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1. Manifolds

The arena on which all the action in di↵erential geometry takes place is a
mathematical object called a manifold. In this section, we shall define man-
ifolds and discuss a few of their properties. A good intuitive understanding
of what a manifold is, as well as what can and cannot be done on a manifold,
is essential for di↵erential geometry.

Roughly speaking, a manifold is a space having the “local smoothness
structure” of Rn. [Rn, or Euclidean n�space, is the set consisting of n�tuples,
(x1, x2, . . . , xn), of real numbers.] The idea, then, is to isolate, from all the
rich structure on Rn, (e.g., its metric structure, its vector-space structure, its
topological structure), that one small bit of structure we call “smoothness.”
[This process of isolating separate structures for individual attention is, of
course, common in mathematics.]

Let M be a set. By an n�chart on M we understand a subset U of M
and a mapping ' : U ! Rn having the following two properties: i) ' in
one-to-one [That is, no two distinct points of U are taken to the same point
of Rn by '.], and ii) The image of U, that is, the subset 0 = '[U] of Rn, is
open in Rn. [Recall that a subset 0 of Rn is said to be open if, for any x � 0,
there is a number ✏ > 0 such that, whenever d(x, y) < ✏, y is also in 0, where
d(x, y) is the usual Euclidean distance in Rn.]
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These charts are the mechanism by which we intend to induce our “local
smoothness structure” on the set M. They are well-suited for the job. A
chart, after all, sets up a correspondence between a set of points U of M and
an (open) set of points 0 of Rn. Thus, a chart defines n real-valued functions
on U. The points of U can be labeled by the values of these n functions.
Since no two distinct points of U have all the same values, such a labeling is

1



2 1. MANIFOLDS

unambiguous. (Charts are sometimes called “coordinate patches.”) To obtain
a manifold, we must lay down enough charts on M, and require that, when
two charts overlap (i.e., when their U’s overlap in M), the corresponding
smoothness structures agree.

Let (U,') and (U0,'0) be two n�charts on the set M. If U and U0 inter-
sect in M, then there is induced on their intersection, U\U0, two smoothness
structures. One is obtained from ' [which defines a one-to-one correspon-
dence between U\U0 and the subset '[U\U0] of Rn], and the other from '0

[which defines a one-to-one correspondence between U \U0 and the subset
'0[U \U0] of Rn. By composing these, we obtain a correspondence, defined
by '0 · '�1 and its inverse, ' · '0�1, between '[U \ U0] and '0[U \ U0] –
both subsets of Rn. It is this correspondence which is used to compare the
“smoothness structures.” The n�charts (U,') and (U0,'0) on M are said to
be compatible if the following hold: i) '[U \ U0] and '0[U \ U0] are open
subsets of Rn. ii) the mappings '0 · '�1 : '[U \ U0] ! '0[U \ U0] and
' · '0�1 : '0[U \U0]! '[U \U0] are C1. [A mapping from a subset of Rn

to Rn is just another way of speaking of n functions of n variables. Such a
mapping is said to be C1 if all the partial derivatives of all n functions exist
and are continuous.]
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Note that, for compatibility of charts, we only require that they agree in
the one structure of interest: smoothness. It is in this way that a single struc-
ture is isolated. Note also that (U,') and (U0,'0) are necessarily compatible
if U and U0 do not intersect in M.

By an n�dimensional manifold we shall understand a set M, along with a
collection, (U↵,'↵), of n�charts on M (the index ↵, which labels the various
charts, runs over some indexing set A) such that:

M1. Any two charts in the collection are compatible.
M2. The charts cover M, i.e., [

↵
U↵ = M.

M3. Any n�chart, which is compatible with all the charts in the collec-
tion, is itself in the collection.

M4. If p and p0 are distinct points of M, then there exist charts (U↵,'↵)
and (U�,'�) such that p is in U↵, p0 is in U�, and such that U↵ and U� do not
intersect.

These conditions – or at least the first three of them – are exactly the
conditions one would expect. Intuitively, the condition M1 states that “if
two charts induce a smoothness structure in the same region of M, then
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those structures must agree.” The second condition states that “every part
of M has induced on it a smoothness structure.” The third condition en-
sures that we have not placed too much structure on M by cutting down
the number of charts. (For example, Rn, which has a much richer structure
than that of a manifold, is defined by just “one chart.”) Since compatibility
looks only at the smoothness structure, and since, by M3, we admit all the
compatible charts, we conveniently “wash out” all the other structure. The
rather ugly fourth condition eliminates certain pathological objects (called
non-Hausdor↵ manifolds) which are not very interesting.

Thus, a manifold consists of a set M along with some charts on that
set. We shall usually refer to a manifold as “M,” the charts understood.
The following sentence is intended as a guide to the literature: What we
have called an “n�dimensional manifold” might be referred to by others as
a “C1, Hausdor↵, n�dimensional manifold, without boundary, which is not
necessarily paracompact or connected.”

One quickly builds up a su�ciently strong intuition about manifolds that
it becomes unnecessary to constantly refer back to conditions M1�M4. The
discussion which follows is intended to help in this process.

It might seem that, because of condition M3, it would be almost impos-
sible to specify a manifold, for the collection of all those compatible charts
will be an extremely large one. The possibility of describing manifolds eas-
ily arises from the following fact:
Remark 1. Let M be a set on which there is specified a collection of n�charts
satisfying M1, M2, and M4. Let C denote the collection of of all n�charts
which are compatible with those of the given collection. Then the set M,
with the charts C, defines a manifold.
Exercise 1: Prove Remark 1. (Everything is clear except condition M1,
which is not di�cult to establish.) Intuitively, Remark 1 states that it is easy
to reduce the structure. If you have a set covered by a compatible collection
of charts, you can always reduce the structure down to that of a manifold by
including more charts.

We give two examples of manifolds.
Example 1. Let M consists of n�tuples of real numbers, so, as a point-set,
M = Rn. We introduce some charts on M: let U be any subset of M which,
considered as a subset of Rn, is open, and let ' be the identity mapping from
U to Rn. These are certainly charts, and they clearly satisfy M1, M2, and
M4. By Remark 1, we obtain a manifold based on M. This manifold is
called the manifold Rn.
Example 2. Let M consist of (n + 1)�tuples of real numbers, (y1, . . . , yn),
which satisfy (y1)2 + (y2)2 + . . . + (yn+1)2 = 1. We introduce some charts on
M. Let U1+ consist of points of M with y1 > 0, and let '1+ , acting on the
point (y1, . . . , yn+1) of U1+ be the point (y2, . . . , yn+1) of Rn. Let U1� consist of
the points of M with y1 < 0, and let '1� , acting on (y1, . . . , yn+1) be the point
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(y2, . . . , yn+1) of Rn. Let U2+ consist of points of M with y2 > 0, and let '2+ ,
acting on the point (y1, . . . , yn+1) of U2+ , be the point (y1, y3, y4, . . . , yn+1).
Continuing in this way, we obtain (2n + 2) charts, (Ui+ ,'i+ ) and (Ui� ,'i� ),
i = 1, 2, . . . , (n + 1). These n�charters are all compatible with each other,
and cover M. By including all charts compatible with these, we obtain an
n�dimensional manifold called the n�sphere, S n.
Exercise 2. Verify that Example 2 leads to a manifold.

There are a number of techniques for obtaining new manifolds from old
ones. We describe two such techniques.

Let M and M0 be manifolds, of dimensions n and n0, respectively. We
define a new manifold, eM, which is called the product of M and M0, written
eM = M ⇥ M0. The dimension of eM will be (n + n0). As a point-set, eM is
the product of the sets M and M0. That is to say, a point of eM consists of
a pair, (p, p0), with p in M and p0 in M0. We must introduce some charts
on this set M. Let (U↵,'↵) be a chart on M, and (U↵0 ,'↵0 ) a chart on M0.
Then, since U↵ is a subset of M and U↵0 a subset of M0, eU = U↵ ⇥ U↵0 is
a subset of eM. Now '↵ maps U↵ to Rn, while '↵0 maps U↵0 to Rn0 . Now let
p be a point of U↵, and p0 a point of U↵0 , so the pair (p, p0) is a point of eU.
Then '↵(p) is some point, say (x1, . . . , xn), of Rn, while '↵(p0) is some point,
(y1, . . . , yn0 ), of Rn0 . Thus, we can associate with the point (p, p0) of eU the
point (x1, . . . , xn, y1, . . . , yn0 ) of Rn+n0 . In other words, we have just described
a mapping, ', from eU to Rn+n0 . This is a chart on eM. Thus, given a chart on
M and a chart on M0, we obtain a chart on eM. It is easy to check that, since
M and M0 are manifolds, these charts on eM satisfy conditions M1, M2, and
M4. (Exercise 3. Do so.) By Remark 1, we have a manifold M.
Example 3. The manifold R1⇥S 1 is called the cylinder. The manifold S 1⇥S 1

is called the torus. The manifold Rn ⇥ Rn0 is the same as the manifold Rn+n0 .
A second method of constructing manifolds is by “cutting holes” in

known manifolds. However, only certain types of “holes” can be cut without
destroying the manifold structure. Let M be a manifold, and let S be a subset
of M. S is said to be open in M if, for any point p of S , there is a chart (U,'),
such that p is in U and U is a subset of S . A set is said to be closed if its
complement is open. (Needless to say, these are the open sets for a topology
on M. This topology could also be defined, for example, as the coarsest for
which the chart maps are continuous.) Now let C be a closed subset of the
manifold M. We define a new manifold eM, written M � C, which might be
called “M with C cut out”. As a point-set, eM consists of those points of M
which do not lie in C. As charts on eM, we take those charts (U↵,'↵) on
M for which U↵ does not intersect C. Exercise 4. Verify that this M is a
manifold, i.e., check conditions M1 � M4.

A reasonable fraction of the manifolds which occur in physics can be
obtained from the manifold Rn and S n using the operations of taking products
and cutting holes.



2. Smooth Functions:
Smooth Mappings

Let M be a manifold, and let f be a (real-valued) function on M. Then, if
(U,') is a chart on M, f is, in particular, a function on U. Hence, f · '�1 is a
function on the subset '[U] of Rn. In other words, f ·'�1 is just a real-valued
function of n variables. The function f on M is said to be smooth if f · '�1

is C1 for every chart (U,'). [Note this technique. To define something on a
manifold, one uses the charts to express that something in terms of Rn, where
we already know what it means.]
Exercise 5. Let f be a function on M for which f · '�1 is C1 for some
collection of charts satisfying M2. Verify that f is a smooth function on M.
Exercise 6. Verify that the function x1 is smooth on Rn; that the function y1
is smooth on S n.
Exercise 7. Let F(z1, . . . , zk) be a C1 real-valued function of k real vari-
ables. Let f1, . . . , fk be k smooth functions on a manifold M. Show that
F( f1, . . . , fk) is a smooth function on a M.
Exercise 8. Let f be a smooth function on M, f 0 a smooth function on M0.
Define a function f̃ on eM = M ⇥ M0 as follows: if p is a point of M, p0 a
point of M0, f̃ (p, p0) = f (p) + f 0(p0). Prove that this f̃ is a smooth function
on eM.
Exercise 9. Let f be a smooth function on M and C a closed subset of M.
Prove that f̃ , restricted to eM = M �C, is a smooth function on eM.

We denote by F the collection of smooth functions on M.
There is a sense in which the smooth functions on a manifold M charac-

terize the manifold structure of M. This is made more precise by the follow-
ing:
Remark 2. Let M be a set, and let C and C0 be manifold structures on M.
(That is, each of C and C0 is a collection of charts on M satisfying M1�M4.)
Suppose that every smooth functions on (M,C) is also a smooth function on
(M,C0). Then C = C0.
Exercise 10. Prove Remark 2. (It is perhaps not surprising that one can
give axioms on a collection of functions on a set which are necessary and

5



6 2.

su�cient for those functions to be the smooth functions for some manifold
structure on the set.)

Things in mathematics often come in pairs. One introduces some class
of objects of interest (e.g., groups, topological spaces, vector spaces, or sets).
Then, one introduces certain natural, structure-preserving mappings (some-
times called morphisms) between objects in the same class (e.g., homomor-
phisms of groups, continuous mappings on topological spaces, linear map-
pings on vector spaces, or just plain mappings on sets). In the same spirit,
manifolds are objects. The corresponding morphisms, which we now define
are called di↵erentiable, or smooth mappings.

It is convenient to define a smooth mapping using the smooth functions.
[Since the smooth functions “characterize” the manifold structure, it is not
surprising that a reasonable definition can be expressed in this way.] Let M
and M0 be manifolds, and let  : M ! M0 be a mapping from the point-set
M to the point-set M0. If f 0 is any smooth function on M0, then f 0 ·  is a
function on M. [In words, f 0 · consists of the following instructions: given
a point p of M, take p to M0 using  , and evaluate f 0 at the corresponding
point,  (p) of M0.] The mapping  : M ! M0 is called a smooth mapping
if, for every smooth function f 0 on M0, f 0 ·  is a smooth function on M.
Exercise 11. Let M be a manifold, and let f be a (real-valued) function on
M. Then this f certainly defines a mapping from the manifold M to the
manifold R1. Prove that the function is smooth if and only if the mapping of
manifolds is smooth. [Thus, smooth functions can be considered as a special
case of smooth mappings.]
Exercise 12. Reexpress the definition of a smooth mapping directly in terms
of charts.
Exercise 13. Let eM = M ⇥ M0. Define a mapping  : eM ! M as follows.
If p is a point of M, and p0 is a point of M0, so (p, p0) is a point of eM, then
 (p, p0) = p. Prove that  is smooth.
Exercise 14. Let eM = M ⇥ M0. Define a mapping  : M ! eM as follows.
Fix a point p0 of M0. Then, if p is any point of M,  (p) = (p, p0). Prove that
 is smooth.
Exercise 15. Let C be a closed subset of the manifold M. Define a mapping
 from M � C to M as follows. If p is a point of M � C,  (p) = p. Prove
that  is smooth.

Morphisms always have the property that the composition of two is an-
other. Smooth mappings are no exception.
Theorem 3. Let M, M0, and M00 be manifolds, and let  : M ! M0 and
 0 : M0 ! M00 be smooth mappings. Then  0 ·  : M ! M00 is a smooth
mapping.
Proof: Let f 00 be a smooth function on M00. We must show that f 00 ·  0 ·  ,
is a smooth function on M. Since f 00 is smooth on M00 and  0 is a smooth
mapping, f 00 ·  0 is a smooth function on M0. But, since f 00 ·  0 is a smooth
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function on M0 and  is a smooth mapping, f 00 ·  0 ·  is a smooth function
on M.
Exercise 16. What are the compositions of the mappings in Exercises 13 and
14?

An important concept in mathematics is that of an isomorphism between
objects. Roughly speaking, two objects are isomorphic if they are identi-
cal as far as the structure under consideration is concerned. [For groups
and vector spaces, isomorphisms are called isomorphisms; for topological
spaces, homeomorphisms; for sets, bijections.] The “isomorphisms” for
manifolds are called di↵ereomorphisms. Let M and M0 be manifolds, and
let  : M ! M0 be a smooth mapping. This  is said to be a di↵eomorphism
if  is one-to-one and onto (so that  �1 is well-defined), and  �1 : M0 ! M
is also a smooth mapping. Given two manifolds, M and M0, there may or
may not exist a di↵eomorphism between them. If there does exist one, M
and M0 are said to be di↵eomorphic. One occasionally writes M = M0 to
indicate that M and M0 are di↵eomorphic.
Example 4. Define a mapping  : S n ! Rn as follows. If (y1, . . . , yn+1) is any
point of S n,  (y1, . . . , yn+1) is the point (y1, . . . , yn) of Rn. Although this  is
smooth, it is not one-to-one: for example,  (0, . . . , 0,�1) =  (0, . . . , 0, 1).
Hence,  is not a di↵eomorphism.
Example 5. Let  : R1 ! R1 be the smooth mapping  (x) = x3. Since this
 is one-to-one and onto its inverse,  �1(x) = x1/3, exists. But, since the
inverse is not smooth,  is not a di↵eomorphism.
Example 6. Let C be the closed subset of R2 consisting of the single point
(0, 0). Define a mapping  from R2 � C to R2 � C as follows:  (x1, x2) =
(r�2x1, r�2x2), where r2 = (x1)2 + (x2)2. This  is clearly a di↵eomorphism.
Exercise 17. Verify that S n � C, where C is the point (0, . . . , 0, 1) of S n, is
di↵eomorphic with Rn. Verify that Rn �C, where C is the point (0, . . . , 0) of
Rn, is di↵eomorphic with S n�1 ⇥ R1.
Exercise 18. Prove that the composition of two di↵eomorphisms is a di↵eo-
morphism. Prove that the inverse of a di↵eomorphism is a di↵eomorphism.
Exercise 19. Prove that, if two manifolds are di↵eomorphic, then they have
the same dimension.

As a final example to illustrate the structure possessed by a manifold,
we establish a theorem to the e↵ect that manifolds are “locally homoge-
neous.” [The theorem is somewhat analogous to the following fact about
vector spaces: If v and w are non zero elements of a vector space V , then
there is an isomorphism from V to V which takes v to w.] Thus, manifolds,
like vector spaces, are barren, devoid of landmarks.
Theorem 4. Let p be a point of the manifold M. Then there is an open set
O, containing p, with the following property: given any point p0 in O, there
exists a di↵eomorphism  : M ! M with  (p) = p0. Proof: Let (U,')
be a chart such that p is in U. Let '(p) = z = (z1, · · · , zn), a point of Rn.
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Choose ✏ > 0 such that, whenever x is a point of Rn with d(x, z) < ✏, x is in
'[U]. Denote by V the collection of all x in Rn with d(x, z) < ✏. The subset
O = '�1[V] of M is our candidate for the O in the theorem. [Exercise 20.
Why is O open in M?]
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Let p0 be a point of O, so '(p0) = z0 = (z01, · · · , z0n), a point of Rn, is in
V . Set ✏0 = d(z, z0) < ✏. Define a mapping ⇤ from V to V as follows:
⇤(x1, · · · , xn) = (x1, · · · , xn) + f (r)(z01 � z1, · · · , z0n � zn),

where we have set r = [d(x, z)], and where f (r) is a function of one variable
with the following properties: i) f (r) is C1, ii) there is an ✏1 > 0 such that
f (r) = 1 for r < ✏1 , iii) there is an ✏2 < ✏ such that f (r) = 0 for r > ✏2,
and iv) |d f /dr| < (✏0)�1. [Since ✏ < ✏, there exists such an f (r).] These
conditions ensure that ⇤ is a smooth mapping from V to V (conditions i and
ii), that ⇤(z) = z0 (condition ii), that ⇤ is the identity near the edge of V
(condition iii), and that ⇤�1 exists and is smooth (conditions i, ii, iii, and iv).
[Exercise 21. Verify these properties.]
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 f r( )

 r

We now define the mapping  from M to
M. Let q be a point of M. If q is not in O, set
 (q) = q. If q is in O, set  (q) = '�1 ·⇤ ·'(q). It
is clear that this  is smooth, one-to-one, onto,
and that  (p) = p0. [Exercise 22. Check that  
is a di↵eomorphism.]

Intuitively, since we can shift points a little
bit in Rn, preserving the smoothness structure (a
fact made explicit by the expression, above, for
⇤(x)), and since M has the local smoothness structure of Rn, we can shift
points a little in M, preserving the smoothness structure.

The statement of Theorem 4 is interesting because of what it says about
manifolds. The proof of Theorem 4 is interesting because it illustrates a
useful technique: certain local properties of Rn can, using the charts, be
pulled back to properties of manifolds.
Exercise 23. State and prove: S n and Rn are globally homogeneous.



3. Vectors at a point

We now have the arena for di↵erential geometry: a manifold. The natural
things which exist in such an environment are objects called tensor fields.
These tensor fields will be defined in the next few sections. Although the
fields are by far the most important, it is convenient to first introduce tensors
at a point.

We begin with vectors at a point, x = (x1, . . . , xn) of Rn. A vector in
Rn at the point x can be represented by its components, (⇠1, . . . , ⇠n), with
respect to the axes in Rn. That is to say, a vector in Rn at x is equivalent to
n real numbers. However, while this representation of vectors is natural in
Rn, it is not a very convenient one for discussing vectors on manifolds (in
which there are no natural “axes”). Denote by F(Rn) the collection of all
smooth functions on Rn so an element of F(Rn) consists of a C1, real-valued
function, f (x1, . . . , xn), of n real variables. If (⇠1, . . . , ⇠n) is the components
of any vector at x, and f is any smooth function on Rn, we set

⇠( f ) = ⇠1 @ f
@x1

�����
x
+ · · · + ⇠n @ f

@xn

�����
x

(1)

This ⇠( f ), which is just a real number, is called the directional derivative of
f in the direction of the vector represented by (⇠1, . . . , ⇠n). It follows imme-
diately from the elementary properties of the derivative that ⇠( f ) satisfies the
following conditions:

DD1. ⇠( f + g) = ⇠( f ) + ⇠(g).
DD2. ⇠( f g) = f (x)⇠(g) + g(x)⇠( f ).
DD3. If f = const., then ⇠( f ) = 0.

Thus, every vector in Rn at x defines, via (1), a mapping ⇠( f ) from F(Rn) to
R, satisfying DD1, DD2, and DD3. We have :
Proposition 5. Eqn. (1) defines a one-to-one correspondence between n�tuples,
(⇠1, . . . , ⇠n) and mappings from F(Rn) to R satisfying DD1, DD2, and DD3.
Proof: Two things must be shown: i) if (⇠1, . . . , ⇠n) and (⌘1, . . . , ⌘n) have the
property that ⇠( f ) = ⌘( f ) for all f in F(Rn) (with ⇠( f ) and ⌘( f ) defined by
Eqn. (1)), then ⇠1 = ⌘1, . . . , ⇠n = ⌘n, and ii) if µ( f ) is a mapping from F(Rn)

9
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to R, satisfying DD1, DD2, and DD3, then µ( f ) is of the form (1) for some
(µ1, . . . , µn).

i) Let ⇠( f ) = ⌘( f ) for all f . Settings f = x1, we have, from Eqn. (1),
⇠0 = ⇠(x1) = ⌘(x1) = ⌘0. Similarly for x2, . . . , xn.

ii) Let µ( f ) satisfy DD1, DD2, and DD3. Define n numbers, µ1 =
µ(x1), . . . , µn = µ(xn). We shall show that, with this (µ1, . . . , µn), Eqn. (1)
holds for all f . Let f be in F(Rn), and write f in the form

f (x) = f (x) + (x1 � x1)g1(x) + · · · + (xn � xn)gn(x) (2)

with g1(x), . . . , gn(x) in F(Rn). [See Lemma 6 below.] Then, from DD1 and
DD2,

µ( f ) = µ( f (x)) + (x1 � x1)|x µ(g1) + g1(x)|x µ(x1 � x1)
+ · · · + (xn � xn)|x µ(gn) + gn(x)|x µ(xn � xn)

(3)

By DD3, µ( f (x)) = 0; by DD1 and DD3, µ(xi � xi) = µi; by Eqn.(2), gi|x =
@ f /@xi|x; clearly, (xi � xi)|x = 0 (i = 1, 2, . . . , n). Eqn. (1) now follows from
Eqn. (3).

In the proof of Proposition 5, we made use of the following fact:

Lemma 6. If f is in F(Rn), then f can be written in the form (2) (where x is
some fixed point of Rn) for some g1(x), . . . , gn(x) in F(Rn).

Proof:

f (x) � f (x) =
Z 1

0

@

@t
f (x + t(x � x))dt

= (x1 � x1)
Z 1

0

@

@x1 f (x + t(x � x))dt

+ · · · + (xn � xn)
Z 1

0

@

@xn f (x + t(x � x))dt

Proposition 5 provides a di↵erent, and more fruitful, representation of
vector in Rn.

With the remarks above as motivation, we now return to manifolds. Let
M be a manifold, and, as in Sect. 2, let F be the collection of smooth func-
tions on M. Then (e.g., by Exercise 7), the (pointwise) sum and product of
elements of F is in F. [This F has the structure of a ring.] Fix a point p of M.
By a contravariant vector in M at p, we mean a mapping ⇠ : F! R satisfy-
ing DD1, DD2, and DD3 (with, of course, the x in DD2 replaced by p). The
collection of all contravariant vectors in M at p will be written F·(p). If ⇠ and
⌘ are inF·(p), m is a real number, and f is inF, set (⇠+m⌘)( f ) = ⇠( f )+m⌘( f ).
With this as the definition of the sum of two elements of F·(p), and of the
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product of an element of F·(p) with a real number, F·(p) clearly becomes a
vector space.

The contravariant vectors can be represented more explicitly in terms of
charts. Let (U,') be a chart on M. Then, if f is a smooth function on M,
f · '�1 = f̃ (x1, . . . , xn) is a smooth function on '[U]. Now suppose that
the point p is in U, and set x = '(p). Choose h1, . . . , hn in F such that, in
some open subset of Rn containing x, h̃1 = (x1 � x1), . . . , h̃n = (xn � xn).
[Exercise 24. Why do such h’s exist?] If ⇠ is a contravariant vector in M at
p, the numbers ⇠0 = ⇠(h1), . . . , ⇠n = ⇠(hn) are called components of ⇠ with
respect to the chart (U,').
Theorem 7. The components of ⇠ are independent of the choice of the h’s.
Furthermore, given n numbers, (⇠0, . . . , ⇠n), there exists precisely one con-
travariant vector in M at p with components (⇠0, . . . , ⇠n),
Proof: Let f be in F, and set

f = f (p) + g1h1 + · · · + gnhn + s2t (4)

where g1, . . . , gn, s, t are in F and s(p) = 0. [To construct such an expression,
proceed as follows. First choose g1, . . . , gn so f = f (p) + g1h1 + . . . + gnhn

in some open set containing p. Then choose any s which is positive except
at p, where it vanishes. Finally, choose t so that (4) is satisfied.] Using the
argument surrounding Eqn. (3), and the fact that ⇠(s2t) = 2s(p)t(p)⇠(s) +
[s(p)]2⇠(t) = 0, we obtain

⇠( f ) = ⇠1 @ f̃
@x1

�����
x
+ · · · + ⇠n @ f̃

@xn

�����
x

(5)

That the components are independent of the h’s is clear from Eqn. (5).
To prove the second statement, observe that, if (⇠1, . . . , ⇠n) are n numbers,
then Eqn. (5) defines a contravariant vector in M at p with components
(⇠1, . . . , ⇠n). Thus, if M is an n-dimensional manifold, and p is a point of M,
then F · (p) is an n-dimensional vector space.

The components assigned to a vector depend, of course, on the choice
of chart. We derive the well-known formula for this dependence. Let (U,')
and (U0,'0) be two charts, both containing the point p of M. Then UÛ0
is coordinated in two ways, once by ' and once by '0 . That is to say,
we have a smooth, one-to-one, onto mapping, '0 · '�1, from '[UÛ0] to
'0[UÛ0], both subsets of Rn. In other words, we have a functions of n
variables, x01(x1, . . . , xn), . . . , x0n(x1, . . . , xn). Let f be a smooth function
on M. Then, setting f̃ = f · '�1, f̃ 0 = f · '0�1, we have f (x1, . . . , xn) =
f 0(x01(x1, . . . , xn), . . . , x0n(x1, . . . , xn)). Now let ⇠ be a contravariant vector
in M at p and let (⇠1, . . . , ⇠n) and (⇠01, . . . , ⇠0n) be the components of ⇠ with
respect to (U,') and (U0,'0), respectively. It follows from Eqn. (5) that
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nX

i=1

⇠0i
@ f̃ 0

@x0i

�����
x0
= ⇠( f ) =

nX

i=1

⇠i
 @ f̃
@xi

�����
x

�

=

nX

i=1

⇠i
 nX

j=1

@ f̃ 0

@x0 j

�����
x0

@x0 j

@xi

�����
x

� (6)

where x = '(p) and x0 = '0(p). But Eqn. (6) must hold for all smooth f .
Therefore,

⇠01 =
nX

i=1

⇠i @x01

@xi

�����
x
, . . . , ⇠0n =

nX

i=1

⇠i @x0n

@xi

�����
x

(7)

[Exercise 25. Why does (7) follow from (6)?] Eqn. (7) describes the behav-
ior of components (of a fixed vector) under change in choice of chart.
Exercise 26. Let p be a point of a manifold M. Suppose we are given a
mapping from charts on M containing p, to n�tuples of real numbers, subject
to (7). Show that such a mapping defines a contravariant vector in M at p.
Exercise 27. Show that, given a nonzero vector, ⇠ at p and an n-tuple of real
numbers, (⇠1, . . . , ⇠n), not all zero, there exists a chart with respect to which
the components of ⇠ are (⇠1, . . . , ⇠n).



4. Linear Algebra

In this section, we shall review some basic facts about linear algebra, and
introduce some notation.

Let , Va, Vb, . . . be finite-dimensional vector spaces (over the reals). It is
convenient to indicate to which V a vector belongs by means of superscript.
Thus, an element of Va would be written ⇠a, an element of Vc as ⌘c, etc.
Hence, addition of two vectors is defined when and only when those vectors
have the same superscript.

We define the dual of a vector space. Let µ : Va ! R be linear, i.e., let
µ be such that µ(⇠a + m⌘a) = µ(⇠a) + mµ(⌘a), for any number m and any ⇠a

and ⌘a in Va. If µ and ⌫ are two such linear maps, and m is a real number, we
define a new linear map, (µ + m⌫), by (µ + m⌫)(⇠a) = µ(⇠a) + m⌫(⇠a). With
this definition of addition of linear maps, and multiplication of linear maps
by (real) numbers, the linear maps from Va to R form a vector space, called
the dual of Va. The dual of Va will be written Va, and membership in Va will
be indicated by the subscript “a”. Thus, the µ above would be written µa.
Finally, instead of µ(⇠a), we write µa⇠a or ⇠aµa. It is clear that formulae such
as

(µa + m⌫a)(⇠a + k⌘a) = µa⇠
a + m⌫a⇠

a + kµa⌘
a + mk⌫a⌘

a

are true. Similarly, the dual of Vb will be written Vb, and membership in Vb
indicated by the subscript “b”, etc. Thus, �c would represent an element of
Vc, i.e., a linear mapping from Vc to R. In order that the sum of two vectors
be defined, it is necessary that i) both vectors have subscripts or both vectors
have superscripts, and ii) the subscripts or superscripts be the same letter.

We next define multilinear maps. Choose any finite (ordered) list of
vector spaces, from the collection Va,Va,Vb,Vb, . . ., having the following
property: no vector space appears more than ones in the list, and no vector
space appears together with its dual. (That is, no letter appears more than
ones in the list.) A typical such list is (Vc,Va,Ve,Vd). A mapping ↵ from
Vc ⇥ Va ⇥ Ve ⇥ Vd (a product of sets) to R is said to be multilinear if ↵ is
linear in each variable separately, i.e., if

↵(⇠c + m⌘c, µa, �e, ⌧
d) = ↵(⇠c, µa, �e, ⌧

d) + m↵(⌘c, µa, �e, ⌧
d),

13
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↵(⇠c, µa + m⌫a, �e, ⌧
d) = ↵(⇠c, µa, �e, ⌧

d) + m↵(⇠c, ⌫a, �e, ⌧
a), etc.

The collection of all such multilinear maps will be denoted by V ae
c d ,

and an element of V ae
c d (e.g., ↵ above) will be written ↵ ae

c d. Instead of
↵(⇠c, µa, �e, ⌧d), we write ↵ ae

c d⇠
cµa�e⌧d. Defining the sum of two multilin-

ear mappings, and the product of a multilinear mapping with a number, by
(↵ ae

c d + m� ae
c d)(⇠cµa�e⌧d) = ↵ ae

c d⇠
cµa�e⌧d + m� ae

c d⇠
cµa�e⌧d, we see that

V ae
c d has the structure of a vector space.

Thus, starting with the vector space Va,Vb, . . . , we obtain a much larger
collection of vector spaces, e.g., Vam c

b vk , etc. The elements of these vector
spaces are called tensors. The superscripts attached to a tensor are called
contravariant indices, the subscripts covariant indices. The rank of a tensor
is defined as the total number of indices it possesses. Tensors of rank one are
usually called vectors. Real numbers, when considered as tensors of rank
zero, are called scalars.

What operations are available between these tensors? Of course, one can
multiply a tensor by a scalar. This operation can be generalized. Consider
two tensors which have no index letter in common (i.e., either “a” appears in
precisely one of the tensors, or “a” appears in nether, etc. for “b”, “c”, etc....),
e.g., consider ↵ e

m and �ca p
b . Then the expression (↵ e

m ⇠m⌘e)(�ca p
b µc⌫a�b⌧p)

evidently defines a multilinear map from Vm ⇥ Ve ⇥ Vc ⇥ Va ⇥ Vb ⇥ Vp to R.
That is, we have defined an element of V eca p

m b . This element will be written
↵ e

m �ca p
b . Thus, two tensors having the property that they share no index

letter define a third tensor. This operation is called outer product. The rank
of the outer product of two tensors is the sum of the ranks of the two tensors.
Multiplication of a tensor by a scalar can be considered as a special case of
the outer product.
Exercise 28. Check that ↵ e

n (�ca� pq
n ) = (↵ e

m �ca)� pq
n . (Hence, parenthesis in

such expressions are unnecessary.)
The second operation is addition. Of course, one can add two tensors

having exactly the same index structure (i.e., having the same index letters,
in the same order, and in the same locations), e.g., ↵ r

a c + �
r

a c. It is conve-
nient, however, to permit addition in more general situations. Evidently, the
multilinear maps from Vc ⇥ Vn ⇥ Vp to R are in one-to-one correspondence
with multilinear maps from Vn ⇥ Vp ⇥ Vc to R etc. That is to say, there are
natural isomorphisms between the vector spaces V np

c , Vnp
c ,Vn p

c , V p n
c , V pn

c ,
V pn

c . Thus, an element of one of these vector spaces defines an element of
each space. Whenever addition or equality is indicated between two tensors
in isomorphic vector spaces, it is understood that one tensor is to be taken,
using the isomorphism, into the vector space of the other, and there the sum
is to be evaluated, or equality is to hold.
Example 7. The equation �np

c = ↵n p
c + �

pn
c makes the following state-

ment. Using the isomorphism between V pn
c and Vn p

c , take � pn
c (an element



15

of V pn
c ) to Vn p

c . Add the result to ↵n p
c (an element of Vn p

c ). Using the
isomorphism between Vn p

c and Vnp
c , take the resulting sum (an element of

Vn p
c ) to Vnp

c . The result is the same as the element �np
c of Vnp

c . Thus, addi-
tion is defined between tensors having the property that they have exactly the
same letters as contravariant indices and exactly the same letters as covariant
indices.

Exercise 29. State and prove: ⇠a
p⌘

dm = ⌘dm⇠a
p .

In fact, we have developed the formalism above in a context slightly
more general that we shall need. Let V be a single finite-dimensional vector
space, and let Va, Vb, . . . , be copies of V . (That is to say, we are given iso-
morphisms between Va and V , between Vb and V , etc.) Using the construc-
tion above, we obtain in this case, just as in the more general case, tensors.
The same operations as above apply: the outer product is defined between
any two tensors having no index letter in common: addition and equality
are defined between any two tensors having no index letter in common; ad-
dition and equality are defined between any two tensors having exactly the
same contravariant index letters and exactly the same covariant index letters.
However, two additional operations are available in this special case.

Consider one of our vector space, e.g., Vm d
ap . Choose two index letters,

the first of which appears in Vm d
ap , and the second of which does not, e.g.,

“p”and “b”. The isomorphism between V p to Vb then, evidently, defines an
isomorphism between Vm d

ap and Vm d
ab . Thus, any element, e.g., ↵m d

ap , of
Vm d

ap defines some element of Vm d
ab . This element of Vm d

ab will be written
↵m d

ab . We say that ↵m d
ab has been obtained from ↵m d

ap by index substitution.
Tensors, which are obtained from each other by index substitution are not
written as equal, i.e., we do not write ↵m d

ab = ↵
m d

ap . Index substitution is
always indicated as above: one changes the letter which appears as an index,
without changing the location of that index or the base letter. (“↵00 in the
example above).

Example 8. Let � d
mc = ⌧

d
mµc. Perform index substitution on � d

mc to obtain
� a

mc . Perform index substitution on ⌧d
m to obtain ⌧a

m. Then � a
mc = ⌧

a
mµc .

Example 9. Let �ab be a tensor. Perform index substitution on �ab to obtain
�mb; perform index substitution on �mb to obtain �mn; perform index substi-
tution on �mn to obtain �bn; perform index substitution on �bn to obtain �na.
Then, in general, it will not be true that �ab = �ba. If, however, ⇠a is a vector,
⇠b is the result of index substitution on ⇠a, and �ab = ⇠a⇠b, then it is true that
�ab = �ba.

The second operation is called contraction. Consider a tensor with at
least one covariant index and at least one contravariant index, e.g., ↵pbr

c.
Choose two indices, one covariant and one contravariant, of ↵pbr

c, e.g.,“b”
and “c”. This ↵pbr

c can always be written as a sum of outer products of the
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form

↵pbr
c = �

pr⇠b⌘c + · · · + ⇢prµb⌫c

Now consider the tensor

�pr(⇠b⌘b) + · · · + ⇢pr(µb⌫b)

an element of V pr (the quantities ⇠b⌘b, etc. are just scalars). This tensor
(which is uniquely determined by ↵pbr

c, and the choice of indices “b” and
“c”) is called the contraction of ↵pbr

c over the indices “b” and “c”. It is
written ↵pbr

b, or ↵pmr
m, etc., where the repeated index is any letter which

does not appear elsewhere in ↵. When several contractions are applied to the
same tensor, one uses di↵erent repeated indices to avoid confusion. Thus,
contraction reduces the rank of a tensor by two. Simultaneous outer product
and contraction are easily indicated by the notation, e.g., if ↵mb

ad = �
m

d⇠
b

a ,
then ↵mc

ac can be written �m
c⇠

c
a . The notations for the action of the dual

(i.e., µa⇠a) and the action of a multilinear map (i.e., ↵mb
a⇠m⌘b�a) are clearly

consistent with the notation for contraction, and, in fact we shall consider
these actions as special cases of the contraction operation.

To summarize, given a single finite-dimensional vector space V , we ob-
tain a collection of tensors, indexed by letters. On these tensors, there are
defined four operations: i) outer product, defined between two tensors hav-
ing no index letter in common, ii) addition, defined between two tensors
having exactly the same contravariant index letters and exactly the same co-
variant index letters, iii) index substitution, which results in replacing one
index letter of a tensor with any other letter which does appear elsewhere
in the tensor, and iv) contraction, which results in replacing a pair of index
letters, one contravariant and one covariant, by the same index letter which
does not appear elsewhere in the tensor.

This notation is due to Penrose. Although the rules may sound rather
formidable at first, one quickly gets used to them, and automatically per-
forms the various operations where appropriate. The notation represents an
important labor-saving device.
Example 10. The study of linear operators on a finite-dimensional vector
space V is the study of tensors ↵a

b over V . Composition of operators is
defined by ↵a

m�
m

b, and the trace of an operator is ↵a
a.

Example 11. Let ↵ab = �ab + �ba. Then ↵ab = ↵ba. If �mn = ��nm, then
↵ab�ab = 0.
Example 12. If ↵ab = ↵ba. Then, for any ⇠p, ⇠b↵ab = ⇠d↵da.

Example 13. The following is meaningless: ⇠am da
bc .

Example 14. If ⌧ da
b = ⇠aµ d

b + ⌘
d� a

b , then ⌧ dm
m = ⇠cµ d

c + ⌘
d� e

e
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Example 15. Let �a
b be the (unique) element of Va

b having the property
�a

b⇠
b = ⇠a for every ⇠b. Then �a

a = dimension of V . Furthermore, �a
c↵

mb
ad =

↵mb
cd.
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5. Tensors at a point

We have seen in Sect. 3 that the collection, F0(p), of contravariant vectors at
the point p of an n�dimensional manifold M form an n�dimensional vector
space. We have seen in Sect. 4 that, given an n�dimensional vector space,
one can construct tensors, e.g., �p b

mcs , over that vector space. The tensors
which result when this construction is applied to the vector space F0 (p) are
called tensors in M at the point p. Between tensors in M at p, we have outer
product, addition, index substitution, and contraction.

We illustrate by returning again to components. Let (U,') be a chart
containing p, and let ⌘a be a covariant vector at p. Set ⌘1 = ⌘a⇠a, where ⇠a

is the contravariant vector at p with components (1, 0 . . . , 0); set ⌘1 = ⌘aµa,
where µa is the contravariant vector at p with components (0, 1, 0, . . . , 0),
etc. The n numbers (⌘1, ⌘2, . . . , ⌘b) are called the components of ⌘a with
respect to the chart (U,'). Evidently, if ⇠a is a contravariant vector at p with
components (⇠1, ⇠2, . . . , ⇠n), then ⌘a⇠a = ⌘1⇠1 + · · · + ⌘n⇠n.

Now let (U0,'0) be a second chart containing p. Let x = '(p), x0 = '0(p),
and let x1(x01, . . . , x0n), . . . , xn(x01, . . . , x0n) be the n functions of n variables
defined by ' · '0�1. Then, evidently,

Pn
k=1

@xi

@x0k |x0
@x0k
@x j |x = (1 if i = j, 0, oth-

erwise: i, j,= 1, . . . , n). Denote by (⌘1 . . . , ⌘n) and (⌘01 . . . , ⌘0n) the compo-
nents of ⌘a with respect to (U,') and (U,'0) respectively. Then

nX

i=1

⌘i⇠
i = ⌘a ⇠

a =

nX

j=1

⌘0 j ⇠
0 j =

nX

j=1

nX

i=1

⌘0 j
@x0 j

@xi

�����
x
⇠i

where we have used Eqn. (7). Evidently, this equation can hold for all ⇠a

only if ⌘0i =
Pn

j=1 ⌘ j
@x j

@x0 i |x0 , (i = 1, . . . , n). This is the transformation law for
the components of a (fixed) covariant vector.

Exercise 30. Define the components of an arbitrary tensor, e.g., ↵a
bc. Prove

that these components have the following transformation law:

↵0i jk =

nX

l=1

nX

p=1

nX

q=1

↵l
pq
@x0i

@xl

�����
x

@xp

@x0 j

�����
x0

@xq

@x0k

�����
x0

19
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(i, j, k = 1, . . . , n).



6. Tensor Fields

We now introduce the main objects of interest on a manifold: tensor fields.
Let M be a manifold. A tensor field on M consists of an assignment,

to each point of M, a tensor at that point, where all the tensors at various
points have the same index structure (i.e., the same index letters in the same
locations). Thus, if ↵ acn

m p is a tensor field on M, then, for each point p of
M, ↵ acn

m p(p) is a tensor at the point p.
Example 16. whereas the components of a tensor at a point consist of an
array of real numbers, the components of a tensor field are functions of the
n coordinates, x1, . . . , xn

Evidently, the four tensor operations – addition, outer product, index
substitution, and contraction – can be performed pointwise. Hence, these
operations are also defined on tensor fields.
Example 17. Let ↵ acn

m p be a tensor field. Then, for each point p ↵ acn
m p(p) is

a tensor at p. Since contraction is defined for tensors at p, we have, for each
point p, a tensor ↵ adn

d p(p). Thus, we have a tensor field, written ↵ adn
d p.

There is a somewhat more direct way of introducing tensor fields. Let ⇠a

be a contravariant vector field on M, and let f be a smooth function on M.
Then, for each point p of M, ⇠a (p) is a contravariant vector at p. But, by
definition (of a contravariant vector, Sect. 3) ⇠a(p) assigns, to each smooth
function on M, a real number. In particular, ⇠a (p) assigns a real number to
our smooth function f . But this is true at each point p, and so we obtain
a real number assigned to each point of M. In other words, we obtain a
function on M. We write this function Z⇠ f . Thus, given any contravariant
vector field ⇠a on M and any smooth function f on M, Z⇠ f is a function on
M. We can regard Z⇠ as a mapping from smooth function on M to functions
on M. The conditions DD1, DD2, and DD3 (Sect. 3) become, respectively,

VF1. Z⇠( f + g) = Z⇠ f +Z⇠g.
VF2. Z⇠( f g) = f Z⇠g + gZ⇠ f .
VF3. If f = const. , then Z⇠ f = 0.

Thus, we could just as well have defined a vector field as a mapping, Z⇠,
from smooth functions on M to functions on M satisfying VF1, VF2, and

21
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VF3.
Next, let µa be a covariant vector field on M. Then, if ⇠a is any con-

travariant vector field on M, µa⇠a is a function on M. Thus, the covariant
vector field µa defines a mapping, F(⇠a), from contravariant vector fields on
M to functions on M. If ⇠a and ⌘a are contravariant vector fields on M, and
f is any smooth function on M, then, evidently

F(⇠a + f⌘a) = F(⇠a) + f F(⌘a) (8)

Now let F be any mapping from contravariant vector fields on M to functions
on M, and suppose that F is linear in the sense of (8). Then, at each point
p of M, F defines a mapping from contravariant vectors at p to numbers,
and, by (8), that mapping is linear. In other words, F assigns, to each point
p of M, F defines a mapping from contravariant vectors at p to numbers,
and, by (8), that mapping is linear. In other words, F assigns, to each point
p of M, a covariant vector at p. That is, F defines a covariant vector field
on M. We have shown that there is a one-to-one correspondence between
covariant vector fields on M and linear mapping (linear in the sense of (8))
from contravariant vector fields on M to functions on M. Thus, we could
just as well have defined a covariant vector field as a linear mapping (in the
sense of (8)) from contravariant vector fields on M to functions on M.

Finally, let ↵a
bc be a tensor field on M. Then, if µa, ⇠b,⌧c are vector

fields on M, ↵a
bc µa ⇠b ⌧c is a function on M. So, ↵a

bc defines a mapping
F(µa, ⇠b, ⌧c), from certain vector fields on M to functions on M. This map-
ping is multilinear, in the sense that, if f is any smooth function on M, then

F(µa + f ⌫a, ⇠
b, ⌧c) = F(µa, ⇠

b, ⌧c) + f F(⌫a, ⇠
b, ⌧c) (9)

F(µa, ⇠
b + f⌘b, ⌧c) = F(µa, ⇠

b, ⌧c) + f F(µa, ⌘
b, ⌧c)

F(µa, ⇠
b, ⌧c + f�c) = F(µa, ⇠

b, ⌧c) + f F(µa, ⌘
b,�c)

Conversely, a mapping F(µa, ⇠b, ⌧c) from certain vector fields on M to func-
tions on M, multilinear in the sense of (9), defines a tensor field on M. Thus,
we could just as well have defined the tensor fields on M as mapping, multi-
linear in the sense of (9), from vector fields on M to functions on M.

The purpose of the discussion above is to emphasize the following point:
one could easily have defined the tensor fields directly without first defining
tensors at a point. Contravariant vector fields can be defined in terms of their
action (subject to VF1, VF2, and VF3) on smooth scalar fields; covariant
vector fields in terms in their action (subject to (8)) on contravariant vector
fields; tensor fields in terms of their action (subject to (9)) on vector fields.
The discussions of Sections 3 and 5 can be regarded as motivation.

A contravariant vector field ⇠a is said to be smooth if, for every smooth
function f , Z⇠ f is a smooth function. A covariant vector field µa is said to
be smooth if, for every smooth contravariant vector field ⇠a,µa⇠a is a smooth
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function. A tensor field, e.g., ↵a
bc is said to be smooth if, for any smooth

vector fields µa, ⇠b, ⌧c,↵a
bc µa⌧c is a smooth function. The smooth fields

are the interesting ones. Hence, we shall hereafter normally omit the word
“smooth”: tensor fields are understood to be smooth unless otherwise stated.
Smooth functions are sometimes called (smooth) scalar fields. It is clear
from these definitions that the tensor operations – outer product, addition,
index substitution, and contraction – produce smooth tensor fields when ap-
plied to smooth tensor fields.
Example 18. Let ⇠a be a (not necessarily smooth) contravariant vector field
on M. Let (U,') be a chart. Let f be a smooth function on M, and set
f̃ = f ·'�1, g = Z⇠ f , and Z = g·'�1. Let ⇠1(x), . . . , ⇠n(x) be the components
of ⇠a with respect to this chart (Example 16). Then, from Eqn.5,

g̃(x) = ⇠1(x)
@ f̃
@x1 + · · · + ⇠

n(x)
@ f̃
@xn

It follows immediately from this equation that a contravariant vector field
is smooth if and only if its components with respect to every chart are C1
functions of (x1, . . . , xn).
Exercise 31. Prove that a covariant vector field is smooth if and only if
its components with respect to every chart are C1 functions. Same for an
arbitrary tensor field.

The pattern above, an important one, will be repeated on several later
occasions. One starts with something about the scalar fields, then extends it
to the contravariant vector fields using the action Z⇠ f , then extends it to the
covariant vector fields using the action ⇠aµa, and finally extends it to all the
tensor fields using the action ↵a

bcµa⇠b⌧c.
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7. Lie Derivatives

Let ⇠a be a (smooth) contravariant vector field, f a (smooth) scalar field, and
consider the scalar field Z⇠ f . Intuitively, ⇠a represents a “magnitude and
direction” at each point of the manifold M. If, for each point of M, we take
the “derivative of f ” in the “direction of ⇠a”, we obtain a a number. Doing so
at each point, we obtain a scalar field on M, namely Z⇠ f . So, Z⇠ f represents
a sort of “directional derivative of f , at each point, in the direction of ⇠a”.
This Z⇠ f is sometimes called the Lie derivative of f in the ⇠a�direction. Is
it possible to define a “directional derivative in the ⇠a�direction” for other
things, e.g., for tensor (in addition to scalar) fields? The answer is yes. We
do so in this section.

q = u1 = u2 

σ�  

Let ⇠a and ⌘a be vector fields, f a scalar
field. Then Z⌘ f is also a scalar field, so Z⇠Z⌘ f
is still another scalar field. Set

( f ) = Z⇠Z⌘ f �Z⌘Z⇠ f (10)

so  is a mapping from scalar fields (i.e., from
F) to scalar fields. It follows immediately from
VF1 that ( f + g) = ( f ) + (g). Furthermore, from VF1 and VF2,

( f g) = Z⇠Z⌘( f g) �Z⌘Z⇠( f g)
= Z⇠( f Z⌘g + gZ⌘ f ) �Z⌘( f Z⇠g + gZ⇠ f )
= (Z⇠ f )(Z⌘g) + f Z⇠Z⌘g + (Z⇠g)(Z⌘ f ) + gZ⇠Z⌘ f
� (Z⌘ f )(Z⇠g) � f Z⌘Z⇠g � (Z⌘g)(Z⇠ f ) � gZ⌘Z⇠ f
= f k(g) + g k( f )

Finally, from VP3, ( f ) = 0 if f = const. We have just shown that
( f ) itself satisfies the three conditions VF1, VF2, and VF3. Hence, by
the remarks of Sect. 6 (on defining contravariant vector fields), we have
( f ) = Z⌧ f (for all f ) for some vector field ⌧a. (Exercise 32. How do we
know that ⌧a is smooth?)

By definition, the Lie derivative of ⌘a in the ⇠a�direction, Z⇠⌘a, is the

25
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vector field ⌧a. In other words, we define Z⇠⌘a by the equation

Z⇠Z⌘ f �Z⌘Z⇠ f = Z(Z⇠⌘) f (11)

for all f . The Lie derivative of a scalar field is a scalar field; the Lie derivative
of a contravariant vector field is a contravariant vector field.

We have now extended the notion of the Lie derivative (in the ⇠a�direction)
from scalar fields to contravariant vector fields. Let’s work out some prop-
erties of it. First note that, for any scalar fields ↵ and f , and vector fields ⇠a

and �a,
Z(↵⇠+�) = ↵Z⇠ f +Z� f (12)

Applying (12), in the case ↵ = 1, to the definition (11), it follows immedi-
ately that

Z⇠(⌘a + !a) = Z⇠⌘
a +Z⇠!

a (13)

Now let ↵ be a scalar field on M. What does Z⇠(↵⌘a) look like? It’s easy to
find out from the definition (11):

Z(Z⇠↵⌘) f = Z⇠Z↵⌘ f �Z↵⌘Z⇠ f
= Z⇠(↵Z⌘ f ) � ↵Z⌘Z⇠ f
= (Z⇠↵)(Z⌘ f ) + ↵Z⇠Z⌘ f � ↵Z⌘Z⇠ f
= Z(⌘Z⇠↵) f + ↵Z(Z⇠⌘) f
= Z(⌘Z⇠↵+↵Z⇠⌘) f

(14)

Hence, since f is arbitrary,

Z⇠(↵⌘a) = ⌘aZ⇠↵ + ↵Z⇠⌘
a (15)

(Compare Eqn. (13) with VF1: Eqn. (15) with VP2.)
The next step is to define Lie derivatives of covariant vector fields. Let

µa be a covariant vector field, and consider the scalar field

Z⇠(⌘aµa) � µaZ⇠⌘
a (16)

where ⌘a is any contravariant vector field. Replacing ⌘a in (16) by ⌘a + ↵!a

(↵ a scalar field),

Z⇠[(⌘a + ↵!a)µa] � µaZ⇠(⌘a + ↵!a)
= Z⇠(⌘aµa) +Z⇠[↵(!aµa)] � µaZ⇠⌘

a � µaZ⇠(↵!a)
= Z⇠(⌘aµa) + ↵Z⇠(!aµa) + (!aµa)Z⇠↵ � µaZ⇠⌘

a

� ↵µaZ⇠!
a � (µa!

a)Z⇠↵

= [Z⇠(⌘aµa) � µaZ⇠⌘
a] + ↵[Z⇠(!aµa) � µaZ⇠!

a]
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where we have used (13), (15) and VF2. In other words, the expression (16)
defines a linear (in the sense of (8)) mapping from contravariant vector fields
(⌘a) to scalar fields on M. By the remarks of Sect. 6 (on the definition of
a covariant vector field), such a mapping represents a covariant vector field.
We define the Lie derivative of µa (in the ⇠a�direction), Z⇠µa, to be this
vector field. That is, we define Z⇠µa by the equation

⌘aZ⇠µa = Z⇠(⌘aµa) � µaZ⇠⌘
a (17)

for all ⌘a.
We have now extended the notion of Lie derivative to covariant fields

(the result again being a covariant vector field). Again, we want to work
out some properties. It follows immediately from VF1, Eqn. (13), and the
definition (17) that

Z⇠(µa + ⌫a) = Z⇠µa +Z⇠⌫a (18)

To evaluate Z⇠(↵µa), we use VF2 and the definition (17):

⌘aZ⇠(↵µa) = Z⇠(↵µa⌘
a) � ↵µaZ⇠⌘

a

= µa⌘
aZ⇠↵ + ↵Z⇠(µa⌘

a) � ↵µaZ⇠⌘
a

= ⌘a[µaZ⇠↵ + ↵Z⇠µa]

Since this equation must hold for all ⌘a,

Z⇠(↵µa) = µaZ⇠↵ + ↵Z⇠µa (19)

The last step is to extend the notion of the Lie derivative from scalar and
vector fields to arbitrary tensor fields. The method is the same. We merely
do an example. Let ↵a

bc be a tensor field, and consider the expression

Z⇠(↵a
bcµa⌘

b�c) � ↵a
bc⌘

b�cZ⇠µa � ↵a
bcµa�

cZ⇠⌘
b � ↵a

bcµa⌘
bZ⇠�

c (20)

Repeating (essentially unchanged) the calculation at the top of the preceding
page, we see that the expression (20) is multilinear in µa, ⌘b, �c (in the sense
of (9)). Hence, by the discussion of Sect. 6 (concerning definitions of tensor
fields) the expression (20) defines a tensor field on M, which we denote by
Z⇠↵a

bc. That is to say, we define Z⇠↵a
bc by

µa⌘
b�cZ⇠↵

a
bc = Z⇠(↵a

bcµa⌘
b�c)

� ↵a
bc⌘

b�cZ⇠µa � ↵a
bcµa�

cZ⇠⌘
b � ↵a

bcµa⌘
bZ⇠�

c (21)

This is the Lie derivative of an arbitrary tensor field (in the ⇠a�direction).
Linearity of the Lie derivative, i.e., the fact that

Z⇠(↵a
bc + �

a
bc) = Z⇠↵

a
bc +Z⇠�

a
bc (22)
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follows immediately from VF1.
Eqns. (15) and (19) are suggestive. They can generalized. Let ↵a

bc =
�a

b�c in (21). Then

µa⌘
b�cZ⇠(�a

b�c) = Z⇠(�a
b�cµa⌘

b�c)

� �a
b�c⌘

b�cZ⇠µa � �a
b�cµa�

cZ⇠⌘
b � �a

b�cµa⌘
bZ⇠�

c

= �a
bµa⌘

bZ⇠(�c�
c) + �c�

cZ⇠(�a
bµa⌘

b)

� �a
b�c⌘

b�cZ⇠µa � �a
b�c⌘a�

cZ⇠⌘
b � �a

b�cµa⌘
bZ⇠�

c

= (�a
bµa⌘

b)(�cZ⇠�c) + (�c�
c)(µa⌘

bZ⇠�
a
b)

Since µa,⌘b, and �c are arbitrary, we have

Z⇠�
a
b�c = �

a
bZ⇠�

c + �cZ⇠�
a
b (23)

A similar equation holds, of course, for arbitrary outer products. Note that
Eqns. (15) and (19) (as well as VF2) are special cases in which one factor in
the outer products is a scalar field. Finally, rewriting Eqn. (17) in the form
Z⇠(µa⌘a) = µaZ⇠⌘a + ⌘aZ⇠µa, and noting the definition of contraction, we
see that the contraction of the Lie derivative of any tensor field is equal to
the Lie derivative of its contraction.

We summarize the properties of the Lie derivative in the following:
Theorem 8. Let ⇠a be a contravariant vector field on the manifold M. Then
with any tensor field, ↵a...c

b...d, on M, there is associated a second tensor field,
Z⇠↵a...c

b...d, where this operation on tensor fields has the following proper-
ties:

LD1. Z⇠(↵a...c
b...d + �

a...c
b...d = Z⇠(↵a...c

b...d) +Z⇠(�a...c
b...d).

LD2. Z⇠(↵a...c
b...d�

m...n
p...q) = ↵a...c

b...dZ⇠(�m...n
p...q)

+�m...n
p...qZ⇠(↵a...c

b...d).
LD3. The operations Z⇠ and index substitution can be performed in

either order, with same result.
LD4. The operations Z⇠ and construction can be performed in either

order, with the same result.
Property LD2 is sometimes called the Leibnitz rule. That there are four

properties in Theorem 4 is no coincidence: there are four fundamental op-
erations on tensors (addition, outer product, index substitution, and contrac-
tion), so the properties above express the interaction between Lie derivatives
and these tensor operations. Note that practically every interesting equation
in this section is a consequence of the four properties above, e.g., VF1, VF2,
(13), (15), (17), (18), (19), (21), and (23). Although the definition of the Lie
derivative is, of course, worth knowing, it is the properties above which are
most useful.

Two further remarks about the Lie derivative should be noted. Since Lie
derivatives are always in the direction of a contravariant vector field, the Lie
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derivatives of contravariant vector fields have an especially pretty structure.
Let ⇠a and ⌘a be contravariant vector fields, and, for the purposes of this
paragraph, set [⇠, ⌘] = Z⇠⌘a. Then, from (11), we have immediately

[⇠, ⌘] = �[⌘, ⇠] (24)

Furthermore, we have, for three contravariant vector fields,

[�, [⇠, ⌘]] + [⇠, [⌘, �]] + [⌘, [�, ⇠]] = 0 (25)

(Proof: Apply the left side of (25) to an arbitrary scalar field f . Now expand,
using (11), and note that all the terms cancel.) So, on the contravariant vector
fields on a manifold, there is defined a skew (Eqn. (24)) “bracket” which
obeys Jacobi’s identity (Eqn. (25)). That is to say, the contravariant vector
fields on a manifold have the structure of a Lie algebra.

The second remark concerns the dependence of the Lie derivative on the
vector field representing the direction in which the Lie derivative is taken.
(Theorem 8 refers to the dependence on the tensor field which is “Lie de-
rived”.) We need a bit of notation. Fix a scalar field ↵. Then, foe each ⇠a,
Z⇠↵ is a scalar field. By (12), this scalar field is linear (in the sense of (8))
in ⇠a. Hence, ↵ defines a covariant vector field. This vector field, which is
called the gradient of ↵, is written D(↵)a. Thus, D(↵)a is defined by

⇠aD(↵)a = Z⇠↵ (26)

For Lie derivatives of scalar fields, the dependence on ⇠a is given by (12).
For contravariant vector fields, the dependence follows immediately from
Eqn. (15) and the fact that Z⇠⌘a = Z⌘⇠a:

Z(↵⇠+�)⌘
a = ↵Z⇠⌘

a +Z�⌘
a � ⇠a⌘mD(↵)m (27)

For covariant vector fields, we use Eqn. (17):

⌧aZ(↵⇠+�)µa = Z(↵⇠+�)(⌧aµa) � µaZ(↵⇠+�)⌧
a

= ↵Z⇠(⌧aµa) +Z�(⌧aµa) � µa↵Z⇠⌧
a � µaZ�⌧

a + µa⇠
a⌧bD(↵)b

= ⌧a↵Z⇠µa + ⌧
aZ�µa + µa⇠

a⌧bD(↵)b

Since this holds for all ⌧a, we have

Z(↵⇠+�)µa = ↵Z⇠µa +Z�µa + D(↵)aµb⇠
b (28)

Exercise 33. Prove that, for an arbitrary tensor field, e.g., �a
bc, we have

Z(↵⇠+�)�
a
bc = ↵Z⇠�

a
bc +Z��

a
bc � ⇠a�m

bcD(↵)m

+ D(↵)b�
a
mc⇠

m + D(↵)c�
a
bm⇠

m (29)
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(Hint: Use (27), (28), and (21).) Note that (12), (27), and (28) are special
cases of (29).
Exercise 34. Express Lie derivatives in terms of components.
Example 19. Let ⇠a and µa be vector fields. Then ⇠aµa is a scalar field.
Hence, we have a multilinear mapping (in the sense of (9)) from smooth ⇠a,
µa to smooth scalar fields. So we have defined a tensor field, which we write
�a

b (See Example 15.) That is, �a
b is defined by �a

bµa⇠b = µa⇠a, for every
µa, ⇠b. (This �a

b is called the unit tensor.) We evaluate its Lie derivative.
From Eqn. (21).

↵a�
bZ⇠�

a
b = Z⇠(�a

b↵a�
b) � �a

b�
bZ⇠↵a � �a

b↵aZ⇠�
b

= Z⇠(↵a�
a) � �aZ⇠↵a � ↵Z⇠�

a

But now, from Eqn, (17), we have Z⇠�a
b = 0.

Exercise 35. Find the components of �a
b with respect to a chart, and verify

the conclusion of Example 19 using your formula of Exercise 34.
Exercise 36. A constant scalar field has the property that its Lie derivative
in the direction of every vector field is zero. Thus, one might be tempted to
define a “constant tensor field” as one whose Lie derivative in the direction of
every vector field is zero. Show that this idea does not work, in the following
sense: a “constant tensor field” of rank one necessarily vanishes.
Example 20. Let ⇠a be a vector field, ↵ a scalar field. We prove that

D(Z⇠↵)a = Z⇠D(↵)a (30)

To do this note that

⌘aZ⇠D(↵)a = Z⇠⌘
aD(↵)a � D(↵)aZ⇠⌘

a = Z⇠Z⌘↵ �Z(Z⇠⌘)↵

= Z⌘Z⇠↵ = ⌘
aD(Z⇠↵)a

where we have used (11). Since ⌘a is arbitrary, (30) follows. (That is, the
Lie derivative commutes with the gradient.) Note that Eqn. (30) implies
Eqn. (11).

Exercise 37. Can Z⇠ be defined in any reasonable way when ⇠a is not
smooth?
Exercise 38. Find a list of axioms on an operator K on tensors which are
necessary and su�cient for K = Z⌘ for some vector field ⇠a.
Exercise 38. Let ⇠a and ⌘a be contravariant vector fields. Prove that

Z⇠Z⌘↵
a...c

b...d �Z⌘Z⇠↵
a...c

b...d = Z(Z⇠⌘)↵
a...c

b...d (31)

(This equation generalizes (11).) (For scalars, (31) follows from (11). For
contravariant vectors, contract (31) with D( f )a, f arbitrary, and verify using
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(11). Now extend to covariant vectors, and finally to tensors of arbitrary
rank.)

We shall obtain a more geometrical interpretation of the Lie derivative
later.
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8. Symmetrization and
Antisymmetrization

Let ↵ m d
a bc and �mn cb

a be tensor fields. Set

↵ m d
(a b)c =

1
2

(↵ m d
a bc + ↵

m d
b ac )

↵ m d
[a b]c =

1
2

(↵ m d
a bc � ↵ m d

b ac )

�m(n cb)
a =

1
6

(�mn cb
a + �

mc bn
a + �mb nc

a + �
mn bc

a + �
mc nb

a + �mb cn
a )

�m[n cb]
a =

1
6

(�mn cb
a + �

mc bn
a + �mb nc

a � �mn bc
a � �mc nb

a � �mb cn
a )

More generally, a tensor, written with round brackets surrounding a col-
lection of p consecutive indices (all covariant or all contravariant), means
1/p! times the sum of the p! tensors obtained (using index substitution) by
arranging those p indices in all possible orders. A tensor, written with square
brackets surrounding a collection of p consecutive indices (all covariant or
all contravariant), means 1/p! times a linear combination of the p! tensors
obtained by arranging those p indices in all possible orders, where a plus sign
appears before those tensors in which the arrangement of indices is an even
permutation of the original index arrangement, and a minus sign appears oth-
erwise. These operations are called symmetrization and antisymmetrization
(over the indices in question), respectively. These definitions occasionally
make it possible to write expressions more concisely.

Example 21. ⌧[bac] = �⌧[abc] = �⌧[bca] = ⌧[cba]. ⌧(bac) = ⌧(abc) = ⌧(bca) = ⌧(cba)

Example 22. Set ↵abcde f = �ab[cde] f . Then ↵a[bcde f ] = �a[bcde f ], while
↵a[bcde f ] = 0

Example 23. ⇠m↵[ma�b] = 2/3⇠m↵m[a�b] + 1/3↵ab⇠m�m.

Example 24. If ⌧bac = �⌧abc, ⌧acb = �⌧abc, and ⌧cba = �⌧abc, then ⌧abc =
⌧[abc]. More generally, ↵a...c = ↵[a...c] if and only if reverses sign under inter-

33
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change of any two of its indices.

Example 25. �a...c = �(a...c) if and only if is invariant under interchange of
any two of its indices.

Example 26. If ⇠a⌘b↵ab = �⇠b⌘a↵ab for all ⇠a, ⌘a then (↵ab + ↵bc)⇠a⌘b = 0
for all ⇠a, ⌘a, whence (↵ab + ↵ab) = 0, whence ↵ab = ↵[ab].



9. Exterior Derivatives

We now introduce a second type of “natural derivative” on manifolds. We
summarize its structure:

Lie Derivative Exterior Derivative

Generalization of Directional Gradient
Derivative

Requires A Contravariant Nothing
Vector Field

Applicable to All Tensor Fields Tensor Fields
!a...c = ![a...c]

Index Structure Same as Original Adds One Index
of Result Tensor Field

Thus, the exterior derivative has the advantage over the Lie derivative
that no extraneous tensor fields (i.e., ⇠a) are required, and the disadvantage
that it is applicable only to tensor fields with a certain index structure. We
shall see later that Lie derivatives and exterior derivatives are special cases
(by far the most common and most useful ones) of a more general class of
objects.

The exterior derivative of a scalar field, !, is defined as its gradient,
D(!)m. (See Eqn. (30).) It follows immediately from VF2 that

D(µ!)m = !D(µ)m + µD(!)m (32)

where µ is any scalar field.
Now let !a be a contravariant vector field. Set � = ⇠a!a, and consider

the right side of

⇠mD(!)ma =
1
2
Z⇠!a =

1
2

D(�)a (33)

35
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Replacing ⇠a by ↵⇠a in the right side of (33), we have

1
2
Z↵⇠!a �

1
2

D(x�)a =
1
2
↵Z⇠!a +

1
2

D(↵)a⇠
m!m �

1
2
↵D(�)a �

1
2
�D(↵)a

= ↵
1
2
Z⇠!a � D(�)a

�

were we have used (32) and (28). Hence, Eqn. (33) defines a tensor field,
D(!)ma. This D(!)ma is the exterior derivative of the covariant vector field
!a. To show that D(!)ma is antisymmetric, contract (33) with an arbitrary
⌘a:

⌘a⇠mD(!)ma =
1
2
⌘aZ⇠!a �

1
2
⌘aD(�)a

=
1
2
Z⇠(⌘a!a) � 1

2
!aZ⇠⌘

a � 1
2
Z⌘(⇠a!a)

and note that the last expression above reverses sign under interchange of ⇠a

and ⌘a. (The first and third terms together reverse sign, and the second term
alone reverses sign.) Since ⇠a and ⌘a are arbitrary,

D(!)ma = D(!)[ma] (34)

Finally, replacing !a by µ!a in (33), we have

⇠mD(µ!)ma =
1
2
Z⇠(µ!a) � 1

2
D(µ�)a

=
1
2
µZ⇠!a +

1
2
!aZ⇠µ �

1
2
�D(µ)a �

1
2
µD(�)a

= µ⇠mD(!)ma +
1
2
⇠m(D(µ)m!a � !mD(µ)a)

Since ⇠m is arbitrary,

D(µ!)ma = µD(µ)ma + D(µ)[m!a] (35)

Now let !ab = ![ab] be a tensor field. Set �b = ⇠a!ab, and consider the
right side of

⇠mD(!)mab =
1
3
Z⇠!ab �

2
3

D(�)ab (36)

Replacing ⇠m by ↵⇠m in the right side of (36),

1
3
Z↵⇠!ab �

2
3

D(↵�)ab =
1
3
↵Z⇠!ab +

1
3

D(↵)a⇠
m!mb +

1
3

D(↵)b⇠
m!am

� 2
3
↵D(�)ab �

2
3

D(↵)[a�b] = ↵
1
3
Z⇠!ab �

2
3

D(�)ab

�
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Hence, Eqn. (36) defines a tensor field, D(!)mab, which we call the exterior
derivative of !ab. Contracting (36) with ⌘a,

⌘a⇠mD(!)mab =
1
3
⌘aZ⇠!ab �

2
3
⌘aD(�)ab

=
1
3
Z⇠⌘

a!ab �
1
3
!abZ⇠⌘

a � 2
3

✓1
2
Z⌘�b �

1
2

D()b

◆

=
1
3
Z⇠(⌘a!ab) � 1

3
Z⌘(⇠a!ab) � 1

3
!abZ⇠⌘

a +
1
3

D()b

where we have set  = ⇠a⌘b!ab. Reversing the roles of ⇠a and ⌘a, the first
two terms in the last expression above reverse sign. Since, furthermore, 
reverses sign, the entire expression reverses sign. Hence, since ⇠a and ⌘a are
arbitrary, D(!)mab is antisymmetric in m and a. Since, furthermore, D(!)mab
is (clearly, from(36)) antisymmetric in a and b, we have

D(!)mab = D(!)[mab] (37)

Finally, replacing !ab in (36) by µ!ab,

⇠mD(µ!)mab =
1
3
Z⇠(µ!ab) � 2

3
D(µ�)ab

= µ
✓1
2
Z⇠!ab �

2
3

D(�)ab

◆
+

1
3
!abZ⇠µ �

2
3

D(µ)[a�b]

= µD(!)mab⇠
m + ⇠mD(µ)[m!ab]

Since ⇠m is arbitrary, we have

D(µ!)mab = µD(!)[m!ab] (38)

We proceed by induction (on the rank of !). Let !a...c = ![a...c] have rank
p. Define the exterior derivative of !a...c by

⇠mD(!)ma...c =
1

p + 1
Z⇠!a...c �

p
p + 1

D(�)a...c�b...c = ⇠
a!ab...c (39)

Then, as above, one shows that

D(!)ma...c = D(!)[ma...c] (40)

D(µ!)ma...c = D(µ)[m!a...c] (41)

A tensor field with p covariant indices and no contravariant indices,
which is antisymmetric in all its indices, is called a p-form. Thus, the ex-
terior derivative of a p-form is a (p+1)-form.
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We next establish two further properties of the exterior derivative. Let
!a...c be a p-form. Then

Z⇠D(!)ma...c = D(Z⇠!)ma...c (42)

D(D(!))mna...c = 0 (43)

where, in (42), ⇠a is arbitrary. Eqn. (42) states that exterior derivatives and
Lie derivatives commute. Eqn. (43) states that, if exterior di↵erentiation is
applied twice in succession, the result is zero. (The exterior derivative is
often called the curl.) To prove (42) and (43), we again proceed by induction
on p. First note (Example 30) that (42) holds when ! is a scalar field. Using
this fact, we have, for ! a scalar field,

⇠mD(D(!))ma =
1
2
Z⇠D(!)a �

1
2

D(�)a

=
1
2

D(Z⇠!)a �
1
2

D(�)a = 0

where � = ⇠aD(!)a = Z⇠!. Hence, since ⇠m is arbitrary, (43) is satisfied for
! a scalar field. Now let !a be a vector field. Then

⌘mZ⇠D(!)ma � ⌘mD(Z⇠!)ma

= Z⇠(⌘mD(!)ma) � D(!)maZ⇠⌘
m � 1

2
Z⌘Z⇠!a +

1
2

D(�)a

= Z⇠

✓1
2
Z⌘!a �

1
2

D(µ)a

◆
�
✓1
2
Z(Z⇠⌘)!a �

1
2

D(⌫)a

◆

� 1
2
Z⌘Z⇠!a +

1
2

D(�)a

= �1
2
Z⇠D(µ)a +

1
2

D(⌫)a +
1
2

D(�)a

=
1
2

D(�Z⇠µ + ⌫ + �)a = 0

where we have set � = ⌘mZ⇠!m, µ = ⌘a!a, and ⌫ = !aZ⇠⌘a. Since ⌘a is
arbitrary, (42) is satisfied for a 1-form. Therefore, for !a,

⇠mD(D(!))mna =
1
3
Z⇠D(!)na �

2
3

D(�)na

=
1
3

D(Z⇠!)na �
2
3

D(�)na =
1
3

D()na

where �a = ⇠mD(!)ma, and

a = Z⇠!a � 2⇠mD(!)ma = D(⇠m!m)a
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Therefore, (43) is satisfied for !a a 1-form. Continuing in this way, proving
first (42) and then (43) for each rank, we see that (42) and (43) are true in
general.

One further property of the exterior derivative remains to be shown. Eqn.
(38) suggests that the exterior derivative satisfies a “Leibnitz rule” under
outer product. However, the outer product of two forms, e.g., ↵a...c �d... f , is
not in general antisymmetric. (In fact, it is antisymmetric if and only if one
factor is 0�form or one factor is zero.) To correct this, we take the outer
product and antisymmetrize, i.e., ↵[a...c �d... f ] This is called the wedge prod-
uct of ↵ and �. We now prove the “generalized Leibnitz rule” for exterior
derivatives:

D(!)ma... f = D(↵)[ma...c�d... f ] + D(�)[md... f↵a...c] (44)

where !a... f = ↵[a...c �d... f ]. Let p and q be the ranks of ↵a...c and �d... f , re-
spectively, and set

µb... f = ⇠
a↵ab...c ⌫c... f = ⇠

d�dc... f

�b... f = ⇠
a↵a... f =

p
p + q

µ[b...c�d... f ] +
(�1)p�1q

p + q
↵[b...cd⌫e... f ]

Then

⇠mD(!)ma... f =
1

p + q + 1
Z⇠!a... f �

p + q
p + q + 1

(D)�ab... f

=
1

p + q + 1
↵[a...cZ⇠�d... f ] +

1
p + q + 1

�[d... f Z⇠↵a...c] �
p

p + q + 1
D(⌫)[a...c�d... f ]

� p
p + q + 1

D(�)[ad... fµb...c] �
(�1)p�1q
p + q + 1

D(↵)[ab...d⌫e... f ] �
(�1)p�1q
p + q + 1

D(⌫)[ac... f↵b...d]

= ⇠m
✓
D(↵)[ma...c�d... f ] + D(�)[md... f↵a...c]

◆

which proves (44)
We summarize:

Theorem 9. The exterior derivative satisfies
ED1. D(! + µ)ma...d = D(!)ma...d + D(µ)ma...d
ED2. D(!)ma...d = D(↵)[ma...b�c...d] + D(�)[mc...d↵a...b](!a...d = ↵[a...b�c...d])
ED3. D(D(!))mna...d = 0

Furthermore, the exterior derivative and Lie derivative are related by
ELD1. Z⇠D(!)ma...d = D(Z⇠!)ma...d
ELD2. Z⇠!a...d � pD(�)a...d � (p + 1)⇠mD(!)ma...d = 0

where, in ELD2, we have set �b...d = ⇠a!ab...d, and where !a...d is a p�form.
Exercise 39. Write the exterior derivative in terms of components.
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Example 27. In electrodynamics, the vector potential is a 1-form, Ab. The
electromagnetic field is given by Fab = D(A)ab. It follows from ED3 that
D(F)mab = 0. This is one of Maxwell’s equations.
Example 28. In classical mechanics, the symplectic structure on phase space
is given by a 2-form, S ab, with D(S )mab = 0. A vector field ⇠a on phase
space space is said to generate an infinitesimal canonical transformation if
Z⇠S ab = 0. Setting �b = ⇠aS ab, we see from ELD2 that, if ⇠a generates an
infinitesimal canonical transformation, then D(�)mb = 0. The Hamiltonian
H is a function on phase space. Choose ⇠a such that ⇠aS ab = D(H)b. Then,
from ED3, ⇠a automatically generates an infinitesimal canonical transforma-
tion. This transformation describes the dynamics of the system.



10. Derivative Operators

We have now seen two contexts in which derivatives are applicable to tensor
fields: Lie derivatives and exterior derivatives. The first of these requires
a vector field ⇠a; the second is applicable only to tensor fields with a cer-
tain index structure. The time has now come to ask about derivative-type
operations which satisfy all the nice properties one would ask of such an
operation.

By a derivative operator, we understand a mapping, ra, from tensor
fields to tensor fields, wherera↵ c

m... has one more covariant index than ↵ c
m... ,

this mapping subject to the following conditions:
DO1. ra(↵ c

m... + �
c

m... ) = ra↵ c
m... + ra� c

m... .
DO2. ra(↵ c

m... µ
n...

d) = ↵ c
m... raµn...

d + µ
n...

dra↵ c
m... .

DO3. The derivative operator ra can applied before or after contraction,
with the same result. The derivative operator ra can be applied before or
after index substitution, with the same result.

DO4. For any scalar field ↵, ra↵ = D(↵)a.
DO5. For any scalar field ↵, r[arb]↵ = 0.
Of course, derivative operators rb, rc, etc. are induced from ra by in-

dex substitution. The operator ra cannot be applied to a tensor field having
“a” as a covariant index, i.e., we cannot write ra↵ bc

m ap . If ra is applied to a
tensor field with “a” as a contravariant index, then contraction is understood.
That is, if � bc

am p = ra↵ bc
m p. Then we write ra↵ ba

m p for � ba
am p . Condition

DO1 is, of course, natural for a derivative operator, while DO2 is the Leibnitz
rule again. Conditions DO1 and DO2 are characteristic of things which “be-
have like derivatives”. In more detail, the first statement in condition DO3
means the following. If � bc

am p = ra↵ bc
m p, then � bm

am p = ra(↵ bm
m p). There

is only one reasonable type of “derivative” of a scalar field, namely, the gra-
dient. Condition DO4 ensures that the derivative operator, applied to a scalar
field, is just this gradient. Condition DO5 states that two derivative operators
can be applied to a scalar field in either order (i.e., rarb↵ = rbra↵). That
is to say, derivatives commute on scalar fields. One could require DO5 for
all tensor fields, but this turns out to eliminate most interesting and useful
cases. Occasionally, one sees the notion of a derivative operator introduced

41
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with condition DO5 omitted. These “generalized derivative operators” are
said to have torsion, and, when DO5 happened to be satisfied, the operator
is said to be torsion-free. We shall see shortly that “derivative operators with
torsion” are easily treated within the context of the definition above.
Example 29. Consider the n�dimensional manifold Rn, with its natural chart
(Example 1). Then a tensor field is uniquely characterized by its components
with respect to this chart. If, for example, ↵ bc

a is a tensor field, and ↵ jk
i (x)

(i, j, k = 1, 2, . . . , n) are its components, then denote by rd↵ bc
a the tensor

field whose components, with respect to this chart, are @
@xm↵

jk
i (x) (i, j, k,m =

1, 2, . . . , n). Thisrd is a derivative operator on Rn, i.e., it satisfies DO1–DO5.
The natural question to ask, in response to the definition above, are those

concerning the existence and uniqueness of derivative operators on a given
manifold M. These questions have complete, and relatively simple, answers.
We begin with uniqueness.

Let ra and r0a be two derivative operators. Then, for any covariant
vector fields µb and ⌫b, and any scalar field ↵, we have

(r0a � ra)(↵µb + ⌫b) = µb(r0a � ra)↵ + ↵(r0a � ra)⌫b

= ↵(r0a � ra)µb + (r0a � ra)⌫b

where, in the first step, we have used DO2, and in the second, DO4. Thus,
the left side of

(r0a � ra)µb � �m
abµm (45)

is linear in µb. Therefore, there exists a tensor field �m
ab such that Eqn.

(45) holds for all µb. In particular, setting µb = rb f = r0b f in (45), and
antisymmetrising over “a” and “b”, using DO5), we have �m

[ab]rm f = 0 for
all f . Hence, the tensor field �m

ab necessarily satisfies

�m
[ab] = 0, i..e.,�m

ab = �
m

(ab) (46)

For arbitrary ⇠b and µb, we have

0 = (r0a � ra)(⇠bµb) = ⇠b(r0a � ra)µb + µb(r0a � ra)⇠b

= ⇠b�m
abµm + µm(r0a � ra)⇠m

where, for the first equality, we have used DO4, for the second, DO2 and
DO3, and, for third (45). Since this equation holds for all µm, we have

(r0a � ra)⇠m = ��m
ab⇠

b (47)

for all $xib. Finally, for a general field, e,g., ↵ cd
b ,

0 = (r0a � ra)(↵cd
b ⇠

bµc⌫d) = ⇠bµc⌫d(r0a � ra)↵ cd
b

+ ↵ cd
b µc⌫d(r0a � ra)⇠b + ↵ cd

b ⇠b⌫d(r0a � ra)µc

+ ↵ cd
b ⇠bµc(r0a � ra)⌫d



43

Using (45), (47), and the fact that ⇠b, µc, and ⌫d are arbitrary, we obtain

r0a↵ cd
b = ra↵

cd
b + �m

ab↵
cd

m � �c
am↵

md
b � �d

am↵
cm

b (48)

A similar formula holds, of course, for tensor fields of arbitrary rank.
We summarize:

Theorem 10. Let r0a and ra be derivative operators on the manifold M.
Then there exists a tensor field �m

ab = �
m

(ab) such that Eqn. (48) holds for
any tensor field, ↵ d

b... . Conversely, if ra is any derivative operator on M,
and �m

ab = �
m

(ab) is a tensor field on M, then r0a, defined by (48), is also a
derivative operator.

The first statement of Theorem 10 was proved above. The second is
easy to verify: one has to check that r0a, defined by (48), satisfies DO1 -
DO5. [Exercise 40. Carry out this verification.] [Remark: The situation with
regard to torsion should now be clear. The only place we used DO5 was to
obtain (46). Thus, there is a one-to-one correspondence between operators
which satisfy DO1-DO4 and pairs (ra, �m

ab), where �m
ab = �

m
[ab], and ra is

a derivative operator. The dropping of DO5 merely permits one to “hide” an
extra tensor field �m

ab = �
m

[ab] in his derivative operators.]
Theorem 10 is the whole story concerning uniqueness of derivative op-

erators. A derivative operator is never unique (except when M is zero-
dimensional): one can choose any old tensor field �m

ab = �m
(ab) , 0 and

get another one. If one knows one derivative operator on a manifold, he
knows them all. [underlineExercise 41. Write down the most general deriva-
tive operator on Rn.] The collection of all derivative operators on a manifold
practically have the structure of a vector space, except that there is no natu-
ral “origin”. (That is, there is no natural “zero derivative operator”. If one
randomly chooses some derivative operator, ra, then, by Theorem 10, there
is one-to-one correspondence between the collection of derivative operators
on M and the vector space of tensor fields �m

ab = �m
(ab).) The collection

of all derivative operators on a manifold are a beautiful example of what is
called an a�ne space.

We next consider existence of derivative operator on a manifold. The
situation can be summarized by the following:
Theorem 11. A necessary and su�cient condition that a manifold M possess
a derivative operator is the following: there exists a sub-collection of the
collection of all the charts on M such that i) every point of M is in at least
one of the U0s in this sub-collection, and ii) no point of M is in an infinite
number of U0s in this sub-collection.

A manifold satisfying the conditions of Theorem 11 is said to be para-
compact. [Paracompactness is actually a topological property which, in or-
der to avoid topological questions, we have reformulated in terms of chart.]
Every manifold one is ever likely to see is paracompact. In fact, it is a rather
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subtle business to even contract a manifold which is not paracompact. It is
immediate from the definitions that the manifolds Rn and S n are paracom-
pact. [Exercise 42. Prove that the product of two paracompact manifolds
paracompact. Exercise 43. Prove that the result of “cutting out” a closed re-
gion from a paracompact manifold is a paracompact manifold.] Although the
proof of Theorem 11 is not very di�cult, it is rather technical. Since neither
the statement nor the proof of Theorem 11 is very important for di↵erential
geometry, we omit the proof.

Thus, every reasonable manifold has plenty of derivative operators, with
any one easily obtainable from any other. A few pathological manifolds have
no derivative operators.
Exercise 44. Introduce a chart. express the action of a derivative operator,
ra, in terms of an expression involving the components of the tensor field to
which ra is being applied. There will appear in your expression functions
�i

jk(x), i, j = 1.2, . . . , n. These functions are called the connection. Derive
the (well-known) formula for the behavior of the connection under a coordi-
nate transformation.
Exercise 45. Prove that every manifold has a derivative operator locally.
More precisely, prove that, if p is any point of a manifold M, then there
is an open subset O of M, containing p, such that the manifold O = M �
(M�O) possesses a derivative operator. (Thus, paracompactness is a “global
property” of manifolds.)
Exercise 46. Why do not we introduce a “derivative operator” with a con-
travariant rather than a covariant index?
Exercise 47. Find a derivative operator on S n.
Exercise 48. the derivative operator of Example 29 has the property that
derivatives commute on an arbitrary tensor field. Verify that this property
does not hold for every derivative operator on the manifold Rn.
Exercise 49 Let era be an operator, defined only on covariant vector fields,
which satisfies i) era(µb + ⌫b)�eraµb +era⌫b, ii) era(↵µb) = ↵eraµb +µbD(↵)a,
iii) er[aD(↵)b] = 0. Prove that there exists precisely one derivative operator
ra which, on covariant vector fields, coincides with era.



11. Concomitants

Fix a derivative operator ra and a vector field ⇠a. Then, from DO4, we have

Z⇠↵ = ⇠
ara↵ (49)

for every scalar field ↵. Now let ⌘a be another contravariant vector field.
Then

Z(Z⇠⌘)↵ = Z⇠Z⌘↵ �Z⌘Z⇠↵ = ⇠
brb(⌘ara↵) � ⌘brb(⇠ara↵)

= (⇠brb⌘
a)ra↵ + ⇠

b⌘arbra↵ � (⌘brb⇠
a)ra↵ � ⌘b⇠arbra↵

= (⇠brb⌘
a � ⌘brb⇠

a)ra↵

where we have used DO4 and DO5. Since ↵ is arbitrary, we have

Z⇠⌘
a = ⇠brb⌘

a � ⌘brb⇠
a (50)

Now let µa be a covariant vector field. Then

⌘aZ⇠µa = Z⇠(µa⌘
a) � µaZ⇠⌘

a = ⇠brb(µa⌘
a)

� µa(⇠brb⌘
a � ⌘brb⇠

a) = ⌘a(⇠brbµa + µbra⇠
b)

Since ⌘a is arbitrary, we have

Z⇠µa = ⇠
brbµa + µbra⇠

b (51)

Finally, consider an arbitrary tensor field, e.g., ↵ab
cd. Then

µa⌫b⌘
c⌧dZ⇠↵

ab
cd = Z⇠(↵ab

cdµa⌫b⌘
c⌧d) � ↵ab

cd⌫b⌘
c⌧dZ⇠µa

� ↵ab
cdµa⌘

c⌧dZ⇠⌫b � ↵ab
cdµa⌫b⌧

dZ⇠⌘
c � ↵ab

cdµa⌫b⌘
cZ⇠⌧

d

Substituting (50) and (51), and using the fact that µa, ⌫b, ⌘cand ⌧d are arbi-
trary, we have

Z⇠↵
ab

cd = ⇠
mrm↵

ab
cd � ↵mb

cdrm⇠
a � ↵am

cdrm⇠
b + ↵ab

mdrc⇠
m + ↵ab

cmrd⇠
m

(52)

45
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Thus, using an arbitrary derivative operator ra, we have obtained an “ex-
plicit” expression for the Lie derivative.

It is clear from Eqn. (52) that the right side of this equation must be
independent of the choice of the derivative operator ra (for the left side
certainly is). We verify this explicitly, using Eqn. (48), for the simpler case
in which ↵a

b has only two indices:

⇠mr0m↵a
b � ↵m

br0m⇠a + ↵a
mr0b⇠m = (⇠mrm↵

a
b � ⇠m�a

mn↵
n
b

+ ⇠m�n
mb↵

a
n) � (↵m

brm⇠
a � ↵m

b�
a
mn⇠

n) + (↵a
mrb⇠

m � ↵a
m�

m
bn⇠

n)
= ⇠mrm↵

a
b � ↵m

brm⇠
a + ↵a

mrb⇠
m

An expression involving some tensor fields and a derivative operator ra,
which is independent of the choice of derivative operator, is called a con-
comitant. Thus, the right side of (52) is a concomitant.

Let !a...c be antisymmetric in all indices. We show that the expression

r[m!a...c] (53)

is a concomitant. We first use (48):

r0m!a...c = rm!a...c + �
n
ma!n...c + · · · + �n

mc!a...n

Antisymmetrizing over “ma . . . c”, and using (46), the result follows imme-
diately. We now claim that the concomitant (53) is precisely the exterior
derivative, i.e., that

D(!)ma...c = r[m!a...c] (54)

For !a a scalar field, this is clear. For !a a vector field, set � = !a⇠a. Then

⇠mD(!)ma =
1
2
Z⇠!a �

1
2

D(�)a =
1
2

(⇠mrm!a + !mra⇠
m)

� 1
2
ra(⇠m!m) =

1
2
⇠mrm!a �

1
2
⇠mra!m = ⇠

mr[m!a]

Similarly for higher rank.
In Sections 7 and 9, we defined the Lie derivative and exterior derivative

“algebraically”. We now have expressions for these things as concomitants.
We could just as well have defined the Lie derivative by (52) and the exterior
derivative by (54) (after observing that the right sides of these expressions
are concomitants). The various properties of the Lie and exterior derivatives
are, as a rule, somewhat easier to derive from (52) and (54) than from the
definitions in Sects. 7 and 9. Properties LD1, LD2, LD3, LD4, and Eqn.
(29) follow from Eqn. (52) by inspection. Eqn. (31) for Lie derivatives
follows from (52) after a few lines of calculation. (Exercise 50. Check this.)
Properties ED1 and ED2 follow from (54) by inspection, while ELD1 and
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ELD2 require a few lines of calculation, and ED3 is a bit tricker (although
ED3, too, will become simple after the following section). (Exercise 51.
Verify ELD1 and ELD2 from (52) and (54).)
Exercise 52. Using the remarks above, together with Example 29, write
down the answers to Exercises 34 and 39. (No calculations whatever are
required.)

Concomitants often provide a “brute-force” way of doing things.
Example 30. We give another example of a concomitant. Let ↵a1...ap and
�a1...aq be symmetric in all p indices and all q indices, respectively. Set

[↵, �] = p↵m(a1...ap�1rm�
ap...ap+q�1) � q�m(a1...aq�1rm↵

aq...ap+q�1) (55)

(Why this notation? What is (55) when p = q = 1?) The right side of (55) is
a concomitant:

p↵ma1...ap�1r0m �ap...ap+q�1 � q�ma1...aq�1r0m↵aq...ap+q�1

= p↵ma1...ap�1 (rm �
ap...ap+q�1 � �ap

mn�
n...ap+q�1 � · · · � �ap+q�1

mn �ap...n)

� q �ma1...aq�1 (rm ↵
aq...ap+q�1 � �aq

mn↵
n...ap+q�1 � · · · � �ap+q�1

mn ↵aq...n)

Symmetrizing over the indices “a1 . . . ap+q�1”, we see that all the �m
ab�terms,

cancel out. (A total of q terms arise from rm�..., and p terms from rm↵.... All
these terms are equal, so they all cancel.) This concomitant has some pretty
properties. In fact it satisfies (24) and (25). (Thus, we have a Lie algebra
of totally symmetric contravariant tensor fields.) There is also a “Leibnitz
rule”. We define the only kind of “outer product” we can with these tensor:

↵ \ � = ↵(a1...ap�ap+1...ap+q+1) (56)

Then
(↵, � \ �) = (↵, �) \ � + (↵, �) \ � (57)

(Exercise 53. Verify that the concomitant (55) satisfies (24), (25), and (57).)
Exercise 54. Let ↵a1...ap and �a1...aq be antisymmetric in all p indices and all
q indices, respectively. Prove that the expression

p(�1)p+1↵m[a1...ap�1rm�
ap...ap+q�1] � q(�1)p+pq�m[a1...aq�1 � rm↵

aq...ap+q�1] (58)

is a concomitant.
Exercise 55. Try to make a natural-looking algebra out of the concomitant
of Exercise 54, in the same way as was done in Example 30.
Exercise 56. Let !a...c be a tensor field (not necessarily antisymmetric) Is
r[m!a...c] necessarily a concomitant?

Although by far the most important concomitants are the Lie derivative
and the exterior derivative, the other two described above are also useful for
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certain applications. Although many concomitants have been written down,
there is, as far as I am aware, no systematic procedure known for finding
them all.



12. Curvature

The natural thing to do with derivatives is commute them. By commuting
derivative operators, we are led to curvature.

Let ra be a derivative operator. Then

r[arb]
⇥
↵µc + ⌫c

⇤
= r[a

⇥
↵rb]µc + (rb]↵)µc + rb]⌫c

⇤
= (ra[↵)rb]µc

+ ↵r[arb]µc + µcr[arb]↵ + (r[b↵)ra]µc + r[arb]⌫c

= ↵r[arb]µc + r[arb]⌫c

that is to say, the left side of

r[arb]µc =
1
2

R d
abc µd (59)

is linear in µc. Hence, there exists a tensor field, R d
abc , such that (59) holds

for every µc. Furthermore,

0 = r[arb]
⇥
⇠cµc
⇤
= r[a

⇥
(rb]⇠

c)µc + (rb]µc)⇠c⇤ = µcr[arb]⇠
c

+ (r[b⇠
c)ra]µc + ⇠

cr[arb]µc + (r[a⇠
c)rb]µ

c

= µcr[arb]⇠
c + ⇠cr[arb]µc

Substituting (59) into the last expression, and using the fact that µc is arbi-
trary.

r[arb]⇠
c = �1

2
R c

abd ⇠
d (60)

for every ⇠c. By the standard argument, we have, for a general tensor field,
e.g., ↵cd

ps,

r[arb]↵
cd

ps = �
1
2

R c
abm ↵md

ps �
1
2

R d
abm ↵cm

ps +
1
2

R m
abp ↵cd

ms +
1
2

R m
abc ↵cd

pm

(61)
The tensor field R d

abc is called the Riemann tensor (or curvature tensor)
associated with the derivative operator ra. It is immediate from the defini-
tion, e.g., (59) that

R d
abc = R d

[ab]c (62)

49
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There is one further algebraic condition on the Riemann tensor. Antisym-
metrizing (59) over “a, b, c”, we have r[arbµc] =

1
2 R d

[abc] µd But Eqn. (54)
and ED3 imply that the left side of this equation vanishes. Hence, since µc
is arbitrary,

R d
[abc] = 0 (63)

Eqn. (62) and (63) are the only algebraic conditions on the Riemann tensor
of a general derivative operator. There is, however, an additional di↵erential
condition. Using (59),

rar[brc]µd =
1
2
ra(R m

bcd µm)

=
1
2

(raR m
bcd )µm +

1
2

R m
bcd raµm

Using (61),

r[arb]rcµd =
1
2

R m
abc rmµd +

1
2

R m
abd rcµm

Now antisymmetrize these two equations over “a, b, c”. The left sides be-
come equal; equate the right sides. Then two terms cancel, while another is
eliminated by (63). Thus, we are left with 1

2 (r[aR m
bc]d )µm = 0. Since µm is

arbitrary,
r[aR m

bc]d = 0 (64)

Eqn. (64) is called the Bianchi identity.
To summarize, given any derivative operator on a manifold, there exists a

tensor field field R d
abc such that (61) holds. This Riemann tensor satisfies the

algebraic equations (62) and (63), as well as the di↵erential equation (64).
Exercise 57. Prove that Riemann tensor associated with the derivative oper-

ator of Example 29 is zero.
Example 31. Let ra and r0a be derivative operators, related via Eqn. (48),
and let R d

abc and R0 d
abc be their respective Riemann tensors. We find an

expression for R0 d
abc in terms of R d

abc and �m
ab. For arbitrary µc,

r0ar0bµc = r0a(rbµc + �
m

bcµm) = ra(rbµc + �
m

bcµm)
+ �n

ab(rnµc + �
m

ncµm) + �n
ac(rbµn + �

m
bnµm)

= rarbµc + (ra�
m

bc)µm + �
m

bcraµm

+ �n
ab(rnµc + �

m
ncµm) + �n

acrbµn + �
n
ac�

m
bnµm

Now antisymmetrize this equation over “a” and “b”. The fourth term on the
right vanishes by (46), while the third and fifth terms cancel. Hence,

r0[ar0b]µc = r[arb]µc + µmr[a�
m

b] c + µm�
n
c[a�

m
b]n
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Now use (59) and the fact that µm is arbitrary:

R0 d
abc = R d

abc + 2r[a�
d

b] c + 2�n
c[a�

d
b] n (65)

This is the desired result.
Exercise 58. Verify directly from the right side of (65) that R0 d

[abc] = 0.
Exercise 59. Verify directly that right side of (65) satisfies the Bianchi iden-
tity.
Exercise 60. Derive the standard textbook formula for the components of the
Riemann tensors in terms of derivatives of the connection with respect to the
coordinates. (Use Exercise 57 and Example 31.)

Since derivatives should be commuted, let’s commute a Lie derivative
and a derivative operator.

Z⇠(raµb) � ra(Z⇠µb) = ⇠mrmraµb + (rmµb)ra⇠
m + (raµm)rb⇠

m

� ra(⇠mrmµb + µmrb⇠
m) = ⇠mrmraµb + (rmµb)ra⇠

m + (raµm)rb⇠
m

� ⇠mrarmµb � (rmµb)(ra⇠
m) � µmrarb⇠

m � (raµm)(rb⇠
m)

= 2⇠mr[mra]µb � µmrarb⇠
m = (R m

nab ⇠n � rarb⇠
m)µm

Thus, Z⇠ and ra commute, on all µb, if and only if

� rarb⇠
m + R m

nab ⇠n = 0 (66)

in analogy with (31), we may regard the left side of (66) as the “Lie deriva-
tive of ra in the xia-direction”. (A solution ⇠a of (66) is called an a�ne
collineation.)
Exercise 61. Check that Z⇠ and ra commute when applied to an arbitrary
tensor field if and only if (66) is satisfied.
Exercise 62. Let ⇠a be an a�ne collineation for a derivative operator ra, and
let r0a be another derivative operator, related to ra via (48). Prove that ⇠a is
an a�ne collineation for r0a if and only if Z⇠�m

ab = 0. (this result further
strengthens the remark above concerning the interpretation of the left side of
(66).)
Exercise 63. Prove that R m

abm = �2R m
m[ab] . Using this result, check that the

result of antisymmetrizing (66) over “a” and “b” is an identity. Hence, Eqn.
(66) is equivalent to that equation symmetrized over “a, b”. (In this form,
the left side of (66) has the same structure as �m

ab.)
Exercise 64. Using (65), verify that there are no algebraic conditions on the
Riemann tensor other than (62) and (63). That is, show that, given, given a
tensor R d

abc at a point p, is satisfying (62) and (63), there exists a derivative
operator whose Riemann tensor at p is R d

abc .
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13. Metrics

Let M be a manifold. A metric on M consists of a tensor field gab which
is symmetric (i.e., gab � g(ab)) and invertible (i.e., there exists a tensor field
gab such that gacgbc = �a

c) The study of manifolds with metrics is called
Riemann geometry.

We verify that the inverse, gab, of a metric gab is symmetric and unique.
Symmetry follows from gacgbdgcd = gac�b

c = gab and the observation that,
since gcd is symmetric, so is the left side of this equation. To prove unique-
ness, let gab and g0ab be two inverses for gab. Then

gab = gac�b
c = gac(g0bdgcd) = g0bd�a

d = g0ab

Let M be a manifold with metricgab. It is convenient to incorporate this
metric into the index notation as follows. If, e.g., ↵ rc v

bs d is any tensor field
on M, we set

↵ r v
bs cd = gcm↵

rm v
bs d

↵b rc v
s d = gbm↵ rc v

ms d

↵ rc
bs dv = gvm↵

rc m
bs d

↵ rcdv
bs = gdm↵ rc v

bs m

This operation is called raising and lowering of indices. Evidently, the result
of first raising an index and then lowering that index is to leave the tensor
invariant. Note that the result of raising or lowering an index of a tensor field
depends on the choice of metric. [If two metrics appear on a manifold, one
must either suspend this convention, or select one of the metrics to be the
one to be used in raising and lowering.] The use of this convention has the
consequence that the metric will almost never appear explicitly.

Let gab be a metric on M and p on a point of M. The metricgab is said to
have signature (n+, n�) [n+ and n� are non-negative integers with n+ + n� =
n, the dimension of M] at p if there are n+ vectors ⇠

1

a, . . . , ⇠
n+

a at p, and n�
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vectors ⌘
1

a, . . . , ⌘
n�

a at p such that

⇠
i

a⌘
j
a = 0 (i = 1, . . . , n+; j = 1, . . . , n�)

⇠
i

a⇠
j
a = 0 (i, j = 1, . . . , n+; i , j)

⌘
i

a⌘
j
a = 0 (i, j = 1, . . . , n�; i , j)

⇠
i

a⇠
j
a = +1 (i = j = 1, . . . , n+)

⌘
i

a⌘
j
a = �1 (i = j = 1, . . . , n�)

Introducing a chart, the components of gab at p form an n ⇥ n matrix, which
is invertible. Since every such matrix can be diagonalized, with diagonal
elements all either +1 or �1, and since the number of +1’s and �1’s is in-
dependent of the diagonalization, it is clear that a metric gab has a unique
signature at each point p. (Of course, the ⇠’s and ⌘’s are not unique.) If M is
n-dimensional, there are (n+1) possible signature, (0, n), (1, n�1), . . . , (n, 0).
Since, in terms of a chart, the components of gab are continuous, and since
the matrix of components is invertible at each point, it follows that, if gab
has signature (n+, n�) at p, there is an open subset O of M containing p
such that gab has signature (n+, n�) at each point of O. Thus, the set of
points of M at which gab has any given signature is open. Since the set of
points at which gab has any other signature is also open, the set of points at
which gab has any given signature is also closed. A manifold M is said to
be connected if the only subsets of M which are simultaneously open and
closed are the empty set and M itself. Thus, a metric on a connected mani-
fold M has the same signature at every point. (Exercise 65. Verify that Rn is
connected, and that S n is connected for n � 1. Exercise 66. Prove that the
product of two connected manifolds M is connected. Exercise 67. Find an
example of a connected manifold M and closed subset C such that M �C is
not connected.)

A metric gab on M is said to be positive-definite if gab has signature
(n, 0), negative-definite if signature (0, n), and indefinite if some other sig-
nature, where, in each case, these terms are used only if gab has the same
signature at all points of M. The term “Riemannian geometry” is sometimes
used only when gab is positive-definite, and “pseudo-Riemannian geometry”
otherwise.
Exercise 68. Let the metric gab on M have signature (n+, n�) (everywhere).
Prove that �gab is also a metric on M, and that this metric has signature
(n�, n+).
Exercise 69. Let gab be a positive-definite metric on M, p a point of M.
Prove that, for every vector ⇠a at p, ⇠a⇠a � 0, with equality holding if and
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only if ⇠a = 0.
Exercise 70. Let gab be an indefinite metric on M, p a point of M.

Prove that there exists a nonzero vector ⇠a at p that ⇠a⇠a = 0.
Exercise 71. State and prove the triangle and Schwarz inequalities for vec-
tors at a point of a manifold with positive-definite metric.
Example 32. Let gab and g0ab be metric on M, and suppose that, for every ⇠a,
gab⇠a⇠b = g0ab⇠

a⇠b. We show that gab = g0ab. Replacing ⇠a above by ⇠a + ⌘a,
we have

gab⇠
a⇠b + 2gab⇠

a⌘b + gab⌘
a⌘b = g0ab⇠

a⇠b + 2g0ab⇠
a⌘b + g0ab⌘

a⌘b

But the first term on the left equals the first term on the right, and the last
term on the left equals the last term on the right. Hence, (gab � g0ab)⇠a⌘b = 0
for all ⇠a, ⌘b. Hence, gab = g0ab.
Example 33. We construct a positive-definite metric on S n (n > 0). Let U be
the region yn+1 > 0, and let the coordinates be x1 = y1, . . . , xn = yn. If ⇠a is a
vector field on S n, let ⇠1(x), . . . , ⇠n(x) be its components with respect to this
chart, and let gab be such that gab⇠a⇠b becomes, in this chart, the function
[(⇠0)2 + . . . + (⇠n)2][1 � (x1)2 � . . . � (xn)2]�1. Exercise 72. Prove that this
defines a metric on S n.
Exercise 73. Find a positive-definite metric on Rn, an indefinite metric on
Rn.

One of the most important facts in Riemannian geometry is the follow-
ing:
Theorem 12. Let M be a manifold with metric gab. Then there exists pre-
cisely one derivative operator ra on M such that ragbc = 0.

Before proving Theorem 12, we give an argument which leads to the
desired conclusion under the additional assumption that there exists at least
one derivative operator, r0a via (48). Then

r0agbc = ragbc + �
m

abgmc + �
m

acgbm

We wish to choose ra, i.e., choose �m
ab, such that ragbc = 0. Thus, we have

only to prove that there exists precisely one tensor field �m
ab = �

m
(ab) on M

such that
r0agbc = �

m
abgmc + �

m
acgbm (= 2�(bc)a) (67)

There certainly exists such a tensor field, namely

�m
ab =

1
2

gmn(r0agbn + r0bgan � r0ngab) (68)

(Exercise 74. Substitute (68) into (67).) To see that this solution is unique,
let �̃m

ab be another solution of (67), and set µm
ab = �̃m

ab � �m
ab. Then
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µm
ab = µ

m
(ab), and from (67), µ(ma)b = 0. To prove that µm

ab = 0, we
“interchange indices of µmab”, first the first pair, then the second, etc.:

µmab = �µamb = �µabm = µbam = µbma

= �µmba = �µmab

This argument is interesting because it bring out clearly why Theorem 12 is
true, namely, because �m

ab = �
m

(ab) andr0agbc have the same index structure.
Proof of Theorem 12: For a scalar field ↵, set ra↵ = D(↵)a. For a

covariant vector field, µb, set

raµb =
1
2
Zµgab + D(µ)ab

where µb = gabµa. By (29) and (41), this satisfies ra(↵µb) = ↵raµb+µbra↵.
For a contravariant vector field ⇠a, set

ra⇠
b = gbmra(gmn⇠

n)

Finally, for an arbitrary tensor field, e.g., ↵cd
pq, define its derivative by

µc⌫d⇠
p⌘qra↵

cd
pq = ra(↵cd

pqµc⌫d⇠
p⌘a) � ↵cd

pq⌫d⇠
p⌘qraµc

� ↵cd
pqµc⇠

p⌘qra⌫d � ↵cd
pqµc⌫d⌘

qra⇠
p � ↵cd

pqµc⌫d⇠
pra⌘

q

(Exercise 75. Verify that this ra is a derivative operator, and that ragbc = 0.)
Uniqueness follows from the observation that, if r0a is a derivative operator
with r0agbc = 0, then, from (52) and (54), the action of r0a and ra coincide
in each of the steps above. The ra of Theorem 12 is called the derivative
operator defined by gab. Whenever we have a manifold with metric, and a
derivative operator ra appears without a statement to the contrary, it is to be
assumed that ra is the derivative operator of Theorem 12. As a consequence
of Theorem 12, indices of tensor fields can be raised and lowered either
before or after the application of ra, with the same result. That is, we have

ra↵
cd

m = gdpra↵
c

m p

Given any tensor field, e.g., ↵ cd
b , we write ra↵ cd

b for gamrm↵ cd
b . That

is, raising and lowering of indices extends consistently to the index on the
derivative operator.
Example 34. Let gab be a metric on M, and ⌦ a scalar field on M which is
everywhere positive. Set g0ab = ⌦

2gab. (Exercise 76. Prove that g0ab is a
metric on M. Let ra and r0a be the derivative operators, respectively, with
respect to gab and g0ab. Then ra and r0a are related by (48). We find an
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expression for �m
ab. We have

0 = r0ag0mc = rag0bc + �
m

abg0mc + �
m

acg0bm

= ra(⌦2gbc) +⌦2�m
abgmc +⌦

2�m
acgbm

= 2⌦gbcra⌦ +⌦
2�m

abgmc +⌦
2�m

acgbm

Solving for �m
ab,

�m
ab = �

1
2
⌦�1gmn(gnara⌦ + gnbra⌦ � gabrn⌦ (69)

The change of metric, g0ab = ⌦
2gab is called a conformal transformation.)

Exercise 77. Combining Examples 31 and 34, verify that, under a conformal
transformation, the Riemann tensors of r0a and ra are related by

R0 d
abc = R d

abc +⌦
�1gc[bra]rd⌦ �⌦�1�d

[bra]rc⌦ + 2⌦�2(rc⌦)�d
[bra]⌦

� 2⌦�2(rd⌦)gc[bra]⌦ �⌦�2gc[a�
d

b] (rm⌦)(rm⌦) (raise, lower with gab)

Exercise 78. Find an example of two distinct metrics on a manifold which
determine the same derivative operator. Find metrics of di↵erent signature
which define the same derivative operator.
Exercise 79. Where did we use invertibility of gab in Theorem 12? Find
an example of a symmetric hab (not invertible) annihilated by two distinct
derivative operators.
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14. Curvature Defined by a Metric

We have seen in Sect. 13 that a metric gab on a manifold leads to a unique
derivative operator ra, and in Sect. 12 that a derivative operator on a mani-
fold leads to a Riemann tensor R d

abc . Hence, a Riemann tensor is associated
with any metric. In this case, the Riemann tensor has some further proper-
ties which do not hold for Riemann tensor of an arbitrary derivative operator.
Furthermore, one has, in the presence of a metric, an important tool for ana-
lyzing the Riemann tensor, namely, the ability to raise and lower indices. In
this section, we consider the Riemann tensor in Riemannian geometry.

Let M be a manifold, gab a metric on M, ra the corresponding derivative
operator, and R d

abc the corresponding Riemann tensor. Then

0 = r[arb]gcd =
1
2

R m
abc gmd +

1
2

R m
abd gcm (70)

where the first equality follows from ragbc = 0, and the second from Eqn.
(61). Eqn. (70) merely states that Rabcd = gmdR m

abc is antisymmetrical in
“c, d”. Combining this conclusion with (62) and (63), we have the following
algebraic conditions on the Riemann tensor:

Rabcd = R[ab][cd] (71)

R[abc]d = 0 (72)

These, in fact, exhaust the algebraic conditions on the Riemann tensor in
this case. It is convenient, however, to express them in a somewhat di↵erent
form. Writing (72) explicitly, using (71), we have

Rabcd + Rbcad + Rcabd = 0

(Exercise 80. Why are there three terms on the left instead of six as in the
last equation at the top of page 31?) Using (71) again,

Rabcd � Rbcda � Racbd = 0
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Now antisymmetrize this equation over “b, c, d,”. The second term on the
left vanishes by (72), while the first and third terms are equal. Hence, we
have

Ra[bcd] = 0 (73)

The equation we are after is derived from (71), (72), and (73) using the figure
below.

q = u1 = u2 

 Rabcd

 Rcabd

 Rdacb

 Rcdab

 Rbcad

 Rbdca

At each vertex of the octahe-
dron, there appears a Riemann ten-
sor with its indices in a certain or-
der. Given any face of the octa-
hedron, the sum of the three ten-
sors on the vertices of that triangle
vanishes, by (71), (72). For exam-
ple, the sum corresponding to the
rear face in the top half of the oc-
tahedron is Rbdca + Rcdab + Rdacb,
which, by (71) is equal to Rdbac +
Rdcba + Rdacb, which, by (73), van-
ishes. Now add the four expres-
sions obtained from the four faces
in the bottom half of the figure, and
subtract from this the sum of the expressions obtained from the four faces in
the top half of the figure. Since each expression is zero, the result is zero.
But, when this quantity is written out, all terms which arise from the square
“equator” in the figure will cancel out. (Each such term will appear four
times, twice (with plus signs) because of the sum over the top faces.) Hence,
this quantity, which is zero, becomes 4Rabcd � 4Rcdab. We conclude that

Rabcd = Rcdab (74)

Eqns. (71) and (74) can now be combined into a single equation:

Rabcd = R[cd][ab] (75)

Thus, as a complete set of algebraic conditions on the Riemann tensor, we
may take (72) and (75).
Example 35. Let Rabcd be a tensor field satisfying (75). We show that this
Rabcd satisfies (72) if and only if it satisfies

R[abcd] = 0 (76)

Clearly, (72) implies (76). Next, suppose (76). Then the expression

Rabcd � Rabdc + Radbc � Rdabc
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when antisymmetrized over “a, b, c”, vanishes. Using (75), this is the same
as Rabcd + Rabcd � Rdabc � Rdabc. Hence,

R[abc]d � Rd[abc] = 0

But, from (75), these two terms are equal. Hence, we have (72).
Example 36. We show that the complete set of algebraic conditions on the
Riemann tensor can be expressed by the single condition

Rabcd = R[cd][ab] + R[abcd] (77)

That is, we show that a tensor field Rabcd satisfies (72) and (75) if and only
if it satisfies (77). Clearly, (72) and (75) imply (77). To prove the converse,
antisymmetrize (77) over “a, b, c, d”. All three terms become R[abcd], whence
this quantity must vanish. Discarding this term in (77), we obtain (75). But,
by Example 35, (75) and (76) imply (72).
Exercise 81. One might think he could obtain an additional algebraic condi-
tion on Rabcd by noting that, from Bianchi’s identity,

r[arbRcd]e f = 0

and that, from (61), the left side can be expressed in term of the Riemann
tensor with no derivatives. Check that this yields nothing new.

In Riemannian geometry, a vector field ⇠a is said to be a Killing vector if
Z⇠gab = 0. By (52), ⇠a is a Killing vector if and only if

r(a⇠b) = 0 (78)

The Killing vectors clearly form a vector space. By (31), they form a Lie
algebra. (It is a theorem that, if M is connected, the vector space of Killing
vectors on M, gab is finite -dimensional.)
Exercise 82. The remarks surrounding Eqn. (66) suggest that, if ⇠a is a
Killing vector for M, gab, then ⇠a is an a�ne collineation for ra. Prove it.

Additional curvature tensor fields can be obtained by taking contractions
of the Riemann tensor. The tensor field

Rab = R m
amb (79)

is called the Ricci tensor (from (75), Rab = R(ab)), and the scalar field

R = R m
m (80)

the scalar curvature. Note that the result of contracting any two indices of
the Riemann tensor is either zero or ±Rab, and that the result of contracting
all indices of the Riemann tensor is either zero or ±R. Thus, the Ricci ten-
sor and scalar curvature are the only tensor fields obtainable by contracting
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a single Riemann tensor. The Bianchi identity, (64), implies a di↵erential
identity on Rab and R. Contracting r[aR de

bc] first over “b” and “d”, and then
over “c” and “e”, we obtain

rm(Ram � 1
2

Rgam) = 0 (81)

One should think of the Ricci tensor and scalar curvature as “parts” of the
entire Riemann tensor. This remark is made more explicit by defining the
Weyl tensor by the equation (n = dimension M > 2)

Rabcd = Cabcd +
2

n � 2
(ga[cRd]b � gb[cRd]a) � 2

(n � 1)(n � 2)
Rga[cgd]b (82)

Clearly, Cabcd has all the algebraic symmetries of the Riemann tensor. Fur-
thermore, contracting (82), we see that all contractions of Cabcd, e.g., C m

mab
vanish.
Exercise. 83 Let gab be a metric, ⌦ a positive scalar field, and g0ab = ⌦

2gab
another metric. (That is, we have a conformal transformation.) Let C d

abc and
C0 d

abc be the corresponding Weyl tensors. Prove that C d
abc = C0 d

abc . (This
fact is normally expressed by saying that the Weyl tensor is conformally
invariant.)
Exercise 84. Let ⇠a be a Killing vector. Prove that Z⇠ Rabcd = 0. Prove,
similarly, that the Lie derivative of the Ricci tensor, scalar curvature, and
Weyl tensor in the ⇠�direction are all zero.
Exercise 85. Let Rabcd be a tensor field satisfying (75) and (72), and set
Pabcd = Rc(ab)d Show that Pabcd satisfies

Pabcd = P(cd)(ab) P(abc)d = 0

Find an expression for Rabcd in terms of Pabcd. Finally, show that, given any
tensor field Pabcd satisfying the condition above, your expression yields an
Rabcd satisfying (75) and (72).



15. Smooth Mappings: Action on
Tensor Fields

Let M and M0 be manifolds. Recall that a mapping  : M ! M0 is said to
be smooth if, for every smooth function f 0 on M0, the function f = f 0 ·  on
M is also smooth.
Example 37. Let M = Rn, M0 = Rn0 , and let k be a nonnegative integer
less than or equal to n and less than or equal to n0. Set  (x1, . . . , xn) =
(x1, . . . , xk, 0, . . . , 0). Then, if k = 0, all of M is mapped to the origin of M0.
The smooth mapping  is one-to-one if and only if k = n, and onto if and
only if k = n0. Finally,  is a di↵eomorphism if and only if k = n = n0.

A natural question to ask is: Under what conditions does a smooth map-
ping from one manifold to another carry a tensor at a point, or a tensor field,
form one manifold to the other? This question has a simple and complete
answer, which we now obtain.

We begin with tensors at a point. Let  : M ! M0, a point of M0 be
smooth, let p be a point of M, and let p0 =  (p), a point of M0. Consider
any contravariant vector ⇠a at the point p. Then, for any smooth function f 0
on M0, set ⌘0( f 0) = ⇠( f ), where we have set f = f 0 ·  , and where ⇠( f ) is the
directional derivative as described in Sect. 3. Thus, ⌘0 associates, with any
smooth function f 0 on M0, a real number, ⌘0( f 0). We verify that this ⌘0( f 0)
satisfies DD1–DD3 of Sect. 3. Properties DD1 and DD3 are obvious. To
check DD2, note that, if f 0 = g0h0, then f = gh. Furthermore, f 0(p0) = f (p),
g0(p0) = g(p), and h0(p0) = h(p). The verification of DD2 is now easy:
⌘0(g0h0) = ⇠(gh) = g(p)⇠(h) + h(p)⇠(g) = g0(p0)⌘0(h0) + h0(p0)⌘(g0). Thus, a
contravariant vector ⇠ at the point p of M defines a contravariant vector ⌘0
at the point p0 of M0. We write ⌘0a = ~ p⇠a. Thus, ~ p is a (clearly) linear
mapping from the vector space of contravariant vectors at p of M to the
vector space of contravariant vectors at p0 of M0.

Next, let µ0a be a covariant vector in M0 at p0. Then, if ⇠a is any con-
travariant vector in M at p, consider the number µ0a(~ p⇠a). (This is well-
defined, for ~⇠p⇠a is a contravariant vector in M0 at p0, while µ0a is a con-
travariant vector in M0 at p0.) The number µ0a(~ p⇠a) is clearly linear in ⇠a.
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Hence, we have just described a linear mapping from contravariant vectors
in M at p to real numbers. In other words, we have just described a covariant
vector in M at p. We write this covariant vector as  

 
p µ0a, so  

 
p µ0a, is

defined by the equation ⇠a( 
 

p µ0a) = µ0a(~ p⇠a) for all ⇠a in M at p. Thus,

 
 

p is a (clearly) linear mapping from the vector space of covariant vectors

in M0 at p0 to the vector space of covariant vectors in M at p.
Finally, we extend to tensors – rather than just vectors – at a point. Let

↵a...c be a contravariant tensor (= tensor all of whose indices are contravari-
ant) in M at p. Then, for any vectors µ0a, . . . , ⌫0c in M0 at p0, the right side
of

(~ p↵
a...c)µ0a . . . ⌫

0
c = ↵

a...c( 
 

p µ
0
a) . . . ( 

 
p ⌫
0
c) (83)

is multilinear in µ0a, . . . , ⌫0c. Hence, Eqn. (83) defines a contravariant tensor,
~ p↵a...c, at the point p0 of M0. Similarly, if �0a...c is a covariant tensor in M0
at p0, and ⇠a, . . . , ⌘c are vectors in M at p, then the right side of

( 
 

p �
0
a...c)⇠a . . . ⌘c = �0a...c(~ p⇠

a) . . . (~ p⌘
c) (84)

is multilinear in ⇠a, . . . , ⌘c, defining a covariant tensor,  
 

p �0a...c, in M at p.

Clearly, the mappings ~ p and  
 

p , as extended above to tensor of arbitrary

rank, are linear.
We now have a mapping ~ p from contravariant tensors in M at p to

contravariant tensors in M0 at p0, and a mapping  
 

p from covariant tensors

in M0 at p0 to covariant tensors in M at p. How do these mappings interact
with the tensor operations? We first consider outer product. Let ↵0a...c and
�0b...d be at p0, and ⇠a, . . . , ⌧c, ⌘b, . . . , �d be at p. Then,


 
 

p (↵0a...c�0b...d)
�
⇠a · · · �d = ↵0a...c�

0
b...d(~ p⇠

a) . . . (~ p�
d)

=

↵0a...c(~ p⇠

a) . . . (~ p⌧
c)
�
�0b...d(~ p⌘

b) . . . (~ p�
d)
�

= ( 
 

p ↵
0
a...c)⇠a . . . ⌧c ( 

 
p �
0
b...d)⌘b . . . �d

Evidently,  
 

p (↵0a...c�0b...d) =  
 

p (↵0a...c)  
 

p (�0b...d). Similarly for ~ p.

The second operation to be considered is contraction. Let ↵a...bc...d be at
p, and µ0a . . . , 0b, ⌫0c, . . . , ⇢0d be at p0. Then

(~ p↵
a...d)µ0a . . . 

0
b⌫
0
c . . . ⇢

0
d = ↵

a...d( 
 

p µ
0
a) . . . ( 

 
p 
0
b)( 
 

p ⌫
0
c) . . . ( 

 
p ⇢
0
d)

= ~ p


↵a...d( 

 
p µ
0
a) . . . ( 

 
p 
0
b)
�
⌫0c . . . ⇢

0
d
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where the first equally is just (83), and in the second equality, we are again
using (83), but taking µ0a, . . . , 0b as fixed. Since ⌫0c, . . . , ⇢0d are arbitrary,
we have

(~ p↵
a...d)µ0a . . . 

0
b = ~ p


↵a...d 

 
p µ
0
a) . . . ( 

 
p 
0
b)
�

Finally, noting that every covariant tensor at p0 can be written as a sum outer
products of vectors, we have

(~ p↵
a...bc...d)�0a...b = ~ p


↵a...bc...d 

 
p �
0
a...b

�
(85)

Similarly with contravariant and covariant, p and p0, etc. reversed.
We summarize:

Theorem 13. Let  : M ! M0 be a smooth mapping of manifolds. Let p be
a point of M, and let p0 =  (p), a point of M0. Then there are natural, rank-
preserving mappings ~ p from contravariant tensors in M at p to contravariant
tensors in M0 at p0, and  

 
p from covariant tensor in M0 at p0 to covariant

tensors in M at p, such that:

1. ~ p(↵a...c + c�a...c ) = ~ p↵
a...c + c~ p�

a...c

 
 

p (�0a...c + cµ0a...c ) =  
 

p �
0
a...c + c 

 
p (µ0a...c

where c is a constant.

2. ~ p(↵a...c�b...d) = (~ p(↵a...c)(~ p(�b...s)
 
 

p (µ0a...c ⌫
0
b...d) =  

 
p (µ0a...c)( 

 
p (⌫0b...d

3. (~ p↵
a...bc...d)µ0a...b = ~ p


↵a...bc...d  

 
p µ

0
a...b

�

( 
 

p (µ0a...bc...d)�a...b =  
 

p


⌫0a...bc...d~ p�

a...b
�

Theorem 13 is essentially the whole story regarding tensors at a point.
There are no other “natural” mappings available, i.e., no reasonable way in
general to carry a covariant tensor in M at p to a covariant tensor in M0 at
p0. However, when we pass to tensor fields, some more things are true.

We begin with contravariant fields on M. Let ⇠a...c be such a tensor field.
Then, for each point p of M, ~ p ⇠a...c(p) is a tensor at the point p0 =  (p) of
M! Does this define a tensor field on M0? The answer is no. For one thing,
there may be distinct points p and q of M such that  (p) =  (q) = p0 (i.e.,  
may not be one-to-one; Example 37) and such that ~ p⇠a...c(p) and ~ q⇠a...c(q)
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(both tensors in M0 at p0) are not equal. Which tensor at p0 should we choose
to get a tensor field on M0? Furthermore, there may be points of M0 which
are not the image under of any point of M (i.e.,  may not be onto; Example
37). A contravariant tensor field on M defines no tensor whatever at such
points of M0. Clearly, this is no good.

We try it the other way. Let µ0a...c be a tensor field on M0. Then, for each
point p of M  

 
p (µ0a...c(p0) is a covariant tensor at p. Since this is true for

each point p of M, we have defined a covariant tensor field on M. Thus, with
each covariant tensor field µ0a...c on M0 we associate a covariant tensor field,
 
 
µ0a...c on M. (We have not yet proven that  

 
µ0a...c is smooth if µ0a...c is.)

Evidently, the linearity and outer-product behavior from Theorem 13 extend
from tensors at a point to tensor fields.

The mapping  
 

is not very interesting unless it takes smooth tensor fields

to smooth tensor fields. We now show that it does. First, scalar fields (co-
variant tensor fields of rank zero). If f 0 is a smooth scalar field on M0, then
 
 

f 0 = f = f 0 ·  is also smooth, by the definition of a smooth mapping. We

next show that
D( 
 

f 0)a =  
 

[D( f 0)a] (86)

Let ⇠a be a vector in M at p. Then

⇠aD( 
 

f 0)a
���
p = ⇠

aD( f )a
���
p = ⇠( f ) = [~ p⇠]( f 0)

= (~ p⇠
a)D( f 0)a

���
p = ⇠

a 
 

[D( f 0)a]
���
p

where the second equality is the definition of the gradient, the third is the
definition of ~ p, the fourth is the definition of the gradient, and the fifth is
the definition of  

 
. That is to say, Eqn. (86), evaluated at any point p of

M and contracted with any contravariant vector in M at p, holds. Hence,
Eqn. (86) holds. Now let µ0a be a covariant vector field in M0. Then, for
each point p0 of M0, there exists an open subset O0 of M0, containing p0, and
smooth functions f 0, g0 . . . , h0, k0 on M0 such that, in O0,

µ0a = f 0 D(g0)a + . . . + h0 D(k0)a (87)

(Proof: Introduce a chart, use components, and repeat the discussion of page
20.) Hence, from (86)

 
 
µ0a = ( 

 
f 0) D ( 

 
g0)a + . . . + ( 

 
h0)D ( 

 
k0)a (88)

Since the right side of (88) is smooth, we conclude that  
 
µ0a is smooth in

~ �1[O0]. But every point of M0 is contained in such an O0, and so  
 
µ0a is
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smooth on M. Finally, let ↵0a...c be a tensor field on M0 of arbitrary rank.
Then every point of M0 is contained in an open set in which

↵0a...c = µ
0
a · · · k0c + · · · + ⌫0a · · · ⇢0c (89)

Then, in  �1 of this open set,

 
 
↵0a...c = ( 

 
µ0a) · · · ( 

 
0c) + · · · + ( 

 
⌫0a) · · · ( 

 
⇢0c)

Since the right side is smooth, so is the left, Since every point of M0 is
contained in such an open set,  

 
↵0a...c is a smooth tensor field on M.

Thus,  
 

is a rank-preserving mapping from smooth covariant tensor

fields on M0 to smooth covariant tensor fields on M. Finally, we drove that
“ 
 

commutes with exterior di↵erentiation:”

 
 

D(!0)ma...c = D( 
 
!0)ma...c (90)

For !0 a 0�form, (90) is just (86). For !0 a 1�form, we take the exterior
derivative of (87),

D(!0)ma = D( f 0)[mD(g0)a] + · · · + D(h0)[mD(k0)a]

and apply  
 

,

 
 

D(!0)ma = D( 
 

f 0)[m D( 
 

g0)a] + · · · + D( 
 

h0)[m D( 
 

k0)a]

= D( 
 

f 0 D( 
 

g0) + · · · +  
 

(h0) D( 
 

k0))ma

= D( 
 
!0)ma

For !a...c a p�form, we take the exterior derivative of (89),

D(↵0)ma...c = D(µ0)ma · · · 0c + · · · + µ0a · · ·D(0)mc

+ · · · + D(⌫0)ma · · · ⇢0c + · · · + ⌫0a · · ·D(⇢0)mc

and apply  
 

,

 
 

D(↵0)ma...c = D( 
 
µ0)ma · · ·  

 
0c + · · · +  

 
µ0a . . .D( 

 
0)mc

+ · · · + D( 
 
⌫0)ma · · ·  

 
⇢0c + · · · +  

 
⌫0a · · ·D( 

 
⇢0)mc

= D( 
 
↵0)ma···c
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To summarize,
Theorem 14. The mapping  

 
p of Theorem 13 extends to a mapping,  

 
from

(smooth) covariant tensor fields on M0 to (smooth) covariant tensor fields on
M, with  

 
satisfying the following:

1.  
 

(�0a···c + µ
0
a···c) =  

 
(�0a···c) +  

 
(µ0a···c).

2.  
 

(mu0a···c⌫0b···d) =  
 

(µ0a···c) 
 

(⌫0b···d).

3. For!a··· a p�form,  
 

D(!)ma··· = D( 
 
!)ma···c

We summarize what exists in the following table:

Tensor at a point Tensor fields

 : M ! M0 contra-
variant

co-
variant mixed contra-

variant
co-

variant mixed

From M to M0 ~ p — — — — —

From M0 to M —  p
 

— —  
 —

Finally, suppose that  : M ! M0 is a di↵eomorphism, so  �1 : M0 !
M also exists and is smooth. Let ↵0a···cb···d be a tensor field on M0. Then, for
any vector fields µa · · · ⌫c on M, the right side of

�a...c
b···d µa · · · ⌫c =  

 


↵0a···cb···d ( 

 
�1µa) · · · ( 

 
�1⌫c)
�

is linear in µa · · · ⌫c. Hence, we define a tensor field, �a...c
b···d on M. Clearly,

a di↵eomorphism between two manifolds defines a one-to-one correspon-
dence between the tensor fields on one manifold and those on the other,
where this correspondence preserves everything (rank, symmetry, number of
contravariant and covariant indices, commutes with addition, outer product,
index substitution, and contraction, commutes with Lie and exterior di↵eren-
tiation, etc.). This is to be expected. A di↵eomorphism between manifolds
means they are “identical as manifolds”, while tensor fields exist on things
with a manifold structure.
Exercise 86. Determine ~ p and  

 
p for the mappings of Example 37.

Exercise 87. Why don’t we write  
 

p0 instead of  p
 

?

Exercise 88. Why don’t we ask what happens to Lie derivatives under  
 

?

Exercise 89. Find an example of a smooth onto mapping  such that ~ p
is an isomorphism (of vector spaces) for every p, but such that  is not a
di↵eomorphism.
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Exercise 90. Let  : M ! M0 be smooth, so ' ·  : M0 ! M00 be smooth,
so ' ·  : M ! M00 is smooth. Prove that | 

 
| · |'
 
| = (' ·  )

 
. Let p be a

point of M, p0 =  (p), and p00 = '(p0). Prove that (' ·  )
 

p =  
 

p · '
 

p0 and

~(' ·  )p = ~�p0 · ~ p.
Exercise 90a. Find an example in which g0ab is a metric on M0, but  

 
g0ab is

not a metric on M.
Exercise 91. Let  : M ! M0 be smooth. Show that there is no natural way,
in general, to take a derivative operator from M to M0, or to take a derivative
from M0 to M.
Exercise 92. Let  : M ! M0 be smooth. Let ⇠a be a vector field on M such
that, for every point p of M, ~ p ⇠a(p) = 0. Prove that, for every ↵0a···c on M0,
Z⇠ ( 

 
↵0a···c) = 0

Exercise 93. Prove that ~ p (resp.  
 

p ) is onto if and only if  
 

p (resp. ~ p) is

one-to-one.
Exercise 94. Let gab be a metric on M, and g0ab a metric on M0. A di↵eo-
morphism  : M ! M0 is said to be an isometry if  

 
g0ab = gab. Prove that,

if  is an isometry, then  
 

R0abcd = Rabcd.

Exercise 95. Express the action of ~ p in terms of components with respect
to charts. (The mapping ~ p is often called the derivative of  at p.)
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16. Bundles

We have seen several situations in which, at each point of a manifold, there
sits a “space”. For example, at each point p of a manifold, we have the space
of contravariant vectors at p. There exists a class of mathematical objects,
called fibre bundles, in which structure of this general type is isolated. A
certain class of fibre bundles, the smooth vector bundles, are rather simpler to
define, and, furthermore, su�ce for essentially all applications in di↵erential
geometry. In this section, we define a smooth vector bundle, and derive a few
of its elementary properties.

π

 B

 M p

  π
−1 p⎡⎣ ⎤⎦

A smooth vector bundle con-
sists, firstly, of a manifold B (called
the bundle space), a manifold M
(called the base space), and a
smooth mapping ⇡ : B! M (called
the projection). For each point p of
M, the subset ⇡�1[p] (i.e, the set of
all points P of B such that ⇡(P) = p)
of B is called the fibre over p. It
is convenient to represent this sit-
uation by a figure with the bundle
space drawn over the base space, and the projection mapping taking each
point of B “vertically downward” to the point of M directly below it:

In terms of the figure, the fibre over p is the vertical line in B directly
above p. We next require that each fibre have the structure of a k�dimensional
vector space, where the non-negative integer k is fixed (i.e., does not vary
from one fibre to another). In more detail, this means that linear combina-
tions (with real coe�cients) of elements of a single fibre are defined, that
these combinations are again elements of that fibre, and that all the axioms
for a k�dimensional vector space are satisfied by this operation on this one
fibre. (We cannot “add” elements of di↵erent fibres.)

This is not quite the end of the definition. We still wish to ensure that “lo-
cally, the bundle space B is a product of the base space and a k�dimensional
vector space.” This idea is formulated as follows. Let U be a “su�ciently
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small” open subset of M. Then ⇡�1[U] (i.e., the subset of B consisting of all
points of B which are mapped into U by ⇡) should have “exactly the same
structure” as U ⇥ Vk, where Vk is a k�dimensional vector space (and, there-
fore, a k�dimensional manifold, so U ⇥ Vk is a product of manifolds). That
is, we require that there exists a di↵eomorphism  : U⇥Vk ! ⇡�1[U] which
is “structure preserving”. What is there to be preserved? For each point p
of U, denote by {p} the subset of U ⇥ Vk consisting of all pairs (p, v), for
all elements v of Vk. We require, firstly, that  map each subset of U ⇥ Vk

of the form {p} onto the fibre over p. In other words,  should be “fibre
preserving”. That is, we require that the point  (p, v) of B lie in the fibre
over p. That is, we require that ⇡ ·  (p, v) = p. There is one more piece
of structure to be preserved by  . Each subset {p} of U ⇥ Vk is, of course,
a k�dimensional vector space. But each fibre in B is also a k�dimensional
vector space. Since  takes {p} to the fibre over p, we might as well require
that that  also preserve the vector-space structures. Explicitly, we require
that, for v and w in Vk and c a number,  (p, v + cw) =  (p, v) + c (p,w).
(Note that the right side is well-defined, for  (p, v) and  (p,w) lie in the
same fibre, namely, the fibre over p.) Thus, the “local product” condition is
that, for every point q of M, there exists an open subset U of M and a di↵eo-
morphism  : U ⇥ Vk ! ⇡�1[U] which is fibre-preserving and vector-space
structure preserving.

We summarize this discussion with the definition. A (smooth) vector
bundle consists of a manifold B, a manifold M, a smooth mapping ⇡ : B !
M, a non-negative integer k, and a k�dimensional vector space structure on
⇡�1[p] for each point p of M such that: for each point q of M there is an open
subset U of M, containing q, and a di↵eomorphism  : U ⇥ Vk ! ⇡�1[U]
satisfying i) ⇡ ·  (p, v) = p, and ii)  (p, v + cw) =  (p, v) + c (p,w).
Example 38. Let M be a manifold, and Vk a k�dimensional vector space.
Set B = M⇥Vk, and let ⇡ : B! M be defined by ⇡(p, v) = p. Then the fibre
over a point p of M is the collection of all points (p, v) of B for all v in Vk.
Clearly, these fibres have the structure of a k�dimensional vector space. It
is also clear that this is a fibre bundle. (Not only is B a “local product”, but
also a “global product”.)
Example 39. Let M = R1, so a point of M is a real number x. Let B = R2, so a
point of B is a pair, (y, z), of real numbers. Let ⇡ be defined by ⇡(y, z) = y3, a
point of M. Then the fibre over the point x of M is the subset of B consisting
of pairs (x1/3, z), for all z. These fibres have an obvious one-dimensional
vector space structure, i.e., (x1/3, z) + c(x1/3,w) = (x1/3, z + cw). However,
this is not a vector bundle, for B is not a local product near the point x = 0
of M. (Exercise 96. Verify that the above structure does not define a vector
bundle.)

We now obtain a few properties of vector bundles. Note, firstly, that the
projection ⇡must be onto M, for, if a point q of M were not in the image of B
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under ⇡, then ⇡�1[q] would be the empty set. But the empty set cannot have
the structure of a k�dimensional vector space. Next, note, that, if the base
space M is n�dimensional, and if the fibres are k�dimensional vector spaces,
then the bundle space B must have dimension (n+k). This is immediate from
the local product property and the fact that, for products of manifolds, the
dimensions add. (That is, U ⇥ Vk has dimension (n + k).) The next property
is slightly more subtle. Let P be a point of B, and let ⇡(P) = p, a point of
M. Then ~⇡P is a linear mapping from the (n + k)�dimensional vector space
of contravariant vectors in M at p. We want to describe this mapping ~⇡P in
more detail. Let U and  : U ⇥ Vk ! ⇡�1[U] be as in the local product
part of the definition, and let v be the element of Vk such that  (p, v) = P.
Let ↵ : U ! U ⇥ Vk be defined by ↵(q) = (q, v), and � : Vk ! U ⇥ Vk

defined by �(w) = (p,w). Then  · � : Vk ! B maps Vk to the fiber over
p. Hence, ⇡ ·  · � : Vk ! M maps all of Vk to the single point of p
of M. Hence, any contravariant vector in the manifold Vk at the point v is
mapped, by ( ~⇡ ·  · �)v to the zero contravariant vector in M at p. On the
other hand, ⇡ · ·↵ : U ! U is just the identity mapping. Hence, ( ~⇡ ·  · ↵)p
maps a contravariant vector in U at p to that same contravariant vector in
U at p. Thus, the (n + k)�dimensional vector space of contravariant vectors
in B at P has a k�dimensional subspace consisting of vectors which get
mapped to zero, and a n�dimensional subspace consisting of vectors which
(except for the zero one) do not get mapped to zero. That is, ~⇡P, a linear
mapping from a (n + k)�dimensional space to an n�dimensional space, is
onto, and annihilates a certain k�dimensional subspace of the vector space of
contravariant vectors in B at P. Since vector bundles are “locally products”,
things like ~⇡P, which are local, have exactly the same properties that they
have for products.

fibres 

π

 B

 M

Example 40. If, in Example 38, we let
M = S 1 (the circle), and k = 1 (so Vk is
a one-dimensional vector space, i.e., a
line), then the bundle space B is, a man-
ifold, the cylinder, S 1 ⇥ R1. But there
is another bundle with base space S 1,
and with k = 1, which is not a simple
product. Let B consist of pairs, (✓, x), of
real numbers, where the pair (✓, x) and
(✓ + n 2⇡, ±x) are identified, with the plus sign if n is an even integer, minus
sign if an odd integer. Let M consist of numbers ✓, with ✓ and ✓ + n 2⇡ (n an
integer) identified. Thus, M = S 1 (setting tan ✓ = y2/y1 to obtain the usual
representation of S 1). Set ⇡(✓, x) = ✓. The fibre over a point ✓ of M consists
of all pairs, (✓, x), with vector space structure (✓, x) + c(✓, y) = (✓, x + cy).
This is a vector bundle. Of course, the bundle space B is the Mobious strip.

Why bother with these vector bundles and “local product structures” in-
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stead of just considering products as in Example 38? Vector bundles have
two nice properties that products do not. Firstly, Example 40 shows that vec-
tor bundles can have interesting global structure not possible for a product.
Most vector bundles in practice are not products. Secondly, and more impor-
tant, vector bundles have certain of the structure of a product “washed out”.
In the product, M ⇥ Vk, one can say that two points, (p, y) and (q,w), lie “at
the same places on their respective fibres” if v = w (elements of Vk). In other
words, there are natural isomorphisms between all the fibres. This is struc-
ture which is not present in a general vector bundle. In general, one cannot
compare points on di↵erent fibres. This is what is wanted for applications.
Exercise 97. Define an isomorphism of vector bundles.
Exercise 98. Prove that B is connected if and only if M is.
Exercise 99. Prove that every vector bundle with base space M = R1 is a
product bundle.
Exercise 100. Prove that S 2 is not the bundle space for any vector bundle.
Exercise 101. Consider two vector bundles with the same base space M, and
with fibres of dimension k and k0. By taking the direct sum (of vector spaces)
within each fibre, obtain a third vector bundle with base space M, and fibres
of dimension (k + k0).



17. The Tensor Bundles

With any manifold M there is associated a collection of vector bundles with
base space M, and with fibre over a point p of M consisting of tensors in M
at p. These are the bundles which are particularly interesting in di↵erential
geometry. We now introduce them.

Let M be an n�dimensional manifold. Denote by B the set consisting of
all pairs (p, ⇠a), where p is a point of M and ⇠a is a contravariant vector in
M at p. Define a mapping ⇡ from the set B to the manifold M as follows:
⇡(p, ⇠a) = p. For each point p of M, introduce the obvious n�dimensional
vector space structure on ⇡�1[p], i.e., (p, ⇠a) + c(p, ⌘a) = (p, ⇠a + c⌘a). Our
plan is to make (B,M, ⇡) into a vector bundle. What must be done is to intro-
duce a manifold structure on B, show that ⇡ is then a smooth mapping, and,
finally, show that B is, locally, a product. These three things are all done at
once. Let (U,') be a chart on M, so each point of U is labeled by n coor-
dinates, x1, . . . , xn. A contravariant vector in M at this point can be labeled
by its n components with respect to this chart, ⇠̃1, . . . , ⇠̃n. Thus, each point
of the subset ⇡�1[U] of B is labeled by 2n numbers, (x1, . . . , xn, ⇠̃1 . . . , ⇠̃n).
This will be a chart on B. These charts are clearly compatible, so we are led
to a manifold structure on B. Furthermore, since ⇡, applied to the point of B
with coordinates (x1, . . . , xn, ⇠̃1, . . . , ⇠̃n), is the point of M with coordinates
(x1, . . . , xn), ⇡ is certainly smooth. Finally, it is also clear that B is locally a
product. Let Vn be labeled by n�tuples, (⇠̃1, . . . ⇠̃n), and let  , applied to the
point of U ⇥Vn represented by (p; ⇠̃1 . . . , ⇠̃n). That this  has all the required
properties is, once again, clear. In words, a chart on M, since contravari-
ant vectors can then be expressed in terms of components, induces a natural
chart on B.

Thus, any manifold M defines a vector bundle in which the base space is
M, the bundle space is the collection of contravariant vectors at points of M,
the fibre over a point p of M is the vector space of contravariant vectors at
p, and the projection takes a contravariant vector at a point of M to the point
at which that vector is. This vector bundle is called the tangent bundle of M,
T M. (Note that the bundle structure is just right here. It is meaningless to say
that a contravariant vector at one point of M is “the same” as a contravariant
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vector at another point of M. The notation of a vector bundle, conveniently,
also does not allow such a comparison.)

Similarly, the vector bundle with base space M, fibre over the point p of
M the n�dimensional vector space of covariant vectors at p, bundle space the
collection of all covariant vectors at points of M, etc. is called the cotangent
bundle of M, CM.

More generally, consider tensors with a given index structure, e.g., ↵ac d
rq ,

at points of M. Using exactly the same argument as above, we have a vector
bundle with base space M, and fibre over the point p of M tensors in M
at p with precisely this index structure. (In this example, k = n5.) The
vector space structure in each fibre is, of course, the vector space structure
on tensors at a fixed point p of M. These are called the tensor bundles of M.
(They are, of course, still vector bundles in the sense of Sect. 16.)
Example 41. Let M be a manifold. Let B be the collection of pairs (p,↵ac d

rq ),
where ↵ac d

rq is a tensor at p satisfying ↵bc d
nq = ↵

a[c d]
nq (or any other linear

condition on ↵). Then, as above, we obtain a vector bundle with base space
M.
Example 42. Let M be a manifold. Let B be the collection of triples,
(p, �a

b, �
de

f ), where �a
b, and �de

f are tensors at p. Set ⇡(p, �a
b, �

de
f ) = p.

Define addition in the fibres by (p, �a
b, �

de
f ) + c(p, ⌧a

b, µ
de

f ) = (p, �a
b +

c⌧a
b, �

de
f + cµde

f ).
Then, as above we have a vector bundle with base space M.

Exercise 102. Why is there no vector bundle with “derivative operators”
replacing tensors?. Why is there no vector bundle with “metrics” replacing
tensor?
Exercise 103. Prove that all the tensor bundles of Rn are products.
Exercise 104. Using the fact that every vector field on S 2 vanishes at some
point, prove that the tangent bundle of S 2 is not a product.
Exercise 105. Suppose we have a di↵eomorphism between M and M0. Find
a di↵eomorphism between the bundle spaces of their cotangent bundles.
Exercise 106. Find a natural di↵eomorphism between the bundle space of
the tangent bundle of the product of two manifold and the product of the
bundle spaces of the tangent bundles of the two manifolds.
Exercise 107. Why is R7 not the bundle space of the cotangent bundle of any
manifold?
Exercise 108. Show that a metric on M defines a natural di↵eomorphism
between the bundle space of the tangent bundle of M and the bundle space
of the cotangent bundle of M. (Raising and lowering.)
Example 43. In classical mechanics, the configuration space of a system is
a manifold M. The Lagrangian is a function on the tangent bundle of M.
The cotangent bundle of M is called phase space, and the Hamiltonian is a
function on the cotangent bundle.
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Example 44. Let M be a manifold. There is a natural covariant vector field
on the cotangent bundle of M. Let P be a point of CM, so P consists of a
pair (p, µa), where µa is a covariant vector in M at the point p = ⇡(P) of
M. A covariant vector in CT at P assigns, to each contravariant vector in
CT at P, a real number. Let ⇤ be a contravariant vector in CT at P, and
consider the number µa(�a) where �a = ~⇡P ⇤ is a contravariant vector in M
at p. This assignment defines a covariant vector at each point P of CM, and
hence a covariant vector field (Exercise 109. Prove smooth.) on CM. In
classical mechanics, the exterior derivative of this covariant vector field is
the symplectic structure on phase space.

Let M be a manifold, and let B be one of the tensor bundles over M. A
mapping which takes each point p of M to a point of the fibre over p certainly
assigns a tensor of the appropriate type to each point of M, and conversely.
In other words, there is a natural, one-to-one correspondence between (not
necessarily smooth) tensor fields on M and (not necessarily smooth) map-
pings � : M ! B which satisfy ⇡ · � = the identity di↵eomorphism on M.
We prove:
Theorem 15. The tensor field is smooth if and only if the mapping � : M !
B is smooth.

Proof: We do the case for the tangent bundle, all others being identical.
Let (U,') be a chart on M. Then � : M ! B is represented by n functions
of n variables: �(x1, . . . , xn) = (x1, . . . , xn, ⇠̃1(x), . . . , ⇠̃n(x)). Clearly, � is
smooth if and only if, for every such chart, the functions ⇠̃1(x), . . . , ⇠̃n(x)
are C1. But a contravariant vector field on M is smooth if and only if its
components in every chart are C1 functions of the coordinates.

Let (B,M, ⇡) be a vector bundle. A smooth mapping � : M ! B such
that ⇡ · � = identity on M is called a smooth cross section. Thus, for the
tensor bundles, the cross sections are precisely the smooth tensor fields. We
could have just as well have defined a smooth tensor field as one obtained
as a smooth cross section, so smoothness of tensor fields would be obtained
from smoothness of maps.
Exercise 110. prove that every vector bundle possesses a cross section.

The fibre over p in the tangent bundle (resp. cotangent bundle) is called
the tangent space (resp. cotangent space of p).
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18. Smooth Mappings: Action on
Tensor Bundles

Let  : M ! M0 be smooth. Recall, from Sect. 15, that this  induces a
mapping ~ p from contravariant tensor in M at p to contravariant tensors in
M0 at p0 =  (p), a mapping  

 
p from covariant tensors in M0 at p0 to covari-

ant tensors in M at p, and a mapping  
 

from covariant tensor fields on M0 to

covariant tensor fields on M0. This discrimination against contravariant ten-
sors is corrected, to a certain extent, when we ask what mappings  induces
on the corresponding tensor bundles. We now ask this.

Let  : M ! M0 be smooth. Then, for each point p of M,  
 

p is a linear

mapping from the cotangent space of p0 =  (p) to the cotangent space of p.
Does this  

 
p induce a mapping from the cotangent bundle of M0, CM0, to

CM? No. For one thing, certain points of M0 may not even be in the range
of  , so the fibres over such points would not have anywhere to be mapped
to. Furthermore, two distinct points, p and q, of M might be mapped, by  ,
to the same point of M0, whence there would be ambiguity as to where the
cotangent space of this point of M0 should be mapped to.

Of course, it works the other way around. Let p be a point of M, ⇠a a
vector in M at p, so (p, ⇠a) is a point of T M. Then ( (p), ~ p(⇠a)) is a point
of T M0, for ~ p ⇠a is a contravariant vector in M0 at the point  (p) of M0.

Hence,  induces a mapping
{
 : T M ! T M0. We prove that this mapping

is smooth. Let (U,') be a chart on M, and (U0,'0) a chart on M0. Then
x1, . . . , xn are coordinates in U, while x01, . . . , x0n

0
are coordinates in U0. In

terms of these charts, the action of  is represented by n0, C1 functions of
n variables, x01(x1, . . . , xn), . . . , x0n

0
(x1, . . . , xn). A point of T M in ⇡�1[U] is

represented by a 2n-tuple of numbers (x1, . . . , xn, ⇠̃1, . . . , ⇠̃n), and similarly
for M0. In terms of these charts on T M and T M0, the action of

{
 is as fol-

lows:
{
 (x1, . . . , xn, ⇠̃1, . . . , ⇠̃n) = (x01(x), . . . , x0n

0
(x), ⌃i⇠̃i @x0 j

@xi |x . . . ,⌃i⇠̃i @x0n
0

@xi |x).
That is, we have 2n0 functions of 2n variable. Since these functions are C1,
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the mapping
{
 is smooth.

The general situation is now clear.  : M ! M0 induces a smooth map,
{
 , from a tensor bundle over M to a tensor bundle over M0, provided the ten-
sor bundle over M consists of tensors all of whose indices are contravariant.
No natural mappings are induced on the mixed bundles or covariant tensor
bundles.

Finally, we note that  · ⇡ = ⇡0 ·
{
 , and equation which states that the

fibre over a point p of M is mapped, by
{
 to the fibre over  (p) of M0.

The second half of the table on p. 68 can now be written in a more
symmetrical form:

 : M ! M0
contra-
variant
tensor
fields

co-
variant
tensor
fields

mixed
tensor
fields

contra-
variant
tensor
bun-
dles

co-
variant
tensor
bun-
dles

mixed
tensor
bun-
dles

From M to M0 — — — {
 — —

From M0 to M —  
 — — — —

Of course, if  : M ! M0 is a di↵eomorphism, then  induces a dif-
feomorphism between all the tensor bundles of the same index type, this
di↵eomorphism preserving all structure (i.e., their fibres, the vector-space
structure, etc.).

Exercise111. Let  : M ! M0 and ⇤ : M0 ! M00 be smooth. Prove that
{
⇤ ·

{
 =

{
(⇤ ·  ).

Exercise 112. Show that a metric on M induces a natural function (gab⇠a⇠b)
on T M. Prove that this function is smooth.

Exercise 113. In sect. 15, we argued that scalar fields should be regarded
as covariant tensor fields of rank zero, for  

 
acts on them. Introduce the vec-

tor bundle for which scalar fields are the cross sections, and show that
{
 acts

on this bundle. Hence, scalar fields should also be regarded as contravariant
tensor fields of rank zero.

Exercise 114. Let  be smooth from M to M0. Find an example in which

 is onto but
{
 is not. In which  is one-to-one, but

{
 is not.



19. Curves

Let M be a manifold. By a (smooth) curve in M we understand a smooth
mapping � : I ! M from some open interval I = (a, b) a possibly �1 or
b +1 of the real line to M. (Note that I, as an open subset of R1, inherits a
manifold structure.) If t is a real number in the interval I we write �(t) for the
image of t under �. Note that, by this definition, a choice of parameterization
is part of a curve.

twin A 

twin B 

ticks 
ticks 

p 

q 

γ  

γ 
1 

γ 
2 

γ 
1 γ 

1 γ 
1 

We define the tangent vector to a curve. Since
the interval I is a subset of the reals R, the mani-
fold I has an obvious natural chart on it. Denote by
ia the contravariant vector field on I whose com-
ponent, with respect to this chart, is (1). Thus, if
f (t) (t in I) is a smooth function on I, then ia D( f )a
is the function d f /dt on I. For each point t of I,
~�t(ia) is, therefore, a contravariant vector in M at the point �(t) of M. This
vector is called the tangent vector to the curve at t. Of course, the curve
may “cross itself”, i.e., we may have �(t1) = �(t2) for t1 , t2. The tangent
vectors at t1 and t2 may be di↵erent for such a crossing point, i.e., we may
have ~�t1 (ia) = ~�t1 (ia).
Example 45. In terms of a chart, a curve is represented by n functions
of one variable, x1(t), . . . , xn(t). The tangent vector to this curve at t0 is
the vector at the point with coordinates x1(t0), . . . , xn(to) with components
(dx1/dt|t0 , . . . , dxn/dt|t0 ).
Example 46. Let p be a point of the manifold M, and let � : I ! M be the
constant curve, �(t) = p, which just remains at p. We show that its tangent
vector is zero. If h is any smooth function on M, �

 
, h is a constant function

on I, namely the one with value h(p). So, iaD(�
 

h)a = 0. So, ~�t ia = 0.

Example 47. Let f be a smooth function on M, and consider f : M ! R as
a smooth mapping of manifolds. Denote by ia the covariant vector field on
the manifold R whose component, in the natural chart, is (1). Then f

 
(ia) =

D( f )a.
We are now in a position to give an intuitive geometrical interpretation
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of a contravariant vector at a point of a manifold M as an “infinitesimal
displacement”. Let p, be a point of M. In order to discuss infinitesimal
displacements from p, we need a family of points of M which approach p.
A curve does the job.

So, let � : I ! M be a curve, say, with �(t0) = p. Let ⇠a be the
tangent vector to � at t0. Then, one should interpret “⇠adt as the infinitesimal
displacement vector from the point p = �(t0) of M to the point �(t0 + dt)
of M.” One justification for this interpretation would be the following. Set
f̃ = �

 
f , where f is any smooth function on M. Thus, f̃ (t) is just a smooth

function on I. Now,

d
d f

f̃ (t)
�����
t0
= iaD( f̃ )a|t0 = iaD(�

 
f̃ )a|t0 = ia�

 
D( f )a|t0

= (~�pia)D( f )a|p = ⇠aD( f )a|p

Whereas contravariant vectors have this interpretation as “infinitesimal dis-
placements,” no such interpretation is available for covariant vectors.
Example 48. The interpretation discussed above can also be obtained, more
directly, from Example 45.

Thus, a metric, gab, on M associates, with each contravariant vector ⇠a

at a point, a number, Rab ⇠a ⇠b. The metric can therefore be thought of as
describing a distance between infinitesimally nearby points (at least, if gab
is positive-definite). Since a knowledge of Rab ⇠a ⇠b for every contravariant
⇠a at a point determines the metric gab uniquely, a metric represents nothing
more than the information of these distances between infinitesimally nearby
points.
Example 49. Let gab be a positive-definite metric on M. We define the length
of the curve � : I ! M, where I = (a, b). For each t in I, set �(t) = gab ⇠a ⇠b,
where ⇠a is the tangent vector to � at t. Thus, �(t) is a function of one
variable. Then (length of �)=

R b
a [�(t)]1/2dt. (Exercise 115. Verify that this

length is independent of the parameterization. That is, let J be another open
interval, and let µ : J ! I be a di↵eomorphism. Then � · µ : J ! M is a
curve in M. (It is practically the same curve. It hits the same points of M,
but these are parameterized in a di↵erent way.) Verify that the length of � · µ
is the same as that of �.)

Finally, note that, if  : M ! M0 is a smooth mapping, and � : I ! M
is a curve in M, then psi · � : I ! M0 is a curve in M0. Under smooth
mapping, curves are sent the same way as contravariant tensors.



20. Integral Curves

Of course, a manifold M possesses a great number of curves. When a vector
field is specified on M, then a certain collection of curves, defined by this
vector field, are often of particular interest.
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Let ⇠a be a contravariant vector
field on M. A curve � : I ! M in
M is said to be an integral curve of
⇠a if, for each point t of I, the tan-
gent vector to �(t) at t (a contravari-
ant vector in M at the point �(t) of
M) coincides with the contravariant
vector field ⇠a evaluated at �(t). In-
tuitively, an integral curve of a vec-
tor field “runs along in the direction
of the vector field, moving quickly
(i.e., covering a lot of M with each increment of t) where ⇠a is large, and
slowly where ⇠a is small”. If the interval I contains the origin 0 of R, then
the point �(0) of M is called the initial value of the integral curve.
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Let � : I ! M be an integral
of ⇠a, with I = (a, b). Let c be a real
number, and set I0 = (a + c, b + c),
and �0(t) = �(t � c) for t in I0.
Then �0 : I0 ! M is also an inte-
gral curve. (Proof: The di↵eomor-
phism from I to I0, which sends t+c
clearly takes the contravariant vec-
tor field ia on I to ia on I0.) If 0 is in
both I and I0, then the initial value
of �0, �0(0). is the point �(�c) of M. Thus, all we have done is reparam-
eterized the curve by adding a constant (namely c) to the perimeter. The
consequence is to shift the initial value of �(t) to another point of the curve.
It is clear that, given an integral curve, and a point p (in M) on that curve, one
can, by reparameterizing in this way, obtain a new curve with initial value p.
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We shall call the operation described above shifting the initial value.
A fundamental property of integral curves is the following:

Theorem 16. Let ⇠a be a contravariant vector field on the manifold M, and
let p be a point of M. Then there exists an integral curve of ⇠a, � : I ! M,
with initial value p, and with the following property: if �0 : I0 ! M is
another integral curve of ⇠a, with initial value p, then I0 ⇢ I, and for all t in
I0, �0(t) = �(t)

The proof of Theorem 16, although not very di�cult, is rather technical
and long. We omit it. A proof can be found in most textbooks on ordinary
di↵erential equations. It is immediate that the curve � : I ! M whose
existence is guaranteed by Theorem 16 is unique, (Proof: If � : I0 ! M
were another, then we would have I0 ⇢ I and I ⇢ I0, so I = I0, and also
�0(t) = �(t) for t in I0. In other words, we would have the fact that �0 and �
are the same curve.) The unique curve obtained in Theorem 16 will be called
the maximal integral curve (of ⇠a) with initial value p.

Theorem 16 is the basic existence and uniqueness theorem for ordinary
di↵erential equations. The following example illustrates this remark:
Example 50. Consider the pair of coupled ordinary di↵erential equations

f 0 = cos(⌧ f ) � g0 eg⌧3 g00 =
2 f 2gg0 ⌧
f 2 + (g0)2 (91)

for function f ⌧) and g(⌧), where a prime denote d/d⌧. Denote by M the four-
dimensional manifold consists of R4 with the (closed) region (x1)+ (x3)2 = 0
removed. We have a natural chart on M. Let ⇠a be the vector field on M
whose components, with respect to this chart, are

⇠̃1 = cos(x4x1) � x3 e(x2)(x4)3 ⇠̃3 = 2(x1)2 x2 x3 x4 [(x1)2 + (x3)2]�1

⇠̃2 = x3 ⇠̃4 = 1

This ⇠a is clearly smooth on M. Let p denote the point of M with coordinates
(a, b, c, 0). Then, by Theorem 16, there exists a unique maximal integral
curve, x1(t), . . . , x4(t), of ⇠a, with initial value p. That is, by Example 45, we
have

d
dt

x1 = cos(x4 x1) � x3 e(x2) (x4)3 d
dt

x3 = 2(x1)2 x2 x3x4

(x1)2 + (x3)2

��1

(92)
d
dt

x2 = x3 d
dt

x4 = 1

with

x1(0) = a x3(0) = c

x2(0) = b x4(0) = 0
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Clearly, x4(t) = t. Then, from (92), the functions f (⌧) = x1(⌧) and g(⌧) =
x2(⌧), satisfy the di↵erential equations (91). (Note that x3(⌧) = g0(⌧).) This
solution has initial values f (0) = a, g(0) = b, and g0(0) = c. In other words,
Theorem 16 ensures that, given arbitrary values of f , g, and g0 at ⌧ = 0,
(with ( f (0))2 + (g0(0))2 = 0), the di↵erential equation (91) has precisely one
solution extended maximally in ⌧.

A number of properties of integral curves follow immediately from The-
orem 16. Let � : I ! M be a maximal integral curve, with I = (a, b) (a may
be ⌥1, or b + 1, or both). Let d be a number in the interval (a, b). Then,
as we remarked before, �0 : J ! M, defined by �0(t) = �(t + d) where
J = (a � d, b � d), is an integral curve. In fact, �0 is maximal. (Proof: If the
t�interval J of �0 could be enlarged, then, by shifting the initial value, we
would have an enlargement of the t�interval I of �. But this would contradict
the assumed maximality of �.) Thus, shifting of the initial value, applied to
a maximal integral curve, results in a maximal integral curve.

Integral curves cannot cross. That is, if � : I ! M and �0 : I0 ! M
are maximal integral curves, and if �(t1) = �0(t2) = p for some t1 and t2,
then � and �0 are obtainable from each other by shifting the initial value.
Proof: By shifting initial values, we can have p the initial value of � and
of �0. By Theorem 16, these curves are then identical. Hence, the original
curves di↵er from each other only by shifting of the initial value.

As a final illustration of the use of Theorem 16, we remark that, if p is
a point of M at which ⇠a vanishes, and if � : I ! M is an integral curve
passing through p (i.e., if �(t) = p for some t), then � is the constant curve:
�(t) = p for all t. Proof: By shifting the initial value, we might as well take
p as the initial value of �. Let �̃ : R! M be the constant curve, �̃(t) = p for
all t. Then, by Example 46, �̃ is an integral curve of ⇠a. Since the interval is
the whole real line, this integral curve must be maximal. Hence, by Theorem
16, � is the constant curve remaining at p.

Numerous other – intuitively clear – properties of integral curves follow
directly and similarly from Theorem 16.

We next discuss the dependence of the maximal integral curves on the
initial value. For this purpose, it is convenient to introduce the following
definition. A contravariant vector field ⇠a on M is said to be compete if
every maximal integral curve has I = (�1, +1). Intuitively, a complete
vector field has the property that ⇠a becomes “small” as one approaches the
“edge” of M, so only “in the limit t ! 1 or t ! �1 do integral curves
approach the edge”. (Note: It is more conventional to define completeness
of a vector field by requiring only that the intervals have the form (a, +1),
where a may be finite or �1,)
Exercise 116. Let ⇠a be a complete on M, and let C be a closed subset of M.
Prove that ⇠a is complete on M � C and if and only if every integral curve
with initial value in M �C remains in M �C.
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complete 

σ�  
γ (3) 

γ (2) 

 M  M

not complete 

Exercise 117. Let ⇠a be complete on M, and let p be a point of M. Prove
that ⇠a is complete on M � p if and only if ⇠a vanishes at p.
Exercise 118. Find an example of two complete vector fields whose sum is
not complete; of two vector fields neither of which is complete, but whose
sum is complete.
Exercise 119. Prove that ⇠a is complete if and only if – ⇠a is complete.

Let ⇠a be a complete vector field on M. We define a mapping � : R ⇥
M ! M as follows. If t is a number, p a point of M, �(t, p) = �(t), where �
is the maximal integral curve with initial value p. (Exercise 120. Why do we
need completeness for this?) The second fundamental property of integral
curves is the following:
Theorem 17. Let ⇠a be a complete contravariant vector field on M. Then
� : R ⇥ M ! M is smooth.

Again, we omit the proof. See most textbooks on ordinary di↵erential
equations. In terms of di↵erential equations, Theorem 17, states that the
solution of s di↵erential equation depends smoothly on the initial value.

Write �t(p) for �(t, p). Then, fixed t, �t : M ! M is a mapping from M
to M. Intuitively, the action of �t is as follows: “move each point p of M a
parameter-distance t along the integral curve through p”. Thus, points of M
where ⇠a is “large” are “moved a great deal” by �t, points where ⇠a is small
are moved less far, and points of M at which ⇠a vanishes are left invariant by
�t.
Exercise 121. Prove that, if ⇠a vanishes at p, then �t(p) = p for all t.

We prove that �t is smooth for each t. Fix t, and let ⇤; M ! R ⇥ M be
defined by ⇤(p) = (t, p). Then ⇤ is smooth. Furthermore, �t = � · ⇤. By
Theorem 17, �t is smooth. Note, furthermore that, by shifting the origin, ��t
is the inverse of �t (i.e., ��t · �t = � · ��t = identity mapping on M). Thus,
�t is one-to-one and onto. It’s inverse, ��t, is also smooth (for �! is smooth
for all !, in particular, for ! = �t). Thus,
Theorem 18. For each number t, �t : M ! M is a di↵eomorphism. Fur-
thermore, �t · �! = �(t+!).

These remarks further strengthen the interpretation of contravariant vec-
tors as “infinitesimal displacements”. The mapping �t represents the cor-
responding “finite displacement” obtained by “integrating the infinitesimal
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displacement defined, at each point, by ⇠a”. So, “�dt represents the corre-
sponding infinitesimal displacement”.
Exercise 122. Consider the vector field in R2 with components ⇠̃1 = x2, ⇠̃2 =
�x1. Prove that this field is complete. Find an explicit formula for �t. Check
Theorem 17 and 18 explicitly.
Example 51. In classical mechanics, the vector field ⇠a = Fab D(H)t, in
phase space, where Fab is the inverse of the symplectic 2�form at each point
(i.e., Fab Fcb = �a

c) and H is the Hamiltonian function, is called the Hamil-
tonian vector field. The integral curves of this (normally complete) vector
field describe the evolution of the system in time.
Example 52. In fluid mechanics, the velocity field of the fluid is a complete
vector field in Euclidean 3�space. Then �t maps the locations of fluid ele-
ments at time zero to their locations at time t. A vector field is sometimes
called a flow.
Exercise 123. Find a nonzero vector field such that �t = identity for some t.
Exercise 133. Find an example of a di↵eomorphism from a manifold to itself
which is not a �t for any vector field or any t.
Exercise 134. Prove Theorems 16 and 17 in the case when M is one-dimensional.
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21. The Lie derivative:
Geometrical Interpretation

We have already discussed the Lie derivative from two di↵erent points of
view: the algebraic approach (Sect. 7), and the concomitant approach (Sect.
11). The most intuitive, and often the most useful, approach is the one we
now introduce.

Let ⇠a be a complete vector field on M. (Completeness merely serves
to simplify the discussion here. It makes the range and domain of �t be
M. With slightly more e↵ort, but with little increase in content, one could
drop the completeness assumption in this section.) Let ↵...... be a tensor field
on M. Now, for each number t, ��t is a di↵eomorphism on M. Thus, ��t
takes the tensor field ↵a...c

b...d on M to some other tensor field, ↵a...c
b...d(t),

on M. That is to say, we have for each t, a tensor field ↵a...c
b...d(t) on M.

That is to say, we have, for each t, a tensor field ↵a...c
b...d(t) on M. One says

that ↵a...c
b...d(t) results from ↵a...c

b...d(0) (our original tensor field) by dragging
along the vector field ⇠a.

We propose to prove that

d
dt
↵a...c

b...d(t)
�����
t=0
= Z⇠↵

a...c
b...d (93)

where the left side has the following meaning. Fix a point p of M. Then,
for each t, ↵a...c

b...d(t) is a tensor at p. Then d
dt↵

a...c
b...d(t)|0 is the tensor field

whose value at p is

lim
�t!0

1
�t


↵a...c

b...d(�t) � ↵a...c
b...d(0)

�

Fix a point p of M, and let � : R! M be the (maximal) integral curve with
initial value p. We first establish (93) for a scalar field ↵. Let ↵(t) = �

 t↵,
and let f (t) be the scalar field ↵(t) evaluated at p, so f (t) is one real function
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of the variable. Then
d
dt

f
�����
0
= ia D( f )a|0 = ia D(�

 t ↵)a|0 = ia�
 t D(↵)a|0

=
✓
(~�t)pia)

◆
D(↵)a

�����
p
= ⇠aD(↵)a

�����
p
= (Z)⇠↵

�����
p

Since this equation holds for every point p, Eqn. (93) holds for scalar fields.
Next, let !a...c be a form. Then, since exterior di↵erentiation is preserved by
a di↵eomorphism, we have, for every t,

�tD(!)ma...c = D (�t!)ma...c (94)

Taking d/dt of this equation, and evaluating at t = 0,

d
dt

D
✓
!(t)
◆

ma...c
= D
✓ d
dt
!(t)
◆

ma...c
(95)

Let ↵ be a scalar vector. Then
d
dt

D(↵)a

�����
0
= D(

d
dt
↵)a

�����
0
= D(Z⇠ ↵)a = Z⇠ D(↵)a

where we have used (95) and the fact that the Lie derivative and exterior
derivative commute. Thus, (93) holds for a gradient. If ↵ and � are scalar
field, therefore,

d
dt

✓
�(↵)a

◆�����
0
=
✓ d
dt
�
◆�����

0
D(↵)a + �

d
dt

D(↵)a

�����
0
= (Z⇠�) D(↵)a + �Z⇠D(↵)a

= Z⇠

✓
�D(↵)a

◆

But, since every covariant vector field can, locally, be expressed as a sum of
products of scalar fields and gradients, Eqn. (93) holds for arbitrary covariant
vector fields. Next, let ⌘a be a contravariant vector field, µa a covariant vector
field. Then

µa
d
dt
⌘a
�����
0
� d

dt
(µa⌘

a)
�����
0
� ⌘a d

dt
µa

�����
0
= Z⇠(µa⌘

a) � ⌘aZ⇠µa

= µaZ⇠⌘
a

Since µa is arbitrary, (93) holds for ↵a...c
b...d a contravariant vector field. Fi-

nally, for an arbitrary tensor field, we proceed as usual:

µa . . . ⌫c ⌘
b . . . ⌧d d

dt
↵a...c

b...d

�����
0
=

d
dt

[↵a...c
b...dµa . . . ⌫c⌘

b . . . ⌧d]|0

� ↵a...c
b...d


(

d
dt
µa) . . . ⌫c⌘

b . . . ⌧d + . . . + µa . . . nuc⌘
b . . .

d
dt
⌧d
������

0

= µa . . . ⌫c⌘
b . . . ⌧dZ⇠↵

a...c
b...d
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nothing that, since µa, . . . , ⌫c, ⌘b, . . . , ⌧d are arbitrary, (93) is proven.
Thus, ⇠a defines a one-parameter family of motions on M, each of which

is a di↵eomorphism. Each di↵eomorphism carries tensor fields on M to
fields on M. The “rate of change” of a tensor field under these motions is the
Lie derivative of that field in the ⇠a�direction.

The fact that Lie derivatives habitually commute with other operations
(e.g., exterior derivatives, contraction) should now be clear. Similarly, the
Leibnitz rule for Lie derivatives, etc. is immediate from (93).
Exercise135. Let ⇠a be a vector field, and ra derivative operator on M. Then,
for each t ��t takes ra to another derivative operator, ra(t), on M. These two
operators are related by some tensor field, �m

ab(t), on M. Prove that

d
dt
�m

ab

�����
0
= �rarb⇠

m + R m
sab ⇠s

The remarks surrounding Eqn. (66) now make sense.
Exercise136. Do Exercise 82 in one sentence.
Example 53. In general relativity, because of the interpretation above, Killing
vectors represent symmetries in space-time.
Exercise 137. Let � : R ⇥ M ! M be smooth, and suppose that, for each
point p of M, �(t,�(w, p)) = �(t +w, p). Find a contravariant vector field on
M such that it generates � (in the sense of Theorem 17).
Exercise 138. Prove Eqn. (31) directly from (93).
Exercise 139. In Exercise 122, let gab be the metric with components g11 =
g22 = 1, g12 = g21 = 0. Prove that Z⇠gab = 0 in two ways, once directly
(e.g., using concomitants), and once using (93).
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22. Lie Groups

As an example and application of some of the preceding material, we obtain
a few properties of Lie groups.

Roughly speaking, a Lie group is both a group and a manifold, where
these two structures interact in a natural way. Let G be a set. Suppose that
we are given a group structure on G, i.e., suppose we are given a mapping
C : G ⇥ G ! G (composition) and a mapping J : G ! G (inversion),
subject to the usual axioms for a group. One normally writes ↵� instead
of C (↵, �)and ↵�1 instead of J (↵). Suppose further that we are given a
manifold structure on G, i.e., suppose we are given a collection of charts
on G satisfying M1 � M4. We now have both structures on G: we have
yet to require that they interact properly with each other. The most natural
“interaction” available is the requirement that the mapping C : G ⇥ G !
G and J : G ! G (which define the group structure) are smooth (as
mappings of manifolds). Thus, a Lie group is a set G with both a group and
a manifold structure, such that C and J are smooth.
Example 54. The Lorentz group, the Poincaré group, S U(3) are all Lie
groups.
Example 55. Let V be a k�dimensional vector space. Considering V as a
manifold Rk (by choosing a basis, so each element of V is defined by its
components, and so represents an element of Rk), and as an abelian group
(under addition of vectors), Vk becomes a Lie group.

Fix an element ↵ of the Lie group G, and let �↵ : G ! G be defined
by �↵(�) = ↵�, for any � in G. Then, evidently, we have �↵ · �� = �↵�,
and �e = identity mapping from G to G, where e is the identity element of
the group G. In particular, for each ↵ in G, �↵ · �↵�1 = �↵�1 · �↵ = identity
mapping from G to G. Thus, each �↵ is a one-to-one onto mapping from
G to G. We show that �↵, for fixed ↵, is a di↵eomorphism. Note that the
mapping � : G ! G ⇥ G which sends � to (↵, �) is smooth (injection of
one factor into the product). But �↵ = C · �, and so �↵, as a composition
of smooth maps, is smooth. Thus, since �↵ is smooth, one-to-one, and onto,
with smooth inverse, �↵ is a di↵eomorphism. Note, also that �↵(e) = ↵.

A tensor field µa...c
b...d on G will be said to be left invariant if, for each

93



94 22.

↵ in G, the di↵eomorphism �↵ takes the tensor field µa...c
b...d to itself. How

does one obtain left invariant tensor fields on a Lie group? Let µa...c
b...d be

any tensor in G at the point e (the identity). For each ↵ in G, �↵ is a di↵eo-
morphism on G which takes e to ↵. Hence, �↵ takes the tensor µa...c

b...d at e
to some tensor at ↵. Repeating this for each point ↵ of G we obtain a tensor
at each point of G. That is, we obtain a tensor field on G. In fact, this tensor
field is left invariant. This is clear, for, if ↵ and � are two points of G, then
�� takes the tensor at e to the tensor at �, while �↵� = �↵ · �beta takes the
tensor at e to the tensor at ↵�. Hence, �↵ takes the tensor at � to the tensor at
↵�. Since � is arbitrary, the e tensor field remains invariant under �↵. Since
↵ is arbitrary, the tensor field is left invariant. We have:
Theorem 19. Given a tensor at e, there is precisely one left invariant tensor
field on G which coincides with the given tensor at e.

It follows immediately that all the tensor bundles of a Lie group are prod-
uct bundles. Thus, for example, we can conclude that S 2 cannot be the man-
ifold of any Lie group (Exercise 104).

We define the Lie algebra of a Lie group. Intuitively, the Lie algebra
is obtained by “commuting elements which di↵er infinitesimally from the
identity”. This remark suggests that we consider contravariant vectors at the
identity e of G. Let ⇠a and ⌘a be contravariant vectors in G at e. Then,
by Theorem 19, we have left invariant vector fields ⇠a and ⌘a on G. Clearly,
Z⇠⌘a = [⇠, ⌘]a is also left invariant. Evaluating at e, we obtain a contravariant
vector in G at e. Thus, with two contravariant vectors at e, we associate a
third, where this association is clearly linear. Thus, we have a tensor Cm

ab at
e such that Cm

ab⇠
a⌘b is the contravariant vector at e defined, as above, from

⇠a and ⌘a. This Cm
ab is called the structure constant tensor of G. Equations

(24) and (25) imply
Cm

ab = Cm
[ab] (96)

Cm
n[aCn

bc] = 0 (97)

respectively. Eqn. (96) is obvious. For (97), note that

[⌘, �], ⇠

�
is repre-

sented by Cm
a⇠

a, Cn
bc⌘

b�c.
A (finite-dimensional) Lie algebra is a finite-dimensional vector space

with a tensor Cm
ab over that space, satisfying (96) and (97). Thus, every Lie

group defines a Lie algebra.
Set gab = �Cm

na, Cn
mb, a tensor in G at e. By Theorem 19, we obtain

an, obviously symmetric, tensor field gab on G. This is called the invariant
metric of the Lie group G. (It many not be a metric as we have defined this
term, for gab may not be invertible.)
Example 56. S U(2) is the Lie group of all complex, unitary, 2 ⇥ 2 matrices
with unit determinant. It is underlying manifold is S 3. Hence, the tangent
bundle of S 3 is a product. Choose a contravariant vector at e in S U(2), and,
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by Theorem 19, obtain a nowhere vanishing vector field on S 3. This is called
the Hopf fibration of S 3.
Exercise 140. Let G and G0 be Lie groups. Show that G ⇥G0, considered as
a product of manifolds and a direct sum of groups, is a Lie group.
Exercise 141. Prove that the structure constant tensor of a commutative
group vanishes.
Exercise 142. Find all two-dimensional Lie algebras.
Exercise 143. Show that, in the definition of a Lie group, it su�ces to require
that the mapping from G ⇥G to G which sends (↵, �) to ↵��1 be smooth.
Exercise 144. Find a Lie group whose manifold is the torus; the cylinder.
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23. Groups of Motions

We have seen in Sect 20 that a contravariant vector field on a manifold M
yields a collection �t (t a number) of di↵eomorphisms on M, where these dif-
feomorphisms satisfy �t · �w = �t+w and �0 = identity on M. In other words,
the additive group of real numbers is realized as a group of di↵eomorphisms
on M. (More generally, the collection of all di↵eomorphisms on a mani-
fold M forms a group, with composition as the group operation. Above, we
obtain a subgroup isomorphic with the additive group of reals.) One can
consider more general groups realized as di↵eomorphisms on a manifold.
We briefly describe this type of situation.

Let G be a lie group, and M a manifold. Consider a smooth mapping
� : G ⇥ M ! M. Writing �↵(p) for �(↵, p) (so, for each ↵ in G, �↵
is a smooth mapping from M to M), we require that composition of these
mappings reflect the group operation in G, i.e., we require that

�↵ · �� = �↵� �c = identity (98)

A group of motions on M consists of a Lie group G and a smooth mapping
� : G⇥M ! M satisfying (98). By the same argument used in this situation
in Sects. 20 and 22, we see that each is a di↵eomorphism on M.
Example 57. Every Lie group defines a group of motions on itself.
Example 58. A group of motions on a manifold M defines a group of motions
on T M.
Example 59. The Poincaré group is a group of motions on Minkowski space
(a 4�manifold).
Example 60. A complete contravariant vector field on M defines, as in Sect
20, a group of motions on M, where G is the additive group of real numbers.
Example 61. The Lie group of nonsingular linear mapping on a finite-
dimensional vector space is a group of motions on that vector space (con-
sidered as a manifold).

A group of motions is said to be e↵ective if �↵ = identity only when
↵ = e, and transitive if, for any two points p and q of M, there is an ↵ in G
such that �↵(p) = q.
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Let G be a group of motions on M. Intuitively, a contravariant vector in
G at e represents “an element of G di↵ering infinitesimally from e”. Hence,
it defines an “infinitesimal motion on M”. That is, it takes “each point of M
to a nearby point”. Thus, we should have a contravariant vector at each point
of M, i.e., a contravariant vector field on M. Thus, a contravariant vector in
G at e should define a contravariant vector field on M. We now define this
field.

Let ⇠a be a contravariant vector in G at e. Fix a point p of M. Let  :
G ! G ⇥ M be defined by  (↵) = (↵, p), Then  sends e to the point (e, p)
of G⇥M. Hence,  sends ⇠a to some contravariant vector in G⇥M at (e, p).
But � : G ⇥ M ! M sends (e, p) to p. Hence, ( ~� ·  )e⇠a is a contravariant
vector in M at p. Repeating for each p, we obtain a contravariant vector field
on M. Thus, each ⇠ in G at p defines a field ⇠0a on M.

Let ⇠a and ⌘a be contravariant vector in G at e. We shall show that

[⇠, ⌘]0 = Z⇠0⌘
0 (99)

That is if the bracket of ⇠a and ⌘a (in G) is taken to a field on M, the result is
the same as the Lie derivative of ⌘0a in the ⇠0a�direction (i.e., Lie derivatives
of fields in M). Take ⇠a as a vector field on G, and let �t (t a number) be the
corresponding 1�parameter group of motion on G. Then, evidently, ��t(a) is
a 1�parameter group of motions on M. Consider ⌘a as a contravariant vector
field on G. Then, for each t, �t takes ⌘a to some other contravariant vector
field on G. Let a be that field evaluated at e. Then 0a is the vector field on
M obtained by acting on ⌘0a with the di↵eomorphism ��t(t) (e) on M. Taking
d/dt of this equality at t = 0, and using (93), Eqn, (99) follows.

To summarize, a group of motions on M (where G is k�dimensional)
defines a k�dimensional vector space of contravariant vector fields on M.
This vector space is naturally isomorphic to the tangent space to G at e.
Lie brackets in G correspond to Lie derivatives of these vector fields) in M.
Thus, if a Lie group is realized as a group of motions on M, its Lie algebra is
realized as a Lie algebra of contravariant vector fields on M. Note that Sect.
20 is the special case when G is one-dimensional.
Example 62. For the Poincaré group as a group of motions on Minkowski
space, the corresponding vector fields are the Killing vectors on Minkowski
space.
Example 63. G is e↵ective if and only if the mapping from the tangent space
to G at e to vector fields on M is one-to-one. For G to be transitive, it is
necessary that dim G � dim M.
Exercise 145. For the translations and rotations on the plane (a group of
motions), find the corresponding vector fields and their Lie derivatives ex-
plicitly.



24. Dragging Along

Let ⇠a be a contravariant vector field on the manifold M. Then, through
each point of M, there passes an integral curve of ⇠a. Now suppose we are
given a tensor at a point of M. We wish to transport that tensor along the
integral curve of ⇠a (i.e., define a tensor at each point of the curve) by the
requirement that the Lie derivative of the tensor in the ⇠a�direction be zero.
From the concomitant expression (52), we see that this amounts to solving
a certain ordinary di↵erential equation. But we have a method, Theorem
16, for solving ordinary di↵erential equations (or, at least, for asserting ex-
istence and uniqueness of solutions). Thus, we wish to arrange matters so
that transporting the tensor amounts to finding integral curves of some vector
field.

π

 M

 p  π
−1 p⎡⎣ ⎤⎦

 B

γ

 γ

It is convenient to first discuss this
problem in a somewhat more general
setting. Let B be one of the tensor bun-
dles over M. Let � : I ! M be a curve
in M. Then a curve �̃ : I ! B is said
to be a lifting of � if � = ⇡ · �̃. Thus,
if �̃ is a lifting of �, then, for each t in
I, �̃(t) is a point of the fibre over �(t).
So a lifting of � amounts to selecting,
for each t, some point in the fibre over �(t). In other words, a lifting of � is
essentially a choice, for each t, of a tensor in M, at �(t). Clearly, a lifting
represents a specification of how to transport a tensor along �.

Now let ⇠a be a contravariant vector field in M, and B one of the tensor
bundles over M. In order to transport tensors along the integral curves of
⇠a, we must obtain a lifting of each integral curve of ⇠a. A contravariant
vector field ⇠̃a in B will be said to be a lifting of ⇠a if, for each point P of
B, ~⇡P⇠̃a = ⇠a. How unique is the lifting of a vector field? If ⇠̃a is a lifting
of ⇠a, we can add to ⇠̃a at P any other vector �a with ~⇡P�a = 0. But, as we
have seen, there is a k�dimensional vector space of such vectors at P (where
k = dimension of the fibres): these are the vertical vectors which lie in the
fibres. Geometrically, if ⇠a at p connects p to the “infinitesimally displaced
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point q”, then ⇠̃a at P (where P is in the fibre over p) must connect P with
“any infinitesimally displaced point (of B) in the fibre over q.” The choice of
the point of the fibre over q is the same as the choice of a �a lying within the
fibres.
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 M p

  π
−1 p⎡⎣ ⎤⎦

 P   
ξa

 ξ
a

 q

Liftings of vector fields and curves
are related by the – intuitively clear –
statement:
Theorem 20. Let ⇠a be a contravariant
vector field on M, B one of the tensor
bundles over M, and ⇠̃a a lifting of ⇠a.
Then each integral curve of ⇠̃a (in B) is
a lifting of an integral curve of ⇠a (in
M).
Proof: Let � : I ! B be an integral curve of ⇠̃a, and let ⇡ · �̃ : I ! M
be the corresponding curve in M. We must show that ⇡ · �̃ is an integral
curve of ⇠a. But this is immediate, for the tangent vector to ⇡ · �̃ at t is
( ~⇡ · �̃)t = ~⇡P · ~̃�tia = ~⇡P⇠̃a = ⇠a, where P = �̃(t), p = ⇡(P).

We now return to the original problem, that of obtaining a mode of trans-
port using the Lie derivative. Let ⇠a be a contravariant vector field in M, B
one of the tensor bundles over M. From the discussion above, the problem
reduces to that of specifying a particular lifting of ⇠a. For each t, �t is a
di↵eomorphism on M. Hence, �t defines a di↵eomorphism, �̃t on B. Of
course, �̃t is fibre preserving: ⇡ · �̃t = �t · ⇡. Furthermore, �̃t preserves the
vector-space structure within each fibre. As in Sect. 23, the one-parameter
group of motions �̃t on B defines a contravariant vector field ⇠̃a in B. By the
usual argument, ⇠̃a is a lifting of ⇠a. Thus, there is a natural lifting of any
contravariant vector field in M.

Let (p,↵a...c
b...d) be a point of B, so ↵a...c

b...d is a tensor in M at p. Then
the integral curve of ⇠̃a through (p, ↵a...c

b...d) is a lifting of the integral curve
of ⇠a through p. Thus, the first integral curve defines, at each point of the
second integral curve, a tensor in M at that point. In other words, given a
tensor in M at p, we obtain a tensor at each point of the integral curve of
⇠a through p. These tensors are said to be the result of dragging along of
↵a...c

b...d.
Clearly, a tensor field on M is equal to the result of dragging along that

tensor from any point of M if and only if the Lie derivative of that tensor
field in the ⇠a�direction is zero. In this sense, dragging along represents
“transport by the requirement that the Lie-derivative in the ⇠a�direction be
zero”.
Example 64. Geometrically, dragging along of a contravariant vector field ⌘a

can be interpreted as follows. Think of ⌘a as an infinitesimal displacement.
Move each of these two nearby points a parameter-distance t along their
respective integral curves of ⇠a. The resulting infinitesimal displacement
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is the result of dragging along of ⌘a. Thus, for the ⇠a vanishes at p, so the
integral curve through p remains there. But dragging along of a contravariant
vector at p results in a rotation of that vector, keeping it at p.
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Exercise 146. Prove that the sum
of the result of dragging along two
tensors is the same as the result of
dragging along their sum.
Exercise 147. Let ⇠a Be a con-
travariant vector field on M, and
suppose that �t0 = identity, so the
integral curves of ⇠a are all closed
loops. Prove that the result of drag-
ging along a tensor around one of
these closed loops is to leave the
tensor invariant.
Exercise 148. Find an example of
a ⇠a having an integral curve which
is a closed loop, such that the result
of dragging along a tensor around
this closed loop does not leave the
tensor invariant.
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25. Derivative Operators: Interpre-
tation in the Tensor Bundles

In Sect. 24. we saw that there is a natural lifting of any contravariant vec-
tor field ⇠̂a on a manifold to a contravariant vector field ⇠̃a on each of the
tensor bundles of M. Now suppose we have a derivative operator ra on M.
What additional structure appears on the tensor bundles? This question is
the subject of the present section.

It is convenient to first introduce some notation. Let M be a manifold, B
the tensor bundle of tensors with index structure ↵a...c

b...d. Let K b
a be a tensor

field on M, and consider the expression

↵m...c
b...dK a

m + · · · + ↵a...m
b...cK c

m � ↵a...c
m...dK m

b � · · · � ↵a...c
b...mK m

d (100)

We regard (100) as a linear mapping from each fibre to itself. That is, if
(p, ↵a...c

b...d (↵ a tensor at p) is a point of B, then expression (100) defines
another tensor at p, i.e., another point of B. In other words, if P is a point of B
(p = ⇡(P)), (100) defines an element of the vector space ⇡�1(p). That is (100)
defines, for each point P of B, a contravariant vector (in B) at P. Thus, we
obtain a contravariant vector field on B, which we write K

a
. Thus, we have

– a clearly linear – mapping from tensor fields K b
a on M to contravariant

vector fields K
a

on B.
Let ⇠a be a contravariant vector field on M, and let B be one of the tensor

bundles over M. Set
⇠̂a = ⇠̃a + (r⇠)a

(101)

Since ~⇡PK = 0 for any K b
a , and since ⇠̃a is a lifting of ⇠a, it is clear that ⇠̂a is

a lifting of ⇠a. Hence, given any tensor ↵a...c
b...d at a point p of M, the integral

curves of ⇠̂a through (p, ↵a...c
b...d) defines a tensor at each point of the integral

curve of ⇠a trough p. This method of carrying tensors along integral curves
is called parallel transport. It is clear from (52) that, if ⇠a and ↵a...c

b...d are
tensor fields on M, then ↵a...c

b...d is invariant under parallel transport along
the integral curves of ⇠a if and only if

⇠mrm↵
a...c

b...d
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To summarize, a vector field ⇠a on M can be lifted to ⇠̃a on B. If, however,
there is specified a derivative operator ra on M. then a second lifting ⇠̂a, is
available.

The lifting ⇠̂a has an important property not shared by ⇠̃a. If ⇠a and ⌘a

are vector fields on M, then, by (29), we have

](⇠a + µ⌘a) = ⇠̃a + (⇡
 
µ)⌘̃a � (⇠D(µ))

a
(102)

Since

r(⇠ + µ⌘)
a
= r⇠a

+ (µr⌘)
a
+ (⌘D(µ))

= r⇠a
+ (⇡
 
µ)(r⌘)

a
+ (⌘D(µ))

a

we have immediately, from (101),

[(⇠a + µ⌘a) = ⇠̂a + (⇡
 
µ)⌘̂a (103)

In other words, the lifting ⇠̂a is linear. Hence, if p = ⇡(p), and ⇠a and ⌘a are
contravariant vector fields on M which coincide at p, then ⇠̂a = ⌘̂a at P. That
is ⇠a ! ⇠̂a defines a lifting, not only of contravariant vector fields on M, but
also of contravariant vectors at a point of M.

π

 B

 M p

  π
−1 p⎡⎣ ⎤⎦

 P

 Σ TMP⎡⎣ ⎤⎦

Again, let p = ⇡(P). Denote by
⌃ the mapping from the tangent space
to M at p to the tangent space to B
at P which sends ⇠a to ⇠̂a. Clearly,
this mapping is linear, and satisfies ~⇡P ·
⌃ = identity mapping on tangent space
to M at p, In particular, ⌃ is one-to-
one. The situation can now be de-
scribed as follows. Let the fibres of B
be k�dimensional. Then ~⇡P sends a k�dimensional subspace of T BP (tan-
gent space to B at P) to zero, namely, the subspace of vertical vectors. On
the other hand, ⌃ [T MP] is an n�dimensional subspace of T BP. Evidently,
every element of the (n + k)�dimensional vector space T BP can be writ-
ten uniquely as the sum of a vertical vector at P and an element of ⌃ [T MP].
Thus, we have decomposed the vector space T BP into two vector spaces: the
vector space of vertical vectors and the vector space ⌃ [T MP]. This ⌃ [T MP]
is called a horizontal subspace of T BP. (In general, a horizontal subspace of
T BP is a subspace such that every element of T BP can be written uniquely
as the sum of an element of the subspace and a vertical vector.)

Thus, a derivative operator on M defines, for each tensor bundle over M,
a horizontal subspace of T BP (P in B). Of course, the derivative operator is
uniquely specified by the horizontal subspaces it defies. It is through these
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horizontal subspaces that a derivative operator on M is represented in the
tensor bundles over M.
Exercise 149. Let � : I ! M be a curve, and let ⇠a and ⇠0a be the two
vector fields on M both of which have � as internal curve. Show that parallel
transport along � using ⇠a is identical with parallel transport along � using
⇠0a. (Hence, parallel transport along a single curve, with no vector field, is
well-defined.)
Exercise150. Consider R2 with metric with components, in the natural chart,
g11 = g22 = 1, g12 = g21 = 0. Consider parallel transport with the corre-
sponding derivative operator. Show that the result of parallel transport of any
tensor about a closed curve leaves that tensor invariant.
Exercise 151. In what sense does a derivative operator on M define an “in-
verse” of

 
⇡?

Exercise 152. Let ra and r0a be derivative operators on M, and ⇠a a con-
travariant vector field on M. Let ⇠̂a and ⇠̂0a denote the liftings of ⇠a defined
by ra and r0a, respectively. Prove that ⇠̂0a = ⇠̂a + K

a
, where K b

a = �
b
ma⇠

m,
and �m

ab is the tensor field relating r0a and ra,
Exercise 153. Give an example of two contravariant fields ⇠a and ⌘a on M

which coincide at p, but such that
 
⇠

a
,
 
⌘

a
at P (p = ⇡(P)).

Exercise 154. Prove that two derivative operators which define the same
horizontal subspace are identical.
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26. Riemann Tensor: Geometrical
Interpretation

!!!!!!!!!!!!

ua 

p 

γ  

γ �  

Let M be a manifold with derivative operator ra.
Then, intuitively speaking “parallel transport of a ten-
sor about a small closed loop changes that tensor by
an amount depending on the Riemann tensor”. It is
in this intuitive sense that the Riemann tensor repre-
sents “curvature”. Parallel transport about a closed
loop (small or otherwise) in the plane leaves the ten-
sor invariant: the plane is flat. Parallel transport of a
vector about a closed curve on a S 2 changes that vector: S 2 is curved. (In
both cases, “parallel transport” refers to the derivative operator defined by
the natural metric.)
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We shell establish the following
fact:

Z⇠̂ ⌘̂
a � ([Z⇠⌘a) = �K̂a (104)

where K b
a = R b

mna ⇠
m⌘n. Before

giving the proof, we interpret (104)
geometrically. The commutator in
the first term on the left represents
passage about an infinitesimal loop
in the base space, where the “sides”
of this loop are described by the infinitesimal displacements defined by ⇠a

and ⌘a. The second term on the left in (104) represents the corresponding
loop in B. The di↵erence between these two quantities represents, therefore,
the change in a tensor under parallel transport ab out the loop in M. The dif-
ference is a vertical vector, i.e., it represents a change in a tensor at p. Thus,
Eqn. (104) represents the e↵ect on a tensor under parallel transport about a
small closed loop.
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The proof of Eqn. (104) consists of the following calculation:
⇥
⇠nrn(⌘mrm↵

a
b) � ⌘mrm(⇠nrn↵

a
b)
⇤

� ⇥⇠mrm⌘
n � ⌘mrm⇠

m⇤rn↵
a

b = 2⇠m⌘nr[mrn]↵
a
b

= �(⇠m⌘nR a
mnp )↵p

b + (⇠m⌘nR p
mnb )↵a

p



27. Geodesics

A certain class of curves, called geodesics, on a manifold with derivative
operator are of particular interest.

Let M be a manifold with derivative operator ra. We introduce a con-
travariant vector field on the tangent bundle of M, T M. If (p, ⇠a) is a point
of T M, ⇠̂a is a contravariant vector in T M at the point (p, ⇠a). This vector
field is called the geodesic spray. Let �̃ : I ! B be an integral curve of the
geodesic spray. Then � = ⇡ · �̃, a curve in M, is called a geodesic. Thus,
a geodesic is determined by a point of T M, i.e., by a contravariant vector
at a point of M. The parameter t along a geodesic is sometimes called an
a�ne parameter. An alternative definition of a geodesic is the following:
a geodesic is a curve such that the tangent vector of the curve is parallel
transported along the curve.
Exercise 155. Show that the geodesics on Rn with the usual metric are
straight lines.
Exercise 156. Show that the geodesics on S 2 with the usual metric are great
circles.
Exercise 157. Let ⇠a be a vector field on M. Show that the integral curves of
⇠a are geodesics if and only if ⇠mrm⇠m = 0.
Exercise158. Let � : I ! M be a geodesic on M (with some derivative
operator on M). Let µ : I0 ! I be one function of one variable. Show that
� · µ : I0 ! M is a geodesic if and only if there are numbers a and b such
that µ sends t to at + b.
Exercise 159. Show that, in terms of a chart, a geodesic, x1(t), . . . , xn(t),
satisfies d2/dt2xi(t) = �⌃ j,k�

i
jk(x(t)) dx j

dt
dxk

dt , where �i
jk(x) is the connection

defined by the derivative operator.
Exercise160. Show that two derivative operators on M which define pre-
cisely the same geodesics are identical.
Exercise 161. Let gab be a metric on M, and let � : I ! M be a geodesic of
the corresponding derivative operator. Show that ⇠a⇠b, gab is constant along
the geodesic, where ⇠a is the tangent vector of the curve.
Exercise 162. Consider a group of motions on M such that each �↵(↵ in G)
takes the derivative operator to itself. Show that �↵ takes each geodesic to
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another geodesic.



28. Submanifolds

Roughly speaking, a (k�dimensional) submanifold of a manifold M Is a
(k�dimensional) surface in M.
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  M = n

  S = k

Let M = Rn. Denote by S
the collection of all points of M for
which xk+1 = xk+2 = · · · = xn = 0.
Clearly, this S is a k�dimensional
hyperplane in the n�dimensional
Euclidean space M. This is one ex-
ample of a submanifold. More generally, a submanifold is a subset which,
locally, looks like the example above.

Let M be an n�dimensional manifold. A subset S of M is called a
k�dimensional submanifold if, for each point p of S , there is a chart (U') of
M, with p in U, such that '[U \ S ] consists precisely of the points of '[U]
with xk+1 = · · · = xn = 0. In other words, S is a k�dimensional submanifold
if, for each point p of S , there is a chart containing p such that S intersects
U in precisely the points of U at which the last (n�k) coordinates all vanish.
The number (n � k) is called the co-dimension of the sub manifold S .
Example 65. Let S be the subset of Rn consisting of points with (x1)2 +

· · · + (xn)2 = 1. Then S is an (n � 1)�dimensional submanifold of Rn. The
co-dimension is one.
Example 66. Let M = M0 ⇥ M00. Fix a point p00 of M00, and let S consist
of all points of M of the form (p0, p00), Then S is a submanifold of M, of
dimension n0 (= dimension of M0), and co-dimension n00 (= dimension of
M00).
Example 67. The four figures below represent subset s of R2. The first three
are not submanifolds, for they do not satisfy the required condition at p. The
last is a submanifold (dimension 1).

twin A 
twin B 

(not in S) 

ticks 
p 

q 

γ  

γ 
1 

γ 
2 

γ 
1 γ 

1 γ 
1 

 p

 p

 p p

In the last figure, the “intersection point” p is not a point of S , and so no
conditions need be satisfied near p. But, for each point of S , the submanifold
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condition is satisfied.
Example 68. The image of a cross section of a vector bundle is a sub mani-
fold of the bundle.
Example 69. Every open subset of a manifold is an (n�dimensional) sub-
manifold. Every point of a manifold is a (0�dimensional) submanifold.

Let S be a submanifold of M, so S is a set. We introduce some charts
on S . If (U,') is a chart on M, with U S consisting of the points of U with
all the last (n � k) coordinates zero, then x1, . . . , xk are functions on U \ S .
Thus, U \ S is the subset of S , and x1, . . . , xk are the coordinates on this
subset. This is a chart. (Exercise 163. Verify that these charts satisfy M1 �
M4.) Thus, a k�dimensional submanifold S of M itself has the structure of a
k�dimensional manifold. A submanifold of M represents another manifold
which “sits inside” M.

Let S be a sub manifold of M, and let  : S ! M be the identity
mapping (a point of S , which is also a point of M, is taken by  to that
point of M). Since S has the structure of a manifold, we can consider  as a
mapping of manifolds. It is clear from the definitions that  is one-to-one, is
smooth, and that ~ p (p in S ) is one-to-one). ( is one-to-one because it is the
identity.  is smooth because the definition of the manifold structure of S
gives precisely the conditions for the characterization of a smooth mapping
in terms of charts. ~ p is one-to-one because, if (U,') is a chart on M which
defines a corresponding chart on S , and if ⇠a is a vector in S at p with
components (⇠̃1, . . . , ⇠̃k), then ~ p, ⇠a is the vector at p in M with components
(⇠̃1, . . . , ⇠̃k, 0, . . . , 0).)

There are no suppresses here. A submanifold is a smooth surface which
does not come back near it itself, and, in particular, does not intersect itself.
Such a subset inherits a manifold structure from M, and the mapping from
S to M becomes smooth.
Exercise 164. Find an example in which the intersection of two submani-
folds is not a submanifold: in which the union of two submanifolds is not a
submanifold.
Exercise 165. Let  : M ! M0 be smooth, and let S be a sub manifold of
M. Find an example in which  [S ] is not a submanifold of M0.
Exercise 166. Let S be a sub manifold of M, T a sub manifold of S (so T ,
as a subset of S , is also a subset of M). Show that T is a submanifold of M.
Exercise 167. Let � : I ! M be a curve with nowhere vanishing tangent
vector. Show that, for each t0 in I, there is an interval I0 containing t0 such
that �[I0] is a sub manifold of M. Find a counterexample to show this is false
without the condition “with nowhere vanishing tangent vector”. (Hint: Use
third figure of Example 67.)
Example 70. Each fibre is a sub manifold of a vector bundle.



29. Tangents and Normals to
Submanifolds

Let  : S ! M be a k�dimensional submanifold of an n�dimensional
manifold M. In this section, we relate the tensors on S to the tensors on M.
[For the purposes of this section, it is convenient to regard S as a manifold
separate from M, and not as a subset of M.]

q = u1 = u2 

σ�  

φσ�  

ξ�  

φ ξ�   

ξ�  

ξ�  
φ  �����  

φ ξ�   φ ξ�   

φ ξ�   

φ  �����  

Spacelike, three-dimensional 

second 
observer 

instruments 
record 

S 

C 

M Fix, once and for all, a point p0
of S , and set p =  (p0), a point of
M. If ⇠0a is any contravariant vec-
tor in S at p0, then ⇠a = ~ p0⇠0

a is
a contravariant vector in M at p. A
vector ⇠a such that ⇠a = ~ p0⇠0

a for
some ⇠0a will be said to be tangent to S . [Regarding S as a subset of M, this
is the usual, intuitive, geometrical notion of tangency.] Evidently, the con-
travariant vectors at p tangent to S form a k�dimensional subspace of the
n�dimensional tangent space to M at p. A contravariant vector µa in M at p
will be said to be normal to S if ⇠aµa = 0 for all ⇠a tangent to S . The normal
vectors to S form an (n � k)�dimensional subspace of the cotangent space
to M at p. Clearly, ⇠a in M at p is tangent to S if and only if ⇠aµa = 0 for
every µa normal to S . Thus, a k�dimensional submanifold S of M defines,
at each point of  [S ], a k�dimensional subspace of the tangent space to M
and (n � k)�dimensional subspace of the cotangent space to M.

More generally, let ↵a...c
b...d be any tensor in M at p. A contravariant

index of ↵, e.g., “c”, will be said to be tangent to S if µc↵a...c
b...d = 0 for all

µc at p normal to S . Similarly, a covariant index of ↵, e.g. “b”, will be said
to be normal to S if ⇠b↵a...c

b...d = 0 for all ⇠a at p tangent to S .
Exercise 168. Verify that, for “a” in ↵a...c

b...d tangent to S , and “a” in �p...q
m...a

normal to S , ↵a...c
b...d�

p...q
m...a = 0.

Exercise 169. Prove that µa in M at p is normal to S if and only if  
 

p µa = 0.

Exercise 170. Let f be a scalar field on M such that f is constant on  [S ].
Prove that, at each point of  [S ], D( f )a is normal to S .
Exercise 171. Let � : I ! M be a curve in M which remains in  [S ]. Prove
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that, for each t, the tangent vector to � is tangent to S .



30. Metric Submanifolds

Let  : S ! M be a submanifold of M. [We continue to regard a submani-
fold S as separate from M, and not a subset.] Suppose we have a metric gab
on M. Then, since we can raise and lower indices of tensors on M, additional
structure is induced on M and S .

Set h0ab =  
 

gab, a symmetric tensor field on S . If this h0ab on S has an

inverse, i.e., if h0ab is a metric on S , then S will be said to be a metric sub
manifold.
Example 71. Let S = R1 (coordinate x), M = R2, and let  : S ! M
be  (x) = (x, x). Let gab be the metric on M whose components, in this
coordinate system, are g11 = 1, g22 = �1, g12 = g21 = 0. Then  

 
gab = 0, so

S is not a metric submanifold.
We now prove the following (not very important, but illustrative) result:

S is a metric sub manifold if and only if, for each point p of  [S ], the only
contravariant vector ⇠a at p with ⇠a tangent to S and ⇠a = gab⇠b normal to S
is ⇠a = 0. To prove this, note that  

 
p0 gab is not invertible if and only if it has

a nullspace, i.e., if and only if ⌘0a 
 

p0 gab = 0 for some nonzero vector ⌘0a in

S at p0 (where p =  (p0)). But, if ⌘0a satisfies these conditions, then ⇠a =
~ p0⌘0

a is tangent to S , while  
 

p0 gab⇠b =  
 

p0 (gab ~ p0 ⌘0
a) = ⌘0b  

 
p0 gab = 0,

so ⇠a is normal to S . Conversely, if ⇠a is tangent to S , with ⇠a normal to S ,
then the ⌘0a in S at p0 such that ~ p0 ⌘0

a = ⇠a is in the nullspace of  
 

p0 gab, so

S is not a metric submanifold.
Suppose for a moment that gab were positive-definite. Then, if S were

not a metric submanifold, there would exist a nonzero ⇠a tangent to S with
⌃a normal to S . But this would imply ⇠a⇠a = 0, which is impossible for
a nonzero vector and positive-definite metric. We conclude that every sub-
manifold of a manifold with positive-definite metric is a metric submanifold.

Let gab be a metric on M,  : S ! M a metric submanifold of M. Let
↵a...c

b...d be a tensor in M at a point p of  [S ]. We say that an index of ↵ is
normal to S if, when that index is lowered (if necessary; with the metric) it
is normal to S (as in Sect. 29). Similarly, an index of ↵ is tangent to S if,

115



116 30.

when that index is raised, it is tangent to S . An index of a tensor cannot be
simultaneously normal and tangent unless the tensor itself vanishes.

Let S be a k�dimensional metric submanifold of M. What do we get at a
point p of  [S ]? We have the k�dimensional subspace of the tangent space
at p consisting of vectors tangent to S . We also have the (n�k)�dimensional
subspace of the cotangent space of p consisting of vectors normal to S . But,
since M has a metric, we can raise the indices of the vectors in the latter
subspace. Thus, we obtain an (n � k)�dimensional subspace of the tangent
space at p consisting of vectors normal to S . These two subspace of the
tangent space at p intersect only at the origin. Furthermore, their dimensions
– k and (n�k) – add up to n, the dimension of the tangent space at p. Thus, we
have decomposed the tangent space at p into the direct sum of two subspaces.
It should be possible to introduce projections into the two subspaces, etc. We
now do this.

As usual, fix p0 in S , and set p =  (p0). Since  
 

gab is a metric on S ,

the inverse metric, h0ab, exists (on S ). Set hab = ~ p0 h0ab, a symmetric tensor
in M at p. It is immediate from the definition that both indices of hab are
tangent to M. We raise and lower indices of hab using the metric gab of M.
We now prove the following: a contravariant vector ⇠b at p is tangent to S if
and only if ⇠a = ha

b ⇠
b. The “if” part is clear. To prove the converse, let ⇠a

be tangent to S , so ⇠a = ~ p0 ⇠0
a. then

 
 

p0⇠a =  
 

p0 (gab⇠
b) =  

 p0
(gab~ ⇠

0b) = ⇠0b 
 

gab

= h0ab⇠
0b

Hence,

⇠a = ~ p0⇠
0a = ~ p0 (h0ab h0bc⇠

0c) = ~ p0 (h0ab  
 

p0⇠b)

= (~ p0 h0ab) ⇠b = ha
b⇠

b

Similarly, a covariant µa in M at p is normal to S if and only if µa ha
b = 0.

[Proof: The “only if” is clear. Let µa ha
b = 0 Then, for every ⇠a tangent to

S , µa ⇠a = µa (ha
b ⇠

b) = 0. So, µa is normal to S .] By the same argument, we
see that an index, e.g., “a”. of a tensor ↵...a... at p is tangent to S if and only
if

ha
b↵
...b... = ↵...a... (105)

and normal to S if and only if

ha
b↵
···b··· = 0 (106)

In particular, ha
bhb

c = ha
c. Hence, setting kab = gab � hab, we have

ha
bkb

c = ha
b(�b

c � hb
c) = ha

c � ha
c = 0 (107)
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and

ka
bkb

c = (�a
b � ha

b)(�b
c � hb

c) = �a
c � 2ha

c + ha
c (108)

= �a
c � ha

c = ka
c

Evidently, ⇠a satisfies ⇠b ka
b = 0 if and only if ⇠a satisfies ⇠a = ⇠b ha

b. Thus,
reversing “tangent” and “normal”, statements about hab become statement
about kab. We summarize:
Theorem 21. Let gab be a metric on M,  : S ! M a metric submanifold of
M, and p =  (p0) a point of M. Then there are tensors hab and kab in M at p
with the properties:

1. hab + kab = gab
2. Both indices of hab are tangent to S ; both indices of kab are normal to

S .
3. An index “a” of a tensor ↵...a... at p is tangent to S if and only if

ha
b↵
...b... = ↵...a..., which, in turns, holds if and only if ka

b↵
...b... = 0.

4. An index “a” of a tensor ↵...a... at p is normal to S if and only if
ka

b↵
...b... = ↵...a..., which in turn, holds if and only if ha

b↵
...b... = 0.

5. h b
a h c

b = h c
a , k b

a k c
b = k c

a (projections operators).
A given index of a tensor at p may, of course, be neither tangent nor

normal to S . But Theorem 21 has the useful consequence that any tensor
may be decomposed into tensors all of whose indices are either tangent or
normal. We might as well take all indices contravariant. We do the case with
two indices as an example: the n�index case should be clear:

↵ab = ↵mn�a
m�

b
n = ↵

mn(ha
m + ka

m)(hb
n + kb

n) (109)

= ↵mnha
mhb

n + ↵
mnka

mhb
n = ↵

mnha
mkb

n

+ ↵mnka
mkb

n

To summarize, the tensors at a point of M on a metric submanifold have
the nicest decomposition one could have possible asked for.
Exercise 172. what goes wrong with above if S is not a metric submanifold?
Exercise . 173 Prove that ha

a = k (=dimension of S ); that ka
a = (n � k)

Exercise 174. Consider Example 65. Let M = Rn have metric with com-
ponents g11 = . . . = gnn = 1, all others zero. Show that S is a metric sub
manifold, and find hab and kab.
Exercise 175. Show that, in co-dimension one, kab = ±⇠a ⇠b where ⇠a is a
normal vector to S . When will the plus sign be applicable?
Exercise 176. Let the submanifold S have dimension one, so S is the image
of a curve. Show that hab = ↵⌘a⌘b, where ↵ is a scalar and ⌘a is the tangent
to the curve.
Exercise 177. Find an example of a metric submanifold S such that the
metric h0ab on S is indefinite.
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Exercise 178. Find hab and kab for a manifold of co-dimension zero.
Exercise 179. Define the signature of hab and kab, and prove a theorem relat-
ing these signatures to that of gab.



31. Tensor Fields and Derivatives
on Submanifolds

Let M be a manifold, and S a subset of M such that S is a k�dimensional sub
manifold. (Note that we are now taking a submanifold as a subset. We shall
allow ourselves to switch from one interpretation to the other (equivalent)
one.) A tensor field on the submanifold S consists of an assignment, to each
point p of S , a tensor (in M) at p, where all the tensor at various points have
the same index structure. Thus, if B is the appropriate tensor bundle over M,
a tensor field on S is a mapping ⇤ : S ! B such that ⇡ · ⇤ = identity on
S . (Example: When S = M, tensor fields are cross sections.) A tensor field
on S is said to be smooth if the corresponding mapping of manifolds, ⇤, is
smooth.

Smoothness can be expressed in terms of components. Let (U,') be a
chart on M such that at U \ S consisting precisely of the points of U with
coordinates xk+1 = . . . = xn = 0. Let ↵a...c

b...d be a tensor field on the
submanifold S . Then the components of ↵a...c

b...d (with respect to this chart)
are functions of the k variables x1, . . . , xk (for ↵a...c

b...d is only defined on S ,
were the last (n� k) coordinates vanish). Evidently, ↵a...c

b...d is smooth if and
only if these functions of k variables are C1 for every such chart. (Exercise
180. Prove this.)

Clearly, addition, outer products, contraction, and index substitution on
smooth tensor fields on the submanifold S result in smooth tensor fields on
the submanifold S . As usual, we normally omit the adjective “smooth”.
(Di↵erential geometry is the study of smoothness.)

There is a chance of confusion in the terminology here. If we consider
S as a manifold in its own right, then we have tensor fields on this manifold.
These are di↵erent from tensor fields on the submanifold S , as defined above.
We keep this distinction by calling the former “tensor fields on the manifold
S ,” and the latter “tensor fields on the submanifold S .” (Exercise 181. Find
a natural, one-to-one correspondence between contravariant tensor fields on
the manifold S and contravariant tensor fields on the submanifold S all of
whose indices are tangent to S .)
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The remarks above apply, of course, to submanifolds in general, i.e.,
without further structure. The next logical step would be to introduce the
notion of a derivative operator on the submanifold S , and then prove that
derivative operator on M induces a natural derivative operator on the sub-
manifold S . This is straightforward, devoid of surprises, and . . . not partic-
ularly useful. We shall, therefore, omit the discussion of these intermediate
structures, and proceed directly to the most common and important case:
metric submanifolds. (Exercise 182. Define a derivative operator on the
submanifolds S . Show that a derivative operator on M indices a natural
derivative operator on each submanifold S .)

Let M be a manifold, gab a metric on M, and S , a subset of M, a
k�dimensional metric sub manifold of M. Then gab, hab, and kab (Sect. 30)
are tensor fields on the submanifold S . (Exercise 183. Prove smooth.) Let
ra be the derivative operator (on M) associated with gab. Finally, let ↵b...c

r...s
be any (smooth) tensor field on the submanifold S . It is clear from the char-
acterization in terms of charts on the previous page that there exists a tensor
field ↵̃b...c

r...s on M such that, at points of S , ↵̃b...c
r...s coincides with ↵b...c

r...s.
(In fact, it is only immediately clear that the is true locally. That’s all we
need. It is true as stated, i.e., globally.) We shall call ↵̃b...c

r...s an extension
of ↵b...c

r...s to M. Evidently, if ↵̃b...c
r...s and ↵̃0b...cr...s are two extensions of

↵b...c
r...s then ↵̃c...c

r...s � ↵̃0
b...c

r...s vanishes on S , so

↵̃b...c
r...s � ↵̃0

b...c
r...s = µ�

b...c
r...s + . . . + ⌫�

b...c
r...s (110)

where all fields are on M, and the scalar fields vanish on S . (Exercise
184. By using components, establish the existence of such an expansion
(110).) Now, let p be a point of S , ⇠a a vector at p tangent to S . We define
⇠aDa↵b...c

r...s by the equation

⇠a Da ↵
b...c

r...s = ⇠
a ra↵̃

b...c
r...s (111)

where ↵̃b...c
r...s is an extension of ↵b...c

r...s. The right side of (111) is indepen-
dent of the choice of extension, for, using (110),

⇠ara↵̃
b...c

r...s = ⇠
ara↵̃0

b...c
r...s + µ⇠

ara�
b...c

r...s + �
b...c

r...s⇠
araµ

+ · · · + ⌫⇠ara�
b...c

r...s + �
b...c

r...s⇠
ara⌫ = ⇠

ara↵̃0
b...c

r...s

Thus, xia Da↵b...c
r...s has a “natural” definition only for ⇠a tangent to S . (In-

tuitively, for tensor fields only defined on S , the derivative can only be
taken, meaningfully, along directions along S .) For ⇠a normal to S , set
⇠a Da ↵b...c

r...s = 0. Thus (since every vector is a unique linear combination
of a vector tangent to S and a vector normal to S ) ⇠a Da ↵b...c

r...s is defined for
all ⇠a, and is linear in ⇠a. Thus, we obtain a tensor field Da ↵b...c

r...s on the sub
manifold S . The index “a” in Da ↵b...c

r...s is, clearly, tangent to S . (This says
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the same thing: only derivatives in directions tangent to S are meaningful.
By fiat, we set derivatives in normal directions equal to zero.) The various
properties of ra carry over immediately (e.g., from (111)) to Da. Thus, we
have the Leibnitz rule,

Da (↵...···�
...
···) = ↵

...
··· Da �

...
··· + �

...
··· Da ↵

...
··· (112)

additivity,
Da (µ...··· + ⌫

...
···) = Da µ

...
··· + Da ⌫

...
··· (113)

etc.
To summarize, if S is a metric submanifold of M, then with any ten-

sor field, ↵b...c
r...s, on the sub manifold S , there is associated another tensor

field, Da ↵b...c
r...s, on the submanifold S , where the index “a” is tangent to S .

This Da is additive and satisfies the Leibnitz rule, and the application of Da
commutes with contraction and index substitution. [Note: Da = h m

a ra].
We establish one further important property of this Da. Let  : S ! M

be a metric submanifold of M. Then, if ↵b...c is a tensor field on the sub-
manifold S all of whose indices are tangent to S , then ↵0b...c =  

 
↵b...c is a

tensor field on the manifold S . This is, evidently, a one-to-one correspon-
dence between tensor fields on the manifold S and the tensor fields on the
submanifold S all of whose indices are tangent to S . Now,

D0a↵0b...c =  
 

(Da ↵b...c)

defines an operator D0a on covariant tensor fields on the manifold S . It is
clear from the summary above that this D0a is, in fact, a derivative operator
on the manifold S . We prove that this D0a is precisely the derivative operator
on the manifold S defined by the metric h0ab on the manifold S . The proof
is easy:

D0a h0bc = D0a( 
 

gbc) =  
 

(Da gbc) =  
 

(h m
a rmgbc) =  

 
(0) = 0

Thus, instead of talking of tensor fields on the manifold S , we can talk
of tensor fields on the submanifold S all of whose indices are tangent to S .
If ↵b...c is such a tensor field on the submanifold S , then

h m...
b h n

c Da ↵m...n (114)

is another. Thus, we have a derivative operator on the manifold S , and this
turns out to be precisely the derivative operator defined by the metric on
the manifold S . Quite generally, we can ignore the manifold S : tensors and
tensor operations on the manifold S can be replaced by certain tensors (those
whose indices are tangent to S ) and tensor operations on the sub manifold
S .
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Example 72. Let the curve � : I ! M be a metric submanifold of M. Then
a tensor field ↵b...c

r···s on the submanifold �[I] satisfies Da ↵b...c
r...s = 0 if and

only if ↵b...c
r...s is parallel transported along the curve �.

Exercise 185. Considering �b
c as a tensor field on the submanifold S , show

that Da �b
c = 0.

Exercise 186. Prove that Da gbc = 0.
Exercise 187. Prove that h m

b h n
c Dahmn = 0.

Exercise 188. Prove that Da commutes with raising and lowering indices of
tensor fields on the sub manifold S (using gab).
Exercise 189. Let ⇠a and ⌘a be vector fields on the submanifold S , with
indices tangent to S . Define Z⇠⌘ = ⇠m Dm ⌘a � ⌘m Dm ⇠a. (Why is a defi-
nition needed?) Show that this expression satisfies all the properties of Lie
derivatives of vectors.
Example 73. If S = M, all the constructions above reduce to standard di↵er-
ential geometry on M.
Example 74. Let S be a submanifold of M. Then the tensors (in M) at points
of S form vector bundles over S (as base space). Note that the dimensions
of the fibres depend only on the dimension of M (and, of course, on the rank
of the tensors under consideration), are not on the dimension of S . Now
suppose S is a metric submanifold of M. Then, Da induces a horizontal
subspace of these bundles. Furthermore, each of these bundles over S is a
submanifold of the corresponding bundle over M. The horizontal subspace
of the two bundles are related in the obvious way.



32. Extrinsic Curvature

q 
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on window sill 

Earth 

  x1   x2

  x3
Let M = R3 with the usual
positive-definite metric gab. Con-
sider the two submanifolds of
M consisting, on the one hand,
of the cylinder ((x1)2 + (x2)2 =
1), and, on the other hand, of
the plane (x3 = 0). Since the metric is positive-definite, these are metric
submanifolds. The induced metric h0ab on each submanifold is flat (has van-
ishing Riemann tensor). (Intuitively, a piece of paper in R3 can form either a
plane or a cylinder.) But, clearly, the cylinder is “curved” in a way that the
plane is not. This “curvature” is not an intrinsic property of the geometry
of the submanifold, but, rather, expresses the “way in which the submani-
fold is embedded in M”. The embedding of a metric submanifold S in M is
described by a certain tensor field on the submanifold S called the extrinsic
curvature. It is the extrinsic curvature, and not the intrinsic (local) geometry
which distinguishes the cylinder in R3 from the plane in R3.

q 

landing 

q 

q 

on sidewalk 

jumping 
on window sill 

Earth 

  x1   x2

  x3

Let S be a metric sub man-
ifold of M. The discussion
of Sect. 31 suggests that the
quantities Dahbc and Dakbc (of
course, Dahbc = Dakbc = 0, so
only one needs be considered)
should be investigated. Intuitively, Dahbc represents the “rate of change of
the tangent plane to S along S ”. We might expect this quantity to be zero for
the plane (where “all the tangent planes to S at points of S are parallel”), and
nonzero for the cylinder (where “the tangent plane to S changes orientation
as we move about S ”).

Thus, Dahbc does, intuitively, represents the “bending of S in M” – the
quantity which distinguishes the plane from the cylinder. We proceed to the
study of Dahbc.

The first step in studying any tensor field on the sub manifold S is to
project the indices tangent and normal to S (See (109).). this simplification
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is always possible – and always fruitful. First note that

h m
b h n

c Da hmn = h m
b Da (h n

c hmn) � h m
b hmn Da h n

c

= h m
b Da hcm � h n

b Da hcn = 0

Furthermore,

k m
b k n

c Da hmn = k m
b Da (k n

c hmn) � k m
b hmnDak n

c

= k m
b Da(0) � 0 Da k n

c = 0

hence, only the “mixed piece” remains:

h m
b k n

c Da hmn = ⇡abc (115)

This tensor field ⇡abc on the (metric) submanifold S is called the extrinsic
curvature of S . Note that the first two indices of ⇡abc are tangent to S , the
last index normal to S . (One can convince himself intuitively that this is the
correct index structure to describe the “bending” of S in M.)

From the results above,

Dahbc = �
m

b � n
c Dahmn = (h m

b + k m
b )(h n

c + k n
c )Dahmn

= (k m
b h n

c + h m
b k n

c ) Da hmn = 2⇡a(bc)

Hence, Dakbc = �2⇡a(bc). So, the extrinsic curvature completely determines
Da kbc and Dakbc

There is one additional symmetry of ⇡abc, which we now establish. Let
⇠a be a vector field on the submanifold S , normal to S . Then

⇡[ab]c⇠
c = ⇠ck n

c h m
[b Da]hmn = ⇠

nh m
[b Da]hmn = h m

[b Da](⇠nhmn) (116)

� hmnh m
[b Da]⇠

n = �h n
[b Da]⇠

n = �h m
a h n

b r[m⇠̃n]

Let ⇠̃n be an extension of ⇠n. We now “pull back” the right side of (116)
using  

 
(where  : S ! M):

 
 

(h m
a h n

b r[n⇠̃n]) =  
 
r[m⇠̃n] = ⇠

 
D(⇠̃)mn

= D( 
 
⇠̃)mn = 0

where, for the last equality, we have used the fact that ⇠a is normal to S .
Thus, ⇡[ab]c⇠c has all indices tangent to S , and  

 
(⇡[ab]c⇠c) = 0: so ⇡[ab]c⇠c =

0. But ⇠c is arbitrary (normal to S , but it makes no di↵erence, since “c” of
⇡abc is normal to S ), whence ⇡[ab]c = 0 that is to say, ⇡abc is symmetric in
its first two indices. (Note, incidentally, that a nonzero tensor will never be
either symmetric or antisymmetric under interchange of a pair of indices one
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of which is normal, the other tangent, to S .) Thus, ⇡abc has (n � k)k(k + 1)/2
independent components.

There is a pretty little formula which gives a good geometrical picture of
what the extrinsic curvature is. Consider a geodesic within the sub manifold
S , so its tangent vector (which is tangent also to S ) satisfies

ha
c⌘

bDb⌘
c = 0 (117)

We ask for the curvature of this curve, considered as a curve in M. We have

⌘brb⌘
c = ⌘bDb⌘

c = ka
c⌘

bDb⌘
c = ⌘bDb(ka

c⌘
c) (118)

� ⌘b⌘cDbka
c = 0 � ⌘b⌘cDbka

c

= 2⇡ a
bc ⌘

b⌘c
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 γ 3

 γ 2

 γ 1

Thus, although our curve
in S is a geodesic in S , it
in general has curvature in
M. This curvature vector is
normal to M, and given by
the extrinsic curvature. Ev-
idently, these “curvatures of
geodesics” determine ⇡abc
completely. Consider again the plane and cylinder. The curves �1 and �2
are geodesics in their submanifolds, and also geodesics (straight lines) in R3.
Thus, the extrinsic curvature of the plane is zero, while ⇡ c

ab ⌘
a⌘b for ⌘a tan-

gent to �1 in the cylinder is zero. On the other hand, �3 is a geodesic in the
cylinder, but not a geodesic in R3. Hence, ⇡ c

ab ⌘
a⌘b for ⌘a tangent to �3 is not

zero.
Thus, the extrinsic curvature represents the amount by which “curves

which insist on remaining in S , but otherwise try to be as geodesic as pos-
sible, are forced to curve in order to remain in S ”. Why is the right side of
(118) normal to S ? Physical analogy: consider a point particle, free to move
in R3 except that it is constrained to lie in some surface S . Then the surface
S will find it necessary to exert a force on the particle to keep it in S , and
this force will be normal to S .

Exercise 190. Find the extrinsic curvature for the plane and cylinder exam-
ples, and verify explicitly Eqn. (118).
Example 75. A curve, considered as a submanifold, is a geodesic if and only
if its extrinsic curvature vanishes.
Example 76. For co-dimension zero, the extrinsic curvature always vanishes.
Exercise 191. Let S be a manifold with metric h0ab. Consider Rm with its
natural positive-definite metric. Set M = S ⇥Rm, and let gab be the metric on
M such that the induced metric on each submanifold S and each submanifold
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Rm is the given one. (This construction is called the product of manifolds-
with-metric.) Consider the submanifold (a copy of S ) consisting of pairs
(p, x) with p in S and x = 0 (in Rm). Prove that its extrinsic curvature is zero.
(Conclusion: The intrinsic geometry of a submanifold allows no prediction
about what its extrinsic curvature will be.)
Exercise 192. Find an example of a metric submanifold whose intrinsic met-
ric has vanishing Riemann tensor, but whose extrinsic curvature is nonzero.
Exercise 193. Find all 2-dimensional submanifolds of R3 (with usual metric)
having vanishing extrinsic curvature.
Exercise 194. Find the extrinsic curvature of S n�1 in Rn (usual embedding,
usual metric.).
Exercise 195. Find a manifold-with-metric such that no submanifold of co-
dimensional one has vanishing extrinsic curvature.
Exercise 196. Let S be a metric submanifold of M, T a metric submani-
fold of S . Let S have vanishing extrinsic curvature in M, and T vanishing
extrinsic curvature in S . Prove that T vanishing extrinsic curvature in M.
Exercise 197. Let M be a manifold-with-metric, S a (not necessarily metric)
submanifold. How much of this extrinsic curvature business goes through?



33. The Gauss-Codazzi Equations

Let S be a metric submanifold of M (with gab). There exists a set of two
equations relating the geometry of M, the geometry of S , and the extrinsic
curvature of S . These are called the Gauss-Codazzi equations. They turn out
to be useful in numerous applications. It is perhaps not surprising that such
equations should exist. Consider a two-dimensional submanifold of R3 (with
the usual metric). Intuitively, if the surface is very “wiggly” in R3, then it
would tend to have a large intrinsic Riemann tensor, while a relatively “flat”
S would have a small Riemann tensor.

The first Gauss-Codazzi equation arises from the following fact from
Sect. 31: there is a natural, one-to-one, correspondence between tensor fields
on the manifold S and tensor fields on the submanifold S all of whose in-
dices are tangent to S . Furthermore, the mapping from tensor fields on the
submanifold S all of whose indices are tangent to S to tensor fields on the
submanifold S all of whose indices are tangent to S defined by

hb
m · · · hc

nh p
d · · · h

q
e Da↵

m...n
p...r (119)

corresponds precisely to the mapping from tensor fields on the manifold S
to tensor fields on the manifold S defined by the derivative operator on S
(associated with the metric h0ab of S ). Thus, the Riemann tensor of the
manifold S can be obtained by a calculation in M. Specifically, if ka is a
vector field on the sub manifold S which is tangent to S , then

1
2
R d

abc kd = h m
[a h n

b] h p
c rm(h r

n h s
p rrks) (120)

where R d
abc is the Riemann tensor of S . The idea is to expand the right side

of (120):

1
2
R d

abc kd = h m
[a h n

b] h p
c
⇥
(rmh r

n )h s
p rrks) (121)

+ h r
n (rmh s

p )rrks + h r
n h s

p rmrrks
⇤

The first term on the right in (121) vanishes, for h m
[a h n

b] rnh r
n = ⇡

r
[ab] = 0.

The last two terms in (121) give
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1
2
R d

abc kd = h m
[a h r

b] h p
c (rmh s

p )rrks + h m
[a h r

b] h s
c rmrrkb

= h r
[b ⇡

s
a]c rrks + h m

a h r
b h s

c r[mrr]ks

= h r
[b ⇡

s
a]c rrks +

1
2

h m
a h r

b h s
c R d

mrs kd

(122)

were, for the first step, we have used h m
a h b

m = h b
a (repeatedly), for the

second step, we have used the definition of ⇡ c
ab , for the third step, we have

used the definition of the Riemann tensor, R d
abc , of the manifold M. Finally,

we modify the first term on the far right side of (122) as follows:

h r
[b ⇡

s
a]c rrks = h r

[b ⇡
s

a]c rr(h m
s ks) = h r

[b ⇡
s

a]c kmrrh m
s

+ h r
[b ⇡

s
a]c h m

s rrkm = h r
[b ⇡

s
a]c kmrrh m

s = ⇡
s

c[a ⇡b]mskm

where, in the third step, we have used the fact that ⇡ s
ac h m

s = 0 (a normal
index contracted with a tangent index). Thus, (122) becomes

1
2
R d

abc kd = ⇡
s

c[a ⇡b]mskm +
1
2

h m
a h r

b h s
c R d

mrs kd

Using the fact that kc is arbitrary (tangent to S ), we obtain the first Gauss-
Codazzi equation:

Rabcd = 2 ⇡ m
c[a ⇡b]dm + h m

a h n
b h p

c h q
d Rmnpq (123)

This equation states that the Riemann tensor of the sub manifold S (consid-
ered as a manifold-with-metric in its own right) is equal to the Riemann ten-
sor of M, with its indices all projected tangent to S , plus a term involving the
extrinsic curvature. Intuitively, the “intrinsic wiggliness of M” (described by
the Riemann tensor of M) and the “wiggliness of the embedding of S in M”
(described by the extrinsic curvature) combine to give the “intrinsic wiggli-
ness of S ” (described by the Riemann tensor of S ).

To obtain the second Gauss-Codazzi equation, we proceed as follows:

h m
[a h n

b] h p
c k d

q rm⇡
q

np = h m
[a h n

b] h p
c h d

q rm[h r
n h s

p kqtrrhst]

= h m
[a h n

b] h p
c h d

q
⇥
(rmh r

n h s
p kqtrrhst

+ h r
n (rmh s

p )kqtrrhst + h r
n h s

p (rmkqt)rrhst + h r
n h s

p kqtrmrrhst
⇤

(124)

where, in the first step, we have used the definition of the extrinsic curvature,
and, in the second, we have expanded the derivative of the product. Now,



129

each of the first three terms in the last expression in (124) vanishes. The
first term vanishes because h m

[a h n
b] rmh r

n = ⇡ r
[ab] = 0. The second term

vanishes for a more subtle reason. Since the indices “m” and “p” of (rmh s
p )

are being projected tangent to S , the index “s” here is normal to S . Thus,
for the factor rrhst, the “s” is projected normal to S , and also “t” is being
projected normal to S (because of the kqt), But, if both indices “s” and “t”
of rr hst are projected normal to S , we obtain zero. (See the calculation
preceding (115).) The third term vanishes by an argument similar to that for
the second. Consider the factor (rm kqt). Here, the “q” is being projected
normal to S by (k d

q ), and the “m” is being projected tangent to S (by h m
a ).

Hence, the “t” in (rm kqt) is tangent to S . But now consider the factor rr hst.
Both “s” and “t” are being projected tangent to S , so we get zero. Thus, the
right side of (124) becomes simply

h m
[a h n

b] h s
c kdtrmrn hst = h m

a h n
b h s

c kdtr[mrn]hst

= h m
a h n

b h s
c kdt 1

2


R p

mns hpt + R p
mnt hsp

�

So, we have

h m
[a h n

b] h p
c k q

d rm⇡npq = �
1
2

h m
a h n

b h p
c k q

d Rmnpq (125)

This is the second Gauss-Codazzi equation. It looks at the Riemann tensor of
M with three indices projected tangent to S and one normal, and expresses
it in terms of the rate of change of the extrinsic curvature of S (properly
projected). Note that the Riemann tensor of S does not appear above. Thus,
curvature of M of a certain sort reflects itself in a derivative of the extrinsic
curvature. (Why the projections on the left in (125)? Note that, if any of the
h’s or the k is replaced by the other, then the result can easily be expressed
algebraically in terms of the extrinsic curvature by a single integration by
parts.)

Although the calculations above look rather formidable, time spend star-
ing at them is well worthwhile. It is usually easier to derive the Gauss-
Codazzi equations when needed than to go down two flights of stairs to the
library to look them up. It should now be clear why we spent so much time
at the beginning establishing an index notation!

We shall give examples of the use of these equations shortly.
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34. Metric Submanifolds of
Co-dimension One

The discussion of the previous sections has been quite general: for a k�dimensional
submanifold of an n�dimensional manifold. Easily the most important case
for applications is that in which k = n � 1, i.e., the case of co-dimension
one. Things can be simplified slightly in this case. We now carry out this
simplification.

q = u1 = u2 

σ�  

φσ�  

ξ�  

φ ξ�   

ξ�  

ξ�  

φ  �����  

φ ξ�   φ ξ�   

φ ξ�   

φ  �����  

Spacelike, three-dimensional 

second 
observer 

instruments 
record 

S 

C 

M 

The crucial consequence of co-
dimension one is the following: the
space of vectors normal to S at each
point of S is one-dimensional. Hence,
it consists of multiples of some vector
⇠a. Furthermore, we can normalize ⇠a by
⇠a⇠a = ±1. (The choice of sign is forced by the signature of gab and by
S . We shall carry both signs through the calculations.) Thus, the choice
of ⇠a is determined uniquely up to sign. (Of course, reversing the sign
of ⇠a leaves the sign of ⇠a⇠a unchanged.) Since the space of normal vec-
tors is one-dimensional, it follows that, if “a” of ↵ab...c is normal to S , then
↵ab...c = ⇠a�b...c. Thus,

hab = gab ⌥ ⇠a⇠b kab = ±⇠a⇠b (126)

Set
⇡abc = ⌥⇡ab⇠c (127)

Thus, ⇡ab is symmetric, and both its indices are tangent to S . The extrinsic
curvature, a tensor field with three indices, two tangent and one normal to S ,
reduces to ⇡ab. In co-dimension one, this ⇡ab is called extrinsic curvature.
To express ⇡ab directly in terms of ⇠a, we proceed as follows:

⇡ab = �⇠c⇡abc = �h m
b ⇠c Dahmc = �h m

b [Da (⇠chmc) � hmc Da ⇠
c]

= h m
b hmc Da ⇠

c = h m
b Da ⇠

m (128)

Eqn. (128) allows an alternative interpretation of the extrinsic curvature
in the case of co-dimension one. Let ⇠̃a be an extension of ⇠a, with ⇠̃a⇠̃a =
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±1, and set h̃ab = gab ⌥ ⇠̃a⇠̃b so h̃ab is an extension of hab. Next, note that.

⇠̃aZ⇠̃h̃ab = Z⇠̃(h̃ab⇠̃
a) � h̃abZ⇠̃ ⇠̃

a = 0 � 0 = 0

so Z⇠̃h̃ab is tangent to S . Thus,

Z⇠̃h̃ab = h̃ m
a h̃ n

b Z⇠̃h̃mn = h̃ m
a h̃ n

b Z⇠̃(gmn ⌥ ⇠̃m⇠̃n)

= h̃ m
a h̃ n

b [Z⇠̃gmn ⌥ ⇠̃mZ⇠̃ ⇠̃n ⌥ ⇠̃nZ⇠̃ ⇠̃n] = h̃ m
a h̃ n

b Z⇠̃gmn

= h̃ m
a h̃ n

b [⇠̃prpgmn + gmprn x̃ip
+ gpnrmx̃ip] = 2h̃ m

a h̃ n
b r(m⇠̃n)

= 2⇡ab

The extrinsic curvature thus represents the “Lie derivative of hab in the di-
rection normal to S ”. The reason why the extrinsic curvature of the plane
and cylinder (in Rs) are what they are is clear from this point of view.

Finally, we substitute (127) into Gauss-Codazzi equations. The resulting
(123) is obvious:

Rabcd = ±2⇡c[a⇡b]d + h m
a h n

b h p
c h q

d Rmnpq (129)

For (125), note that we might as well contract this equation with ⇠d (for the
“d” index is normal to S ). Substituting (127) into (125), and nothing that
⇠q Dm ⇠q = 0, we have

h m
[a h n

b] h p
c rm⇡np = ⌥

1
2

h m
a h n

b h p
c ⇠

dRabcd (130)

These are the Gauss-Codazzi equations for co-dimension one.
Example 77. Let M = R3, and let S be the S 2 in M given by (x1)2 + (x2)2 +

(x3)2 = 1. Let gab be the metric on M whose components, in the natural
chart, are g11 = g22 = g33 = 1, others zero. Then S is a metric submanifold.
Denote by xa the vector field on M whose components, in the natural chart,
are (x1, x2, x3). Then raxb = gab. On S , xa is normal to S . From (128)

⇡ab = h m
b Da xm = hab

We now consider the Gauss-Codazzi equations. Note that Rabcd, the Riemann
tensor of M, vanishes. Eqn. (130) just reduces to an identity. From (129),
we have

Rabcd = 2hc[a hb]d

This is the expression for the Riemann tensor of the (metric) S2. Hence,R =
2
Exercise 198. Adapt the example above to find the extrinsic curvature and
Riemann tensor for the plane in R3.
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Exercise 199. Adapt the example above to find the extrinsic curvature and
Riemann tensor for the cylinder in R3.
Exercise 200. Adapt the example above to find the extrinsic curvature of S n

in Rn+1.
Exercise 201. Let M = R4, with metric, in the natural chart, g11 = g22 =
g33 = 1, g44 = �1. others zero. Let S be the submanifold consisting of points
with (x1)2 + (x2)2 + (x3)2 � (x4)2 = �1. (This is called the unit hyperboloid.)
Show that S is a metric submanifold, and find its extrinsic curvature and
Riemann tensor.
Exercise 202. Show that the Gauss-Codazzi equations are vacuous for sub-
manifolds of dimension one; same for co-dimension zero.
Exercise 203. Show that the result of substituting the right side of (129) into
the Bianchi identity on Rabcd is an identity.
Exercise 204. Convince yourself that h m

a h n
c ⇠

b⇠dRmbnd cannot be expressed
in terms of the extrinsic and its D�derivatives. (Conclusion: There are no
additional Gauss-Codazzi equations.)
Exercise 205. Using the interpretation on p. 116, show that, if M is consid-
ered as a sub manifold of M ⇥ R1 (a product of manifolds with metric), then
the extrinsic curvature of M vanishes.
Exercise 206. using the intuitive interpretation of the Riemann tensor as
giving the “change in a vector under parallel transport about an infinitesimal
curve”, and of the extrinsic curvature as “the date of change of the tangent
plane to a submanifold”, intuit the validity of the Gauss-Codazzi equations.
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35. Orientation

Let M be an n�dimensional manifold, and let p be a point of M. We intro-
duce some properties of antisymmetric tensors at p.

Let µa...c be an antisymmetric tensor at p of rank n. Then, introducing a
chart containing p, we consider the components of µa...c, µ̃i... j. Since µa...c is
antisymmetric, the only nonzero components are those for which i . . . j are
all di↵erent. Hence, µa...c is completely determined by the numerical value
of the single component µ̃1...n. Thus, if µa...c and ⌫a...c are nonzero number ↵
such that µa...c = ↵⌫a...c.

Now consider the collection of all nonzero, antisymmetric, rank n, co-
variant tensors at p. We regard two such tensors as equivalent if the pro-
portionality factor between them is positive. Evidently, there are precisely
two equivalence classes. (The vector space of such tensors at p is one-
dimensional. We remove the origin, i.e., we exclude the zero tensor. There
remain two “pieces”, which are precisely the equivalence classes.) A choice
of one of these equivalence classes at p is called an orientation of the cotan-
gent space at p. Thus, there are precisely two orientations of the cotangent
space at p.

The same remarks apply, of course, to contravariant tensors. Similarly,
we define an orientation of the tangent space of p. In fact, an orientation
of the cotangent space at p defines an orientation of the tangent space at p
and vise versa. We shall prove slightly more: if ✏a...c is nonzero, rank n, and
antisymmetric, then there is precisely one nonzero, rank n, antisymmetric
✏a...c (all at p) such that

✏a...c✏a...c = n! (131)

(The choice of the n! is for convenience. If, with respect to a chart, ✏1...n = 1.
then, with respect to that same chart, ✏1...n = 1). To prove this, let µa...c be
nonzero, and set ↵ = µa...c✏a...c. Note (e.g., using a chart) that ↵ , 0. Hence,
✏a...c = n!↵�1µa...c is the (obviously unique) solution of (131). The ✏a...c of
(131) is called the inverse of ✏a...c. Noting that, if two nonzero ✏a...c’s di↵er by
a positive factor, then so do their inverses, we obtain a correspondence be-
tween the (two) orientations of the cotangent space and those of the tangent
space.
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The sense in which ✏a...c is the “inverse” of ✏a...c is the following. Let µa...c
be antisymmetric. Then, since µ is a multiple of ✏a···c, the left side of

1
n!
µm···n✏

m···n✏a...b = µa···c (132)

is a manifold of the right. Contracting with ✏a...c, we see that (132) holds.
Roughly speaking, an orientation of a manifold M consists of a contin-

uous assignment of an orientation to the tangent space of each point of M.
More precisely, consider two tensor fields, µa...c and ⌫a...c, on M, which are
antisymmetric and of rank n. Suppose neither vanishes anywhere. Hence,
µa...c = ↵⌫a...c, where ↵ is a scalar field on M. (Exercise 207. Prove smooth.)
These two fields will be regarded as equivalent if ↵ is everywhere positive.
(Note that, in any case, ↵ vanishes nowhere.) An equivalence class of such
fields defines an orientation of M. As we shall see in a moment, a manifold
M may have no orientation. Suppose that M is connected. Then any scalar
field on M which vanishes nowhere is either everywhere positive or every-
where negative. (Exercise 208. Prove this statement.) In this case, therefore,
if there is any orientation on M, there are precisely two.

q 

landing 

q 

q 

on sidewalk 

jumping 
on window sill 

Earth 

  x1
  x2

  x3

   abη
aξb > 0

η

   abη
aξb < 0

 ξ
a

Finally, we give a geometrical picture of ori-
entation in the case of dimension two. Let ✏ab
be a nonzero skew tensor at a point p of a
2�dimensional manifold. Fix a vector ⇠a at p,
and consider the quantity ✏ab⌘a⇠b as ⌘a varies
through vectors at p. This quantity is zero for
⌘a = ⇠a, and, as ⌘a “rotates” away from ⇠a, be-
comes either positive or negative. It is again zero for ⌘a = �⇠a. Hence,
the direction in which ⌘a must rotate from ⇠a to make the quantity above
positive defines a “direction of rotation” from ⇠a. Thus, an orientation on a
2�dimensional manifold M represents a “direction of rotation” in the tangent
space at each point of M.

final 
orientation 

π

 B M

original 
orientation 

carried around 

The question of whether a mani-
fold has an orientation is the question
of whether or not there exists a contin-
ues choice of rotation direction at each
point. It is perhaps not surprising that a
Mobius strip has no orientations.



36. Integrals

We now introduce the notion of an integral over a manifold. We begin with
integrals in Rn. Let U be an open subset of Rn, and let f (x) (where x =
(x1, . . . , xn)) be a function on U. Then, of course, the Riemann integral,

Z

U
f (x) dx1 · · · dxn (133)

is well defined. (When we write an integral, the assumption that the integral
converges absolutely is automatically in force. if an integral does not con-
verge, it does not converge, and the discussion ends.) Suppose we now per-
form a coordinate transformation, x01 = x01(x), . . . , x0n(x) = x0n(x). Then,
from elementary calculus,

Z

U
f (x) dx1 · · · dxn =

Z

U
f (x(x0))

�����
@x
@x0

�����dx01 · · · dx0n (134)

where | @x
@x0 | is the Jacobian, i.e., the absolute value of the determinant of the

n ⇥ n matrix @xi/@x0 j (i, j = 1, . . . , n).
It is clear from (134) at there is no immediate definition of the integral

of a function f over an open region U of a manifold M. The most obvious
definition would be as follows: choose a chart containing U, and define

R
U f

to be (133). But this is no good, for, by (134), the result depends on the
choice of chart. Of course, any reasonable definition of an integral depends
only on the quantity being integrated and the region of M over which the
integration takes place.

How do we arrange things so we get a reasonable notion of integration
in a manifold? Let fa...c be an n�form on the (n�dimensional) manifold M,
and let U be an open subset of M su�ciently small that there exists a chart
on U M containing U. Choose two such charts, with coordinates xi and x0i

(i = 1, . . . , n). Then the components of fa...c in these charts are related by

f 0i··· j = ⌃ fk···l
@xk

@x0i
· · · @xk

@x0 j (135)
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From (135), it follows that

f 0i··· j = fi··· jdet(
@xk

@x0l
) (136)

(Proof: The left side of (136) is certainly proportional to the right, by Sect.
35. To prove equality, contract both sides with ✏ i··· j, use (132), and the fact
that

detK b
a =

1
n!

K b···
a K c

d ✏
a···d✏b···c (137)

for a tensor K b
a where ✏a...d and ✏b...c are inverses.)

We are now almost prepared to define integration on a manifold. The
only remaining di�culty is the presence of an absolute value (in the Jaco-
bian) in (134). To correct this, we only admit coordinates xi (i = 1, . . . , n)
in which ✏1···n > 0, where ✏a···b represents an orientation on M. Let fa...c be
an n�form on the oriented (n�dimensional) manifold M. Choose a chart
compatible (in the sense above) with the orientation of M, and define the left
side of Z

U
fa···cdsa···c = n!

Z

U
f1···n dx1 · · · dxn (138)

by the right side. The result is independent of choice of chart, for, by (134)
and (136),
Z

U
f1···ndx1 · · · dxn =

Z

U
f1···n
�����
@x
@x0

����� dx01 · · · dx0n =
Z

U
f 01···n dx01 · · · dx0n

Thus, integration should be performed on an oriented manifold, and the
proper thing to integrate is an n�form. (These are not all that much di↵er-
ent from functions. Each forms are one-dimensional vector space at each
point. The nice thing about forms is that their components have the correct
behavior, e.g., (134), under coordinate transformations.

As in elementary calculus, we define integrals (of n�forms on an ori-
ented manifold) over arbitrary open regions U by the requirement that, if
U is contained in a chart, the integral is given by (138), and for U and V
disjoint, Z

U
+

Z

V
=

Z

U[V
(139)

Finally, note that, if µa···c and ⌫a···c are n�forms, s a constant, then
Z

U
(µa···c + s⌫a···c)dsa...c =

Z

U
µa···cdsa···c + s

Z

U
⌫a···cdsa···c (140)

Integration on a a manifold is not much di↵erent from integration in
elementary calculus. The only di↵erence is that one integrates an n�form
instead of a function.
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The thing one integrates over a kdimensional submanifold of M is a
kform. Let  : S ! M be a submanifold of M, and suppose that S is
oriented (i.e., at each point of  [S ] an equivalence class of antisymmetric,
rank k tensors, all of whose indices are tangent to S , is specified). The left
side of Z

 [U]
!a···b dsa···b =

Z

U
( 
 
!a···b) dsa···b (141)

is defined by the right, where U is an open subset of S , and !a···b is a k�form
on M.
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37. Stokes’ Theorem

Recall the equation of the fundamental theorem of calculus
Z b

a
f 0(x) dx = f (b) � f (a) (142)

There is a generalization of this result to manifolds. The integral over the
real line in (142) is replaced by an integral over a manifold, the function
f in (142) by a form, and the derivative in (142) by the exterior derivative.
Making these replacements, we have

Z

U
D( f )ma···b dsma···b =

Z

@U
fa···b dsa···b (143)

where fa···b is an (n � 1)�form, U is an open subset of M, and @U is the
“boundary” of U. Accompanied by an appropriate collection of definitions
and qualifications, Eqn. (143) is indeed true. It is this result we wish to
establish in the present section.
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Let M be an n�dimensional
manifold, U and open subset of M.
The boundary of U, @U, is the col-
lection of all points p of M such
that p is not in U, but every chart
containing p intersects U. This def-
inition corresponds, of course, to
the intuitive notion of the boundary
of an open set. (In the figure on the
right, p is in the boundary of U, but
neither q nor r are in @U.)

In order that the right side of (143) make sense, it is necessary that @U
be an (n � 1)�dimensional submanifold of M.

We next deal with the orientation in (143). Let M be oriented. Thus,
at each point of M, we have selected one of the two classes of equivalent
(nonzero) n�forms. Now the integral on the left in (143) makes sense. What
orientation should we choose for @U on the right? Fix a point p of @U. Then
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the covariant vectors (in M) at p which are normal to the (n�1)�dimensional
sub manifold M form a one-dimensional subspace of the cotangent space of
p. This one-dimensional vector space is divided into two pieces by its zero
element. We want to regard one of these pieces as consisting of “outgoing
normals” (i.e., heading away from U), and the other as consisting of “ingoing
normals”. Such a distinction would, evidently, be impossible of U “met @U
on both sides of @U”. (E.g., as in p in the figure below on the right rather
than q.) We are thus led to the following definition: @U will be said to border
the open set U if @U is an (n � 1)�dimensional submanifold and if, for each
point p of @U, there is a chart containing p such that the intersection of this
chart with U consists precisely of the points of the chart with xn < 0. Thus,
in the first figure above, @U, while in the second it does not.
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A covariant vector µa normal to @U at a point p of @U will be said to be
an outgoing normal if, with respect to the chart above, the nth component of
µa is positive. Evidently, ⌫a is another outgoing normal if and only if ⌫a is a
positive multiple of µa.

Finally, we are ready to induce an orientation on @U from that of M.
Let p be a point of @U. and let �a···c be antisymmetric of rank n, and in
the equivalence class defining the orientation of M. Let µa be an outgoing
normal to @U. Then µa�ab···c is antisymmetric, of rank (n � 1), and with all
indices tangent to @U. This tensor thus defines an orientation of @U. We call
this orientation the induced orientation on @U. Note that, if we reverse the
orientation originally assigned to M, we also reverse the induced orientation
on @U.

Thus, if we assume that @U borders U and use the induced orientation on
the right in (143), everything in that equation is well-defined. Is the equation
now true in general? Unfortunately, the answer is no. We still require one
further condition. In order to see why this condition is necessary, we begin
the proof of (143).

Let U be the region of Rn consisting of points (x1, . . . , xn) with 0 < x1 <
1, . . . , 0 < xn < 1. Let f (x) be a function on Rn. Then
Z

U

@ f
@x1 dx1 · · · dxn =

Z

x1=1
f dx2 · · · dxn �

Z

x1=0
f dx2 · · · dxn (144)

where the two integrals on the right are surface integrals over appropriate
faces on the cube U. Next, let fi... j(x) be the components of some (n �
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1)�form on Rn. Then the components of the exterior derivative of this form
are

1
n

 @
@x1 f2···n + ✏

@

@x2 f3···n1 + · · · + ✏
@

@xn f1···(n�1)

�
= D( f )1···n (145)

✏ =

8>><
>>:

1 n odd
�1 n even

From (144) and (145), we see that Eqn. (143) is valid for this U provided
we take for @U on the right the union of the (plane) faces of U (leaving o↵
the corners and edges, etc. We know from elementary calculus that these are
irrelevant. Strictly speaking, (143) is not meaningful for our U because the
actual @U is not a sub manifold: it has corners.)

From these remarks, the following statement should be clear: Eqn. (143)
is valid if there is a chart containing U and @U such that the image of U[ @U
in Rn is closed and bounded.
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The additional condition we require is
that U does not “go o↵ to infinity in M” so
that “some of the surface integral on the right
in (143) is not included in (143) because the
appropriate boundary is o↵ at infinity”. In
other words, we must ensure that none of the
flux escapes to infinity: that all is properly taken into account by the surface
integral on the right in (143). For the U on the right, for example, we could
not guarantee that (143) is valid.

A subset C of M will be said to be chart-compact if there is a chart
containing C such that the image of C in Rn is closed and bounded. A subset
C of M is said to be compact if C can be written as a union of chart-compact
sets. (As usual, we have merely defined a standard topological notion on M,
but using chart instead of topological notion.)

The following statement is true:
Theorem 22. Let U be an open subset of M such that @U borders U, and such
that U[ @U is compact. Let M be oriented. Then, using the induced orienta-
tion on @U, Eqn. (143) holds. We have not, of course, proven Theorem 22.
It should be clear from the discussion above, however, that the techniques of
elementary calculus together with a certain amount of work will su�ce to
write out a full proof.

Since integrals over sub manifold reduce to integrals over manifolds,
Theorem 22 is also true for submanifolds. These results are called Stokes’
Theorem. Essentially every situation in practice in which an integral “can-
cels” a derivative is a special case of Stokes’ theorem.
Example 78. Let S be a one-dimensional submanifold of M, so S consists
of a curve. Let p and q consist of the endpoints of this curve. Then Stokes’
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theorem becomes Z

S
D(↵)a dsa = ↵(q) � ↵(p)

for any scalar field ↵.
Example 79. Let U consist of the points of R2 with (x1)2 + (x2)2 < 1. Then
@U consists of points with (x1)2 = (x2)2 = 1. In this case, @U borders U.
Example 80. Let U consist of points of R2 with (x1)2 + (x2)2 , 1. Then @U
is as above, but now @U does not border U.
Exercise 207. Find the orientations of S 2, of R2.
Exercise 208. Using Example 78, prove that a scalar field on a connected
manifold, having vanishing gradient, is constant.
Exercise 209. Use Theorem 22 to prove that the exterior derivative, applied
twice in succession, gives zero. (Hint: the left side of (143) remains the same
if U is replaced by any other open set with the same boundary as U.)
Exercise 210. Verify (143) explicitly in R2 with the U of Example 79, and
with fa with components (x2, �x1). That R2 is not compact.
Exercise 211. Show that the manifold S 2 itself is compact. That R2 is not
compact.
Exercise 212. Consider the geometrical interpretation of orientation (for a
two-dimensional manifold) in Sect. 35. Obtain a similar interpretation for
a one-dimensional submanifold. Using these interpretations, describe the
operation of obtaining the induced orientation on the boundary of an open
subset of a two-dimensional manifold.
Exercise 213. Derive (142) from (143).



38. Integrals: The Metric Case

On a manifold with metric, there is an alternative way of writing integrals.
This formation is often the most convenient and suggestive.

Let M be an oriented n�dimensional manifold with metric gab. Let !a···c
be an n�form at a point p of M, where this n�form is consistent with the
orientation of M. Then, since gab is invertible, the quantity

!a···c!
a···c = !a···c(gam · · · gcn !m···n) (146)

is nonzero. If !a···c in (146) is replaced by ↵!a···c, where ↵ is a number, then
the expression (146) is multiplied by ↵2. Thus, there exists precisely one
tensor ✏a···c which is antisymmetric in all indices, of rank n consistent with
the orientation of M, and satisfies

✏a···c✏
a···c = ±n! (147)

(The plus sign must be used in (147) if the signature of gab contains an even
number of �’s; otherwise the minus sign.) The tensor field ✏a···c is called
the alternating tensor associated with gab and the orientation of M. If the
orientation of M is reversed, then the sign of ✏a···c is reversed.

Let !a···c be an n�form on M. Then

!a···c = ±
1
n!
✏a···c (✏m···n!m···n) (148)

Thus, the n�form is completely and uniquely determined by the value of the
scalar field !a···c✏a···c. In other words, on an oriented manifold with metric,
there is a one-to-one correspondence between n�forms and scalar fields. We
define the left side of

Z

U
f dS =

Z

U

1
n!

f ✏a···c dS a···c (149)

by the right. We can integrate scalar fields over open regions of M. In
particular, Z

U
1 dS =

Z

U

1
n!
✏a···c dS a···c (150)
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is called the volume of U. Thus, a metric gives rise, in particular, to the
notion of volume.

Next, let µa···b be an (n � 1)�form on M.Then, setting

⌫a = ✏ab···cµb···c (151)

we have
µm···c = ⌫

a✏ab···c (± 1
(n � 1)!

) (152)

Thus, we obtain a natural, one-to-one correspondence between (n�1)�forms
and vector fields on M. If S is an oriented sub manifold of M, of co-
dimension one, we define the left side of

Z

S
⌫a dS a =

1
(n � 1)!

Z

S
(⌫a ✏ab···c) dS b···c (153)

by the right side. In particular, if S is a metric submanifold we define the
area of S by Z

S
⌫a dS a (154)

where ⌫a is a unit normal vector.
We can now express n-form in terms of scalar fields, and (n � 1) forms

in terms of vector fields. Hence, the exterior derivative (which takes an (n �
1)�form to an n�form) should take a vector field to a scalar field. What
is the expression for this action? Let !a···b be an n � 1 form, and ⌫a its
corresponding vector field. Then, from the concomitant (54), we have

D(!)ma···b ✏
ma···b = rm (✏ma···b !a···b) = rm⌫

m (155)

where rm is the derivative operator defined by gab. Thus, the operation is
simply that of taking the divergence using the derivative operator defined by
gab.

Finally, substituting (155) into (143), we have
Z

U
(ra⌫

a) dS =
Z

@U
⌫a dS a (156)

This, of course, is the familiar form for Gauss’ law.
Example 81. Let M be an oriented, three-dimensional manifold with metric.
Then Theorem 22, for a 3�dimensional submanifold, is Gauss’ law; for a
2�dimensional sub manifold is what is usually called Stokes’ theorem; and
for a 1�dimensional sub manifold is the line integral theorem (Example 78).
Thus, the three standard integral theorems for a three-dimensional manifold
are precisely the three versions of Stokes’ theorem.
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Exercise 214. Prove that ra✏b···c = 0. where ✏b···c is the alternative tensor, and
ra is the derivative operator defined by the metric. (Hint: Take a derivative
of (147).)
Exercise 215. Find the volume of S 2 (with the usual metric).
Exercise 216. Find the area of S 2 consider as a submanifold of R3 (with
usual embedding and metric).
Exercise 217. Let M be an oriented n�dimensional manifold with metric.
Extend the discussion above to obtain a correspondence between k�forms
on M and (n � k)�forms. Express the action of the exterior derivative.
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Appendix

Math 279 Test February 3, 1972
Due: February 19, 1972

The twelve problems below are arranged approximately is order of di�-
culty, from easiest to hardest. Do the hardest six you can.

1. Let ⇠a be a nonzero vector at a point p of the n�dimensional manifold
M, and let (⇠̃1 . . . , ⇠̃n) be n numbers, not all zero. Prove that there exists a
chart with respect to which the components of ⇠a are (⇠̃1, . . . , ⇠̃n).

2. Let R d
abc be a tensor at the point p of the paracompact manifold M,

satisfying R d
abc = R d

[ab]c and R d
[abc] = 0. Prove that there exists a derivative

operator on M whose Riemann tensor at p is this R d
abc .

3. Find two distinct metrics on R2 which define the same derivative op-
erator. Find two distinct derivative operators on R2 which have the same
Riemann tensor.

4. Let ⌘a be a vector field on the manifold M such that Z⇠⌘a = 0 for
every ⇠a. Prove that etaa = 0

5. Prove Eqn. (31).
6. Let  : M ! M0 be smooth, and let U be an open subset of M0.

Prove that  �1[U] is an open subset of M.
7. Let M and M0 be manifolds. Find a natural di↵eomorphism between

T (M ⇥ M0] and T M ⇥ T M0.
8. Let M be a three-dimensional manifold with metric gab. Prove that, if

the Ricci tensor vanishes, then so does the Riemann tensor.
9. Find a smooth, onto mapping  : M ! M0 such that ~ p is an

isomorphism for each point p of M, but such that  is not a di↵eomorphism.
10. Find a connected manifold M such that, for any point p of M, M � p

is di↵eomorphic with M.
11. develop an algebra of the concomitant (58) along the lines of Exam-

ple 30.
12. For two totaly symmetric contravariant tensors ↵a1...ap and �a1...aq at a

point, set ↵\� = ↵a1...,ap�ap+1...ap+q . A symmetric contravariant tensor �a...,c at
this point will be said to be prime if it cannot be written as ↵\� with ↵ and �
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of nonzero rank. Prove that every symmetric contravariant tensor at the point
can be decomposed into a product of primes, and that this decomposition is
unique except for order and scalar factors.

Math 279 Final Examination February 29, 1972
Due: March 9, 1972

The twenty-four problems below are arranged into eight groups of three.
The problems within each group are arranged in order of di�culty. Do the
hardest ten you can, including at least one problem from each of the eight
groups.
Group A.

1. Let µab be an antisymmetric tensor at a point, and ⌫a nonzero vector.
Suppose µ[ab⌫c] = 0. Prove that there exists a vector !b at the point such that
µab = ⌫[a!b].

2. Let ✏abcd be the alternating tensor on an oriented four-dimensional
manifold with positive-definite metric. Prove that ✏abmn ✏cdmn = ± 1

4�
[ac�b]

d.
3. Let Kabc be a tensor at a point. Prove that Kabc can be written uniquely

in the form Kabc = ↵abc + �abc + �abc + �abc with ↵abc = ↵(abc), �abc =
�[abc], �abc = �(ab)c, �(abc) = 0, �abc = �[ab]c, and �[abc] = 0.
Group B.

4. Let p and q be distinct points of S 3. Prove that S �p � q is di↵eomor-
phic with S 2 ⇥ R.

5. Let M and M0 be n�dimensional manifolds with vector fields ⇠a and
⇠0a, respectively, each of which vanishes nowhere. Let p be a point of M,
and p0 be a point of M0. Prove that there exists an open set U containing p,
and U0 containing p0, such that there exists a di↵eomorphism from U to U0
which takes ⇠a to ⇠0a.

6. Find manifolds M and M0 which are not di↵eomorphic, such that
M ⇥ R is di↵eomorphic with M0 ⇥ R.
Group C.

7. Prove that the interior derivative of an n�form on an n�dimensional
manifold always vanishes.

8. Let ⇠a and ⌘a be vector fields, with ⌘a vanishing nowhere. If Z⇠(⌘a⌘b) =
0, prove that Z⇠⌘a = 0.

9. Let ✏a...c, be an n�form, vanishing nowhere, on an n�dimensional
manifold. Let ✏a...c be its inverse. Prove that Z⇠✏a...c = 0 if and only if
Z⇠✏a...c = 0.
Group D.

10. On a manifold (of dimension greater than two) with metric, let
Rabcd = C ga[cgd]b. Prove that C = const.

11. On a manifold with metric, a vector field ⇠a is said to define a con-
stant of the motion if, for any geodesic with tangent ⌘a, ⇠a ⌘a is constant
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along the geodesic. Prove that ⇠a defines a constant of the motion if and only
if ⇠a is a Killing vector.

12. Prove that, on a two-dimensional manifold with metric, there exists
a scalar field ↵ such that Rabcd = ↵ga[c gd]b.
Group E.

13. Let  : M ! M0 be smooth. Prove that the subset of M ⇥ M0
consisting of points of the form (p, (p)) is a submanifold.

14. Let  : M ! M0 and � : N ! N0 be smooth. Prove that
⇤ : M ⇥ N ! M0 ⇥ N0 defined by ⇤(p, q) = ( (p),�(q)) is smooth.

15. Let psi : M ! M0 be smooth. When is  
 

a one-to-one correspon-

dence between covariant vector field on M0 and those on M?
Group F.

16. Prove that the image of a cross-section of a vector bundle is a sub-
manifold of the bundle space.

17. Prove that two derivative operators on a manifold are the same if and
only if they define the same horizontal subspace of each tensor bundle.

18. Let M be a manifold with positive-definite metric. Find a natural
positive-definite metric on the tangent bundle of M.
Group G.

19. Let ⇠a be a complete vector field on M, and p a point of M. Prove
that ⇠a is complete on M � p if and only if ⇠a = 0 at p.

20. Classify, the two-dimensional Lie algebras.
21. find two complete vector fields on a manifold whose sum is not

complete.
Group H.

22. Let S (a subset of a manifold M) be a submanifold, and let T (a
subset of S ) be a submanifold of S . Prove that T is a submanifold of M.

23. Let S be the subset of R3 consisting of points with (x1)2 � (x2)2 �
(x3)2 = 1. Let gab be the metric on R3 with components g11 = �1, g22 =
g33 = 1, others zero. Find the extrinsic curvature and intrinsic metric of S .

24. Find a one-form !a on S 1 R such that D(!)ab = 0, but such that, for
some closed curve C,

R
C !a dS a , 0.
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