element of E ⌦ Ê. We shall allow ourselves to speak of such
an expression as an element of E ⌦ Ê. Two elements of G whose di↵erence
is in the subspace H define the same element of G/H, and hence the same
element of E ⌦ Ê. We shall represent this relationship by simply writing an
equality sign between the elements (meaning “equal when regarded as ele-
ments of E⌦Ê”). Finally, we allow ourselves to write 0 x⌦ x̂, a 0 x⌦ x̂, a 0⌦ x̂,
and a x ⌦ 0̂, these all being just other expression for 0 in E ⌦ Ê. With these
conventions, then, the four formulae on the previous page are just true (in
E ⌦ Ê). The only thing one has to be careful about, with these conventions,
is the norm in E ⌦ Ê. It is not true, e.g., that the norm of a x ⌦ x̂ + a0 x ⌦ x̂0
in E ⌦ Ê is necessarily |a| |x| |x̂| + |a0| |x0| |x̂0| (for, e.g., the norm in E ⌦ Ê of
x ⌦ x̂ + (�x) ⌦ x̂ is zero, since this is the zero element). Rather, the norm of
such an expression is the greatest lower bound of all |a1| |x1| |xx̂1| + . . . with
a x ⌦ x̂ + a0 x0 ⌦ x̂0 = a1 x1 ⌦x̂1 + a2 x2 ⌦ x̂2 + . . . in E ⌦ Ê. Thus, we have
in any case that, e.g., |a x ⌦ x̂ + a0 x0 ⌦ x̂0|  |a| |x| |x̂| + |a0| |x0| |x̂0|. [These
two remarks are just restatements of the definition of the norm in a quotient
space of Banach spaces.]

The tensor product is one of those things whose definition, for some
reason, is rather more complicated than the thing itself. We remark that one
can, in a similar way, define the tensor product of three, or of any finite
number, of Banach spaces.

We adopt the following additional convention. Let E be a Banach space,
and x1, x2, . . . elements of E. The expression x1 + x2 + . . . is said to converge
(absolutely) if the sum of real numbers, |x1| + |x2| + . . . converges. Then
the sequence in E with nth term yn = x1 + . . . + xn is Cauchy (for, n0 >
n, |yn0 � yn|  |xn+1| + . . . + |xn0 |), whence it converges to some element y of
E. This y is called the sum of the x’s, written y = x1 + x2 + . . .. Note that
these conventions are consistent with those we already have for infinite sums
in tensor products.

We now give some examples of tensor products and their properties.
Example. Let E and Ê be finite-dimensional Banach spaces, of dimensions
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n and n̂, respectively. We “find” their tensor product. Let x1, . . . , xn be a
basis for E, and x̂1, . . . , x̂n̂ a basis for Ê. Then, given any n ⇥ n̂ matrix
aiî(i = 1, . . . , n; î = 1, . . . , n̂), we can obtain an element, ⌃

i î
aiî xi ⌦ x̂î, of E ⌦ Ê.

Conversely, given element x ⌦ x̂ of E ⌦ Ê, we have, expanding each of x
and x̂ in terms of the bases – x = ⌃rixi and x̂ = ⌃r̂i x̂i – that x ⌦ x̂ is of the
form above, with aiî = rir̂î. Hence, every element of E ⌦ Ê consisting of
a finite sum is of this form. Hence, so is every element of E ⌦ Ê of finite
sums, and since limits of elements of the form, ⌃aiî xi ⌦ x̂î, are also of this
form). Finally, note that two elements of E ⌦ Ê written in our canonical
form, ⌃aiî xi ⌦ x̂î and ⌃a0iî xi ⌦ x̂î0 , are equal in E ⌦ Ê when and only when
aiî = a0iî for all i and î. We conclude, therefore, that E ⌦ Ê is, as a vector
space, the same as the vector space of n ⇥ n̂ matrices. In particular, E ⌦ Ê is
nn̂�dimensional. [Note that E ⇥ Ê is (n + n̂)�dimensional.]
Example. Let E be a Banach space. We “find” the tensor product E ⌦ R.
Given any element, a1 x1⌦b1+a2 x2⌦b2+ . . . of E⌦R (where the a’s and b’s
are reals, and the x’s are in E), this is equal to (a1, b1)x1⌦1+(a2b2)x2⌦1+. . .
and hence to (a1b1x1)⌦1+. . .). But this, in turn, is equal to (a1b1x2+a2b2x2+
. . .)⌦1 (for, each n, (a1b1x1+. . .+anbnxn)⌦1�(a1b1x1)⌦1�. . .�(anbnxn)⌦1
is in H, whence, since H is closed, so is the limit as n goes to infinity). Thus,
every element of E ⌦ R can be written in the form x ⌦ 1, for x in E and,
conversely, every x in E defines an element x ⌦ 1 of E ⌦ R.This one-to-one,
onto linear mapping from E ⌦ R to E is norm-decreasing, since |x ⌦ 1|  |x|,
and so is an isomorphism of Banach spaces, by the open mapping theorem.
[In fact, |x ⌦ 1| = |x|.] Thus, E ⌦ R is isomorphic with E.
Example. Let E, Ê and F be Banach spaces. We find an isomorphism from
L(E ⌦ Ê; F) to L(E, Ê; F). First, let ↵ be in L(E ⌦ Ê; F). We associate, with
this ↵ element � of L(EÊ; F), with action �(x, x̂) = ↵(x ⌦ x̂ (noting that this
� is indeed bilinear; and that it is bounded, since ↵ is bounded, and since |x⌦
x̂|  |x| |x̂|). For the converse, let � be inL(E, Ê; F). Then, for a1 x1⌦ x̂1+ . . .
in E⌦ Ê, set ↵(a1 x1⌦ x̂1+ . . .) = a1�(x1, x̂1)+a2 �(x2, x̂2)+ . . .. [The sum on
the right converges. We have ⌃|ai �(xi, x̂i)|  ⌃|�|ai| |xi| |x̂i| = |�|⌃|ai| |xi| |x̂i|,
while this last sum is finite by membership in the tensor products.] Thus,
we have a one-to-one, onto linear mapping from L(E ⌦ Ê; F) to L(E, Ê; F).
Furthermore, this mapping is norm-decreasing, for, for ↵ and � related as
above and z in E ⌦ Ê, we have, by our last calculation above, that |↵(z)| 
|�| |z|, whence |↵|  |�|. Hence, it is an isomorphism of Banach spaces (open
mapping).
Example. Let E, F, and G be Banach spaces. We first obtain a mapping from
L(E; F) ⌦ G to L(E; F ⌦ G). Let ↵1 ⌦ z1 + ↵2 ⌦ z2 + . . . be in the former
(so the ↵’s are in L(E; F), the z’s in G). Associate with this the element of
(E; F⌦G) which sends x in E to ↵1(x)⌦ z1+ . . . (noting that this last satisfies
the condition for membership in F ⌦ G, since ⌃|↵i(x)| |zi|  |x|⌃|↵i| |zi| is
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finite). Call this mapping (clearly linear) from L(E; F) ⌦G to L(E; F ⌦G)
 . For ↵i ⌦ z1 + . . . in L(E; F) ⌦ G, and x in E,  (↵1 ⌦ z1 + . . .)(x) =
|↵1(x)⌦ z1+ . . . |  |↵1(x)| |z1|+ . . .  |x|(|↵1| |z1|+ . . .). Hence,  is a bounded
linear mapping, with norm less than or equal to one. It seems likely that this
 is also one-to-one, and that its image is a closed subspace of L(E; F ⌦G).

We show that, however,  is not onto, in general. Let F = R and G = E,
so  is a bounded linear mapping fromL(E; R)⌦E toL(E; E). If the identity
inL(E; E) were in the domain of  , say were  (↵1⌦ x1+ . . .), then we would
have that every element of E is a (possibly infinite) linear combination of the
xi’s. Thus, we have only to find a Banach space E having no countable subset
linear combinations of which give every element of E. To this end, let S be
any set, and let E be the Banach space of real-valued, bounded functions
on S , with norm the least upper bound of the function. “The larger S , the
larger E.“ Clearly, by choosing S to have su�ciently large cardinality, the
corresponding E will have the property above. [In fact,  will not be onto
for any infinite-dimensional E.]

For finite-dimensional E, F and G, the map of the first paragraph of this
example will be an isomorphic of Banach spaces.

We remark, finally, that there is a universal definition of the tensor prod-
uct, as follows. Let E and F be Banach spaces. A tensor product of E and F
consists of a Banach space G, together with a bounded bilinear mapping  
from E, F to G such that, given any Banach space G0 and any bounded bilin-
ear mapping  0 from E, F to G0, there is a unique bounded linear mapping
 from G to G0 with  0 =  ·  . One shows, first, that, if a tensor prod-
uct so defined exists, then it is unique. Then, one shows that what we have
constructed is it.
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14. Tensor Spaces

Our goal is to find, and learn to manipulate, the various kinds of fields which
can exist on a manifold. Let, then, M be a manifold based on Banach space
E. We can divide our program into two parts: i) Obtain the various Banach
spaces that can be constructed from E, and unravel their structure, ii) Obtain,
from each such space, a corresponding type of field on M, and carry over
what structure one can from the Banach spaces to the fields. The first is
essentially an algebraic problem, the second a di↵erential one. One might
suspect, therefore, that the first will be the easier (applying here the adage
“algebraic is easier than di↵erential”). This seems, however, not to be the
case, and, indeed, the first problem has not, as far as I am aware, been put
into a state that I would call totally satisfactory. In this section, we state
the first problem; in the next, we describe some possible lines toward its
solution.

Fix, once and for all, a Banach space E. Consider i) the Banach spaces
E and R, and ii) the constructions of multilinear mappings “L(, . . . , ; )” and
tensor products “⌦”. We consider now all Banach spaces obtained by ap-
plying the constructions ii) to the Banach spaces i), or the constructions
to the Banach spaces so obtained, etc. For example, one such would be
L(E ⌦ (R ⌦ L(E; R)), L(E; E ⌦ E); R ⌦ L(L(L(E;R);R); E)) ⌦ E. We call
these Banach spaces the tensor spaces (over E), and the elements of these
Banach spaces tensors (over E). [If we wish to give more detail, an ele-
ment of tensor space A will be called and A�tensor.] These definitions are
inadequate for two reasons. First, the “applying constructions” business is
not precise. Second, it is not made clear that, when we speak of a tensor
space, we intend to refer, not only to the Banach space itself, but also to the
sequence of constructions by which it arises from E. Both of these inadequa-
cies could be resolved by proceeding as follows. We could define a tensor
space as a finite sequence of symbols chosen from “E”, “R”, “L”, “⌦”, “,”
“;”, “(”, and ”), subjects to certain rules. One would then note that, if E is a
Banach space, then each finite sequence gives rise to a certain Banach space.
With these last five sentences as an appendix to the definition, there should
be no ambiguity.
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There is of course an enormous amount of structure on the tensor spaces
and tensors over E. For example:

1. Natural operations on tensors. The sum of two A�tensors is well-
defined (since tensor space A is a Banach space) as is the limit of a se-
quence of A�tensors. The tensor product of an A�tensor ↵ and a B�tensor
� can be taken, and ↵ ⌦ � is an (A ⌦ B)�tensor. For ↵ and A�tensor and
⌧ a L(A; B)�tensor, ⌧(↵) is a B�tensor. For ⌧ a L(A; B)�tensor and � a
L(B; C)�tensor, � · ⌧ is a L(A; C)�tensor. With any (A⌦R)�tensor we may
associate an A�tensor (first example, page 64).

2. Preferred tensors. Some tensor spaces have pro↵ered elements. For
example, the identity in L(A; A) is a “preferred” L(A; A)�tensor. So is the
element of L(A, B; A ⌦ B) which takes the tensor product; the element of
L((A; B) ⌦ C;L(A; B ⌦ C)) of the last example on page 64; the element of
L(L(R; A); A) which sends the element ↵ of LR; A) to the element ↵(1) of
A; the element “1” of R.

3. Naturally isomorphic tensor spaces. Some pairs of tensor spaces are
just di↵erent ways of writing essentially the same thing. For example, for
A a tensor space, L(R; A) and A are naturally isomorphic; R ⌦ A and A
are naturally isomorphic. For A, B, and C tensor spaces, L(A, B; C) and
L(A ⌦ B; C) are naturally isomorphic.

4. Tensor spaces natural subspaces of others. For A any tensor space,
A is a natural subspace of L(L(A;R);R). Thus, any A�tensor can also be
regarded as aL(L(A;R); )�tensor,but not conversely. Similarly, E⌦L(E; R)
is a natural subspace of L(E; E).

5. Tensor spaces natural quotients of others. For example, for A and B
tensor spaces, E may be regarded as a quotient of the tensor space A⌦L(A; B)
(namely, the quotient by the kernel of the natural mapping from A⌦L(A; B)
to B).

Problem: Organize this situation. What tensor spaces are available?
Which are isomorphic to which? Which natural subspaces or natural quo-
tients? What operations are available on tensors? Which tensor spaces have
preferred elements, and what are they? One would like to cast this subject
into some manageable form, in which all elementary facts look elementary,
in which complicated calculations can be performed with relative ease, in
which one doesn’t have to continually go back and prove new things about
Banach-space operations. There are of course two halves to the problem: i)
make precise terms such as “natural” and “preferred”, and ii) organize what
is available.



15. Natural Tensors

In the previous section we posed a rather vaguely-stated problem (in which,
indeed, part of the problem is to eliminate the vagueness). We now sketch a
few notions which, we suggest, o↵er a possible line to a solution. Our basic
claim is that one can make a definition which, on the one hand, gives reason-
able meaning to such words as “natural” and “preferred”, and, on the other,
encompasses everything in which we are interested – operations, preferred
elements, isomorphic tensor spaces, etc.

We first note the following facts. Let A, A0, B, and B0 be Banach spaces
(note necessarily tensor spaces). Let ↵ be an isomorphism from A to A0, and
� an isomorphism from B to B0. We define a corresponding isomorphism ⌧
from L(A; B) to L(A0; B0) as follows: For  in L(A; B), ⌧() is the element of
L(A0; B0) given by � ·  · ↵�1. That is, for x0 in A0, ⌧()(x0) = � · ⌧(↵�1(x0)).
Similarly, given isomorphisms from A1 to A01, etc, to A0n, and from B to
B0, we obtain an isomorphism from L(A1, . . . , An; B) to L(A0, . . . , A0n; B0).
[Note that we have no freedom in writing this definition.] Next, again let
A and B be Banach spaces, and again let ↵ and � be isomorphisms from
A and B to Banach spaces A0 and B0, respectively. Then we can define an
isomorphism from A⌦B to A0 ⌦B0 as follows: For x1⌦y1+x2⌦+ . . . in A⌦B,
⌧(x1 ⌦ y1 + . . .) = ↵(x1) ⌦ �(y1) + ↵(x2) ⌦ �(y2) + . . . (noting that the sum on
the right converges, by boundedness of ↵ and �, and by the fact that the sum
on the left converges). Of course, these are all isomorphisms: Their inverses
are obtained by the same constructions from the inverses of ↵ and �. Thus,
we can extend isomorphisms given on some Banach spaces to isomorphisms
on Banach spaces constructed (by our two constructions) from these.

Now fix Banach space E. Let ◆ be any isomorphism from E to E, and
also let ◆ be the identity isomorphism from R to R. [This use of one letter
for two things greatly conserves symbols, and causes no confusion.] By the
paragraph above we obtain, given any Banach space constructed from E’s
and R’s by taking multilinear mapping and tensor products, an isomorphism
from this Banach space to itself. Hence, on any Banach space constructed
from these by our two operations, we obtain also an isomorphism. Continu-
ing in this way, we extend the action of ◆ from just E and R to all the tensor
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spaces over E.
In more detail, then, the situation is as follows. Let A and B be tensor

spaces over E, and suppose that we have obtained the action of ◆ on A and
B. Then the action of ◆ on L(A; B) is as follows: For ↵ in L(A; B), ◆(↵) =
◆ · ↵ · ◆�1. Similarly, the action of ◆ on A ⌦ B is: For x1 ⌦ y1 + . . . in A ⌦ B,
◆(x1 ⌦ y1 + . . .) = ◆(x1) ⌦ ◆(y1) + . . .

To summarize, any given isomorphism on E extends in a “natural” way
to isomorphisms on all the tensor space constructed from E.

The key definition is this: element ↵ of tensor space A is called a natural
tensor (or natural A�tensor) if ◆(↵) = ↵ for every ◆. In other words, the
natural tensors remain invariant under any isomorphism induced from one
on E, i.e., they in some sense “just exist, no matter what E is doing or like”.
[Those familiar with category theory will recognize this definition as a thinly
disguised version of a natural transformation.]
Example. Each real number is a natural tensor (since ◆ is the identity on R).
Example. For any tensor space A, the identity in L(A; A) is a natural ten-
sor. Indeed, for ⌧ in L(A; A), and for x in A, we have ◆(⌧) defined by
◆(◆(⌧)(◆�1(x)) = ⌧(x). But, for ⌧ the identity, this is clearly satisfied by
◆(⌧) = ⌧.
Example. Let A and B be any tensor spaces. then, clearly, the zero element
of L(A; B) is a natural tensor.
Example Let A be any tensor space, and let ⌧ be the element ofL(L(R; A); A)
which sends the element of ↵ of L(R; A) to ↵(1). Now, for any ↵ in L(R; A),
◆(↵) is that element of L(R; A) with action ◆(↵)(a) = ◆(↵(a)); for any ⌧ in
L(L(R; A); A), ◆(⌧) has action ◆(⌧)(↵) = ◆(⌧(◆�1(↵)). Now let this ⌧ be that
above. Then the right side of the last equation is ◆((◆�1(↵))(1)), which, by
the action of ◆ on L(R; A), is ◆(◆�1(↵(1)), which equals ↵(1). Thus, ◆(⌧)(↵) =
↵(1). But this right side is just ⌧(↵). So, ◆(⌧)(↵) = ⌧(↵) for every ↵, i.e.,
◆(⌧) = ⌧. We have shown, therefore, that this ⌧ is a natural tensor. Similarly,
the inverse of this ⌧, an element of L(A;L(R; A)), is a natural tensor.
Example. Let A, B and C be tensor spaces. Denote by ⌧ the element of
L(L(A, B; C);L(A;L(B; C))) which sends µ in L(A, B; C) to the element of
L(A;L(B; C)) which sends x in A to the element of L(B; C) which sends y
in B to µ(x, y) in C. We show that this ⌧ is a natural tensor. First note that,
for µ in L(A, B; C), ◆(µ) has action ◆(µ)(x, y) = ◆(µ(◆�1(x), ◆�1(y))) (with x in
A and y in B). Also, for ⌫ in L(A;L(B; C)), ◆(⌫), has action ((◆(⌫))(x))(y) =
◆((⌫(◆�1(x)))(◆�1(y))). Finally, for any ⌧ in L(L(A, B; C);L(A;L(B; C))), ◆(⌧)
has action ◆(⌧)(µ) = ◆(⌧(◆�1(µ))). Applying ◆�1 to this last equation, we
have ◆�1(◆(⌧)(µ)) = ⌧(◆�1(µ)). Now let ⌧ be that tensor given in the sec-
ond sentence of this example. Each side of this last equation is an ele-
ment of L(A;L(B; C)): Applying each side to x in A (to obtain an ele-
ment of L(B; C)) and then to y in B (to obtain an element of C), we have
◆�1(◆(⌧)(µ))(x)(y) = ⌧(◆�1(µ))(x)(y). Using the defining equation for our par-
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ticular ⌧ on the right, this right side is (◆�1(µ))(x, y). Using now the ac-
tion of ◆ on L(A, B; C), this in turn is ◆�1(µ(◆(x), ◆(y))). Using again the
definition of ⌧, this in turn is ◆�1(⌧(µ)(◆(x))(◆(y))). Thus, we have so far
◆�1(◆(⌧)(µ))(x)(y) = ◆�1(⌧(µ)(◆(x))(◆(y))). Using now on the left the action
of ◆ on L(A;L(B; C)), this left side is ◆�1(◆(⌧)(µ)(◆(x))(◆)y))). Thus, we have
◆�1(◆(⌧)(µ)(◆(x))(◆(y))) = ◆�1(⌧(µ)(◆(x))(◆(y))). Since ◆ is an isomorphism on
C, this implies ◆(⌧)(µ)(◆(x))(◆(y)) = ⌧(µ)(◆(x))(◆(y)). Since x and y are arbi-
trary, this implies ◆(⌧)(µ) = ⌧(µ). Since µ is arbitrary, this implies ◆(⌧) = ⌧.
Thus, our ⌧ is indeed a natural tensor. Similarly, the inverse of ⌧ is a natural
tensor. Similarly, with “A, B” replaced by more Banach spaces inL(A, B; C).
Example. Let A, B and C be tensor spaces. Denote by ⌧ the element of
L(L(A ⌦ B; C),L(A, B; C)) which sends µ in L(A ⌦ B; C) to that element
⌫ = ⌧(µ) of L(A, B; C) which sends x in A and y in B to ⌫(x, y) = µ(x ⌦ y).
We show that this ⌧ is a natural tensor. For µ in L(A ⌦ B; C), ◆(µ) has action
◆(µ)(z) = ◆(µ(◆�1(z))) (for, of course, z in A ⌦ B). For ⌫ in L(A, B; C), ◆(⌫) has
action ◆(⌫)(x, y) = ◆(⌫(◆�1(x), ◆�1(y))). For any ⌧ inL(L(A⌦B; C);L(A, B; C)),
◆(⌧) has action ◆(⌧)(µ) = ◆(⌧(◆�1(µ))). Applying ◆�1 to this last equation, we
have ◆�1(◆(⌧)(µ)) = ⌧(◆�1(µ)). Now let ⌧ be that particular tensor given above,
and apply each side of this equation to (x, y), to obtain ◆�1(◆(⌧)(µ))(x, y) =
⌧(◆�1(µ))(x, y). By definition of ⌧, the right side is (◆�1(µ))(x ⌦ y). By the
action of ◆ on L(A ⌦ B; C), this in turn is iota�1(µ(◆(x ⌦ ◆(y))). By the action
of ⌧ on tensor products, this in turn is ◆�1(µ(◆(x) ⌦ ◆(y)). By definition of
⌧, this is ◆�1(⌧(µ)(◆(x), ◆(y))). Thus, we have so far that ◆�1(◆(⌧)(µ))(x, y) =
◆�1(⌧(µ))◆(x), ◆(y))). Applying the action of ◆ on L(A, B; C) to the left side,
this becomes ◆�1((◆(⌧)(µ))(◆(x))(◆(y))) = ◆�1(⌧(µ)(◆(x), ◆(y))). Since ◆ is an iso-
morphism, this implies (◆(⌧)(µ))(◆(x))(◆(y)) = ⌧(µ)(◆(x), ◆(y)). Since x and y
are arbitrary, this implies ◆(⌧)(µ) = ⌧(µ). Since µ is arbitrary, this implies
◆(⌧) = ⌧. Thus, ⌧ is a natural tensor. Similarly for its inverse.

These little calculations are easier they might appear. All one must do is
i) make sure that, in each step, one does something new, rather than retracing
the previous step, and ii) be careful not to leave out any parentheses.

We now have the notion of a natural tensor, together with some exam-
ples. We next face two issues. First, we must make a case that essentially
all structure of interest on the tensor spaces can be expressed in terms of
these natural tensors. Second, we must find some way easier than that of the
examples above to check naturality (for the situation would be hopeless if
we had to go through all that agony for each natural tensor), and we must
classify them all. We discuss these two issues in turn.

For the first issue, we begin with some definitions. For A1, . . . , An and
B tensor spaces, a natural L(A1, . . . , An; B)�tensor ⌧ will be called a nat-
ural operation. [We regard this ⌧ as the operation which assigns to x1
in A1, . . . , xn in An the tensor ⌧(x1, . . . , xn) in tensor space B.] For A and
B tensor spaces, a natural L(A, B)�tensor for which there exists a natural



72 15.

L(B, A)�tensor such that these two linear mappings are each others inverses
will be called a natural isomorphism (from A to B). When such a natural iso-
morphism exists, we say that A and B are naturally isomorphic. We could,
similarly, define a pro↵ered tensor in tensor space A as a natural A�tensor
(but we will not, since we already have the term “natural tensor” for this
purpose). Finally, we could define natural subspaces and natural quotients in
the obvious way (but we will not, since we will not need these terms).

Of course, the mere introduction of these terms does not a case make.
What we must now do is show, by means of a large collection of examples,
that the various things one would wish intuitively to call a “natural oper-
ation” “natural isomorphism”, “preferred element”, etc. actually arises as
such from the definitions above. Further, one would like to show that each
thing named above actually has the intuitive connotations of that name. We
emphasize that there is nothing to prove here: It is only a matter of elicit-
ing conviction by means of examples. We postpone, for a moment, these
examples.

For the second issue, we must discover some easy way to find all the
natural tensors. To this end, we first make the following two observations: i)
For ⌧ any natural L(A1, . . . , An; B)�tensor, and ↵1, . . . ,↵n any natural A1�,
. . ., An�tensors, respectively, ⌧(↵1, . . . ,↵n) is a natural B�tensor. [Indeed,
we have, by the action of ◆ on L(A1, . . . , An; B), that ◆(⌧(↵1, . . . ,↵n)) =
◆(⌧)(◆(↵1), . . . , ◆(↵n)). But, by naturality, the right side is just ⌧(↵1, . . . ,↵n).]
ii) For µ any natural L(A, B) A�tensor and ⌫ any natural L(B; C) A�tensor,
⌫ · µ is a natural L(A; C)�tensor (since ◆(⌫ · µ) = ◆(⌫) · ◆(µ) = µ · µ.). We
next note that we already have, from the discussion above, the following
six examples of natural tensors: 1. For any tensor space A, the zero ten-
sor in A is natural. 2. Any real number is a natural R�tensor. 3. For any
tensor space A, the identity in L(A; A) is a natural L(A; A)�tensor. 4. For
any tensor space A, we have (fourth example on page 70) a natural tensor
in L(L(R; A); A), and its inverse, a natural tensor in L(A;LR; A)). 5. For
any tensor spaces A1, . . . , An and B, we have (fifth example on page 70) a
natural tensor in L(L(A1, . . . , An; B);L(A1, . . . , Ai�1, Ai+1, . . . An;L(Ai; B)),
together with its inverse. 6. For any tensor spaces A, B, and C, we have (first
example on page 71) a natural L(L(A ⌦ B; C);L(A, B; C))�tensor, and its
inverse. Thus, we have already some examples of a few natural tensors, as
well as some constructions which yield natural tensors from natural tensors.
We now formulate
Conjecture. Every natural tensor is a sum of natural tensor obtained by ap-
plying the constructions i) –ii) above to the examples 1 – 6 above. If this
conjecture were true, then one would have at least some control over the nat-
ural tensors, for one would have a relatively simple algorithm for obtaining
them (rather then the more complicated algorithm “guess at one, and then go
through all the ◆’s to check that guess if it is wrong, try another guess”). As
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its title suggests, I know of neither a proof nor a counterexample (although
of course it may very well be resolved, somewhere in the literature). We
can, however, at least support this conjecture by means of examples, i.e., by
demonstrating that various natural tensors that come to mind can indeed be
obtained by the rules laid down in the Conjecture. In my view, it would be
of some interest to first resolve this conjecture, and then to begin using it (or
some modification, if the conjecture should turn out to be false) to “find” all
natural tensors.

Thus, we now have two issues, each of which turns to a certain extent
(although, technically, in rather di↵erent ways) on examples. It is our inten-
tion, now, to support the discussion above by means of various examples. In
each example, we shall find a natural tensor using the rules set forth in the
conjecture (and thus support the conjecture), while at the same time many
of the natural tensions we find will correspond intuitively to “natural oper-
ations”, “natural isomorphisms”, etc. (thus supporting the discussion of the
first issue). In short, we intend each example below to serve two roles.
Example. Denote by ⌧ the element of L(A,L(A; B); B) with action ⌧(x,↵) =
↵(x). We show that this ⌧ is natural. By example 3, the identity inL(L(A; B);
L(A; B)) is natural. By example 5, we have a natural element ofL(L(L(A; B);
L(A : B));L(A,L(A; B); B)). Applying the latter to the former, we obtain ⌧.
[Thus, “application” is a natural operation on tensor spaces.]
Example. Denote by ⌧ the element of L(A,L(A : B) : B) with action
⌧(x,↵) = ↵(x). We show that this ⌧ is natural. By example 3, the iden-
tity in L(L(A : B) : L(A : B)) is natural. By example 5 we have a natural
of L(L(A : B) : L(A : B)) : (A,L(A : B) : B)). Applying the latter to the
former, we obtain ⌧. [Thus, “application” is a natural operation on tensor
spaces.]
Example. Denote by ⌧ the element of L(L(A; B),L(B; C);L(A; C)) with ac-
tion ⌧(↵, �) = � · ↵. We show that this ⌧ is natural. By the example above,
we have a natural element of L(B;L(B; C); C). Applying to this the natural
element of L(L(B,L(B; C); C);L(B;L(L(B; C); C))) (example 5), we ob-
tain a natural element of L(B;L(L(B); C); C)). By the example above, we
also have a natural element of L(A,L(A; B); B). Composing these two, we
obtain a natural element of L(A,L(A; B);L(L(B; C); C)). Again applying
the natural tensor of example 5 to this one, we obtain a natural element of
L(A,L(A; B),L(L(B; C); C). Finally, applying the natural tensor of example
5 once again, we obtain a natural element of L(L(A; B),L(B; C);L(A; C)).
This is our ⌧. [Thus, “composition“ is a natural operation on tensor spaces.]
Example. The tensor product of two natural tensors is natural. By example
5, we have a natural element ofL(A⌦B; A⌦B). Composing with the natural
tenor of element 6, we obtain a natural element ⌧ of L(A, B; A ⌦ B). Hence,
given natural tensors in A and B, ↵ and �, respectively, ⌧(↵, �) is a natural
tensor (application of natural tensors to natural tensors).
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Example. Denote by ⌧ the element of L(R, A; A) with action ⌧(a,↵) =
a↵. We show that this ⌧ is natural. By example 4, we have a natural
element of L(A;L(R; A)). By example 5, we have a natural element of
L(L(A;L(R; A));L(R, A; A)). Applying the second to the first, we obtain
⌧, a natural element of L(R, A; A). [Thus, “scalar multiplication” is a natural
operation on tensor spaces.]
Example. Denote by ⌧ the element of L(A; R ⌦ A) with action ⌧(↵) = 1 ⌦ ↵.
We show that this ⌧ is natural. Applying the natural isomorphism (example
6) from L(R ⌦ A; R ⌦ A) to L(R, A; R ⌦ A) to the identity in the former, we
obtain a natural element ofL(R, A; R⌦A). Applying the natural isomorphism
of example 5, we obtain a natural element of L(A;L(R; R⌦ A)). Composing
this with the natural isomorphism (example 4) from L(R; R ⌦ A) to R ⌦ A,
we obtain a natural element of L(A; R ⌦ A). This is our ⌧.
Example Denote by ⌧ the element of L(A;L(L(A; R); R)) which sends ↵ in
A to the element of L(L(A; R); R) which sends µ in L(A; R) to the number
µ(↵). We show that this ⌧ is natural. By the first example on page 71, we have
a natural element of L(A,L(A; R); R). Applying the natural isomorphism of
example 5, we obtain our ⌧. [This is the operation of “inserting A into its
double dual”.]
Example. Denote by ⌧ the element of L(A ⌦ L(A; B); B) with action ⌧(x1 ⌦
µ1 + . . .) = µ1(x1) + . . .. We show that this ⌧ is natural. Applying the nat-
ural isomorphism from L(A,L(A; B); B) to L(A ⌦ L(A; B); B) to the natural
element of L(A,L(A; B); B), we obtain our ⌧.
Example. Denote by ⌧ the element of L(A ⌦ B; B ⌦ A) which “switches
the order of factors”. We show that this ⌧ is natural. We have a natural
isomorphism from L(A ⌦ B; A ⌦ B) to L(A, B; A ⌦ B), and from this last to
L(B, A; A⌦B), and from this last toL(A;L(B; A⌦B)) (example 5), and from
this last to L(B, A; A ⌦ B) (example 5), and from this last to L(B⌦ A; A ⌦ B)
(example 6). Composing these and applying to the identity inL(A⌦B; A⌦B),
we obtain, ⌧. Similarly, “the tensor product is associative”.
Example Denote by ⌧ the element of L(L(A; B) ⌦ C;L(A; B ⌦ C)) given
in the last example on page 64. We show that this ⌧ is natural. Applying
example 5 to the natural element of L(B,C; B ⌦ C), we obtain a natural
element of L(B;L(C; B ⌦ C)). Applying this with the natural element of
L(A,L(A; B); B), we obtain a natural element ofL(A,L(A; B);L(C; B⌦C)).
But this last tensor space is naturally isomorphic with L(A,L(A; B),C; B ⌦
C), which is naturally isomorphic with L(L(A; B),C;L(A; B⌦C)), which is
naturally isomorphic with L(L(A; B)⌦C;L(A; B⌦C)). Applying these iso-
morphisms successively to the element of the previous sentence, we obtain
⌧.

It is easy to think of many other, similar, example, with similar proofs.
Finally, we remark that this unsettled state of the issue of what structure

there is on the tensor spaces in no way directly a↵ects what we shall do
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hereafter. We shall not, for example, attempt to use in proofs things which
have not been proven. The one e↵ect that we shall see is that we will not,
occasionally, be able to state our conclusion in the pretty and general way
that one might wish.
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16. Natural Tensors: Continued

This section is just an appendix to the previous one. We wish to discuss
two examples involving tensor spaces and natural tensors. In the first, we
suggest a possible answer to the question of which tensor spaces are naturally
isomorphic with which others. In the second, we indicate what happens to
all the tensor spaces and natural tensors in the finite-dimensional case.

Fix a Banach space E. A tensor space A over E will be said to be in
canonical form if it satisfies the following conditions: i) No “R” appears
as a factor in a tensor product, or as an entry on the left in an “L”, ii) No
entry on the left in an “L” is the tensor product, of two other tensor spaces,
and iii) No entry on the right in an “L” is of the form L(Bi, . . . , Bn; C). For
example, none of the tensor spacesL(E; E⌦R), L(R; E⌦E), L(E⌦E; R), or
L(E;L(E; R)) are in canonical form, while L(E, E; R), L(L(E; E); R), and
L(E; E ⌦ E) are all in canonical form.

We now claim that every tensor space is naturally isomorphic to a ten-
sor space in canonical form. The proof is quite easy. Given tensor space
A, one first uses the natural isomorphism between R ⌦ B and B to elimi-
nate R’s in tensor products. Then, using the natural isomorphism between
L(A1, . . . , An,R; B) and L(A1, . . . , An; B) one eliminates R’s on the left in
L’s. Then, using the isomorphism between L(A1, . . . , An, B ⌦ C; D) and
L(A1, . . . , An, B,C; D), one eliminates tensor products on the left in L’s. Fi-
nally, using example 5, one eliminates L’s on the right in L’s. In this way,
one obtains a sequence of natural isomorphisms which carry one from A to
a tensor space in canonical form. Their composition is therefore the desired
natural isomorphism.

This notion of a canonical form would not be very useful if we did not
wish to claim some sort of converse to the result just proved. Specifically,
we have:
Conjecture. Two tensor spaces in canonical form are naturally isomorphic if
and only they di↵er only in i) order of entries on the left in L’s, and ii) order
of, and parenthesis about, factors in tensor products.

The “if” part is of course obvious.
It would be nice to have a proof of this conjecture. Then, not only would
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every tensor space be naturally isomorphic to one in canonical form, but,
furthermore, a given tensor space would be naturally isomorphic to only a
single tensor space in canonical form (up to the ambiguity in the conjecture)
(for, were A naturally isomorphic to two in canonical form, these two would
be naturally isomorphic to each other). Thus, one would have a unique rep-
resentative of each tensor space. One could then, for example, worry only
about natural tensors in tensor spaces in canonical form. Although a proof of
this conjecture from scratch appears not to be easy, there is, I should think,
a reasonable chance that one could demonstrate that it is a corollary of the
conjecture in the previous section (since that earlier conjecture claims to give
all the natural tensors.).

In a similar way, one could try to formulate conjectures about what nat-
ural tensors there are, what natural subspaces, etc.

We consider, finally, the special case of all this when the Banach space
E is finite-dimensional. In this case, everything is known, and everything
is relatively easy: It is just what one learns in linear algebra. We shall here
attempt only to indicate how the tensor spaces reduce to a simple form. We
begin with the following observations: If A and B are finite-dimensional,
then so is A ⌦ B; If A1, . . . , An and B are finite-dimensional, then so is
L(A1, . . . , An; B). Thus, all the tensor spaces, when E is finite-dimensional,
are finite-dimensional.

We first associate, with each tensor space, a pair of non-negative inte-
gers, according to the following rules. With E, associate (1, 0); with R,
associate (0, 0); if with A there is associated (p, p0), and with B (q, q0), as-
sociate with A ⌦ B (p + q, p0 + q0); if with A1, . . . , An there are associated
(p1, p01), . . . , (pn, p0n), and with B there is associated (q, q0), then associate
with L(A1, . . . , An; B) (q + p01 + . . . + p0n, q0 + p1 + . . . ,+pn), Using these
rules, proceeding inductively, we associate a pair of integers with each ten-
sor space. The pair of integers associated with tensor space A is called the
rank of A. For example, the rank of the tensor space given in the middle of
page 67 is (4, 4).

The basic statement in the finite-dimensional case is this: Two tensor
spaces over finite-dimensional E are naturally isomorphic if and only if they
have the same rank. We shall actually prove slightly more than this. First,
denote by E0 the tensor space L(E; R). This E0 is called the dual of Banach
space E, and has rank (0, 1). Given any pair (p, q) of non-negative integers,
the tensor space L(E, . . . , E, E0, . . . , E0; R), with pE0’s and qE’s, has rank
(pq). Thus, in this way we obtain a particular tensor space of each rank. We
shall show that, in the finite-dimensional case, any tensor space A of rank
(p, q) is naturally isomorphic to the one just displayed.

We first claim the following: For A, B, and C any finite-dimensional ten-
sor spaces, there is a natural isomorphism fromL(A; B⌦C) toL(L(B; A); C).
Proof: Choose bases for A, B, and C, say x1, . . . , xm, y1, . . . yn, and z1, . . . , zs,
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respectively. Then an element of B ⌦ C is defined by an n s matrix a jk
( j = 1, . . . , n; k = 1, . . . , s). Hence, an element of L(A; B ⌦ C) is defined
by a matrix ai jk (i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , s), namely, such a
matrix gives the element of L(A; B ⌦ C) which sends x = ⌃ibixi in A to
⌃ibiai jk in B ⌦ C. Similarly, an element of L(B; A) is represented by a ma-
trix di j (i.e., sending y = ⌃ jb jy j in B to ⌃i jb jdi jxi in A). Hence, an element
of L(L(B; A); C) is represented by a matrics di jk. Thus, each of the tensor
spacesL(A; B⌦C) andL(L(B; A); C) is represented by matrices, where these
matrices are of the same kind. We thus obtain an isomorphism between these
tensor spaces by comparing the matrix representations of their elements with
respect to our bases for A, B and C. One easily checks that this isomorphism
is independent of bases, and that it is natural. [It is interesting to note that,
in the infinite-dimensional case, neither of L(A; B⌦C) and L(L(B; A); C) is
even a subspaces of the other.]

Thus, in the finite-dimensional case, we have not only all the natural
isomorphisms of the previous section, but also this additional one: L(A; B ⌦
C) is naturally isomorphic with L(L(B; A); C). From this, we obtain the
following additional isomorphisms.

1. The tensor space B ⌦ C is naturally isomorphic with L(B0; C) (where
prime denotes dual). Proof: Setting A = R in the isomorphism above,
we have that L(R; B ⌦ C) is naturally isomorphic with L(L(B; R); C). But
L(R; B ⌦C) is naturally isomorphic with B ⌦C, while L(B; R) is just B0.

2. The tensor space B is naturally isomorphic with B00 (the dual of its
dual). Setting A = R and C = R in the isomorphism above, we have that
L(R; B ⌦ R) is naturally isomorphic with L(L(B; R); R). But the former is
naturally isomorphic with B, and the latter is B00.

3. The tensor space L(A; B) is naturally isomorphic with L(L(B; A); R).
Proof: Set C = R in the isomorphism above.

4. The tensor space L(A; B) is naturally isomorphic with L(A, B0; R).
Proof: Substituting the result of (1) above in our basic isomorphism, we have
that L(A;L(B0; C)) is naturally isomorphic with L(L(B; A); C). But the first
is naturally isomorphic with L(A, B0; C). Now set C = R. Then we have that
L(L(B; A); R) is naturally isomorphic with L(A, B0; R). By result (3) above,
therefore, we have that L(A; B) is naturally isomorphic with L(A, B0; R).

Our claim, that every tensor space is the finite-dimensional case is nat-
urally isomorphic to one of the form given at the bottom of the previous
page, is now immediate. Given a tensor space, we first eliminate all tensor
products by result (1) above. All L’s which appear on the left in L’s are
than eliminated by (3). Next, anything except “R” appearing on the right in
an “L” is eliminated by (4). Finally, multiple duals are eliminated by (2).
After all these eliminations, the only possible form is that given at the bot-
tom of page 78. Furthermore, all of these “eliminations” preserve rank, as
one check directly from (1) – (4). We conclude, therefore, that every tensor
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space, in finite dimensions, is naturally isomorphic to the one of the form
L(E, . . . , E, E0, . . . , E0; R) of the same rank.

One could now continue in this way, finding all the natural tensors in the
finite-dimensional case, etc. However, since there are no new ideas, since
this amounts essentially only to restating what one knows from linear algebra
in a slightly di↵erent terminology, and since we are not here particularly
interested in finite dimensions, we go no further.



17. Tensor Fields

The examples (Sections 11 and 12) and the algebra (Sections 13, 14, 15, and
16) out of the way, we now turn to tensor fields on manifolds.

Let M be Cp (p � 1) manifold based on Banach space E. Fix a point p
of M, and a tensor space A over E. Consider now pairs (↵; U, ), where ↵
is an element of the tensor space A, and U, is an admissible chart on M,
with p in U. Given two such, we write (↵; U, ) ⇡ (↵0; U0, 0) if ↵0 = ◆(↵),
where ◆ is the isomorphism on tensor space A which arises (Section 15) from
the isomorphism ◆ = D( 0 ·  �1)( (p)) on E. This “⇡ ” is an equivalence
relation. [The proof consists of a word-for-word repetition of the proof for
tangent vectors on page 53, together with the observation that compositions
and inverses of isomorphisms on E yield, when extended to the tensor space
A, the compositions and inverses of the corresponding extension.] An equiv-
alence class will be called an A�tensor at p. [Note that an A�tensor is just
an element of the tensor space A, i.e., an element of a certain Banach space
constructed from E using multilinear mappings and tensor products, while
an A�tensor at p is an equivalence class of pairs, the first entry of each of
which is an A�tensor. Sometimes, when we wish to emphasize the distinc-
tion, we shall call an element of the tensor space A a free A�tensor.]

We next note the following fact. Given any A�tensor ⇠ at p, and any
admissible chart U, with p in U, there is one and only one free A�tensor
↵ with (↵; U, ) in the equivalence class ⇠. Indeed, letting (↵; U0, 0) be any
representative of the equivalence class ⇠, the desired unique ↵ is given by
↵ = ◆�1(↵0), where the isomorphism ◆ on A comes from D( 0 · �1)( (p)) on
E. This free A�tensor ↵ will be called the component of ⇠ with respect to the
chart U, . [Motivation for the terminology: In the finite-dimensional case,
one normally chooses a basis for the tensor space A, and thereby expressed
the free A�tensor ↵ in terms of n real numbers. Thus, an A�tensor at p
defines, once a chart is given, n real numbers, numbers which are normally
called the components of ⇠. We do not choose bases, and hence replace these
components by a single ↵ in A.]
Example. Let ⌧ be any natural tensor in tensor space A. Consider the col-
lection of all pairs, (⌧; U, ) whose first entry is this natural tensor. Since ⌧
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is ◆�invariant, any two such pairs are equivalent. Thus, we obtain an equiv-
alence class, i.e., an A�tensor at p. This A�tensor at p has, of course, the
property that its component with respect to any chart is just the free A�tensor
⌧. A�tensors at p so obtained will be called natural A�tensors at p.

What structure is there on the set of A�tensors at p? Picking any chart
U, with p in U, we obtain a one-to-one correspondence between the set of
A�tensors at p and the tensor space A. By means of this correspondence,
the entire structure of A – i.e., its structure as a Banach space – can be car-
ried over to the set of A�tensors at p. We are interested only in that part
of the structure which is chart-independent. Thus, exactly as with tangent
vectors, the set of A�tensors at p has the structure of a Banachable space
(real vector space, many equivalent norms all of which make it a Banach
space). It turns out that, in fact, there is still more structure on the tensors
at p. let ⌧ be any natural operation, e.g., a natural element of the tensor
space L(A1 . . . , An : B). Denote by � the corresponding (example above)
L(A1, . . . , An; B)�tensor at p. Next, let 1, . . . , n be A1�, . . . , An�tensors at
p, respectively, Choose a chart, and let ↵1, . . . ,↵n be their respective com-
ponents. Then ⌧(↵1, . . . ,↵n) is a free B�tensor. Now change the chart (U, 
to U0, 0. Then the components change to ↵1 = ◆�1(↵01), . . . ,↵n = ◆�1(↵0n),
while the components of � does not change. We have ◆�1(⌧(↵1, . . . ,↵n)) =
(◆�1(⌧))(◆�1(↵1), . . . , ◆�1(↵n)) = ⌧(↵01, . . . ,↵0n), where the first step is the ac-
tion of ◆ on L(A1, . . . , An; B), and the second is definitions. But this equa-
tion is precisely the statement that (⌧(↵1, . . . ,↵n) : U, ) is equivalent to
⌧(↵01, . . . ,↵0n); U0, 0). Thus, we obtain a B�tensor at p. In short, natural
operations are extended in the obvious way from operations on free tensors
to operations on tensors at p. We shall continue to use the term natural
operation for these operations on tensors at p.
Example. “Apply”, “compose”, and “take the tensor product” are natural
operations on tensors at p.

Our M continues to be a Cp (p � 1) manifold based on Banach space E.
We next define fields. Let A be a tensor space over E. An A�field (on M) is
a mapping which assigns, to each point p of M, an A�tensor at p. As usual,
it is the smooth ones which are of most interest. Let ⇠ be an A�field on M,
and let U, be any admissible chart on M.

Then, for each point x of  [U], �1(x) is a point of M (in fact, of U),
whence ⇠( �1(x)) is an A�tensor at  �1(x), whence its components with
respect to the chart U, is an element of the Banach space A. Thus, we
obtain a mapping from the open subset  [U] of E to the Banach space A.
The A�field ⇠ is said to be Cp�1 if this mapping is Cp�1 for every admissible
chart U, .
Example. Since ◆ is the identity on R, we have that, for a, and a0 reals,
(a : U ) (a0; U0, 0) if and only if a = a0. Thus, R�tensors at p can be
identified with real numbers. An R�field on M is therefore a real-valued
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function on M. A Cp�1 R�field on M is thus what we called a Cp�1 scalar
field in Section 11.
Example. A Cp�1 E�field on M is what we called a Cp�1 tangent vector field
in Section 12.
Example. Let ⌧ be any natural element of the tensor space A. Denote by
� the A�field on M such that, for each p in M, ◆(p) is the A�tensor at p
associated with this ⌧. This A�field is Cp�1 (for the mapping above from
 [U] to A sends all of  [U] to the single element ⌧ of A, and this constant
mapping is certainly Cp�1).

The (pointwise) sum of two Cp�1 A�fields is a Cp�1 A�field (since sums
of Cp�1 mappings of Banach spaces are Cp�1). We may also extend natural
operations to the fields as follows. Let ⌧ be a natural element ofL(A1 . . . , An;
B). Given A1�, . . . , An�fields 1, . . . , n0 we obtain, applying the construc-
tion of the middle of the previous page point wise, a B�field. If, furthermore,
1 . . . , n are Cp�1, then so is this B�field (since a multilinear mapping of
Banach spaces, applied to Cp�1 mappings of Banach spaces, yields a Cp�1

mapping). Thus, natural operations, applied point wise to Cp�1 fields, yields
Cp�1 fields.
Example. We have “scalar multiplication”, a natural element of L(R, A; A).
Hence, multiplication of A�fields by scalar fields yields A�fields. The last
constructions on pages 47 and 59 are special cases.
Example. The operations “applications”. “composition”, and “tensor prod-
uct”, applied to Cp�1 filed, yields, yield Cp�1 fields.
Example. From the first example and the observation that constant scalar
fields (since they arise from natural tensors) are Cp�1, we have that set of
A�fields form a vector space.
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18. Tensor Bundles

Many notions in di↵erential geometry have the feature that they possess two
essentially equivalent formulations, one more analytic and algebraic, and
the other more geometrical. One might even make a case that some of the
interest in the subject arises from this interplay. We have already seen some
examples of this phenomenon, e.g., in our discussion of tangent vectors. In
the previous section, we treated what might be called the algebraic approach
to tensor fields. We now give the geometric one.

π

 M p

  π
−1 p⎡⎣ ⎤⎦

 B

γ γ

  (p,ξ) fibre over p 

Let M be a Cp (p � 1) manifold
based on Banach space E, and fix a
tensor space A over E. Denote by B
the set of all pairs, (p, ⇠), where p is
a point of M, and ⇠ is an A-tensor at
p. Denote by ⇡ the mapping from
B to M which “ignores the second
entry”, i.e., with action ⇡(p, ⇠) = p.
This B is called the bundle space, ⇡
the projection mapping, and M the
base space. [In the figure, ⇡ is the mapping which “finds the point of M
directly under the point of B”.] For p a point of M the subset ⇡�1[p] (i.e.,
the set of all elements of B of the form (p, ⇠)) of B is called the fibre over
p. This entire set-up (i.e., the bundle space, projection mapping, base space,
fibres) is called the A-bundle of M.

We have two goals: to find the structure and properties of the objects
defined above, and to describe tensor fields in terms of these objects.

Consider first the bundle space B. We introduce some charts on this set.
Let U, be any chart on M. Set Ũ = ⇡�1[U], i.e., the union of the fibres
over the points of U. Next, let  ̃ be the mapping from the subset Ũ of B
to the Banach space E ⇥ A with the following action:  ̃(p, ⇠) = ( (p),↵),
where ↵ is component, with respect to the chart U, , of the A-tensor ⇠ at
p. We claim that this Ũ,  ̃ is an E ⇥ A-chart on B. [Proof: Our  ̃ is one-to-
one, for, if  ̃(p, ⇠) =  ̃(p0, ⇠0), then we must have  (p) =  (p0), and hence
p = p0, and also ↵ = ↵0, and hence ⇠ = ⇠0. Further,since  ̃[Ũ] = U ⇥ A
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in E ⇥ A, this  ̃[Ũ] is open.] Now consider two of these charts on B, Ũ,  ̃
and Ũ0, ̃0 (from, say, U, and U0, 0 on M). We claim that these charts are
Cp�1�compatible. [Proof: We have that  ̃[Ũ\ Ũ0] =  [U\U0]⇥A, whence
this is open in E ⇥ A. The mapping  ̃0 ·  ̃�1 from  ̃[Ũ \ Ũ0] to E ⇥ A has
action  ̃0 ·  ̃�1(x,↵) = ( 0 ·  �1(x), (x)(↵)), where (x) is the isomorphism
on tensor space A arising from the isomorphism D( 0 ·  �1)(x) on E. Since
composition, application, and insertion into the product are Cp�1 operations,
this mapping  ̃0 ·  ̃�1 is also Cp�1.] Thus, we now have a set B, together
with a collection of Cp�1�compatible E ⇥ A�charts on B. The first, second,
and fourth conditions on page 36 are immediate from those conditions for
M. We obtain, therefore, a Cp�1 manifold B based on E ⇥ A. [The idea is
that “locally, B looks like a product of a small region of M with A”.]

Thus, the bundle space B is a manifold. The base space is just M, and
it starts out as a manifold. We have already investigated the structure of the
fibers: The fibre over p is the set of A�tensors at p, which has the structure of
a Banachable space. There remains, therefore, only the projection mapping
⇡. Note that ⇡ now is a mapping of Cp�1 manifolds (from B to M, which
can be regarded as a Cp�1 manifold). It would be natural to guess, therefore,
that, this mapping will be Cp�1. It is. Proof: Let U, be a chart on M, and
Ũ,  ̃ the corresponding chart on B. Then  · ⇡ ·  ̃�1 is the mapping from
the open subset  ̃[Ũ] of E ⇥ A to E with action  · ⇡ ·  ̃�1(x,↵) = x. But
this mapping, “projection onto the first factor”, is certainly Cp�1. We have
shown that ⇡, when “made a mapping of Banach spaces” via certain charts
on B and M, yields a Cp�1 mapping. But, since these “certain charts” cover
B and M, the same holds for all charts (since all other charts are compatible
with our “certain ones”). Thus, ⇡ is a Cp�1 mapping of manifolds.

π

 M p

  π
−1 p⎡⎣ ⎤⎦

 B

γ γ

  κ (p) = (p,ξ)

fibre over p 

 κ [M]

κ

To summarize, then, the bundle
space is a Cp�1 manifold, the base
space a Cp manifold, and the pro-
jection mapping Cp�1. The fibres
are Banachable spaces.

This completes our first goal.
We now describe tensor fields in
this language. By a cross section
of our A�bundle we mean a Cp�1

mapping  from M to B such that ⇡ ·  is the identity on M. That is to say,
we require that, for each p in M, (p) in B be of the form (p, ⇠). Pictorially,
one represents a cross-section by drawing [M] in B as in the figure. We next
note that a cross section  of our A�bundle defines an A�field on M, for each
p in M, the “⇠” of (p) = (p, ⇠) is an A�tensor at p. We claim: The A�field
so obtained is Cp�1. Indeed, choosing chart U, on M, and corresponding
chart Ũ,  ̃ on B, we have since  is Cp�1, that  ̃ ·  ·  �1 is a Cp�1 mapping
from E to E ⇥ A. But the action of this mapping sends x in  [U] to (x,↵),
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where ↵ is the component of ⇠ in the chart U, . Hence, the mapping from
 [U] to A which “evaluates ⇠ and takes the component” is Cp�1. But this is
precisely the statement that the A�field ⇠ is Cp�1.

We next claim the converse. Let ⇠ be a Cp�1 A�field, and let  be the
mapping from M to B which action (p) = (p, ⇠(p)). This , we claim, is
a cross section. That ⇡ ·  is the identity is obvious, so we need only check
Cp�1�ness. But, representing the mapping  in terms of charts as in the
previous paragraph, we have, since  ̃ ·  ·  �1 is Cp�1 (this being what it
means for the A�field ⇠ to be Cp�1, that  is Cp�1 (for this is what it means
for a mapping of manifolds to be Cp�1).

We conclude: Cross section of the A�bundle are precisely the same
things as (Cp�1) A�fields. In this sense, then, we “represent the fields ge-
ometrically”. We shall see later that these bundles also permit one to draw
pictures for various constructions, etc. involving tensor fields.
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19. Lie Derivatives

We have now completed our discussion of three broad areas: calculus (Sects
2-8), manifolds (Sects 9-10), and tensor fields (Sects 11-18). The next broad
area is that of derivatives (of tensor fields, on manifolds). That is to say,
we now wish, for the first time, to make essential use of the symbols “Cp”,
“Cp�1”, etc., that we have been carrying along. The basic problem is this:
One is given, on a manifold, a certain tensor field, and one wishes to define a
new tensor field which, can be interpreted as “the derivative” (in some sense,
e.g., with respect to position on the manifold) of the original tensor field.

There is a naive way in which one might attempt to define “derivative” of
a tensor field. It is of some interest, first of all, to see why it does not work.
Let M be a Cp (p � 2) manifold based on Banach space E, let A be a tensor
space over E, and let ↵ be a Cp�1 A�field. Fix a point p of M: We try to
define “the derivative of ↵ at p” as follows. Let U, be any admissible chart
on M, with p in U, and set x =  (p). Then the component of our field with
respect to this chart is a mapping ↵̂ from the open subset  [U] of the Banach
space E to the Banach space A. [That is to say, ↵̂ is the following. For q
any point of U, ↵̂( (q)), an element of Banach space A, is the component of
the A�tensor ↵(q) at q with respect to the chart U, .] The derivative of this
mapping, D↵̂, is thus a mapping from  [U] to the Banach space L(E; A).
Hence, D↵̂(x) is an element of L(E; A). [That is to say, we first “pull the
field ↵ over, using a chart, to a mapping from  [U] to A”. We then “take the
derivative of this mapping with respect to the independent variable (point
of  [U])”, and then, finally, we evaluate this derivative at x =  (p), the
image of p by  .] Consider now the pair, (D↵̂(x); U, ), consisting of a
free L(E; A)�tensor and a chart U, . This pair certainly defines one of our
equivalence classes, and hence defines a certain L(E; A)�tensor at p. One
would like to regard this L(E; A)�tensor at p as “the derivative of the field
↵ on M, evaluated at p”. [Note that it is the right sort of object to be so
regarded. “Locally near p, M looks like E.” Hence, the “derivative of ↵
with respect to position in M” should be a linear mapping from E (which
represents “the space of possible directions in which one might move away
from p in M”) to A. That is, for ⇠ any tangent vector at p, and end denoting
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by � the L(E; A)�tensor at p just obtained, then �(⇠), an A�tensor at p,
would be interpreted as “the derivative of the field ↵, in the ⇠�direction, at
p”.]

There remains only one little check: chart-independence. If this check
should work out properly, then the entire subject “derivatives of tensor fields”
would be quite easy (consisting of this and the previous page), we could
move on to a new topic, and di↵erential geometry itself would have quite a
di↵erent character than it has. Of course, it turns out that this check fails. The
question, then, is this: Consider a new chart, U0, 0, with p in U0. Then, as
above, we obtain a new point, x0 =  0(p), of  0[U0] (noting that this x0 corre-
sponds to the same p in M), a new mapping ↵̂0 from  0[U0] to A (noting that
this ↵̂0 corresponds to the same A�field ↵), and a new pair, (D↵̂0(x0); U0, 0).
Is it true or false that (D↵̂0(x0); U0, 0) ⇡ (D↵̂(x); U, ), i.e., that we obtain
the same L(E; A)�tensor at p via U0, 0 as via U, ? To simplify this little
calculation, set A = E. For q any point of U\U0, we have, setting y0 =  0(q)
and y =  (q), that ↵̂0(y0) = ◆̃(↵̂(y)), where ◆̃ = D( 0 ·  �1)(y) (the formula
for how the component of an E�tensor at q changes under change of chart).
Setting ◆ = D( 0 ·  �1) we may rewrite this formula as ↵̂0 · ( 0 ·  �1)(y) =
◆(y)(↵̂(y)). Each side of this equation is a mapping from a certain open sub-
set of  [U] (that is where the variable y lives) to the Banach space L(E; E).
Taking the derivative of this equation, using on the left the chain rule and
on the right the Leibnitz rule for the derivative of the composition of two
y�dependent mappings, we have that D↵̂0( 0 ·  �1(y)) · D( 0 ·  �1)(y) =
D◆(y)(↵̂(y)) + ◆(y)(D↵̂(y)). Now set y = x (so  0 ·  �1(y) = x0), and use the
definition of ◆ for the second expression on the left to obtain D↵̂0(x0) · ◆(x) =
D◆(x)(↵̂(x)) + ◆(x)(D↵̂(x)). Finally, applying ◆(x)�1 to both sides, we obtain
our desired equation: ◆(x)�1D↵̂0(x0)◆(x) = ◆(x)�1D◆(x)(↵̂(x)) + D↵̂(x). Now,
this last formula is just true. What is it that we want to show? It is that
(D↵̂0(x0); U0, 0) ⇡ (D↵̂(x); U, ). Using the action of ◆ on L(E; E), this
amount precisely to showing that ◆(x)�1D↵̂0(x0)◆(x) = D↵̂(x). Comparing
what we have and what we want, we see that there is an extra term in the
former (◆(x)�1D↵̂(x)(↵(x))) – a term which will not in general be zero. We
conclude that our check fails. In general, we shall not obtain, by the prescrip-
tion of the previous page, an L(E : A)� tensor at p which is independent of
the chart used in that prescription.

All the mapping above tend to obscure what is basically a simple idea.
The problem is that the “change in component under change in chart” map-
ping ◆ in general will depend on y. To pass from our A�field to our proposed
L(E; A)�field, we must take a derivative. Thus, although the component of ↵
behaves properly (i.e., algebraically in ◆) under chart-change, the “derivative
of component” picks up an extra term involving the derivative of ◆. This extra
term prevents the “derivative of component” from behaving properly under
chart-change, i.e., prevents “derivative of component” from representing the
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component of some other field on M.
The problem of taking derivatives of tensor fields amounts essentially to

the problem of finding various ways to get rid of the “extra term” in the little
calculation above. It turns out that there are at least three such ways, where
the corresponding derivatives are called Lie derivatives, exterior derivatives,
and derivative operators. Each of these types of derivative has its own ad-
vantages and disadvantages. In general terms, the advantage of each is that it
“looks and acts like a derivative operation”, and the disadvantage that some
extra structure or restriction of the action has been employed to eliminate the
extra term we found above. It is our proposal now to study these three kinds
of derivatives, beginning with the Lie derivative.

It will be necessary, below, to make use of the following mapping. Let E
be any Banach space, and A any tensor space over A. Denote by Linv(E; E)
the set of all invertible elements of L(E; E) (an open subset of the Banach
space L(E; E), and hence a C1 manifold based on L(E; E)). Next, let '
denote the following mapping from Linv(E; E) ⇥ A to A: For ◆ in Linv(E; E)
and ↵ in A, '(◆,↵) is the element of A obtained by first extending the iso-
morphism ◆ on E to A (Sect. 15), and then applying the resulting isomor-
phism from A to A to the element ↵ of A. Thus, for example, we have
'(◆ · ◆0,↵) = '(◆,'(◆0,↵)),'(◆,↵ + ↵0) = '(◆,↵) + '(◆,↵0), and '(◆,↵) = ↵
if ↵, is natural. This ' is a C1 mapping of manifolds. Hence, fixing ↵,
the mapping '↵ from Linv(E; E) to A with action '↵(◆) = '(◆,↵) is also
C1. The derivative of this mapping, D'↵, is therefore a mapping from
Linv(E; E) to L(L(E; E); A). Applying to the identity I (certainly an ele-
ment of Linv(E; E)), we have D '↵(I), an element of L(L(E; E); A). Finally,
let  be the mapping from L(E; E)⇥A) to A with action (⇠,↵) = D'↵(I)(⇠).
This  is, clearly, bilinear, i.e., is an element of L(L(E; E), A; A).
Example. Let A = R. Then ' has action '(◆, r) = r (action of our isomor-
phisms on the reals), whence 'r is the constant mapping (i.e., 'r(◆) = r for
every ◆. Thus, D'r = 0, whence  = 0.
Example. Let E = E. Then ' has action '(◆, x) = ◆(x). Hence (since 'x is a
linear mapping), D'x(◆, ⇠) = ⇠(x), for ⇠ inL(E; E). Therefore, (⇠, x) = ⇠(x).
Example. Let A = L(E; E). Then ' has action '(◆,↵) = ◆ · ↵ · ◆�1, whence
D'↵(◆)(⇠) = ⇠ · ↵ · ◆�1 � ◆ · ↵ · ◆�1 · ⇠ · ◆�1. Therefore, (⇠,↵) = ⇠ · ↵ � ↵ · ⇠.

Now fix, once and for all, a Cp (p � 2) manifold M based on Banach
space E. The Lie derivative will be essentially a “generalized directional
derivative” (generalized from action on scalar fields to all tensor fields on
M). We shall need some direction in which to take the derivative. Hence, let
⇠ be a Cp�1 tangent vector field (E�field) on M. Finally, let A be any tensor
space over E, and let ↵ be a Cp�1 A�field on M. The idea is to define, from
⇠ and ↵, a new A�field on E.

Let U, be a chart on M, and let ⌘ and � be the components of ⇠ and
↵, respectively (so ⌘ is a Cp�1 mapping from  [U] to E, while � is a Cp�1
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mapping from  [U] to A). Consider now the mapping ! from  [U] to A
with action !(x) = D�(x)(⌘(x)) � (D⌘(x), �(x)) (noting that all this is well-
defined: D�(x) is an element ofL(E; A), whence D�(x) (⌘(x)) is in A : D⌘(x)
is an element of L(E; E) and �(x) an element of A, whence (D⌘(x), �(x))
is an element of A). Thus, we have so far written down a mapping ! from
 [U] to A. This ! is our candidate for the component of a certain A�field on
M, namely, the component with respect to the chart U, . To verify that this
! actually leads to an A�field, we must check to see how ! changes when
the chart is changed. To this end, let U0. 0 be a di↵erent chart. Then, de-
noting by ⌘0 and �0 the components of ⇠ and ↵, respectively, with respect to
this chart, we have that �0(x0) = '(◆(x), �(x)) and ⌘0(x0) = ◆(x)(⌘(x)), where
x0 =  0 ·  �1(x) (the statement that the point x0 of  0[U0] defines the same
point of M as the point x of  [U]) and ◆ = D( 0 · �1) . These two formulae,
then, are just those for the behaviour of the component under chart-change.
Rewriting the first equation in the form �0 · ( 0 ·  �1)(x) = '�(x)(◆(x)), taking
the derivative (with respect to x), and applying to an arbitrary element v of E,
we obtain D�0(x0)◆(x)(v) = 'D�(x)(v)(◆(x)) + ((D◆(x)(v))◆�1(x), '(◆(x)�(x))
where we used the chain rule on the left, the formula for the derivative of the
application of a bilinear mapping to x�dependent vectors on the right, and
the definition of  in the last term. Now set v = ⌘(x) in this equation, to obtain
D�0(x0)(⌘0(x0)) = '(◆(x),D�(x)(⌘(x))) + (D◆(x)(⌘(x))◆�1(x), '(◆(x), �(x))).
Next, take the derivative of the formula for the component change of ⇠ to ob-
tain D⌘0(x0)◆(x)(v) = (D◆(x)(v))(⌘(x))+◆(x)(D⌘(x)(v)), where v is an arbitrary
element of E. Using the fact that mixed partials commute on the first term
on the right, we have that this term is (D◆(x)(⌘(x))(v). Inserting this into the
expression above, and using the fact that v is arbitrary, we have D⌘0(x0)◆(x) =
D◆(x)(⌘(x)) + ◆(x)(D⌘(x)). That is to say, D◆(x)(⌘(x))◆�1(x) = D⌘0(x0) �
◆(x)(D⌘(x))◆�1(x). Substituting this into the formula on line seventeen above,
we obtain D�0(x0)(⌘0(x0)) = '(◆(x),D�(x)(⌘(x))) + (D⌘0(x0),'(◆(x), �(x)) �
(◆(x)D⌘(x)◆�1(x),'(◆(x), �(x)). But the second term on the right is just
(D⌘0(x0), �0(x0))). Substituting, we obtain finally, D�0(x0)(⌘0(x0))�
(D⌘0(x0), �0(x0)) = '(◆(x),D�(x)(⌘(x)) � (D⌘(x), �(x)). But this formula
is precisely the statement that !0(x0) = '(◆(x),!(x)), i.e., the statement that,
for each x, (!0(x0); U0, 0) ⇡ (!(x); U, ). We conclude, therefore, that our
! indeed has the proper behaviour under changes in chart.

We now define the Lie derivative,L⇠↵, of the A�field ↵ in the ⇠�direction
by the formula above. That is to say, letting ⌘, �, and ! be the compo-
nents of ⇠,↵, and L⇠ respectively, with respect to a chart, we set !(x) =
D�(x)(⌘(x)) � (D⌘(x), �(x)).

The calculation above is rather messy because of its generality, and be-
cause there are so many mappings around. It is easier to see what is going
on by looking at examples.
Example. Set A = R. Thus, we wish to take the Lie derivative of scalar
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field ↵ in the ⇠�direction. In this case, � is a mapping from  [U] to R, and
 is zero. Hence, the formula above becomes !(x) = D�(x)(⌘(x)). But the
right side will be recognized as the formula for the directional derivative of
↵ in the direction of the tangent vector ⇠(p) at p =  �1(x). Thus, the Lie
derivative of a scalar field is its directional derivative.
Example. Set A = E. We wish to take the Lie derivative of the tangent
vector field ↵ in the ⇠�direction. Now  has action (⇣, ⌫) = ⇣(⌫), whence
our formula above becomes !(x) = D�(x)(⌘(x))�D⌘(x)(�(x)). This !,then,
is the component of L⇠↵. Note in particular from this formula that L⇠↵ =
�L↵⇠.
Example. Set A = L(E; E). Then  has action (⇣, µ) = ⇣ · µ � µ · ⇣. Hence,
the formula for the component of L⇠↵ is !(x) = D�(x)(⌘(x))�D⌘(x) ·�(x)+
�(x) · D⌘(x).

It is a good exercise to verify explicitly that the L⇠↵ of each example
above has the proper behavior under changes of chart.

We now have a thing, the Lie derivative, with a rather complicated def-
inition. We deal with this situation in the usual way: We attempt to find a
list, of reasonable length, of properties of the Lie derivative, with the goal of
using in practice the properties on the list rather than the original definition.
Such a list follows.
Property 1. The Lie derivative of a Cp�1 A�field in the ⇠�direction (where
⇠ is a Cp�1 E�field) is a Cp�2 A�field. More generally, if the A�field is Cq

(1  q  (p � 1), or, for A = R, 1  q  p), and ⇠ is Cq0 (1  q0  (p � 1)),
then L⇠↵ is Cq00 , where q00 is the minimum of q � 1 and q0 � 1. [This fact is
immediate from the formula, and the fact that composition, application, etc.
are C1 operations.]
Property 2. For ↵ an R�field, L⇠↵ is the directional derivative of ↵ in the
⇠�direction. (Example, page 92.)
Property 3. For ↵ an R�field, and ⇠ and ⌧ E�fields, we have L⇠(L⌧↵) �
L⌧(L⇠↵) = LL⇠⌧↵. Proof: Choose a chart, and let the components of ⇠, ⌧ and
↵ be ⌘, �, and �, respectively. Then the component ofL⌧↵ sends x to !(x) =
D�(x)(�(x)), whence the component of L⇠(L⌧↵) sends x to D!(x)(⌘(x)) =
DD�(x)(�(x), ⌘(x)) + D�(x)[D�(x)(⌘(x))]. Reversing the roles of ⇠ and ⌧,
the component of L⇠L⌧↵ � L⌧L⇠↵ sends x to DD�(x)(�(x), ⌘(x)) + D�(x)
[D�(x)(⌘(x))) � DD�(x)(⌘(x),�(x)) � D�(x)[D⌘(x)(�(x))]. But the first and
third terms cancel, since mixed partials are symmetric, and so we obtain
D�(x)[D�(x)(⌘(x)) � D⌘(x)(�(x))]. But this is precisely the component of
LL⇠⌧↵. In fact, it is also true that L⇠(L⌧↵) � L⌧(L⇠↵) = LL⇠⌧↵ for any
A�field ↵. The proof is essentially the same as that above: Write down both
sides in terms of a chart.
Property 4. For ↵ and ↵0 A�fields, L⇠(↵ + ↵0) = L⇠↵ = L⇠↵0. This is
immediate from the defining formula and the fact that  is bilinear.
Property 5. For ⌧ a L(A; B)�field, and ↵ an A�field, we have L⇠(⌧(↵)) =
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(L⇠⌧)(↵) + ⌧(L⇠↵). Proof: For ⌧̂ in L(A; B) and ↵̂ in A we have, taking
the derivative of the action of ◆ on L(A; B), that (⇣, ⌧̂(↵̂) = (⇣⌧̂)(↵̂) +
⌧̂((⇣, ↵̂)) for every ⇣ in L(E; E). Denote by ⌧̂ and ↵̂ the components of
⌧ and ↵, respectively. Then we have that the action of the component of
L⇠(⌧(↵)) is !(x) = D(⌧̂(↵̂))(x)⌘(x) � (D⌘(x), ⌧̂(x)(↵̂(x))). Expand the first
term on the right using the Leibnitz rule (for derivatives of mappings of
Banach spaces), and use the fact above in the second. The result is the
equation claimed, written in terms of our chart. By a similar argument one
obtains: For ⌧ a L(A1, . . . , An; B)�field, and ↵1, . . . ,↵nA1�, . . . , An�fields,
L⇠(⌧(↵1, . . . ,↵n)) = (L⇠⌧)(↵1, . . . ,↵n)+⌧(L⇠↵1,↵2, . . . ,↵n)+ . . .+⌧(↵1, . . . ,
L⇠↵n). Thus, property 5 is the Leibnitz rule for Lie derivatives.
Property 6. For ↵ any natural A�field, L⇠↵ = 0. Proof: For ↵ natural, and ↵̂
the component of ↵, we have that the mapping ↵̂ is constant (for ↵̂(x) is this
natural tensor for each x). Furthermore, (⇣, ↵̂(x)) = 0 for any ⇣ in L(E; E).
Hence, for the component of L⇠↵, we have D↵̂(x)(⇠̂(x))� (D⇠̂(x), ↵̂(x)) = 0
(the first term vanishing since it is a derivative of a constant map). Thus,
since the component of L⇠↵ in every chart vanishes, we have L⇠↵ = 0.
Property 7. The Leibnitz rule is satisfied for any natural tensor operation.
That is, for ⌧ natural inL(A1, . . . , An; B), and ↵1, . . . ,↵nA1�, . . . , An�tensors,
L⇠(⌧(↵1, . . . ,↵n)) = ⌧(L⇠↵1, . . . ,↵n) + . . . + ⌧(↵1, . . . ,L⇠↵n). Proof: Imme-
diate from properties 5 and 6.

Properties 4 and 7 summarize the dependence of “L⇣↵” on ↵. We next
consider its dependence on ⇠. To this end, first note that, for any tensor
space A, the element  of L(L(E; E), A; A) is natural. Hence we obtain,
on our manifold, a corresponding natural L(L(E; E), A; A)�field, which we
also denote .
Property 8. For ↵ and A�field, and ⇠ and ⇠0 E�fields, we have L⇠+⇠0↵ =
L⇠↵ +L⇠0↵. Immediate.
Property 9. Let ↵ be an A�field, ⇠ an E�field, and f an R�field. De-
note by ⇣ the L(E; E)�field with action ⇣(⌫) = L⌫ f )⇠ for every E�field
⌫. Then L( f ⇠↵ = f (L⇠↵) + (⇣,↵). Proof: The component of L( f ⇠)↵ has
action !(x) = D↵̂(x)( f (x)⇠̂(x)) � (D( f ⇠̂)(x), ↵̂(x)). Expanding the sec-
ond term on the right using the Leibnitz rule for derivatives, this becomes
!(x) = D↵̂(x)( f (x)⇠̂(x)) � ( f (x)D⇠̂(x), ↵̂(x)) � (⇣(x), ↵̂(x)). Each of the
first two terms on the right is now linear in ⇠(x), whence the f (x), a number,
can be pulled outside. The result is precisely the component form of the
claimed equally.

This completes our list of properties.
Example. For ↵ and A�field, and f and R�fields, L⇠( f↵) = (L⇠ f )↵ +
f (L⇠↵). Property 7.
Example. For ↵ an A�field and � a B�field,L⇠(↵⌦�) = (L⇠↵)⌦�+↵⌦(L⇠�).
Property 7.
Example. For ⇠ and ⌘ E�fields, and f and R�field, L( f ⇠)⌘ = f (L⇠⌘) +
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(L⌘ f )⇠. Property 9, or else properties 3 and 7.
It is common in the finite-dimensional case to define the Lie derivative,

not by the chart-formula that we have used here, but rather by some com-
bination of the properties above. The idea is to show that there is one and
only one “Lie derivative operation” satisfying certain properties, and then
establish our chart-formula as a theorem. In more detail, one uses property
2 to get the action of the Lie derivative on scalar fields, then property 3 to
get the action on vector fields, and finally various special cases of property 7
to get the action on other tensor fields. One could certainly carry out a simi-
lar program in the infinite-dimensional case but, unfortunately, a number of
di�culties intervene to make this somewhat awkward. We here just mention
what these di�culties are and how they might be surmounted. First, one’s
manifold may not admit a reasonable number of fields (as we have seen in
an example, for scalar fields). One is thus forced, apparently, to introduce
a “Lie derivative operation” locally, in small open regions, and then piece
together these regions to get the operation over the entire manifold. Second,
one must apparently impose all the di↵erentiability assignments (property 1)
on one’s Lie derivative operation (including the exception for scalar fields).
If one, for example, ignored the fact that scalar fields can be Cp (whereas
others must be Cp�1), then one would not, by property 3, obtain a Cp�2 vec-
tor field for the Lie derivative of a vector field. [The same problem arises in
the finite-dimensional case. However, in finite dimensions one often works
in C1, because it seems to turn out in practice that nothing is lost by such
a restriction. Property 1 then simplifies somewhat. However, it is not so
clear that “everything C1” is a reasonable condition in infinite-dimensions.]
Third, one has to go to charts anyway, in the use of property 3. From this
property, one will indeed find (L⇠⌘)( f ), once one knows Lie derivatives of
scalar field. One must, however, then show that this is the directional deriva-
tive of f by some vector field (to be identify with L⇠⌘). This demonstration
requires, apparently, charts. Fourth, there are apparently some problems
with tensor products. We can of course define L⇠(↵ ⌦ �) by the second ex-
ample on the previous page. What, however, is the formula for L⇠⌧ when
⌧ is an arbitrary A ⌦ B�tensor? It is obvious to me that every such ⌧ can
be written in the form ⌧ = ↵1 ⌦ �1 + ↵2 ⌦ �2 + . . . (so that we could set
L⇠⌧ = (L⇠↵1) ⌦ �1 + ↵1 ⌦ (L⇠�2) + . . .). Furthermore, even if this were true,
we would still have to show that the second sum converges (in the tensor
product) provided that the first one does. Smoothness would be a further
problem. Finally, I am aware of no way, in this program, to show directly
(i.e., without going back to charts) that the Lie derivative of every natural
tensor vanishes. [This problem does not arise in the finite-dimensional case,
since there one has the complete list of natural tensors, and simply checks
them one at a time.]

It is our claim that all the various properties of the Lie derivative give
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expression to the idea that “the Lie derivative is a generalized directional
derivative”. The nice thing about the Lie derivative is that it can be applied
to any tensor field, and it has a large number of properties. The disadvantage
is that it requires some particular choice of a vector field, ⇠, along which the
Lie derivative is taken.



20. Integral Curves

The definition of the previous section may be called the algebraic-analytic
approach to Lie derivatives. There is also a more geometrical approach to
the same subject. It is our intention to discuss this alternative viewpoint. We
require, as a prerequisite, the notion of an integral curve, and some properties
of these. This general subject – integral curves – has numerous applications,
extending far beyond just Lie derivatives, one of which we indicate briefly.

q = u1 = u2 σ�  

  ξ(γ (r ))

  γ (r )

  γ (r )

 M

 r
γ

Fix, once and for all, a Cp (p � 2) man-
ifolds M based on Banach space S E, and a
Cp�1 E�field ⇠ on M. An integral curve of
⇠ consists of an open interval, (a, b), of the
reals, together with a Cp mapping � from
(a, b) (regarded as a manifold) to M, such
that the following property is satisfied: For
each number r in (a, b), the tangent vector
to the curve � at r is precisely ⇠(�(r)), i.e.,
the value of the field ⇠ at the point �(r) of M. Intuitively, an integral curve is
“always moving along in M tangentially to ⇠”.
Example. Let (a, b),� be an integral curve, and let s be any real number. Then
(a + s, b + s), �̃ is also an integral curve,where �̃ has action �̃(r) = �(r � s).
These two integral curves are said to be related by reparameterization.
Example. Let M = E. Fix any ⇠0 in E, and let ⇠ be that vector field on M
whose component in this chart is ⇠0 for all x. Then, in terms of this chart, a
typical integral curve is given by (a, b), �, where �(r) = x0 + r⇠0, where x0
is any fixed vector in E.

It is our goal to decide whether or not integral curves exist, and how
unique they are. It is convenient, for this discussion, to have available three
definitions. For (a, b), � an integral curve, with 0 in (a, b), the point �(0) of
M is called the initial point of the curve. Clearly, e.g., a reparameterization
serves merely to shift the initial point along the integral curve. Next, let
(a, b), and (a0, b0), �0 be two integral curves. The second is said to be an
extension of the first if i) a0  a and b  b0 (i.e., (a0, b0) includes (a, b)), and
ii) �(r) = �0(r) for r in (a, b) (i.e., wherever both curves are defined). Thus,
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an extension of an integral curve merely “makes the curve longer, on one
or both ends”. Finally, an integral curve, the only extension of which is the
curve itself, is called maximal. [So, as one might expect, “is an extension
of” is a partial ordering on integral curves.] Thus, for example, an integral
curve is maximal if and only if every reparametrization is; the curve of the
second example of page 97 is maximal provided a = �1 and b = 1.

Clearly, integral curves are only going to be unique up to reparametriza-
tions and extensions. The theorem on existence and uniqueness of integral
curves is the simplest and strongest one could expect in light of this obser-
vation.
Theorem. Let M be a Cp (p � 2) manifold based on E, ⇠ a Cp�1 E�field, and
p a point of M. Then there exists one and only one maximal integral curve
� of ⇠ with initial point p.
Proof: We first make the following observation. Let U, , be a chart on M,
let O =  [U], let ⇠̂ (a mapping from O to E) be the component of ⇠, and
let �̂ =  · � (a curve on O). Then the statement that � is an integral curve
becomes, in terms of this chart, the equation D�̂ = ⇠̂ · �̂.

Uniqueness. Let O and ⇠̂ be as above, and let c and d be numbers such
that c = lub |⇠̂(x)| and d = lub |D⇠̂(x)|. Let (a, b) be an open interval with
a < 0 < b, and let �̂ and �̂0 be mappings from (a, b) to O satisfying D�̂ = ⇠̂ · �̂
D�̂0 = ⇠̂ · �̂0, and �̂(�) = �̂0(0) = x0. Finally, let ⌧ have action ⌧(x) =
�̂(x) � �̂0(x). We have D⌧(r) = D�̂(r) � D�̂0(r) = hat⇠(�̂(r)) � ⇠̂(�̂0(r)) 
lub |D⇠̂| |�̂(r) � �̂0(r)| = d |⌧(r)|, were we used the mean value theorem in
the third step and definitions in the fourth. Hence, |⌧(r)| = |⌧(r) � ⌧(0)| 
lub

0r0r
|D⌧(r0)| |r|  d lub

0r0r
|⌧(r0)| |r|. Now choose positive r0 such that r0d 

1/2. Then, taking the lub of the formula just obtained, we have lub
0rro

|⌧(r)| 
dr0lub |⌧(r)|  1/2 lub

0rr0
|⌧(r)|. But this is possible only if lub |⌧(r)| = 0 i.e., if

⌧(r) = 0, for every r in [), r0]. That is, �̂(r) = �̂0(r) for 0  r  r0.
Now consider two maximal integral curves � and �0 with �(0) = �0(0) =

p, as in the theorem. Let s be the largest.
Now consider two maximal integral curves, (a, b), � and (a0, b0), �0, with

�(0) = �0(0) = p, as in the theorem. Let s be the largest number such that
s  b, s  b0, and �(r) = �0(r) whenever 0  r < s. We claim that the
assumption s < b leads to a contradiction. Indeed, we must have, under
this assumption, s < b0, for otherwise the integral curve � would lead to an
extension of �0, contradicting maximality of �0. Furthermore, by continuity,
we must have �(s) = �0(s). Choosing a chart U, in M, with �(s) = �0(s) in
U, we have, by the result of the previous paragraph, that �(r) = �0(r) also for
s  r  s+ r0, for some positive r0. But this violates the definition of s. This
contradiction establishes that s = b, and, similarly s = b0. That is to say, we
have b = b0 and �(r) = �0(r) for 0  r < b. In a similar way, “working in the
other direction”, we have that a = a0, and �(r) = �0(r) for a < r  0. That is
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to say, our two maximal integral curves are identical.
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Existence. Let O be an open subset of Banach
space E, ⇠̂ a Cp�1 mapping from O to E, and let c
and d be numbers such that c = lub |⇠(x)| and d =
lub |D⇠(x)|. Finally, let p and p̃ be two points of O,
let ✏ be a su�ciently small positive number, and let
↵ be a number with 0  ↵  1. Set s = |p � p̃|. We
now associate, with each of p and p̃, a new point of
O as follows. With p, associate the point p+ ✏⇠̂(p).
With p̃, associate the point obtained by first finding
p̃ + ↵✏⇠̂( p̃), and then p̃ + ↵✏⇠̂( p̃) + (1 � ↵)✏⇠̂(p̃ +
↵✏⇠̂( p̃). [That is, the first point is obtained by “going amount ✏ along the
direction of ⇠̂(p) from p”; the second point by “first going amount ↵✏ along
the direction of ⇠̂( p̃) from p̃ to obtain p

s
= p̃+↵✏⇠̂( p̃), and then going amount

(1�↵)✏ along the direction of ⇠̂(p
⇠

) from p
⇠

”.] We wish to find the “distance”

s0 between the two points so associated. We have s0 = |p + ✏⇠̂(p) � p̃ �
↵✏⇠̂( p̃)� (1�↵)✏⇠̂( p̃+↵✏⇠̂(p̃))| = |p� p̃+ ✏⇠̂(p)� ✏⇠̂( p̃)+ (1�↵)✏⇠̂( p̃)� (1�
↵)✏⇠̂( p̃+↵✏⇠̂( p̃))|  s+✏ |⇠̂(p)� ⇠̂( p̃)|+ |(1�↵)✏⇠̂(p̃)�(1�↵)✏⇠̂( p̃+↵✏⇠̂( p̃))| 
s+ ✏ d s+ (1�↵)✏ |⇠̂(p̃)� ⇠̂( p̃+↵✏⇠̂(p̃))|  s(1+ ✏ d)+ (1�↵)✏(d |↵✏⇠̂( p̃)|) 
s(1 + ✏ d) + (1 � ↵)✏ d ↵✏ c  s(1 + ✏ d) + ✏2cd/4, where the first step is
definition of s0, the second results from rearranging terms, the third is the
triangle inequality, the fourth results from using the mean value theorem on
the second term, the fifth results from using the mean value theorem on the
third term, the sixth uses the definition of c, and the seventh uses the fact that
↵(1 � ↵)  1/4. We shall use this formula, s0  s(1 + ✏ d) + ✏2cd/4, several
times in what follows.
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Next, fix a point p of O and a suf-
ficiently small positive number r. Let
r0, . . . , rn be numbers with 0 = r0 <
r1 < . . . < rn = r, and set ✏ =
max |ri+1 � ri|. We construct, from this
set-up, a point of O as follows: First
find p1 = p+r1⇠̂(p), then p2 = p1+(r2�
r1)⇠̂(p1), then, p3 = p2 + (r3 � r2)⇠̂(p2),
etc. Continue, until one finds pn. Now
let there be given numbers ↵1, . . . ,↵n,
all between zero and one. Then we can
find a second point of O by using the
↵’s to subdivide as above. That is, set
p̃1 = p + ↵1r1⇠̂(p) + (1 � ↵1)r1⇠̂(p + ↵1r1⇠̂(p)), then p̃2 = ↵2r2⇠̂(p̃1) + (1 �
↵2)(r2⇠̂(p̃1 + ↵2r2⇠̂(p̃1)), etc. Set si = |pi � p̃i|, and write µ for 1 + ✏d and
⌫ for ✏2cd/4. Then, by our formula above, s1  ⌫. Applying the same for-
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mula for the second step, we have s2  µs1 + ⌫  ⌫(1 + µ). For the third,
s3  µs2+⌫  ⌫(1+µ+µ2). Continuing in this way, sn  ⌫(1+µ+. . .+µn�1) =
⌫(µn � 1)/(µ� 1) = 1/4✏c[(1+ ✏d)n � 1]  1/4✏c[c✏nd � 1], where the second
and fourth steps use facts from elementary algebra, and the third is substitu-
tion for µ and ⌫.

Define the e�ciency of a partition r0, . . . , rn as above to be the number
r/✏n (i.e., a measure of how “nearly equally spaced the intervals are”, clearly
always between 0 and 1). Restricting ourselves to partitions with e�ciencies
at least 1/2, the formula of the previous paragraph becomes sn  1/4✏c[e2rd�
1]. Now consider a sequence of such partitions, each having with e�ciency
at least 1/2, each having an “n” twice that of its predecessor, and each being
a refinement of its predecessor in the sense of the previous paragraph. Then,
by this last formula, the sequence of endpoints obtained for each by our
construction will be Cauchy (since this formula requires that the distance
between two successive endpoints is bounded by some constant times the “✏”
of the first partition), and hence will converge to some point of O. Repeating
for di↵erent values r of r we obtain a mapping � which assigns, to each
su�ciently small positive r, a point �(r) of O.

We next claim that this mapping � is C1, and satisfies D� = ⇠̂ ·�. Clearly,
it su�ces to check di↵erentiability at O. We have |�(r) � p � r⇠̂(p)| 
rc(e2rd�1), since the left side asks for the distance between the endpoints for
a very fine partition, and the partition with just one step (i.e., using repeat-
edly the formula of the previous paragraph). But, as r goes to zero, (e2rd �1)
also goes to zero, whence the left side is tangent at O. In other words, � is
di↵erentiable, and D� = ⇠̂ · �. Since in particular � is continuous, the right
side of this last equation is continuous, whence D� is continuous, whence �
is C1. Since � is C1, the right side is C1, whence D� is C1, whence � is C2.
We continue in this way until we reach the di↵erentiability class of ⇠̂. That
is . . . since � is Cp�1, the right side is Cp�1, whence � is Cp.

Now fix any point of our manifold M. Choosing a chart including this
point, and using the construction above, we obtain an integral curve with this
point as initial point. Extend this curve maximally by Zorn’s Lemma. The
resulting curve can have no endpoints (for if it had one, we could choose a
chart including this endpoint, and use our construction to further extend the
curve). This is our maximal integral curve.

This completes the proof of our theorem.
Conceptually, the proof above is extremely simple. For uniqueness, one

uses the mean value theorem twice to show that “the two curves cannot get
much farther apart than they had been previously”. For existence, one con-
structs “broken straight lines, each segment of which is in the direction of
the field at its initial point”, and then takes a limit to obtain integral curves.
I find it a bit strange that such simple ideas turn out to be so complicated
when written out in detail. In the more conventional proof of this theorem,
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one rewrites “is an integral curve” as an integral equation, regards one side
of that equation as a mapping from curves to curves, shows that the set of
curves forms a complete metric space and that this mapping is a contraction
mapping, and uses the contraction lemma. This proof is essentially the same
as the one above. We have incorporated the definitions of “integral” and
“contraction mapping” into the proof without mentioning these terms, and
have proved directly in context the properties needed of integrals and con-
traction mappings. The above proof, while somewhat longer than that with
integrals, would perhaps be comparable in length if the latter were accom-
panied by the definition and properties of integrals. The above proof appeals
somewhat more to my intuition.

We first give a simple example just to illustrate how one uses the theorem.
Example. Two integral curves on a manifold cannot cross (i.e., have just
one point in common), for, were this the case, one could reparametrize them
so that the “crossing point” is the initial point of each, witch would violate
uniqueness.

In the finite-dimensional case, the theorem above might be called “the
fundamental existence and uniqueness theorem for solutions of systems of
ordinary di↵erential equations”. We give one example to illustrate the ap-
propriateness of this description, leaving the statement of the general case as
an (easy) exercise.
Example. Consider the following system of ordinary di↵erential equations.
We are interested in functions x, y and z of real variable t, satisfying the
equations

ẍ = (1 � ż2 + y2)�1 + t2

ẏ = �ẋ2 + x2 + log(z + ẋ
z̈ = cos(2xżt)

where “dot” means “d/dt”. [Note that this is a “reasonable system”, in the
sense that the equations are solved for the highest derivative of each indepen-
dent variable.] Denote by E the Banach space R6, so a point of E is repre-
sented by six real numbers, (x1, . . . , x6). [Motivation: Think of x1 = x, x2 =
ẋ, x3 = y, x4 = z, x5 = ż, x6 = t.] Next, let M be the (open sub-)manifold (of
E) consisting of (x1, . . . , x6) satisfying (1�(x5)2+(x3)2) , 0 and (x4+x2) > 0.
[Motivation: We throw away precisely those points at which the right sides
of the di↵erential equations above are not well-behaved.] Next, let ⇠ be the
mapping from M to E with action ⇠(x1, . . . , x2) = x2, (1 � (x5)2 + (x3)2)�1 +
(x6)2,�(x2)2 + (x1)2 + (x3)2 + log(x4 + x2), x5, cos(2x1x5x6), 1). [Motiva-
tion: That the second, third, and fifth entries are what they are can be seen
by looking at the right sides of our di↵erential equation. For the remaining
three entries, append the equations “ẋ = ẋ”, “ż = ż”, and “ṫ = 1” to our three
di↵erential equations.] This ⇠ is (with respect to the natural chart on M, the
component of) a C1 vector field on M.

A curve on M maps some open interval (a, b) of the reals to M. Hence,
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for � such a curve and r in (a, b), �(r) is a point of M, a point which can
be represented by a six-tuple. That is to say, a curve can be described by
six functions, x1, . . . , x6, of one real variable r. The statement that this
� be an integral curve of our vector field is, of course, the statement that
dx1/dr = x2, dx2/dr = (1� (x5)2+ (x3)2)�1+ (x6)2, dx3/dr = �(x2)2+ (x1)2+
(x3)2 + log(x4 + x2), dx4/dr = x5, dx5/dr = cos(2x1x5x6), dx6/dr = 1. We
now claim that every such integral curve gives rise to a solution of our di↵er-
ential equation (namely, given an integral curve, replace r by t, and identify
x(t) with x1(r), y(t),with x3(r), z(t) with x4(r), and t with x6(r). Then the first,
fourth, and sixth of the equations above identify x2(r) with ẋ(t), x5(r) with
ż(t), and x6(r) with t. The other three equations are then precisely our orig-
inal di↵erential equations.) Conversely, any solution of our original system
of di↵erential equations gives rise to an integral curve, by the same identifi-
cations. Under our identification, specifying an initial value for an integral
curve amounts to specifying initial values for x, ẋ, y, z, ż and t. From our
theorem, we conclude therefore: Given initial values of x, ẋ, y, z, ż and t,
there is one and only one solution of the system of di↵erential equations on
the previous page, maximally extended.

I regard it as an enormous conceptual simplification that “everything one
always wanted to know about ordinary di↵erential equations” is summarized
so concisely by the theorem. One might expect to be able to do a simi-
lar thing for (e.g., hyperbolic) partial di↵erential equations, where now the
manifold M is the infinite-dimensional manifold of possible initial data for
the equation. I feel that it would be of particular interest to investigate (e.g.,
beginning with some examples) such a program.



21. Geometry of Lie Derivatives

We now provide the promised geometrical interpretation of Lie derivatives.
It turns out that the material of this section is normally used only to obtain a
quick general idea of what the Lie derivative of something is or is like, rather
than being used directly in proofs. For this reason, the intuitive idea is more
important than the details. In order to save time, we shall take advantage
of this circumstance as follows: Although the claims of this section will be
both precise and true, we shall merely sketch the proofs.
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Fix, once and for all, a Cp (p � 2) manifold M based

on Banach space E, together with Cp�1 E�field ⇠ on M.
Fix also positive number a and open subset U of M such
that the following property is satisfied: for each point p
of U, the maximal integral curve of ⇠ with initial value
p is defined at least on (�a, a). Thus, in the example of
the figure, the “U” shown would do the job. However,
we could not in this example choose U = M, for the
maximal integral curve with initial point p shown is not
defined for r�values ip to a. Denote by I the open in-
terval (�a, a). Next, denote by ' the following mapping
from I ⇥U to M: For (r, p) in I ⇥U so r is in (�a, a) and
p is in U), '(r, p), is the point �(r) of M, where � is the maximal integral
curve of ⇠ with initial point p. [The condition on U and a above is now seen
as having been necessary in order that this ' be well-defined.] Thus, for ex-
ample, we have '(0, p) = p for every p in U, and '(r,'(r0, p)) = '(r + r0, p)
whenever both sides are defined.

We next note that, since both I and U are manifolds (as open subsets
of manifolds), so is I ⇥ U. Hence, ' is a mapping from one Cp manifold
(I ⇥ U) to another (M). We claim: This ' is a Cp mapping of manifolds.
To prove this, one first passes to a chart: Let O be an open subset of E, ⇠̂
a Cp�1 mapping from O to E, U an open subset of O as above, and '̂ the
mapping from I ⇥ U to O as above. We first show continuity. We have
|'̂(r0, p0) � '̂(r, p)| = |'̂(r0, p0) � '̂(r, p0)| + |'̂(r, p0) � '̂(r, p)|. Set c = lub |⇠̂|
and d = lub |D⇠̂|. The first term on the right above is |�̂(r0) � �̂(r)|, where �̂
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is the maximal integral curve with initial point p0. Hence, this first term is
less than or equal to c |r0 � r|. For the second term, set s = |p0 � p|. Partition
the open interval (0, r) into n segments of maximum length ✏ as on page 99.
Let s1, s2, . . . , sn and µ and ⌫ be as on that page. Then we have s1  µs + ⌫,
whence sn  µs1 + ⌫  µ2s + ⌫(µ + 1), etc., to sn  µns + ⌫(µn�1 + . . . + 1).
That is to say, sn  ✏✏nd s + ✏c/4(e✏nd � 1). Letting n go to infinity, keeping
the e�ciency greater than 1/2, we obtain |'̂(r, p0) � '̂(r, p)|  e2rd s. Thus,
we have obtained |'̂(r0, p0) � '̂(r, p)|  c |r0 � r| + e2rd |p0 � p|, from which
continuity follows immediately. We next show di↵erentiability of '̂ at (0, p).
We have |'̂(r0, p0) � '̂(0, p) � (p0 � p) � r0⇠̂(p)| = |'̂(r0, p0) � p0 � r0⇠̂(p)| 
|'̂(r0, p0)� p0�r0⇠̂(p0)|+r0 |⇠̂(p0)� ⇠̂(p)|  |'̂(r0, p0)� p0�r0⇠̂(p0)|+r0d |p0� p|,
where we used '̂(0, p) = p in the first step, and the mean value theorem
in the third. But we have already shown that the first term on the right is
tangent at r0 = 0, p0 = p while the second is obviously tangent. Hence,
'̂ is di↵erentiable at (0, p), and D'̂(0, p) is the mapping from R ⇥ E to E
which takes (b, x) to x + b⇠̂(p). Along similar lines, one shows that '̂ is
di↵erentiable everywhere, and then that it is Cp.

The result above, smoothness of '̂, is the basic result on the dependence
of solutions of di↵erential equations on the initial point and on the parame-
ter. It states that “where you are in M after going amount r along the integral
curve with initial point p depends smoothly on both r and p”. Indeed, with-
out such a result it is unlikely that di↵erential equations would be of much
use in physics. Think of M as representing the “space of states of some
physical system”, and of the parameter in the integral curves as represent-
ing “time”. Then the integral curves represent “the evolution of the system
through a succession of physical states with time”. The initial point is “the
state of the system at time zero”. Now, one cannot avoid some small error
in assigning to one’s actual physical system an initial point (for, e.g., meters
can only be read to a certain accuracy). If one is to do physics sensibly, it
had better be true that these small errors in the assignment of initial point
result only in small errors in one’s prediction of what the system will be like
at later times. That is to say, '̂ had better be continuous.
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Let M, p, E, ⇠, U, a, and ' be as above. Let,
for each r in (�a, a), 'r be the mapping from U to
M with action 'r(p) = '(r, p). This 'r, then, is the
mapping which “slides each point of U an amount
r along its integral curve”. Each 'r is a di↵eomor-
phism from U to '[U] (for 'r · '�r and '�r · 'r are
the identity wherever defined). Now let, in addi-
tion, ↵ be some Cp�1 A�field on M. Restricting
↵ to the open submanifold U of M, we obtain an
A�field ↵

⇠
on U. Since 'r is a di↵eomorphism from U to 'r[U], it takes this

↵
⇠

to some A�field on ' � r[U]. Next, fix a point p of U. Then for all su�-



105

ciently small r, p will be in 'r[U]. In particular, the A�field we have defined
on 'r[U] will determine an A�tensor at p. That is to say, we have obtained
for each su�ciently small r, an A�tensor at p, which we denote ↵0(r). We
can regard this ↵0, then, as a curve in the Banachable space of A�tensors
at p. [Intuitively, we “drag our original A�field ↵ along by ⇠, continually
evaluating at p during the dragging, thus obtaining a one-parameter family
of A�tensors at p”.] Note, e.g., that ↵0(0) = ↵(p) (since '0 is the identity),
i.e., our curve has initial point which is just the value of the original A�field
at p. Since ' is Cp, this curve is also Cp.
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A-tensors at p (Banachable) We now claim: The tangent vector to this curve
↵0 at 0 is precisely L⇠↵, evaluated at p. That is to
say, L⇠↵ at p is just “minus the rate of change of ↵
as it is dragged along by ⇠ and evaluated at p”. To
prove this claim, one again passes to a chart. Let
us suppose for a moment that one could manage to
find a chart, containing p, in which the component
⇠̂ of ⇠ is constant, say ⇠0 (in E). Then, with respect
to this chart, the component of L⇠↵ at p would be
just D ↵̂(⇠0) (since other term in the definition of the Lie derivative involves
D⇠̂, which here vanishes: x is the point of E corresponding to p via our
chart). In terms of this chart, however, our curve in the tensor space A is
just ↵0(r) = ↵̂(x � r⇠0) (for, in this chart, ⇠̂, is constant, whence its integral
curves are straight lines). Thus, we have in this case that the component of
the tangent to the curve ↵0 is precisely the component of L⇠↵ at p, i.e., we
have that our claim is true.
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There remains, therefore, only to show that there exists a chart containing
p with respect to which ⇠̂ has constant component. We proceed as follows.
First, choose any chart, U, , containing p, and let ⇠̂ be the component of
⇠. Next, choose, a subspace F of E complementary to the vector ⇠0 = ⇠̂(x).
We introduce a mapping ⇣ from  [U] to E as follows: For x0 in  U set
⇣(x0) = y0 + a⇠0, where y0 is the point of  [U] at which the integral curve
through x0 meets x + F, and a is the parameter-di↵erence along this curve
from y0 to x0. [By choosing U su�ciently small, this mapping will be well-
defined.] Thus, for example, ⇣(x) = x. This is a Cp mapping with Cp inverse
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(by smoothness of ' and the inverse function theorem). Now set  0 = ⇣ ·  .
Then we obtain a chart on M with respect to which the component of ⇠
is constant (since, in terms of this new chart, the integral curves of ⇠ are
“straight lines”, by construction).

We conclude, therefore, that L⇠↵ can be interpreted as the operation of
“taking the rate of change of the field at each point under the ‘sliding along’
induced by motion along ⇠”. It is, for example, obvious from this interpre-
tation that the Lie derivative of a natural tensor is zero, since natural tensors
are invariant under di↵eomorphisms. The other properties of Lie derivatives
can be seen in a similar way.



22. Exterior Derivatives

We now consider the second “derivative-like notion” on a manifold. It turns
out that the exterior derivative is applicable to only certain types of fields.
We begin, therefore, with the study of these fields and their algebra.

Let E be any Banach space. Let n be any non-negative integer, and let
� be the following natural element of the tensor space L(L(E, . . . , E;R);
L(E, . . . , E;R)) (with n E’s on each side): For  in L(E, . . . , E;R), �() is
that element of L(E, . . . , E;R) whose action on x1, . . . , xn in E is
�()(x1, . . . , xn) = (1/n!)⌃(�1)s(xi, . . . , x j), where the sum extends over
all n! permutations of the vectors x1, . . . , xn, where xi, . . . , x j is that permu-
tation, and where s has the value +1 if the permutation is even and -1 if that
permutation is odd. [For n = 0,� is the identity.]
Example. Set n = 2. Then n! = 2, and there are just two permutations of
x1, x2, namely that which sends this to x1, x2 (even), and that to x2, x1, (odd).
Hence, for  in L(E, E; R), �() has action �()(x1, x2) = (1/2)((x1, x2) �
(x2, x1)).
Example. Set n = 3. Then�()(x1, x2, x3) = (1/6)((x1, x2, x3)+(x2, x3, x1)+
(x3, x1, x2)� (x2, x1, x3)� (x3, x2, x1)� (x1, x3, x2)). This � will be called
the antisymmetrizer, and its action that of taking the antisymmetric part.

We next claim that this � has the following property: � · � = �, i.e., the
antisymmetric part of antisymmetric part is the antisymmetric part. To prove
this, let  be in L(E, . . . , E;R). Then �(�())(x1, . . . , xn) = (1/n!)⌃(�1)s

�()(xi, . . . , x j) = (1/n!)⌃(�1)s[(1/n!)⌃(�1)s0(xi0 , . . . , x j0 )], in an obvious
notation, where we have used the definition twice. The double sum on the
right consists of (n!)2 terms, each of which is (1/n!)2 times plus or mi-
nus  applied to some permutation of x1, . . . , xn, plus if that permutation
is even, minus if odd. But there are only n! permutations of x1, . . . , xn. Thus,
each permutation occurs (n!) times in this sum. Combining the terms corre-
sponding to the same permutation, we obtain (1/n!)2 ⌃(�1)s(xi, . . . , x j)(n!),
where the sum is over permutations, and where the last n! arises because n!
terms of the original sum yield a single term of this one. But this last is pre-
cisely�()(x1, . . . , xn. Thus, we have�(�())(x1, . . . , xn) = �()(x1, . . . , xn),
whence since the x’s and  are arbitrary, we have � · � = �. [This argument
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is much easier than it looks. One should try it explicitly, e.g., for n = 2.]
An element of L(E, . . . , E;R), (nE’s),  is called an n�form if �() =

. [A 0�form is a number.] For example, every element of L(E;R) is a
1�form. From the result of the previous paragraph we have: for any  in
L(E, . . . , E;R), �() is an n�form (for �(�()) = �()). We also have the
following property of n�forms: For  an n�form, x � 1, . . . , xn in E, and
xi, . . . , x j a permutation of these, (x1, . . . , xn) = (�1)s(xi, . . . , x j), where s
is +1 if xi, . . . , x j is an even permutation of x1, . . . , xn, and -1 if odd. [Proof:
This is immediate from the definition of �, for precisely the same terms
appear in �()(x1, . . . , xn) as in �()(xi, . . . , x j), although all the terms of the
latter will di↵er in sign from those of the former if s = �1.]

Our concern, for the moment, is the algebra of these n�form (a sub-
ject usually called exterior algebra). We next introduce a certain product
between these forms. Fix non-negative integers n and n! and let ⌧ be the fol-
lowing natural element of L(L(E, . . . , E;R),L(E, . . . , E;R);L(E, . . . , ER))
(with n, n0 and n+n0 E’s, respectively): For  inL(E, . . . , E;R) (n E’s) and 0
inL(E, . . . , E;R) (n0 E’s), let ⌧(, ) be that element ofL(E, . . . , E;R) (n+n0
E’s) with ⌧(, 0)(x1, . . . , xn+n0 ) = (x1, . . . , xn)0(xn+1, . . . , xn+n0 ). Thus, ⌧
simply “takes the product of the multilinear mappings” in the natural way.
Of course, if  and 0 happen to be n� and n0�forms, respectively, it will not
in general be true that ⌧(, 0) is an n + n0)�form. [For example, let  and
0 be nonzero 1�forms. Then ⌧(, 0)(x1, x2) = (x1)0(x2), which will not
be equal to -⌧(, 0)(x2, x1), whence ⌧(, 0) will not be a 2�form.] We can,
however, obtain an (n + n0)�form by applying �. Thus: for  and 0 n� and
n0�forms, respectively, the (n + n0)�form �(⌧(, 0)) is written  ^ 0 and is
called the wedge product of  and 0. [For either n or n0 zero, one multiples
the form by the number.]

We have now defined forms, together with a product operation on them.
We wish next to obtain properties, of which there are three. First, we have
that the wedge product is linear in each factor, i.e., (+)^0 = ^0+^0
and ^ (0 + 0) = ^ 0 + ^ 0, where  and  are n�forms and 0 and 0 are
n0�forms. These facts, together with the fact that the sum of two n�forms is
an n�form, are all immediate, since everything in sight linear. Second, we
have; For , 0, and 00, n�, n0�, and n00�forms, respectively, ( ^ 0) ^ 00 =
^ (0 ^00) (each side an (n+n0+n00)�form). [Proof: First note that, for any
 and 0, � ·⌧(�(), 0) = � ·⌧(, 0), for, applying both sides to (x1, . . . , xn+n)
the innermost “�“ on the left will antisymmetrize over the first n “x’s”
in each term, which is unnecessary, since the outermost “�” already anti-
symmetrizes over all “x’s”. Next, note that ⌧(⌧(, 0), 00) = ⌧(, ⌧(0, 00)),
which is immediate from the definition (applying to x1, . . . , xn+n0+n00 ,  will
get the first n x’s, 0 the next n0, and 00 the last n00, using either side of
the equation). We now have ( ^ 0) ^ 00 = � · ⌧(� · ⌧(, 0), 00)) =
� · ⌧(⌧(, 0, 00) = � · ⌧(, ⌧(0, 00)) = � · ⌧(,� · ⌧(0, 00)) =  ^ (0 ^ 00),
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where we used definitions in the first and fifth steps, our first observation
above in the second and fourth, and our our second observation in the third.]
Thus, the wedge product is associative. Finally, we claim a sort of commu-
tativity: For  and 0 n� and n0�forms, respectively,  ^ 0 = (�1)nn00 ^ .
[Proof: We have ⌧(, 0)(x1, . . . , xn+n0 ) = (x1, . . . , xn)0(xn+1, . . . , xn+n0 ), and
⌧(0, )(x1, . . . , xn+n0 ) = 0(x1, . . . , x0n)(xn0+1, . . . , xn0+n) = (xn0+1, . . . , nn0+n0 )
0(x1, . . . , x0n). The order of the x’s in the expression on the right in the sec-
ond formula is an odd permutation of that in the first formula if and only if
both n and n0 are odd. Hence, �(⌧(, 0)) = (�1)nn0�(⌧(0, )).]

This, then, is the set-up: We have n�forms, and on them a bilinear, as-
sociative, and “more or less commutative” product. This algebra in tensor
spaces goes over immediately to fields on a manifold M. Thus, an n�form
(field) on M is an L(E, . . . , E;R)�field whose component with respect to
any chart at any point is an n�form. Since the wedge product is a natural op-
eration, one can take the wedge product of n�forms on M. Since our three
properties hold pointwise, they hold for the fields.

Let M be a Cp (p � 2) manifold based on Banach space E. The exterior
derivative, which we now define, will be applicable only to (Cp�1) forms
on M. Let, then,  be a Cp�1 n�form on M. Passing to a chart, we have
an open subset O of E, and a Cp�1 mapping ̂ from O to the tensor space
L(E, . . . , E;R), where, for each x,�(̂(x)) = ̂(x) (i.e., where each ̂(x) is an
n�form in our tensor space). Now fix x in O, and consider D̂(x), an element
of L(E;L(E, . . . , E;R)).

We next note that there is a natural isomorphism fromL(E;L(E, . . . , E;R))
(n E’s on the right) to L(E, . . . , E;R) (n + 1 E’s), namely, that which sends
⌧ in the former to that element of the latter which acting on x1, . . . , xn+1 in
E, produces the real number ⌧(x1)(x2, . . . , xn+1). In what follows, action of
this isomorphism will be assumed implicitly when appropriate. Thus, in
particular, we may regard D̂(x) as an element of L(E, . . . , E;R) (n+ 1 E’s).
Hence, applying the antisymmetrizer, �(D̂(x) is an n + 1)�form. We now
claim that, in fact, this construction yields a tensor at the point p of M. That
is, let U, and U0, 0 be two charts, with p in U \ U0. Then, denoting
by ̂ and ̂0 the respective components of , we have that, for x1, . . . , xn in
E, ̂0(x0)(◆(x1. . . . , ◆(xn)) = ̂(x)(x1, . . . , xn), where x =  (p), x0 =  0(p),
and where ◆ = D( 0 ·  �1)(x). Taking the derivative of each side of this
equation (with respect to x), and applying to an arbitrary vector y in E,
we have D̂0(x0)(◆(y))(◆(x1), . . . , ◆(xn)) + ̂0(x0)(D◆(y)(x1), . . . , ◆(xn)) + . . . +
̂0(x0)(◆(x1), . . . ,D◆(y)(xn)) = D̂(x)(y)(x1, . . . , xn). Now apply, to each side
of this equation, the antisymmetrizer (over the (n + 1) vectors y, x1, . . . , xn).
Then all the terms except the first on the left vanish (for, e.g., the second
term, we have D◆(y)(x1) = D◆(x1)(y), by symmetry of mixed partials, while,
in the sum resulting from application of the antisymmetrier, for each contain-
ing D◆(y)(x1) there will be another term identical except for sign but with this



110 22.

replaced by D◆(x1)(y). Hence, the terms will all cancel in pairs.) Thus, we
obtain �(D̂0(x0))(◆(y), ◆(x1), . . . , ◆(xn)) = �(D̂(x))(y, x1, . . . , xn). But this is
precisely the statement that (�(D̂0(x0)); U0, 0) ⇡ (�(D̂(x)); U, ). Thus,
we obtain an (n + 1)�form at p.

Repeating the above at each point of M, we conclude: Given a Cp�1

n�form (failed) on M, we obtain as above a Cp�2 (n+ 1)�form (field on M).
This latter is called the exterior derivative of , written d .
Example. Let n = 0. The 0�form  is just a scalar field. The instruc-
tions above read in this case: The exterior derivative d is that 1�form (i.e.,
L(E;R)�field such that, passing to a chart and letting y in E be arbitrary,
cd (x)(y) = D̂(x)(y) (antisymmetrization being unnecessary for 1�forms).
But the right side of the above is precisely the directional derivative of 
in the y�direction. That is to say, d  is what one in elementary calculus
calls the gradient. We conclude: On 0�forms, the exterior derivative is the
gradient.
Example. Let n = 1. Then, for  a 1�form on M, the exterior derivative has
the following expression in terms of a chart: (d̂(x))(y, x1) = D̂(x)(y)(x1) �
D̂(x)(x1)(y)). That is to say, one takes “half the derivative of the x1�compo-
nent of ̂ in the y�direction minus half the derivative of the y�component of
̂ in the x1�direction”. These instructions will be recognized as those which,
in elementary calculus, yield the curl. On the 1�forms, therefore, the exterior
derivative is the curl.

On higher forms, the exterior derivative is a sort of “generalized curl”.
As usual, we now want to determine the various properties of the exterior

derivatives. There are four. First, we have: For  and � n�forms, d( + �) +
d + d�. Second: For  and 0 n� and n0�forms, respectively, d( ^ 0) =
d^0+ (�1)n^d0. This is a sort of “Leibniz rule”. Note that this equation
makes sense, each side being an (n+n0+1)�form. [Proof: In terms of a chart,
the left side, applied to y, x1, . . . , xn+n0 , is �(D(̂(x1, . . . , xn) ̂0(xn+1, . . . ,
xn+n0 ))(y)) = �(D̂(y)(x1, . . . , xn) ̂0(xn+1, . . . , xn+n0 )) + �(̂(x1 . . . , xn)
D̂0(y)(xn, . . . , xn+n0 )). But the two terms on the right in this formula are the
chart-representations of the two terms on the right in our claimed equation.]
Example. Let n = 0, n0 = 1. Then  is a scalar field, 0 a 1�form, and our
property above becomes d(0) = d ^ 0 + d0. This will be recognized
as a formula from elementary vector calculus: The curl of a function times
a vector is given by the gradient of the function cross the vector plus the
function times the curl of the vector.

The third property is this: For any n�form , dd = 0). [Proof: In terms
of a chart, the left side, applied to z, y, x1, . . . , xn, is�D(D̂(y))(z)(x1, . . . , xn) =
�(DD̂(y)(z)(x1, . . . , xn)), where the antisymmetrizer is over z, y, x1, . . . , xn.
Since mixed partial are symmetric, the antisymmetrizer annihilates.]
Example. Set n = 0 in the last property. Then, in elementary calculus
terminology, we have: The curl of the gradient of a scalar field vanishes.
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This, of course, is true.
The final property relates Lie and exterior derivatives. For this property,

we need a bit of notation. For xi an E�tensor and  an n�form, we write
⇠ ·  for the (n� 1)�form whose action on x1, . . . , xn�1 is (⇠ · )(x1, . . . , xn1 ) =
(⇠, x1, . . . , xn1 ). Similarly for fields. [This, of course, is the action of a
natural operation.] Thus, for example, we have ⇠ · (⇠ · ) = 0. The final
property is this: For ⇠ an E�field and  and n�form (field), (n+1)⇠·d�L⇠+
n d(⇠ · ) = 0. [Note that this is well-defined, each term on the left being an
n�form.] [Proof: Passing to a chart and applying to x1, . . . , xn, ⇠ ·d becomes
�(D̂(⇠̂)(x1, . . . , xn)) where the antisymmetrizer is over x̂i, x1, . . . , xn; L⇠
becomes D̂(⇠̂(x1, . . . , xn) + ̂(D⇠̂(x1, . . . , xn)) + . . . + ̂(x1, . . . ,D⇠̂(xn)); and
d(⇠·) becomes�(D(̂(⇠̂, x2, . . . , xn))(x1)), where the antisymmetrizer is over
x1, . . . , xn. Expanding the antisymmetrizer in all three expressions, and the
last expression using the Leibnitz rule, one sees that all the terms in the
claimed combination cancel.]
Example. Setting n = 0, our last property becomes ⇠ · d � L⇠ = 0 for  a
0�form. But this formula is true, for each of the two terms on the left has
been seen to be the directional derivative of  in the ⇠�direction.

In the finite-dimensional case, the last property above provides a con-
venient way of defining the exterior derivative, without reference to charts.
Rewrite the the formula of that property in the form ⇠ · d = 1/(n + 1)L⇠ �
n/(n + 1) d(⇠ · ). Then, for n = 0, the right side is known (once one has Lie
derivatives), and so this formula can be used to define the exterior deriva-
tive of 0�form. Once exterior derivatives have been defined on forms up to
(n � 1), the right side of this formula, for  an n�form, is known, whence
this formula can be used to define the exterior derivative of an n�form. By
induction, then, one obtains the definition of exterior derivative on any form.
A similar program could be carried out in the infinite-dimensional case, but,
as usual, additional complications arise from the feature that manifolds may
not admit non-trivial fields globally.
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23. Derivative Operators

We come, finally, to the third “type of derivative”.
Fix a Cp (p � 2) manifold M based on Banach space E. Fix a point

p of M. Consider now pairs, (�; U, ), where U, is a chart containing p,
and � is an element of L(E, E; E) which is symmetric (i.e., which satisfies,
for any y, y0 in E, �(y, y0) = �(y0, y)). Given two such, we write (�; U, ) ⇡
(�0; U0, 0) provided the following equation holds: For any vectors y and z
in E, �0(◆(y), ◆(z)) = ◆(�(y, z)) + D◆(x)(y, z), where, as usual, ◆ = D( 0 ·  �1),
and x =  (p). Each side of this equation is an element of E. it should
be noted that this equation is di↵erent from the corresponding equation for
an L(E, E; E) tensor at p: Indeed, were the second term on the right above
omitted, we would have precisely the tensor relation. The things we are
now defining are “geometrical objects” which are somewhat like, but not
precisely the same as, tensors.

We claim that “⇡” is an equivalence relation. Clearly, we have (�; U, ) ⇡
(�; U, ). Suppose next that (�; U, ) ⇡ (�0; U0, 0). Then we have
�0(◆(y), ◆(z)) = ◆(�(y, z)) + D◆(x)(y, z), from which it follows, we claim that
�(◆�1(y), ◆�1(z)) = ◆�1(�(y, z) + D(◆�1)(x0)(y, z), [Proof: Expand D(◆�1 in the
second formula, and replace y by ◆(y) and z by ◆(z).] But this second for-
mula is precisely the statement that (�0; U0, 0) ⇡ (�; U, ). Finally, that
(�; U, ) ⇡ (�0; U0, 0) and (�0; U0, 0) ⇡ (�00; U00, 00) implies (�; U, ) ⇡
(�00; U00, 00) is, similarly, an easy exercise in algebra.

An equivalence class of such pairs is called a connection at p. A con-
nection field on M is a mapping which associates with each point p of M
a connected at p. The component of a connection field with respect to a
chart is the corresponding mapping from O =  [U], an open subset of E, to
L(E, E; E). A connection field is said to be Cp�2 if its component is Cp�2 for
every admissible chart. [Note that we here go from p all the way down to
(p�2). The reason is that “D◆”, the second derivative of the chart-mappings,
appears in the formula for component-change under chart-change.] A Cp�2

connection field on M is normally called a derivative operator on M.
The interest in the notion of a derivative operator stems from the feature

that such an operator permits one to take the derivative of an arbitrary tensor
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field on M, again obtaining a tensor field. We next see how this comes about.
Let ↵ be a Cp�1 A�field on M, and fix a derivative operator on M. Choose
a chart, and let ↵̂ and �̂ be the components of ↵ and the derivative operator,
respectively. Now let x be any point of O =  [U], and y any vector in E,
and consider the free A�tensor D↵̂(x)(y) � (b�(x)(y), ↵̂(x)), where  is the
element of L(L(E; E), A; A) defined at the top of page 92. For each y in
E, the above is a free A�tensor, clearly linear in y. Hence, the above can
be regarded as a mapping from E to A, i.e., as a free L(E; A)�tensor. Now
change the chart. We have the formulae for how ̂ and �̂ change, and so
can write down how the free L(E; A)�tensor above changes. We claim: It
behaves like a L(E; A)�tensor at p. The calculation is identical with that for
Lie derivatives: One picks up a “D◆” term from “D↵̂”, and also a “D◆” term
from b�0 (by the formula for the component-change under chart-change for
a connection). The expression above has been adjusted so that these terms
cancel. Thus, we obtain an L(E; A)�tensor at p, which we write r↵(p).
Repeating for each point of M, we obtain a Cp�2 L(E; A)� field on M, r↵.
This field is called the derivative of ↵ (with respect to our given derivative
operator).
Example. Let ↵ be a scalar field. Then r↵ must be a L(E;R)�field, i.e., a

1�form. In this case, the “�term” above vanishes, and we have (cr↵)(y) =
D↵̂(y). But this is precisely the formula for the exterior derivative. Hence,
the result of application of a derivative operator to a scalar field is to take its
exterior derivative.

Thus, the derivative, r↵, of a Cp�1 A�field ↵ is a Cp�2 L(E; A)�field.
This is of course what one might have expected: The “E” refers to the pos-
sible directions in M along which the derivative might be taken.

We obtain a few properties of derivatives via derivative operators. Clearly,
r(↵ + ↵0) = r↵ + r↵0. Next, let ⌧ be a natural tensor field. Then, for
its component with respect to a chart, ⌧̂ is a constant mapping. Hence,
D⌧̂ = 0. Furthermore, as we saw in Sect. 19, (�̂, ⌧̂) = 0 in this case. from
the formula above for the derivative, therefore, we conclude that r⌧ = 0.
The derivative of a natural field vanishes. We next note that, for ⇢ any
L(A1, . . . , An; B)�field, and ↵1, . . . ,↵n A1, . . . , An�fields, we have
r(⇢(↵1, . . . ,↵n)) = (r⇢)(↵1, . . . ,↵n)+ ⇢(r↵1, . . . ,↵n)+ . . .+ ⇢(↵1, . . . ,r↵n).
it follows immediately that the derivative satisfies the Leibnitz rule for any
natural operation on tensor fields. Finally, we show that “mixed deriva-
tives commute”, at least when applied to scalar fields. Let f be a scalar
field. Then rr f is a L(E, E; R)�field. We claim that this rr f is symmet-
ric (i.e., rr f (x1, x2) = rr f (x2, x1)). Indeed, choosing a chart, we have
cr f (x1) = D f̂ (x1), whence drr f (x1, x2) = DD f̂ (x1, x2) � D f (b�(x1, x2)). But
the first term is symmetric in x1 and x2 since mixed partials commute, while
the second is symmetric sinceb� is.

Again, in the finite-dimensional case one normally defines derivatives
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operators by their properties, rather than via charts, a method which seems
to be more awkward in the infinite-dimensional case.

Derivative operators are a rather “brute force” way of making available a
derivative. One simply introduces what one needs (a connection field) to be
able to eliminate “D◆�terms” when taking component-derivatives. As one
might expect, then, derivative operators will normally not be very useful un-
less one arises naturally from what one has available to him already. It turns
out that there is one situation in which such an operator does appear natu-
rally: in the presence of a metric. Thus, it is normally when one deals with
manifolds-with-metrics, i.e., with what is called Riemannian geometry, that
derivative operators play the important role. In a similar way, Lie derivatives
are not normally very useful unless one happens to have some natural vector
field around.

Finally, we remark that there are numerous relationships between Lie
derivatives, exterior derivatives, and derivatives via derivative operators. In
particular, the former two can be expressed in terms of the latter.
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24. Derivatives: Summary

The table below summarizes selected features of the three types of derivative
we have discussed.

Name Lie Derivative Exterior Derivative Derivative

Applies to Any field ↵ Forms only Any field ↵

Requires E�field ⇠ Nothing Derivative
operator r

Symbol L⇠↵ d↵ r↵

Properties Additive
Leibnitz

Additive
“Leibnitz”

Additive
Leibnitz

On Natural Fields Gives zero — Gives zero
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25. Partial Di↵erential Equations

A vector field on a manifold has unique maximal integral curves. As we
have seen in Sect. 20, this fact leads, in the finite-dimensional case, to a
simple, geometrical statement of the existence and uniqueness of solutions
of systems of ordinary di↵erential equations. But the fact is true also in the
infinite-dimensional case. It is natural to ask, therefore, whether or not one
can, in a similar way, obtain a “geometrization” of certain partial di↵erential
equations. It is our goal in this section to look briefly, by means of an exam-
ple, at this question. Our conclusion, essentially, will be that naive ideas do
not work.

equilibrium position 

  f (x,t)

 x

 p p

time t  
We shall be concerned

with mappings from R2 to R,
i.e., with real-valued functions
of two real variables. We de-
note such a function f , and the
variables t and x. The di↵erential equation whose solutions we wish to study
is this: (@t)2 f = (@x)2 f , where “@t” and “@x” denote the partial derivatives
with respect to t and x, respectively. [This is the equation, e.g., for the prop-
agation of waves on a tightly stretched string. Then “x” denotes position
along the string, “t” denotes the time, and “ f (x, t)” denotes the displacement
of the string from its equilibrium position at location x and time t.] This
is perhaps the simplest partial di↵erential equation one could invent to test
our program: It is linear, hyperbolic, of second order, and in two variables.
One of the nice features of this particular equation is that it is easy to write
down its general solution. Indeed, let p and q each be functions of one real
variable.

equilibrium position 

  f (x,t)

  P(x)

 p ptime t  

Then, clearly, the function f
with action f (x, t) = p(x + t)
is a solution of our equation,
as is the function f with action
f (x, t) = q(x� t). By linearity, their sum, p(x+ t)+q(x� t), is also a solution.
[Physically, a solution of the form p(x+t) corresponds to a wave pulse on the
string, of shape described by p, which moves to the left along the string with-
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out changing its shape. Similarly, a solution of the form q(x� t) corresponds
to a pulse moving to the right.] It turns out that, in fact, the most general
solution of our partial di↵erential equation is of the form p(x + t) + q(x � t).
[A statement which is true, whose proof we omit, but which, as we shall see
shortly, could very easily be proven after completion of the program we are
here discussing.]

equilibrium position 

  f (x,t)
  P(x)

 q

  p '

time t  

  K(y )
 p

  ψ '(p)
  ξ(γ (r ))

  γ (r )

γ

ξ

 p

ϕ

 U

 U

 O

 E

 ψ
−1[O]

 M

The first step in the geometriza-
tion of an ordinary di↵erential
equation was to cast it into the lan-
guage of manifolds. We now wish
to do the same thing for the present
equation. To this end, let each of E1
and E2 be a “space” (eventually, it
is hoped, a Banach space) of func-
tions of one real variable, and let E
denote their product, E = E1 ⇥ E2.
Consider now a solution f of our partial di↵erential equation. For each
real number t0, let gt0 be the function with action gt0(x, t) = f (x, t0) and
ht0 the function with action ht0 (x) = (@t f )(x, t0). [Physically, gt0 describes
the “shape” of the string at time t0, and ht0 the “velocity of motion up or
down of each segment of the string at time t0”.] The pair (gt0 , ht0 ), then, as
a pair of functions of one real variable, should define a point of E1 ⇥ E2,
i.e., a point of E. Since this is the case for each real number t0, we obtain
a mapping � from the reals to E, with action �(t0) = (gt0 , ht0 ). That is, we
obtain a curve in E. Of course, given this curve in E, the original solution
f of the partial di↵erential equation can be recovered immediately, for, e.g.,
f (x, t) is then the first entry of �(t), evaluated at x. In this way, then, we
can describe solutions of our partial di↵erential equation by certain curves.
[Physically, E is the space of “possible physical states of the string”, and the
curve describes “the evolution of the string with time through a succession
of physical states”.]

The general idea is this. We wish to introduce a certain E�field on the
(eventually, a manifold) E, so constructed that its integral curves are pre-
cisely the curves, obtained above, corresponding to solutions of our partial
di↵erential equation. There is a simple check one can do to see if this is even
close to being possible: One can determine whether a single (e.g., initial)
point on such a curve determines the curve (i.e., the solution of our equation)
uniquely. That is, we ask: Is it true that, given any (g, h) in E, there is one and
only one solution of our partial di↵erential equation, f with g(x) = f (x, 0)
and h(x) = (@t f )(x, 0). In fact, the answer is yes, and the unique solution is
given by f (x, t) = 1/2(g(x+t)+g(x�t))+1/2(h(x+t)�h(x�t)). [The right side
is indeed a solution, as we have already observed. Furthermore, as one easily
checks directly, the f defined by this equation indeed satisfies g(x) = f (x, 0)
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and h(x) = (@t f )(x, 0). That this is the unique f satisfying these conditions
is also clear, since every solution f is of the form p(x + t) + q(x � t).] Thus,
our “solution curves” do not cross.

We now have our “space” E, and our curves, and we next wish to find
a vector field whose integral curves are these curves. But this is quite easy:
We simply take the tangent vectors to our curves. Thus, let f be a solution
of our partial di↵erential equation, � the corresponding curve in E, and let
�(0) = (g, h). Then � has action �(t) = (gt, ht), with gt(x) = f (x, t) and
ht(x) = (@t f )(x, t), whence the tangent vector to � at zero is (ĝ, ĥ), where
ĝ(x) = (@t f )(x, 0), and ĥ(x) = (@t)2 f (x, 0). In other words, g = h and h =
g00 (where prime denotes derivative with respect to the single variable, x
on which g depends) this last equation comes from the partial di↵erential
equation on f ). This little calculation of the tangent vector also tells us what
the vector field should be. Let ⇠ be the mapping from E to E with action
⇠(g, h) = (h, g00). [Note what happened here: The tangent vector depended
only on (g, h), so it could be represented by some vector field.] Then the
integral curves of this � will be precisely the solution curves of our partial
di↵erential equation.

The above discussion is essentially only motivation, for we have omitted
the “detail” of specifying precisely which functions are permitted to be in
the space E. If, however, this single point could be cleared up, we would
have a geometrization of this particular (and then, presumably, also of many
similar) partial di↵erential equations. We now concern ourselves with this
issue of specifying E.

A natural choice might be this. Choose integer p � 0, and let E1 consist
of Cp functions g with lub |g|+ lub |g0|+ . . .+ lub |g(p)| finite, where the norm
is this sum. As we have seen, this E1 is indeed a Banach space. Repeating
for E2, we obtain a Banach space E.

We first observe that, since ⇠ is to be a mapping from E to E, since ⇠
is to have action ⇠(g, h) = (h, g00), it must be true that, for any (g, h) in E,
so is (h, g00). In particular, we must choose p � 2, in order that “g00” make
sense. But even this is not enough, for, having so chosen p, each of h and
g00 must be Cp – in general, the latter will be only Cp�2. One might hope to
get around this problem by, e.g., letting E1 consist of Cp functions and E2
of Cp�2. Then g will be Cp, whence g00 be Cp�2, but this g00 is the second
entry of (h, g00), and functions there need only be Cp�2 (since they are in E2).
This, however, will not work either, for now the “h” in (g, h) will only have
to be Cp�2, whence “h” is not a suitable first entry in (h, g00). We conclude,
therefore, that there seems to be reasonable choices for E1 and E2 as spaces
of functions of finite di↵erentiability class for which our “⇠” will indeed be a
well-defined mapping from E to E. The problem, of course, is that ⇠ “takes
derivatives”, which tends to “push us out of the space in which we began”.

The obvious solution is to pass to C1 functions (for which “take a deriva-
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tive” does not get one out of the space). Suppose, then, that we let E1
consists of C1 functions whose value, the value of whose derivative, etc.s
all bounded. We could not choose on this E1 a norm of the form lub |g| +
lub |g0| + . . . + lub |g(p)|, for some fixed positive p, for then E1 would not
be complete. [As a general rule, completeness fails when restrictions are
imposed on the class of admitted functions which are not suitably incorpo-
rated into the norm.] We could, however, set d(g) = lub |g|/(1 + lub |g|) +
1/2lub |g0|/(1 + lub |g0|) + 1/4lub |g00|/(1 + lub |g00|) + . . ., a measure of the
“size” of g. [The idea of this expression is that each term, without its numer-
ical factor, is less than one, whence the nth term is less than 1/2n, whence the
sum always converges.] This is indeed a metric on our set of C1 functions,
i.e., letting the distance between g and g̃ be d(g � g̃). Furthermore, as one
might expect from the appearance of the formula above, our E1 is complete
under this metric. Our E1 how includes the derivative of each function in it,
and is complete. Unfortunately, we have also now introduced a new prob-
lem: The “d” above is not a norm, for it fails to be true that d(ag) = a d(g)
for a real number. [This E1 is what is called a Frechet space, about which we
shall say slightly more later.] The problem, of course, is all those “1+ lub00’s
in the denominators.

To summarize, we have found so far that Cp functions will not work
for E, because this set of functions does not include the derivative of each
of its elements. Furthermore, C functions with “Cp�norm” will not work
either (although derivatives are not included) because completeness fails.
“Completeness” can be restored for C1 functions, but the result is just a
metric rather than a norm.

Let us try, then, to see if we can find some norm on C1 functions. A
natural candidate would be |g| = a0lub |g|+ a1lub |g0|+ . . . where a0, a1, . . . is
some sequence of positive numbers (zero cannot be allowed, for then com-
pleteness would fail). We must now concern ourselves with convergence of
this infinite sum (a concern that did not arise for “d”). The idea would be
to choose the an to go to zero su�ciently quickly with n that this sum will
converge for every C1 g with each term finite. Unfortunately, none exists.
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Example. Let b0, b1, . . .
be any sequence of positive
numbers. Then there ex-
ists a C1 function g such
that each of lub |g|, lub |g0|,
etc. is finite, but such that
lub |g| � b0, lub |g0| � b1, etc. Indeed, the graph of such a g is zero except
for a sequence of “bumps”, where, in the first bump, the value of |g| exceeds
b0; in the second, the value does not exceed b0 but the value of the derivative
exceeds b1; in the third, the value does not exceed b0 and the value of the
derivative does not exceed b1, but the value of the second derivative exceeds
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b2, etc.
Thus, at least the above method for making a Banach space out of C1

functions seems also to fail. An alternative possibility might be to try to
use only certain C1 functions. After all, one would normally be concerned
in some application only with having a “reasonable large collection” of so-
lutions of one’s equation (even though our remarks on page 119 show that
there are even C2 solutions). One might, therefore, proceed as follows. Fix
positive numbers a0, a1, . . . , and consider the collection of all C1 g such that
a0 lub |g| + a1 lub |g0| + . . . is finite (this sum being the norm).

In this case, there is a constraint on what we can choose for the an: It must
be true that the derivative of an admissible function (by the criterion above)
is also admissible. That is to say, the an must be such that, if a0lub |g| =
a1lub |g0|+ . . . is finite, then a0lub |g0|+ a1lub |g00|+ . . . is also finite. But this
in turn will be true if and only if the sequence of numbers whose nth term
is an/an+1 is bounded. But now we are restricting ourselves essentially to
analytic functions (for, given a function admissible by our criterion, expand
it in Taylor series with remainder, and using boundedness an/an+1, show
that the remainder term goes to zero as the Taylor series is made longer).
It appears, therefore, that one can indeed find a suitable class of analytic
functions. Unfortunately, restriction to analytic functions is too severe for,
(e.g., the physical) applications of our original partial di↵erential equations:
One wants to admit at least more C1 functions than these.

Having now failed in several attempt to find a suitable class of functions
which will form a framework for the geometrization of our partial di↵erential
equation, it may be worthwhile to just list the properties we are looking for.
We seek a collection E of mappings from R to R such that:

1. Linear combinations of functions in E are in E.
2. There is a norm on E which makes it a Banach space.
3. The derivative of any function in E is in E, and “take the derivative “

is a continuous (linear) mapping from E to E.
4. The set E includes a “reasonable number” of functions. Our conclu-

sion is, then, that we have been unsuccessful in finding such a collection.
It seems reasonable, next, to see if one can find some theorem which will

crystallize our failure. We give one example of a result along these lines.
There exists no collection E of mappings from the open interval (0, 1) to R
such that i) E is a Banach space, ii) each function in E is di↵erentiable, its
derivative is in E, and “take the derivative” is a continuous mapping from
E to E, iii) there is at least one function in E which is constant on (1/2, 1)
and which is not constant on (0, 1), and iv) if g is in E and 0  a  1,
then the function ga with action ga(x) = g(2x � a) is in E; furthermore,
for fixed g, this mapping from (0, 1) to E is C1. The proof is quite easy.
Since “take the derivative” is a continuous linear mapping from E to E, we
obtain a corresponding vector field ⇠ on the manifold E. This vector field
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has unique integral curves. Let � be such an integral curve, so, for each
t, �(t) = gt is an element of E. Then the statement that this is an integral
curve is: d/dtgt = g0t. Let g be the function in iii) above. Then the � with
�(t)(x) = g(2x � 1 + 2t) is, by iv), an integral curve of our vector field. Its
initial point, by iii), is a constant function. But an alternative integral curve
is the constant one, �̃(t)(x) = g(2x� 1). By iii), these two integral curves are
di↵erent. This contradiction establishes that no such collection of functions
exists.

It seems, therefore, that either one must abandon the possibility of ex-
pressing partial di↵erential equations geometrically on manifolds, or one
must severely modify the rules. The first alternative would, in my view, be
a severe blow to the potential applications of this subject. As to the sec-
ond alternative, one could imagine at least two possibilities. On the one
hand, one might look for something else (e.g., not even “functions”) which
one could still regard as “solutions” of our partial di↵erential equation, and
which could me made into Banach space. [The situation here is a bit rem-
iniscent of that in Fourier analysis. The subject was a terrible mess until it
was realized that one must work with the “right” set of functions – there,
L2.] One possibility which comes to mind, but which does not perhaps look
too promising, is distributions. Perhaps a less severe notion of “derivative”
needs to be incorporated. On the other hand, one might attempt to redo the
subject of manifolds, basing them instead on topological vector spaces with
less structure than Banach spaces. One possibility would be Frechet spaces
(in which, essentially, the norm is replaced by a metric, but completeness is
maintained). For example, the C1 functions with the “d” of page 122 form
a Frechet space. The problem here is that it is apparently false in Frechet
spaces that vector fields have unique integral curves (for the result of the
previous paragraph fails if i) is replaced by “E is a Frechet space”). Perhaps
there is some other kind of space in which one can work, such that reason-
able classes of functions can be made into such a space, and such that, in
this space, vector fields do have unique integral curves. The result of the
previous paragraph, again, puts severe limitations on the possibilities.

The fact that the program is so successful and elegant for ordinary di↵er-
ential equations, and so appealing for partial, suggests that there should be
some way to make it work.



26. Riemannian Geometry

In this section, we discuss briefly which of the various notions from Rieman-
nian geometry in finite dimensions can be carried over to infinite.

Fix a Banach space E. A metric (on E – not to be confused with “metric”
of “metric space”) is an element g of the tensor space L(E, E;R) satisfying
the following three conditions:

1. The tensor g is positive-definite. That is, for any x, y in E, g(x, y) =
g(y, x).

2. The tensor g is positive-definite. That is, for any nonzero x in E,
g(x, x) > 0

3. The tensor g is invertible. First note that the tensor space L(E, E;R is
naturally isomorphic with L(E;L(E;R); hence, we may (and often shall)
regard g as an element of the latter. We require that there exist a g0 in
L(L(E;R); E) such that g0 · g and g · g0 are the identities on E and L(E; R),
respectively.
Example. Let E be the Banach space of sequences of real numbers, (r1, , r2, . . .),
the sum of the squares of whose entries converges. Let a1, a2, . . .) be a se-
quence of real numbers, and let g have the following action: For x = (r1, . . .)
and y = (s1, . . .) in E, g(x, y) = a1 r1 s1 + a2 r2 s2 + . . .. When is this g a
metric? First note that, in order that g be well-defined, i.e., in order that
the sum on the right converge for every x and y in E, it is necessary and
su�cient that the |ai| be bounded. Then g is automatically symmetric. For
positive-definiteness, it is necessary and su�cient that each ai be positive.
For invertibility, first identity L(E;R) with sequences of reals, so the action
of µ = (q1, q2, . . .) in L(E;R) on x = (r1, r2, . . .) in E is the real number
µ(x) = q1 r1 + q2 r2 + . . .. Then, regarding g as in L(E;L(E;R)), and apply-
ing to x, we have g(x) = (a1 r1, a2 r2, . . .). Clearly, then, its inverse g0 must
have action g0(µ) = (q1/a1, q2/a2, . . .). But this will only be a bounded linear
mapping, indeed, will only be well-defined, provided the 1/ai are bounded,
i.e., provided the ai are bounded away from zero. This, then, is the condition
for invertibility.

In the finite-dimensional case, the third condition above follows from the
first two (i.e., in matrix terms, every finite-dimensional, symmetric, positive-
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definite matrix is invertible). As the example above, shows, this is not so in
infinite dimensions. By the third condition, a metric establishes an isomor-
phism between E and its dual, L(E;R). Indeed, there is a kind of symmetry
between E and its dual in this set-up. For example, g0 can be regarded as an
element of L(L(E;R, L(E;R);R) (namely, sending (µ, ⌫), both in L(E;R)
to µ(g0(⌫)). Then this element of L(L(E;R), L(E;R);R) is also symmetric,
positive-definite, and invertible.

Let E be a Banach space with metric g. For x in E, set {x} = (g(x, x))1/2.
Then this “{ }” is actually a norm on E. [Proof: All the properties are im-
mediate except the triangle inequality. Fix x and y in E. Then, by condition
2, we have that g(x + ay, x + ay) = g(x, x) + ag(y, x) + ag(x, y) + a2g(y, y) =
g(x, x)+2ag(x, y)+a2g(y, y) must be non-negative for every number a, where
we used the first condition in the second step. But this quadratic polynomial
in a can be non-negative only if (g(x, y))2  g(x, x)g(y, y). Now set a = 1 in
the above, to obtain g(x + y, x + y)  g(x, x) + 2(g(x, x)g(y, y))1/2 + g(y, y),
where we used our inequality. Taking the square root of each side, we obtain
the triangle inequality.] We claim that in fact this norm “{ }‘ is equivalent
to the norm “| |“ that comes with the Banach space E. Indeed, we have
{x} = (g(x, x))1/2  (|g| |x| |x|)1/2 = |g|1/2|x|. Suppose next that the reverse
inequality, |x|  a{x}, for some a, were false. Then we could find a se-
quence of vectors in E, x1, x2, . . . such that |xi| = 1, and such that g(xi, xi)
approaches zero. Now, |xi| = |g0(g(xi))|  |g0| |g(xi)|, whence the |g(xi)|,
whence the |g(xi)| must be bounded away from zero. By definition of the
norm of an element (such as g(xi)) of L;R), therefore, there exist vectors
y1, y2, . . . in E such that |yi| = 1 and |g(xi)(yi)| is bounded away from zero.
But |g(xi)(yi)|2 = |g(xi, yi)|2  g(xi, xi)g(yi, yi)  |g| |yi|2g(xi, xi) = |g|g(xi, xi),
while the last expression approaches zero as i approaches infinity. This con-
tradiction establishes that |x|  a{x} for some a. We conclude that our two
norms are equivalent.

A Banach space possessing an equivalent norm which arises from a met-
ric g as above is said to be Hilbertable. We conclude, therefore, that a Ba-
nach space possess a metric if and only if it is Hilbertable. In this case, we
might just as well use the norm “{ }”, which comes from a metric, rather
than the original norm “| |”. A Banach space, endowed with such a norm, is
called a (real) Hilbert space.
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Let E be a Banach space with metric g. Two vectors, x and y, in E will
be said to be orthogonal if g(x, y) = 0. Now let F be any subspace of E.
Denote by F? (“F perp”) the set of all vectors in E which are orthogonal to
every vector in F. We claim, first, that this F? is a subspace of E. Indeed,
F? is clearly a vector subspace, for any linear combination of vectors, each
orthogonal to every vector in F, is itself orthogonal to every vector in F,
by linearity of g. Furthermore, F? is closed. [Proof: Let x1, x2, . . . be in
F?, and let these vectors converge to x. Then, for y in F, we have, since
g(xi, y) = 0 and since lim g(xi, y) = g(lim xi, y), that g(x, y) = 0. Thus, x
is also in F?.] We next claim that, not only is this F? a subspace, but that
it is in fact complementary to F. Fix vector x in E, and set a = glb |x � y|,
where the “glb” is over all y in F, and where we use the norm which comes
from g. Let y1, y2, . . . be vectors in F such that lim |x � yi| = a. We have
the equality |yi � y j|2 = 2|x � yi|2 + 2|x � y j|2 � 4|x � (1/2)(yi + y j)|2, which
follows immediately by expanding each side using linearity of g. For i and j
su�ciently large, each of the first two terms can be made as close as we wish
to 2a2. The last term, however, is greater than or equal to 4a2, by definition
of a. Thus, for i and j su�ciently large, the right side is as small as we
wish. We conclude: The yi form a Cauchy sequence. Let y be the vector
(necessarily in F, since F is closed) to which these yi converge. Then we
have |x� y| = a. We next claim that x� y is in F?. Indeed, for any z in F and
any number b, we have a2  |x � y + bz|2 = |x � y|2 + 2b g(x � y, z) + b2|z|2 =
a2+2b g(x�y, z)+b2 |z|2, where the first inequality follows from the definition
of a and the fact that �y + b z is in F. Subtracting “a2” from each side, we
obtain: 0  2b g(x � y, z) + b2|z|2. But this quadratic-polynomial inequality
in b can hold for all b (as it must) if and only if g(x � y, z) = 0. Thus, x � y
is in F?. But now we have x = y + (x � y), an expression for x as the sum of
one vector in F and another in F?. That is, F and F? are complementary.
[Its is almost immediate from this result that, e.g., F?? = F.]

In particular, the above shows that, if a Banach space admits a metric,
then every subspace of that Banach space split. Since we have seen examples
of Banach spaces having subspaces which do not split, not every Banach
space has a metric.

As usual, we now wish to pass from tensor spaces to fields. Let M be a
Cp (p � 1) manifold based on Banach space E. A metric (field) on M is a
Cp�1 L(E, E;R�field which is symmetric, positive-definite, and invertible.
Then, for example, its inverse g0 is a L(L(E;R); E)�field. Thus, a metric
on M gives a sort of “local distance between nearby points of M” (regarding
the “infinitesimal displacement between nearby points” as being represented
by a tangent vector, and the norm of this vector, defined by g, as the “dis-
tance between these two points”). A metric, then, endows M with a “local
geometry”. There are also various senses in which one obtains a “global
geometry”. We give an example.
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Let M be a Cp (p � 1) manifold based on Banach space E, and let g
be a metric on M. Let � be a curve on M, and let a < b be two numbers
in the interval on which � is defined. Then, for each r in [a, b], �(r) is a
point of M, and the tangent vector to � at r, ⇠r, is a tangent vector at �(r).
Further, g(�(r)) is a L(E, E;R)�tensor at �(r). Hence, g(�(r))(⇠r, ⇠r) is a
non-negative number. Set L =

R
b
a(g(�(r))(⇠r, ⇠r))1/2dr, the definite integral

of one real function of a real variable. This L is called the length of the curve
� from a to b. [Intuitively, one “sums the infinitesimal distances between
successive points along the curve from �(a) to �(b)”.] This definition is a
reasonable one, a remark we may illustrate by the following observation.
Let us reparameterize our curve, i.e., choose a smooth monotonic function
f of one real variable, and set �̂ = � · f . Let a = f (â) and b = f (b̂), so
�̂(â) = �(a) and �̂(b̂) = �(b). Then, we claim, the length of � from a to b is
the same as the length of �̂ from â to b̂. Indeed, we have ⇠̂r̂ = f 0⇠r (where
prime denotes d/dr̂), whence g(�̂(r̂))(⇠̂r̂, ⇠̂r̂) = ( f 0)2g(�(r))(⇠r, ⇠r). Thus, the
integrals defining the length are equal by change of the independent variable.
Geometrically, this is of course what one would expect.

We can now use this notion of the length of a curve to define a “global
distance function” on a manifold with metric. Let M, p, E, and g be as usual,
and suppose further that M is connected, i.e., has the property that any two
of its points may be joined by some curve. Given any two points, p and p0,
of M, set d(p, p) the greatest lower bound of the length of curves joining p
and p0. This “d”, we claim, is a metric. [Proof: That d(p, p0) � 0, and that
d(p, p0) = d(p0, p), are immediate. That d(p, p0) + d(p0, p00) � d(p, p00) is
also clear, since one curve from p to p00 is obtained by first tracing a curve
from p to p0, and then from p0 to p00. We have only to show, therefore, that
d(p, p0) = 0 implies p = p0. Introducing a chart containing p, it su�ces to
do this within the Banach space E. Since, furthermore, the metric field is
continuous, it su�ces to consider the case when the metric is constant (for
one can always find a “lower bound metric” in some neighborhood of p).
Thus, we must show: For E a Banach space, g a metric on E, and p and p0
distinct points of E, d(p, p0) > 0. Let f be the function on E which assigns to
x in E f (x) = (g(x� p, x� p))1/2. Then, along any curve from p, f increases
more slowly than the length of the curve increases (since the rate of change
of f is measured by the norm of the component of the tangent vector in the
direction away from p while the rate of change of length is measured by the
norm of the tangent vector). Hence, d(p, p0) � (g(p0 � p, p0 � p))1/2.] Thus,
a manifold-with-metric has the structure of a metric space.

The discussion above is a brief summary of “the geometry of manifold-
with-metrics”. We conclude this section with a discussion of metrics from a
more algebraic point of view.

One of the most important and useful properties of a metric (field) is
that it leads to a unique derivative operator. More precisely, we have: Let
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M be a Cp (p � 2) manifold based on Banach space E, with Cp�1 metric
g. Then there is one and only one derivative operator r on M satisfying
rg = 0. The proof is computational and completely straightforward: One
writes down the answer. Let U, be a chart, and ĝ the component of g.
For u, v, and w in E, consider 1/2(Dĝ(u)(v,w) + Dĝ(v)(u,w) � Dĝ(w)(u, v)).
Fixing u and v, this assigns, to each w in E, a real number, i.e., is an element
of L(E;R). Applying ĝ0 to this mapping, therefore, we obtain an element of
E, an element which depends, of course, on our choices of u and v. Write this
element �(u, v), so � is an element of L(E, E; E). We now claim: This � is a
connection. [Sketch of proof: Change the chart. We know the change in the
component of g, and hence can compute, from the formula above, the change
in �. The result is precisely the formula for the change in the component of
a connection under chart-change.] Thus, we obtain a derivative operator on
M. This r further satisfies rg = 0, for this equation, written in terms of a
chart, is precisely the formula above used to define r.

Thus, once one has a manifold with metric, one automatically has a
derivative operator, and hence write di↵erential equations on tensor fields
on M.

We remark that, just as in the finite-dimensional case, one can define
the curvature tensor and obtain its symmetries (although one has neither the
Ricci tensor, the conformal tensor, nor the scalar curvature, since these re-
quire a “contraction” which is not available in infinite dimensions), geodesics,
etc.
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Appendix

Problems

1. Find an example of Banach space E, vector subspace A of vector space
E, such that A is finite co-dimension but not closed.

2. Let E be a Banach space. Show that every finite-dimensional subspace
of vector space E is closed.

3. Find an example of a vector space, and two norms thereon each of
which makes this vector space a Banach space, such that these norms are not
equivalent.

4. Show that a subspace of a Banach space containing a ball is the entire
Banach space.

5. Let E be a Banach space. Find all subspaces of E having a unique
complementary subspace.

6. By a basis for Banach space E, we mean a sequence x1, x2, . . . of
vectors in E such that, given any vector x in E, there is one and only one
sequence a1, a2, . . . of real numbers such that the sequence in E whose nth

term is yn = a1 x1 + . . . + an xn converges to x. [That is, every element of E
can be written as an “infinite linear combination” of the xi.] Show that our
examples of Banach spaces have bases. Find an example of Banach space
without basis.

7. Find a vector space having no norm which makes it a Banach space.
8. Let E and F be Banach spaces, and let T be a linear mapping (of vector

spaces) from E to F. Denote by A the subset of E⇥F consisting of elements
of the form (x,T (x)), with x in E. Prove that A is a vector subspace. Show
that T is bounded if and only if A is closed in E ⇥ F. [Hint: Open mapping
theorem.]

9. Let E consist of all sequences, (r1, r2, . . .) of real numbers with |r2 �
r1| + |r3 � r2| + . . . finite. Let the norm of such a sequence be this sum, plus
|r1|. Prove that this E is a Banach space.

10. Show that a Banach space is finite-dimensional if and only if every
subspace is closed.

11. Define the product of an infinite number of Banach spaces.
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12. Give an example to show that the open mapping theorem is false for
normed vector spaces (i.e., without completeness).

13. Prove that every subspace of the Banach space E2 (page 19) splits.
14. Prove that, if every subspace of E splits and every subspace of F

splits, then every subspace of E ⇥ F splits.
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