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And tear our pleasures with rough strife, 
Thorough the iron grates of life. 
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Preface 

I was pleased and flattered when Larry Sklar and Mike Friedman chose 
to mention me in the acknowledgments to their respective books Space, 
Time, and Space-Time and Foundations of Space-Time Theories. I return 
the compliment by stating that these are still the best available texts on a 
wide range of topics in the philosophy of space and time. My work may 
also be seen as a more substantive compliment. Sklar's and Friedman's 
books were especially notable for the insights and the much-needed rigor 
and precision they brought to the never ending struggle between absolute 
and relational conceptions of space and time. Now the time is ripe for 
achieving a fuller understanding of the dimensions and ramifications of the 
issues framed by Sklar and Friedman. Building on their contributions, I 
hope to make philosophical progress of various kinds: some of the issues 
can be settled; others can be sharpened; still others can be pushed aside as 
irrelevant; and some can be shown to break down or dissolve into the 
metaphysical ether. Regardless of the specifics of particular issues, the 
overarching goal here is to foster a better appreciation of how the absolute
relational controversy connects to problems in mathematics, physics, 
metaphysics, and the philosophy of scientific methodology. Foundation 
problems in physics, especially the general theory of relativity, are used 
both to advance the discussion of philosophical problems and to demon
strate that the absolute-relational controversy is not merely philosophical: 
it cannot be confined to the back pages of philosophy journals. 

Although the treatment of some topics is necessarily technical, the 
organization and level of presentation of this work make it appropriate for 
use in an upper-level undergraduate or beginning graduate course in the 
philosophy of science. The bibliography, while making no pretense at 
completeness, is extensive enough to guide the reader into both the classic 
and the more up-to-date literature. 

I have made no attempt to disguise my own predilections and prejudices, 
but at important junctions I have tried to indicate the alternative paths 
and the arguments pro and con for each. To some extent this may be a 
mistake, for philosophy might be better served if we chose simply to ignore 
various positions. I harbor no illusion that the considerations I marshal 
here achieve anything approaching closure. Indeed, I hope that this work 
will be judged by one of the most reliable yardsticks of fruitful philosophiz
ing, namely, How many discussions does it engender? How many disserta
tion topics does it spin off? 



Xll Preface 

I am grateful to the John Simon Guggenheim Memorial Foundation and 
to the National Science Foundation (grant no. SES-8701 534) for their 
support of this project. Many colleagues unselfishly offered their advice on 
earlier drafts of this book; to one and all I offer in return my sincere 
appreciation, but I must especially thank Mike Friedman, Al Janis, David 
Malament, Tim Maudlin, John Norton, Robert Rynasiewicz, and Paul 
Teller. Thanks are also due to Michael Wright, whose generous support 
of the �-Club made it possible to travel to England, where I received 
both encouragement and helpful criticism from Harvey Brown, Jeremy 
Butterfield, Michael Redhead, Simon Saunders, and other members of the 
Oxbridge mob. Other colleagues could have, but didn't, offer help; here I 
would like especially to mention Larry Sklar. However, his superb selec
tions in Chinese restaurants more than make up for this lapse. 

Section 5. 1 relies on "Remarks on Relational Theories of Motion," 
Canadian Journal of Philosophy 19 (1 989): 83-87. Section 8. 1 relies on 
"Locality, Non-locality, and Action at a Distance: A Skeptical Review of 
Some Philosophical Dogmas," in Kelvin's Baltimore Lectures and Modern 
Theoretical Physics, edited by P. Achinstein and R. Kargon (Cambridge: 
MIT Press, 1 987). Chapter 9 relies on "What Price Space-Time Subs tan
tivalism? The Hole Story," British Journal for the Philosophy of Science 38 
( 1987): 5 1 5-525; and "Why Space Is Not a Substance (at Least Not to First 
Degree)," Pacific Philosophical Quarterly 67 ( 1986): 225-244. I am grateful 
to the editors and publishers concerned for their permissions to reuse the 
material here. 



Notation 

To make the symbolism familiar to the greatest number of readers, I have 
adopted the component notation for vectors and tensors instead of the 
newer abstract index notation. Thus, �:j�2.::j� stands for the coordinate 
components of a tensor of type (r, s). The Einstein summation convention 
on repeated indices is in effect; e.g., gijVj == LjgijVj. Round and square 
brackets around indices are used to denote, respectively, symmetrization 
and antisymmetrization; e.g., 

1[iJl == t(1;j - �i) and 1(ij) == tCf;j + T;J 

Logic 

(x) 

(3x) 

Sets 

u 

n 

c 

E 

o 

Maps 

Universal quantifier 

Existential quantifier 

P --+ Q if P then Q 

I P not P 

A u B the union of A and B 

A n B the intersection of A and B 

A c B A is a subset of B 

X E A x is an element of A 

Null set 

tP maps x E A to tP(x) E B 

Inverse map of tP 

Composition t/I followed by tP 

The dragging along induced by the map tP of the 
geometric object 0 



xiv 

Manifolds 

M 

!R 

IEn 

Notation 

An n-dimensional differentiable manifold (usually CO) 

Real line 

An n-dimensional Euclidean space 

A local coordinate chart for M determining the local 
coordinates Xi , i.e., Va c M and ifJa : M --. !Rn and 
ifJa(P) = (x1(p), X2(p), . . .  , xn(p)) for p E M 

Derivatives and Connection 

Ij 

IU 

A partial derivative with respect to the coordinate Xi 

02/0x2 + 02/0y2 + 02/0Z2 

Lie derivative with respect to V 

Connection components 

The ordinary derivative with respect to xi; e.g., Viii = 
OVi/OXi 

The covariant derivative with respect to xi; e.g., 
i i/� i i k V lIi = oV uX + Ijk V 

Space-Time Models 

9JlT Models of a theory T 

A model consisting of a manifold M with geometric 
object fields 0; 
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Introduction 

Newton's Principia, published three centuries ago last year, launched the 
most successful scientific theory the world has known or is apt to know. 
But despite the undeniable success of the theory in explaining and unifying 
terrestrial and celestial motions, Newton's conceptions of space and time, 
conceptions that lay at the heart of his analysis of motion, were immediately 
and lastingly controversial. Huygens, who was arguably the greatest of 
Newton's Continental contemporaries, rejected Newton's absolute space 
and time, though he confined his misgivings to private correspondence and 
unpublished manuscripts. Leibniz, who was already involved in bitter 
priority disputes with the Newtonians, launched a public attack that cul
minated in the famous Leibniz-Clarke correspondence. In the eighteenth 
century Euler and Kant defended absolute space, though on quite different 
grounds, whereas Bishop Berkeley railed against it in his own inimitable 
fashion. In the nineteenth century Maxwell took an ambivalent stance on 
absolute motion, while Mach left no doubt that absolute space and time 
were "monstrosities" deserving no quarter. In the early twentieth century 
Poincare and Einstein set their authority against the absolutists, thus 
helping to fashion the myth that relativity theory vindicates the relational 
account of space, time, and motion favored by Huygens, Leibniz, and their 
heirs. 

Recent historical scholarship has markedly advanced our understanding 
ofthe roots of the absolute-relational controversy. Koyre and Cohen ( 1 962) 
provided evidence that Newton had a hand in drafting Clarke's responses 
to Leibniz. (But see Hall 1 980 for a contrary opinion.) The social and 
political context of the debate has been studied by Shapin ( 198 1 )  and 
Stewart ( 198 1). The origins of Newton's ideas on absolute space have been 
illuminated by McGuire ( 1978), who finds theological and kinematic moti
vations, as well as the better known dynamic arguments given in the 
Principia. The development of Leibniz's ideas on space and the relation of 
these ideas to his evolving conception of substance and his tripartite 
conception of reality have been explored by McGuire ( 1 976), Winterbourne 
( 198 1), and Cover and Hartz (1 986). Nevertheless, there exist a number of 
gaps in the literature; for instance, there is still no persuasive account of 
the various early reactions to Newton's "rotating bucket" experiment. 

This progress in historical knowledge has, regrettably, not been matched 
by progress in philosophical understanding. Indeed, if progress is measured 
by convergence of opinion of the experts in the philosophy of space and 
time, then progress has been nil. In the heyday of logical positivism, 
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Newton's absolute space and time were seen as so much metaphysical 
gibberish. Reichenbach ( 1 924), for example, cast Huygens and Leibniz in 
the roles of far-sighted philosophical heroes and cast Newton and Clarke 
in the roles of philosophical bumpkins. The postpositivist era of the 1 960s 
and 1 970s saw a major shift in attitude: absolute space was held by some 
to be philosophically intelligible (Lacey 1971 ), and in general, the issues 
raised by the Leibniz-Clarke debate were perceived as being more subtle 
than Reichenbach's caricature would suggest (Stein 1 967; Earman 1970; 
Sklar 1 976). But a deeper appreciation of the subtleties of the issues did not 
foster agreement. On the contrary, philosophical sympathies continued to 
be deeply divided, with prorelationists (van Fraassen 1970; Griinbaum 
1973) matched by equally staunch proabsolutists (Nerlich 1 976; Field 
1 980, 1 985; Friedman 1 983). Confident assertions that relational accounts 
of space and time have been or could be constructed (Suppes 1972; Bunge 
and Maynez 1976; Manders 1 982; Mundy 1983) have been matched with 
skepticism about the prospects for relationism (Hooker 1 97 1 ;  Lacey and 
Anderson 1 980; Butterfield 1 984). Moreover, there is even disagreement 
over what the debate is about; some authorities see the issue of whether 
space or space-time is a substance as central to the debate (Sklar 1976), 
while others are skeptical that the issue admits a clear and interesting 
formulation (Malament 1 976). And finally, some authors have begun to 
suggest that the absolute-relational dichotomy is not the best way to parse 
the issues and that a tertium quid needs to be articulated (Earman 1979; 
Teller 1 987). 

What accounts for the Tower of Babel character of the philosophical 
discussion? Two principal reasons suggest themselves. First, the absolute
relational controversy taps some of the most fundamental concerns in the 
foundations of physics, metaphysics, and scientific epistemology. This is a 
cause for both despair and hope: despair because if the absolute-relational 
controversy cannot be resolved without first settling the big questions of 
metaphysics and epistemology, it is not likely to be resolved, and hope 
because a way of making progress on the absolute-relational controversy 
can lead to progress on the big questions. The second and more mundane 
reason is that despite the fact that philosophers are professional distinction 
drawers, there has been a persistent failure to separate distinct though 
interrelated issues, issues that, contrary to the tacit assumption of many of 
the discussants, need not stand or fall together. 
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My overarching theme is that the time is ripe for progress. We are now 
in a position to provide a separation and classification of the issues and to 
see where linkages do and do not exist. In some instances we can settle an 
issue, at least insofar as a philosophical issue ever can be settled. And in 
other cases we can say with more precision what the issue is, what is at 
stake, and what it would take to bring a resolution. I also want to attempt 
to reverse a major trend in the discussion. In recent decades the absolute
relational controversy has largely become a captive of academic philo
sophers. l That the controversy is interminably debated in philosophical 
journals and Ph.D. dissertations is a warning sign that it has lost the 
relevance to contemporary science that the great natural philosophers of 
the seventeenth through nineteenth centuries thought that it so obviously 
had for the science of their day. I will attempt to correct this impression by 
showing, for example, how some of the very concerns raised by Leibniz in 
his correspondence with Clarke form the core of ongoing foundation 
problems in the general theory of relativity and how these problems in turn 
can be used to revitalize what has become an insular and bloodless philo
sophical discussion. 

Chapter 1 provides an initial survey of the issues as they arise from 
Newton's Principia and the Leibniz-Clarke correspondence. Those already 
familiar with the historical source materials may be tempted to skip chapter 
1 ,  but they should be aware that the subsequent discussion relies upon the 
disentanglement in chapter 1 of various senses in which space and space
time can be, or fail to be, absolute. The remainder of the book divides into 
two roughly equal parts corresponding to the two main aspects of the 
absolute-relational debate. Chapters 2 to 5 deal with the twin issues of the 
nature of motion and the structure of space-time, while chapters 6 to 9 deal 
with the ontological composition of space and time (the issue of "sub
stantivalism," to use the awkward but now well-entrenched term). 

Chapter 2 describes several classical space-time structures, some of which 
support only relative motion, others of which ground absolute quantities 
of motion ranging from rotation and acceleration to velocity and spatial 
position. Chapter 3 surveys the epistemological, metaphysical, and empir
ical considerations that inform the choice of one of these structures as the 
structure of actual space-time. Newton thought that an adequate account 
of the phenomena connected with rotation could only be constructed in a 
space-time that provided a distinguished state of rest ("absolute space" in 
one of its guises). In this he was wrong, but then so were all of the critics, 
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from Huygens down to Einstein, of his rotating-bucket experiment, a thesis 
that is defended in detail in chapter 4. Chapter 5 surveys some twentieth 
century developments and in particular shows why the relativistic concep
tion of space and time is less friendly to a relational conception of motion 
than is the classical conception. The upshot of chapters 2 to 5 is that the 
relationists were wrong about the nature of motion and the structure of 
space and time, though they were not wrong in quite the way Newton 
would have it. 

Chapter 6 analyzes Leibniz's famous argument against the conception 
of space as a substance. Although the argument undeniably has an intuitive 
tug, it lacks the force to dislodge the determined absolutist. Moreover, the 
antisubstantivalist is put on the defensive by the response that motion is 
absolute and that the structures needed to support absolute motion must 
inhere in a space or space-time distinct from bodies. Chapters 7 and 8 
consider two further arguments for substantivalism, the first deriving from 
Kant's claim that the relationist cannot adequately account for the left
right distinction, and the second deriving from the idea that a substantival 
space-time is needed to support fields, which, after the special theory of 
relativity, are no longer regarded as states of a material medium. The trend 
thus seems to go resolutely against the relationist. However, the considera
tions of chapter 9 show that the causal version of Leibniz's argument from 
the principle of sufficient reason is revived by the general theory of relativ
ity, for combining the demand for the possibility of determinism with the 
mutability of general-relativistic space-time structure produces a clash with 
the leading form of space-time substantivalism. The tentative conclusion 
reached is that a correct account of space and time may lie outside of the 
ambit of the traditional absolute-relational controversy. 

In writing this book, I have attempted to compromise between making 
the argument continuous and cumulative and making the chapters as 
independent as possible. The compromise succeeds reasonably well with 
chapter 7 on Kant, for example. Chapters 1 to 6 help to locate Kant's 
precritical views on space in their historical context, but those interested 
in incongruent counterparts can turn directly to chapter 7 and follow the 
argument without absorbing the preceding chapters. The compromise is 
less successful in other chapters, especially the latter sections of chapter 8, 
which is hardly comprehensible without reference to earlier chapters, but 
then those sections are addressed largely to technical issues of interest only 
to the specialist. 
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I have also tried to serve both students, who need to be introduced to 
the issues and guided through their intricacies, and also colleagues in 
philosophy, who want to see some progress or at least be told something 
new. I am sure I will hear the charge that in trying to serve both con
stituencies I have served neither well. But to those students who find the 
going hard, I say that it is better to wrestle with difficult but exciting 
problems than to dine on the bland fare often served up by even the better 
introductory texts. Nor do I have any apologies to offer colleagues for 
giving an expository treatment rather than stringing together some regur
gitated journal articles. They will not, I trust, find a dearth of new sub
stantive claims in both history and philosophy of science. 



1 The Origins of the Absolute-Relational Controversy 

Because it conveys so vividly a sense of the once fashionable attitudes 
toward the absolute-relational controversy, Reichenbach's "Theory of 
Motion According to Newton, Leibniz, and Huygens" ( 1 924) ought to be 
required reading for all students of the controversy. Here are a half dozen 
of Reichenbach's themes. 

1 .  Newton was a great physicist, but both he and Samuel Clarke, his 
spokesman in the famous Leibniz-Clarke correspondence, were philo
sophical dunces. ! ("It is ironic that Newton, who enriched science so 
immensely by his physical discoveries, at the same time largely hindered 
the development of its conceptual foundations"; Newton "turns into a 
mystic and a dogmatist as soon as he leaves the boundaries of his special 
field"; Clarke operates with "the complacency of a person not inhibited by 
any capacity for further enlightenment.") 

2. Leibniz and Huygens were the men of real philosophical insight. (It was 
their "unfortunate fate to have possessed insights that were too sophisti
cated for the intellectual climate of their times.") 

3. Newton's key mistake was to stray from his own empiricist principles. 
("Newton begins with very precisely formulated empirical statements, but 
adds a mystical philosophical superstructure [namely, absolute space and 
time]."2 ) 

4. Newton's conception of space and time as "autonomous entities existing 
independently of things" shows that he was unable to emancipate himself 
from "the primitive notions of everyday life." 

5. Leibniz's and Huygens's views on space and time are vindicated by 
relativity theory. ("In their opposition to Newton, physicists of our day 
rediscovered the answers which Newton's two contemporaries had offered 
in vain"; the Leibniz-Clarke correspondence "reads like a modem discus
sion of the theory of relativity.") 

6. Newton's interpretation of the infamous rotating-bucket experiment 
was refuted by Mach. ("The decisive answer to Newton's argument con
cerning centrifugal force was given by Mach.") Mach's own interpretation 
of rotation is embodied in Einstein's general theory of relativity (hereafter, 
GTR). ("As is well known, Mach's answer is based on the fact that centri
fugal force can be interpreted relativistically as a dynamic effect of gravita
tion produced by the rotation of the fixed stars.") 
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Depending upon their inclinations, students can either take heart from 
or stand appalled at the fact that one of the heavyweights of twentieth
century philosophy of science was so consistently wrong on so many 
fundamental points.3 

1 Newton on Absolute Space and Time 

Newton's Scholium on Absolute Space and Time, reproduced as an 
appendix to this chapter, should be read with an eye to disentangling 
various senses in which space, time, and space-time can be or fail to be 
absolute. At this stage the reader is urged to avoid making judgments about 
Newton's views and to concentrate instead on trying to get a firm grip on 
what his views are. As an initial guide, keep in mind that Newton is making 
at least four interrelated but distinct kinds of claims: ( 1 )  Absolute Motion: 
space and time are endowed with various structures rich enough to support 
an absolute, or nonrelational, conception of motion. (2) Substantivalism: 
these structures inhere in a substratum of space or space-time points. (3) 
Nonconventionalism: these structures are intrinsic to space and time. (4) 
Immutability: these structures are fixed and immutable. I pause to give the 
reader the opportunity to renew his acquaintance with the Scholium. (Take 
all the time you need; I can be patient.) 

A number of comments about the opening paragraphs of the Scholium 
are called for here. Later chapters will examine Newton's argument from 
rotation, which appears in the latter part of the Scholium. 

Introductory paragraph 

Recall Reichenbach's claim that Leibniz had emancipated himself from the 
primitive notions of everyday life. Newton is here declaring his own eman
cipation. He is warning the reader that the terms 'time,' 'space,' 'place,' and 
'motion' are not being used in their ordinary-language senses but are being 
given special technical meanings. 

Paragraph I 

Three elements of this paragraph call for emphasis and explication. First, 
when Newton says that absolute time "flows equably," he is not to be 
parsed as saying that time flows and that it flows equably. A literal notion 
of flow would presuppose a substratum with respect to which the flow takes 
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place. But just as Newton rejected the idea that the points of absolute space 
are to be located with respect to something deeper, so he would have 
rejected locating the instants of time with respect to anything deeper. The 
phrase 'flows equably' refers not to the ontology of time but to its structure. 
In part, Newton is asserting that it is meaningful to ask of any two events 
e1 and ez, How much time elapses between the occurrence of el and ez? 
Included, of course, is the special case of simultaneous or cotemporaneous 
events, for which the lapse is zero. Thus, according to Newton, we have 
absolute simultaneity and absolute duration in that there is a unique way 
to partition all events into simultaneity classes, and there is an observer
independent measure of the temporal interval between non simultaneous 
events. Leibniz agreed about the absolute character of simultaneity ("what
ever exists is either simultaneous with other existences or prior or posterior" 
[Loemker 1 970, p. 666] ), though he disagreed about the grounding of the 
relation of simultaneity (see section 6 below). 

Second, in saying that time flows equably "without relation to anything 
external," Newton is asserting that the temporal interval between two 
events is what it is independent of what bodies are in space and how they 
behave. 

Third, in distinguishing true mathematical time from some sensible and 
external measure of it, Newton is asserting that the metric of time is intrinsic 
to temporal intervals and that talk about the lapse of time between e1 and 
ez is not elliptical for talk about the relation of e1 and ez to the behavior 
of a pendulum, a quartz watch, or any other physical system. Of course, 
we have to use such devices in attempts to come to know what the interval 
is, but as Newton notes later in the Scholium, any such device may give 
the "wrong" answer: "It may be, that there is no such thing as equable 
motion, whereby time may be accurately measured. All motions may be 
accelerated and retarded, but the flowing of absolute time is liable to no 
change." Those who wish to deny Newton's intrinsicality thesis often 
accompany the denial with an assertion of a conventionality thesis to the 
effect that there is no fact of the matter about what the "correct" extrinsic 
metric standard is. 

Paragraph 11 
"Absolute space, in its own nature, without relation to anything external, 
remains always similar and immovable." Newton is here asserting that the 
structure of space is absolute in that it remains the same from time to time 
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in any physically possible world and from physically possible world to 
physically possible world. This immovable structure was assumed to be 
that of Euclidean three-space 1E3. In his early essay "De gravitatione" 
(c. 1 668) Newton gave a theological motivation for this doctrine of the 
immutability of spatial structure: space is "immutable in nature, and this 
is because it is an emanent effect of an eternal and immutable being" (Hall 
and Hall 1 962, p. 1 37). Even those of Newton's contemporaries who would 
have rejected the doctrine that space is an emanent effect of God would 
hardly have questioned the assumption of the fixity of spatial structure,4 
and over two centuries were to pass before the appearance of a successful 
scientific theory, Einstein's GTR, in which this assumption was dropped. 

"Relative space is some movable dimension or measure of the absolute 
spaces." In part, this is a reiteration of Newton's intrinsicality and non
conventionalist stances: talk about the spatiotemporal separation of events 
el and e2 is not to be analyzed as talk about the relation between the events 
and extrinsic metric standards such as "rigid rods" and pendulum clocks. 
But the full meaning of Paragraph 11 cannot be appreciated without coming 
to grips with an ambiguity in Newton's use of 'space.' In one sense, 'space' 
means instantaneous space; that is, in space-time terminology, an instan
taneous slice of space-time, which slice is supposed to have the character 
of 1E3 (see figure 1 . 1  a). There are two other meanings of "space" that are 
implicit in paragraph 11 but emerge more explicitly in the following two 
paragraphs. 

Paragraphs III and IV 

"Place is a part of space which a body takes up, and is according to the 
space, either absolute or relative." "Absolute motion is the translation of a 
body from one absolute place into another; and relative motion, the trans
lation from one relative place into another." A second meaning of 'space' 
that emerges from these passages is that of a reference frame, or a means 
of identifying spatial locations through time. To claim that space is absolute 
in this sense is to claim that there is a unique, correct way to make the 
identification so that for any two events e 1 and e2 , even ones lying in 
different instantaneous spaces (see figure 1 . 1 b), it is meaningful to ask, Do 
e1 and e2 occur at the same spatial location? The identification procedure 
can be given by specifying a system of paths oblique to the planes of 
absolute simultaneity; with the specification indicated in figure 1 . 1  b, the 
answer to the question is no. 
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Absolute simultaneity and absolute position in Newtonian space-time 

Chapter 1 

In yet a third sense, 'space' denotes a substance or substratum of points 
underlying physical events. The absolute frame of reference may then be 
thought of as being generated by the world lines of the points of absolute 
(or substantival) space. Spatial relations among bodies are parasitic on the 
spatial relations of the points of space that the bodies occupy. 

Newton freely admits that "the parts of space cannot be seen, or distin
guished from one another by our senses" and that as a result "in their stead 
we use sensible measures of them." 

And so, instead of absolute places and motions, we use relative ones; and that 
without any inconvenience in common affairs: but in philosophical disquisitions, 
we ought to abstract from our senses, and consider things themselves, distinct from 
what are only sensible measures of them. For it may be that there is no body really 
at rest, to which the places and motions of others may be referred. 

A sympathetic modern gloss might run thus. Absolute space is a theoretical 
entity; that is, it is an entity not directly open to observation. It nevertheless 
makes good scientific sense to postulate this entity, because the explanation 
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of various phenomena that are observable, particularly those involving 
rotation, calls for an absolute concept of motion, which in turn must be 
grounded on absolute space. Newton's argument here will be examined in 
detail in later chapters, but for now note that the argument does not involve 
a repudiation of the most basic form of the doctrine of the relativity of 
motion. Indeed, part of Newton's mistake, paradoxically, was that he 
joined the relational theorists in subscribing to a radical form of the 
relativity doctrine, according to which any assertion of the form "x moves" 
is always to be analyzed as "x moves relative to y." Where Newton parts 
company with the relationist is, in the first instance, in his belief that a 
well-founded theory of motion cannot rely only on material bodies as 
values for y. 

2 Senses of Absoluteness 

The following summarizes some of the leading senses of absoluteness that 
occur in Newton's Scholium. To mesh with the discussion in later chapters, 
the somewhat anachronistic but more revealing terminology of space-time 
is used. 

1 .  Space-time is endowed with various structures that are intrinsic to it. 

2. Among these structures are absolute simultaneity (i.e., a unique parti
tion of events into simultaneity classes) and an absolute duration (i.e., a 
measure of temporal lapse that is independent of the path connecting the 
events). 

3. There is an absolute reference frame that provides a unique way of 
identifying spatial locations through time. As a result, there is an absolute 
or well-defined measure of the velocity of individual particles and a well
defined measure of spatial separation for any pair of events. 

4. The structure of space-time is immutable; i.e., it is the same from time 
to time in the actual world and from this world to other physically possible 
worlds. 

5. Space-time is a substance in that it forms a substratum that underlies 
physical events and processes, and spatiotemporal relations among such 
events and processes are parasitic on the spatiotemporal relations inherent 
in the substratum of space-time points and regions. 
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Whether any or all of this is merely metaphysical gibberish, as Reichen
bach would have it, remains to be seen. 

3 Relationism 

There are two reasons why relationism is a more elusive doctrine than 
absolutism. First, there is no relationist counterpart to Newton's Scholium, 
the locus classicus of absolutism. Leibniz's correspondence with Clarke is 
often thought to fill this role, but it falls short of articulating a coherent 
relational doctrine and it even fails to provide a clear account of key points 
in Leibniz's own version of relationism (there is, for example, no mention 
of Leibniz's reaction to Newton's bucket experiment). Second, there are 
almost as many versions of relationism as there are relationists. 

At the risk of some distortion it is nevertheless useful to state three themes 
that form the core of classical relationism. The first theme is about both 
the nature of motion and the structure of space-time. 

R! All motion is the relative motion of bodies, and consequently, space
time does not have, and cannot have, structures that support absolute 
quantities of motion. 

Huygens, as we will see in chapters 3 and 4, was a forthright exponent of 
this theme. Leibniz's position is more difficult to interpret, for his doctrine 
of "force" seems at times to threaten to undermine the relational conception 
of motion (see section 6. 10). I shall use 'relational conception of motion' 
to refer to theme (R I ). Please resist Reichenbach's invitation to confuse 
'relational' with 'relativistic' in the sense of the special and general theories 
of relativity (see chapter 5). 

The second theme is a denial of space-time substantivalism. 

R2 Spatiotemporal relations among bodies and events are direct; that is, 
they are not parasitic on relations among a substratum of space points that 
underlie bodies or space-time points that underlie events. 

This antisubstantivalist theme is sounded in Huygens's writing, especially 
in a number of manuscripts composed during the last years of his life and 
written in direct reaction to Newton's Scholium (see chapters 3 and 4). It 
is also sounded in Leibniz's correspondence with Clarke, as when he 
announces in his third letter that "As for my opinion, I have said more than 
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once, that I hold space to  be something merely relative . . . .  For space 
denotes, in terms of possibility, an order of things which exist at the same 
time" (Alexander 1 984, pp. 25-26). There follows immediately a demon
stration designed to "confute the fancy of those who take space to be a 
substance." This famous argument will be examined in detail in chapter 6. 

One of the most glaring deficiencies of the classical discussions and of 
the current philosophical literature is the lack of a persuasive account of 
the relation between (R I )  and (R2). In chapter 3 I shall show that (R I )  
entails (R2), at  least under the assumption that a minimal form of  deter
minism is possible. Classical entries in the absolute-relational debate give 
the impression that both Newton and his contemporaries assumed that 
(R2) entails (R I ), with Newton and his supporters arguing that ,(R I)  and, 
therefore by modus tollens, that ,(R2), while relationists argued that (R2) and 
concluded by modus ponens that (R I ). Unfortunately, the classical discus
sions are burdened by a mistake by Newton and a double countermistake 
by his critics. Newton seems to have thought that since "x moves" is short 
for "x moves relative to y" and since absolute motion is motion relative 
to absolute space, "x accelerates (absolutely)" means that "x accelerates 
relative to absolute space." His critics tended to swallow this move but 
countered correctly that Newton's sense of absolute motion entails the 
otiose notions of absolute velocity and absolute change of position and 
then concluded incorrectly that they had shown that no sense of absolute, 
or nonrelational, motion is required. (If the reader is confused at this 
juncture, I can only say, have courage and read on.) I shall argue that the 
failure of (RI )  and other considerations do militate against (R2), although 
the kind of substantivalism that emerges need not be anything like that 
envisioned by Newton. Indeed, I shall argue that abandoning the immut
ability of space-time structure (as is done in GTR) while maintaining the 
possibility of determinism forces one to abandon a standard account of 
space-time substantivalism (see chapter 9). The modern upshot of the 
absolute-relational debate is thus a conception of space and time that is 
radically different from what either Newton or his critics advocated. 

The third theme asserts that all spatial predication is relational in 
nature. 

R3 No irreducible, monadic spatiotemporal properties, like 'is located at 
space-time point p,' appear in a correct analysis of the spatiotemporal 
idiom.s 
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While Huygens and Leibniz did not address this issue in these terms, there 
can be little doubt that they would have endorsed (R3), since they would 
have been unhappy to see smuggled in through the back door of ideology 
what they thought they had ruled out of the ontology with theme (R2). It 
is interesting to note in this regard that Leibniz's famous argument against 
substantivalism works equally well (or ill) against the monadic conception 
of spatiotemporal predication (see chapter 6). 

The absolute-relational contrast is far from being a dichotomy. A 
possible, third alternative, which I shall call the property view of space-time, 
would take something from both camps: it would agree with the relationist 
in rejecting a substantival substratum for events while joining with the 
absolutist in recognizing monadic properties of spatiotemporal location. 
At first glance, this mongrel view does not seem to have much to recom
mend it, for it abandons the simplicity and parsimony that makes relation
ism attractive, and at the same time it gives up the ability of absolutism to 
explain monadic spatiotemporal properties. But like many cross breeds, 
this one displays a hardiness, and it will make various appearances in the 
chapters to come.6 

At the risk of prejudging the outcome of future discussion, I would 
nevertheless like to indicate three reasons why I find Teller's ( 1 987) version 
of the property view unacceptable. The first relates to his motivation. Teller 
claims that the substantivalist is committed to two theses: ( 1 )  that space
time points necessarily exist and (2) that necessarily, each physical event 
occurs at some space-time point. He concludes that "both these theses 
suggest . . .  that space-time points are abstract objects rather than concrete 
particulars . . . .  So the inclination to think of space-time points as necessary 
suggests thinking of them as more like properties than particulars" ( 1 987, 
p. 426). In response, I note that the modern substantivalist rejects thesis ( 1 ); 
indeed, the operation of deleting points from the space-time manifold is 
one of the standard devices used by general relativists in constructing 
cosmological models (see chapter 8). Substantivalists do accept thesis (2), 
but I fail to see how doing so makes space-time points analogous to 
quantities or determinables like mass; indeed, the substantivalist's analysis 
of events makes it pellucid that space-time points are being treated as 
substances in the sense of objects of predication. This leads me to my second 
reason for being unhappy with Teller's property view. I agree with Teller's 
sentiment that there are instances where there is no real difference between 
calling something a property versus calling it a concrete thing. But modern 
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field theory does provide a powerful reason for assigning space-time points 
to the latter rather than the former category (see chapter 8). Finally, I will 
argue in chapter 9 that Einstein's "hole construction" gives a powerful 
reason to reject one leading form of space-time substantivalism, and exactly 
the same argument works against Teller's property view. 

The three relational themes sounded above are largely negative: there is 
no absolute motion; space or space-time is not a substance; and there are 
no irreducible, monadic spatiotemporal properties. What, then, is the 
relationist's positive account of space, time, and space-time? The classical 
relationist can reply in two steps. First, there are at base only physical 
bodies, their intrinsic nonspatiotemporal properties (such as mass), and 
their spatiotemporal relations. Second, the relation between the absolutist 
and the relationist models of reality is, to use one of Leibniz's favorite 
concepts, one of representation, with the representation being one-many. 
This representational ploy will receive detailed scrutiny in the later 
chapters, especially chapters 6 to 9. 

4 Leibniz and the Ideality of Space 

In the correspondence with Clarke, Leibniz's attack on absolute space 
includes the charge that space and time are not fully real, that they are 
"ideal." In his introduction to the correspondence, H. G. Alexander states, 
"The ideality of space and time follows, for Leibniz, from the fact that they 
are neither individual substances nor aggregates of individual substances; 
for only these are fully real" (Alexander 1 984, p. xxv). This is not a wholly 
satisfactory explanation. It is true that in the Leibnizian metaphysic what 
are ultimately real are the individual substances or monads and their 
nonrelational properties, and what we call the physical world is but an 
appearance or phenomenon.7 But the monadology is not at issue in the 
polemic with Clarke, where the dispute on the nature of space and time is 
focused on the phenomena of physics. These phenomena are not mere 
appearances but are, in Leibniz's terminology, true appearances or well
founded phenomena. Indeed, there are passages from the 1 680s in which 
Leibniz specifically refers to space and time as well-founded phenomena. 
("Space, time, extension, and motion are not things but well-founded modes 
of our consideration." "Matter, taken for mass itself, is only a phenomenon 
or well founded appearance, as are space and time also."8 ) Such passages 
only seem to compound the puzzle of the ideality thesis. 



16  Chapter 1 

The puzzle is resolved by noting that such passages disappear in the 
1 690s, when Leibniz begins to make use of a trichotomy consisting of the 
monads, well-founded phenomena, and a third realm consisting of entities 
variously labeled 'ideal', 'mental', and 'imaginary'. It is to this third category 
that space and time are confined in Leibniz's later writings.9 As Cover and 
Hartz ( 1 986) have emphasized, this third layer was added largely as a 
product of Leibniz's struggle with the labyrinth of the continuum. ("I 
acknowledge that time, extension, motion, and the continuum in general, 
as we understand them in mathematics, are only ideal things.,, 1 0) Very 
roughly, Leibniz's doctrine is that in real things the part is prior to the 
whole, that a real thing is actually divided into definite parts; whereas in a 
continuum, such as space or time, the whole is prior to the parts and, indeed, 
there are no actual parts to a continuum but merely infinitely many 
potential and arbitrary divisions. ("A continuous quantity is something 
ideal which pertains to possibles and to actualities only in so far as they 
are possible. A continuum, that is, involves indeterminate parts, while on 
the other hand, there is nothing indefinite in actual things, in which every 
division is made that can be made. Actual things are compounded as is a 
number out of unities, ideal things as is a number out of fractions; the parts 
are actually in a real whole but not in the ideal whole. "l l ) 

Leibniz forced himself to enter the labyrinth of the continuum by 
combining various paradoxes of infinity, learned from Galileo's writings, 
with a dubious reading of the axiom that the whole is greater than the part. 
Thus, consider the naive (and defensible) view that a continuum is actually 
and definitely divided, its parts being extensionless points. Leibniz rejected 
this conception of the composition of the continuum on the grounds that 
the points in, say, the interval [0, 1 ]  can be put into one-to-one corre
spondence with the points in a proper subinterval, say [0, t], contradicting 
the axiom. Tracing the origins and ramifications of these quaint and 
unfruitful ideas is an interesting exercise in Leibniz scholarship, but it is 
not one that 1 shall attempt here. 1 2 

5 Other Relationisms 

Modern relationists, or at least those who want to see themselves as heirs 
to Leibniz's philosophy of space and time, may sound one or more of the 
themes of section 3, but some are apt to identify relationism with the denial 
of Newton's claims that the metrical structures of space and time are 



Origins of the Absolute-Relational Controversy 17  

intrinsic. Reichenbach and his followers are also intent on maintaining an 
ideological purity. Space and time, they hold, are constructed out of physical 
objects, their states, and relations between them. And further, only certain 
kinds of relations, taken in intension, are "objective" or "real," namely, 
those grounded in causal relations, such as the relation of causal connect
ibility. These two latter themes combine to produce various conventional
ity theses about space-time structure. Thus, on Reichenbach's view, the 
standard simultaneity relation (8 = t) used in the special theory of relativ
ity (hereafter STR) is conventional unless it is definable, and perhaps 
uniquely definable, in terms of acceptable causal relations. 1 3 

The Leibniz corpus, like the Bible, can be cited in support of almost any 
idea, and so it is not at all surprising to find sources in Leibniz's writings 
for both the nonintrinsicality thesis and the causal thesis. In the "Meta
physical Foundations of Mathematics," written during the same period 
as the correspondence with Clarke, Leibniz clearly enunciates the non
intrinsicality thesis: "Quantity or magnitude is that in things which can be 
known only through their simultaneous compresence-or by their simul
taneous perception. Thus it is impossible for us to know what a foot or a 
yard is unless we actually have something to serve as a measure which can 
be applied to successive objects after each other" (Loemker 1 970, p. 667). 
And the same essay also contains a nascent causal theory of time: "Time is 
the order of existence of things which are not simultaneous . . . . If one of two 
states which are not simultaneous involves a reason for the other, the 
former is held to be prior, the latter posterior" (Loemker 1 970, p. 666). I will 
have occasion to refer to those ideas at various points, but the main focus 
of the present study will be on the themes (R I )  to (R3) of section 3. 

Yet other relationist themes are to be found in the useful "Appendix on 
Relationism" in J. R. Lucas's Space, Time, and Causality ( 1 984). However, 
many of the issues raised by Lucas are engaged by probing one or more of 
the senses of relationism already noted. Thus, for example, Lucas says that 
the relationist must hold as a matter of empirical fact, methodological 
principle, or conceptual necessity that all laws of nature are covariant 
(invariant?) under various sorts of transformations. In chapters 2 and 3 we 
shall see how invariance principles are crucial to an assessment of (R I )  of 
section 3. As another example, Lucas's relationist holds that space and time 
are homogeneous and that space is isotropic. Why? One reason can be 
discerned by pursuing Leibniz's argument against substantivalism (theme 
[R2] of section 3), for the argument appears at first blush not to work if 
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homogeneity and isotropy are abandoned (but see chapters 7 and 9). A less 
ad hominem reason is that the relationist will want to maintain that space 
and time are causally inefficacious. But notice that in the setting of classical 
space-time theories (chapter 2), space and time can be homogeneous, 
and space isotropic, while space-time is causally efficacious, because, for 
example, it possesses inertial or other structures that undermine the rela
tional character of motion (contrary to theme [R1] ). Another variant on 
the theme of the causally inefficacious status of space and time is that the 
very notion of causation demands it: "Causes must be repeatable: A mere 
difference in space and time cannot make any difference per se.,, 14 The 
possibility of determinism will figure in chapter 9 as part of an argument 
against one modern form of space-time substantivalism. 

6 The Vacuum 

A recurring topic in Leibniz's side of the correspondence with Clarke is 
criticism of the notion of a vacuum or an empty region of space. 1S The 
participants in this debate had the luxury of knowing what they were 
talking about; an empty region of space is a region unoccupied by matter. 
(This is the absolutist's characterization of the vacuum, but the relationist 
will have no trouble in providing a relational gloss, at least as long as space 
is not wholly empty.) We do not enjoy any such luxury for a combination 
of reasons: because classical particle ontology has been replaced by a 
dualistic particle-field ontology, because STR entails the equivalence of 
mass and energy, because GTR implies that the structure of space-time is 
not fixed and immutable, and because of the peculiarities of quantum field 
theory. We can maintain the spirit of the classical definition of empty space 
while accommodating the first two points by taking the vanishing of the 
relativistic energy-momentum tensor TU to be the relativistic explication 
of the notion of an empty space-time region. While this explication seems 
satisfactory in the context of STR, it has the awkward consequence of 
counting regions of general relativistic space-times as empty, even though 
these regions contain gravitational waves of sufficient strength to knock 
down the Rock of Gibraltar. 1 6 When we turn to relativistic quantum field 
theory, the classical notions become even more diffuse. For example, the 
so-called vacuum state characterizes a completely empty space (at least 
from the point of view of an inertial observer), but this state nonetheless 
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contains a high degree of dynamical activity in the form of vacuum fluctua
tions that can have important physical consequences. I 7 

But before becoming exercised at the difficulties of extending the classical 
notion of empty space into the relativistic and quantum realms, we should 
pause to consider what significance, if any, this notion has for the core of 
the absolute-relational controversy. A passage from Leibniz's fifth letter to 
Clarke seems to commit him to denying the possibility of a vacuum: "Since 
space in itself is an ideal thing, like time, space out of the world must be 
imaginary . . . . The case is the same with empty space within the world; 
which I take also to be imaginary" (Alexander 1 984, p. 64). However, C. D. 
Broad ( 1946) seems to me to be on target in interpreting this passage, not 
as a denial of the possibility of the vacuum per se, but rather as a denial 
of the existence of substantival space, either outside of a finite material 
universe or inside of Guerike's vacuum pump. Earlier in the same letter 
Leibniz writes, "Absolutely speaking, it appears that God can make the 
material universe finite in extension; but the contrary appears more agree
able to his wisdom" (Alexander 1984, p. 64). I take it that Leibniz would 
likewise have acknowledged that God can make a universe with a vacuum 
inside the system of matter. The qualifier "appears" in this passage is also 
significant, since it is Leibniz's acknowledgment that it is not certain that 
the principle of sufficient reason entails that God would not actualize such 
a world. Indeed, all that follows from the combination of the principle of 
sufficient reason and the principle of plenitude is that other things being 
equal, world WI is better than world W2 if W2 contains a vacuum while WI 
does not, and therefore other things being equal, God would not choose to 
actualize W2 over WI • But other things might not be equal and W2 might 
be preferable to WI because the greater simplicity and harmony of its laws 
outweigh its lack of plenitude. Leibniz apparently thought that such a 
situation is unlikely to emerge in God's preference ordering over possible 
worlds, but he was careful not to preclude it. 

Can we then set aside the vacuum as a tangential issue, if not a complete 
red herring? In the most authoritative recent discussion of relation ism 
Friedman ( 1983, chapter 6) thinks not, because he worries that the debate 
over substantivalism threatens to collapse if the world is a plenum. I will 
argue that his worry is misplaced, at least as regards one important form 
of substantivalism (see chapters 6 and 8). The real significance of the issue 
of the vacuum seems to me to be twofold. First, a plenum makes it easier 
for the relationist to maintain that absolutist models are representations 
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of relational worlds, and second, if we look in the opposite direction, a 
completely empty universe is difficult for the traditional relationist to 
accommodate (see chapter 8). 

7 Conclusion 

Though cursory, our initial examination of the absolute-relational con
troversy affords a glimpse of how far flung, how complex, and how subtle 
the issues are. The glimpse also reveals what a folly it would be to wade 
directly into the controversy with the aim of emerging from the fray with 
a once-and-for-all resolution. Nevertheless, I will try to show how progress 
can be made by a judicious choice of lines of inquiry. 1 8 The most fruitful 
entry point, I will try to show, is theme (R I), the relational character of 
motion. To prepare for this entry, the next chapter is devoted to a study 
of various classical space-time structures. 

Appendix: Newton's Scholium on Absolute Space and Time 

Hitherto I have laid down the definitions of such words as are less known, 
and explained the sense in which I would have them to be understood in 
the following discourse. I do not define time, space, place, and motion, as 
being well known to all. Only I must observe, that the common people 
conceive those quantities under no other notions but from the relation 
they bear to sensible objects. And thence arise certain prejudices, for the 
removing of which it will be convenient to distinguish them into absolute 
and relative, true and apparent, mathematical and common. 

I. Absolute, true, and mathematical time, of itself, and from its own 
nature, flows equably without relation to anything external, and by another 
name is called duration: relative, apparent, and common time, is some 
sensible and external (whether accurate or un equable) measure of duration 
by the means of motion, which is commonly used instead of true time; such 
as an hour, a day, a month, a year. 

11. Absolute space, in its own nature, without relation to anything 
external, remains always similar and immovable. Relative space is some 
movable dimension or measure of the absolute spaces; which our senses 
determine by its position to bodies; and which is commonly taken for 
immovable space; such is the dimension of a subterraneous, an aerial, or 
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celestial space, determined by  its position in respect of  the earth. Absolute 
and relative space are the same in figure and magnitude; but they do not 
remain always numerically the same. For if the earth, for instance, moves, 
a space of our air, which relatively and in respect of the earth remains 
always the same, will at one time be one part of the absolute space into 
which the air passes; at another time it will be another part of the same, 
and so, absolutely understood, it will be continually changed. 

Ill. Place is a part of space which a body takes up, and is according to 
the space, either absolute or relative. I say, a part of space; not the situation, 
nor the external surface of the body. For the places of equal solids are 
always equal but their surfaces, by reason of their dissimilar figures, are 
often unequal. Positions properly have no quantity, nor are they so much 
the places themselves, as the properties of places. The motion of the whole 
is the same with the sum of the motions of the parts; that is, the translation 
of the whole, out of its place, is the same thing with the sum of the 
translations of the parts out of their places; and therefore the place of the 
whole is the same as the sum of the places as the parts, and for that reason, 
it is internal, and in the whole body. 

IV. Absolute motion is the translation of a body from one absolute place 
into another; and relative motion, the translation from one relative place 
into another. Thus in a ship under sail, the relative place of a body is that 
part of the ship which the body possesses; or that part of the cavity which 
the body fills, and which therefore moves together with the ship: and 
relative rest is the continuance of the body in the same part of the ship, or 
of its cavity. But real, absolute rest, is the continuance of the body in the 
same part of that immovable space, in which the ship itself, its cavity, and 
all that it contains, is moved. Wherefore, if the earth is really at rest, the 
body, which relatively rests in the ship, will really and absolutely move with 
the same velocity which the ship has on the earth. But if the earth also 
moves, the true and absolute motion of the body will arise, partly from the 
true motion of the earth, in immovable space, partly from the relative 
motion of the ship on the earth; and if the body moves also relatively in 
the ship, its true motion will arise, partly from the true motion of the earth, 
in immovable space, and partly from the relative motions as well of the 
ship on the earth, as of the body in the ship; and from these relative motions 
will arise the relative motion of the body on the earth. As if that part of the 
earth, where the ship is, was truly moved towards the east, with a velocity 
of 10010 parts; while the ship itself, with a fresh gale, and full sails, is carried 
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towards the west, with a velocity expressed by 10 of those parts; but a sailor 
walks in the ship towards the east, with 1 part of the said velocity; then the 
sailor will be moved truly in immovable space towards the east, with a 
velocity of 10001 parts, and relatively on the earth towards the west, with 
a velocity of 9 of those parts. 

Absolute time, in astronomy, is distinguished from relative, by the equa
tion or correction of the apparent time. For the natural days are truly 
unequal, though they are commonly considered as equal, and used for a 
measure of time; astronomers correct this inequality that they may measure 
the celestial motions by a more accurate time. It may be, that there is 
no such thing as an equable motion, whereby time may be accurately 
measured. All motions may be accelerated and retarded, but the flowing 
of absolute time is not liable to any change. The duration or perseverance 
of the existence of things remains the same, whether the motions are swift 
or slow, or none at all: and therefore this duration ought to be distinguished 
from what are only sensible measures thereof; and from which we deduce 
it, by means of the astronomical equation. The necessity of this equation, 
for determining the times of a phenomenon, is evinced as well from the 
experiments of the pendulum clock, as by eclipses of the satellites of Jupiter. 

As the order of the parts of time is immutable, so also is the order of the 
parts of space. Suppose those parts to be moved out of their places, and 
they will be moved (if the expression may be allowed) out of themselves. 
For times and spaces are, as it were, the places as well of themselves as of 
all other things. All things are placed in time as to order of succession; and 
in space as to order of situation. It is from their essence or nature that they 
are places; and that the primary places of things should be movable, is 
absurd. These are therefore the absolute places; and translations out of 
those places, are the only absolute motions. 

But because the parts of space cannot be seen, or distinguished from one 
another by our senses, therefore in their stead we use sensible measures of 
them. For from the positions and distances of things from any body 
considered as immovable, we define all places; and then with respect to 
such places, we estimate all motions, considering bodies as transferred from 
some of those places into others. And so, instead of absolute places and 
motions, we use relative ones; and that without any inconvenience in 
common affairs; but in philosophical disquisitions, we ought to abstract 
from our senses, and consider things themselves, distinct from what are 
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only sensible measures of them. For it may be that there is no body really 
at rest, to which the places and motions of others may be referred. 

But we may distinguish rest and motion, absolute and relative, one from 
the other by their properties, causes, and effects. It is a property of rest, 
that bodies really at rest do rest in respect to one another. And therefore 
as it is possible, that in the remote regions of the fixed stars, or perhaps far 
beyond them, there may be some body absolutely at rest; but impossible 
to know, from the position of bodies to one another in our regions, whether 
any of these do keep the same position to that remote body; it follows that 
absolute rest cannot be determined from the position of bodies in our 
regions. 

It is a property of motion, that the parts, which retain given positions to 
their wholes, do partake of the motions of those wholes. For all the parts 
of revolving bodies endeavor to recede from the axis of motion; and the 
impetus of bodies moving forwards arises from the joint impetus of all the 
parts. Therefore, if surrounding bodies are moved, those that are relatively 
at rest within them will partake of their motion. Upon which account, the 
true and absolute motion of a body cannot be determined by the trans
lation of it from those which only seem to rest; for the external bodies ought 
not only to appear at rest, but to be really at rest. For otherwise, all included 
bodies, besides their translation from near the surrounding ones, partake 
likewise of their true motions; and though that translation were not made, 
they would not be really at rest, but only seem to be so. For the surrounding 
bodies stand in the like relation to the surrounded as the exterior part of 
a whole does to the interior, or as the shell does to the kernel; but if the 
shell moves, the kernel will also move, as being part of the whole, without 
removal from near the shell. 

A property, near akin to the preceding, is this, that if a place is moved, 
whatever is placed therein moves along with it; and therefore a body, which 
is moved from a place in motion, partakes also of the motion of its place. 
Upon which account, all motions, from places in motion, are no other than 
parts of entire and absolute motions; and every entire motion is composed 
of the motion of the body out of its first place, and the motion of this place 
out of its place; and so on, until we come to some immovable place, as in 
the before-mentioned example of the sailor. Wherefore, entire and absolute 
motions can be no otherwise determined than by immovable places; and 
for that reason I did before refer those absolute motions to immovable 
places, but relative ones to movable places. Now no other places are 
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immovable but those that, from infinity to infinity, do all retain the same 
given position one to another; and upon this account must ever remain 
unmoved; and do thereby constitute immovable space. 

The causes by which true and relative motions are distinguished, one 
from the other, are the forces impressed upon bodies to generate motion. 
True motion is neither generated nor altered, but by some force impressed 
upon the body moved; but relative motion may be generated or altered 
without any force impressed upon the body. For it is sufficient only to 
impress some force on other bodies with which the former is compared, 
that by their giving way, that relation may be changed, in which the relative 
rest or motion of this other body did consist. Again, true motion suffers 
always some change from any force impressed upon the moving body; but 
relative motion does not necessarily undergo any change by such forces. 
For if the same forces are likewise impressed on those other bodies, with 
which the comparison is made, that the relative position may be preserved, 
then that condition will be preserved in which the relative motion consists. 
And therefore any relative motion may be changed when the true motion 
remains unaltered, and the relative may be preserved when the true suffers 
some change. Thus, true motion by no means consists in such relations. 

The effects which distinguish absolute from relative motion are, the 
forces of receding from the axis of circular motion. For there are no such 
forces in a circular motion purely relative, but in a true and absolute 
circular motion, they are greater or less, according to the quantity of the 
motion. If a vessel, hung by a long cord, is so often turned about that the 
cord is strongly twisted, then filled with water, and held at rest together 
with the water; thereupon, by the sudden action of another force, it is 
whirled about the contrary way, and while the cord is untwisting itself, 
the vessel continues for some time in this motion; the surface of the water 
will at first be plain, as before the vessel began to move; but after that, the 
vessel, by gradually communicating its motion to the water, will make it 
begin sensibly to revolve, and recede by little and little from the middle, 
and ascend to the sides of the vessel, forming itself into a concave figure (as 
I have experienced), and the swifter the motion becomes, the higher will 
the water rise, till at last, performing its revolutions in the same times with 
the vessel, it becomes relatively at rest in it. This ascent of the water shows 
its endeavor to recede from the axis of its motion; and the true and absolute 
circular motion of the water, which is here directly contrary to the relative, 
becomes known, and may be measured by this endeavor. At first, when the 
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relative motion of the water in the vessel was greatest, it produced no 
endeavor to recede from the axis; the water showed no tendency to the 
circumference, nor any ascent towards the sides of the vessel, but remained 
of a plain surface, and therefore its true circular motion had not yet begun. 
But afterwards, when the relative motion of the water had decreased, the 
ascent thereof towards the sides of the vessel proved its endeavor to recede 
from the axis; and this endeavor showed the real circular motion of the 
water continually increasing, till it had acquired its greatest quantity, when 
the water rested relatively in the vessel. And therefore this endeavor does 
not depend upon any translation of the water in respect of the ambient 
bodies, nor can true circular motion be defined by such translation. There 
is only one real circular motion of any one revolving body, corresponding 
to only one power of endeavoring to recede from its axis of motion, as its 
proper and adequate effect; but relative motions, in one and the same body, 
are innumerable, according to the various relations it bears to external 
bodies, and, like other relations, are altogether destitute of any real effect, 
any otherwise than they may perhaps partake of that one only true motion. 
And therefore in their system who suppose that our heavens, revolving 
below the sphere of the fixed stars, carry the planets along with them; the 
several parts of those heavens, and the planets, which are indeed relatively 
at rest in their heavens, do yet really move. For they change their position 
one to another (which never happens to bodies truly at rest), and being 
carried together with their heavens, partake of their motions, and as parts 
of revolving wholes, endeavor to recede from the axis of their motions. 

Wherefore relative quantities are not the quantities themselves, whose 
names they bear, but those sensible measures of them (either accurate or 
inaccurate), which are commonly used instead of the measured quantities 
themselves. And if the meaning of words is to be determined by their use, 
then by the names time, space, place, and motion, their [sensible] measures 
are properly to be understood; and the expression will be unusual, and 
purely mathematical, if the measured quantities themselves are meant. On 
this account, those violate the accuracy of language, which ought to be 
kept precise, who interpret these words for the measured quantities. Nor 
do those less defile the purity of mathematical and philosophical truths, 
who confound real quantities with their relations and sensible measures. 

It is indeed a matter of great difficulty to discover, and effectually 
to distinguish, the true motions of particular bodies from the apparent; 
because the parts of that immovable space, in which those motions are 
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performed, do by no means come under the observation of our senses. Yet 
the thing is not altogether desperate; for we have some arguments to guide 
us, partly from the apparent motions, which are the differences of the true 
motions; partly from the forces, which are the causes and effects of the true 
motions. For instance, if two globes, kept at a given distance one from the 
other by means of a cord that connects them, were revolved about their 
common centre of gravity, we might, from the tension of the cord, discover 
the endeavor of the globes to recede from the axis of their motion, and from 
thence we might compute the quantity of their circular motions. And then 
if any equal forces should be impressed at once on the alternate faces of the 
globes to augment or diminish their circular motions, from the increase 
or decrease of the tension of the cord, we might infer the increment or 
decremen t of their motions; and thence would be found on what faces those 
forces ought to be impressed, that the motions of the globes might be most 
augmented; that is, we might discover their hindmost faces, or those which, 
in the circular motion, do follow. But the faces which follow being known, 
and consequently the opposite ones that precede, we should likewise know 
the determination of their motions. And thus we might find both the 
quantity and the determination of this circular motion, even in an immense 
vacuum, where there was nothing external or sensible with which the globes 
could be compared. But now, if in that space some remote bodies were 
placed that kept always a given position one to another, as the fixed stars 
do in our regions, we could not indeed determine from the relative trans
lation of the globes among those bodies, whether the motion did belong to 
the globes or the bodies. But if we observed the cord, and found that its 
tension was that very tension which the motions of the globes required, we 
might conclude the motion to be in the globes, and the bodies to be at rest; 
and then, lastly, from the translation of the globes among the bodies, we 
should find the determination of their motions. But how we are to obtain 
the true motions from their causes, effects, and apparent differences, and 
the converse, shall be explained more at large in the following treatise. For 
to this end it was that I composed it. (Newton 1729, pp. 6- 12) 
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The use of modern mathematics to characterize various classical space
times is at once illuminating and dangerous. The illumination derives both 
from the precision afforded by the apparatus and from its power to make 
distinctions. But in the latter feature lies the danger. Various distinctions 
that we with hindsight can draw with ease were literally unavailable to the 
participants of the seventeenth- and eighteenth-century debates over the 
nature of motion and the structure of space and time. Reading these debates 
through the magnifying glass of this hindsight wisdom makes the partici
pants seem at various junctures either hopelessly muddled or else lamely 
groping toward a seemingly obvious distinction. While such Whiggish 
attitudes should be avoided, no fear of being labeled Whigs should prevent 
us from noting that even by the standards of their own day, the positions 
of Newton, Leibniz, and Huygens each involved its own incoherencies. 
(This is in no way intended as a denigrating remark. Rather, the fact that 
these men and such others as Maxwell and Poincart\ a list that undeniably 
contains some of the most acute and penetrating intellects in the history of 
natural philosophy, never reached a coherent position on the absolute 
versus relational character of motion shows just how difficult the issues 
are.) Nor should the currently fashionable relativism prevent us from 
seeking the truth about the nature of motion and the structure of space 
and time. Incommensurabilities have a way of disappearing when the 
initially seeming incommensurable set of positions is fitted into an appro
priately enlarged possibility set. The apparatus described below functions 
in part to provide that larger possibility set. 

The reader unfamiliar with and unwilling to develop a familiarity with 
the mathematics used here can still profitably skim sections 1 to 7 of this 
chapter with an eye to answering the following: With what alternative 
structures can classical space-times be endowed? What absolute quantities 
of motion do these various structures support, and what questions about 
motion are meaningful in which space-times? Knowledge of the latter 
question can be tested by means of the quiz given in section 8. A discussion 
of some of the fine points of the concept of an absolute object is relegated 
to an appendix. 

1 Machian Space-Time 

This space-time and its physical applications have been studied in some 
detail by Barbour ( 1974) and Barbour and Bertotti ( 1977, 1 982), who refer 
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to it as Leibnizian space-time. I have chosen instead the label 'Machian 
space-time' both because the label 'Leibnizian space-time' has previously 
been applied to the space-time presented in section 2 below and because 
the space-time presented in this section does accurately reflect Mach's 
views. 

The structure of Machian space-time is rather spare. It consists only of 
an absolute simultaneity and a Euclidean metric structure for the instan
taneous spaces. To make this more precise, we start with a differentiable 
manifold M, assumed throughout this chapter to be the standard [R4. M 
is partitioned by a family of three-dimensional hypersurfaces (planes of 
absolute simultaneity) that are topologically [R3 and have the physical 
significance that two events are simultaneous just in case both lie on the 
same plane. A tangent vector at a point x, x E M, is said to be timelike 
(respectively, spacelike) just in case it is oblique (tangent) to the plane of 
simultaneity passing through x. The planes of simultaneity can be identified 
with the level surfaces of a smooth function t :  M --. [R. If time has a 
directionality in the minimal sense that events are ordered in time, then it 
is natural to choose t so as to reflect this order by requiring that for any x, 
y E  M, t(y) > t(x) just in case the events at x are later than the events at y. 
It should be emphasized, however, that thus far t has no metrical signifi
cance, and any other time function t' such that t' = f(t), df/dt > 0, will 
suffice. 

Spatial distances between simultaneous events are to be well defined, and 
toward this end I introduce a symmetric contravariant tensor field gij of 
signature ( + ,  + ,  + , 0). Meshing g ij with the simultaneity structure requires 
that g iitj = 0, where tj == tlj and I j  denotes ordinary differentiation with 
respect to the jth coordinate. 1 To see that g ij, which is singular and which 
thus does not define a space-time metric, does induce an appropriate metric 
on the instantaneous spaces, define a co vector lj corresponding to a space
like vector Vi by 

(2. 1 )  

lj i s  not unique, since i f  lj solves (2. 1 ), so does 

(2.2) 

for arbitrary Uk• But the spatial norms I l lj 1 1  and 11 � 1 1 , where 11 »j 1 1 2 == 

g ij W; »j, are the same. Thus, we can define the spatial norm of a spacelike 
vector as the norm of any of the corresponding covectors. Spatial distances 
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are supposed to obey the laws of Euclidean geometry so that the induced 
space metric in the instantaneous spaces is supposed to be flat. This implies 
that there are coordinate systems X i, i = 1 , 2, 3, 4, such that X4 = constant 
is a plane of simultaneity and gii = diag( l ,  1, 1 , 0). The spatial coordinates 
x"', IX = 1 , 2, 3, of such a coordinate system are said to be Cartesian. 

The symmetries of Machian space-time are discernible by inspection. In 
the spatial dimension there are the usual symmetries of rigid 1E3 rotations 
and translations. But because we are implementing these symmetries on 
space-time and because Machian space-time has no preferred way to 
connect up the instantaneous spaces, the rotations and translations can be 
different on different instantaneous spaces. The space-time symmetries can 
be represented somewhat misleadingly in Cartesian coordinates as 

x'" --+ x'''' = Rp(t)xP + a"'(t), IX, f3 = 1 , 2, 3 
(Mach) 

t --+ t' = !(t), (d!ldt) > 0 

where Rp(t) is a time dependent orthogonal matrix and the a"'(t) are arbi
trary smooth functions of time. What is potentially misleading about this 
representation is that the symmetries of space-time are not coordinate 
transformations, in the sense of mere relabelings of space-time points by 
different coordinates, but rather point mappings of the space-time onto 
itself that preserve all of the space-time structure. Thus, as symmetry maps, 
the elements of (Mach) must be understood not as changes from old to new 
coordinates of the same points but as transformations that take one from 
an old point labeled (x"', t) to a new point whose coordinates in the 
old coordinate system are (x '''', t ' ). Despite this drawback, the coordinate 
representation of space-time symmetries will be used because of the con
venience it affords. 

The implications of symmetry transformations can be made more vivid 
by means of the concept of a reference frame. A global frame is specified 
by a congruence of smooth timelike curves.2 Such a frame specifies a way 
of identifying spatial locations through time: a curve from the congruence 
is the world line of a point of the space of the frame, so that from the point 
of view of that frame two events occur at the same spatial location just in 
case they lie on the same curve of the congruence. Every space-time will 
have a preferred set of frames that reflects the structure inherent in the 
space-time. In Machian space-time those frames are the rigid frames, 
defined by the condition that the spatial distance between any two points 
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of the frame remains constant in time.3 The different points of a rigid frame 
can be labeled by Cartesian coordinates x�, and events on the world line 
of a point can be labeled by t. In such an adapted coordinate system the 
world lines of the frame have the form x�(t) = constant. The first half of 
the transformations (Mach) can then be thought of as transformations from 
one rigid frame to another. 

Classical world models are materialistic. Such a model is specified by 
giving a system of world lines of particles and their associated masses. In 
such a setting the absolute space-time quantities are those which are 
definable (at least implicitly) in terms of the space-time structure, the 
particle world lines, and their masses.4 A question about the value of such 
a quantity is said to be meaningful. Thus, if e and 1 are events on particle 
world lines, it is always meaningful to ask in Machian space-time, Are e 
and 1 simultaneous? If the answer is no, it is not meaningful to ask, What 
is the spatial separation of e and I? For any two particles it is meaningful 
to ask, Is the spatial distance between the particles changing? If the answer 
is yes, it is not meaningful to ask, What is the rate of change of the distance? 
As we shall see in chapter 3, the meaningfulfnonmeaningful distinction is 
one of the key elements in assessing the adequacy of a space-time as an 
arena for a theory of motion. 

2 Leibnizian Space-Time 

The label 'Leibnizian space-time' has been used by Ehlers ( 1973) and Stein 
( 1 977). This space-time is obtained from Machian space-time by adding a 
time metric. Formally, we introduce a symmetric co variant tensor field hij 
of signature (0, 0, 0, + ). A vector can be characterized as timelike (respec
tively, spacelike) according as hij Vi vj > ° ( 1 0), For a timelike vector, the 
temporal norm is defined by I l Vi 1 1 2 = hij Vi Vi. To mesh with the space 
metric, it is required that g ijhij = 0, which implies that there is a covector 
field Ui such that hij = Ui Uj. Some further condi tions that cannot be stated 
at this juncture (see section 3 below) force Ui to be the gradient of a scalar 
field. Thus, an alternative to the above line of development would be to 
introduce the space and time metrics and then prove the existence of 
absolute time. But since we have already introduced absolute simultaneity, 
we will simply require at this point that Ui be the gradient of a scalar field 
whose level surfaces coincide with the planes of absolute simultaneity. 
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By choosing a t whose differences coincide with metric time differences, 
the symmetries of Leibnizian space-time can be represented as 

xa -+ x'a = Rp(t)xP  + aa(t), 
(Leib) 

t -+ t' = t + constant. 

It is now meaningful to ask of two particles: How fast is the distance 
between them changing? How fast is the relative speed changing? etc. In 
general, the only questions about motion that are meaningful in this setting 
are questions about the relative motions of particles, which would seem to 
make it the ideal setting for implementing the slogan that all motion is the 
relative motions of bodies. 

3 Maxwellian Space-Time 

The label 'Maxwellian space-time' has not appeared previously in the 
literature. I will attempt to justify the usage in chapter 4. This space-time 
is obtained from Leibnizian space-time by adding a standard of rotation. 
Such a standard can be established by choosing a rigid frame and declar
ing by fiat that it is nonrotating. The family of preferred frames will then 
include that frame and all the other rigid frames that are nonrotating with 
respect to it. One would expect that the symmetries of this space-time 
should be like those of Leibnizian space-time except that the time depen
dence of the rotation matrix is killed; i.e., 

(Max) 
t -+ t' = t + constant, 

where Rp is now a constant orthogonal matrix. 
To describe this structure in terms of the familiar apparatus of differential 

geometry, we begin by looking at the class of all affine connections r that 
are compatible with the space and time metrics in that the space and time 
norms are preserved under parallel transport. This implies that 

(2.3) 

where the 1 1  denotes covariant differentiation. (Condition [2.3] can be used 
to prove the existence of an absolute time function [see Kuchar 198 1] .) We 
now specialize to the subclass of those connections that are flat, i.e., whose 
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Riemann curvature tensors vanish (but see section 8 below). We then want 
to pick out a maximal set of such flat connections whose timelike geodesics 
are nonrotating with respect to one another. This can be accomplished as 
follows. Start with any flat or satisfying (2.3). Then a congruence of timelike 
geodesics of or defines a rigid frame. Let P be a spacelike vector field which 
is constant on the instantaneous spaces in the sense that 

fi l lj - fi g kj - ° - Il k - (2.4) 

where the 1 1  denotes co variant differentiation with respect to the chosen or. 
Then any other r in the set can be obtained from or by 

(2.5) 

The reader should verify that the r defined in (2.4) is flat, that (2.3) holds 
also for covariant differentiation with respect to this r, that its timelike 
geodesics are nonrotating with respect to those of or, and that all rigid 
frames nonrotating with respect to the original are picked out in this 
manner. The verification can proceed by noting that a coordinate system 
can be chosen so that g ij = diag( l ,  1, 1 , 0); hij = diag(O, 0, 0, 1 ); and °lji = 0. 
The equation of geodesics of or is then d2x ijdt2 = 0. The class of all frames 
nonrotating with respect to these geodesics can then be generated by 
adding an acceleration to get d2x ijdt2 + fi = 0, where P = (f l (t), P(t), 
f3(t), 0) and the spatial components r are functions of time alone. This is 
equivalent to shifting from or to Iji = °lji + Pt}k ' since tj = (0, 0, 0, 1 ). 

Now the symmetry maps must keep one within the class of preferred rs 
or, equivalently, within the class of nonrotating rigid frames. It is easy to 
verify that these maps are represented by (Max) with the second time 
derivative of alZ proportional to r. 

Although questions about the acceleration of a body are not in general 
meaningful in this setting, it is, of course, meaningful to ask about the state 
of rotation of a fluid or an extended body. Let Vi be a unit timelike vector 
field (hij Vi V j = 1) representing the motion of a fluid or the points of a solid 
body. The rotation vector associated with this velocity field is 

Ai(V) = 1. ij Vk mn V' 
U - 2 g Bjklm g I l n ' (2.6) 

where Bjklm is the natural-volume element. 5 So defined, the rotation vector 
is spacelike, and its spatial norm is independent of the choice of r from the 
preferred class.6 
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4 Neo-Newtonian or Galilean Space-Time 

33 

The label 'neo-Newtonian' was applied by Sklar ( 1976). The alternative 
appellation 'Galilean space-time' is justified by the form of the symmetry 
group, as will be seen below. This space-time is obtained from Maxwellian 
space-time by singling out one of the privileged affine connections, say, *r. 
Newton's Second Law for a particle of mass m is then written as 

(2.7) 

where Fi is the impressed force. When Fi = 0, (2.7) says that the world line 
of the particle is a geodesic of *r. Since *r is flat, there exists a global 
inertial coordinate system, i.e., one in which *Ij� = 0, so that the inertial
force term on the left hand side of (2.7) vanishes. 

The preferred frames are thus the inertial frames, frames whose world 
lines are straight lines in space-time. The preferred frame mappings assume 
the familiar Galilean form: 

x" -+ X'" = RpxP + v"t + constant, 
(Gal) 

t -+ t' = t + constant, 

where the v" are constants. 
It is now meaningful to ask of any given particle, regardless of whether 

other particles exist: Is this particle accelerating? Let Vi be the normed 
velocity field of the particle. Then Viti = 1, and if we take the covariant 
derivative and use (2.3), we get Vi lliti = 0. Contracting this relation with Vi 

gives ai ti = 0, where ai == Vi ll i Vi is the four-vector acceleration. This shows 
that ai is a spacelike vector. Thus, we can meaningfully speak of the spatial 
acceleration of a particle by taking the spatial norm of this vector. Similarly, 
contracting the equation of a geodesic, ai = ),(t) (dx i/dt), with ti shows that 
),(t) = 0, i.e., t is an affine parameter, which was implictly assumed in 
equation (2.7). 

5 Full Newtonian Space-Time 

The justification for the label 'Newtonian space-time' comes from the 
introduction of absolute space into neo-Newtonian space-time; in effect, a 
particular inertial frame is singled out (see Geroch 1978; Penrose 1968; and 
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Sklar 1976). To do this invariantly, we introduce a unit timelike vector field 
Ai that is covariantly constant (Ai 11i = 0). This additional structure effec
tively kills the velocity term in (Gal), leaving the symmetry transformations 
as 

X a -+ X 'a = RpxP  + constant, 
(New) 

t -+ t' = t + constant. 

Since absolute space provides a preferred way of identifying spatial loca
tions through time, it is now meaningful to ask of any particle: Is this 
particle moving? And if so, how fast is it moving? Take the tangent vector 
to the world line of the particle at any instant and norm it to produce the 
timelike unit vector Wi. The difference vector Wi - Ai is spacelike, and the 
space norm of this vector gives the desired answer. 

Notice that by using absolute space, we can define a nonsingular tensor 
field of signature ( + ,  + ,  + ,  - ) as g ij == gij - AiAi. In an inertial coordinate 
system adapted to absolute space, g ij = diag( l ,  1 , 1, - 1 ), which is re
miniscent of the Minkowski metric of special relativity theory. This sug
gests, paradoxically, that absolute space provides a stepping stone from 
classical to relativistic space-times. This suggestion will be pursued in 
chapter 3, where g ij turns out to be indispensible to formulating classical 
electromagnetic theory. 

6 Aristotelian Space-Time 

The label 'Aristotelian space-time' has been applied by Penrose ( 1968). This 
space-time is arrived at by singling out a preferred location from the 
absolute space of Newtonian space-time. (To be pedantic, I could introduce 
a velocity field Ci which is the tangent field of some particular integral curve 
of Ai.) To make the connection with Aristotle, we may suppose that this 
point corresponds to the center of the universe. Now the spatial shift term 
in (New) is killed and the symmetries are reduced to 

(Arist) 
t -+ t' = t + constant. 

It is now meaningful to ask of any particle, How far is this particle from 
the center of the universe? On any t = constant plane, mark the points 
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where the world line of the particle and the world line of the center of the 
universe cross the plane. The spatial distance between these two events 
gives the answer. 

7 Other Classical Space-Times 

We could extend the line of development of sections 1 to 6 and postulate 
a preferred direction in space and a distinguished origin of time, thus 
reducing the symmetry maps to the trivial identity map. Alternatively, we 
could expand the symmetry group of Machian space-time by dropping 
some element of that space-time structure, say, the Euclidean metric struc
ture of the instantaneous spaces. The latter space-time will make a brief 
appearance in chapter 5, but otherwise, these alternative structures will not 
play any role in what follows, so there is no reason to study them further 
here. However, readers who are interested in learning more about the possi
bilities held by classical conceptions of space and time are encouraged to 
invent other space-times that extend the above list or fill the interstices in it. 

In the usual treatment of Newtonian gravitation, gravity is an impressed 
force. Thus, a massive test particle moving in the gravitational field of a 
system of bodies feels a force Fi proportional to g ij<f)Ii' where <f) is the 
gravitational potential satisfying Poisson's equation g ij<f)lI i l l i = P (p is the 
mass density of the gravitational sources). An alternative approach, first 
suggested by Cartan, is to geometrize gravity by absorbing it into the affine 
structure of space-time; that is, a particle free-falling in a gravitational field 
no longer feels an impressed force, because it traces out a geodesic of the 
new Cartan connection cr. Toward this end we retain condition (2.3), 
which expresses the compatibility of the connection with the space and time 
metrics, but we must drop the requirement that cr is flat and that its value 
is fixed ab initio. Poisson's equation is now replaced by Rij = phii, where 
Rij is the Ricci tensor computed from cr. The reader interested in the details 
of this approach may consult any number of good presentations.7 While 
the details are not relevant here, it is worth emphasizing that only 
the unavailability of the relevant mathematical apparatus prevented the 
pioneers of gravitational theory from entertaining the possibility that even 
in the classical setting at least some elements of space-time structure do not 
remain "similar and immovable." It is no doubt fruitless but nonetheless 
tempting to speculate about whether Newton, had he possessed the rele
vant mathematics, would have dropped his insistence that the structure of 
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space-time is immutable because it is an emanative effect of an immutable 
God in favor of the idea that the affine structure of space-time, though not 
immutable, is determined by laws that are immutable because they are 
instituted by an immutable God. 

It is also natural to wonder whether the Euclidean nature of the space 
metric g ii can be abandoned. Malament ( 1986) shows that the answer is no 
if Newtonian gravitational theory, done in the Cartan style, is to be ob
tained as an appropriate classical limit of general-relativistic gravitational 
theory. 

8 Review and Quiz 

Table 2. 1 summarizes some of the leading features of the classical space
times studied above. As the space-time structure becomes richer, the sym
metries become narrower, the list of absolute quantities increases, and more 
and more questions about motion become meaningful. The reader should 
test his knowledge of these space-times by completing the quiz, answers for 
which are in a note.8 

Table 2.1 
Summary of classical space-times 

Name Structures Symmetries Invariants 

1. Machian absolute simulta- x -+ x '" = Rp(t)xP + a"(t) relative particle 
space-time neity; IP structure t -+ t' = f(t), dfldt > 0 distances 

of the instanta-
neous spaces 

2. Leibnizian (1 )  + time metric x -+ x'" = R'p(t)xP + a"(t) relative particle 
space-time t -+ t' = t + const velocities, 

accelerations, 
etc. 

3. Maxwellian (2) + standard of x -+ x' = RpxP + a"(t) rotation for 
space-time rotation t -+ t' = t + const an extended 

body 

4. neo-Newtonian (3) + inertial x -+ x' = RpxP + vat + const acceleration 
space-time structure t -+ t' = t + const of a particle 

5. Full Newtonian (4) + absolute x -+ x' = RpxP + const velocity of 
space-time space t -+ t' = t + const a particle 

6. Aristotelian (5) + distinguished x -+ x' = RpxP distance 
space-time spatial origin t -+ t' = t + const from the 

center of 
the universe 
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Quiz 
Which questions are meaningful in which space-times? 

Question 

Ql .  How far is this 
particle from the 
center of the 
universe? 

Q2. Does this particle 
have a speed of 
more than 500 m.p.h.? 

Q3. Is this particle 
moving faster than 
that one? 

Q4. Is this particle 
moving in a straight 
line? 

Q5. Is this particle 
moving with 
constant speed? 

Q6. Is the record 
rotating or is the 
turntable? 

Q7. Is the rate of 
rotation of the 
record relative to 
the turntable changing? 

Q8. Is particle # 1 
moving faster 
relative to # 2 
than # 3 is moving 
relative to # 4? 

Q9. What is the spatial 
distance between event 
e, which occurs today 
in Pittsburgh at 3:00 P.M., 
and event f, which 
occurs today in N.Y.C. 
at 3:00 P.M.? 

QlO. What is the spatial 
distance between event 
e (as above); and event 
g, which occurs tomorrow 
in N.Y.C. at 1 :00 P.M.? 

Space-time 

2 3 

37 

4 5 6 
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Appendix: Absolute Objects 

Newton's dictum that absolute space remains "similar and immovable" is 
echoed in modern works. Thus, for example, in A First Course in Rational 
Continuum Mechanics, Truesdell speaks of a space 

the properties of which are given once and for all and are not changed by our 
presence or absence . . . .  The event world is a blank canvas on which pictures of 
nature may be painted, the quarry for blocks from which statues of nature may be 
carved. This canvas, this quarry must be chosen by the artist before he sets to work. 
It lays the limitations upon his art, but by no means determines the pictures or the 
statues he will make. ( 1977, p. 25) 

The purpose of this appendix is to expose some of the difficulties in 
pinpointing the notion of absolute objects, which are supposed to char
acterize the similar and immovable structure of the fixed space-time canvas. 
I shall assume that we are dealing with a space-time theory T whose 
intended models 9JlT have the form (M, 01 , O2 , , , , ), where M is a differen
tiable manifold and the 0i are geometric object fields on M. I shall also 
assume that M is the same throughout 9JlT. When this assumption fails, we 
can either divide 9JlT into subclasses that have the same M and apply 
the definition below within each subclass, or we can try to work out a 
localized definition of 'absolute object'. However, I suspect that in general, 
no very interesting definition of absolute object can be developed when M 
is not absolute. My strategy will be to divide the question and first to 
analyze the similarity part of Newton's prescription and then to turn to the 
immovability part. 

Similarity 

Let 9 be a subset of the geometric object types 0i postulated by T. We can 
then try to capture the similarity notion as follows. 

DEFINITION 9 remains similar for T just in case for any (M, 01 , O2 , • • •  ), 
(M', O� , O� , . . .  ) E 9JlT, there is a diffeomorphism d that maps M onto M' 
so that d * q = 0; for each 0i E 9.9 
For each n from 1 to 6 it is not difficult to cook up a theory 1',. that 
incorporates the space-time from section n above and implies that the set 
9, which consists of all the object types characterizing the space-time 
structure, remains similar by our definition. 
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What does it mean for a particular object type 0 to remain similar 
relative to T? It would not be reasonable to take this to mean that the unit 
set {O} remains similar for T. For consider a theory T that demands that 
there is a plenum of dust particles and let V take as values smooth timelike 
vector fields which represent the allowed motions of the dust. Then by the 
proposal in question, V remains similar, whatever the details, to the laws 
of motion of T. But surely we will not want to count Vas remaining similar 
if, intuitively, T allows the dust particles to perform different motions. Of 
course, the question facing us is precisely what standard to apply in judging 
similarity and difference. If the intention is to have all of the space-time 
structure remain similar, the obvious solution is to make the judgment 
relative to the fixed canvas of space-time, i.e., V is counted as remaining 
similar just in case 0' = { V} u 0 remains similar, where 0 comprises all 
and only the object types characterizing the space-time structure. When 0 
is sufficiently weak, similarity may emerge where we do not expect it. Thus, 
consider Leibnizian space-time, and suppose that the laws of motion of T 
require that the dust executes some form of rigid motion. Then by the 
proposal in question, V will be counted as remaining similar. Perhaps, 
however, the velocity field of the dust may not count as an absolute object, 
because it is not immovable, although it does remain similar. 

Immovability 

Consider full Newtonian space-time. The object type Ai whose values pick 
out the absolute frame in different models certainly remains similar if, as 
intended, all the other object types characterizing the space-time structure 
do. But now suppose that the theory T incorporating Newtonian space
time implies that the center of mass of the universe moves inertially and 
that the absolute frame is to be identified with the inertial frame in which 
the center of mass is at rest. Then we will not want to count Ai as immov
able, since its values are influenced by the contingent distribution of mass 
p. More specifically, suppose that ( 1 )  p does not remain similar for T; i.e., 
there are models .H, .H' E rolT such that no diffeomorphism from the 
space-time of .H to that of .H' matches up all of the space-time structure 
(minus Ai) and also matches up the values p and pi of p for the two models; 
and (2) p determines Ai through the laws of T; i.e., for any two models .H, 
.H' E rolT, if a diffeomorphism d matches up the space-time structures 
(minus Ai) and also the values of p (d * p = pi), then d also matches up the 
values of Ai (d * Ai = A'i). And more generally, we would not want to count 
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o as immovable for T if there is some other object type (or set of object 
types) that determines 0 and does not remain similar for T. But the 
negation of this circumstance does not provide a sufficient condition for 
immovability, since presumably there are many ways 0 can be influenced 
by other objects without being determined by them. 

Despite being fuzzy at the boundaries, the concept of an absolute object 
remains a useful one in analyzing space-time theories, and it will be em
ployed in the chapters below. 



-' Choosing a Classical Space-Time 

What considerations would serve to establish that in fact space-time has a 
structure like one of those studied in chapter 2 or to the contrary that the 
structure is different from anything envisioned there? That is not a question 
that the participants in the seventeenth- and eighteenth-century version of 
the absolute-relational controversy asked or were even in a position to ask. 
Nevertheless, I will pursue this question, because despite its anachronistic 
character, it can, if asked judiciously, enhance our understanding of the 
historical and conceptual issues. 

1 Arguments from the Meaning of 'Motion' 

The general form of the argument from the meaning of 'motion' runs thus: 
From the very meaning of 'motion' it follows that various questions about 
motion are meaningful (alternatively, are not meaningful); therefore, space
time should have at least as much structure as is needed to make these 
questions meaningful (alternatively, space-time should not have so much 
structure as to make these questions meaningful). 

Newton's "De gravitatione" can be taken to contain an argument to the 
effect that space-time has at least as much structure as full Newtonian 
space-time (section 2.5), because the very meaning of motion requires a 
determinate velocity. The first part of the argument emerges from Newton's 
critique of Descartes's analysis of motion. "That the absurdity of this 
position [Descartes's] may be disclosed in full measure, I say that thence 
it follows that a moving body has no determinate velocity and no definite 
line in which is moves . . . .  On the contrary, there cannot be motion without 
a certain velocity and determination" (Hall and Hall 1962, p. 1 29). The 
argument is completed by noting that absolute space is needed to ground 
such a determination. 

Descartes's and Huygens's conceptions lead in the opposite direction: 
space-time has no more structure than Machian space-time (section 2. 1 )  or 
perhaps Leibnizian space-time (section 2.2), because the only talk about 
motion that is meaningful is talk about the relative motion of bodies. In 
the Principles, Descartes defines the motion peculiar to each body as the 
"transference of one part of matter or of one body, from the vicinity of those 
bodies immediately contiguous to it and considered at rest, into the vicinity 
of [some] others" (Descartes 1 644, 11 .25). 1 There are other motions through 
"participation" (11 .3 1 ), but these are not motions in the philosophical sense 
(111 .29). And in any case they are all relative bodily motions. 



In a manuscript that was probably composed in the early 1 690s, 
Huygens, who had broken with Descartes over the correct form of the laws 
of impact, continued faithful to the Cartesian analysis of the meaning of 
'motion'. "To those who ask what motion is, only this answer suggests itself: 
that bodies can be said to move when their place ['situs'] and their distances 
change, either with respect to each other or with respect to another body . . . .  
We don't understand anything more than this for motion" (Huygens 1 888-
1950, 1 6 : 227-228). A similar sentiment is found in another manuscript 
fragment from the same period. "Place ['locus'] indeed can only be defined 
or designated through other bodies. Thus, there can be no motion or rest 
in bodies except with respect to each other" (2 1 : 507). 2 

There are two ways to interpret such meaning claims. First, they can be 
taken to be claims about the meanings of words. Read in this way, they are 
wholly un persuasive as answers to our question, for no amount of linguistic 
analysis can settle questions about the spatiotemporal structure of the 
world. Second, they can be taken to concern not the analysis of the 
meanings of words but of extralinguistic entities: concepts. Read in this 
latter way, the claims would be interesting if we were inclined to think that 
conceptual analysis can reveal synthetic a priori truths. But today we are 
not so inclined. 

Alternatively, these claims, which are ostensibly about meanings, can be 
seen as directed at the epistemology of motion. 3 Or talk about meanings 
can be seen as an opaque way of addressing the adequacies and in
adequacies of theories of motion that use one or another spatiotemporal 
structure, a not implausible reading of Newton's intentions in "De gravita
tione," which uses thought experiments to reveal alleged inadequacies in 
Descartes's theory of motion (see chapter 4). 

2 Arguments from Epistemology 

The relationists' litany includes repetition of the fact that knowledge of 
motion rests on perceptions of the relative changes of positions of bodies, 
from which they want to conclude that motion can only be relational bodily 
motion. Leibniz, curiously enough, seems to be something of an exception. 
In a letter to Huygens, he begins with the standard litany: "Even if there 
were a thousand bodies, I still hold that the phenomena could not provide 
us (or angels) with an infallible basis for determining the subject or the 
degree of motion and that each body could be conceived separately as being 
at rest" (Loemker 1970, p. 4 1 8). But he then seemingly betrays the rela-
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tionist position by adding that "each body does truly have a certain degree 
of motion, or if you wish, of force." How Leibniz's doctrine of "force" leads 
to this seeming betrayal will be discussed in chapter 6. 

In any case, the attempted epistemological deduction of the relational 
character of motion is too quick. Grant the obvious: that scientific theoriz
ing about motion starts from sense perceptions involving impressions of 
relative changes of positions and that an appraisal of the adequacy of the 
end product of theorizing must ultimately rest on sense perceptions. It does 
not follow without further ado that an acceptable theory of motion can 
employ only concepts of motion open to direct perceptual inspection or 
else that if this stricture is transgressed, the offending concepts must be 
given an instrumentalist interpretation. Some relationists, notably Mach, 
provide the further ado in the form of a positivistic account of scientific 
theories. Not all seventeenth- and eighteenth-century relationists were so 
narrow minded. Unlike Mach, Huygens and Leibniz were realists about 
the motions of particles too little to see with the naked eye or with the aid 
of a microscope. 

This leads one to suspect that underneath the epistemological gloss 
Huygens and Leibniz sometimes put on their arguments are considerations 
that stand independently of observability. Consider Huygens's dig at New
ton's form of absolute motion: "Those who imagine a true motion without 
respect to other bodies have realized that motion cannot be discerned or 
distinguished in those bodies which move uniformly in free motion, since 
in that infinite space they see as immovable, the senses do not find anything 
which could give rise to such a judgment" (Huygens 1 888-1950, 1 6 : 226). 
Although stated in terms of the un observability of uniform absolute mo
tion, the nub of Huygens's objection is independent of what we or creatures 
with more acute sensory apparatus can or cannot perceive; rather, the point 
is that, even on Newton's own terms, absolute velocity is otiose in New
tonian mechanics.4 However, absolute acceleration in general and absolute 
rotation in particular are not otiose in Newtonian mechanics, and both 
Huygens and Leibniz responded to this point with ingenious but ultimately 
untenable considerations (see chapter 4). 

3 Arguments from Scientific Theorizing 

When winnowed, the remaining kernel of the arguments from meaning and 
epistemology comes to this. The relationist asserts that no more structure 
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than is present in Machian or perhaps Leibnizian space-time is needed to 
support an adequate scientific theory of motion, while the absolutist retorts 
that at least as much structure as in, say, neo-Newtonian or even full 
Newtonian space-time is needed for an adequate theory of motion. Fram
ing the issue in this way does not lead to a speedy resolution; on the 
contrary, at first blush it seems to open a Pandora's box of contentious 
issues. 

The trouble begins with trying to get a fix on the conditions that make 
a theory of motion adequate. It is uncontroversial that at a minimum such 
a theory must "save the phenomena." Such differences over what con
stituted the relevant phenomena for seventeenth-to-nineteenth-century 
scientists need not detain us, save to remark that before the success of 
Newton's theory it was not apparent that a single theory could provide a 
unified treatment of terrestrial and celestial motions. But what it means to 
save the phenomena is quite another matter. The reader innocent of the 
controversies in the philosophy of science may be astounded to learn that 
there is still no general agreement on this matter. In The Scientific Image, 
one of the more influential philosophy-of-science texts of the 1980s, van 
Fraassen offers that a theory saves the phenomena just in case there is a 
model of the theory inside which all the phenomena fit. But this sense of 
'save' seems to amount to no more than accommodation, and a very weak 
sense of accommodation at that, namely, logical consistency with the 
phenomena, whereas the sense of 'save' that most natural philosophers 
have had in mind requires not only passive accommodation but also active 
prediction, systematization, and explanation. Now the lid is fully off the 
box. Must scientific prediction follow or at least allow for a deterministic 
pattern? On the answer to this question turns an interesting argument 
linking the structure of space-time to the issue of substantivalism (see 
section 6 below). What is a scientific explanation? Is it equivalent to 
prediction or retrodiction via laws of nature, or must it also plumb the 
causal structure of the world?5 And in any case, what is a law of nature? 
Is it merely a statement of a Humean regularity, or is it a statement of a 
contingent but real connection between universals or, alternatively, a state
ment of a non-Humean physical necessity?6 Even assuming, mirabile dictu, 
an agreement on all of these matters, there still remains the problem of how 
to explicate and apply the other commonly touted virtues of theories, such 
as simplicity, coherence, plausibility, fecundity, computational tractability, 
etc. 



Choosing a Classical Space-Time 45 

If progress on the absolute-relational controversy had to wait upon a 
resolution of these interminably debated questions of methodology, then 
all hope of progress would have to be abandoned. Fortunately, the dialogue 
on the nature of motion can proceed without first having to settle the most 
problematic methodological questions, and indeed, this dialogue can help 
to advance the philosophy of scientific methodology. 

Symmetry principles provide the most useful initial guide to assessing 
the relative adequacies of absolute and relational theories of motion. Two 
symmetry principles are formulated in section 4, and sections 5 and 6 show 
how these principles apply to the absolute-relational debate. 

4 Symmetry Principles 

Since the structure of classical space-time is supposed to remain "sim
ilar and immovable," we can speak of the symmetries of space-time. The 
intended models 9JlT of a classical theory of motion have the form 
(M, A l , A2 , • • •  , Pl , P2 , • • •  ), where the absolute objects Ai (see the appendix 
to chapter 1) are geometric-object fields characterizing the fixed space-time 
structure and the dynamic objects � are geometric-object fields char
acterizing the physical contents of space-time. Intuitively, the Ais are 
supposed to be the same in each dynamically possible model, while the �s 
are allowed to vary from model to model. Newton apparently held a very 
literal interpretation of 'sameness'. For him the space-time is given once 
and for all as an emanative effect of God, and any talk about alterna
tive possible worlds or models must be construed as talk about different 
arrangements of matter within this fixed space-time. For our purposes it is 
sufficient that the space-time is the same in every element of9JlT in the sense 
that for any (M, A l , A2 , . . .  , Pl , P2 , . . .  ), (M', A'l , A� ,  . . .  , P� ,  P� , . . .  ) E 9JlT, 
there is a diffeomorphism d that maps M onto M' in a way that d * Ai = A; 
for all i. Then in explicating the notion of symmetries we can assume 
without loss of generality that the space-time is literally the same through
out 9JlT • A space-time symmetry of the fixed space-time is a mapping that 
leaves all of the Ais invariant, i.e., a diffeomorphism t/I that maps M onto 
M in a way that t/I * Ai = Ai for all i. 

Consider a model .A = (M, A l , A2 , . • .  , Pl , P2 , . . • ) and let Cl> be a diffeo
morphism that maps M onto M. Define .Atb == (M, A l , A2 , . . .  , CI> * Pl , 
Cl> * P2, • • •  ). Now Cl> will be said to be a dynamic symmetry of T just in case 
for any .A E 9JlT, it is also the case that .Atb E .AT' The relation between this 
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model-closure principle and the more usual conception of dynamic sym
metry as expressing the equivalence of frames can best be seen in terms of 
specific examples. Thus, suppose that the space-time is neo-Newtonian 
space-time (sec. 2.4), and let CI>(v) be the three parameter family of in
ertial frame boosts corresponding to the proper Galilean coordinate 
transformations 

X' = x - vt, t' = t. (3. 1 )  

The CI>(v) form a group, with CI>(v 1 ) 0 CI>(v2) = CI>(V l + V2), CI>(O) = id, and 
CI> -l (V) = CI>( - v). Choose two inertial frames whose relative velocity is v. 
Then .Htb(V) represents a physical situation that has the same relation to the 
"moving" frame as that represented by .H has to the "stationary" frame. 
For example, if .H describes a particle that remains at rest at the origin of 
the stationary frame, then .Htb(V) describes a particle that remains at rest at 
the origin of the moving frame. That the group of Galilean-frame boosts 
are the symmetries of T in the above sense means that the T-Iawlike 
behavior of physical systems does not distinguish among the inertial 
frames, for whatever behavior is allowed by the laws of T relative to one 
inertial frame is also allowed relative to any other inertial frame. 7 

We are now in a position to formulate two symmetry principles that, it 
should be emphasized, are not "meaning postulates" on symmetries but 
are rather conditions of adequacy on theories of motion. 

SPl Any dynamical symmetry of T is a space-time symmetry of T. 
SP2 Any space-time symmetry of T is a dynamical symmetry of T. 

Behind both principles lies the realization that laws of motion cannot be 
written on thin air alone but require the support of various space-time 
structures. The symmetry principles then provide standards for judging 
when the laws and the space-time structure are appropriate to one another. 
The motivation for (SPl )  derives from combining a particular conception 
of the main function of laws of motion with an argument that makes use 
of Occam's razor. Laws of motion, at least in so far as they relate to 
particles, serve to pick out a class of allowable or dynamically possible 
trajectories. If (SP l) fails, the same set of trajectories can be picked out by 
the laws working in the setting of a weaker space-time structure. The theory 
that fails (SP l )  is thus using more space-time structure than is needed to 
support the laws, and slicing away this superfluous structure serves to 
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restore (SP l). In the next section we shall see some concrete examples of 
(SP l)  at work. 

Two arguments can be given in support of (SP2). The first is an argument 
from general co variance. Let us say that the laws of T are generally 
covariant just in case whenever .H = <M, A l , A2 ,  • • •  , Pl , P2 ,  . • .  ) E rolT, 
then also .HQ> E rolT, where .HQ> == <M, Cl> * A i '  Cl> * A2,  • • •  , Cl> * Pi ' Cl> * P2 , . • •  ) 
for any manifold diffeomorphism CI>. Then if Cl> is a space-time symmetry, 
i.e., Cl> * Ai = Ai for all i, it follows from general covariance that Cl> is a 
dynamical symmetry. Laws typically called generally covariant, i.e., partial 
differential equations written in terms of geometric-object fields so as to 
have a form that is the same in every coordinate system, are ones that are 
generally covariant according to the above definition. The argument is 
completed by adding the premise that laws of motion, whatever their 
specific content and whether Newtonian, Einsteinian or otherwise, are 
about an intrinsic reality that is independent of coordinate systems, ob
servers, points of view, etc. The argument has noncircular force only to the 
extent that the latter premise can be supported by an independent char
acterization of intrinsic reality and a demonstration that a violation of 
general covariance involves a nonintrinsic reality. With enough fiddling, 
most equations of motion can be put in a generally covariant form. But the 
result of doing so does not guarantee any interesting form of dynamical 
symmetry; indeed, the fiddling may involve the introduction of a space-time 
structure that, by (SP l), restricts the dynamical symmetries (see section 5 
below). 

A second argument for (SP2) derives from trying to imagine how (SP2) 
could fail. Presumably the theory would have to contain names, regarded 
as rigid designators, of regions of space-time, and the laws of the theory 
would say that the lawlike behavior that takes place in region R i  is different 
from the lawlike behavior that takes place in R2 , even though R2 = CI>(Rl ) 
for some space-time symmetry CI>. But such a difference in lawlike behavior 
is reason to suppose that R i  and R2 differ in some structural property that 
grounds the difference in behavior. The characterization of this structural 
property in terms of the addition of new elements to the list of Ais means 
that Cl> is no longer a space-time symmetry and (SP2) is restored. Putting the 
same point slightly differently, it is hard to see how to reconcile a violation 
of(SP2) with the widely accepted idea that laws of nature must be universal 
in the sense that the same laws hold good throughout space-time. 8 
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5 Absolute Space 

If we take Newton at his word in the Scholium, the space-time setting for 
the theory of motion and gravitation of Principia is supposed to be a full 
Newtonian space-time (section 2.5) whose symmetries are (New). But the 
dynamic symmetries of this theory are (Gal). Since (Gal) are wider than 
(New), we have a clear violation of (SP 1). Excising the absolute frame from 
Newtonian space-time yields a neo-Newtonian space-time whose sym
me tries are (Gal), and (SP 1)  is restored. This little homily raises a historical 
puzzle. That the dynamic symmetries are (Gal) is clearly stated by Newton 
as corollary 5 to the Axioms: "The motions of bodies included in a given 
space are the same among themselves, whether that space is at rest, or 
moves uniformly forwards in a right line without any circular motion." 
Juxtaposing this corollary with the Scholium to the Definitions shows that 
Newton in effect rejected (SP1 ). The discussion in section 1 above and in 
chapter 4 below helps to explain how Newton was driven to this conundrum. 
But it doesn't help to explain the fact, recently emphasized by Penrose 
( 1 987), that in such places as the 1 684 manuscript "De motu coporum in 
mediis regulariter cedentibus" Newton considered elevating Galilean rela
tivity to the status of a basic principle. 

Because Newton's laws of motion and gravitation have (Gal) as their 
dynamic symmetries, no feature of the lawlike behavior of gravitating 
bodies can be used to distinguish an absolute frame: in that sense, absolute 
space is unobservable. But what our symmetry considerations suggest is 
that this objection of un observability is more accurately stated as an 
objection based on Occam's razor. In an attempt to give observability 
considerations some independent status, we can try to imagine that though 
absolute space plays no essential role in the laws of motions of bodies, it 
is nevertheless observable: imagine, if you will, that the space-time tracks 
of the points of absolute space stand out as thin, red lines on the space-time 
manifold. But then the justification for introducing absolute space can be 
supplied by appealing to the contrapositive of(SP 1): since the laws of optics 
are not Galilean-invariant (they cannot be under the posited observability 
of the thin, red lines), the symmetries of space-time cannot include (Gal). 
A less fanciful example will be examined shortly. 

The logical-positivist tradition prevalent in the philosophy of science 
during the 1 920s and 1930s led to the criticism of absolute space on the 
grounds that statements of the form "Body b is undergoing an absolute 
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change of position" are empirically meaningless, because they are not 
testable (verifiable, falsifiable, or the like). Later empiricists gave up on the 
attempt to provide a criterion of testability that would apply to individual 
sentences, and there was a tendency to embrace a form of holism according 
to which cognitive significance "can at best be attributed to sentences 
forming a theoretical system, and perhaps rather to such systems as wholes" 
(HempeI 1965, p. 1 1 7). Unfortunately, such a holism would seem to provide 
a refuge for the believer in absolute space, since, taken as a whole, Newton's 
original theory was highly testable. 

Perhaps the logical empiricists surrendered too easily to the lure of 
holism. Glymour's ( 1 980) bootstrapping account of theory testing provides 
means of distributing praise and blame within a theory. Using this ap
proach, one might try to argue that, say, absolute velocity is not an 
empirically meaningful concept within Newtonian mechanics, for state
ments about absolute velocities of particles are not bootstrap-testable rela
tive to the theory, since values of the absolute velocities of bodies are not 
deducible via principles of the theory from values of relative velocities and 
other observables. Unfortunately, bootstrap-testability is in general too 
strong a criterion of meaningfulness relative to a theory. For example, 
statements about the kinetic energies (relative to the rest frame of the 
container) of individual gas molecules are not bootstrap-testable relative 
to the kinetic theory of gases, but such statements would surely not be 
dismissed as empirically meaningless relative to the theory. 

I conclude that if we want to say that absolute change of position is not 
meaningful within Newton's theory, then there is an aspect of meaningfulness 
better explicated in terms of symmetry considerations than by any known 
approach based on testability and the like. Further discussion of meaning
fulness and invariance is to be found in the appendix to this chapter. 

There is no general argument here to the effect that absolute space is, 
ipso facto, metaphysically absurd; indeed, on the proposed reading of 
symmetry principles, the acceptability of absolute space reduces to the con
tingent question of whether the world is such that the empirical adequacy 
of a theory of motion requires a distinguished inertial frame. Nineteenth
century physics provides cases in which, prima facie, the evidence seemed 
to indicate that a positive answer was called for. On closer inspection, 
however, none of these cases is unproblematic. 

As a first example, consider the Fourier equation of heat conduction: 
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(3.2) 

where units have been chosen so that the coefficient of thermometric 
conductivity is unity. If rP transforms like a scalar, (3.2) is evidently not 
Galilean-covariant. We can write the heat equation in generally covariant 
form while indicating that the standard form (3.2) holds only in a special 
inertial frame (say, absolute space) by positing that 

(3.3) 

where gii is the space metric and Ai is the unit velocity field of absolute 
space (see chapter 2). In an inertial coordinate system adapted to absolute 
space, (3.3) reduces to (3.2). The models of the little theory, whose only law 
is (3.3), have the form (M, g ii, hii' IjL Ai, rP), where hii is the time metric and 
Ij� is the affine connection (see section 2.5). The dynamical symmetries do 
not include (Gal), since the models of the theory are not closed under 
Galilean-velocity boosts; i.e., (M, gii, hii' IjL Ai, <f) * rP) E 9JlT does not fol
low from the fact that (M, g ii, hii' IjL Ai, rP) E 9JlT whenever <f) is a Galilean
velocity boost. 

Though mathematically coherent as an example where absolute space 
does some real work, (3.3) is not a correct presentation of the physics of 
heat conduction. For rP, recall, is supposed to be the temperature of a 
material medium, e.g., an iron bar, and the standard form (3.2) of the law 
of heat conduction is supposed to refer to the rest frame of the medium, 
not to absolute space. Thus, let Wi be the velocity field of the medium, and 
for the sake of simplicity suppose that the medium executes inertial motion 
(Wi lli = 0). Then instead of (3.3) we should have 

(3.4) 

Then if Wi is included on the right-hand side of the cut for absolute/ 
dynamical (or space-time/physical) contents, the dynamical symmetries of 
the modified little theory include (Gal), since (M, gii, hij' IjL Ai, <f) * rP, 
<f)* Wi ) is a dynamically possible model whenever (M, gii, hii' IjL Ai, rP, Wi) 
is, and absolute space is rendered otiose. 

Similar comments apply to Maxwell's laws of electromagnetism. They 
too, regarded purely as equations for the electric E and magnetic B fields 
do not possess Galilean symmetry. But again, in the nineteenth-century 
conception E and B were interpreted as states of a material medium, the 
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ether, and the use of appropriate variables characterizing that medium 
can restore Galilean symmetry. Nevertheless, nineteenth-century electro
magnetism, especially in Lorentz's version, comes much closer than heat 
conduction to providing a real historical example where the available 
evidence supported the use of absolute space. For under Lorentz's influence 
a dematerialization of the ether took place. Lorentz's ether failed the 
principle of action and reaction, expected to hold for a material medium 
(Lorentz's hypothesis of no ether drag meant that the ether acted but did 
not react), and no mechanical properties were attributed to this ether, save 
to say that it picks out a special frame as its rest frame. Although Lorentz 
would not have agreed, there is the clear intimation that Lorentz's ether 
was fading into pure absolute space and that as a result the electromagnetic 
field can be regarded as an independent entity rather than as the state of 
a material medium.9 However, the resulting theory of classical electro
magnetism is not free of internal troubles. It is worth working through the 
details in order to appreciate how difficult it is to construct an interesting 
and physically well motivated example where absolute space plays an 
indispensible role. 

In fact, there are two different approaches to classical electromagnetism. 
On what I shall call the downstairs version, the downstairs M axwell tensor, 
as defined by 

(3.5) 

is required to transform like a covariant tensor under the Galilean trans
formations (3. 1). The associated field transformations, relating the E and 
B fields as measured in different inertial frames, are 

E' = E + v x B, B' = B. (3.6) 

Notice that these transformations do not involve absolute velocities and 
that they make one pair of Maxwell's equations, 

V · B = O v x E = - oB/at, (3.7) 

Galilean-covariant. These equations can be recast in generally covariant 
form as 
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*FWlkJ = 0. (3.8) 

To write the other two Maxwell equations we need to raise indices on *Fij . 
This is accomplished with the aid of {jij = g ij - AiAj (see section 2.5). In 
the source-free cases, the second pair of Maxwell equations can then be 
written in generally co variant form as 

(3.9) 

In an inertial coordinate system adapted to the absolute frame, (3.9) reduces 
to the familiar 

V · E = O, v x B = aEjat. (3. 10) 

But in an arbitrary inertial coordinate system the form is more complicated, 
since absolute velocities enter. 

Charges and currents can be introduced by positing that Ji = (j, p), 
where j is three-vector current and p is the charge density, transforms like 
a contravector under (3. 1 ). This gives as the Galilean transformation law 

p '  = p, j' = j - vp. 

Equation (3.9) is generalized to 

*Fij - Ji Il j - , 

(3 . 1 1  ) 

(3.9') 

which in an inertial coordinate system adapted to the absolute frame 
reduces to 

V · B = O, v x B = aEj at + j. (3. 10') 

The downstairs Lorentz force law for a particle carrying charge q is 

(3. 1 2) 

where Ui is the unit four-velocity of the particle. In keeping with (3. 1 1 ), q 
is assumed to be an invariant. The downstairs electromagnetic-force vector 
*Fi is a space vector (*Fiti = 0), and in an inertial coordinate system *Fi = 
(*F, O), where 

*F = q(E + u x B) (3. 1 3) 

and Ui = (u, 1 ). It is easily checked that (3. 1 3) is consistent with the down
stairs field transformations (3.6): 
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*F' = q(E' + u' x B') 

= q (E + v x B + (u - v) x B) 

= *F 
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Note that absolute velocities do not enter the downstairs version of the 
Lorentz force. 

In the upstairs approach, the "upstairs Maxwell tensor," as defined by 

0 Bz - By 

- Bx 0 Bx 
tFij == (3. 1 4) 

By - Bx 0 

Ex Ey Ez 0 

is taken to be the basic object. Requiring that t Fij does indeed trans
form like a contravariant tensor under (3. 1 )  yields the upstairs field 
transformations 

E' = E  B' = B - v x E, (3. 1 5) 

which make (3. 10') Galilean-covariant. In generally covariant form, these 
equations become, in the upstairs approach, 

tFij - Ji Ilj - . 

The other pair of Maxwell equations, (3.8), are replaced by 

t F[ijlkJ = 0, 

(3. 1 6) 

(3. 1 7) 

where the indices on t Fij have been lowered by using the inverse of {J ij. The 
upstairs version of the Lorentz-force law is 

(3. 1 8) 

In an inertial coordinate system adapted to the absolute frame, the spatial 
part tF of tFi has the same form as (3. 1 3), but u is now the absolute spatial 
velocity of the particle. 

Nothing in the logic of the situation dictates which of these two ap
proaches provides the correct version of classical electromagnetism. In 
favor of the downstairs version is the fact that it was assumed and experi
mentally verified that Faraday-induction phenomena do not depend upon 
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absolute motions but only, for example, on the relative motion of a mag
netic circuit and a conducting circuit, as emphasized by Einstein ( 1905) in 
the opening section of his paper "On the Electrodynamics of Moving 
Bodies." Since these phenomena are governed by equations (3.6), (3.7), and 
(3. 1 2), one would want them to be free of absolute velocities, as is guaran
teed by the downstairs approach. On the other hand, in the standard, 
classical understanding of the Lorentz-force law the u in the u x B term in 
(3. 1 3) was supposed to refer to the absolute velocity of the particle, which 
favors the upstairs approach. This approach is also favored by the null 
results of the first-order magnetic-induction experiment of Des Coudres 
( 1 889) and the later second-order experiments of Trouton ( 1902) and 
Trouton and Noble ( 1904) performed in an attempt to detect absolute 
motion, for the relevant laws for these experiments are (3 . 10' ), which are 
Galilean-covariant under the upstairs field transformations, (3 . 1 5). Thus, 
success does not greet the attempt to produce a version of classical electro
magnetism in which absolute space plays an indispensable and coherent 
role, by imagining that E and B came to be recognized as field quantities 
in their own right and that optical experiments, such as that of Michelson 
and Morley, confirmed the law of Galilean-velocity addition for light. 
These imaginings lead to two incompatible versions of electromagnetism, 
and to choose between them one needs further imaginings to the effect that 
either the Faraday or the magnetic-induction experiments yielded non
standard results. At this point one loses contact with historical reality. 

As a matter of actual history, Einstein objected strenuously to Lorentz's 
dualistic explanation of Faraday induction. In the case of a conducting 
circuit at absolute rest and a moving magnet, a current is produced because 
according to (3.7) the changing B field causes an E field, which propels the 
electrons in the circuit, whereas when the circuit is in absolute motion and 
the magnet at rest, there is, according to Lorentz, no E field, and the 
electrons are propelled instead by the Lorentz force u x B (where u is the 
absolute velocity of the circuit). With the same relative motions in the two 
cases, the observed currents are, of course, the same. The downstairs 
approach described above gives a unified explanation of just the kind 
Einstein wanted. But, as we have seen, it gives a dualistic treatment of 
magnetic-induction effects, whereas the upstairs approach suffers from just 
the opposite asymmetry. There is evidence that attempts to reconcile the 
asymmetries of electromagnetic induction played a not insignificant role 
in Einstein's discovery of STR (see Earman et al. 1 983). Of course, Einstein 
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was not working with the four-dimensional space-time apparatus used 
here. Had he been, the route to STR might have been easier and quicker, 
as Trautman ( 1966) has noted. In either the upstairs or the downstairs 
approach, O il is needed to raise or lower indices. When experiments indicate 
that absolute motion cannot be detected, one natural reaction is to retain 
OU as a metric of signature ( + , + , + , - ) but to admit that there is no 
preferred way to split OU into a gii part and an AiAi part. One thus arrives 
at the Minkowski metric. The difference between the upstairs and the 
downstairs approaches disappears, and the sought-after Galilean invari
ance of all four Maxwell equations is realized, albeit in transmuted form, 
as Lorentz invariance. 

To summarize and repeat, absolute space in the sense of a distinguished 
reference frame is a suspect notion, not because armchair philosophical 
reflections reveal that it is somehow metaphysically absurd, but because 
it has no unproblematic instantiations in examples that are physically 
interesting and that conform even approximately to historical reality. 

6 Symmetries, the Structure of Space-Time, and Substantivalism 

An argument by Stein ( 1977) shows that (SP2) can be used to link the issue 
of the structure of space-time to the issue of space-time substantivalism. 
Suppose for the sake of simplicity that the possible choices of structure for 
classical space-time are those listed in chapter 2. Then if we want to allow 
for the possibility that particle motions are deterministic and if we want to 
make a substantivalist interpretation of the space-time manifold, it follows 
that the structure of space-time must be at least as rich as that of neo
Newtonian space-time (section 2.3), in contradiction of the relationist thesis 
(R I)  (section 1 . 3). Consider any of the classical space-times weaker than 
neo-Newtonian space-time. For any such space-time the symmetries are 
wide enough that there is a symmetry map <I> such that <I> = id for all t :$; 0 
but <I> -# id for t > O. By (SP2), <I> is a symmetry of the laws of motion, 
whatever they happen to be. This means that for any dynamically possible, 
vii, vIIf1) is also dynamically possible. By choosing <I> and vii appropriately, 
we can thus produce two dynamically possible models where the world 
lines of the particles coincide for all t :$; 0 but diverge for t > 0, a violation 
of determinism. 1 0 

The force of the argument turns on how seriously we should take the 
possibility of determinism, and this in turn depends upon the form of 
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determinism under consideration. Thus, consider the following argument 
designed to prove the existence of an absolute frame. If we want to allow 
for the possibility that the value of a scalar field t/J at one instant determines 
its future values and if we want to make a substantivalist interpretation of 
the space-time manifold, it then follows that the structure of space-time 
must be at least as rich as that offull Newtonian space-time. Neo-Newtonian 
space-time will not suffice, for we can choose a Galilean transformation <I> 
such that <I> = id for t = 0 but <I> #- id for t > O. The transformation <I> 
preserves the initial data t/J(x, O), + 00 < x < - 00 , but for appropriate 
choices of vIt and <I> the transformation changes the future values of t/J. But 
again by (SP2), vIt(1) is dynamically possible whenever vIt is, so we have a 
violation of the form of determinism in question. (Aside: The reader who 
has swallowed the logic of this argument should reflect on the follow
ing seeming paradox. The Schrodinger equation of elementary quantum 
mechanics is deterministic in that t/J(x, 0) determines t/J(x, t), t > O. But the 
space-time setting for this equation is supposedly neo-Newtonian space
time, so the above argument would seem to apply, which undermines 
determinism. For the resolution, see chapter 1 1  of my 1986.) 

The former argument is more compelling, both because it appeals to a 
weaker form of determinism (arguably, the weakest form of Laplacian 
determinism imaginable) and because seventeenth to nineteenth-century 
relationists and absolutists alike believed in the deterministic character of 
particle motions. 

Relationists then will want to respond to the former argument, and the 
knee-jerk response is a modus tollens : since all motion is the relative motion 
of bodies, the structure of space-time cannot be as rich as that of neo
Newtonian space-time, and therefore, the substantivalist interpretation of 
the space-time manifold must be abandoned. In particular, vIt and vIt(1) 
must be taken not as corresponding to different physical situations but 
rather to different descriptions of the same situation. As a result, the 
relationist must trade an active interpretation of symmetry principles, 
tacitly assumed in the above presentation, for a passive interpretation; 
dynamic symmetries, so-called by the absolutist, are not read as freedom 
to reposition, reorient, or boost physical systems in the space-time con
tainer but rather as a freedom to describe the same system in many ways. 
Leibniz had an array of arguments to support this redescriptivist ploy. The 
examinations of these arguments will be postponed until chapter 6. 

Although the introduction of determinism serves to link issues in the 
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absolute-relational controversy, it cuts no philosophical ice at this juncture, 
for the absolutist and the relationist will simply draw different morals from 
the decision to maintain the possibility of determinism. The relationist will 
be pleased by a nice coherency to relationism; namely, the relationist thesis 
(R2) (section 1 . 3) is seen to be a necessary condition for the relationist thesis 
(R I). Similarly, the absolutist will discern a pleasing coherency to ab
solutism; namely, in order to maintain that space-time is an absolute (or 
substantival) being, it must be endowed with a structure sufficiently rich to 
support absolute acceleration. In chapter 9 I shall argue that determinism 
does cut ice in the setting of theories in which the structure of space-time 
is not fixed and immutable. 

7 Conclusion 

In addition to revealing a linkage between the nature of motion and the 
issue of the ontological status of space and time, symmetry principles also 
help to establish an initial victory for the relationist on the first issue: 
motion is not absolute in Newton's original sense of absolute change of 
position, or at least all of the evidence available from the seventeenth 
century to the present day indicates that the concept of absolute change of 
position is not needed in the construction of empirically adequate theories 
of physics. Indeed, we had a difficult time in finding any physically interest
ing and historically accurate examples in which an absolute frame of 
reference would play an essential and unproblematic role. 

However, a relational theory of motion cannot survive merely on a 
victory over absolute space. That victory forces us out of full Newtonian 
space-time, but the ground between there and Leibnizian space-time is 
occupied by the absolutist. Whether or not physics must stand on this 
ground is a question that historically revolved largely around the nature 
of rotation. The next chapter reviews the incredible contortions absolutists 
and relationists alike have gone through in attempts to accommodate the 
phenomena of circular motion. 

Appendix: Comments on Symmetry, Invariance, and Dynamics 

Dynamic Symmetries 

Suppose that of the objects postulated by T, all and only those objects that 
characterize the space-time structure, are absolute objects (see the appendix 
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to chapter 2). Suppose further that T is well tuned in that it satisfies both 
(SP 1)  and (SP2). Then the dynamic symmetries of the theory (as defined 
above) will be the manifold diffeomorphisms that leave the absolute objects 
invariant, as required by the definition of dynamic symmetries put forward 
by Anderson ( 1967) (see also Friedman 1973, 1983). 

However, when (SP 1)  is violated, as in Newton's original theory, the 
Anderson definition yields the unwanted result that the dynamic symme
tries are (New). On the contrary, that the dynamic symmetries are (Gal), 
both intuitively and on the explication offered above, helps to pinpoint 
what is wrong with Newton's original theory. 

Next consider a case where some element of the space-time structure is 
not absolute, e.g., the affine connection in the Cartan version of Newtonian 
gravitational theory, in which the space and time metrics remain absolute 
but the affine structure becomes a dynamic element (see section 2.7). Under 
the Anderson definition, the dynamic symmetries would be enlarged from 
(Gal) to (Leib) by the passage from the orthodox treatment of Newtonian 
gravitation to the Cartan treatment. But that is a potentially misleading 
conclusion, for it suggests that the equivalence of inertial frames achieved 
in orthodox Newtonian gravitational theory done in neo-Newtonian 
space-time has been extended to the equivalence of all rigid frames of 
reference in Cartan space-time. Whatever extension of the relativity prin
ciple is achieved in the Cartan theory, it should be carefully distinguished 
from the recognizable extension that would occur if laws of motion and 
gravitation were written in Leibnizian or Machian space-time, neither of 
which uses any affine connection, absolute or dynamical. Such laws would, 
in a straightforward and unproblematic sense, treat all rigid frames as 
equivalent. Laws of this kind are considered in chapter 5. 

Invariants and Meaningfulness 

McKinsey and Suppes ( 1 955) deserve the credit for recognizing the need 
for an invariance approach to meaningfulness of mechanical quantities. 
However, the details of their approach differ considerably from the one I 
favor. To illustrate the differences, I will concentrate on classical particle 
theories with a very simple model structure, namely, (M, A l , A2 , . . •  , W, rn, 
Q l ' Q2 ' · · · )' where as before the Ais are the absolute objects characterizing 
the space-time structure, W is a set of world lines of constant mass particles, 
rn is the mass function (i.e., for each W E W, rn(w) > 0 is interpreted as 
the mass of the particle), and the Qjs are additional quantities. A 
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matter isomorphism <I> from vii = (M, A 1 > • • •  , W, m, Q l '  . . .  ) to vii' = 

(M, A 1 , • • .  , W', m', Q� , . . . ) is a diffeomorphism of M onto itself that maps 
W one-to-one onto W', with m ' (<I>(w)) = m(w) for all w E W. The type Qk is 
said to be an I-invariant for T just in case for any elements vii, vii' E IDlT, if 
<I> is a space-time symmetry of T and a matter isomorphism of vii to vii', 
then the values of Qk in the two models are related by <I> * Qk = Qk ' In words, 
the I-invariants are the mechanical quantities whose corresponding values 
in two systems related by a symmetry boost are related by the boost 
transformation. The name 'I-invariant' is justified by the connection with 
the notion of implicit definability. Say that Qk is implicitly definable in terms 
of the space-time and matter structure just in case for any vii, vii' E IDlT, 
if W' = W and m' = m, then Qk = Qk ' Assuming that (SP1)  holds, 
the I-invariants coincide with the implicitly definable quantities. First, 
I-invariants are implicitly definable. For consider two models vii, vii' E IDlT 
such that W' = W and m' = m. Take <I> = id. Since id is trivially a space
time symmetry and a matter isomorphism, it must be the case that <I> * Qk = 

Qk = Qk' Second, assume that Qk is not an I-invariant. Then there are vii, 
vii' E IDlT and a space-time symmetry and matter isomorphism <I> such that 
<I> * Qk #- Qk ' By (SP 1), for vII�- 1  E IDlT, vII�- 1  = (M, A1 , . . .  , (<I> -1 ) * W', 
(<1>-1 ) * m, (<1>-1 ) * Qk" " ) ' Thus, Qk is not implicitly definable, since vii and 
vII'q,- 1  have the same W and m but different values of Qk' 

For a well-tuned theory satisfying (SP 1)  and (SP2) I propose that a 
necessary condition for a quantity to be mechanically meaningful for T is 
that it be an I -invariant for T. This condition is met by absolute momentum, 
say, in Newton's original theory, but that theory violated (SP1 ). It is 
not satisfied by absolute momentum in Newton's theory done in neo
Newtonian space-time. 

To compare this conception with the McKinsey-Suppes approach re
quires a transcription of their definition of invariance into my formalism. 
If the transcription I propose is inaccurate, I can only apologize. Call an 
n-ary quantity Qk an MS-invariant for T just in case for any vii, vii' E IDlT, 
if <I> is a space-time symmetry for T and a matter isomorphism from vii to 
vii', then Qk(<I>(xd, . . .  , <I>(xn)) � Qk(X1 , ' ' ' ' Xn) for any X1 " " ' Xn E M. The 
symbol � remains to be explained. When Qk is scalar-valued, � is = .  

When Qk is not scalar-valued but <I>(Xi) = Xi for all i ,  � is again = .  But 
when <I>(Xi) #- Xi' we have various choices. For example, when Qk takes as 
its values spacelike vector fields and T admits an absolute parallelism, we 
could take � to mean that Qk(<I>(X)) is parallel to Qk(X) and that the 
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magnitudes of the two are the same, or we could take � to fail unless 
Qk(<I>(X)) = Qk(X). MS-invariance implies I-invariance, but not conversely. 
For example, in neo-Newtonian space-time the four-vector force mai = 

m[(d2xi/dt2 ) + rA(dxi/dt) (dxk/dt)] of a particle is an I-invariant but not an 
MS-invariant, though magnitude of force is an MS-invariant. Thus, taking 
MS-invariance as a necessary condition for mechanical meaningfulness has 
the awkward consequence that four-vector force is not mechanically mean
ingful, even though it is definable, indeed explicitly definable, in terms of 
the space-time and matter structure. This observation can be extended 
to a general argument against MS-invariance as a necessary condition for 
mechanical meaningfulness in cases where MS-invariance is stronger than 
I-invariance. Consider a theory T that satisfies (SP 1)  and that uses a 
quantity Q that is an I-invariant but not an MS-invariant. If MS-invariance 
were a necessary condition for meaningfulness, then T would have the 
property that the value of the meaningless Q is implicitly and perhaps also 
explicitly determined by the space-time and matter structure. Such a result 
provides pressure either to drop MS-invariance as a necessary condition for 
meaningfulness or else to modify the space-time structure so that MS- and 
I-invariance coincide. A near coincidence occurs in Machian space-time 
(section 2. 1 ), and perhaps someone of the MS-invariance persuasion will 
take this as an argument for the relational conception of motion. However, 
as will be seen in the following chapters, Machian space-time cannot 
support an empirically adequate theory of motion. 



• Rotation 

Westfall ( 197 1 )  has rightly remarked that circular motion was a riddle 
mapped in precise quantitative detail by seventeenth-century savants but 
never fully solved by them. Judging by the writings of such leading lights as 
Maxwell and Poincare, nineteenth- and early twentieth-century scientists 
were also unable to obtain a satisfactory solution. The reasons for this 
failure have to do with the fact that rotation was a focal point of the 
absolute-relational debate, and as a consequence, all of the obscurities and 
confusions to which that debate was heir were sucked into the vortex of 
rotation. The purpose of this chapter is to review the pre-relativity-theory 
responses to Newton's bucket experiment, especially the responses of the 
relationists and their sympathizers. I begin with a brief review of the 
relevant parts of the Scholium. 

1 Newton's Argument from Rotation 

Newton's Scholium on space and time closes with a ringing declaration: 
"But how we are to obtain the true motions from their causes, effects and 
apparent differences, and the converse, shall be explained more at large in 
the following treatise. For to this end it was that I composed it." Earlier in 
the Scholium Newton states that "True motion is neither generated nor 
altered, but by some force impressed upon the body moved." If 'true 
motion' is thus understood as motion under the action of impressed forces, 
then Newton's declaration is a literally accurate description of the program 
of the Principia. Of course, the rub is that Newton defines 'true motion' as 
motion relative to absolute space, and such motion can take place without 
the imposition of forces. But before getting involved in the difficulties of 
the doctrine of absolute motion, let us explore the structure of the Scholium 
a little more fully. l 

After defining absolute space and time, Newton admits that "because the 
parts of [absolute] space cannot be seen or distinguished from one another 
by our senses, therefore in their stead we use sensible measures of them." 
But he urges that "in philosophical disquisitions we ought to abstract from 
our senses, and consider things in themselves, distinct from what are only 
sensible measures of them," and he goes on to say that absolute and relative 
motion can be distinguished from one another "by their properties, causes, 
and effects." Newton's subsequent discussion of the properties and causes 
of motion do little to support his doctrine of absolute motion, but the effects 
of absolute motion are a different matter: "The effects which distinguish 
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absolute from relative motion are, the forces of receding from the axis of 
circular motion. For there are no such forces in circular motion purely 
relative, but in a true and absolute circular motion, they are greater or less, 
according to the quantity of motion." There follow two illustrative experi
ments, the first of which is an actual experiment involving a rotating bucket 
of water.2 Newton claims that the true and absolute circular motion of the 
water can be measured by the endeavour of the water to recede from the 
axis of rotation, an endeavour evidenced by the concavity of the surface of 
the water. The second experiment is a thought experiment involving two 
globes held together by a cord. Here the claim is that even supposing the 
globes to be situated in an otherwise empty universe, "where there was 
nothing external or sensible with respect to which the globes could be 
compared," we could nevertheless determine the quantity of absolute cir
cular motion by means of the tension in the cord. Newton also claims that 
the direction of rotation can be determined by observing the increments 
and decrements in the tension of the cord when forces are impressed on 
alternate faces of the globes. 

The standard reading of this part of the Scholium is that Newton is 
offering the bucket and globes experiments as part of an argument for 
absolute space and against a relational conception of motion. In a pro
vocative challenge to this reading, Laymon ( 1978) proposes instead that 
the bucket experiment was intended to serve much more modest functions, 
namely, to score against Descartes and to illustrate how absolute motion, 
already assumed to exist, can be distinguished from mere relative motion. 
Laymon's alternative reading has three virtues. First, it calls attention to 
the structure of the Scholium, which begins by postulating absolute space 
and time and then proceeds to illustrate the application of these concepts 
in mechanics. Second, it emphasizes the important point made by Koyre 
( 1 965, pp. 53- 1 14) and others that Descartes was the principal target of the 
bucket experiment. When Newton says that the endeavour of the water to 
depart from the axis of rotation "does not depend upon any translation of 
the water in respect of the ambient bodies," there can be no doubt that by 
'ambient' he meant the immediately surrounding bodies and that he meant 
thereby to refute Descartes account of true, or philosophical, motion.3 
Third, Laymon's reading reminds us that prior to writing the Scholium, 
Newton developed theological and kinematic arguments for absolute 
space. (Recall the "De gravitatione" doctrines that space is an emanative 
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effect of God, that it is immutable because God is immutable, that a 
coherent account of motion requires that bodies be assigned a determinate 
velocity, and that determinate velocity requires that the motion be referred 
to "some motionless thing such as extension alone or space in so far as it 
is seen to be truly distinct from bodies.") 

Nevertheless, there can be little doubt that Newton took the experiments 
with a bucket and with globes as part of an overall justification of the 
doctrine of absolute motion. Even in "De gravitatione" the theological and 
kinematic arguments are interlarded with dynamic considerations of the 
sort that reappear in the Scholium. Thus, before taxing Descartes with the 
alleged absurdity that "thence it follows that a moving body has no deter
minate velocity," Newton notes that it follows from Descartes's doctrines 
that "God himself could not generate motion in some bodies even though 
he impelled them with the greatest force." He then proposes a thought 
experiment: 

As if it would be the same wliether, with a tremendous force, He should cause the 
skies to turn from east to west, or with a small force turn the Earth in the opposite 
direction. But who will imagine that the parts of the Earth endeavour to recede 
from its center on account of a force impressed only upon the heavens? Or is it not 
more agreeable to reason that when a force imparted to the heavens makes them 
endeavour to recede from the center of revolution thus caused, they are for that 
reason the sole bodies properly and absolutely moved; and that when a force 
impressed upon the earth makes its parts endeavour to recede from the center of 
revolution thus caused, for that reason it is the sole body properly and absolutely 
moved, although there is the same relative motion of the bodies in both cases. And 
thus physical and absolute motion is to be defined from other considerations than 
translation, such translation being designated as merely external. (Hall and Hall 
1962, p. 1 28) 

Whatever else thought experiments can or cannot accomplish, they do 
serve to stimulate intuitions about what is plausible and what is implau
sible. I take it that part of the function of the above thought experi
ment from "De gravitatione" and the experiment of the globes from the 
Scholium is to make us see that a relational account of rotation is highly 
implausible. 

Laymon contends that the experiments with the bucket and the globes 
were not intended by Newton to prove the eixstence of absolute space, 
"since this existence is already assumed by their explanation" (Laymon 
1978, p. 410). What this view neglects is the possibility that Newton 
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intended the argument for absolute space to be, at least in part, an inference 
to the best explanation of the mechanical phenomena. Without defending 
its historical accuracy, I will pursue this interpretation because of its 
pedagogical advantages. 

Thus, let us suppose that Newton was offering the following argument 
for absolute space. 

PI The best explanation of mechanical phenomena in general (and 
the bucket experiment in particular) utilizes absolute acceleration (and 
absolute rotation in particular). 

P2 Absolute acceleration in general (and absolute rotation in particular) 
must be understood as acceleration (and rotation) relative to absolute 
space. 

With the aid of hindsight wisdom we know that (P2) is false, since absolute 
rotation is available in Maxwellian space-time, and absolute acceleration 
in general is available in neo-Newtonian space-time, neither of which 
involves absolute space (see sections 2.3 and 2.4 above). Newton's early 
critics didn't have the conceptual apparatus to make the point in this 
fashion, but a number of them clearly felt that (P2) was false, as we will see 
in the sections below. The rub for the relationist is that he must refute 
not only (P2) but (P I )  as well. What, then, did Newton's critics have to 
say to (P I )? Unfortunately, no straightfoward answer is forthcoming, for 
Newton's critics tended to follow him in equating absolute space in the 
sense of a distinguished state of rest with a substantival container space, 
and they tended to work within the limited possibility set that allowed only 
that motion is the relative motion of bodies or else it is motion relative to 
an immobile space. Thus, they thought that to maintain a nonsubstantival 
conception of space, they had to maintain a relational account of mo
tion and that by refuting absolute space, they would vouchsafe such an 
account. 

Before turning to the details of the responses of Newton's contem
poraries to the bucket experiment, I cannot forbear from mentioning some 
of the straw-man attacks launched by modern commentators. The first step 
is to replace (P I )  above with 

PI'  The only possible explanation of the bucket experiment involves 
absolute rotation. 
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The next step is to savage (P i ' ). Mach is often praised for his attack on 
(P i ' ). In Space and Time Reichenbach writes: 

Newton concludes that the centrifugal force cannot be explained by a relative 
motion, since a relative motion exists between the pail and the water at the 
beginning as well as the end . . . .  Mach replies that Newton overlooked the fact 
that the surrounding masses of the earth and fixed stars have to be taken into 
consideration. The water rotates not only relative to the pail but also relative 
to these large masses, which may be considered as a cause of centrifugal force. 
(Reichenbach 1957, pp. 2 1 3-214) 

A similar sentiment is found in Ernest Nagel's Structure of Science: 

Newton's argument was severely criticized by Ernst Mach, who showed that it 
involved a serious non sequitur. Newton noted quite correctly that the variations 
in the shape of the surface of the water are not connected with the rotation of the 
water relative to the sides of the bucket. But he concluded that the deformations of 
the surface must be attributed to a rotation relative to absolute space. However, 
this conclusion does not follow from the experimental data and Newton's other 
assumptions, for there are in fact two alternative ways of interpreting the data: the 
change in the shape of the water's surface is a consequence either of a rotation 
relative to absolute space or of a rotation relative to some system of bodies different 
from the bucket. (Nagel 1961 ,  p. 209) 

But (P i ' )  is transparently a straw man. No one who has read "De 
gravitatione" and the Principia can seriously hold that Newton neglected 
the possibility that the effects of the bucket experiment are due to rotation 
relative to the stars. Newton considered the possibility but rejected it, 
because he thought it so implausible as not to merit serious consideration.4 
Huygens and Leibniz, whom Reichenbach takes as his philosophical 
heroes, agreed with Newton in that neither ever seriously entertained this 
possibility (see sections 2 to 4 below). Moreover, Newton had developed a 
comprehensive and powerful theory of mechanics on the basis of a non
relational conception of motion. It is simply silly to object to this theory 
on the grounds that it might be possible to save the phenomena without 
recourse to absolute motion. Those who want to deny that the success of 
Newton's theory supports the absolute side of the absolute-relational 
controversy are obliged to produce the details of a relational theory that 
does as well as Newton's in terms of explanation and prediction, or else 
they must fall back on general instrumentalist arguments. Not being 
instrumentalists, Huygens and Leibniz felt obliged to try to sketch a 
relational theory of rotation. 



66 Chapter 4 

2 The Huygens-Leibniz Correspondence 

The 1 694 correspondence between Huygens and Leibniz is almost as 
remarkable for what is left unsaid as for what is said. In May of 1 694 
Huygens expressed his negative reaction to Newton's Scholium: "[I] pay 
no attention to the arguments and experiments of Mr. Newton [to prove 
the existence of absolute space] in his Principia Philosophiae, for I know 
he is in the wrong, and I am waiting to see whether he will not retract in 
the new edition of his book, which David Gregory is to procure" (Huygens 
1 888- 1950, 10 : 6 14).5 Leibniz responded in June with his own condem
nation of Newton: "Mr. Newton acknowledges the equivalence of hy
potheses in the case of rectilinear motion; but as concerns circular motions 
he believes that the effort made by circulating bodies to recede from the 
center or from the axis of circulation reveals their absolute motion. But I 
have reasons to believe that nothing breaks the general law of equivalence" 
( 10 : 645-646). And he adds the intriguing remark that "It seems to me, 
however, Sir, that you yourself were formerly of Mr. Newton's opinion as 
regards circular motion." Huygens's letter of August 24 confirmed Leibniz's 
recollection: "As far as absolute and relative motion are concerned, I 
admired your memoir, in that you remembered that formerly I was of Mr. 
Newton's opinion as regards circular motion. That is true and it was only 
two or three years ago that I found the truer one" ( 10 : 669-670). 

The way in which both men continue to circle the issue without revealing 
any details of their responses to Newton naturally arouses the suspicion 
that neither was confident that he had found a wholly satisfactory rela
tional treatment of rotation.6 The suspicion is to some extent confirmed 
by the fact that despite the importance of the issue, neither man ever 
published his response to Newton. In Huygens's case this confirmation is 
not especially strong both because he was notoriously careful in what he 
published and because his death in 1 695 prevented him from polishing his 
rather fragmentary manuscripts on absolute and relative motion.7 But 
these manuscripts contain a confirmation of a different sort; namely, the 
same declarations of the relational character of motion and the same 
objections to Newton are made over and over again in slightly varying 
forms, almost as if writing them several times could make them true. In 
Leibniz's case the confirmation is stronger. His response to Newton's 
bucket is set out in detail in "Dynamica de potentia et legibus naturae 
corporae" ( 1 690s) and part 2 of "Specimen dynamicum" ( 1 695), neither of 
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which he published. More revealingly, Leibniz did not avail himself of 
the ample opportunities he had in the correspondence with Clarke to 
broadcast his response. Had the correspondence not been cut short by his 
death, Leibniz would probably have been forced to reveal more of his hand, 
for in his later replies Clarke began to zero in on the problem of rotation. 

Huygens's and Leibniz's treatments of rotation are interestingly at odds. 
The only noteworthy agreement is that neither looked to the stars as an 
escape route for relationism, a disappointment for commentators who like 
to look for "precursors" of Mach among Newton's early critics. Each starts 
on a different tack: Huygens's analysis is based on taking the idea of a rigid 
body seriously, while Leibniz's analysis is based on denying that there can 
be rigidity in the commonly understood sense. 

3 Huygens's Response 

Prima facie, Huygens's change of heart is puzzling. If prior to reading 
Newton's Principia he was "of Mr. Newton's opinion as regards circular 
motion," why didn't the Principia reinforce rather than undermine his 
opinion? (See Bernstein 1984 for a discussion of this point.) I believe that 
there is less here than meets the eye, though admittedly no firm conclusion 
can be drawn, because the texts do not allow us to pinpoint Huygens's 
pre-Principia opinion or to say in exactly what respects his opinion 
changed. A 1 668 text states, "Straight motion is only relative between 
different bodies, circular motion [is] another thing and has its criterion 
(KpmlplO'1) that straight motion does not possess at all" (Huygens 1 888-
1950, 1 6 :  1 83). But instead of providing further enlightenment on this 
distinction, the passage concludes with the escape phrase "but I shall speak 
about it on another occasion." This much is clear, however. The "criterion" 
that circular motion is supposed to possess is centrifugal force, which for 
Huygens was a real force, comparable to the force of gravity.8 So although 
Huygens had been of Newton's opinion that there is an important differ
ence between straight and circular motion, his opinion didn't accord with 
the Principia on the status of vis centrifuga (centrifugal force). More 
important, there is no indication in Huygens's early works that he believed 
that the presence of vis centrifuga entailed that the body was in absolute 
rotation in the sense that it was rotating with respect to an immovable 
container space. In his manuscripts on absolute and relative motion of the 
1690s he does say that "Long ago I thought that in circular motion there 
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exists a criterion for true motion" ( 1 6 :  226). But insofar as the placid 
Huygens can be said to have had a visceral reaction to anything, it was to 
Newton's version of true motion. It seems unlikely that all of the numerous 
objections to absolute space discussed in the 1 690s manuscripts failed to 
suggest themselves to the younger Huygens and much more likely that the 
younger Huygens, like the mature Leibniz and Berkeley, wanted a con
ception of true motion as relative motion plus the presence of a criterion, 
or force, without any thought that such a motion implies the existence of 
a spatial substratum. 

If there is a lingering mystery about the evolution of Huygens's views on 
true motion, there is none whatsoever about the nature of his objections 
to Newton's version of true motion. If true motion is motion relative to an 
unmoved space, then, Huygens wanted to know, relative to what does the 
unmoved space rest? "But in fact your unmoved space is at rest with respect 
to what? Indeed the idea of rest does not apply to it. Therefore the notion 
of that unmoved space is false qua unmoved" (2 1 : 507). There follows what 
is for Huygens an untypical bit of ridicule. 

It is thus that many common people have the notion of what is said [to be] upwards 
and downwards, and this neither with respect to the earth nor to anything else. 
Whence they once concluded that nobody could live on the other side of the earth, 
because their heads being turned downwards, they would not be able to adhere to 
the earth but would necessarily fall ofT. Such a notion seemed very evident according 
to their opinion, but nevertheless it is false, because downwards and upwards are 
relative to the center of the earth. (2 1 : 507) 

The second part of the manuscript puts the objection in more forceful terms. 

But the idea or name of neither motion nor rest applies to that infinite and void 
space. In fact those who affirm that it is at rest seem to do so for no other reason 
than because they observe that it would be absurd to say that it moves, whence 
they thought that it ought necessarily to be at rest. Whereas they should have 
thought, rather, that neither motion nor rest in any way pertains to that space. 
Therefore it is incoherent to say that a body is truly at rest or in motion with respect 
to mundane space, while this same space can be said neither to be at rest, nor does 
there exist in it a change of place. (21 : 507) 

As far as I am aware, Huygens is alone among Newton's critics in thinking 
that absolute space in the sense of a substratum is incoherent because 
without setting off a regress, there is no way to say whether this substratum 
is moving or at rest. This is an instance where Huygens's aversion to 
philosophizing should have served him better. 
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To his metaphysical objections Huygens adds a second category of 
objections based on a mixture of epistemology, verificationism, meaning 
analysis, and conceivability considerations: "To those who ask what 
motion is, only this answer suggests itself: that bodies can be said to move 
when their place and distance change, either with respect to each other, or 
with respect to another body . . . .  We don't understand anything more than 
this for motion," etc. But since this category has already been explored in 
chapter 3, I shall move on to Huygens's specific reactions to Newton's 
argument from rotation. 

These reactions can be grouped into a negative and a positive part. 
This separation is somewhat artificial, since the latter part, containing 
Huygens's alternative account of rotation, is a direct outgrowth of the 
former part. The negative part begins by hitting the weak link in Newton's 
logic: 

It cannot be known how much true motion is contained in each single part [of a 
rotating body], that is with respect to the space which they conceive as unmoved. 
For even according to their own judgment, that which moves circularly may at the 
same time proceed in rectilinear motion either if considered as a whole, or if 
considered as a conjunction of parts, since [in this last case] the parts are similarly 
carried around. They themselves grant that rectilinear motion, even if true, cannot 
be discerned by any sign. ( 1 6 : 227) 

Huygens continues to hammer away at this weak link by means of an 
ingenious thought experiment. In the before picture of figure 4. 1 we are to 
suppose that body A moves along the straight line AB while body C moves 
along the straight line CD parallel to AB. "We know that these bodies move 
with respect to each other and between themselves, but we have to admit 
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nonetheless that we do not know to what extent each of them is truly 
moved, that is with respect to mundane space" ( 1 6 :  228). Now imagine that 
a rigid rod with hooks on each end is so placed that body A arrives at point 
B at the same moment body C arrives at the point D. Because the bodies 
become hooked together by a rigid bond, their original straight-line motion 
is converted to circular motion. This conversion cannot magically produce 
true motion where none existed before. "There remains only the relative 
motion which was before and nothing else occurs except that that which 
was before in parallel straight lines is now in the opposite parts of the 
circumference . . . .  Therefore even in such a circular motion nothing else 
except relative motion can be recognized, as in the motion of the freely 
moving bodies" ( 1 6 :  229). 

This thought experiment leads to Huygens's relational explanation of 
the nature of circular motion. The circular motion of a body is not to be 
analyzed as motion relative to some other system of bodies, e.g., the fixed 
stars, for Huygens makes it clear that his analysis is to apply to a single 
body, even Newton's rotating globes, presumably. "Circular motion is 
relative motion along parallel lines, where the direction is continually 
changed and the distance is kept constant through a bond. Circular motion 
in one body is the relative motion of the parts, while the distance remains 
constant owing to the bond" (2 1 : 507). 

Even those commentators who are not predisposed toward relationism 
seem compelled to attribute to Huygens some profound insight. Beyond 
question, Huygens, like many of Newton's critics, saw that the phenomena 
of rotation do not suffice to ground absolute motion in the sense of absolute 
change of position. Stein ( 1977) also wants to attribute to Huygens the 
"remarkable" insight that there can be an objective notion of velocity 
difference, or change of direction, even when the distances among the parts 
of a body remain constant. I am unable to see such an insight clearly 
emerging from the texts, though I admit that the texts are vague enough 
that such a reading is possible.9 Where I really part company with Stein is 
over his commendation of Huygens for arriving at this insight "not by 
standing upon philosophical dogmas, whether empiricist or metaphysical 
. . .  , but by considering, for a theory known to have fruitful application, 
exactly how its concepts bear on experience" (Stein 1977, p. 10). But 
Huygens did not have any theory of dynamics to rival Newton's. And a 
combination of philosophical dogmas and the tunnel vision that afflicted 
Newton and his critics alike prevented Huygens from having this remark-
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able insight in  its full and explicit form. For Huygens assumed, as did 
Newton, that all motion is the relative motion of bodies or else it is motion 
with respect to an immovable spatial substratum. And as we have seen 
above, Huygens's philosophical dogmas, both metaphysical and empiricist, 
seemed to him to militate against the latter alternative and to support the 
former. Huygens is left with a position that flatly contradicts itself. On one 
hand, as a good relationist he wants to affirm that "bodies can be said to 
move when their places and distances change, either with respect to each 
other, or with respect to another body." On the other hand, he both refuses 
to refer the motion of a rotating body to some other reference body, and 
at the same time he has to admit that by the very definition of rigidity the 
parts of a rigidly rotating body do not change their mutual distances. 
Further, to analyze rotation in terms of an objective, or absolute, notion 
of velocity difference rather than objective, or absolute, velocity is to 
possess exactly the insight Newton lacked, but it is also to reject the 
full-blown relational conception of motion, something that was beyond the 
ken of Huygens's philosophical dogmas. 

4 Leibniz's Response 

If Leibniz had been privy to Huygens's response to Newton, he would have 
rejected it out of hand. Like Huygens, Leibniz had no inclination to reach 
for the stars or some other system of external bodies in explaining circular 
motion. But unlike Huygens, Leibniz recognized that as a consequence the 
relationist is left in a bind if circular motion is conceived as rigid motion. 
Indeed, in the "Dynamica" he explicitly concedes that Newton would be 
correct "if there were anything in the nature of a cord or solidity, and 
therefore of circular motion as it is commonly conceived." (Gerhardt 1 849-
1 855, 6 :  508; trans. Stein 1977, p. 42). The only obvious escape route for 
Leibniz was to deny that there is any true firmness or solidity to bodies. 
This is not an ad hoc move, for Leibniz had left the door open in an 
earlier essay "Critical Thoughts on the General Part of the Principles of 
Descartes" ( 1 692). Like Descartes, Leibniz was averse to an explanation of 
firmness or solidity in terms of a glue that holds the parts of a body together, 
but at the same time he rejected Descartes's idea that hardness is due 
to the relative quiescence of the parts of a body and proposed instead 
that "the primary cause of cohesion is movement, namely, concurrent 
movement. . . .  It is no doubt also by some kind of magnetism, that is, 
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by an internal coordinated motion, that other parts of certain bodies 
are linked together" (Loemker 1970, p. 470). And in the "Specimen 
dynamicum," where he sets out his response to Newton, Leibniz affirms 
that "firmness is therefore not to be explained except as made by the 
crowding together by the surrounding matter" (Loemker 1970, p. 449). 

Leibniz's second step is to assert that "all motion is in straight lines. or 
compounded of straight lines (p. 449). Putting this assertion together with 
his analysis of solidity gives his response to Newton. 

From these considerations it can be understood why I cannot support some of the 
philosophical opinions of certain great mathematicians [viz., Newton] on this 
matter, who admit empty space and seem not to shrink from the theory of attraction 
but also hold motion to be an absolute thing and claim to prove this from rotation 
and the centrifugal force arising from it. But since rotation arises only from a 
composition of rectilinear motions, it follows that if the equipollence of hypotheses 
is saved in rectilinear motions, however they are assumed, it will also be saved in 
curvilinear motions. (pp. 449-450) 

One possible gloss of Leibniz's argument might go thus. What we see on 
the macroscopic level as the circular motion of a rigid body is actually 
the result of the motions of unperceived microscopic bodies that move 
uniformly and rectilinearly except when they impact upon one another. 
Moreover, the equipollence of hypotheses is preserved for these micro
motions; in modern jargon, the laws of impact do not assume a distin
guished state of rest but are Galilean-invariant. 1 o Therefore, the resultant 
circular macromotion does not require a distinguished state of rest. 

This gloss is not quite Leibnizian, since it fits better with a world of atoms 
moving in the void than with a Leibnizian plenum, but I shall not pause 
to consider how to make the construction more Leibnizian. For whatever 
the details of the construction, it is potentially lame, since without further 
explanation it is not apparent what would occasion the otherwise mira
culous coordination of the microbodies needed to produce the perceived 
macroscopic rigid motion when the body is, say, struck on its circum
ference. And to the modern reader the most glaring inconsistency in 
Leibniz's analysis is that it assumes an absolute or invariant notion of 
straight-line motion, a notion that is simply unavailable in the relationally 
acceptable Machian and Leibnizian space-times (See sections 2. 1 and 2.2 
above). It is available in neo-Newtonian space-time (section 2.4), but then 
so are nonrelational notions of acceleration and rotation. 
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It is open to Leibniz to respond that he can do without an absolute 
notion of rectilinear motion, or indeed any absolute quantity of motion. 
But to make such a response more than a boast, it has to be shown how 
to save the phenomena by means of laws of motion that are invariant under 
the Mach or Leibniz transformations. Nontrivial action-at-a-distance laws 
can be formulated with such invariance properties, but whether or not they 
can save the phenomena is another matter (see chapter 5). In any case, 
Leibniz's philosophy prohibits action at a distance, and there is not a hint 
of how to construct empirically adequate laws of impact using only the 
weak structures of Machian or Leibnizian space-time. 

5 Berkeley's Response 

Nearing the end of his life and in poor health (he was recovering from an 
attack of gout), Leibniz dismissed Berkeley in two vinegar-laced sentences: 
"The Irishman who attacks the reality of bodies seems neither to offer 
suitable reasons nor to explain his position sufficiently. I suspect that he 
belongs to the class of men who want to be known for their paradoxes" 
(Loemker 1970, p. 609). 

Berkeley's immaterialism was generally misunderstood by his con
temporaries, and during his lifetime he was never able to shake the dis
paraging labels of paradoxer and skeptic. In the twentieth century Berkeley 
has been elevated to the status of Great Man of philosophy, and with this 
rise in reputation has gone a rise in the estimation of his analysis of motion. 
It is not uncommon to see Berkeley treated as a precursor (to use Popper's 
[ 1953] word) of Mach and Einstein. I will argue that Berkeley's critique of 
the bucket experiment was every bit as effective as his use of tar water to 
treat the bloody flux in Ireland. 

Sections 1 14 and 1 1 5 of the Principles ( 1 7 10) contain Berkeley's earliest 
response to Newton's treatment of rotation. 

As to what is said of the centrifugal force, that it does not at all belong to circular 
relative motion, I do not see how this follows from the experiment which is brought 
to prove it. . . .  For the water in the vessel at the time wherein it is said to have the 
greatest relative circular motion, has, I think, no motion at all; as is plain from the 
foregoing section . . . .  For, to denominate a body "moved" it is requisite, first, that 
it change its distance or situation with regard to some other body; and secondly, 
that the force or action occasioning that change be applied to it. (Berkeley 17 10, 
p. 79) 
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Whether or not Newton violates the "sense of mankind" or the "propriety 
of language" is not at issue. What is at issue is the correct scientific 
explanation of circular motion, and Berkeley's Principles offers no such 
explanation. Moreover, the stage of the bucket experiment Berke1ey focuses 
on-the initial stage when the motion of the bucket has not been com
municated to the water and the surface of the water is flat-is the least 
important for Newton's purposes. If this is the best Berkeley had to offer, 
it is little wonder that Leibniz and other contemporaries were ready to 
dismiss him as a crank. 

Section 1 1 6 contains a potentially more interesting but misleading attack 
on absolute space. "The philosophic consideration of motion does not 
imply the being of absolute space, distinct from that which is perceived by 
the sense and related to bodies . . . .  And perhaps, if we inquire narrowly, we 
shall find that we cannot even frame an idea of pure space exclusive of all 
body. This I must confess seems most impossible, as being a most abstract 
idea" (p. 79). To see what is misleading about the last sentence of the 
quotation, recall that the prime target of Berkeley's attack on abstract ideas 
was Locke's Essay on Human Understanding. Locke had asked, "Since all 
things that exist are only particulars, how come we by general terms?" And 
his answer was, "Words become general by being made the signs of general 
ideas." Berkeley's response was that "a word becomes general by being 
made a sign, not of an abstract general idea, but of several particular ideas" 
(p. 10). As an attack on properties or universals, this does not apply to 
absolute space, which is not supposed to be a universal but a collection of 
particulars. 

What Berkeley meant to argue, and what comes out more clearly in the 
later work De motu ( 1 72 1 ), is that 'absolute space' is meaningless, i.e., 
denotationless. In the Principles Berkeley ties his theory of ideas to a 
tripartite division of mental activity into sensibility, intellect, and imagina
tion. "It is evident to anyone who takes a survey of the objects of human 
knowledge that they are either ideas actually imprinted on the senses, or 
else such as are perceived by attending to the passions and operations of 
the mind, or lastly, ideas formed by help of memory or imagination
either compounding, dividing or barely representing those originally per
ceived in the aforesaid ways" (p. 22). This apparatus is applied to "absolute 
space" in section 53 of De motu to yield the announced conclusion. 

[Absolute space] seems therefore to be mere nothing. The only slight difficulty 
arising is that it is extended, and extension is a positive quality. But what sort of 
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extension, I ask, is that . . .  no part of which can be perceived by sense or pictured 
in the imagination. For nothing enters the imagination which from the nature of 
the thing cannot be perceived from sense . . . .  Pure intellect, too, knows nothing of 
absolute space. That faculty is concerned only with spiritual and inextended things . 
. . .  From absolute space then let us take away now the words of the name, and 
nothing will remain in sense, imagination, or intellect. Nothing else then is denoted 
by these words than pure privation or negation, i.e., mere nothing. (Berkeley 1721 ,  
p. 45) 

The same argument, if successful, would show that many of the theoretical 
terms of modern science are denotationless. 

The part of De motu most commentators find exciting is section 59. 

Then let two globes be conceived to exist and nothing corporeal besides them. Let 
forces be conceived to be applied in some way; whatever we may understand by 
the application of forces, a circular motion of the two globes cannot be conceived 
by the imagination. Then let us suppose that the sky of the fixed stars is created; 
suddenly from the conception of the approach of the globes to different parts of 
that sky the motion will be conceived. That is to say that since motion is relative 
in its own nature, it could not be conceived before the correlated bodies were given. 
(p. 47) 

It is this passage that is supposed to show that Berke1ey foreshadowed 
Mach and Einstein. Whether or not this description is justified will be 
discussed later. But for now I emphasize that in this section Berkeley is 
simply illustrating his claim that motion is conceivable only if it is the 
relative motion of bodies, and he is showing that he has tailored his powers 
of imagination to fit his philosophical preconceptions. He is not offering a 
theory of rotation or even claiming that the water sloshes up the sides of 
the bucket because it is rotating relative to the fixed stars. 

One searches De motu in vain for a relational account of rotation of the 
type Huygens and Leibniz struggled to provide. The closest Berkeley comes 
is in section 69. 

As regards circular motion many think that, as motion truly circular increases, the 
body necessarily tends ever more and more away from the axis. This belief arises 
from the fact that circular motion can be seen taking its origin, as it were, at every 
moment from two directions, one along the radius and the other along the tangent, 
and if in this latter direction only the impetus be increased, then the body in motion 
will retire from the center . . . .  But if the forces be increased equally in both directions 
the motion will remain circular though accelerated . . . .  Therefore we must say that 
the water forced round in the bucket rises to the sides of the vessel, because when 
new forces are applied in the direction of the tangent of any particle of water, in 
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the same instant new equal centripetal forces are not applied. From which experi
ment it in no way follows that absolute circular motion is necessarily recognized 
by the forces of retirement from the axis of motion. (pp. 47 -48) 

This is the sort of ingenious muddle that those unfortunate enough to have 
to grade undergraduate papers encounter from the brighter sophomores. 

Only in section 65 does Berkeley make a real score against Newton. "The 
laws of motion . . .  hold without bringing absolute motion into account. As 
is plain from this that since according to the principles of those who 
introduce absolute motion we cannot know by any indication whether the 
whole frame of things is at rest, or moved uniformly in a direction, clearly 
we cannot know the absolute motion of any body" (p. 49). But this is the 
same score that Huygens, Leibniz, and all of Newton's perceptive critics 
make, and it does not add up to a sufficient defense of relationism. 

A reliable yardstick to greatness is the quality of mistakes and failures. 
Applying this yardstick to the treatment of rotation, Berkeley comes in a 
very distant fourth to Newton, Huygens, and Leibniz. 

6 Kant's Response 

The opposition between absolute and relational conceptions of space, time, 
and motion is a theme that runs like a bright thread through Kant's entire 
philosophical evolution. In his precritical stage, Kant first accepted and 
then later rejected a Leibnizian account of space; what turned him against 
Leibniz was the idea that absolute space was needed to ground the distinc
tion between incongruent counterparts (see chapter 7). But in his critical 
stage, Kant in turn rejected Newtonian absolute space as an empty figment. 
The tension generated by juxtaposing the doctrines of the Critique with 
Newton's bucket and the rotating globes permeates the later Metaphysical 
Foundations of Natural Science. I shall address this tension in the present 
section. 

One aspect of the tension is generated by Kant's claim that absolute 
space is "itself nothing and no object at all" ( 1 786, p. 20) and "nothing but 
a mere idea" (p. 1 25), a conclusion that is supposed to follow from the fact 
that absolute space is not a possible object of experience because "it is not 
material" (p. 20). In fact, Kant reaches this conclusion by applying a 
two-pronged test to show that Newton's immovable space cannot be an 
object of experience; that is, "it cannot be perceived either in itself or in its 
consequences (motion in absolute space)" (p. 20). At this point in the text 
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Kant does not alert the reader that the two prongs threaten to yield 
divergent results. It does seem to follow that, being immaterial, Newton's 
absolute space cannot be perceived in itself, at least if this means that the 
parts of this space cannot be detected in the manner of the parts of a rubber 
ball by reflected light or resistance to touch. But that it can be perceived 
by its consequences is precisely what Newton's experiments on rotation 
are supposed to show. The tension of the threatened divergence is soon 
turned by Kant into a paradox. 

Kant's support for a relational account of motion seems to wax and wane 
and wax again in the Metaphysical Foundations. It opens with the uncom
promising statement that "all motion that is an object of experience is 
merely relative" (p. 19). But only a few pages later Kant seems to retreat 
by applying the relational doctrine to rectilinear, but not to curvilinear, 
motions: "As concerns nonrectilinear ones, whether I am warranted in 
regarding a body as moved (e.g., the earth in its daily rotation) and the 
surrounding space (the starry heavens) as at rest, or the latter as moved 
and the former at rest, is not in all respects equivalent; this will treated in 
particular in the sequel" (p. 29). In the sequel, "Metaphysical Foundations 
of Phenomenology," Kant asserts in proposition 1 that "the circular mo
tion of a matter, in contradistinction to the opposite [rectilinear] motion 
of the space, is an actual [i.e., objective] predicate of matter" (p. 122). After 
giving his proof of this proposition, Kant offers an observation on Newton's 
globes experiment 

On the present subjects, one can refer to the latter part of Newton's Scholium to 
the definitions with which he begins his Mathematical Principles of Natural Philoso
phy. From this it will become clear that the circular motion of two bodies around 
a common center . . .  even in empty space, and hence without any possible compari
son through experience with external space, can nevertheless be cognized by means 
of experience, and that therefore a motion, which is a change of external relations 
in space, can be empirically given, although this space itself is not empirically given 
and is no object of experience. This paradox deserves to be solved. (p. 1 23) 

Indeed it does! 
Kant's resolution has two components, a minor and a major one. The 

minor one offers a sop to absolute space that is also a reference to the 
Critique; namely, absolute space is said to be necessary "as an idea that 
serves as a rule for considering all motions therein only as relative" (p. 1 27). 
The major component starts with a reaffirmation of the relational nature 
of motion (e.g., p. 128) and then proceeds in a manner that at first seems 
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to bear an uncanny resemblance to Huygens's treatment of the same 
problem (see section 3 above). For like Huygens, Kant acknowledges that 
the experiment with the globes induces a distinction between true versus 
illusive motion, but again like Huygens he refuses to follow Newton in 
taking this distinction to coincide with that between absolute and relative 
motion. "This motion [the true motion of the rotating body], even though 
it is no change of relation in empirical space, is nevertheless no absolute 
motion but a continuous change of the relations of matters to one another, 
although it is represented in absolute space and hence is actually only 
relative motion and, for just this reason alone, is true motion" (p. 129). The 
passage would not be out of place among Huygens's manuscript notes of 
the 1 690s, at least if we take the phrase "continuous change of the relations 
of matters to one another" to refer to the relations among the parts of the 
rotating body. However, in the very same paragraph Kant states that the 
actual motion is to be "referred to the space enclosed within the moved 
matter (namely, referred to the center of this matter) but not referred to the 
external space" (p. 1 30). 

Kant's solution to the riddle of rotation is even lamer than Huygens's 
and there is no temptation to attribute to Kant some deep insight into the 
nature of motion. Consistent with Kant's relational conception of motion, 
the "space enclosed within" cannot be an immaterial Newtonian space. It 
can only be a material space consisting of-what? Kant does not bother 
to say, but presumably it must be some sort of subtle matter that, like 
Lorentz's ether, is not dragged along by ordinary matter. But such subtle 
matter is nor more the direct object of experience than Newton's absolute 
space, and thus Kant's solution is unacceptable in its own terms. 

7 Maxwell's Response 

The fog of the battle fought in the scientific revolution over such funda
mental concepts as space and motion was not easily dispersed, and we find 
it lingering still when we move forward in time a century and a half or more. 

James Clerk Maxwell's Matter and Motion ( 1 877) was designed, as the 
preface informs us, as "an introduction to the study of Physical Science in 
general." As befits such an introduction, it begins with a discussion of the 
"Nature of Physical Science" (article 1) and proceeds, somewhat tediously, 
through "Definition of a Material System" (article 2), "Definition of Internal 
and External" (article 3), "Definition of Configuration" (article 4), etc. But 
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by article 1 6  Maxwell has moved into deep waters, for here he condemns 
Descartes's identification of extension and matter and seems to settle 
on a more Newtonian approach. "We shall find it more conducive to 
scientific progress to recognize, with Newton, the ideas of time and space 
as distinct, at least in thought, from that of the material system whose 
relations these ideas serve to coordinate" (Maxwell I 877, p. 1 1 ). Articles 1 7  
and 1 8  continue the Newtonian line with assertions that are virtual quota
tions from Newton's Scholium on absolute space and time. This Newtonian 
reverie is abruptly punctuated by the remark, "All our knowledge, both of 
time and place, is essentially relative" (p. 1 2). In an apparent effort to 
preserve the appearance of consistency, Joseph Larmor has added an 
explanatory footnote giving a sort of Kantian gloss to Maxwell's intentions; 
Maxwell's position, he says, "seems to be that our knowledge is relative, 
but needs definite space and time as a frame for its coherent expression." 
But Maxwell's intentions at this juncture are far from clear, for he closes 
article 1 8  with the remark that "Any one . . .  who will try to imagine the 
state of a mind conscious of knowing the absolute position of a point will 
ever after be content with our relative knowledge" (p. 1 2). 

As has been repeatedly emphasized above, the absolute-relational con
troversy is in the first instance concerned with the nature of motion. It is 
thus to Maxwell's treatment of motion that we must turn if we are to discern 
his true intentions. Article 30 ("Meaning of the Phrase 'At Rest"') seems to 
put him squarely in the relationist camp. In a relationist pledge of allegiance 
that could have been lifted directed from Huygens, he asserts, "It is there
fore unscientific to distinguish between rest and motion, as between two 
different states of a body itself, since it is impossible to speak of a body 
being at rest or in motion except without reference, expressed or implied, 
to some other body" (p. 22). In article 35 this pledge of allegiance is extended 
to cover acceleration. "Acceleration," he writes, "like position and velocity, 
is a relative term and cannot be interpreted absolutely" (p. 25). 

The reader now eagerly begins to turn the pages of Matter and Motion 
to find Maxwell's relational treatment of rotation. One is hopeful that what 
neither Huygens, Leibniz, Berkeley, nor Kant could supply will now be 
provided as a result of the accumulated wisdom of a century and a half and 
of Maxwell's unique genius. What the reader actually finds is an abrupt 
about-face. The crucial paragraph in article 105 on Newton's bucket experi
ment reads: "The water in the spinning bucket rises up the sides, and is 
depressed in the middle, showing that in order to make it move in a circle 
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a pressure must be exerted towards the axis. This concavity of the surface 
depends on the absolute motion of rotation of the water and not on its 
relative rotation" (p. 85). It would be a mistake, however, to construe this 
passage as a full endorsement of Newton's absolute space. In the preceding 
article Maxwell acknowledges that he has tacitly assumed that "in compar
ing one configuration of the system with another, we are able to draw a 
line in the final configuration parallel to a line in the original configura
tion" (p. 83). Maxwell's set of parallel directions is, of course, inertial 
structure, and in modern terms what he seems to be proposing is that 
neo-Newtonian space-time is the appropriate arena for the scientific de
scription of motion. This space-time is consistent with his assertion that 
there is no absolute position or velocity but not with his assertion that there 
is no absolute acceleration. Consistency eludes Maxwell, just as it eluded 
his predecessors. 

It is worth noting that Maxwell's earlier remarks suggest a position that 
provides a consistent treatment of rotation and comes closer to reconciling 
the absolute and relational viewpoints. In modern terms the idea would be 
to treat motion in the arena of what in section 2.3 I so presciently called 
Maxwellian space-time, where there is an absolute rotation (which is sup
ported by article 105) but no absolute acceleration in general (which is 
supported by article 35). Consider what Maxwell says in article 35 in 
support of his contention that acceleration is relative. 

If every particle in the material universe . . .  were at a given instant to have its velocity 
altered by compounding therewith a new velocity, the same in magnitude and 
direction for every such particle, all the relative motions of bodies with the system 
would go on in a perfectly continuous manner, and neither astronomers nor 
physicists using their instruments all the while would be able to find out that 
anything had happened. (p. 25) 

A not implausible reading of this passage is that the laws of particle motion 
are or ought to be invariant under the Maxwell transformations. 1 1  

To illustrate how this idea can be implemented in the context of New
tonian action-at-a-distance mechanics, consider a two body system in 
which the forces obey Newton's third law: F12 = F2 1 , where Fij denotes 
the force exerted by the ith particle on the jth particle. Then Newton's 
equations of motion, 

(4. 1 )  

entail that 
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(4.2) 

where m12 == (mlm2 )/(ml + m2 ) and r1 2 == rl - r2 . If we further assume 
that the forces act along the line joining the particles with a magnitude f(r), 
r = I r 1 2 l , then (4.2) becomes 

(4.3) 

where f'1 2 is a unit vector in the direction r1 2 ' Equation (4. 3) is manifestly 
invariant under the Maxwell transformations (section 2.4). When the num
ber N of particles is greater than 2, the relative particle equations 

1 N 1 N 
fij = - L Fki - - L Fkj mi k # i mj k #j 

(4.4) 

may not admit such a neat presentation as (4.2) and (4.3), but with 
appropriate restrictions on FIj they will be invariant under the Maxwell 
transformations. 1 2 

Even if one agrees that Maxwellian space-time is the appropriate arena 
for describing some classical particle interactions of the action-at-a-distance 
type, relationist thesis (R I)  (section 1 . 3) fails, since this setting presupposes 
absolute rotation, u  Nor is it apparent how field laws-in particular, the 
field laws of electromagnetism that Maxwell himself codified-can be 
accommodated to Maxwellian space-time. 

8 Mach's Response 

"Newton's experiment with the rotating vessel of water simply informs us, 
that the relative rotation of the water with respect to the sides of the vessel 
produces no noticeable centrifugal forces, but that such forces are produced 
by its relative rotation with respect to the mass of the earth and the other 
celestial bodies" (Mach 1 883, p. 284). 

No doubt the tendency to see Mach as one of the heroes of natural 
philosophy inclines some commentators to try to identify precursors of 
Mach. But if we give up the game of heroes and villains, it becomes a serious 
question as to whether Mach's predecessors should be regarded as pre
cursors or whether Mach should be regarded as a recapitulator, for in all 
of Mach's highly touted critique of Newton's argument from rotation, there 
is very little that is original. 
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Consider Mach's comment on the Ptolemaic and Copernican systems: 
"Relatively . . .  the motions of the universe are the same whether we adopt 
the Ptolemaic or the Copernican mode of view. Both views are, indeed, 
equally correct; only the latter is more simple and more practical" (p. 284). 
This passage could have been lifted directly from Leibniz, who repeatedly 
claimed that the choice between the Ptolemaic and Copernican hypotheses 
could only be made on the basis of simplicity and intelligibility. 1 4 

Mach correctly takes Newton to task for the inconsistency of maintain
ing Galilean invariance and the existence of absolute space in the sense of 
a distinguished state of rest. "The Newtonian laws of force are not altered 
thereby [i.e., by a Galilean transformation]; only the initial positions and 
initial velocities-the constants of integration-may alter. By this view 
Newton gave the exact meaning of his hypothetical extension of Galileo's 
law of inertia. We see that the reduction to absolute space was by no means 
necessary" (pp. 285-286). But again there is nothing here that cannot be 
found in Huygens, Leibniz, Berkeley, or Maxwell. 

Mach also asserts, "No one is competent to predicate things about 
absolute space and absolute motion; they are pure things in thought, pure 
mental constructs, that cannot be produced in experience" (p. 280). The 
thrust of his assertion is contained in Berkeley's condemnation of absolute 
space as an abstract idea. 

And finally, consider such passages as this: "When we say that a body 
K alters its direction and velocity solely through the influence of another 
body K', we have asserted a conception that it is impossible to come at 
unless other bodies A, B, C . . .  are present with reference to which the 
motion of the body K has been estimated. In reality, therefore, we are 
simply cognizant of a relation of the body K to A, B, C' (pp. 28 1 -282). 
Such epistemological motivations for relationism can be found in the 
writings of relationists from Huygens on down. 

In one respect Mach is less acute than his predecessors; namely, there is 
no appreciation, such as we have seen in Huygens, Leibniz, Berkeley, Kant, 
and Maxwell, that rotation poses a special challenge for relationism. Mach 
saw, perhaps more clearly than Huygens and Leibniz, that relationism 
requires that the effects of rotation on the water in Newton's bucket be 
treated in terms of the relative rotation of the water, if not relative to the 
bucket then relative to the earth or fixed stars. But then with a breathtaking 
glibness that none of his predecessors, save the Bishop of Cloyne, could 
emulate, Mach simply asserted that there is no difficulty in producing such 
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Thought experiments for Mach 

a relational treatment of rotation: "The principles of mechanics can, indeed, 
be so conceived, that even for relative rotations centrifugal forces arise" 
(p. 284). If Mach is asserting that the relationally acceptable Machian or 
Leibnizian space-times permit the construction of empirically adequate 
theories of mechanics, one will search The Science of Mechanics in vain for 
the proof of this assertion. Nor is the glibness underwritten by a willingness 
to take an instrumentalist attitude toward the Newtonian theory of mech
anics by accepting the theory, not as a literally true account of the world, 
but merely as an instrument for predicting effects on relationally well 
defined quantities, for Newton's theory predicts observationally distin
guishable effects for relationally indistinguishable cases, as illustrated by 
cases (a) and (b) and again by cases (c) and (d) in figure 4.2. 1 5 

Mach balked at imagining the universe to be given twice, much less four 
times. "The universe is not twice given, with an earth at rest and an earth 
in motion; but only once, with its relative motions, alone determinable. It 
is, accordingly, not permitted us to say how things would be if the earth 
did not rotate" (p. 284). Mach was perfectly correct, of course, if he meant 
only to make the obvious point that thought experiments such as Newton's 
globes rotating in an otherwise empty universe and those illustrated in 
figure 4.2 cannot be used to settle the absolute-relational dispute. ("When 
experimenting in thought, it is permissible to modify unimportant cir
cumstances in order to bring out new features in a given case; but it is not 
to be antecedently assumed that the universe is without influence on the 
phenomena here in question" [po 34 1] .) But he was mistaken if he meant to 
suggest that because the only form of directly observable motion is the 
relative motion of bodies, no observation made in the actual universe, 
as opposed to the imaginary universe of Newton's experiment with the 
globes and the thought experiments of figure 4.2, can cut in favor of an 
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absolute over a relational theory of rotation. A Machian theory that makes 
specific quantitative predictions about how local inertial effects depend 
upon the distribution of surrounding matter could presumably be tested 
against standard Newtonian theory either through passive observations on 
solar and stellar bodies or by experimental protocols whose interventions 
in nature do not call for anything so radical as altering the rotation of the 
earth or the heavens. But talk of testing is idle at this stage, since Mach 
declined to provide the details of such a theory. 

Although 1 have disavowed the game of finding heroes and villains in the 
history of science, 1 cannot resist speculating on the game itself by asking 
why so many commentators want to accord Mach the hero status on the 
basis of his relatively shallow analysis of the problem of rotation. One 
understandable but unlaudable reason may be that philosophers, like 
despots, like to hypnotize the populace with the threats of bogeymen. Mach 
clearly identified his bogeymen: the "monstrous conceptions of absolute 
space and absolute time" (p. xxiii). What is not so understandable is how 
these same commentators swallow the principles that underlie Mach's 
perceptions of monsters. The same hero who does battle with absolute 
space and time is also the man who declared, "I can accept the theory of 
relativity just as little as 1 can accept the existence of atoms and other such 
dogma" (p. xxvi). 1 6 The source of most of Mach's complaints about New
ton's doctrines of space and time lies in his perception that Newton failed 
to be true to his own empiricist tenets. ("Newton has again acted contrary 
to his expressed intention to investigate actual/acts" [po 280].) But the very 
same narrow empiricism that fuels these complaints also leads to a rejection 
of atomism, the special and general theories of relativity, and indeed much 
of twentieth-century physics. Finally, Mach is seen to be a hero because of 
the reflected glory of Einstein, who is everyone's hero and who supposedly 
benefited from Mach's precepts in constructing the general theory of rela
tivity. Whatever psychological influence Mach may have had on Einstein, 
the theory itself does not vindicate Mach's relationism. 1 7 

9 Poincare's Response 

Chapter 7 ("Relative and Absolute Motion") of Poincan!'s Science and 
Hypothesis ( 1 905) begins with an enunciation of a version of the principle 
of relative motion that seems to come to no more and no less than Galilean 
relativity, or the equivalence of inertial frames. "The movement of any 
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system whatever ought to obey the same laws, whether it is referred to fixed 
axes or to the movable axes which are implied in uniform motion in a 
straight line. This is the principle of relative motion; it is imposed upon us 
for two reasons: the commonest experience confirms it; the consideration 
of the contrary hypothesis is singularly repugnant to the mind" (Poincare 
1905, p. 1 1 1 ). Since the Galilean transformations are the symmetries of 
neo-Newtonian space-time, one would expect Poincare to endorse all the 
consequences for the absolute-relational debate that flow from this setting. 
Instead, we are treated to eleven pages of uncharacteristically tortured 
discussion. 

The stumbling block for Poincare, rotation, is introduced in a subsection 
entitled "Newton's argument." Poincare wonders, "Why is the principle [of 
relative motion] only true if the motion of the movable axes is uniform and 
in a straight line? It seems that it should be imposed upon us with the same 
force if the motion is accelerated, or at any rate if it reduces to a uniform 
rotation" (p. 1 1 3). But the principle fails in these two cases. Poincare finds 
no puzzle in the fact that it fails for the case where the motion of the axes 
is straight but not uniform, for he manages to convince himself that this 
failure can be explained by the commonplace that the relative motion of 
two bodies is modified if one or the other is acted upon by an external 
force. 1 s He is considerably exercised, however, by the case of rotation. "If 
there is no absolute space, can a thing turn without turning with respect 
to something; and, on the other hand, how can we admit Newton's conclu
sion and believe in absolute space?" (p. 1 14). There is a hint here that 
Poincare has not entirely escaped the conceptual box that imprisoned 
Newton and his critics alike: either the motion of a body is judged solely 
with respect to other bodies or else with respect to absolute space. The 
suspicion is confirmed by Poincare's hankering after a version of the 
principle of relative motion that would legitimate the first alternative. The 
sought-after principle of relative motion is related to a generalization of the 
principle of inertia that, in Poincare's terminology, means that the coor
dinates of the particle are determined by second-order differential equa
tions, so the generalized principle of relative motion would assert that the 
differences in the particle coordinates are determined by second-order 
equations (see pp. 1 12- 1 1 3). 

There is a seemingly slender but crucial distinction that must be recognized 
at this point, namely, the difference between quantities such as fij and rij • 
In the preceding section we saw that the empirical content of Newtonian 
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central-force laws of motion can be captured in terms of the quantities rii' 
tu' and fu. But this would not satisfy the epistemologically motivated 
relationist, for what is directly observed are not these quantities but rather 
ru = I ru l , ;u' and 'u· Or in space-time terminology, the distinction corres
ponds to that between laws of motion whose proper home is Maxwellian 
space-time versus those whose proper home is Leibnizian space-time. 
Rotation militates in favor of the former and against the latter and, thus, 
against Poincare's generalized principle of relative motion. 

Although Poincare does not see the point this way, it is clear that these 
considerations are at the core of his worry. His worry that rotation is 
inconsistent with the general principle of relative motion is expressed in 
terms of the following example. 

I assume a system analogous to our solar system, but in which fixed stars foreign 
to this system cannot be perceived, so that astronomers can only observe the mutual 
distances of planets and the sun, and not the absolute longitudes of the planets. If 
we deduce directly from Newton's law the differential equations which define the 
variation of these distances, these equations will not be of the second order. I mean 
that if, outside Newton's law, we knew the initial values of these distances and of 
their derivatives with respect to time-that would not be sufficient to determine 
the values of these same distances at an ulterior moment. 

Poincare's point can be understood in terms of the two-body problem 
treated in section 7. Equation (4.3) can be rewritten in terms of r = I rd as 

L2 
m1 2 , = f(r) + --3 ' m1 2 r 

(4.5) 

where L is the magnitude of angular momentum as measured in the center
of-mass frame. This quantity L is what Poincare dubs an "accidental 
constant" (p. 1 1 8); i.e., it is constant in time but its value is an accidental 
feature of the system. What worries Poincare here is that to determine r(t), 
t � 0, we need to know not only r(O) and ;(0) but also the value of the 
accidental constant L, or equivalently the values of r(O), ;(0), and ,(O)-this 
is the sense in which (4.5) is not second order. 

Poincare now asks rhetorically why we should hesitate to admit that the 
subsequent motion depends on the initial value of the second derivative. 
He answers: 

It can only be because of the mental habits created in us by the constant study of 
the generalized principle of inertia and of its consequences. The values of the 
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[relative] distances at any given moment depend upon their initial values, on that 
of their first derivatives, and something else. What is that something else? If we do 
not want it to be merely one of second derivatives, we have only the choice of 
hypotheses. (p. 1 2 1) 

For Poincare the choice of hypotheses comes to this. We might say that 
the something else is the "absolute orientation of the universe in space," 
but that is "not the most satisfactory for the philosopher, because this 
orientation does not exist" (pp. 1 2 1 - 122). Alternatively, the something else 
might be Neumann's body Alpha, an equally unpalatable alternative for 
Poincare, since "we are destined to never know anything about this body 
except its name" (p. 122). Poincare concludes that we should give up this 
hankering after the something else. 

This conclusion not so neatly sweeps the difficulty under the rug. Wheth
er the initial-value problem for the equations of motion is well posed in the 
usual sense is secondary to the question of whether there are empirically 
adequate equations of motion that are properly at home in Machian or 
Leibnizian space-time. Poincare's remarks do little to help settle this key 
question. 

10 Instrumentalism 

A number of late-nineteenth- and early-twentieth-century physicists were 
gripped by the notion that we need to have an empirical determination of 
the concept of inertial frame or a way of tying this concept to a concrete 
system of bodies (see, for example, Lange 1 885, 1 886, 1902). Apart from the 
seductive though mistaken idea that legitimate scientific concepts must 
admit operational definitions, the determination notion seems to be legiti
mated by the commons en se observation that Newtonian mechanics cannot 
be applied until we first determine an inertial frame. 1 9 Like much com
monsense wisdom, this bit is misleading. To get started in Newtonian 
particle mechanics, one needs to know the masses of the particles and the 
forces acting upon them. But then without first making a determination of 
an inertial frame, one can proceed to write down Newton's laws of motion 
for the system and deduce consequences for observables like rij' rij, etc. The 
equations for these quantities will include additional quantities like L, but 
at least in the simple two-body case we have seen that these additional 
quantities can be evaluated in terms of the directly observable relative 
particle quantities. 
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These observations emphasize the question, already prompted by Poin
care's discussion, of why we can't dispense with inertial frames and indeed 
all standards of absolute motion in favor of the observable relative particle 
quantities, thereby achieving a relational theory of motion. The question 
is misleading. We can always achieve a relational description of motion by 
milking the original theory for its consequences for relational quantities. 
The real question is whether the set of such consequences can be structured 
so as to have the virtues that led one to seek a theory of motion in the first 
place. 

Consider again the central-force problem in Newtonian action-at-a
distance mechanics. Foppl ( 1 897- 19 10) hypothesized that as measured in 
the center-of-mass frame, the angular momentum of the universe vanishes. 
In the two-body problem Foppl's hypothesis has the effect of reducing the 
Newtonian equation (4.5) to 

(4.6) 

which contains only good relational quantities. Zanstra ( 1 924) argues that 
a similar reduction takes place for the general case of N > 2 particles. But 
it is no big surprise to find that the relationist has an easy time of it when 
troublesome rotation is absent. 

Suppose then that L does not vanish. Why can't the re1ationist take (4.5) 
as one of his laws of motion? He can, but there are two difficulties in doing 
so. First, in contrast to the Newtonian, the relationist has no explanation 
of the fact that the accidental constant L is constant in time. Second, it 
could be argued that fundamental laws, as opposed to derivative laws, 
should not contain accidental constants and that, therefore, the relationist 
has given us the fundamental laws of motion of the system. To meet this 
second objection, and eventually the first, the relationist can eliminate L 
by differentiation. The result is to replace a second-order equation (4.5) by 
the third-order20 

m12 (fr + 3fr) = f(3f(r) + rf'(r)). (4.7) 

This equation no longer entails that L as originally defined is constant in 
time, but this need not disturb the relationist, since he is proposing to give 
up inertial frames and other absolute standards of motion. And the re1a
tionist can note that (4.7) does entail that m12 r3 (m1 2r - f(r)), which U 
happens to equal in the two-body case, is constant in time, so that the 
observational content, if not the original intent, of (4.5) is preserved by (4.7). 
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All of this the relationist can say, but his story has to change with the value 
of the particle number N, since the laws of motion for the relational 
quantities will be different for different values of N. The price for rejecting 
Poincare's "something else" is abandoning the unification provided by 
Newton's theory in the form of a uniform explanation in terms of a single 
set of laws that apply for all values of N. 

This price need not be laid at the doorstep of relationism per se but may 
be seen to result from the instrumentalist approach followed above. Instead 
of milking Newton's laws for their relational consequences, it is open to 
the relationist to try to provide a unified treatment of motion by replacing 
Newton's laws with counterparts that are relationally invariant. Some 
attempts in this direction will be studied in chapter 5. 

1 1  Conclnsion 

Newton, Huygens, Leibniz, Berkeley, Maxwell, Kant, Mach, Poincare
these are names to conjure with. The fact that not one of them was able to 
provide a coherent theory of the phenomena of classical rotation is at first 
blush astonishing. It is a testament in part to the difficulty of the problem 
but in larger part to the strengths of the preconceptions and confusions 
about the absolute-relational debate. The history of the special and general 
theories of relativity contains a sequel to this astonishing story of rotation. 
The sequel is less astonishing but no less important for the absolute
relational debate, or so I shall try to show in the next chapter. 

Before closing this chapter, however, it is worth pausing to consider 
whether it was merely a historical accident that much of the absolute
relational controversy was focused on rotation, for it might be urged, 
whatever argument or conceptual puzzle can be stated in terms of rotation 
can be restated in terms of acceleration in a line. 2 1 My initial response is 
that if it was a historical accident, it was an accident on such a large scale 
that it deserves attention for this reason if for no other. The more substan
tive response is that there are features of rotation that make it an especially 
difficult challenge for the relationist. 

In Newtonian mechanics, acceleration of a body in a line with attendant 
inertial effects is possible without relative motion of the parts of the body. 
But according to the theory, such acceleration cannot be achieved without 
imposing an impressed force, which in turn implies the existence of sources 
in the form of other bodies. Since the body in question is accelerating 
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relative to other bodies, the way is left open for a relational redescription. 
By contrast, Newtonian theory says that the inertial effects associated with 
a rotating body will be experienced in an otherwise empty universe. Rota
tion, therefore, lends itself better to the kind of thought experiment that, 
while not settling the issue, served as a powerful intuition pump against 
relationism. 

But let us leave intuition for theory construction. There are ways in which 
it is harder to achieve an adequate classical theory of rotation as opposed 
to acceleration in a line. With an absolute or invariant notion of accelera
tion in a line, rotation becomes absolute, but not vice versa, as Maxwellian 
space-time illustrates. If we start with Maxwellian space-time and absolute 
rotation, it is not difficult to treat the motion of bodies moving under 
central forces without invoking an absolute notion of acceleration in a line. 
Alternatively, rotation can be suppressed by working in one spatial dimen
sion, in which case it is not hard to work out a viable relational theory of 
classical gravitational interactions (see section 5.2). But when a fully rela
tional account of rotation is demanded, the setting changes from Max
wellian to Leibnizian or Machian space-time, and in these latter settings 
an adequate classical theory is more difficult to construct, as we shall see 
in chapter 5. Chapter 5 also reveals that relativity theory plus a relational 
account of rotation is an impossible combination. 



5 
Relational Theories of Motion: A Twentieth-Century 
Perspective 

The history recounted in the preceding chapter might be thought to serve 
as the basis of an inductive argument against the relationist thesis (R i )  
(section 1 . 3); namely, the failure to find a satisfactory relational theory of 
motion in general and of rotation in particular is evidence that no such 
theory can be found. Although the general argument form is unappealing, 
the present instance would seem to carry some probative force, since the 
failure in question stretches over two and a half centuries and encompasses 
many of the most brightly shining lights of natural philosophy in those 
centuries. Nevertheless, the argument has two loopholes. First, none of the 
exponents of the relational conception of motion realized what is patently 
obvious in the glare of hindsight wisdom-namely, that Machian and 
Leibnizian space-times form the natural classical settings for a relational 
account of motion-and until quite recently there has been no systematic 
investigation of what possibilities these settings hold. Sections 1 and 2 
describe what is now known about these possibilities. Second, even if the 
relationist dream cannot be fulfilled in classical space-time settings, there 
remains the hope that relativity theory can be used to vindicate relationism. 
This hope, often nurtured by nothing more substantial than a confusion 
between relativity and relationism, will be shown to be a vain one, for the 
relativistic conception of space-time proves to be much more inhospitable 
to relationism than the classical conception. 

1 Relational Theories of Motion in a Classical Setting 

Can there be interesting theories of motion based on classical space-times 
that do not involve any absolute quantities of motion, whether absolute 
velocity, acceleration, or rotation? To be interesting, a theory must both 
be nontrivial and duplicate some of the major explanatory and predictive 
successes of standard theories of motion. 

By way of illustrating the nontriviality requirement, consider bare space
time, which is one step down from Machian space-time (section 2. 1 )  in that 
it contains only absolute simultaneity but no 1E3 structure on the instan
taneous spaces. No nontrivial theory of motion for a continuous plenum 
of matter is possible in this setting. A kinematically possible motion for the 
plenum is specified by a space filling time like congruence � a set of smooth 
timelike curves on the space-time manifold M such that each curve is 
everywhere oblique to the planes of absolute simultaneity and such that 
through each point p E  M there passes exactly one curve of � For any two 
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such congruences Cfj and Cfj' there is a symmetry of the bare space-time that 
carries Cfj onto Cfj'. Therefore, by symmetry principle (SP2) (section 3.4), 
either every kinematically possible motion is dynamically possible or none 
is, i.e., the laws of motion allow that everything goes if anything goes. 

The first clear statement of this triviality problem of which I am aware 
occurs in Weyl's Philosophy of Mathematics and Natural Science: 

Without a world structure the concept of relative motion of several bodies has, as 
the postulate of general relativity shows, no more foundation than the concept of 
absolute motion of a single body. Let us imagine the four-dimensional world as a 
mass of plasticine traversed by individual fibers, the world lines of the individual 
particles. Except for the condition that no two world lines intersect, their pattern 
may be arbitrarily given. The plasticine can then be continuously deformed so that 
not only one but all fibers become vertical straight lines. Thus no solution to the 
problem is possible as long as in adherence to the tendencies of Huyghens and 
Mach one disregards the structure of the world. ( 1986, p. 105) 

Mistakenly identifying Weyl's "world structure" with inertial structure, 
Lariviere ( 1987) contends that Weyl's considerations show that "once we 
give up the notion of real inertial structure we cannot even talk about 
relative motion, let alone absolute motion of a single body" (p. 444). The 
incorrectness of this claim is shown by the fact that the triviality objection 
does not arise for Machian and Leibnizian space-times, both of which lack 
inertial structure (see Earman 1989). That the second condition for an 
interesting theory can be satisfied for Machian and, a fortiori, for Leibnizian 
space-time has been demonstrated only recently. 

2 The Relational Theories of Barbour and Bertotti 

Barbour ( 1 974, 1982, 1986), Barbour and Bertotti ( 1 977, 1982), and Bertotti 
and Easthope ( 1 978) have chosen to study the possibilities of a relational 
theory of gravitation within the setting of Machian space-time. This choice 
is motivated by a strain of re1ationism that eschews intrinsic metric struc
ture; in particular, time is seen as a measure of motion. This motivation 
does not appear to be stable, however, since by symmetry of reasoning the 
1E3 structure of the instantaneous spaces should also be eschewed, which 
would force a retreat from Machian to bare space-time, with the unpleasant 
consequences discussed in section 1 .  Nevertheless, the choice of Machian 
space-time is a good one for present purposes, since it offers the relationist 
the greatest flexibility. 1 
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Barbour et al. also choose to investigate action-at-a-distance equations 
of motion that are based upon an action principle. Barbour ( 1 974) used a 
Lagrangian of the form L = VT1/2, where 

N 
V = L 

mimj
, 

i<j rij 
(5. 1 )  

and rij == drijld).., ).. being an arbitrary parameter that increases in  the 
direction of future time. For N = 1 there is, of course, no theory of motion, 
since only relative particle motions are meaningful in this setting. For 
N = 2 all that can be said is that the two particles are approaching or 
receding from one another, for as a direct consequence of the fact that L is 
homogeneous to the first degree in ;,2 the Euler-Lagrange equations are 
identically satisfied. 3 For N > 2 but small, the Euler-Lagrange equations 
define physically possible motions that are quite different from those de
fined by Newtonian gravitational theory. But for large N the relational 
equations of motion can reproduce Newtonian predictions, at least in one 
spatial dimension. To show this, let xi()..) be the Cartesian coordinate of 
particle i. Then L = V [Lf<j mim/i/ - 2XiXj + X/)] 1/2 . If the time pa
rameter ).. is chosen so that d)" = dt == (L�j mimj dri])

1/2 (i.e., T = 1), and 
the spatial coordinates are specialized so as to make Lf mixi = 0 (using 
d)" = dt), then as Barbour ( 1974) shows, the Euler-Lagrange equation for 
the ith particle takes the form 

(5.2) 

For a mass-distribution static in the large, V can to good approximation 
be assumed to be independent of t, in which case (5.2) assumes the Newtonian 
form 

(5.3) 

where the gravitational "constant" G == 1/m V depends on the way matter 
is distributed in the universe. The success of this relational venture is not 
as impressive as it needs to be, since the restriction to one spatial dimension 
kills rotation, the hete noire of relationism. 

In a later article ( 1 977) Barbour and Bertotti modify T to T' = 
Li<j mim/;]!rij so that distant matter exerts less of an inertial influence 
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than nearby matter. If we choose the time parameter 't (cosmic time) so that 
T' = 1 , the Euler-Lagrange equations become 

(5.4) 

where the dot or dots now denote differentiation with respect to 'to Ignoring 
the velocity dependent terms on the right-hand side of (5.4), the analogy 
with the Newtonian equations of motion indicates that the effective inertial 
mass of particle i depends upon VLHi m)rij and, thus, in keeping with 
Mach's ideas, upon the distribution of surrounding matter. However, this 
identification of inertial mass depends upon the time parametrization, and 
a different choice of parametrization can shift the inertial influence of 
distant matter into the gravitational "constant" term (see below). 

As in Newtonian cosmology, only a finite distribution of matter can be 
consistently treated, and to square with observation, this distribution must 
be spherically symmetric. The upshot, as Barbour and Bertotti note, is a 
dilemma for the relationist: either the spirit of Copernicanism is violated 
by putting our solar system at the center of the material universe, or else 
it is put off center, which makes the theory predict nonphysical anisotropic 
effects. Barbour and Bertotti's response is to derive a local gravitational 
dynamics in an appropriate cosmological limit. They consider a local 
system of n particles inside a thin spherical shell of mass M and radius R. 
Computations are performed in a Cartesian coordinate system in which 
the shell does not rotate and the origin of which corresponds to the center 
of the shell. The coordinates of the local masses are denoted by ri (i = 1 , 2, 
. . .  , n). The cosmological limit is 

rdR � O, mdM � O, riM/Rmi � finite. (5.5) 

If we take this limit and introduce a local time t related to cosmic time 't 
by dt (J. R2 d't, the local Lagrangian becomes 

L _ 1 " I ' 1 2 
4RR2 " mimj 3R " mimj '2 loc - - f...., mi ri + -- f...., -- + - f...., --rij' 2 i M i<j rij 2M i<j rij 

(5.6) 

where the dot now denotes the derivative with respect to t.4 Equation (5.6) 
is invariant under the proper Galilean transformations r � r' = r + vt + d, 

and for local processes whose time scale is slow in comparison with the 
cosmic scale, (5.6) is also approximately invariant under t � t' = t + con-
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stant. To the extent that the third term on the right hand side of (5.6) can 
be neglected, the equations of motion for local gravitational dynamics are 
identical in form to the Newtonian equations with a gravitational "con
stant" of 4RR2/M. 

A somewhat different approach, perhaps even more congenial to Mach's 
philosophy, is taken by Bertotti and Easthope ( 1 978). In their theory two 
bodies attract each other via the rest of the universe; specifically, all ele
mentary interactions are three-body interactions, and the interactions be
tween bodies i and j can be thought of as the sum over k of elementary 
three-body interactions between i, j, and k. The Lagrangian is taken to be 

(5.7) 

where S;jk is the area of the Euclidean triangle formed by bodies i, j, and k. 
Taking the cosmological limit and introducing a suitable local time yields 
a local Lagrangian equation similar to (5.6) except for the addition of two 
extra velocity-dependent terms. 

Are the relational theories of Barbour et al. adequate or at least as 
adequate as standard Newtonian theory for classical phenomena? 'Classi
cal phenomena' can be taken to include what was or could have been 
observed by means of nineteenth-century instrumentation. Or more 
broadly, it could include the phenomena in principle observable that are 
predicted in some suitable classical limit of GTR. Either way the question 
does not admit of a neat answer. By suitable adjustments of the parameters 
R, R, and M, the Barbour and Bertotti ( 1 977) theory can better standard 
Newtonian theory by giving the correct values for the orbital period and 
the perihelion advance of Mercury. But these values in turn have implica
tions for the value of the gravitational "constant," implications that may 
or may not contradict experiment but are certainly contrary to GTR. The 
Barbour-Bertotti theory also predicts that, contrary to standard New
tonian theory and GTR, the gravitational action of a spherical body is not 
the same as if its mass were concentrated at its center, but then standard 
theory may not be empirically correct. More damningly, the Barbour
Bertotti theory predicts mass-anisotropy effects that contradict standard 
theory, both classical and relativistic, and experiment. 5 

In addition, there is at present no hint of how to do electromagnetism 
and nonrelativistic quantum mechanics in Machian space-time, but it is 
dangerous to prejudge the issue. Indeed, the great merit of the work of 
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Barbour et al. is that it definitively shows what previous proponents of 
relationism never came close to showing: that interesting relational theories 
of classical gravitational phenomena are possible. Such theories may not 
be adequate to save classical phenomena, but more investigation is needed 
before that conclusion can be put on a solid foundation. 

3 Einstein on Rotation 

In "The Foundation of the General Theory of Relativity" ( 1 9 16), the paper 
that codified GTR in its final form, Einstein credits Mach with identifying 
an "epistemological defect" inherent in both Newtonian mechanics and 
STR. The supposed defect is illustrated by means of a thought experiment 
that may be taken as a variant on Newton's rotating globes. 

Two fluid bodies of the same size and nature hover in space at so great a distance 
from each other and from all other masses that only those gravitational forces need 
be taken into account which arise from the interactions of different parts of the 
same body. Let the distance between the two bodies be invariable, and in neither 
of the bodies let there be any relative movements of the parts with respect to one 
another. But let either mass, as judged by an observer at rest relatively to the other 
mass, rotate with constant angular velocity about the line joining the masses. Now 
let us imagine that each of the bodies has been surveyed . . .  , and let the surface of 
Sl prove to be a sphere, and that of S2 an ellipsoid of revolution. Thereupon we put 
the question-What is the reason for this difference in the two bodies? No answer 
can be admitted as epistemologically satisfactory, unless the reason given is an 
observable fact of experience. The law of causality has not the significance of a 
statement as to the world of experience, except when observable facts appear as 
causes and effects. 

Newtonian mechanics does not give a satisfactory answer to this queston. It 
pronounces as follows:-The laws of mechanics apply to the space R 1 ,  in respect 
to which the body Sl is at rest, but not to the space S2 ' in respect to which the body 
S2 is at rest. But the privileged space R 1 of Galileo . . .  is a merely factitious cause, 
and not a thing that can be observed. (Einstein 19 16, pp. 1 12- 1 1 3) 

In conformity with Einstein's understanding of the law of causality, the 
cause of the difference in the shapes of Sl and S2 can only lie in the distant 
masses and the relative motions of Sl and S2 with respect to the distant 
masses. 

In one sense, there is nothing original in the quoted passage: Einstein is 
simply echoing a long relationist tradition with his claim that epistemologi
cal considerations demand that the phenomena of rotation be explained 
purely in terms of the relative motions of bodies. What is more novel is the 
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implicit claim that GTR conforms to this demand. There is no basis for this 
latter claim, as I trust the following sections will make clear. 

4 Rotation and Relativity 

A relativistic space-time consists of a manifold M and a Lorentzian metric 
9 on M.6 In STR, 9 is an absolute object in that it assumes Minkowskian 
form in every dynamically possible model. In GTR, 9 is a dynamic object 
in that it varies from dynamically possible model to dynamically possible 
model. This difference will turn out to have important ramifications for the 
issue of substantivalism (see chapter 9), but for present purposes two 
similarities between STR and GTR are more pertinent than the differences. 
First, in contrast to the classical case, where many different affine structures 
are compatible with the space and time metrics, the relativistic space-time 
metric 9 uniquely determines the affine structure through the compatibility 
requirement: for any g, there exists one and only one affine connection 
compatible with g. Second, it follows immediately that both STR and GTR 
ground absolute acceleration and rotation. Consider the world line of a 
particle, and at any point on that line erect the unit tangent vector Vi 

(gii ViVi = - 1). The acceleration vector Ai (not to be confused with the 
absolute frame of Newtonian space-time) is then defined by Ai == nlk vk, 
where 11 denotes covariant differentiation with respect to the uniquely 
determined affine connection. It is automatic that Ai is a spacelike vector 
(AiV; = 0),7 and its g-norm gives the magnitude of spatial acceleration. 
Thus, relativity theory in either the special or general form allows one to 
speak of the acceleration of a particle without having to refer explicitly or 
implicitly to the motion of the particle in question with respect to other 
particles. 

Now consider a congruence of timelike curves that represent, say, the 
motion of a fluid body, and construct the unit tangent vector field Vi. The 
associated rotation vector field is defined by ili(V) == ( 1/2)Biikl V

iVk ll l, where 
Biikl is the unique (up to multiplicative factor) totally anti symmetric covari
ant tensor of rank four. Here ill is spacelike, since ill Vi is identically zero, 
and the g-norm il of ill gives the magnitude of rotation. Again, we can say 
whether and how much the body is rotating without making reference to 
any other body. 

At least this is so in the orthodox versions of the theories of relativity. 
There remains the possibility that there is some nonstandard interpretation 
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of relativity theory that dispenses with absolute quantities of acceleration 
and rotation. In section 6 below I shall argue that this possibility is 
foreclosed at least as regards rotation. 

The relationist may still wish to claim that GTR indirectly vindicates the 
relational nature of motion because 9 is not an absolute object but is 
determined by the distribution of matter (or matter-energy). This claim will 
be examined in section 8. 

The classical absolutist arguments from rotation rely on the concept of 
rigid rotation. Rigid motion cannot be relativistically conceived as the 
rotation of a body that is rigid in the strong sense that it maintains its shape 
no matter what forces are applied to it, for such a body would transmit 
signals faster than light. It remains to be discussed how, if at all, the classical 
concept of rigid motion can be carried over into the relativistic context and 
how this carryover affects the absolutist's argument from rotation. 

5 Relativistic Rigid Motion 

Einstein's thought experiment with the two fluid bodies assumed that the 
bodies move rigidly in that there is no relative movement of the parts of 
the body with respect to one another. The notion that the distance between 
the parts of a body remain constant in time makes straightforward sense 
in the classical space-times discussed in chapter 2, since the distances in 
question can be measured in the 1E3 metric on the planes of absolute 
simultaneity. The idea of constant spatial distances can be relativistically 
explicated in several nonequivalent ways, two of which I shall review here. 

The most widely accepted definition of relativistic rigid motion is due to 
Max Born ( 1909). Consider a congruence of timelike curves represented 
parametrically as Xi(A. IX, -r), where the A." (0( = 1 , 2, 3) label the different curves 
and -r is proper time along a curve. One computes the spatial distance from 
one curve of the congruence to an infinitesimally nearby curve as follows. 
At any point on the chosen curve erect the unit tangent vector Vi = Jx i/J-r. 
Project the interval dxi onto the spacelike hyperplane orthogonal to Vi (see 
figure 5. 1). This can be accomplished by using the projection tensor kij == 

gij + Vitj. Finally, use the space-time metric to calculate the distance ds 
in the orthogonal hyperplane: 

(5.8) 
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Figure 5.1 
Born-rigid motion 
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(5.9) 

Born rigidity is the requirement that these distances do not change with 
time, i.e., d(ds2 )/dr: = £y(ds2 ) = 0. 8 But £y(dAa) = 0, and £y(ox i/OAa) = 0, 
so that £y(ds2 ) = £y(kij) dX i dxj. Thus, Born rigidity is equivalent to the 
requirement that £ykij = 0. A little further calculation shows that this 
condition is equivalent to £Jykij = 0, where f is a smooth function. Suppose 
then that the motion is Born-rigid. We can choose a local coordinate system 
xl, x2, x3, t such that Vi = (0, 0, 0, V4). If we take f = 1/V4, £Jykij = ° is 
equivalent to okij/ot = 0, i.e., the space metric kij does not change with time. 

Another useful characterization of Born rigidity is the vanishing of the 
expansion 0 == Vi ll i and the shear (Tij == kmiknj V(m ll n) - -tOkij. 9 Lemma 1 sum
marizes the various equivalent ways of defining Born rigidity. 

LEMMA 1 The following four characterizations of Born rigidity are equiva
lent: 

(i) d(ds2)/dr: = £y(ds2 ) = ° 
(ii) £ykij = ° 
(iii) £Jykij = ° for any smooth f 
(iv) 0 = ° and (Tij = ° 

Another approach to defining relativistic rigid motion uses radar ranging 
to determine distances. Imagine an observer who remains at rest with 
respect to some point in the fluid body and who bounces radar signals off 
the surrounding points. Define the radar distance to another point as one 
half of the round-trip time, as measured by the proper time of the co moving 



100 Chapter 5 

observer, divided by the speed of light. If the radar distances as measured 
by all of the comoving observers are constant in time, the congruence will 
be said to execute radar-rigid motion. A useful characterization of radar 
rigidity was supplied by Muller zum Hagen ( 1 972). 

LEMMA 2 A motion is radar rigid if and only if it is stationary, i.e., it 
generates an isometry of the space-time metric in that £fvgij = 0 for some 
smooth f > 0, or equivalently, (f V)(i l l i) = O. 

Putting together lemmas 1 and 2 allows us to derive a general connection 
between Born and radar rigidity. 

LEMMA 3 A motion is radar rigid if and only if it is Born rigid and 
Ali ll }l = 0, where Ai = Vi ll i Vi is the acceleration vector. 

Lemma 3 holds for any relativistic space-time. In Minkowski space-time 
there is a more intimate connection between the two concepts of rigidity 
in the case of rotating motions, as first shown by Herglotz ( 19 10) and 
Noether ( 1 9 10). 

LEMMA 4 In Minkowski space-time, a rotating motion (0 #- 0) is Born 
rigid if and only if it is radar rigid. 

Classically, we can set a body into rotation, making it spin faster and 
faster, all the while maintaining rigid motion by the use of external forces 
if necessary. It follows from lemma 4 that this is not possible in Minkowski 
space-time, at least if we take Born rigidity as our explication of relativistic 
rigid motion, for in that space-time a body in Born-rigid motion must 
rotate with a constant angular velocity if it rotates at all . 1 0 Many early 
relativists, including Born himself, found this result counterintuitive, and 
Born ( 1 9 10) proposed another definition of rigid motion in order to escape 
it. This Born-again rigidity has disappeared from the literature and will not 
be discussed here. 

In Minkowski space-time a nonrotating Born-rigid motion need not be 
radar-rigid. The following lemma, due to Malament ( 1978), gives the general 
relationship for this case. 

LEMMA 5 In Minkowski space-time a nonrotating motion (0 = 0) is radar
rigid if and only if it is Born-rigid and the magnitude of acceleration is 
constant. 

It can also be shown that 
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LEMMA 6 In Minkowski space-time a nonrotating motion is Born-rigid if 
and only if it is orthogonal to a family of flat spacelike hyperplanes. 

Together lemmas 4 and 6 give a method for constructing all Born-rigid 
motions in Minkowski space-time. These lemmas are discussed in the 
appendix. 

The discussion of rigid motions in general-relativistic space-times is 
more difficult. Indeed, such motions may not exist. An arbitrary general
relativistic space-time may not admit a radar-rigid or stationary motion 
even locally (i.e., in a finite neighborhood). Pirani and Williams ( 1 963) have 
studied the integrability conditions for Born-rigid motions in curved space
times and have shown that space-times of Petrov types 11, Ill, and N do 
not admit nonrotating Born-rigid motions. It also follows from their inte
grability conditions that some curved space-times do not admit any Born
rigid motions, rotating or not, but specific examples are not known. These 
results confute the classical intuition that by applying external forces if 
necessary, a small but finite body can be made to execute some form of 
rigid motion. 1 1  It also follows that the very geometry of space-time can 
temporarily thwart the absolutist's pet argument from rotation, namely, 
that rotation must be absolute rather than relative because the presence of 
rotation in a body can be detected by observable effects, even though there 
is no relative motion of the parts of the body if the body is rotating rigidly. 
This argument is unavailable, of course, where rigid motion is not possible, 
but the absolutist can repair the damage by noting that the observed effects 
of rotation cannot always be plausibly explained by the relative motions 
of the parts of the body (e.g., the strength of the effects of rotation may not 
correlate with the relative motions). 

Other concepts of relativistic rigid motion have been studied by Gardner 
(1 952) and by Synge ( 1 952a, 1952b), who modified Born's definition in an 
attempt to explain away the positive results of D. C. Miller's repetition of 
the Michelson-Morley experiment. 1 2 

6 Relativity, Relationism, and Rotation 

Relativity theory, in either its special or general form, is more inimical to 
a relational conception of motion than is classical physics. The reason 
traces through the differences between relativistic and classical space-times 
to that old nemesis for relationism, rotation. We have seen in chapter 2 
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that there are several classical space-time structures, some of which capture 
one or another facet of the doctrine that all motion is relative. By contrast, 
it is difficult to find a space-time structure that is recognizably relativistic 
and that fails to make the existence of rotation an absolute. 

To establish the plausibility of this claim, we must first decide upon a 
minimal filling for the blank in 'a recognizably relativistic space-time = 
M + ---'. Here are three candidates for filling the blank: ( 1 )  a null cone 
structure for M; (2) a classification of all tangent vectors of M into three 
nonoverlapping and mutually exhaustive categories: timelike, spacelike, 
and null; and (3) a notion of causal connectibility whereby x, Y E M are so 
connectible just in case there is a smooth causal curve joining x and y. 1 3  
These three choices are not really three, since they are provably equiva
lent. 14 Also note that any or all of ( 1 )  to (3) fixes the space-time metric up 
to conformal equivalence, where a conformal-equivalence class of Lorentz 
metrics consists of a maximal class of such metrics such that for any pair 
9 and g' in the class, there is a smooth function rP :  M � IR+ such that 
g' = rPg. 1 5 Finally, I follow Malament ( 1 985) in observing that the existence 
of rotation is a conformal invariant, i.e., n as computed relative to one 
metric in the conformal class is nonzero just in case it is nonzero relative 
to all members. This observation can be established by direct computation 
or more elegantly, as Malament notes, by combining the fact that n = 0 
just in case the motion is hypersurface-orthogonal with the fact that a 
conformal transformation preserves orthogonality relations. 

The argument does not extend to acceleration in general or to Born-rigid 
motion. But although its reach is short, it suffices to establish what classical 
absolutists desperately wanted to prove but never could, namely, that the 
very idea of space-time in its relativistic guise is irreconcilable with a 
full-blown relational conception of motion. 

7 Einstein's Critique Revisited 

It is clear from the foregoing that if Newtonian mechanics and STR are 
unsatisfactory because they employ the "factitious cause" of inertial frames, 
then GTR is equally unsatisfactory. Nevertheless, GTR would come closer 
to fulfilling Einstein's demand that only "observable facts ultimately appear 
as causes and effects" if it sanctioned the use of the fixed stars or, more 
generally, the frame in which matter is on the average at rest as an inertial 
frame in that it exhibits the two following properties: 
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1 1  A test particle placed at  rest in the matter frame remains at  rest. 

103 

12 A test particle given an initial velocity with respect to the frame moves 
in a straight line with respect to the frame. 

To investigate the conditions under which (1 1 ) and (12) hold in GTR, let 
us suppose that some suitable averaging process is applied to produce a 
macroscopic energy-momentum tensor Tij (electromagnetism being omit
ted from consideration) and the macroscopic velocity field Vi of matter. 
Suppose first that the average matter distribution behaves as dust, i.e., 
Tii = p Vi Vi, where p is the density of matter. It then follows from Einstein's 
field equations for GTR that (1 1 ) holds for the rest frame of matter. The 
field equations entail the conservation law Tiill i = 0, which in the case 
under consideration implies that 

(5. 10) 

Equation (5. 10) says that the acceleration Ai is proportional to the four
velocity Vi, which is only possible if Ai = 0, since Ail'; = 0. Property (1 1 )  
then follows from the GTR postulate that test particles follow geodesics. 

If the averaged-out matter exerts a pressure p, then the macroscopic 
energy-momentum tensor assumes the more complicated form Tij = 
(p + p) ViVi + pgij. In general, the frame comoving with matter will not be 
geodesic in this setting, and (1 1 ) will fail. 

Let us assume that the matter frame is geodesic so that (1 1 ) is secured 
and proceed to investigate (12). To make sense of the notion of a straight 
line with respect to the frame, we need to start with a well-defined notion 
of the spatial geometry of the space associated with the frame. A point of 
the associated space is an equivalence class of space-time points, with two 
points being equivalent just in case they lie on the same curve of the 
congruence that defines the frame. If the frame is nonrotating and therefore 
hypersurface-orthogonal, talk about the geometry of the associated space 
can be given a cash value in terms of the geometry of the orthogonal 
spacelike hypersurfaces inherited from the space-time metric. If, however, 
the frame is rotating, this explication is unavailable. But if the frame is 
Born-rigid, then the space metric kii can be used to calculate well-defined 
spatial distances between the points of the space (since okij/ot = 0). So let 
us suppose that the matter frame is Born-rigid. It follows from lemma 3 
that the frame is stationary. Our question regarding (12) now becomes: 
Does GTR entail that if the matter frame is stationary as well as geodesic, 
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a test particle given an initial velocity relative to the frame will move along 
a geodesic of the spatial geometry of the associated space? A negative 
example is provided by the Godel cosmological model, which is a dust-filled 
universe satisfying Einstein's field equations, with the rest frame of matter 
being geodesic, stationary, and everywhere rotating. In a coordinate system 
comoving with the dust, the Godel line element takes the form 

ds2 = (dX l )2 + t exp(axl ) (dX2)2 + (dX3 )2 

(5. 1 1 ) 

where a is a constant. Evidently, x3 is an axial coordinate, Xl is a radial 
coordinate, and x2 is an angular coordinate. 1 6 Now Xl = vt, x2 = constant, 
and x3 = constant is a geodesic of the spatial geometry of the matter 
frame. But a particle given an initial velocity in the radial direction will not 
continue to travel in that direction but will spiral outward. 1 7 

The Godel model is less than satisfactory as a counterexample because 
of its pathological causal properties, e.g., every point in the space-time can 
be connected to itself and to every other point by a future-directed timelike 
curve, which thus raises the hope that causally well behaved cosmological 
models in GTR will give a positive answer to our query about (12). The 
models of Ozsvath and Schucking ( 1 962) effectively dash this hope. 1 8 

Another way to bring out the collision between Einstein's epistemologi
cal constraint and GTR is to note that the constraint would seem to require 
that either GTR should not admit solutions in which there are just two 
bodies in a universe free of matter otherwise, or the class of such solutions 
shouldn't display asymmetries in the form of a subclass in which both 
bodies are spherical, another subclass in which one body is more ellipsoidal 
than the other, and another subclass in which the bodies are equally 
ellipsoidal. It is difficult to make any firm pronouncements on the topic, 
since no exact two-body solutions to Einstein's field equations are known, 
but no general relativist doubts that there are such solutions or that the 
class of such solutions will display the asymmetries that immediately 
activate Einstein's epistemological objection. The history of philosophy is 
littered with failed attempts to use epistemological considerations to limit 
ontology. Epistemology must learn to live with ontological reality, which 
often turns out to lie beyond the ken of doctrinaire theories of knowledge. 

How could Einstein have been led to try to motivate GTR by means of 
principles so fundamentally at odds with the completed theory? No doubt 
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part of the explanation lies in the fact that many decades of work lay ahead 
before a clear understanding of the implications and foundations of the 
theory could emerge. But a clue to a deeper explanation lies in the title 
Einstein gave to the section in which the supposed epistemological defect 
ofNewtonian mechanics and STR is discussed: "The Need for an Extension 
ofthe Postulate of Relativity." The epistemological objection and Einstein's 
thought experiment are supposed to motivate a generalization of the special 
principle of relativity. "Of all imaginable spaces R1 , R2 , etc., in any kind 
of motion relatively to one another, there is none which we may look upon 
as privileged a priori without reviving the above-mentioned epistemological 
objection. The laws of physics must be of such a nature that they apply to 
systems of reference in any kind of motion" (Einstein 1 9 16, p. 1 1 3). Behind 
this attempted extension lies the story of a triple confusion. First, in search
ing for the field equations of GTR, Einstein was guided by the idea that the 
distribution of matter should determine the metric; the difficulties inherent 
in this idea will be discussed below in section 8. Second, for a period 
extending from 19 1 3 into 1 9 1 5, Einstein convinced himself that matter 
couldn't determine the metric through generally covariant field equa
tions, 1 9 and in response he proposed to abandon the requirement of general 
covariance. After he realized his mistake and reembraced general covari
ance, he was led to the brink of another confusion: general covariance, he 
thought, entailed a generalized principle of relativity by which all frames 
of reference are equivalent; hence the title of section 2 of his 1 9 1 6  paper 
and the appellation of "general theory of relativity" for his new theory of 
gravitation. 

None of this detracts from Einstein's monumental achievement, but it 
should serve as a cautionary tale for philosophers of science who seek to 
draw wisdom from the philosophical pronouncements of scientists, even 
the greatest scientists. 

8 Mach's Principle 

Within the general-relativity industry there is a minor but persistent sub
industry concerned with Mach's Principle. A major object of this sub
industry seems to be to find within GTR some effect that can somehow be 
associated with something Mach said or could have said. I decry the notion 
that a principle must contain some element of truth or at least be worthy 
of serious consideration because the vicissitudes of history have led to a 



capital 'p' in 'Mach's Principle'. Nevertheless, the industry surrounding 
Mach's Principle has made a significant contribution to our understanding 
of the foundations of GTR. Since there are excellent review articles on this 
topic (see, for example, Raine 1981 ), I do not propose to pursue it, save to 
briefly discuss a few items directly relevant to the issue of absolute versus 
relational accounts of motion. 

The fact that GTR treats the structure of space-time as dynamic rather 
than absolute is thought to be attractive to the relationist. Weyl, for 
example, read Leibniz as having "emphatically stressed the dynamical 
character of inertia as a tendency to resist deflecting forces" ( 1 966, p. 105). 
Following Weyl's lead, Lariviere ( 1 987) proposes to interpret Leibniz not 
as claiming that there is no real inertial structure to space-time but rather 
as holding that the inertial structure is dynamic as opposed to absolute. I 
doubt that the texts will support this reading of Leibniz.20 But nevertheless, 
the idea that inertial structure is dynamic is one which modern relationists 
would find congenial, because it seems to open the way for a relational 
treatment of relativistic inertial structure through the chain: the distribu
tion of mass determines the space-time metric, which in turn determines 
the inertial structure, since as seen above, there is one and only one affine 
connection compatible with a given Lorentzian metric. Despite its seeming 
appeal, the idea of this chain is hard to instantiate in a form that is both 
precise and supportive of relationism. In relativity theory it is not mass that 
matters but mass-energy, and what enters in the field equations of GTR 
is not mass-energy but energy-momentum. But the idea that energy
momentum determines the space-time metric is no sooner stated than it 
undermines itself. Suppose for the sake of simplicity that the energy
momentum tensor arises solely from a distribution of dust. That supposi
tion fixes the form of Tij to p Vi Vi. But this form does not tell us how much 
energy-momentum is present until it is coupled with the space-time geome
try, i.e., fij = p(7i(7i represents more energy-momentum than Tii = pViVi 
if and only if p > p, at least this is so if (7i and Vi are both normed to 1 ,  
an operation that requires the use of  the space-time metric. This difficulty 
is avoided in the case of "empty" space, i.e., Tij = O. But the implementation 
of Mach's Principle in this case would seem to require that the field 
equations of GTR admit no solutions for empty space, or alternatively that 
the solution is unique. In fact, however, Einstein's field equations, with or 
without a cosmological constant, admit multiple solutions for Tii = o. 

One could declare that vacuum solutions are to be ignored as "unphysi
cal" (see Harn� 1 986). But if such a declaration is to be consistent with a 
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continued belief in GTR, it should be accompanied by two demonstrations: 
the first would show that Einstein's field equations can be so modified as 
to preserve the predictions for the case of Tij #- 0 but to yield no solution 
or else some standard flat space-time for Tij = 0; the second would show 
that in some appropriate limit in which the gravitational sources are turned 
off, solutions to Einstein's field equations either become degenerate or else 
reduce to some standard flat space-time. The second seems unlikely when 
gravitational radiation is taken into account, and three-quarters of a century 
of research on GTR has given no support to the first. 

The idea that the distribution of mass-energy determines the metric fares 
even worse in the initial-value problem for Einstein's field equations. If a 
unique solution is to be determined,2 1 the specification of the initial data 
requires not only a specification of the initial mass-energy distribution but 
also a specification of the intrinsic spatial geometry of the initial-value 
hypersurface and its extrinsic curvature, which determines how the surface 
is to be imbedded into space-time. The former specification is entangled 
with the latter in two ways. First, as already noted, the very notion of the 
amount of mass-energy present presupposes metric concepts. And second, 
Einstein's field equations constrain the initial data through elliptic partial
differential equations that imply that the initial matter distribution cannot 
be specified independently ofthe intrinsic spatial geometry and the extrinsic 
curvature of the initial-value hypersurface. 

In The Meaning of Relativity Einstein gave a boost to the industry 
surrounding Mach's Principle by stating that "the [general] theory of 
relativity makes it appear probable that Mach was on the right road in his 
thought that inertia depends upon a mutual action of matter" ( 1 955, p. 100). 
He went on to claim that GTR affirms the expectation that the "inertia of 
a body must increase when ponderable masses are piled up in its neigh
borhood." However, the effect that Einstein used to illustrate this idea is 
nonintrinsic and depends upon the use of a special coordinate system. A 
second effect mentioned by Einstein is indeed realized in GTR; namely, a 
rotating mass shell generates within itself Coriolis and centrifugal fields, 
which gives a prophetic ring to Mach's remark, "No one is competent to 
say how the [rotating-bucket] experiment would turn out if the sides of 
the vessel increased in thickness and mass till they were ultimately several 
leagues thick" (Mach 1 883, pp. 284-285). For two separate reasons, how
ever, this effect does not vindicate relationism. First, as already noted, the 
rotation of the mass shell is an absolute rotation. Second, relationism 
requires that matter should completely determine inertia and not merely 
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influence it. In the case in point the determination of the local inertial 
frames inside the rotating mass shell is the result of a dragging along of 
inertial frames of the background metric, usually assumed to be Minkow
skian at spatial infinity. No matter how hard they fiddle, relationists cannot 
make GTR dance to their tune. 

9 Conclusion 

Opponents on opposite sides of the classical absolute-relational debate 
labored mightily to prove that the others' position involved a conceptual 
incoherency. As regards the nature of motion, they all labored in vain, for 
the setting of classical space-time is flexible enough to accommodate co
herent versions of both views: that all motion is relative motion and that 
motion involves some absolute quantities, whether velocity, acceleration, 
or rotation. Empirical adequacy favors the latter view. I choose the word 
'favors' advisedly, for no knock-down demonstration is to be found for the 
conclusion that the best classical theory of motion must use absolute 
quantities of motion. But the long history of classical physics, coupled with 
recent investigations of the possibilities afforded by Machian and Leibnizian 
space-time and our best current understanding of what constitutes a best 
theory, do lend support to that conclusion. 

The advent of relativity theory changes the dimensions of the debate, 
and it changes them in a manner opposed to the propaganda of the rei a
tionist proselytizers who would have us conflate relationism with relativity. 
For not only do the orthodox versions of STR and GTR fail to vindicate 
the relational conception of motion; the relativistic space-time setting 
seems to be unable coherently to accommodate the view that all motion is 
relative because of its more intimate intertwining of space and time. 

Appendix: Rigid Motion in Relativistic Space-Times 

Lemma 1 

To see that conditions (ii) and (iii) are equivalent, write out the Lie derivative 
as follows: 

£Jykij = foijll l VI + kmj(f Vm) lI i + kin(f Vn) llj 

= J£ykij + Vmkmjfii + Vnkinfij 
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The last two terms are zero by definition of kij, which establishes that 
£fykij = f£ykij. 

To see that (ii) is equivalent to (iv), decompose V;llj as (Tij + wij + tOkij -
Ai lj, where the rotation tensor wij is defined by kmiknj J.(m 11 nl · Since Wij is 
antisymmetric, condition (iv) is equivalent to 

J.(i llj) = - A(i lj) . 

Now compute 

£ykij = kijll ' Vi + kmj Vm ll i + kin Vn llj 

= gij ll l V
i + V; II I V

llj + V; ljll l V
i + gmj Vm ll i + Vm Vm ll i lj + gin Vn llj 

+ V;n Vn l li 

With the identities gijll l = 0 and V; Vi lli = 0, criterion (ii) reduces to 2A(i lj) 
+ 2J.(i llj) = 0, which is equivalent to (iv). 

Lemma 2 

The proof that stationarity implies radar rigidity is straightforward. The 
converse implication is more difficult to establish; for details, the reader is 
referred to Muller zum Hagen ( 1 972). 

Lemma 3 

Suppose that the motion is Born-rigid and that Alilil = O. From the latter 
supposition it follows that Ai can locally be written as a gradient <l>li of 
some smooth function <1>. Thus, J.(i llj) = - <I>I(i lj) , and with f = exp(<I» , it 
follows that (f V)(i l lj) = 0, which means that the motion is stationary. Con
versely, suppose that for some f > 0, (f V)(i l l i) = f J.(i ll i) + fi(i lj) = O. Con
tracting with lj gives f Ai - fii + fii Vjv; = O. Contracting again with Vi 

gives - 2fii Vi = 0, so that Ai = fidf = (logf)li ' and consequently, Alilll = O. 
Also using Ai = (lOgf)l i in 0 = (f V)(i l li) reduces it to J.(i lli) = - A(i lj) , which 
we saw in lemma 1 expresses Born rigidity. 

Lemma 4 
The proof of the Herglotz-Noether theorem is probably the hardest proof 
of any known fact about Minkowski space-time. For details the reader is 
referred to Trautmann 1 965. 
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Lemma 5 
The proof is left as a challenge to the reader. 

Lemma 6 

Chapter 5 

For a nonrotating Born-rigid motion V;llj = - Ai Jj. Consequently, .1. V;llj == 
kmiknj Vm ll n = 0, which says that the hypersurfaces to which Vi is orthogonal 
have vanishing extrinsic curvature. In flat space-time this means that the 
orthogonal hypersurfaces are hyperplanes. 



V Substantivalism: Newton versus Leibniz 

In chapter 3, I noted that under the presupposition that a minimal form of 
determinism is possible for particle motions, relationist thesis (RI )  (which 
asserts the relational character of motion) entails thesis (R2) (which asserts 
that space is not a substance). Had the classical relationists been aware of 
this implication, they would have lost no time in turning it into the obvious 
argument for (R2), namely, (RI ), therefore by modus ponens, (R2). The 
argument is unsound, or more cautiously, the best judgment emerging from 
the evidence marshalled in chapters 4 and 5 is that (RI )  is in fact false in 
both the classical and relativistic settings. 

Many early participants on both sides of the absolute-relational contro
versy assumed that the implication went the other way round, from (R2) 
to (RI), the idea being that if motion is absolute rather than relational, it 
must take place with respect to a substantival space. This may help to 
explain in part why Leibniz did not use the correspondence with Clarke to 
respond to Newton's attack on (RI)  but instead concentrated on arguing 
for (R2). 1 For if (R2) holds, then by the alleged implication in question, (RI )  
must also hold. But if(R2) does indeed entail (RI ), then the relationist would 
lose on (R2), since (RI )  fails. 

Does (R2) entail (RI )? How does the failure of (RI )  affect (R2)? These 
questions provide a major focus for the present chapter. I will begin to 
answer them by trying to get a better fix on what is involved in (R2) first 
by examining Newton's and Leibniz's pronouncements on what it means 
for space to be a substance and second by analyzing Leibniz's famous 
argument for (R2). 

1 Space and Space-Time as Substances 

It may come as some surprise that Newton and Leibniz agreed that in many 
senses space is not a substance. In the crudest sense, space would be a 
substance if it were a kind of stuff out of which material bodies were made. 
Both Newton and Leibniz would have rejected any view that smacks of a 
Cartesian identification of extension and matter, and each explicitly as
serted that space and matter are distinct, though of course they would have 
put different glosses on this assertion. 

Two time-honored tests for substance require that a substance be 
self-subsistent and that it be active. The following passage from "De 
gravitatione" records the result of Newton's application of these tests to 
space. Space "is not a substance; on one hand, because it is not absolute in 



1 1 2 Chapter 6 

itself, but as it were an emanent effect of God, or a disposition of all being; 
on the other hand, because it is not among the proper dispositions that 
denote substance, namely, actions, such as thoughts in the mind and 
motions in bodies" (Hall and Hall 1 962, p. 1 32). Though we do not 
know what Leibniz would have made of Newton's notion that space is an 
emanent effect of God, he no doubt would have agreed that space fails on 
both counts to be a substance. 

If space is not a substance, the obvious alternative is that it is an accident 
or property. This is the option Newton's spokesman, Samuel Clarke, 
endorses in his Fourth Reply to Leibniz. "Space void of body, is the 
property of an incorporeal substance . . . .  Space is not a substance but a 
property; and if it be a property of that which is necessary, it will con
sequently . . .  exist more necessarily, (though it be not itself a substance,) 
than those substances themselves which are not necessary" (Alexander 
1984, p. 47). Clarke's transparent suggestion here is that space is a property 
of God. Leibniz chose to read Clarke's further suggestion that space neces
sarily exists because it is the attribute of a necessary being as asserting that 
space is a necessary property of God, and then in his typical fashion he 
tries to turn the suggestion against Clarke, objecting that God will "in some 
measure, depend upon time and space, and stand in need of them" if they 
are necessary attributes of Him (p. 73). 

This contretemps is in large part an irrelevant sideshow, for it is clear 
that at this point of the correspondence Clarke was not functioning as 
Newton's amanuensis but was advocating his own pet doctrine.2 Never
theless, the dispute does serve to raise some sticky questions about 
Newton's own treatment of the ontological status of space. In "De 
gravitatione" he claims that space "has its own manner of existence which 
fits neither substances nor accidents." We have seen why Newton thinks 
that space does not exist in the manner of substances. His reason for 
thinking that it does not exist in the manner of accidents uses a conceiv
ability argument. "Moreover, since we can clearly conceive extension exist
ing without any subject, as when we may imagine spaces outside the world 
or places empty of body, and we believe [extension] to exist whenever there 
are no bodies, and we cannot believe that it would perish with the body if 
God should annihilate a body, it follows that [extension] does not exist as 
an accident inherent in some subject. And hence it is not an accident" (Hall 
and Hall 1 962, p. 1 32). Even if we accept the force of Newton's thought 
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experiment, all that follows is that space is not an accident of bodies, and 
not that it is not an accident or property of God. 

In his 1 720 edition of the Leibniz-Clarke correspondence, Des Mai
seaux's preface includes a special notice to the reader. 

Since the terms quality or property have normally a sense different from that in 
which they must be taken here, M. Clarke has asked me to warn his readers that 
"when he speaks of infinite space or immensity and infinite duration or eternity, 
and gives them, through an inevitable imperfection of language, the name of 
qualities or properties of a substance which is immense or eternal, he does not claim 
to take the term quality or property in the same sense as they are taken by those 
who discuss logic or metaphysics when they apply them to matter; but that by this 
name he means only that space and duration are modes of existence of the Sub
stance which is really necessary, and substantially omnipresent and eternal. This 
existence is neither a substance nor a quality nor a property; but is the existence of 
a Substance with all its attributes, all its qualities, all its properties; and place and 
duration are modes of this existence of such a kind that one cannot reject them 
without rejecting existence itself. . . .  " (Alexander 1 984, p. xxix) 

Koyre and Cohen ( 1962) have demonstrated that Newton, and not Clarke, 
was the author of this passage. Calling space and time "modes of existence" 
is not an admission that they have a quasi-property status but rather is a 
reference to the doctrine of "De gravitatione" that "Space is a disposition 
of being qua being": "No being exists or can exist which is not related to 
space in some way . . . .  Whatever is neither everywhere [as is God] or 
anywhere [as are bodies] does not exist. And hence it follows that space is 
an effect arising from the first existence of being, because when any being 
is postulated, space is postulated" (Hall and Hall 1 962, p. 1 36). 

Despite all of the foregoing, it is evident that in a sense crucial to the 
absolute-relational controversy, Newton does take space to be a substance. 
Directly after claiming that the manner in which space exists fits neither 
substances nor accidents, he admits that "it approaches more nearly to the 
nature of substance": "There is no idea of nothing, nor has nothing any 
properties, but we have an exceptionally clear idea of extension, abstracting 
the dispositions and properties of a body so that there remains only the 
uniform and unlimited stretching out of space in length, breadth and depth" 
(p. 1 32). "Although space may be empty of body, nevertheless it is not itself 
a void; and something is there because spaces are there, though nothing 
more than that" (p. 1 38). More important than these imaginings is New
ton's analysis of the role of space in the analysis of motion: "space is distinct 
from body" (p. 1 23); "place is part of space" (p. 1 22); "body is that which 
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fills space" (p. 1 22); and motion is defined as "change of place" (p. 122). We 
shall shortly see that Newton's analysis of body suggests a radical reading 
of these remarks, but for the moment I will work with a more conservative 
reading. On the conservative reading, both bodies and space are substances 
in that bodies and space points or regions are elements of the domains of 
the intended models of Newton's theory of the physical world. Bodies may 
or may not appear in the domain of every intended model, but space points 
and regions do. In contrast, bodies alone exhaust the domains of the 
intended models of the relationist's world. 

On the suggested reading, the Newtonian description of the physical 
state of the world at any moment has the form 

(6. 1 )  

where the Pi denote points of  space and the bj denote bodies, the implicit 
claim being that without loss of empirical content (6. 1 )  cannot be replaced 
by 

(6.2) 

If the replaceability of (6. 1) by (6.2) is to constitute a key difference between 
substantivalists and relationists, then both will want to agree that in (6.2) 
R' stands for a direct relation among bodies. Thus, both will want to reject 
the intermediate position, called the property view in chapter 1 ,  which 
would remove space points from the ontology (the domains of the intended 
models) to the ideology (the predicates applied to the elements of the 
domain) and would translate (6. 1 )  as 

(6.3) 

where Pi(x) means that x is located at point Pi ' 
There are a number of ways to embellish the admittedly rather colorless 

characterization of substantivalism given above. A popular one is to gloss 
"Space is a substance" as "Space is a container for matter." It is hard to 
see, however, what content, if any, such a gloss adds. One may want to 
emphasize the container idea by saying that just as the raisins contained 
in a pudding can be redistributed through the pudding, so the bodies 
contained in space can be repositioned in space. But the latter just means 
that (6. 1 )  can be true at some times but false at others, or true in some 
possible worlds but false in others. And this, by the way, is all that is needed 
to crank up the machinery of Leibniz's argument against space as a sub-



Substantivalism: Newton versus Leibniz 1 1 5 

stance (see section 2 below), which gives some evidence that the relevant 
sense of substantivalism has been identified. That same machinery grinds 
away at the property view (6.3) as well as the substantivalist's (6. 1 ). 

Another embellishment is that space is ontologically prior to bodies. But 
again it is hard to see what this adds to the present reading of Newton. 
Perhaps it is meant to assert that there can be space without bodies but no 
bodies without space. One difficulty with this gloss comes in fixing the 
relevant sense of ' can'. If it is the 'can' of conceptual possibility, the substan
tivalist may want to accept the gloss. As we have seen, Newton certainly 
did, but we have also seen that by way of justification he was driven to a 
naked appeal to intuitions of conceptual possibility and to the slippery 
notion of "dispositions qua being." If, on the other hand, this 'can' is the 
'can' of physical possibility, it may be false that there can be space without 
matter (i.e., in every physically possible world, bodies are included in the 
domain). But nothing crucial in the absolute-relational debate seems to 
hinge on this latter contingency. 

The second embellishment comes into its own under what can be called 
supersubstantivalism, the view that space is the only first-order substance 
in the sense that space points or regions are the only elements of the 
domains of the intended models of the physical world. Thus, rather than 
eliminating the p;'s from (6. 1 ), as the relationist proposes, this view elimin
ates b/s to give 

RIII (Pl ' P2 " " )' (6.4) 

To realize supersubstantivalism, one doesn't have to revert to the view that 
space is stuff that forms the corpus of bodies, nor does one have to resort 
to some outlandish physical theory. Indeed, modern field theory is not 
implausibly read as saying the physical world is fully described by giving 
the values of various fields, whether scalar, vector, or tensor, which fields 
are attributes of the space-time manifold M. More will be said of the 
viewpoint below in chapters 8 and 9, but for present purposes it is interest
ing to note that Newton put forward a forerunner of such a view in "De 
gravitatione" as part of a tentative account of the nature of body. 3 We are 
asked to imagine that God has endowed various regions of space with the 
property of impenetrability and that impenetrability is "not always main
tained in the same part of space but can be transferred hither and thither 
according to certain laws, yet so that the amount and shape of that 
impenetrable space are not changed" (Hall and Hall 1 962, p. 1 39). Newton 
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is careful to claim not that such beings are bodies but only that they have 
all the characteristics of those things ordinarily called bodies. However, he 
is clearly inviting the reader to entertain the hypothesis that they are bodies, 
in which case we can define bodies as "determined quantities of extension 
which omnipresent God endows with certain conditions" (p. 1 40). 

Finally, I note that one traditional idea of substance holds that a sub
stance is empowered with a means of preserving its identity through 
time. Newton's absolute space might seem to qualify as a substance par 
excellence on this count, since it is supposed to provide the means of 
identifying spatial locations through time. From the space-time viewpoint, 
however, this is an illusion. From this viewpoint a reference frame is just 
a collection of smooth timelike curves on the space-time manifold, and 
these curves provide the means of saying when two nonsimultaneous events 
have the same spatial location. To say that space is absolute in the relevant 
sense is just to say that some reference frame plays a special role in the laws 
of motion. But there is nothing in that role that confers on the special frame 
a magic power of sustaining its identity through time; that power is in
herited from the space-time manifold, and it is inherited equally by every 
frame. Those who do not find the space-time point of view congenial will, 
of course, not be persuaded by this line. But I have tried to show in the 
preceding chapters that this point of view is not something foisted upon us 
by relativity theory but is essential to a clear understanding of classical 
doctrines of space, time, and motion. 

2 Leibniz's Argument 

Leibniz's argument against substantivalism is actually Clarke's argument 
turned on its head. In his Second Reply, Clarke says that he accepts 
Leibniz's principle of sufficient reason (hereafter, PSR), but he adds that 
the sufficient reason motivating God's choice may be nothing more than 
"mere will." "For instance: why this particular system of matter, should be 
created in one particular place, and that in another particular place; when, 
(all place being absolutely indifferent to all matter,) it would have been 
exactly the same thing vice versa, supposing the two systems (or the par
ticles) of matter to be alike; there can be no other reason, but the mere will 
of God" (Alexander 1984, pp. 20-21). In his Third Letter, Leibniz in typical 
fashion tries to turn Clarke's argument upside down and use it as a 
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demonstration to "confute the fancy of those who take space to be a 
substance, or at least an absolute being." 

I say then, that if space was an absolute being, there would something happen for 
which it would be impossible there should be sufficient reason. Which is against 
my axiom. And I prove it thus. Space is something absolutely uniform; and, without 
the things placed in it, one point of space does not differ in any respect whatsoever 
from another point of space. Now from hence it follows, (supposing space to be 
something in itself, besides the order of bodies among themselves,) that 'tis impos
sible there should be a reason, why God, preserving the same situations of bodies 
among themselves, should have placed them in space after one certain particular 
manner, and not otherwise; why everything was not placed quite the contrary way, 
for instance, by changing East into West. But if space is nothing else, but that order 
or relation; and is nothing at all without bodies, but the possibility of placing them; 
then those two states, the one such as it now is, the other supposed to be quite the 
contrary way, would not at all differ from one another. Their difference therefore 
is only to be found in our chimerical suppositon of the reality of space in itself. But 
in truth the one would exactly be the same thing as the other, they being absolutely 
indiscernible; and consequently there is no room to enquire after a reason of the 
preference of the one to the other. (Alexander 1984, p. 26) 

Two points of interpretation are worth mentioning at this juncture. First, 
Leibniz intimates that his argument was drawn from a well-stocked arsenal 
of confutations of substantivalism. ("I have many demonstrations, to con
fute the fancy of those who take space to be a substance or at least an 
absolute being. But 1 shall only use, at the present, one demonstration," p. 
26) But as far as 1 can determine, there is nothing in the Leibniz corpus to 
indicate that Leibniz had other confutations up his sleeve. Nor is there any 
indication that this particular argument was explicitly constructed prior to 
the correspondence with Clarke, and the context strongly suggests that it 
was the product of opportunism and one-upmanship. 

Second, Leibniz's operation of "changing East into West" could be read 
either as rotation by 1 80 degrees or as mirror-image reflection,4 and the 
context gives no clue as to Leibniz's intentions. But whatever his intentions, 
there remains the question of what construction his readers put on the 
operation. The question is important in the case of Kant, since mirror
image reflection suggests Kant's infamous problem of incongruent coun
terparts. The next chapter will be devoted to a discussion of the implication 
of the left-right distinction for the substantivalism issue, and so 1 propose 
in the present chapter to read Leibniz's argument in terms of continuous 
rather than discrete transformations. To emphasize the point, 1 will recon
struct Leibniz's argument in terms of a shift transformation. 
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3 The Structure of Leibniz's Argument 

Chapter 6 

I propose to understand Leibniz's objection to substantivalism as follows. 
Suppose that space is a substance in the sense of being an irreducible object 
of predication. Then a proliferation of possible worlds results, e.g., 

W, in which bodies are located in space as they now are, 

W1 , in which the bodies are all shifted one mile to the east, 

W2, in which the bodies are all shifted two miles to the east, 

Such a richness of possibilities is an embarrassment from the point of view 
of the PSR, since God would be placed in the situation of Buridan's ass, 
with no good reason for actualizing one of the possibilities rather than 
another. Moreover, the proliferation of worlds also threatens to violate 
another cardinal principle of Leibniz's metaphysics, the principle of the 
identity of indiscernibles (hereafter, PIdIn). ("But in truth the one [e.g., 
W7 1 ] would be exactly the same thing as the other [e.g., W3S], they being 
absolutely indiscernible.") 

4 Leibniz's Weapons 

The weapons Leibniz brandishes against the substantivalist are not quite 
what they seem at first glance. Depending upon the context and his inter
locutor, Leibniz in his ever smooth manner glides between a causal and a 
theological reading of the PSR. On the former, the principle asserts that 
every event has a cause, or perhaps that the present state of the universe 
uniquely determines the future states. 5 On the latter reading, the principle 
refers, not to the causal nexus within an actual or possible world, but to 
the reasons for God's decision about which world to actualize. Of course, 
both readings can be covered by the gloss "Nothing happens without a 
sufficient reason." But such a gloss only obscures the fact that a refusal by 
the substantivalist to be intimidated by the bully stick of PSR does not 
commit him to a belief in acausality or indeterminism. The causal version 
of the principle will become important in chapter 9. 

As for Leibniz's second weapon, the PIdIn, if it is to have the polemical 
force it needs, it cannot be the principle of second-order logic that goes by 
that name. For the substantivalist can cheerfully agree that (P) [P(a) +-+ 
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P(b» -+ a = b] while at the same time maintaining that, say, W38 and W229 
are distinct worlds, since W38 has the property that such and such bodies 
are in such and such region of space, while W229 lacks this property.6 To 
respond that it begs the question to let the quantifier (P) range over absolute 
properties of spatiotemporal location is to seriously misrepresent the 
polemical situation. Newton has offered a proposal-an enormously suc
cessful proposal-and Leibniz claims to give a refutation of one key aspect 
of that proposal. The burden is thus on Leibniz to show why (P) cannot 
have such a broad scope. The burden could be discharged by establishing 
a version of PIdIn that limits the scope of the property quantifier to 
verifiable properties, thus turning the logical principle into something akin 
to the logical positivist's verifiability principle of meaningfulness ('A dif
ference, to be a real difference, must be a verifiable difference'). Here as 
elsewhere there is an uncanny consistency to Leibniz's philosophy in that 
whatever reading is needed to make a coherent view can be supported by 
textual evidence. Thus, in his Fifth Letter to Clarke, Leibniz seems to 
endorse precisely the verificationism needed to make the PIdIn prong of 
his argument work.-"Motion does not indeed depend upon being ob
served; but it does depend upon being possible to be observed. There is no 
motion, when there is no change to be observed. And when there is no 
change that can be observed, there is no change at all" (Alexander 1984, 
p. 74). 

Although the textual evidence indicates that Leibniz did intend a veri
ficationist interpretation, it is nevertheless interesting to inquire whether 
his argument can be given a nonverificationist twist. Teller thinks that it 
can. 7 "Except for the alleged differences in space-time placement, there is 
no difference-observational, theoretical, or whatever-between the alter
natives we are considering . . . .  But if two descriptions agree in such a 
thoroughgoing way, surely sound methodology and good sense require us 
to count them as verbally different descriptions of the same situation" ( 1987, 
p. 433). The substantivalist will see no force at all to this version of the 
argument. He has posited space or space-time points not on whim but 
because be believes that such a posit is necessary for a well-founded theory 
of motion. Thus, naked appeals to "sound methodology" and "good sense" 
are not going to sway him, since, he claims, sound methodology and good 
sense were what led to the substantivalist account of space. If there are 
specific objections to the methodology and good sense of Newton and 
fellow substantivalists, then they should be made at the appropriate places. 
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I conclude that if Leibniz wants to carry through his avowed aim of 
refuting those who take space to be a substance, as he claims in his Third 
Letter to Clarke, he must, in the absence of any constructive alternative to 
Newton, stick to the verificationist version of his construction. 

5 The Reach and Implications of Leibniz's Argument 

Although the announced purpose of Leibniz's argument is to establish the 
relationist thesis (R2), the argument works just as well (or ill) to establish 
a form of thesis (R3). For trading an ontology of space points for an 
ideology of irreducible nonrelational properties of spatial location leads to 
a parallel proliferation of possible worlds that also grates against the 
theological version of PSR and the verifiability version of PIdIn. 

Had there not been so much bad blood between Leibniz and the New
tonians, Leibniz would no doubt have noted that his argument lends itself 
to the ecumenicalism and reconciliationism that motivates much of his 
work. 8 For the argument shows the substantivalist the error of his ways, 
while at the same time suggesting how part of substantivalism can be 
preserved. If it works, Leibniz's argument shows that the substantivalist 
provides a phony picture of physical reality, but the phoniness is not that 
of a doctored photograph that shows the cat on a mat when it is really on 
the sofa. Rather, the substantivalist picture provides an accurate rendering 
or representation of reality, but the representation relation is one-many, 
with many (indeed, uncountably many) substantivalist pictures corre
sponding to the same relationist reality. Mistakenly thinking that the 
correspondence between his picture and reality is one-to-one rather than 
many-one leads the substantivalist into problems with determinism (see 
section 3.6), with PSR, and with PI dIn. This representational ploy will be 
exploited in chapter 7 in the discussion of incongruent counterparts and 
will be examined in more technical detail in chapters 8 and 9. 

The ploy does appear to have an unpalatable consequence. Substan
tivalism sanctions an active picture of space-time and dynamic symmetries: 
a symmetry transformation of the space-time acts on a system of particles 
to produce, for example, a rotation or translation of the system in space or 
a velocity boost of the system. The transformation is a true symmetry of 
nature just in case the history of the system resulting from applying the 
transformation is physically possible whenever the initial history is. The 
suggested reading of relationism rejects the active picture of symmetry 
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transformations and enforces instead a passive reading: a dynamic
symmetry transformation connects not different physical systems that are 
repositioned or reoriented in space but rather different descriptions of the 
same system. But if all these descriptions are equally accurate, it would 
seem that the symmetry transformation could not fail to be a true symmetry 
of nature, contradicting the usual understanding that symmetry principles 
are contingent, that is, are true (or false) without being necessarily true (or 
false). On further reflection, however, the relationist is no more committed 
to the necessity of symmetry principles than is the substantivalist. Either a 
physical theory satisfies the metasymmetry principles (SPl )  and (SP2) of 
chapter 3 or not. If not, the theory is ill-formulated. If so, the laws of the 
theory must exhibit the symmetries of the space-time in which they are 
based. This is true for both the substantivalist and the relationist; where 
they part company is over what symmetries space-time should exhibit 
(essentially, issue [RI] )  and over the ontological status of space-time (issue 
[R2] ). 

6 Limitations (?) on Leibniz's Argument 

In an otherwise lucid discussion of relationism, Friedman ( 1983, chapter 6) 
opines that if matter forms a plenum so that there are no unoccupied space 
points, then the traditional dispute over (R2) would be moot. Leibniz would 
have been surprised at this opinion, for he believed in a plenum and yet he 
certainly did not think that this belief rendered his relational conception 
of space functionally equivalent to that of the absolutist. A good test to 
apply to this case is to ask how Leibniz's argument fares in the case of a 
plenum. It seems that to the extent that the argument works at all, it works 
equally well against the background of a plenum as against the background 
of a discrete system of particles moving in a void. The root of Friedman's 
misdirection is the notion that in a plenum the relationist's ontology would 
be just as rich as the substantivalist's. This matter will be taken up in 
chapter 8. 

A number of commentators trace another potential limitation to Leib
niz's assumption that space is "something absolutely uniform; and, without 
the things placed in it, one point of space does not absolutely differ in any 
respect whatsoever from another point of space," or in modern jargon, 
space is assumed to be homogeneous and isotropic. The mathematical 
apparatus for stating coherent alternatives to this assumption was unavail-
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able in the formative period of the debate, but nothing prevents us from 
entertaining the possibility that space (or space-time) is, say, variably 
curved.9 There are still two subsequent suppositions that can be made. 
First, the nonuniform structure of space (or space-time) might be im
mutable in the sense of being the same in every physically possible world. 
In that case both the PSR and PI dIn prongs of Leibniz's argument can be 
blunted: God might have good reason to place bodies in a region of low 
rather than high curvature (say, because the former is a more stable con
figuration), and shifting bodies from a region of one curvature to a region 
of a different curvature could in principle be experimentally detected (say, 
because the motion of gravitating bodies is lawfully connected with the 
curvature of space). Second, the nonuniform-curvature structure might not 
be immutable but might, as in GTR, covary with the distribution of matter. 
That in itself might or might not be heralded as a victory for relationism 
(see chapter 5), but the implications for Leibniz's argument are not im
mediately evident. One cannot now coherently speak of shifting bodies 
from a region of high curvature to a region of low curvature if mass creates 
curvature. However, if the underlying laws are such that shifting the bodies 
drags along with it the curvature structure, then the PSR and Pldln 
arguments would seem to be reactivated. 

This last observation also necessitates a reappraisal of what happens 
under the first supposition. For as we have seen in chapter 3, any space-time 
theory that satisfies some mild restrictions admits of a simultaneous drag
ging along of the space-time and matter structures on the space-time 
manifold, whether or not the space-time structures are immutable. The 
moral, to be explored in more detail below in section 8, is that whether or 
not nonuniformity of space-time structure blocks Leibniz's argument de
pends upon what form of substantivalism the argument is supposed to 
refute. But before exploring this point, I need to examine various responses 
to Leibniz's argument. 

7 Responses to Leibniz's Argument 

The refusenik strategy 

The refusenik simply refuses to engage in the kind of argumentation Leibniz 
uses, the basis for his refusal being the protest that he does not understand 
the modal discourse it presupposes and especially the notion of "possible 
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worlds" (see Field 1 985). Of course, there is nothing Leibniz can do to budge 
an opponent who simply refuses to play the game, but he can make the 
refusenik look like an unworthy opponent. To this end he can point out 
that his argument doesn't need to use possible worlds conceived as foreign 
planets or concrete objects. A substantivalist theory of physics will admit 
an array of models; substantivalist laws of motion will admit an array of 
solutions; and the argument can be run on these arrays. To refuse to engage 
in this form of argumentation is to refuse to do science as we know it. 

The blunting strategy 

Blunt the PIdIn prong of the argument Recall from section 4 that what is 
needed to make this prong work is not the logical principle that goes by 
the name of PIdIn but a form of verificationism. In this postpositivist era 
it is not unrespectable to reject verificationism, and so there need be no 
great embarrassment in maintaining that there are ontologically distinct 
but epistemologically indistinguishable worlds or situations (see Horwich 
1978). 

Blunt the PSR prong Two forms of this substrategy can be contemplated. 
We saw that PSR divides into causal and theological versions, the latter of 
which is needed for Leibniz's argument. The substrategy could be carried 
out by rejecting the latter version in toto or at least rejecting the part that 
tells a creation story of actuality. What, after all, is this mysterious property 
of actuality that God is supposed to confer upon a world when he chooses 
to actualize it? A void the question by adopting instead an indexical account 
of actuality (see Lewis 1986). 

Alternatively, the substrategy can be implemented by melding Leibniz's 
creation story of actuality with Clarke's account of divine decision making. 
Clarke held that if God could not act from mere will without a predeter
mining cause, "this would take away all power of choosing, and . . .  intro
duce fatality" (Alexander 1984, p. 25). Leibniz responded that Clarke grants 
PSR "only in words, and in reality denies it." Clarke's view involves "falling 
back into loose indifference which . . .  [is] absolutely chimerical even in 
creatures, and contrary to the wisdom of God" (p. 27). Clarke rejoined that 
"to affirm in such case, that God cannot act at all, or that 'tis no perfection 
in him to be able to act, because he can have no external reason to move 
him to act one way rather than the other, seems to be denying God to have 
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in himself any original principle or power of beginning to act, but that he 
must needs (as it were mechanically) be always determined by things 
extrinsic" (pp. 32-33). Leibniz responded that moral necessity "does not 
derogate from liberty" (p. 56), and Clarke rejoined that a truly free agent, 
even when faced with "perfectly alike reasonable ways of acting, has still 
within itself, by virtue of its self-motive principle, a power of acting" (p. 98). 
This aspect of the debate ends in an inconclusive stalemate. 

Horwich's strategy 

Consider electrons as objects of predication, and let C be a list of the 
characteristics an electron may possess (mass, spin, etc., and, if you like, 
spatial position). Start with a world W where electron A has characteristics 
CA and electron B has characteristics CB. Now produce another world 
W' just like W except that A now has characteristics CB while B has CA
We would hardly let PSR and Pldln arguments as applied to W and W' 
convince us that electrons do not exist (see Horwich 1978). So why should 
we let them convince us that space points do not exist? 

The point can be more generally put this way. No theory written in any 
standard logical language, whether the underlying logic is first order or nth 
order, can fix the models more closely than up to isomorphism. Thus, the 
existence of isomorphic models does not in itself cast doubt on the ade
quacy of the theory or the existence of the entities postulated by the theory. 
Of course, there may be something suspect about some particular class of 
isomorphic models, but the case has to be made on the particulars. In 
chapter 9, I shall make the case in terms of the possibility of determinism 
in the context of general relativity and similar theories. 

Field's strategy 

Horwich's construction can be seen as an aid to the blunting strategy; in 
particular, it could be used to buttress the rejection of the idea that epis
temologically indiscernible worlds must be identical. Alternatively, it can 
be seen as a motivation for resisting the relationist's charge that substan
tivalism gives rise to an embarrassing proliferation of worlds. Using Leib
niz' s Pldln across worlds, we could conclude that the electrons exhibiting 
CA and CB in W' are respectively A and B, and thus that W and W' aren't 
distinct worlds after all. Field ( 1985) suggests that the substantivalist apply 
a similar strategy to space points. This is not a strategy that Newton and 
other traditional substantivalists would have wanted to use, since they 
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never thought that the identity and individuation of space points turn 
on what material objects occupy which points. Indeed, the supersubstan
tivalism suggested explicitly in Newton's "De gravitatione" presupposes 
that space points are individuated independently of the matter fields on 
space. Moreover, the notion that identification across possible worlds 
respects isomorphism is incoherent if the worlds exhibit such symmetries 
that multiple isomorphisms exist. Field suggests that transworld identifica
tion should respect some isomorphism, but he gives no indication of what 
considerations would pick out the right one when many exist. We will have 
to wrestle with these mysteries of predication and individuation again in 
chapter 9. 

Two provisional conclusions can be drawn from our discussion to this 
point. First, only dyed-in-the-wool absolutists would deny that Leibniz's 
argument has considerable intuitive appeal. Second, only dyed-in-the-wool 
relationists would claim that the argument has enough polemical force to 
do what Leibniz asserted it would do, namely, refute substantivalism, for 
there are reasonable positions open to Leibniz's opponents that will blunt 
both prongs of the argument. In chapter 9, I will try to show that considera
tions of determinism in theories that abandon the immutability of space
time structure add enough polemical force to Leibniz's argument to make 
it much more interesting, if not fully persuasive. 

8 The Absolutist Counterattack 

In a nutshell, the absolutist attack consists of first noting that (Ri )  fails and 
then claiming that the failure carries with it a failure of (R2). The original 
Newtonian form held that (Ri )  is false, because the analysis of motion 
requires the concept of absolute change of position, which concept has to 
be understood as change of position with respect to a substantival space. 
The modified form concedes that the scientific treatment of motion doesn't 
require absolute change of position or absolute velocity but asserts that it 
does require some absolute quantities of motion, such as absolute accelera
tion or rotation. To make these quantities meaningful requires the use of 
inertial structure or the like, and these structures must be properties of, or 
inhere in, something distinct from bodies. The only plausible candidate for 
the role of supporting the nonrelational structures is the space-time mani
fold M, used extensively in the discussion of space-time theories in preced
ing chapters. 
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Note that this manifold substantivalism-M as a basic object ofpredica
tion-Iays itself open to Leibniz's argument whether or not space or 
space-time is "absolutely uniform." Consider a substantivalist model vi{ = 
<M, A l , A2 , . . .  , Pl , P2 , . . .  ), where the Ai and � are object fields on M 
characterizing respectively the space-time structure and the physical con
tents of space-time. Think of a diffeomorphism d :  M -+ M as a kind of 
Leibniz shift. As a generalization of Leibniz's argument, let d shift the 
space-time structure as well as the physical contents i.e., the shift operation 
changes vi{ to vl{d = <M, d * A l , d  * A2 , . . .  , d * Pl , d  * P2 , . . .  ). If we as
sume general covariance of the laws of the theory (see chapter 3), vl{d will 
be a model of the theory if vi{ is. The PSR and PIdIn pincers can now be 
applied to vi{ and vl{d, irrespective of whether or not d is a symmetry of 
the Ai . 

But this generalized version of Leibniz's argument is no more polemically 
powerful than the original version; the same responses discussed in section 
7 apply here as well. Since the absolutist can point to a good reason for 
accepting manifold substantivalism and since Leibniz's argument is not 
powerful enough to force a retreat, on balance the absolutist seems to win 
on (R2) as well as (R I ). The following section discusses a clever but des
perate attempt to avoid this conclusion. 

9 Sklar's Maneuver 

On behalf of the antisubstantivalist who wishes to resist the move from the 
failure of (R I )  to the failure of (R2), Sklar ( 1 976, pp. 229-232) contemplates 
a maneuver so clever (and perhaps so outlandish) that it never occurred to 
any of the parties to the debate. l o In brief, the idea is to give up on (RI )  
and concede that an adequate theory of  motion must employ, say, absolute 
acceleration but at the same time to defend (R2) by treating absolute 
acceleration as a primitive property of particles. This primitive property is 
monadic. To say that a particle is absolutely accelerated in this new sense 
is not to make any relational claim at all, and in particular, it is not to 
claim that the particle is accelerating either relative to Mach's fixed stars 
or relative to immaterial Newtonian reference frames; rather, it is to make 
a claim analogous to saying that the particle is red or is massive. 

One qualm about Sklar's maneuver can be brushed aside. One might 
worry that the maneuver seems to violate the spirit, if not the letter, of 
relationist thesis (R3), which prohibits the use of monadic spatiotemporal 
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properties (see chapter 1 ). But this violation need not cause the relationist 
any consternation, for the contemplated use of the monadic property of 
absolute acceleration, unlike the use of such monadic properties of spatial 
location as 'is located at space point p', does not give rise to a proliferation 
of possible worlds that cranks up Leibniz's PSR and Pldln objections. 1 1  

Before any further evaluation of the maneuver can be attempted, we need 
to get a better fix on exactly what is being claimed. Sklar is not offering a 
constructive, third alternative to standard relational and absolute theories. 
Nor, presumably, is he advocating some cheap instrumentalist rip-off of 
Newtonian theory. The only remaining alternative on the horizon is to 
dovetail the maneuver with the reconciliationist interpretation of Leibniz's 
argument (section 5 above) by exploiting the idea that absolutist models 
provide representations of physical reality and by taking neo-Newtonian 
acceleration as a representation of Sklar's primitive absolute acceleration. 
The idea is intriguing, but the details are missing in Sklar's account, and 
in what follows I shall have to speculate about how they might be filled in 
so as to overcome two obvious difficulties. 

The first is that the representation relation cannot obtain as a matter of 
magic. If all Sklar's antisubstantivalist can say about his primitive accelera
tion is that it is the quantity represented as neo-Newtonian absolute 
acceleration, then the maneuver amounts to no more than hand waving. 
Notice that there is no corresponding problem here for the honest Leib
nizian relationist. A Leibniz state is specified by listing the particles and 
their relative distances, relative velocities, etc. An absolutist representation 
is obtained by embedding the particles in Leibnizian space-time in such a 
way that the relative particle quantities are respected. There are, of course, 
many such embeddings-that is the point of Leibniz's argument. There is 
a problem, however, when the embedding is into neo-Newtonian space
time, to which we seem to be driven in order to get an adequate theory of 
motion. To solve the problem, Sklar's antisubstantivalist must characterize 
his primitive acceleration in such a manner that does not foster substan
tivalism but still fixes in some natural and perspicuous way the intended 
representation. Toward this end, one could stipulate that in the gravita
tional case the Sklar acceleration of particle i is characterized by a non
negative number and direction that are equal respectively to the magnitude 
and direction of LNi mj�ij/ri]. This serves to ground the representation of 
the Sklar acceleration in neo-Newtonian space-time as a spacelike four
vector. But it remains magic that the representative is neo-Newtonian 



128 Chapter 6 

acceleration (d2X i/dt2)/dt2 + rMdxj/dt) (dxk/dt) or for that matter that it is 
a mechanical quantity at all. (When a particle ontology is traded for a field 
ontology, the matter becomes more desperate, since the very characteriza
tion of fields seems to require reference to the space-time manifold. This 
suggests that the manifold substantivalist has a separate motivation that 
proceeds independently of a denial of [R 1] .  This suggestion will be examined 
in chapters 8 and 9.) 

The second shortcoming of Sklar's proposal is that it says nothing about 
how to use the envisioned nonsubstantivalist vocabulary to formulate 
principles of motion that can be used to explain and predict particle 
trajectories. Of course, the Newtonian apparatus can be used to make the 
predictions and afterwards discarded as a convenient fiction, but this ploy 
is hardly distinguishable from instrumentalism, which, taken to its logical 
conclusion, trivializes the absolute-relational debate, as it does so many 
issues in the philosophy of science. 

This second problem is not really separable from the first. Sklar's 
vocabulary must be rich enough to code recognizable analogues of the 
Newtonian laws of motion, and the analogues must be close enough that 
one can see that in some natural way the representations of a given Sklar 
model are all appropriately equivalent Newtonian models. That Sklar's 
hypothetical vocabulary can be rich enough to achieve these goals and not 
at the same time introduce close analogues of the very substantival onto
logy he wishes to avoid is at this juncture only a pious hope. In chapters 8 
and 9, I discuss ways in which this hope can be partially realized, but I 
emphasize that only a partial realization is on the horizon. 

Whatever its merits for furthering the absolute-relational controversy, 
Sklar's maneuver might be thought to help rationalize Leibniz's puzzling 
doctrine of "force." 1 2 Before taking up this matter in section 1 1 , I shall 
consider another relationist maneuver that seeks to take advantage of the 
relativistic nature of space-time. 

10 Another Relationist Maneuver 

Although relativity theory may make it more difficult for the relationist to 
maintain (R I )  (see chapter 5), it may make it easier for him to resist the 
pressure to move from a failure of (R I )  to a failure of (R2). The reason for 
the resistance has two facets. First, in contrast to the classical space-times 
studied in chapter 2, a relativistic space-time employs a space-time metric, 
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Figure 6.1 
A relational account of absolute acceleration in Minkowski space-time 

and all the structures of space and time derive from this metric. Second, in 
the classical setting, where an absolute notion of simultaneity is available, 
it is natural for the relationist to concentrate on such instantaneous rela
tions as the distance between two particles at a given time, their instan
taneous relative speed, etc. In contrast, the relativistic space-time setting 
suggests that the relationist may avail himself of a much richer set of 
relations. To see how the relationist might take advantage of these facts, 
consider how he might treat motion in Minkowski space-time. l 3 

A set of particle events is specified along with a relation of genidentity 
and an assignment to any pair of events e l and e2 of a real number 
L\s(el ' e2 ) (  = L\s(e2 , ed). In addition, if L\s(el ' e2 ) > 0, the ordered pair 
(el , e2 ) is assigned a +  or a - .  This relationist description is to be repre
sented as follows. The particle events become points on timelike world lines 
in Minkowski space-time, with two events lying on the same world line just 
in case they are genidentical. The expression L\s(el , e2 ) represents the 
Minkowski interval between el and e2 ' and the + ( - )  means that the 
direction from el to e2 is future (past) directed. One then goes on to prove 
a representation theorem to the effect that the relationist description deter
mines the particle motions, since, except in special circumstances, the 
representation is determined up to a Poincare transformation. (This follows 
from the fact that if enough independent points in Minkowski space-time 
are given, the Minkowski distances to another point suffice uniquely to fix 
the other point. l4) 

Note that this defense of (R2) concedes that (RI )  is false, since, for 
example, the relationist description of a single isolated particle will deter
mine whether it is accelerating. Thus, for example, the relationist knows 
that the particle pictured in figure 6. 1 is accelerating, since the Minkowski 
distance from el to en is less than the sum of the distances from el to e2 , 
from e2 to e3 ' . . .  , and from en-l to en ' The modern relationist can seek to 



t t 
----�----_4--��------- t = o  
R / � 
/ � \ /' 

p a r t ic le  wor ld l i nes 

Figure 6.2 

" 
" 

Relationism and determinism for particle motions 

justify the seeming apostasy in abandoning (R I )  by noting that of the two 
main motivations for (R I)-namely, verificationism (see chapter 3) and the 
seeming need to maintain (R i )  as a necessary condition for (R2)-the first 
is no longer attractive and the second is mistaken. 

GTR is much less friendly to the sort of relationist ploy under discussion. 
The Minkowski interval between e1 and e2 is the space-time length of the 
unique geodesic connecting these events. In general-relativistic space-times 
an arbitrary pair of events may not be connected by a geodesic, and even 
if it is, the geodesic may not be unique. I waive this difficulty to state a 
deeper one. 

Suppose that we are only concerned with explaining particle motions. 
The relationist must hold that talk about space-time itself, as opposed to 
spatiotemporal relations among particle events, can only be construed as 
a convenient way of representing relational facts about particles. If this is 
so, it should at least be a live possibility that relational facts about the past 
motions of the particles determine their future motions. But in general
relativistic space-times this will not be so for a finite system of particles. 
For facts about the past motions of the particles in figure 6.2 will not suffice 
to fix the state of the space-time outside of the region R, as the future 
motions of the particles will in general be influenced by the nature of the 
space-time metric to the past of t = 0 and the future of R. To succeed, the 
relationist must resort to a version of Sklar's maneuver as applied to the 
metric field in particular and to physical fields in general. The prospects 
for success will be discussed in chapters 8 and 9. 

1 1  Leibniz on Force 

While still denying the "absolute reality of space" in his Fifth Letter to 
Clarke, Leibniz makes what appears to be a concession: "I grant that there 
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is a difference between an absolute true motion of a body, and a mere 
relative change of its situation with respect to another body. For when the 
immediate cause of the change is in the body, that body is truly in motion; 
and then the situation of other bodies, with respect to it, will be changed 
consequently, though the cause of that change be not in them" (Alexander 
1984, p. 74). Clarke took this to be a damning admission: "Whether this 
learned author's being forced here to acknowledge the difference between 
absolute real motion and relative motion, does not necessarily infer that 
space is really a quite different thing from the situation or order of bodies; 
I leave to the judgment of those who shall be pleased to compare what this 
learned writer here alleges, with what Sir Isaac Newton has said in the 
Principia, Lib. I, Defin. 8" 1 5 (p. 105). Modern commentators who take up 
Clarke's invitation also tend to see Leibniz's admission as damning. Thus, 
in his introduction to the correspondence H. G. Alexander allows that 
"There is . . .  no doubt that this admission of the distinction between 
absolute and relative motion is inconsistent with his general theory of 
space" (Alexander 1984, p. xxvii). 

Let us try to be a little more precise about the snare Leibniz seems to 
have constructed for himself. When Leibniz speaks of the "immediate 
cause" of the change of situation of a body, he is referring to "force," his 
measure for which is vis viva or mass x (velocity)2. Thus, to say that a body 
is truly in motion is on Leibniz's account to say that the velocity of the 
body is nonzero. But for such talk to be meaningful it would seem that 
space-time must have at least as much structure as full blown Newtonian 
space-time (see section 2.5 above), with absolute space. 

On Leibniz's behalf one might insist on distinguishing between absolute 
space as a special reference frame and absolute space as a substantival 
container for bodies. Leibniz's main target in the polemic with Clarke is 
the latter. This is certainly true of his Third Letter, and paragraph 53 of his 
Fifth Letter, where he distinguishes between true and relative motion, 
begins by saying that he finds nothing in Newton's Scholium "that proves, 
or can prove, the reality of space in itself," which presumably refers to space 
as a substantival entity. But no amount of logic chopping will restore the 
appearance of consistency. For even if we grant that Leibniz's main aim 
was to secure (R2), there remains the fact that even by Leibniz's lights (R2) 
entails (R I ), and so his admission, which seems to contradict (RI ), is 
inconsistent with (R2). 

A clue to the origin of Leibniz's bind is to be found in the 1 694 corre
spondence with Huygens, a correspondence in which both parties were at 



1 32 Chapter 6 

pains to declare that they had found sufficient grounds to reject Newton's 
attempt to use rotation as a justification for absolute space (see chapter 4). 
In the midst of one such declaration Leibniz adds: 

But you will not deny, I think, that each body does truly have a certain degree of 
motion, or if you wish, of force, in spite of the equivalence of hypotheses about their 
motions. It is true that from this I draw the conclusion that there is something more 
in nature than what geometry can determine about it. This is not the least important 
of the many arguments which I use to prove that besides extension and its varia
tions, which are purely geometrical things, we must recognize something higher, 
namely, force. (Loemker 1970, p. 4 1 8) 

The last sentence indicates that Leibniz felt compelled to swallow whatever 
consequences flow from his doctrine of force, for it is that doctrine that 
forms the keystone of his rejection of the Cartesian analysis of substance 
in terms of purely "geometrical" quantities. 

In "A Brief Demonstration of a Notable Error of Descartes and Others 
concerning Natural Law" ( 1 686), Leibniz claimed that force is to be esti
mated by the effects it can produce and that it follows on this estimate that 
the amount of force is equal not to Descartes's quantity of motion, mv, but 
to mv2• These claims are repeated in section 17  of the "Discourse on 
Metaphysics" ( 1 686). Section 1 8  adds the claim that this vis viva leads to a 
better understanding of the principles of motion: 

For considering only what it means narrowly and formally, that is, a change of 
place, motion is not something entirely real; when a number of bodies change their 
position with respect to each other, it is impossible, merely from a consideration of 
these changes, to determine to which of the bodies motion ought to be ascribed 
and which should be regarded at rest. . . .  But the force or the immediate cause of 
these changes is something more real, and there is a sufficient basis for ascribing it 
to one body rather than to another. This, therefore, is also the way to learn to which 
body the motion preferably belongs. (Loemker 1 970, p. 3 1 5). 

Taken at face value, this passage seems to be claiming that there is in 
principle a way to determine to which bodies the force belongs and, 
therefore, to determine which bodies are in true motion. As such, the 
passage would amount to a straightforward denial of the thesis (RI ), which 
asserts the relational character of motion. 

H. G. Alexander tries to put a better face on what seems to be an 
inconsistent performance. 

Leibniz does not say [in the fifth letter to Clarke] whether it is ever possible in 
practice to determine in which of several bodies the cause of their change of relative 
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position lies and so to discover which is truly in motion. He may therefore have 
held that the distinction between absolute and relative motion is metaphysical, not 
physical: that is, the absolute motion of a body can never be experimentally 
determined; and so the concept of absolute motion is of no use in physics. Such an 
interpretation is supported by his statement in the Discourse on Metaphysics, that 
moving force is a metaphysical concept. (Alexander 1984, pp. xxvi-xxvii) 

But it is clear that when Leibniz calls force a metaphysical concept, he does 
not intend 'metaphysical' as a contrast to 'physical,' for at the beginning of 
section 18 of the "Discourse" he says that force as distinguished from 
quantity of motion is important in "physics and mechanics in finding the 
true laws of nature and the rules of motion." 1 6 Rather, Leibniz uses 
'metaphysical' as applied to force to contrast with the Cartesian geo
metrical quantities of size, figure, and motion and also to indicate the 
teleological character of force as a quantity to be estimated by its effects. 
Moreover, the clear impression given by section 1 8  of the "Discourse" is 
that it is possible to discover which body is truly in motion. 

Alexander is correct, however, that eight years later in the correspon
dence with Huygens, Leibniz gives exactly the opposite impression: "Even 
if there were a thousand bodies, I still hold that the phenomena could not 
provide us (or angels) with an infallible basis for determining the subject 
or the degree of motion and that each body could be conceived separately 
as being at rest" (Loemker 1970, p. 41 8). Perhaps realizing the awkward 
implications of his doctrine of force, Leibniz now seems to want to retreat. 
But has he left himself any consistent ground to which to retreat? 

The essay "Phoranomous, or, On Power and the Laws of Nature," 
tentatively dated 1 688, that is, after the "Discourse" and before the corre
spondence with Huygens, can be seen as an attempt to provide that ground. 
The essay begins with the assertion that because of (what we would call) 
Galilean invariance of the laws of impact, "not even an angel" could 
determine which bodies in a system of bodies moved by collisions are at 
rest. It continues: 

To summarize my point, since space without matter is something imaginary, 
motion, in all mathematical rigor, is nothing but a change in the situations of bodies 
with respect to one another . . . .  But since, nonetheless, people do assign motion and 
rest to bodies . . .  , we must look into the sense in which they do this, so that we do 
not judge them to have spoken falsely. And we must reply that one ought to choose 
the more intelligible hypothesis and that there is no truth in a hypothesis but its 
intelligibility. ! 7  (Couturat 1903, pp. 590-59 1)  
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But what is immediately disconcerting about Leibniz's discussion here is 
the absence of any reference to force. 1 8 And brushing aside that qualm and 
applying the formula that truth equals intelligibility to force leads to a 
dilemma. On one reading of the formula, there is really no truth to the 
matter as to what bodies possess force, and thus we are free to choose 
the hypothesis about motion that we find most intelligible. This reading 
squares with some of the sentiments in the "Phoranomous": "And since 
one hypothesis might be more intelligible than another from a different 
point of view with respect not so much to men and their opinions, but with 
respect to the very matters at hand, and thus one might be more appro
priate than another for a given purpose, so also from a different point of 
view the one might be true and the other false" (p. 59 1). 

But such a reading doesn't square with the sentiments of the "Discourse" 
and the correspondence with Huygens and Clarke, where Leibniz's insis
tence on the distinction between true and relative motion contains no hint 
that the dividing line can change with one's point of view or purpose. On 
an alternative reading of the formula, there is a truth to the matter and that 
truth consists precisely in intelligibility, or as Leibniz puts it elsewhere, in 
simplicity. Consider the hypothesis that, say, bodies a, c, e possess force 
and are truly in motion, while b, d, and f have no force and are at rest. If 
this is true because it is the simplest and most intelligible hypothesis, then 
it becomes a mystery why neither we nor angels can determine its truth, 
since, presumably, we and our more angelic forms do have access to 
considerations of simplicity and intelligibility. 

Finally, Leibniz might avail himself ofSklar's maneuver and declare that 
force is a property of particles that is primitive and monadic 'and that 
manifests itself in absolutist representations as vis viva. But presumably 
such a representation is correct if and only if it assigns a nonzero vis viva 
just in case the force is nonvanishing. And with this structure, all of the 
above problems arise again at the level of representations. 

12 Possibilia and Relationism 

Possibilia have always been part of the discussion of relationism, as evi
denced by Leibniz's pronouncement that "space denotes, in terms of po ss i
bility, an order of things which exist at the same time" (Alexander 1984, 
p. 26). My own reading of this dictum assigns a relatively benign role to 
possibilities; namely, Leibniz meant only to indicate that bodies may stand 
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in Euclidean relations to one another in many different configurations and 
that each such configuration can be represented in many ways by embed
dings into a container space. But other commentators, even those not 
predisposed toward relationism, have averred that the relationist can make 
himself proof against defeat if he is willing to avail himself of possibilia in 
some stronger sense. This sentiment is one of the most pernicious in the 
entire field, for it serves to obscure the substantive aspects of the absolute
relational debate. 

The telationist can certainly make himself proof against attack from the 
absolutist by taking talk about space or space-time points seriously but 
giving such talk a relationist gloss. He does so by taking it to be talk about 
permanent possibilities of location for bodies or events. This defense mea
sure succeeds only by eroding the difference between relationism and 
substantivalism; indeed, the notion that space points are permanent possi
bilities of location for bodies is one plausible reading of the substantivalism 
of Newton's "De gravitatione." 

Alternatively, the relationist can try to keep his doctrine distinct by 
keeping space or space-time points at arm's length while at the same time 
providing a relational transcription of talk about space and space-time. 
Thus, if it becomes necessary to talk about the state of unoccupied regions 
of space and space-time, the relationist can substitute talk about how 
hypothetical particles would behave in relation to each other and in rela
tion to actual particles were they to be introduced into the appropriate 
regions. Presumably the behavior in question refers to nonaccidental, 
lawlike features of particle motions, and if so, the subjunctive and counter
factual conditionals must ultimately find their licence in laws of physics. 
But the absolutist claims that the laws of physics cannot be stated without 
the use of an apparatus that carries with it a commitment to substan
tivalism. In this the absolutist may be wrong, but he is right in holding that 
the relationist cannot take refuge in subjunctive and counterfactual talk 
and must meet the challenge offormulating a relationally pure physics. The 
history of relationism is notable for its lack of success in meeting this 
challenge. Finally, the empiricist tradition, from which most relationists 
come, holds that laws of nature, dispositions, and potentialities all super
vene on the actual, occurrent facts (see chapter 5 of my 1986). If correct, 
this means that there is no real difference between a conservative relationist, 
who holds that all there is to the world are such facts as that body b1 is five 
meters from body b2 at time t, and a liberal relationist, who holds that there 
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are also subjunctive facts about what would happen if, say, b3 were intro
duced between bl and b2 • 

13 Conclusion 

The provisional assessment of (R2) is necessarily more tentative and vague 
than our assessment of (RI ), first because it is less clear what is at stake in 
(R2) and second because the arguments pro and con on (R2), while in
genious and intriguing, are far from compelling. On balance, however, the 
relationist seems to be on the defensive in trying to maintain that space or 
space-time is not a substance. Leibniz's argument for (R2) undeniably has 
an intuitive tug, but its force is far from irresistible, since there are plausible 
responses to each of its two main prongs. Furthermore, (RI )  has been 
discredited, and the discredit seems to transfer, pace Sklar, to (R2). The next 
chapter examines an attempt by Kant to further tip the balance against the 
relationist. 



7 Kant, Incongruent Counterparts, and Absolute Space 

In his 1 768 essay "Concerning the Ultimate Foundation of the Differentia
tion of Regions in Space," Kant used incongruent counterparts in an 
attempt to refute a Leibnizian-relationist account of space. It is hard to 
imagine that scholars could be more divided on how to understand Kant's 
argument and on how to assess its effectiveness (compare Alexander 1984/ 
1985; Broad 1978; Buroker 1981 ;  Earman 1971 ;  Gardner 1969; Lucas 1984; 
Nerlich 1973, 1976; Remnant 1963; Sklar 1 974; Van Cleve 1 987; Walker 
1978; and Wolff 1969). Two years later in 1 770 incongruent counterparts 
resurface in Kant's Inaugural Dissertation, this time as part of a proof 
that our knowledge of space is intuitive. They appear yet again in the 
Prolegomena (1 783) and in the Metaphysical Foundations of Natural 
Science (1 786) as part of the argument for transcendental idealism. Not 
surprisingly, scholars are also at odds on how to explain the shifts in the 
roles Kant wanted incongruent counterparts to play and on how to assess 
the importance of these matters for the development of his critical philos
ophy (compare Alexander 1984/1985; Allison 1983; Bennett 1970; Broad 
1978; Buchdahl 1969; Buroker 198 1 ;  Walker 1978; Winterbourne 1 982; and 
Wolff 1969). 

The present chapter is concerned primarily with Kant's 1 768 argument. 
It aims at both a better understanding of Kant's argument and a sharper 
formulation of the ways incongruent counterparts are and are not relevant 
to the controversy over absolute versus relational conceptions of space. 
A few remarks are offered on Kant's post- 1 768 use of incongruent 
counterparts. 

1 Kant's Argument against Relationism 

Although Kant is his usual cryptic self in "Concerning the Ultimate Foun
dation of the Differentiation of Regions in Space," an argument against 
Leibniz's relational conception of space is readily extractable. 

Kl "Let it be imagined that the first created thing were a human hand, 
then it must necessarily be either a right hand or a left hand." (1 768, p. 42) 

It follows, supposedly, that the relational theory is not adequate, since 

K2 on the relational theory the first created thing would be neither a right 
hand nor a left hand since the relation and situation of the parts of the 
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hand with respect to one another are exactly similar in the cases of right 
and left hands that are exact mirror images of one another. 

Before I turn to an evaluation of Kant's argument, it is worth remarking 
on how novel it was. As we have seen above, the standard absolutist attack 
on relationist thesis (R2) was to claim that motion is absolute rather than 
relational and that absolute motion must be understood as motion with 
respect to a space that is ontologically prior to bodies. Kant thought that 
he could arrive at the same result-that, as he puts it, "absolute space has 
its own reality independently of the existence of all matter" (1 768, p. 37)-by 
showing that the differences between right and left "are connected purely 
with absolute and original space" (p. 43). Kant was, of course, aware of the 
more standard objections to relationism; indeed, he specifically mentioned 
Leonhard Euler's attempt to show that the relational theory cannot properly 
ground Newton's first law of motion, 1 but he brushed it aside as having a 
merely a posteriori character. Kant's aim was to "place in the hands, not 
of engineers, as was the intention of Herr Euler, but in the hands of 
geometers themselves a convincing proof" of the reality of absolute space. 
(pp. 37-38). 

Let us turn now to Kant's argument itself. The relationist may wish to 
attack either (Kl )  or (K2). Consider first the attack on (Kl ). The relationist 
may urge that whether or nor a hand is right or left depends upon the 
relation of the hand to an appropriate reference body. Thus, contrary to 
Kant, for a hand standing alone there aren't two different actions of creative 
cause for God to choose between.2 If a reference body is introduced, then 
as the relationist will readily agree, different acts of creative cause are 
required for the hand in question to have different relations to the reference 
body. 

It is instructive to compare the situation here to that for continuous 
symmetry transformations. According to the absolutist, the operation of 
shifting all the bodies one mile to the east in the container space produces 
a different state of affairs, and different acts of creative cause are required 
for God, according to which of these situations He chooses to actualize. 
As we saw in chapter 6, Leibniz charged that this result violates the 
principle of sufficient reason, since God would have no good reason to 
actualize one rather than another of these absolutist states, and he pro
posed to rescue God from the situation of Buridan's ass by maintaining 
that what the absolutist is providing is different descriptions of the same 
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intrinsic (relational) state of affairs. Leibniz buttressed his resolution with 
the further claim that the states the absolutist counts as different are 
"indistinguishable"; at least they are not separated by any features that 
are <;>bservable in principle. Of course, if we introduce a reference body that 
is not subjected to the shift, then observable differences will arise, but then 
the relationist will also want to count the states as distinct, since in these 
states there will be differences in the relations of the original system of 
bodies with respect to the reference body. 

Many commentators assume that Kant was acquainted with the Leibniz
Clarke correspondence, and some, such as Robert Paul Wolff (1969), even 
assume that Kant read Leibniz's operation of "changing East to West" not 
as a continuous transformation (translation or rotation) but as mirror
image reflection. I know of no definitive evidence that Kant did read the 
Leibniz-Clarke correspondence, but it seems more likely than not, as Kant 
was intensely interested in Leibniz during this period and two German 
editions of the correspondence were available, both with forewords by 
Christian W olff. 3 However, the German translation does not naturally 
suggest mirror-image reflection; for instance, the relevant passage in the 
1 740 edition reads "durch eine Verwechselung des Aufgangs der Sonnen 
mit ihrem Niedergangs" (literally, "through an interchange ofthe rising and 
the setting of the sun"). 

Moreover, if Leibniz's argument did in fact suggest the problem of 
incongruent counterparts to Kant, it would be surprising if Kant did not 
consider that the relationist can transfer Leibniz's argument as applied to 
continuous symmetry transformations to the case of reflections. One can 
speculate that Kant would have thought that the parallelism breaks down, 
since he would have thought that in the case of hands the situations that 
the absolutist wants to account as different are perceptually distinguish
able: in one case the hand presents itself as a right hand, in the other as a 
left hand, and the difference, he may have thought, is not due to some 
difference in the relations of the hands to the observer. I will have more to 
say on this point in section 2 below. 

Another response Kant may have intended can be discerned from his 
characterization of incongruent counterparts. "As the surface limiting the 
bodily space of the one cannot serve as a limit for the other, twist and turn 
it how one will, this difference must, therefore, be such as rests on an inner 
principle" ( 1 768, p. 42; italics added). C. D. Broad interprets Kant as arguing 
that since the unlikeness between two incongruent counterparts depends 



1 40 Chapter 7 

upon an unlikeness between their bounding surfaces and since the surface 
of a body is something intrinsic to it, the difference between incongruent 
counterparts must rest on "a difference in their intrinsic spatial properties 
and not on a difference in their spatial relations to some third body" (Broad 
1 978, p. 38). But if this is Kant's line, then it is not at all apparent how 
introducing an absolute container space will help in distinguishing right 
from left. Suppose, in accordance with the absolute theory, that the spatial 
relations among the material parts of a body are parasitic upon the spatial 
relations of the points of absolute space occupied by the body, and consider 
two bodies, B and B', which are shaped like human hands and are exact 
mirror images of one another. Broad imagines that the set of space points 
occupied by B and the set of points occupied by B' might differ in some 
geometrical properties that are not manifested in the relations among the 
occupying particles of matter. But these would have to be mysterious 
properties indeed. If the spatial points occupied by B have the property of 
standing in a left-hand configuration, while those occupied by B' have the 
property of standing in a right-hand configuration, why can't the material 
points occupying the spatial points have corresponding properties? 

This brings us back to (K2). If the relations among the material parts of 
a hand are construed narrowly to involve only, say, distance, line, and 
angle, then it is certainly true that the relation and situation of the parts of 
the hand with respect to one another are exactly similar in the cases of 
mirror-image left and right hands. But this is equally true if space points 
are substituted for material points. The absolutist may hope to distinguish 
between right and left by construing 'relation and situation of the space 
points occupied by the hand' more broadly. But it is not at all clear why 
the relationist cannot entertain a similar hope by appealing to a broadened 
notion of relation and situation of the material points of the hand. 

It can be shown that, in general, being right- or left-handed cannot be 
purely a matter of the internal relations and situation of the material parts 
of a hand, no matter how broadly relation and situation are construed. 
Suppose, on the contrary, that it were. Then it follows that for any choice 
of closed path in space, it is always possible to arrange a consistent sequence 
of hands around the loop, where the consistency condition is that imme'di
ately adjacent hands have the same handedness. For at each location on 
the loop it is sufficient to construct a material hand whose parts instantiate 
the list of properties and relations that constitute being (say) right-handed. 
But nonorientable spaces show that such a consistent arrangement is not 
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ppssible for every closed loop. (Here it  is  necessary to introduce a little 
technical apparatus. By 'space' I mean (in absolutist terms) something 
having, at a minimum, a manifold structure. The manifold may carry 
additional structures, e.g., affine or metric, and while such additional struc
tures are needed for the discussion below, they are not needed for the 
definition of orientability. If such a space is n-dimensional, it is said to be 
orientable just in case there exists a continuous, non vanishing field of n-ads 
of linearly independent tangent vectors. Equivalently, choose any closed 
loop in the space and erect an n-ad of linearly independent vectors at some 
point on the loop. Then carry the n-ad around the loop by any means of 
transport that is continuous and keeps the vectors linearly independent. 
Then upon return to the starting point the transported n-ad should not 
differ from the original by the reflection of any axis.) 

Of course, the same argument suffices to show that being right- or 
left-handed cannot be purely a matter ofthe internal relations and situation 
of the points of absolute space occupied by the body.4 Nor does it help the 
absolutist to bring in relations that the points ofthe hand have to particular 
points of the external space surrounding the hand, since whatever relations 
a left hand has to those points are exactly mirrored by the relations its 
right-handed counterpart has to similarly situated external points. Per
haps, however, as Nerlich ( 1973, 1976) suggests, the absolutist can show 
that the difference between right and left must make reference to the 
relation the hand has not just to particular points of the external space but, 
to use Kant's phrase, to its relations to "space in general as a unity."s To 
see the point, suppose that space is equipped with a metric that conforms 
to the "axiom of free mobility" so that it is meaningful to speak of the rigid 
transport of a body.6 

DEFINITION An object 0 is an enantiomorph just in case there is a neigh bor
hood N of 0 such that N is large enough to admit reflections of 0 and that 
the result of every reflection of 0 in N differs from the result of every rigid 
motion of 0 in N.7 

The restriction to local reflections and local rigid motion is necessary if we 
want to be able to distinguish between handed and nonhanded objects 
regardless of whether space is globally orientable.8 On the other hand, no 
such restriction seems justified when it comes to defining incongruent 
counterparts. 
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DEFINITION Objects 0 and 0' are incongruent counterparts just in case their 
surfaces cannot be made to coincide by any rigid motions but can be by 
means of a combination of rigid motions and a reflection. 

The second definition does appeal to space as a unity in that it quantifies 
over all motions of a certain type in the space. It has as a consequence that 
in nonorientable spaces (where space as a unity has a kinked structure) 
there are no incongruent counterparts. But that is no surprise; indeed, this 
consequence is just a way of restating the essential element of the definition 
of a nonorientable space. 

What is the relevance of all of this to Kant's attempted refutation of the 
relational theory of space? Very little. Nerlich is incorrect in holding that 
Kant is right if we interpret him as saying that the enantiomorphism of a 
hand depends upon the relation between it and the absolute container 
space considered as a unity. For in the first place, my definition of 
enantiomorphism does not quantify over all mappings in the space. And 
in the second place, all that has been shown is that the absolutist has an 
account of enantiomorphism-something never in doubt-and not that 
the relationist cannot produce such an account. As for the notion of 
incongruent counterparts, its definition does appeal to space as a unity in 
Nerlich's sense. But again, Kant has not been shown to have, or to have 
anticipated, some insight into the right-left distinction that is beyond the 
ken of the relationist. Perhaps the point is that relationism is inadequate 
to deal with the global structure of space (orientability in particular and 
perhaps other global properties as well). If true, that would be a damning 
indictment of relationism, but it remains to be substantiated. And even if 
it could be substantiated, relationism would be condemned for reasons 
quite remote from those put forward in Kant's 1 768 essay. 

In closing this section I wish to emphasize the difficult position into 
which Kant maneuvered himself in the 1 768 essay. The difference between 
right and left must, he asserts, rest on an inner principle. The relationist is 
incapable of supplying this principle, since the "difference cannot . . .  be 
connected with the different way in which the parts of the body are con
nected with each other " (Kant 1 768, p. 42). But the absolutist can do no 
better in this regard, since the difference cannot be connected with the 
different way the points of absolute space occupied by the body are con
nected with each other. Rather than remarking on this obvious tension, 
Kant masks it by going on to assert that the "complete principle of deter-
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mining physical form" rests on the relation of the object to "general absolute 
space" (p. 41 ). But if Kant's second assertion is not to be incompatible with 
the first, it can only mean that the inner difference, for which neither the 
absolutist nor the relationist can account, reveals itself through the external 
relation of the hand to space in general as a unity. The case of the hand 
standing alone shows, Kant thinks, that the relationist is blocked from 
claiming that the difference is revealed through the relation of the hand to 
other objects. But at best, this only shows that of two inadequate theories, 
the relational theory is more inadequate. I will return to Kant's conundrum 
in section 4. But first I want to turn to a more systematic examination of 
the possibility of a relational account of the difference between right and 
left. 

2 A Relationist Account of the Distinction between Right 
and Left 

As explained in chapter 6, Leibniz's criticism of Newton in the Leibniz
Clarke correspondence suggests that from the relationist perspective, the 
proper way to construe absolutist talk about space is to read it as providing 
representations of relational models of reality. These representations involve 
the fictional entities of space points, and consequently, the representation 
relation is one-many, with many absolutist representations corresponding 
to the same relationist model. In investigating the implications of the 
difference between right and left for the absolutist-relationist controversy, 
I propose to explore the possibility of extending this version of relationism 
to cover the cases at issue. 

When asking whether the relationist can account for the difference 
between right and left, one finds it useful to distinguish between three items: 
(1) being an enantiomorph, (2) being incongruent counterparts, and (3) 
being right- or left-handed. In considering the possibility of Leibnizian 
accounts of ( 1 )  through (3), it is convenient to suppose that space is 
two-dimensional. 

Being an enantiomorph 

Consider the following relational description of an object. The object has 
a long shaft and two shorter shafts that are attached perpendicular to the 
same side of the long shaft. One of the cross shafts is attached to an end of 
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the long shaft, while the second cross shaft, which is shorter than the first, 
is attached to the long shaft at a point between the midpoint and the end to 
which the first cross shaft is attached. Many different absolutist representa
tions of this relationist description are possible, principally (a) and (b) of 
figure 7. 1 (where the points of the page represent points of absolute space) 
and also rigid rotations and translations of (a) and (b). In response to Kant's 
example of a hand standing alone, the relationist can say that Kant was 
partially correct; namely, a hand standing alone is a hand: it has a handed
ness. More specifically, the relational hand-in-itself possesses various ab
solute representations viz., (a) and (b) but on any such representation, the 
hand is an enantiomorph, as defined in section 1 above. The relationist 
strategy, then, is to show that for any given object, there is a relationist 
description that will guarantee that any allowed absolutist representation 
will fulfill, or fail to fulfill, as the case may be, the absolutist definition of 
enantiomorph.9 

Being incongruent counterparts 

Now consider the following relational description. There are two objects, 
one red, the other green. Both have the characteristics described in the 
previous subsection. The lengths of the corresponding long and cross shafts 
in the two objects are the same. The objects are so situated with respect to 
one another that the free ends of the longer of the cross shafts are almost 
touching, their long shafts are parallel, and the corresponding cross shafts 
each lie on a line. Absolute representations consist of (c) and (d) of figure 
7.2 and rigid rotations and translations of (c) and (d). Again the relational 
description assures that on any absolute representation, the red and green 
objects are incongruent counterparts, as defined in section 1 .  At least, this 
will be so if the objects are embedded in an orientable space. The question 
arises as to whether the orientability of the embedding space can be 
indicated in relational terms. It might seem that the answer is an obvious 
yes in the present case. For the only way a space can fail to be orientable 
is for it to be nonsimply connected, and such a multiple connectedness 
would necessarily involve a multiple relatedness of the objects. Such a 
multiplicity is absent in the above relational description, which we may 
take to be a complete catalog of the relations between the red and green 
objects. The hitch is that multiply connected spaces need not be non orient
able, so the absence of multiple relatedness in a relational model is a 
sufficient but not a necessary signal that the embedding space should be 
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orientable. I will not speculate here on how the relationist might respond 
to this difficulty. I O 

Being right- or left-handed 

Here the relationist can repeat the suggestion made in section 1 .  The 
difference between right and left in the sense of Which is which? requires 
the choice of a reference body (say, the red one in figure 7.2) and the 
stipulation that it is (say) right-handed. Then being right- or left-handed is 
just a matter of bearing the appropriate relations to the reference standard. 

A seeming difficulty with the above version of relationism (already hinted 
at in section 1) is that a minimal condition for counting (a)-(b) and (c)-(d) 
as equivalent descriptions of the same reality is that they be observationally 
indistinguishable . But in one sense they are patently distinguishable: they 
look different. The relationist will respond that talk of appearances presup
poses an observer and that the introduction of an observer involves several 
distinct cases. If the observer is nonenantiomorphic, (a) and (b) of figure 7. 1 
are replaced by (a) and (b) of figure 7.3. If the observer is enantiomorphic, 
the replacements can be either (at) and (bt) or (a*) and (b* ). Similar 
replacements apply to (c) and (d) of figure 7.2. In the case of (at) and (bt) 
the introduction of the observer breaks the relational equivalence of (a) and 
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Perceptions of right and left 

(b), and so the relationist can entertain the hypothesis that the phenomenal 
contents of the visual experiences of the (at) and (bt) observers are different. 
Perhaps Kant would want to claim that the phenomenal contents of the 
experiences of the (d) and (6) and the (a*) and (b*) observers are or can be 
different, a claim the relationist must deny, since (d)-(b) and (a*)-(b*) are 
relationally equivalent. 

Walker might seem to be endorsing the Kantian claim when he writes, 
"A left-handed and a right-handed glove look different regardless of their 
relations to other things, and a left-handed and a right-handed universe 
would look different too" ( 1 978, p. 47). Nor, according to Walker, is the 
difference in appearances to be accounted for in terms of the relations of 
the gloves to the asymmetrical body of the observer, for "the difference 
between the gloves is immediately obvious without reference to my body 
or to anything else; I should perceive it in just the same way if my body 
were itself symmetrical about the plane that forms the axis of symmetry 
between the gloves" (p. 47). But what the opponent of relationism must 
claim in the case of (d) and (6) is that the mirror-image nonenantiomorphic 
observers, who have the receptor sites of their sense organs left-right 
reversed, nevertheless have different visual experiences. Even on the ab
solutist's own terms, the case for this claim is weak. To support the Kantian 
claim, the absolutist must maintain that spatial perceptions are a function 
not only of the spatial relations of observer to object but also of the relation 
of the observer to a preferred orientation of the space containing the 
object-observer system. As a hypothesis about perception this seems far
fetched. And postulating the preferred orientation seems ad hoc. In reject
ing the relationist notion that all motion is the relative motion of bodies, 
the absolutist can point to the need to postulate a preferred family of 
reference frames, the inertial frames, in order to achieve simple but predic
tively accurate laws of motion. By contrast, nothing in the fundamental 



Kant, Incongruent Counterparts, and Absolute Space 147 

phenomena of physics seems to call for a preferred orientation of space. At 
least this was so until quite recently, as will be discussed below in section 
3. But the laws in question concern exotic weak interactions of elementary 
particles, interactions that are presumably irrelevent to the human percep
tual process. 

I conclude that on the version of relationism I have proposed, the 
introduction of enantiomorphs and incongruent conterparts does not by 
itself alter the dialectics of the absolute-relational debate. Nevertheless, it 
might be thought that although what I called the Kantian claim does not 
help to establish that objects are literally embedded in absolute space, it 
suggests that objects as they present themselves to us in perceptions are 
spatial in a sense that outstrips the relational account, and thus, the claim 
may be useful in helping to explain how the mature Kant came to under
stand the implications of incongruent counterparts. Unfortunately, as will 
be discussed in section 4, it is no help whatever in this regard, for after 1 768 
Kant used incongruent counterparts not as an objection to the Leibnizian 
view per se but rather as a reason to reject both the Leibnizian and the 
Newtonian views. 

3 Parity Nonconservation 

In the 1768 essay Kant mentions various contingent left-right asymmetries, 
viz., that most hops wind round their poles from left to right, while most 
beans twist in the opposite direction, but nothing in his argument against 
relationism relies on any nonessential properties of incongruent counter
parts. While this feature of Kant's argument promises to make it powerful, 
it may in fact account for its ineffectualness. I now propose to ask whether 
adding contingent but lawlike features will help. 

The discussion that follows is conducted under the assumption that 
parity-nonconservation experiments in elementary particle physics indi
cate that mirror image reflection fails to be a symmetry of some of the 
fundamental laws of physicsY The experiment of Crawford et al. ( 1 957) 
tracks first the decay of a negative pi meson (n- ) and a proton into a neutral 
hyperon (A 0 ) and neutral K meson (KO ), and then the subsequent decay of 
the hyperon into another pi meson and a proton. The momentum vectors 
for the initial decay process lie in a plane, while the momentum vector for 
the pi meson in the subsequent decay is oblique to this plane. The possible 
results, (e) and (f), are pictured in figure 7.4 (protons are not shown). 1 2 If 
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Parity nonconservation in A decay 

parity is conserved, the mirror-image processes (e) and (f) should have the 
same probability, but in fact (e) dominates. 1 3 Nature's preference for (e) can 
then be used almost surely to define right-handedness: 14 perform a large 
number of repetitions of the decay experiment to identify the dominant 
decay mode, and then Pn , PA, and Pn , taken in that order, define a me decay 
right-handed triad. 

The failure of mirror-image reflection to be a symmetry of laws of nature 
is an embarrassment for the relationist account sketched in section 2, for 
as it stands, that account does not have the analytical resources for express
ing the law like left-right asymmetry for the analogue of Kant's hand 
standing alone. If we may put some twentieth-century words into Kant's 
mouth, let it be imagined that the first created process is a 11:- + p -+  
N + KO, N -+ 11:- + P decay. The absolutist has no problem in writing 
laws in which (e) is more probable than (f), but the relationist of section 2 
certainly does, since for him (e) and (f) are supposed to be merely different 
modes of presentation of the same relational model. Evidently, to accom
modate the new physics, relational models must be more variegated than 
initially thought. 

The variegation of relationist models of particle-decay processes can 
proceed by the addition of intrinsic properties R * and L *. The relationist 
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may not be able to describe R* and L * in traditional relationist terms, but 
he can give a functional specification of these properties in terms of their 
roles in the lawlike dispositions that ground the nonconservation of parity. 
The relationist can say that in the relevent experimental set up, R* out
comes have a greater propensity to occur than L * outcomes and that these 
propensities will almost surely be reflected in the long-run relative fre
quencies of multiple repetitions of the decay experiment. 

There is precedent for introducing intrinsic monadic properties into 
relational models, Sklar's treatment of absolute acceleration being a prime 
example (see section 6.9). That example turned out to involve a sleight of 
hand, and to remove the suspicion that we are being treated to a similar 
performance with R* and L*, the relationist must tell us more about these 
properties. The relationist has to tell us enough about these properties to 
convince us that his account deserves to be called relationist in the minimal 
sense that R* and L* are not merely devices for naming absolutist states. 
At the same time, however, there has to be a close-enough relation between 
R* and L * on the one hand and absolutist states on the other to establish 
an explanatory connection between the differential propensities for R* and 
L * and the observed asymmetry between (e) and (f). The problem here has 
two aspects: the first and most fundamental is how and why R* and L* 
connect with (e) and (f) at all; the second is why R* is manifested as (e) 
and L * is manifested as (f) and not the other way round. The relationist 
may refuse to accept the second challenge and claim that there is no truth 
to the matter as to whether (e) or (f) is the correct representation of the 
dominant R* decay mode. In this connection it is interesting to note that 
Lee and Yang (1 956) speculated that there are actually two species of 
elementary particles 7tH , A�, K� and 7ti , A�, KL with the corresponding 
particles having the same masses, charges, and spins. Parity conservation 
would be maintained if the two species transform into one another under 
mirror-image reflection and if they exhibit the opposite asymmetries in 
their decay modes. The apparent violation of parity conservation would 
be due to the fact that we inhabit a region where the R species is pre
dominant. Although there is no experimental evidence to support this 
speculation, the two species do exist for the relationist as different repre
sentations or pictures of the absolutist models. That what we actually see 
conforms to one rather than to another of these pictures might be the basis 
for an objection to relationism, but it is the same objection already con
sidered in section 2. 
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Now suppose for sake of argument that some suitable connection has 
been established between R* and L* on the one hand and (e) and (f) on 
the other. It might seem then that parity nonconservation implies that 
being right- or left-handed can be explicated in terms of the internal proper
ties of a system, which contradicts the construction of section 1 involving 
nonorientable spaces. The conflict is only apparent. If, as I have assumed, 
parity nonconservation entails a violation of left-right symmetry in the 
basic laws of nature and if laws are universal in the sense that they hold 
good in all regions of space and time, 1 5 then it follows that actual space is 
in fact orientable. 1 6 In a hypothetical nonorientable space either the laws 
exhibit no left-right asymmetry, or else there are no universal laws. The 
absolutist may still wish to object that it remains mysterious why in 
nonorientable spaces the properties R* and L* either are not possessed or 
are possessed but are not manifested as right-left asymmetries. Whether or 
not the relationist can produce a satisfying reply depends upon two matters 
left hanging above: ( 1 )  the relationist's explanation of the connection be
tween R *, L * and spatial representations and (2) the ability of the relationist 
to account for orientability properties of space. 

4 Incongruent Counterparts and the Intuitive Nature 
of Space 

The most conservative interpretation of the shifting roles Kant assigned to 
incongruent counterparts would locate the cause of the shift in the expan
sion of Kant's possibility set. 1 7 In 1 768 the possibilities Kant considered 
included only Newtonian substantival space and Leibnizian relational 
space; after 1 768 the possibility set is enlarged to include the view that space 
and time belong to "a form of intuition and therefore to the subjective 
constitution of our minds, apart from which they could not be ascribed to 
anything whatever" (Kant 1 78 1 ,  A23/B39). On the conservative interpreta
tion, Kant used incongruent counterparts both before and after 1 768 to 
show that space is nonrelational. Thus, to be consistent with the 1768 essay, 
Kant must have developed after 1 768 an independent reason for rejecting 
the Newtonian view. Such a reason is to be found, for example, in Kant's 
Inaugural Dissertation, where the Newtonian view is denigrated this way: 
"The [Newtonian] empty figment of reason, since it imagines an infinity 
of real relations without any things which are so related, pertains to the 
world of fable" (Kant 1 770, p. 62). 
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One problem with this conservative reading i s  that after 1 768 Kant never 
used incongruent counterparts as an argument against Leibnizian rela
tionism per se. In the Inaugural Dissertation, Kant's complaint against 
Leibniz and his followers is that "they dash down geometry from the 
supreme height of certainty, reducing it to the rank of those sciences whose 
principles are empirical. For if all properties of space are borrowed only 
from external relations through experience, geometrical axioms do not 
possess universality, but only that comparative universality which is ac
quired through induction" (Kant 1 770, p. 62). 1 8 In both the Inaugural 
Dissertation and the Prolegomena, incongruent counterparts are used as an 
argument against relational space. Yet it is not an argument against rela
tional space versus absolute space (as in 1 768) but an argument against any 
conception of space, relational or absolute, that would make space some
thing objective. Another difficulty is that after 1 768 Kant used incongruent 
counterparts to argue directly that space is something intuited and not 
merely conceived (the Inaugural Dissertation) and that space is not a quality 
inherent in things in themselves (the Prolegomena). The argument does not 
have the indirect pattern required by the conservative reading. 

More important, the conservative reading neglects the real possibility 
that incongruent counterparts were not merely recycled to buttress Kant's 
mature view of space but rather played a direct role in generating this view. 
Several commentators have remarked that the Inaugural Dissertation is 
foreshadowed in the penultimate paragraph of the 1 768 essay, where Kant 
says that "absolute space is not an object of external sensations, but rather 
a fundamental concept, which makes all these sensations possible in the 
first place" (p. 43). What needs to be emphasized more strongly is the 
impetus provided by the tension in the 1 768 argument (see section 1 above). 
Kant could hardly have failed to be aware, if only unconsciously, that 
Newtonian absolute space squared no better than Leibnizian relational 
space with his claim that the difference between right and left rests on an 
inner principle. The resolution called for either an abandonment of this 
claim or else the exhibition of a tertium quid to Newton and Leibniz. But 
Kant was unwilling to abandon the claim, and if space is regarded as the 
objective structure of things in themselves, there seems to be no third 
alternative. Thus, the 1768 essay contained both the problem and the germ 
of a solution. The notion that space is something that "makes all of these 
sensations possible" became Kant's doctrine that space is a form of outer 
intuition, allowing an escape from the corner into which he had painted 
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himself in the 1768 essay and allowing incongruent counterparts to be seen, 
as they were from 1770 onward, as an objection to both the absolute and 
relational views insofar as they deny that space belongs to the subjective 
constitution of the mind. 

This reading of Kant makes more natural the otherwise startling and 
abrupt shift that occurs between 1768 and 1 770. Unfortunately, confirma
tion is to be found not so much in the Inaugural Dissertation as the 
Prolegomena. In the latter, Kant repeated his original claim that the dif
ferences between right and left are "internal differences.,, 1 9 But instead of 
using this claim as a refutation of relationism, Kant combined it with the 
further claim that the differences are ones that "our understanding cannot 
show to be internal," and presumably this is so whether the understanding 
uses the concepts of Leibnizian or Newtonian theory. The upshot is that 
"these objects are not representations of things as they are in themselves, 
and as some pure understanding would cognize them, but sensuous intui
tions, that is, appearances whose possibility rests upon the relation of 
certain things unknown in themselves to something else, viz., to our 
sensibility" (Kant 1 783, p. 30). Thus, incongruent counterparts are being 
used not to adjudicate between relational and absolute space, but to reject 
both insofar as they are supposed to apply to things in themselves. Sub
stituting space as the form of external intuition for Newtonian absolute 
space allowed Kant to retain the 1 768 idea that "region is related to space 
in general as a unity, of which each extension must be regarded as a part." 
Thus, in the Prolegomena we find: "Space is the form of the external 
intuition of this sensibility, and the internal determination of any space is 
possible only by the determination of its external relation to the whole of 
space, of which it is a part (in other words, by its relation to external sense)" 
(Kant 1 783, p. 30).20 

If this less conservative reading of Kant's philosophical development is 
accurate and if the analysis of the difference between right and left given in 
the preceding sections is correct, we have another example of a major 
philosophical system that is rooted in a mare's nest of confusions. 

5 Conclusion 

Whatever the correct account of the role of incongruent counterparts in 
Kant's philosophical development, it is hard to find in his writings the 
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suggestion for an even half-way-plausible argument to the effect that the 
very existence of incongruent counterparts establishes the reality of absolute 
space. Adding the consideration of parity nonconservation makes an inter
esting but not decisive difference. If he is willing to add enough epicycles 
to his theory, the relationist can deflect any objection launched by the 
absolutist. The need to add epicycles is not necessarily an indication of 
falsity, but the accumulation of enough epicycles may cause one to lose 
interest in the theory.2 1 



U Modern Treatments of Substantivalism and Relationism 

Chapters 6 and 7 reviewed two arguments in favor of substantivalism: the 
argument from absolute motion and the argument from incongruent coun
terparts. The first argument contends that relationist thesis (RI)  fails and 
that this failure carries with it a failure of (R2). The second claims that a 
proper understanding of the right-left distinction entails that (R2) is false. 
In this chapter I shall review a third argument for substantivalism, one 
championed by Hartry Field ( 1980, 1 985). Although akin to the first argu
ment, it is independent in that it purports to show that even if the structure 
of space-time were no stronger than the relationist would have it, (R2) fails, 
because it cannot adequately provide for the field theory of modern physics. 

A possible counter to all these arguments is the representationalist ploy 
explored in chapters 6 and 7. In sections 5 and 6, I shall review some recent 
technical elaborations of this ploy. It has been claimed by some (e.g., 
Friedman 1983) that these elaborations clarify the issues and by others (e.g., 
Mundy 1983) that they show how relationism is a viable and even correct 
view. I shall register some reasons for being skeptical about these claims. 
What I do find worth exploring, however, is the possibility that if exploited 
along the lines suggested by Sklar (see section 6.9), the representationalist 
ploy may lead to a tertium quid lying between the traditional relational and 
absolute conceptions of space and time. 

1 Field's View 

In Science without Numbers Hartry Field offers two reasons for a substan
tivalist interpretation of space-time. The first is that it supports his nominal
ist goals: being a substantivalist with respect to space-time allows one to 
quantify over space-time points with a good nominalist conscience, and 
such quantification dovetails with Field's program of showing how to do 
science without resort to the platonic entities nominalists find objectiona
ble. I take no stand for or against nominalism here and thus shall ignore 
Field's first motivation. 

Field's second reason is both less self-serving and more profound. 

I don't think that any relationist program, of either a reductive or an eliminative 
sort, has ever been satisfactorily carried out. . . .  1 The problem for relationism is 
especially acute in the context of theories that take the notion of field seriously, e.g., 
classical electromagnetic theory. From the platonistic point of view, a field is usually 
described as an assignment of some property, or some number or vector or tensor, 
to each point of space-time; obviously this assumes that there are space-time points, 
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so a relationist is going to have to either avoid postulating fields (a hard road to 
take in modern physics, I believe) or else come up with some very different way of 
describing them. The only alternative way of describing fields that I know is the 
one I use later in the monograph . . . .  It does without the properties or numbers or 
vectors or tensors, but it does not do without space-time points. (Field 1980, p. 35) 

Field's remarks here may be construed as endorsing what I have called 
manifold substantivalism. Departing slightly from what he says about 
classical electromagnetism, I would rephrase his point as follows. When 
relativity theory banished the ether, the space-time manifold M began to 
function as a kind of dematerialized ether needed to support the fields. In 
the nineteenth century the electromagnetic field was construed as the state 
of a material medium, the luminiferous ether; in postrelativity theory it 
seems that the electromagnetic field, and indeed all physical fields, must be 
construed as states of M. In a modern, pure field-theoretic physics, M 
functions as the basic substance, that is, the basic object of predication. 
These ideas will be explored in more detail in section 3. But first I want to 
examine the folklore wisdom that relativity theory requires the presence of 
fields because it is inconsistent with particles interacting at a distance. 

2 Relativity and Fields 

Is relativity theory inconsistent with the view that particles can act on one 
another at a distance without mediating fields? The question is partly 
terminological; it turns on what is counted as part of the theory of relativity 
and what is counted as a field. But it also engages substantive issues about 
the nature of scientific theorizing and the form and content of physical 
theories. 

STR is not a theory in the usual sense but is better regarded as a second
level theory, or a theory of theories that constrains first-level theories. The 
main constraint is Lorentz (or more properly, Poincare) invariance. In 
terms of the structure of space-time models, the demand is that the theory 
be formulated in the arena of Minkowski space-time, the understanding 
being that the theory not smuggle in any additional structure for space
time, such as distinguished reference frames. As the remarks in the appendix 
to chapter 2 were supposed to indicate, it is a delicate and difficult task to 
separate the object fields into those that characterize the space-time struc
ture and those that characterize its physical contents. But the vagaries of 
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this general problem need not detain us here, since there are enough clear 
cases for our purposes. 

If Lorentz invariance were the only constraint that STR imposes, then 
it is clear that STR per se does not demand the mediation of fields in particle 
interactions. The physics literature contains a large number of nontrivial, 
Lorentz-invariant, pure particle theories; the interparticle interactions are 
variously conceived as taking place along the retarded and/or advanced 
light cones (as in the Wheeler-Feynman theory), along spacelike intervals 
(as in the van Dam and Wigner theories), or instantaneously at a distance 
(as in the theories of Currie and Hill). 2 

It remains open, of course, that Lorentz invariance and some other 
requirements that one would expect an adequate physical theory to satisfy 
together entail the need for fields as mediating agents. The additional 
requirements that come most readily to mind are conservation principles. 
In Newtonian theories, energy might be attributed to a field postulated 
to mediate the particle interactions, but it is otiose to attribute momentum 
to the field if, as is usually the case, the total momentum of the particles is 
conserved. Relativity theory turns the tables, since in relativity theory it is 
the combination of energy-momentum that is conserved, if at all, and if 
influences propagate with a finite speed, it would seem that the energy
momentum of particles cannot be conserved without the help of a field that 
carries some of it. This intuition is made precise in a simple and ingenious 
theorem due to van Dam and Wigner ( 1 966). This theorem shows that no 
nontrivial, pure particle theory can satisfy both Lorentz invariance and a 
conservation law for energy-momentum of the form 

pi = constant for i = 1 ,  2, 3, 4, (8. 1 )  

where pi i s  the total linear energy-momentum of the system of particles. 
More precisely, if pi = L� p; (the sum being taken over the individual 
particles labeled by k) is independent of t in any Lorentz frame (x, t), the 
particles do not collide, and asymptotically (as the proper time tk -+ ±oo) 
the particle orbits are straight lines, then for N = 2 ,  3 ,  or  4 the orbits are 
straight lines for all time. 

Van Dam and Wigner show that in their theory of action-at-a-distance 
particle mechanics the conservation law can be restored in the form 

pi + Vi = constant, (8.2) 

where Vi is the interaction momentum of the system. But since Vi involves 
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an integral over the actual orbits of the particles, (8.2) is seen by some 
commentators as a mathematical trick, for the integration involved is 
"precisely what we would regard as field momentum in a field theory (the 
integration over history arises from writing the field in terms of the past 
motions of all the particles that contributed to the field)" (Ohanian 1976, 
p. 80). 

In response the particle theorist may say that we simply have to live with 
the fact that conservation laws in the familiar form cannot hold for each 
instant of time but only asymptotically for particles that are widely sepa
rated both initially and finally, in which case we may be able to prove that 
incoming energy-momentum equals outgoing energy-momentum. Second, 
while the introduction of fields as storehouses of energy and momentum 
may facilitate the maintenance of cherished forms of conservation princi
ples, it may also give rise to other problems. For instance, infinities can 
arise from particles conceived as creating fields, which in turn act back on 
the particles. The infinities can sometimes be suppressed by means of clever 
subtraction procedures, but these procedures are no less artificial than the 
introduction of the interaction momentum in (8.2). It was precisely the 
avoidance of such infinities that motivated some of the action-at-a-distance 
formulations of classical relativistic electrodynamics. At least those theories 
have the virtue of consistency. 

Nevertheless, it is hard to shake the feeling that in the context of STR, 
pure particle theories are artificial, and that various features of such theories 
indicate that fields are struggling to emerge from the formalism. For 
instance, in the Currie-Hill theories of instantaneous action at a distance 
it is found that in multi particle systems the total force acting on a particle 
is not the sum of two-body forces, and the presence of multibody forces 
can be read as the vestige of the fields that were suppressed in the pure 
particle description (see Hill 1 967a). Furthermore, in these theories it is 
apparently inconsistent to treat the measurement of particle position, say, 
as a purely local interaction between the particle and the measuring ap
paratus. Hill ( 1967b) proposed to restore consistency by postulating a 
nonlocal interaction between the measuring apparatus and the other parti
cles. The postulate remains a bare postulate. 

More straightforward considerations of empirical adequacy can be 
brought to bear against certain action-at-a-distance theories. Poincare
type gravitational theories, where the particles interact along retarded light 
cones, can be rigged to yield a correct value for the advance of the perihelion 
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of Mercury. But there is no natural way to use such theories to explain 
both the red shift and the bending of light (see Whitrow and Morduch 
1965). 

In sum, there are a variety of reasons to be uneasy about special-relativis
tic theories that attempt to do without fields. The reasons are a mixture 
of considerations of empirical adequacy, the form of conservation laws, 
naturalness, etc. These considerations may be persuasive to one degree or 
another, but they do not add up to an irrefutable proof that STR demands 
that interactions be mediated by fields. But then it may be a mistake to 
look for proofs as opposed to persuasions on such questions. When the 
persuasions of relativistic quantum field theory and the general-relativistic 
theory of gravitation are added, the case becomes very persuasive indeed. 

3 Fields and Manifold Substantivalism 

It is useful to flesh out Field's conception of space-time as a dematerialized 
ether. To do this, we need to review the standard definition of an n
dimensional manifold. 3 Intuitively, M is made up by piecing together in a 
smooth way open sets of IRn. To make this precise, we specify that M 
consists of a set of points together with an atlas of charts {Ua, I/Ia }, where 
the Ua are subsets and the I/Ia are one-to-one mappings from the corre
sponding Ua to open sets of lRn such that ( 1 )  Ua Ua = M, and (2) if Ua n Up :f: 
0, then I/Ia 0 I/Iil : I/Ip(Ua n Up) -+ l/Ia(Ua n Up) is a smooth map of an open 
set of IRn to an open set of IRn. Another atlas is said to be compatible with 
the given one if their union is again an atlas. We assume that the atlas we 
are working with is complete in that it contains all of the atlases compatible 
with the given one. The topology of M is then fixed by stating that the open 
sets of M are unions of the Ua belonging to the complete atlas. Alternatively, 
we could have started with a topological space and required that the I/Ia 
are homomorphisms. Physicists refer to the I/Ia as coordinate systems and 
use the notation X i (i.e., l/Ia(P) = (xl (p), x2 (p), . . .  , xn(p)) for P E M), a con
vention already adopted in the chapters above. In space-time theories, M 
is usually assumed to be Hausdorff, paracompact, and without boundary, 
an assumption that will be in force in what follows unless otherwise 
specified.4 

A geometric object field on M is a correspondence F :  (p, X i) -+ (Fl , 
F2 , • • •  , FN) E IRN that assigns to each p E M and each coordinate system Xi 

about p an N-tuple of real numbers, called the coordinate components at 
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p of F in the coordinate system X i, and that satisfies the condition that the 
new components F� given by F : (p, X'i) -+ (F� , F� , . . .  , F;") in the new co
ordinates X'i are determined as functions of the old components FJ and the 
coordinate transformation X'k = f(Xi). 5  Although this definition appeals 
to coordinate systems and transformation of components under coordinate 
changes, it is designed to pick out a set of objects that deserve to be called 
'invariants' in the sense that the coordinate components of the object are 
aptly named: they are components of an intrinsic object that lies behind 
all of the many different coordinate representations. The most familiar 
geometric objects-vectors and tensors-are linear and thus can be given 
direct, coordinate-free characterizations. For example, a tangent vector V 
at P E M is a derivation of the smooth real valued functions fj on M, i.e., 
V is a map from fj to IR such that ( 1 )  V(A.f + Jlg) = A. V(f) + Jl V(g) for all 
A., Jl E IR and all f, 9 E fj, and (2) V(fg) = f(p) V(g) + g(p) V(f). From this 
definition it follows that the transformation rule for vector components is 
Vii = Li Jj iJx'i/iJxi, which satisfies the requirements for a geometric object. 
A tangent vector field is an assignment of a tangent vector � at each point 
p E M; the field is smooth iffor any f E fj, V(f) is smooth. Various attempts 
have been made in the mathematics literature to give a coordinate-free 
characterization of geometric objects in general.6 These attempts are too 
technical to be reviewed here. 

It is clear that the standard characterization of fields uses the full mani
fold structure: the points, the topology, and the differentiable structure. The 
antisubstantivalist can, of course, attempt to dispense with some or all of 
this apparatus in favor of another means of specifying a relationally pure 
state of affairs and view all the above as merely giving representations of 
the underlying relational state in much the same way that the coordinate 
components of a vector are merely representations of an intrinsic object. 
While not prejudging the success of such an endeavor, I will say that the 
burden of proof rests with the antisubstantivalist. Before turning to a 
consideration of how this burden might be discharged, I want to emphasize 
how standard GTR depends upon M to support the metric and other fields. 

4 The First Hole Construction 

That M does indeed function as a kind of dematerialized ether in GTR can 
be brought out by means of what I shall call the holing operation. Just as 
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Figure 8.1 
First hole construction 

we can imagine that God could create a hole in the material ether, so we 
can imagine that He can create a hole in M. Let M, g be a relativistic 
space-time, and let C be a closed subset of M.7 Surgically remove C from 
M to form M- = M - C (figure 8 . 1 ), and then restrict g to M-. Note that 
if .A = <M, g, T) satisfies Einstein's field equations, then so does the holed 
out .A- = <M- , g IM-' TIM- )' And more generally, if the models ofa theory 
are of the form <M, 01 , O2 , , , , ), where the 0; are geometric object fields on 
M and the laws of the theory are in the form of local partial differential 
equations for the 0;, then <M-, 01 IM-' 02 IM- ' ' ' ' ) will be dynamically 
possible whenever the original model was. 

The substantivalist will say that in the situation specified by the holed 
model .A- , no events occur or can occur in C, or more properly, since the 
points in C no longer exist after the holing operation, he will say that no 
events occur or can occur beyond certain limits taken in M- . The relationist 
can tolerate some such talk if the missing points are singular-a point of 
view already codified in the very definition of a relativistic space-time M, 
g requiring that g be defined on all of M. Thus, if C corresponded to a 
curvature singularity in the sense that (say) the scalar curvature "blows up" 
along suitable curves approaching C, making it impossible to continuously 
extend g IM-, there would be a perfectly acceptable explanation for the hole 
in the fabric of events. But the relationist cannot tolerate talk about holes 
in the fabric of events if the missing points are regular, for to do so is 
tantamount to admitting the essence of space-time substantivalism: the 
notion that events are happenings at space-time points construed as onto
logically prior to the happenings. 

The relationist is thus faced with a dual challenge: first, he must provide 
a criterion to detect what the substantivalist would call missing regular 
points, and second, he must provide a non-question-begging reason for 
excluding such models from consideration.8 At first glance the first part of 
the challenge does not appear to be too daunting. Let us say that M, g has 
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A space-time free of D-holes but not S-holes 
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an S-hole ('S'  for 'surgical') just in  case there i s  a space-time M', g ' and an 
isometric embedding r/J :  M --+ M' such that r/J(M) is a proper subset of M'. 
This definition has been constructed to detect when the space-time in 
question has been subjected to a holing operation. A justification for 
ignoring space-times that are not S-hole free can be given in two steps. 
First, it can be shown that any space-time can be extended to a space-time 
that is maximal or S-hole free. Second, one can argue on PSR grounds that 
there is no good reason for the Creative Force to stop building until the 
maximal extent is reached, and on grounds of plenitude that the maximal 
model is better than a truncated submodel. 

Even if one resonates to this Leibnizian line, there is more to the tune. 
For M, 9 may be S-hole free and yet be holey in other ways. If S e  M is a 
spacelike hypersurface, define the domain of dependence D(S) of S to be 
the set of all p E M such that every smooth causal curve that meets p also 
meets S. Intuitively, p's being in D(S) is a necessary condition for the state 
at S to uniquely determine the state at p, since if p £t D(S), there are possible 
causal influences that can affect events at p without registering on S. Say 
that M, 9 has a D-hole ('D' for 'determinism') just in case there is a spacelike 
S c M, a space-time M', g ', and an isometric embedding r/J : D(S) --+ M' such 
that r/J(D(S» is a proper subset of D(r/J(S».9 To rule out space-times that 
suffer from D-holes, one could invoke the causal version of the PSR and 
point out that a D-hole implies a spontaneous breakdown of a deterministic 
evolution for which there is no good reason. 

Being S-hole free and D-hole free are independent requirements. The 
space-time in figure 8.2, created from two-dimensional Minkowski space
time by deleting all the points outside of D(S), is D-hole free but not S-hole 
free. The result of removing a spacelike two-plane from four-dimensional 
Minkowski space-time and then taking the universal covering space is 
S-hole free but not D-hole free (see Clarke 1 976). Moreover, the motivations 
for requiring S- and D-hole freeness can be at odds if the space-time 
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Figure 8.3 
A globally inextendible but locally extendible space-time 
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contains latent D-holes. M, g may fail to be maximal, so by the motivation 
for S-hole freeness the Creative Force should go on extending M, g, but 
any such extension may turn up D-holes. Clarke ( 1976) produced an 
example of a D-hole-free space-time that cannot be extended to a D-hole
free maximal space-time. 

Another approach to hole freeness was suggested by Hawking and Ellis 
( 1973). Let us say that M, g has an L-hole ('L' for local) just in case there 
is an open U c M with noncompact closure in M, a space-time M', g ', and 
an isometric embedding r/J : U -+ M' such that r/J(U) has compact closure in 
M'. Beem ( 1980) showed that this definition is unsatisfactory in that stan
dard Minkowski space-time is not L-hole free. A suitable modification of 
the definition can be made with the help of the concept of generalized affine 
length discussed by Hawking and Ellis ( 1 973, p. 259). Let us instead say 
that M, g has an L-hole just in case there is an inextendible half-curve Y(A), 
A E [0, r), r > 0, of finite generalized affine length, a neighborhood U of 
y( [O, r)), a space-time M', g ' and an isometric embedding r/J : U -+ M' such 
that the image curve r/J(Y(A)) can be continuously extended through A = r. 

L-hole freeness entails both S- and D-hole freeness, but the converse does 
not hold, as is illustrated by an example due to Robert Geroch (private 
communication; see Ellis and Schmidt 1977 for other examples). Start with 
two-dimensional Minkowski space-time, and introduce a new metric g = 
011, where 11 is the Minkowski metric and 0 is a conformal factor. Choose 
o to be unity on region R3 (see figure 8.3), and on the shaded regions Rl 
and R2 design 0 to blow up rapidly as the null lines Ll and L2 are 
approached from below. The resulting space-time M*, g, where M* consists 
of the union of the regions R1 , R2 , and R3 , has no S- or D-holes, but it is 
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locally extendible. In cases such as these the relationist's appeals to princi
ples of sufficient reason and plenitude are unavailing, but two strategies are 
still open to him. He can try to show that such cases can be ignored because 
they do not arise in physically significant situations. Failing that, he can 
work through the details of the case to show why the missing regular points, 
as detected by the existence of a local extension, cannot simply be added 
on to the original space-time to make a larger space-time, and he can then 
try to translate this reasoning into his vernacular to produce a relationist 
explanation of the impossibility in question. The prospects of success 
cannot be assessed until we know more about how the relationist proposes 
to make good on what is up to now only an empty boast of 'I can do all 
you can do, only better'. 

The curious blend of precise mathematical questions and fuzzy and wild 
metaphysics encountered in this section is not untypical of the absolute
relational controversy. 

5 Friedman on Relationism: Model-Submodel versus Model 
Embedding 

Chapters 2 to 5 made clear, I trust, what is at stake in the absolute-relational 
debate over the nature of motion and the structure of space-time. And it is 
also apparent, I hope, why the outcome of that debate merits the interest 
of philosophers and physicists alike. But despite the efforts of chapters 6 
and 7 and sections 1 to 4 of this chapter, I confess that one may be left 
wondering why anyone, other than a few academic philosophers with a 
bent for far-side metaphysics, should care about the tug of war over whether 
space-time is a substance. That concern will be addressed in chapter 9. Here 
I turn to further efforts to clarify what the tug of war is about. 

In Foundations of Space-Time Theories Friedman identifies Leibnizian 
relationism, by which I take him to mean antisubstantivalism, with the view 
that the domain over which the quantifiers range is to be limited to the set 
of concrete physical events, "that is," he adds, "the set of space-time points 
that are actually occupied by material objects or processes" ( 1983, p. 2 1 7). 
The explanatory clause adds misdirection rather than clarification, or so I 
will argue. 

Consider the illustration offered. Think of Minkowski space-time and 
think of absolutist models in this setting as having the form <M, t, (1, ).) 
where M = 1R4 and t, (1, and ), are binary relations on M having the 
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following interpretations: for p, q E M, r(p, q) (respectively, a(p, q), A(p, q» 
holds just in case p and q have a timelike (respectively, spacelike, lightlike) 
separation. A relationist model has the form <C, r', a', A'), where C is a set 
of physical events and r', a', and A' are binary relations on C. In keeping 
with the above quoted statement of relationism, Friedman characterizes 
the dispute between the relationist and the substantivalist by taking the 
latter to hold that <C, r', a', A') is literally a submodel of <M, r, a, A), i.e., 
C !;;; M, and that the primed relations are restrictions of the unprimed 
relations to C, whereas the former says only that <C, r', a', A') is embeddible 
into <M, r, a, A), i.e., there is a one-to-one map f/J : C -+ M such that f/J(r') = 

r l�(.r) etc. So the absolutist regards the larger structure as a reduction or 
explanation of the smaller structure, while the relationist regards the larger 
structure as a representation of the smaller one (Friedman 1983, p. 220). 

A small but important caveat has to be entered at this juncture. Neither 
the relationist nor the substantivalist will want to say that C is literally a 
subset of M. It is a category mistake to overlap C and M: the former is a 
set of events, the latter is a set of space-time points. It is true that in the 
relativity literature the term 'event' is often used ambiguously to denote 
both events proper, i.e., happenings, and event locations or space-time 
points, but that ambiguity becomes pernicious when introduced into the 
present discussion. Thus, the relationist and substantivalist should agree 
that the absolutist models should be expanded to include a set E of 
absolutist events conceived as goings-on at space-time points, e.g., the 
oscillation of the magnetic field at p E M. The absolutist will claim that 
there is a preferred embedding f/J :  C -+ E, namely, the one such that for 
every e E C, e is in fact constituted by f/J(e) (which for present purposes 
means that e occurs at the space-time location of f/J(e». By contrast, the 
relationist will claim that for present purposes any association f/J : C -+ E 
will do, as long as for any el ' e2 E C, r'(e l ' e2) ifand only ifr(f/J(el ), f/J(e2» ,  etc. 

These rather pedantic distinctions do have an important consequence 
under the assumption that there are no unoccupied space-time points. 
According to Friedman's initial characterization, this assumption "means 
that the relationist's ontology is just as rich as the absolutist's: C is not just 
embeddible into M, it is actually isomorphic to M. Hence, the traditional 
debate threatens to dissolve completely" ( 1983, p. 222). And this worry leads 
Friedman to worry about how to properly characterize unoccupied points, 
especially in the context of field theories where the dissolving assumption 
might seem to hold. l o But in our emended formulation there is no need 
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to worry about a collapse of the debate. Even if the world were chocked 
completely full, the relationist's ontology would not be just as rich as the 
substantivalist's; C and E would be isomorphic, but the relationist would 
still regard M as nothing more than a construction out of his C. And even 
if the world were chocked full, Leibniz's PSR argument would still apply. 1 1  

It is instructive to see how Leibniz's argument fares for Friedman's 
example. Let h be an automorphism of <M, E, r, 0', A); that is, h = (h1 , h2 ), 
where h1 : M -+ M is one-to-one and onto and preserves r, 0', and A, and 
where h2 : E -+ E is also one-to-one and onto and such that for each 
e E E, h 1 (loc(e» = loc(h2 (e», where loc(e) stands for the space-time loca
tion of e. Then if ifJ : C -+ E is an acceptable embedding of < C, r', 0" ,  A') 
into <M, E, r, 0', A), then ifJ ' = h2 0 ifJ is an acceptable embedding into 
<M, h1 (E), r, 0', A), where h 1 (E) indicates the set of events obtained by 
relocating the E in M under the action of h 1 • The substantivalist is thus 
committed to distinct states of affairs <M, E, r, 0', A) and <M, h1 (E), r, 0', A) 
that are observationally indistinguishable; the relationist escapes this em
barrassment, since for him the substantivalist models are only different 
modes of presentation of the same relationist state of affairs. 

Now suppose that E, r, 0', and A are such that <M, E, r, 0', A) admits no 
nontrivial automorphisms. It has seemed to many commentators that this 
supposition blocks Leibniz's PSR objection, 1 2 and since post-GTR space
time models may conform to the supposition, it has further seemed that 
Leibniz's concern has been left behind by modern developments. This is 
a myopic point of view, for h 1 may fail to preserve r, 0', and A, but ifJ' = 
h2 0 ifJ is an acceptable embedding into <M, h 1 (E), h 1 (r), h 1 (0'), h 1 (A», which 
(as long as h 1 preserves the structure of M) is also a legitimate substan
tivalist state of affairs distinct but observationally indistinguishable from 
<M, E, r, 0', A). 1 3 

My main objection to this entire line of discussion goes beyond the 
pedantic points made above. The simplicity of the examples, while allowing 
various structural features to stand out, conveys the misleading impression 
that the antisubstantivalist has staked out a viable position and that 
the debate boils down to a metaphysical choice between submodel and 
embedding. In previous chapters I tried to show why the constant ap
pearance in the philosophical literature of the phrase "relational theory" is 
misleading with regard to the issue of the nature of motion. Not a single 
relational theory of classical motion worthy both of the name 'theory' and 
of serious consideration was constructed until the work of Barbour and 
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Bertotti in the 1 960s and 1970s. This work came over half a century after 
classical space-time gave way to relativistic space-time, and in the latter 
setting a purely relational theory of motion is impossible, or so I have 
argued in chapter 5. Similarly, on the issue of substantivalism no detailed 
antisubstantivalist alternative has ever been offered in place of the field 
theoretic viewpoint taken in modern physics. 

On the issue of substantivalism the relationist can follow either of two 
broad courses. One, he can decline to provide a constructive alternative 
field theory and instead take over all of the predictions of field theory for 
whatever set of quantities he regards as relationally pure. I do not see how 
this course is any different from instrumentalism. While I believe instru
mentalism to be badly flawed, I do not intend to argue that here. Rather, 
the point is that relationism loses its pungency as a distinctive doctrine 
about the nature of space and time if it turns out to be nothing but a 
corollary of a methodological doctrine about the interpretation of scientific 
theories. 

Two, the relationist can attempt to provide a constructive alternative to 
field theory or at least to the substantivalist version of it discussed above. 
This course in turn has two branches. First, the relationist could try to 
dispense with fields altogether in favor of a pure particle ontology. While 
I indicated in section 3 that this branch is not excluded by relativity theory, 
it is sufficiently unattractive that it can be set aside as a desperate ploy. 
Second, the relationist could attempt to describe physical states in a vocab
ulary that is sparse enough to avoid talk that smacks of space-time sub
stantivalism but rich enough that the relational state of affairs determines 
the substantivalist state up to an appropriate degree of uniqueness. In 
section 7 I shall discuss the type of representation theorem the relationist 
would have to prove to make his case. But first I want to register some 
demurrers to the impression, promoted by Mundy ( 1983), that without 
further ado relationism is a viable alternative. 

6 Mundy on Relational Theories of Euclidean Space and 
Minkowski Space-Time 

Mundy ( 1983) has offered what he calls relational theories of Euclidean 
space and Minkowski space-time. The merits of such theories have to be 
judged in the larger context of relational theories of physics in general, but 
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even in their own terms these theories are beset with two uniqueness 
problems. 

For simplicity, consider first the case of three-space. Suppose that there 
are a finite number of point particles and that the mutual spatial relations 
among the particles obey the axioms of Euclidean geometry. For the 
relationist, any talk about space per se is to be analyzed as talk about 
representations of the interparticle relations. There are an innumerable 
number of ways to effect such a representation, e.g., an innumerable number 
of different embeddings into standard Euclidean space le, and this fact is 
the source of Leibniz's PSR and Pldln objections. But the relational 
structure in question can also be represented by embedding it into a space 
that is metrically Euclidean inside some finite neighborhood containing the 
particles but metrically non-Euclidean outside, by embedding it into a 
space that is obtained from 1E3 by a holing operation (see section 4 above), 
etc. 

The relationist can react to the non uniqueness of the embedding space 
with either a conventionalist or a nonconventionalist attitude. The con
ventionalist is prepared to say that to the extent that the embedding space 
is underdetermined, so is the structure of space. But many philosophers of 
science would choke at having to swallow the result that there is no truth 
to the matter of whether space is, say, infinite or finite in extent. The 
nonconventionalist relationist can resort to various ploys, the most ob
vious of which was already suggested by Leibniz's dictum "Space denotes, 
in terms of possibility, an order of things which exist at the same time" 
(Alexander 1984, p. 26). The appeal to possibilia can involve different grades 
of modal commitment, the highest degree of which would permit the 
relationist to gloss 'Space is infinite' as 

I For any body b and any d > 0, there is a possible body b'  such that 
dist(b, b') > d. 

But it is not clear how talk about possible bodies is all that different than 
talk about space points as permanent possibilities of spatial location, an 
attitude that is arguably consistent with Newton's explanation of the status 
of space in "De gravitatione" (see chapters 1, 3, and 4). Descending to a 
lower grade of modal involvement, one could replace (I) by 

I' For any body b and any d > 0, it is possible that there is a body b' such 
that dist(b, b ' )  > d. 
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Now the worry is that whatever reading the modal operator is given, (I') 
will be either too strong or too weak. 1 4 If possibility in (I' ) is taken to 
be physical possibility, then space may be infinite even though (I') fails 
because, say, a repulsive force prevents particles from existing too far out 
toward spatial infinity. If possibility is degraded to mere logical possibility, 
the worry becomes that space might be finite even though (I' ) holds. If 'it 
is possible that ---' is read as 'there is a possible world in which ---', 
then (I') can be true even though space in our world is finite. This fault can 
be eliminated if the accessibility relation on possible worlds is limited so 
that worlds accessible from our world must have the same spatial structure 
as our world. Such a limitation might be reasonable if the relevant sense 
of possibility were physical possibility and the structure of space immuta
ble, but this interpretation reengages the first worry. And in any case, 
specifying when two worlds have the same spatial structure seems no less 
difficult a task for the relationist than the original task. 

This problem of uniqueness would not arise in a plenum. Toward that 
end, the relationist could switch the focus of attention from space to 
space-time, replace the particle ontology with an ontology of events, and 
appeal to field theory to supply a plenum of physical events. But while a 
plenum of events is a not unnatural circumstance in special relativistic field 
theories, these theories permit models in which all of the physical fields 
vanish over finite or infinite stretches of space-time. The g-field in GTR 
never vanishes, as follows from the very definition of a general relativistic 
space-time. But for the relationist to try to construct space-time out of 
events that thus far have received only a substantivalist interpretation (e.g., 
the events of the g-field taking such and such a value at such and such 
points of M) is to invite the charge of circularity. 

A second form of non uniqueness worries Mundy ( 1986), whose illustra
tive example I follow here. Suppose that we ignore the above uniqueness 
problem and fix upon Minkowski space-time as the embedding space-time. 
And suppose, in the notation of section 5, that $ = {e1 , e2 , e3 } and that 
t' (e 1 , e2 ), t' (e2 , e3 ), and t' (e 1 , e3 ). Two types of embeddings or representa
tions are possible, as illustrated in figure 8.4, namely, el '  e2 ,  e3 on a straight 
line in space-time (a) versus e l '  e2 , e3 not on a straight line (b). The 
substantivalist will want to say that since events are literally in space-time, 
only one of (a) and (b) can be correct; there is truth to the matter of whether 
el '  e2 ,  e3 are collinear or not. 
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( 0  ) ( b )  
Figure 8.4 
Alternative embeddings of events in Minkowski space-time 

As with the first uniqueness problem, the relationist can retreat to a 
conventionalist stance, asserting that whatever is undetermined by the 
acceptable representations is not a fact. Mundy ( 1986) rejects conven
tionalism and commits the relationist to achieving an appropriate expres
sive equivalence with the absolutist, which he takes to be captured by the 
condition that whenever t/J and t/J' are acceptable embeddings of a relational 
structure into the same absolutist model, then there is an automorphism h 
ofthe model such that t/J' = h 0 t/J. 1 5 This condition is clearly violated in the 
above example, since the automorphisms of Minkowski space-time pre
serve relations of collinearity. Thus, as Catton and Solomon ( 1988) have 
emphasized, Mundy's example illustrates how the ontological and ideo
logical aspects of the absolute-relational debate are intertwined: ideology 
depends upon ontology, since whether or not a relation is definable depends 
upon how rich the domain of the model is. 

To achieve expressive equivalence, the relationist may wish to beef up 
either the ontology or the ideology of his structures. That is, $ could be 
expanded, as was already contemplated in response to the first uniqueness 
problem. If there were a physical event at every point of Minkowski 
space-time, then collinearity among the events would be settled by the 
causal relations among them. Alternatively, the list of relations holding 
among the events could be made more inclusive. The crudest expansion 
would simply add the relation of collinearity to the list-a move some 
relationists, such as the Reichenbach school, would find uncongenial (see 
chapter 1 ). 

I find it unfruitful to pursue these issues in terms of such artificial 
examples. In section 5, I already objected that to make the example more 
accurate the absolutist models should be expanded to include a set of 
absolutist events, but even with that emendation the example is wholly 
unrealistic. What the theories of modern physics give us are not events 
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but field-theoretic models. Of course, absolutist events can easily be con
structed from such models, e.g., in electromagnetic-field models we can take 
a paradigm event to be the event that the Maxwell electromagnetic tensor 
field takes such and such a value at p E M, but that construction is beside 
the point. The point is that to be expressively equivalent to realistic absolut
ist models, the relationist must show how to recover the fields in some 
interesting fashion. And here a dilemma awaits the relationist. If he sticks 
to the structureless events C assumed in the above artificial examples and 
to spatiotemporal relations among these events, expressive equivalence 
would seem to be unobtainable in any interesting sense, but the more 
structure that is added to events, the more they will become like absolutist 
events, that require the dematerialized ether M for support. 

7 What the Antisubstantivalist Must Do 

Replacing substantivalist theories of physics with a radically different 
alternative obviously requires an act of scientific creativity, and no useful 
advice can be given on how to perform such a feat. 1 6 But again, I shall 
register my skepticism about the chances of bringing off the feat ifit involves 
the elimination of the concept of field. Other antisubstantivalists may wish 
to take seriously what the substantivalist offers and then try to work 
backward to extract a core content cleansed of substantivalist commit
ments. For these relationists I can offer some general advice about the 
contours of the program. 

If there were no fields and if all motion were the relative motion of bodies, 
then it is obvious how to be a consistent instrumentalist about space-time 
points and yet not succumb to instrumentalism in general: simply embed 
the relative particle motions into Machian or Leibnizian space-time and 
regard the embedding as a representation that adds the descriptive fluff of 
space-time points, as evidenced by the fact that multiple embeddings are 
available. It is this kind of example that the relationist uses to prime the 
intuition pump. But the intuition that a nonsubstantivalist theory can be 
easily constructed is jarred by modern physics. Will the same representa
tionalist ploy allow one to be an instrumentalist with respect to space-time 
points while being a realist about absolute rotation and acceleration and 
about fields? In what follows, I will outline the conditions needed to support 
an interesting positive answer. 
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The first step i s  to  define an appropriate notion of  equivalence for the 
substantivalist models. We have been assuming that these models have the 
form (M, 01 , O2 , • • •  > where M is the space-time manifold and the 0i are 
geometric object fields on M. Notice that the 0iS may include not only 
electromagnetic fields and the like but also affine connections and other 
structures that ground a nonrelational account of motion. Thus, the anti
substantivalist position being explored here is fully prepared to cope with 
the failure of (R I) and with the adoption of a field ontology. On behalf of 
the relationist I propose that two such models should be counted as 
equivalent (Leibniz-equivalent I shall say) just in case they can be matched 
up by a generalized Leibniz-shift operation; that is, (M, 01 , O2 , • • •  > = L 
(M', O� , O� , . . .  > just in case there is a diffeomorphism d that maps M onto 
itself so that for all i, d * 0; = 0;. For the antisubstantivalist the intended 
interpretation of .A = L .A' is that .A and .A' are different modes of 
presentation of the same state of affairs; that is, at base, physical states are 
what underlie a Leibniz-equivalence class of absolutist models. 

The second step is to give a direct characterization of the reality under
lying a Leibniz-equivalence class. Call this underlying content a Leibniz 
model I:e. Different relationists will impose on the Leibniz models dif
ferent tests for relational purity, but presumably all the antisubstantivalists 
will agree that the 2s should not contain space-time points or regions. 
Reichenbachian relationists will also want to test for ideological as well as 
ontological purity. 

The third step is to demonstrate a kind of expressive equivalence between 
the Leibniz and the absolutist models. This step can in turn be broken down 
into two smaller steps. (a) There should be a natural sense in which the 
absolute models are representations of the Leibniz models. The exhibition 
of the representation relation should be accompanied by a representation 
theorem showing that under the representation relation, an 2 corresponds 
to a Leibniz-equivalence class of absolute models; that is, if .A represents 
2, and .A' = L .A, then .A' also represents 2, and if both .A and .A' 
represent the same 2, then .A' = L .A. (b) The laws of physics should be 
directly expressible in terms of the 2s, and the substantivalist's laws should 
be recoverable in that if an 2 is possible in the lights ofthe anti substantival
ist laws, then any representation .A of 2 is possible in the lights of the 
substantivalist's laws. This requires that all the members of a Leibniz
equivalence class stand or fall together with regard to nomological possi-
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bility-a condition that will be satisfied for generally covariant theories 
(see chapter 3). 

A fourth step is required if the argument of section 4 is accepted. Con
ditions should be imposed on the Leibniz models that guarantee that 
for any conforming !l', if .A represents !l', then the space-time of .A is 
hole-free. 

It is fair to ask why anyone, outside of a few academic philosophers 
besotted with the absolute-relational controversy, should care about the 
prospects of this antisubstantivalist program as I have outlined it. In 
chapter 9 I shall argue that the desire for the possibility of determinism in 
theories like GTR provides an independent motivation for a program like 
the above. 

It might also be asked why, if steps 1 through 3(a) have been carried out, 
step 3 (b) cannot be fines sed by saying that !l' is physically possible just in 
case it is represented by .As that are physically possible by the substantival
ist's lights. 1 7 This fines sing leaves the relationist in the position of claiming 
that the substantivalist tells a fairy tale using all sorts of fictive entities and 
at the same time admits that he cannot distinguish between the physically 
possible and the physically impossible without resort to those fictive enti
ties. This is not a position I would feel comfortable occupying. The debate 
about the nature of motion is again a useful guiding analogy. If the classical 
relationists had been forced to admit that empirically adequate laws of 
motion could not be formulated in terms of relative particle quantities, I 
am confident that they would not have resorted to finesse but instead would 
have honestly admitted defeat. I s I would expect the same honesty on the 
issue of substantivalism. Of course, it may be that no finesse is needed in 
that if steps 1 to 3(a) are carried out in proper fashion, then step 3(b) follows 
automatically. If, for example, the vocabulary the antisubstantivalist uses 
to describe the !l's is a subvocabulary of the vocabulary used by the 
absolutist to describe the .As and if the absolutist's theory is axiomatized 
(the axioms being the absolutist's laws), then the consequences of this 
theory for the Leibniz states will also be axiomatizable. But the latter 
axioms may not correspond to anything that is a recognizable scientific 
law; indeed, in the Craig ( 1956) reaxiomatization procedure it is clear that 
most of the axioms will not be lawlike, since there is a separate axiom for 
each consequence in the privileged subvocabulary. It remains open that 
some other set of lawlike axioms exists, but that has to be demonstrated. 
And in any case, it seems unlikely that an interesting representation theorem 



Modern Treatments of Substantivalism and Re1ationism 173 

in steps 1 to 3(a) will emerge if the vocabulary of the .!l's is simply a 
subvocabulary of the vocabulary of the .Its. 

If it can be carried out, the upshot of the program outlined above would 
provide a middle ground between the traditional relational and absolute 
conceptions of space and time. Perhaps it is this upshot toward which 
Sklar's maneuver (section 6.9) was striving; if so, Sklar deserves our grati
tude for enlarging the possibility space of the discussion. It remains to be 
seen, however, to what extent such a middle ground is tenable. 

8 Conclusion 

Those readers who have been keeping score will agree, I trust, that the tally 
to this juncture is almost wholly in favor of the absolutist position. The 
relationist loses on the twin issues of the nature of motion and the structure 
of space-time. And on the issue of substantivalism the relationist is forced 
into a defensive posture. The absolutist can point to three reasons for 
accepting a substratum of space-time points: the need to support the 
structures that define absolute motion, the need to support fields, and the 
need to ground the right/left distinction when parity conservation fails. 1 9 
Relationists have produced no constructive alternatives to substantivalist 
theories in physics, and their objections to these theories rest on the theo
logical version of Leibniz's PSR and the verificationist version of the Pldln, 
neither of which is compelling. In chapter 6, I examined and rejected 
Teller's attempt to state a nonverificationist version of Leibniz's argument. 
Friedman also thinks that Leibniz's objection can be stated in a form that 
does not amount to verificationism. "The problem," he writes "is not that 
the absolutist postulates un observable states of affairs; rather it is that he 
commits himself to distinct states of affairs that are not distinguishable even 
given his own theoretical apparatus" ( 1983, p. 2 19). This is an objection by 
labeling. For Friedman the states of affairs are "indistinguishable" because 
they are connected by a transformation that belongs to the "indistinguish
ability group" of the theory, i.e., the mappings that preserve the space
time structure: the Galilean transformations in the case of neo-Newtonian 
space-time, the Lorentz transformations in the case of Minkowski space
time. But I do not see why indistinguishability in this sense adds any force 
to Leibniz's objection, for the appeal to the indistinguishability group is 
simply a fancy way of restating the construction of Leibniz's Third Letter 
to Clarke. The "indistinguishable" states of affairs are still separated by 



1 74 Chapter 8 

properties that any absolutist will want to regard as genuine if he is 
committed to substantivalism-a commitment he thinks is necessary to 
adequate accounts of motion, fields, and the left-right distinction. Finally, 
there remains the possibility of undercutting substantivalism by carrying 
out the kind of program outlined in section 7. But at present the possibility 
remains nothing more than that, and so far we have seen no compelling 
reason to try to turn the possibility into actuality. 

Can we then close the book on the absolute-relational controversy? Not 
quite yet. The most interesting and difficult chapter in the ongoing debate 
remains to be played out. 



./ General Relativity and Substantivalism: A Very Holey Story 

Contrary to Reichenbach's claims (chapter I), relativity theory not only 
does not vindicate relationism but actually proves to be inimical to rela
tionism in two respects: first, it is hard to square a relational conception of 
motion with a space-time structure that is recognizably relativistic (see 
chapter 5), and second, by nurturing the modern field concept, relativity 
theory also seems to nurture space-time substantivalism (see chapter 8). In 
the present chapter I shall argue, however, that GTR together with some 
plausible demands on scientific theorizing deal a blow to one form of 
substantivalism-what I have called manifold substantivalism-which is 
at present the only form of substantivalism in the offing. Whether or not 
some other forms of substantivalism dodge the blow will have to be 
discussed at length. I begin, in what may initially seem to be a tangential 
vein, with a bit of sanitized history of GTR. 

1 Einstein's Hole Argument 

Einstein's GTR was the first successful theory to do without Newton's 
assumption that the structure of space-time remains "similar and im
movable." But the mutability of the structure of space and time is not an 
idea that is necessarily annexed to general-relativistic space-times or even 
to relativistic, as opposed to classical, space-times. Contemporary mathe
matical physicists have constructed all manner of space-times, classical as 
well as relativistic, in which one bit or another of the structure becomes a 
dynamic rather than an absolute element. Thus, although what I have to 
say is, for historical and expository reasons, couched in terms of GTR, 
neither the physics nor the philosophical moral is unique to GTR. 

Having convinced himself that the metric of space-time should be treated 
as a dynamic element, Einstein began to search for suitable field equations 
for the "metric field" gik .  His search was guided in part by the Kausalgesetz 
(causal law) that the distribution of matter-energy as specified by the Tik 

should determine the metric field gik .  Today we would also take it for 
granted that the field equations should be generally covariant. But Einstein 
had trouble in finding suitable generally covariant field equations, and by 
means of an ingenious argument that appeals to the Kausalgesetz he 
managed to convince himself that what he could not do could not be done. ! 
Some of the versions of Einstein's argument were fraught with an ambiguity 
between coordinate and point transformations. The simplified version of 
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Chapter 9 

the argument that I present here is designed to avoid these and other pitfalls 
and yet remain true to the direction of Einstein's intentions. 2 

In section 8.4 the "hole" we imagined involved the surgical removal of a 
portion of the space-time manifold. Einstein's hole argument involves no 
such metaphysical fantasy but only the existence of a matter-energy hole 
in the sense of a region H of space-time where the stress-energy tensor 
vanishes identically (see figure 9. 1). If the field equations for gik and Tik are 
generally covariant and <M, g, T) is a solution, then <M, d * g, d * T) is 
also a solution for any diffeomorphism of M onto itself. We are free to 
choose d such that d = id outside the hole H but -# id inside H and such 
that the two pieces join smoothly on the boundary of H (a "hole diffeo
morphism"). From our assumptions about Ti\ it follows that the hole 
diffeomorphism is a symmetry of the matter-energy distribution; i.e., that 
d * Tik = Ti\ which implies that <M, d * g, T) is also a solution. We are 
also free to choose the action of the hole diffeomorphism inside H to be 
sufficiently non-trivial that d * g lH -# g lH ' The upshot is that we have pro
duced two solutions, <M, g, T) and <M, d * g, T), which have identical T 
fields but different g fields-an apparent violation of the Kausalgesetz that 
the T field determines the g field. 

Einstein initially chose to lay the blame on the requirement of general 
covariance, and for a time he toyed with noncovariant field equations-a 
move he later acknowledged to be a mistake. But once general covariance 
is accepted, the other pillar of Einstein's hole argument, the Kausalgesetz, 
comes under fire. And in chapter 6, I argued on independent grounds that 
the latter requirement is suspect and that it is not implemented in the 
completed GTR. 

It might seem, then, that GTR resolves the problem posed by Einstein's 
hole argument by incorporating one of the premises of the argument while 
eschewing the other. If that were all there was to it, Einstein's hole argu-
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ment would only be a historical quiddity. But even quiddities, if they 
are Einstein's, can contaIn the seeds of genius. A slight modification of 
Einstein's construction shows that no non trivial form of determinism is 
possible, at least if manifold substantivalism is taken seriously. In order to 
appreciate the uniqueness of this threat to determinism, it is necessary first 
to appreciate, if only to dismiss, more mundane threats. 

2 Perils of Determinism 

Contrary to the received wisdom, determinism does not find a safe haven 
in classical physics. To begin with the most obvious problem, it is a 
commonplace that only in closed systems is it possible to implement the 
Laplacian brand of determinism according to which the instantaneous 
state of the system suffices uniquely to fix its future development, for to 
belabor the obvious, if the system is open to outside influences that have 
not penetrated the system at the chosen initial moment, no description of 
the initial state, no matter how detailed, will suffice for a sure prognostica
tion of a future state at a time after which the outside influences penetrate 
the system. To appreciate the perilous status of classical determinism, it is 
only necessary to couple the above platitudes with the less obvious remark 
that even in their entireties, classical universes with space-time structures 
no stronger than neo-Newtonian space-time (section 2.4) are open systems 
in the relevant sense. Properly formulated laws of motion in such space
times obey symmetry principle (SP2) (section 3.6), which asserts that the 
symmetries of space-time are symmetries of the laws. As a result, the laws 
of motion cannot impose a finite upper bound on the velocity of particle 
motion, which means that it is possible in principle for a particle such as ()( 
in figure 9.2(a) to accelerate so strongly that it escapes to spatial infinity 
without registering on the time slice t = t*. By time-reversal invariance, the 
temporal mirror image of this process is also physically possible, with the 
result that a space invader such as p of figure 9.2(a) can appear from spatial 
infinity without leaving its calling card on t = t*. The threat to determinism 
posed by such processes possible in principle would have only curiosity 
value unless the processes could be implemented by known forces. A system 
of point mass particles interacting via Newton's 1/r2 law, often cited as 
the paradigm case of classical determinism, may well provide such an 
implementation. 3 
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Failures of Laplacian determinism 

Space invaders are not a problem in STR. The structure of Minkowski 
space-time, coupled with the postulate that massive particles cannot cross 
the sub- to superluminal light barrier or vice versa, effectively shields 
against such processes as ()( and p of figure 9.2(a). However, general rela
tivistic space-time models can exhibit relevant analogues of ()( and p, as 
is illustrated in figure 9.2(b) which represents the light cone behavior in 
the universal covering space-time of anti-de Sitter space-time. As one 
approaches the time slice S from the future, the light cones flatten out, which 
allows the timelike curve y to be extended to spatial infinity without ever 
meeting S. 

The presence of D holes (section 8.4) in general-relativistic space-times is 
another potential pitfall for Laplacian determinism. If one were concerned 
to give a balanced assessment of the problems and prospects of deter
minism in GTR, this pitfall and the one sketched above would have to be 
given serious attention. But since my purpose here is to emphasize the 
special implications of Einstein's hole argument, I will cavalierly dismiss 
both pitfalls by fiat by declaring that henceforth I shall restrict attention 
to general-relativistic models in which the space-time admits a Cauchy 
surface, a spacelike hypersurface intersected once and only once by every 
causal curve without endpoint. In the language of section 8.4, that S is a 
Cauchy surface for M, 9 means that the domain of dependence D(S) of S 
is the whole of M. 

The final threat to determinism I shall mention here was already covered 
in chapter 3. From the substantivalist's perspective, the point was that 
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absolute (or immutable) space-time structure has to be sufficiently rich 
to support any interesting form of determinism. Specifically, it seems to 
follow from the application of (SP2) that neither Machian, Leibnizian, nor 
Maxwellian space-time can support laws of particle motion that will deter
mine future motions from past motions. Two types of responses were 
contemplated. Those inclined against relationism will be happy to shore 
up the prospects of Laplacian determinism by beefing up the structure of 
space-time by, say, moving to neo-Newtonian space-time, for such a move 
also undermines the relational account of motion. Those inclined toward 
relationism will want to stick with the more lightly structured space-times 
and abandon the substantivalist interpretation of symmetry principles 
(underlying the argument from [SP2] ) as moving particle systems around 
in the space-time container. In a context where the space-time structure 
remains "similar and immovable," I do not see any decisive consideration 
for or against one of these alternative reactions. But when the space-time 
structure becomes mutable, the substantivalist tactic of adding more struc
ture is of no help in salvaging determinism, or so I will now try to show. 

3 Space-Time Substantivalism and the Possibility of Determinism 

Choose any general relativistic model <M, g, T) you like, except that, in 
keeping with the sentiments of section 2 for making the environment as 
friendly as possible for determinism, suppose that M, 9 possess a Cauchy 
surface. This supposition implies that there is a global time function 
t : M � IR such that t increases as one moves in the future direction along 
any timelike curve and such that the level surfaces of t are all Cauchy 
surfaces. Following the style of Einstein's hole construction, choose a 
diffeomorphism d such that d = id for all t ::;; 0 and =I- id for t > 0 and such 
that there is a smooth join at t = O. By general covariance, <M, d * g, d * T) 
is also a model, and M, d * 9 also possesses a Cauchy surface. By construc
tion, this new model is identical with the first for all t < 0 :  g l/ $ o  = d * g l/ $ o  
and Tir$ O  = d * TI/$ o .  But if d i s  chosen properly, the models will differ for 
t > O-a seeming violation of the weakest form of Laplacian determinism.4 

Nor is Laplacian determinism the only form of determinism that suffers; 
indeed, any nontrivial form of determinism suffers equally. For example, 
choose any closed N c M, no matter how small. By an obvious modifica
tion of the above construction, it would seem to follow also that the state 
throughout the rest of space-time M - N cannot fix the state in N. 
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The incompatibility demonstrated here between the possibility of deter
minism and space-time substantivalism holds for any form of substan
tivalism that implies that <M, g, T) and <M, d * g, d * T) are distinct when 
d * g =I- g and d * T =I- T. This is certainly the case for what I call manifold 
substantivalism, which is the only form of substantivalism presently in the 
offing. That view can be characterized in terms of political economics as 
an exercise in the division of labor. The differential geometer constructs the 
M s and then passes them on to the physicist who proceeds to test them for 
suitability as a basis for a general-relativistic model: Is M paracompact? 
Can M carry a nonsingular Lorentz metric? etc. Of those that are suitable, 
some will go on to be used as arenas for solutions to Einstein's field 
equations of gravitation. But in any case it is assumed that questions of 
identity and individuation of points of M have been settled prior to the 
introduction of the g-field and the T-field; indeed, the very characterization 
of fields given in section 8.3 takes for granted the identity of the elements 
in the point set, the topology on the set, and the differential structure. Then, 
since the fields introduced on M have physical significance, shifting those 
fields will produce different physical states of affairs just as shifting particles 
in three-space produces different physical states for the space substan
tivalist. This is not to say that there cannot be some other form of subs tan
tivalism that is reconcilable with determinism within theories like GTR, 
but I shall postpone the question until sections 1 1  to 14. 

Before closing this section, I should note that what is true of Leibniz's 
original argument is also true of the present argument: if the argument 
works against an ontology of irreducible and ineliminable space-time 
points, it also works against an ontology of irreducible and ineliminable 
monadic properties of spatio-temporal locations. 5 The difference between 
Leibniz's argument in the correspondence with Clarke (see chapter 6) and 
the present one is that considerations of determinism have more polemical 
force than Leibniz's considerations of verificationism and the nomen
clature of God's decision-making process. I shall defend this judgment of 
differential merits in the following section. 

4 Taking the Possibility of Determinism Seriously 

The argument in the preceding section does not rest on the assumption 
that determinism is true, much less on the assumption that it is true a priori, 
but only on the presumption that it be given a fighting chance. To put the 
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matter slightly differently, the demand i s  that i f  determinism fails, i t  should 
fail for a reason of physics. We have already seen a couple of such reasons. 
For example, the laws of physics might allow arbitrarily fast causal signals, 
as in Newtonian mechanics, opening the way for space invaders, or the laws 
might impose a finite upper bound on causal propagation but, as in some 
general-relativistic cosmological models, still permit analogues of space 
invaders. Alternatively, the laws might forbid space invaders but, as in some 
interpretations of quantum mechanics, admit irreducibly stochastic ele
ments. Or less interestingly, the actual laws might be weaker than anything 
we currently take to be laws, so weak that the present state fails to place 
effective lawlike constraints on future states. But the failure of determinism 
contemplated in section 3 is of an entirely different order. Rule out space 
invaders; make the structure of space-time as congenial to determinism as 
you like by requiring, say, the existence of a Cauchy surface; ban stochastic 
elements; pile law upon law upon law, making the sum total as strong as 
you like, as long as logical consistency and general covariance are main
tained. And still determinism fails if the proffered form of space-time 
substantivalism holds. Here my sentiments turn against substantivalism. 

Having appealed to sentiments, I now stoop to appeal to authority. 
Relativity physicists are, of course, aware of the construction of section 3. 
But to my knowledge not one of them is on record as concluding that 
determinism fails in GTR. It has to be admitted, however, that the upshot 
of the construction is left in doubt in the older-style textbooks because of 
the ambiguity between coordinate and point transformations. 

Thus, consider the way the construction emerges in the midst of M0ller's 
( 1952, pp. 3 10-3 12; 1972, pp. 424-425) discussion of properties of the 
gravitational field equations. His starting point is that the equations are of 
the form 

(9. 1 )  

where Rik i s  the Ricci tensor and R i s  the scalar curvature. Taking into 
account the four-dimensionality of space-time and the fact that M[ikl = 

Trikl = 0, we can see that (9. 1 )  gives ten second-order partial differential 
equations for the gik . But only six of these equations can be independent. 
To see why, take the empty-space case where 1ik == 0 (the "big hole"). If the 
resulting field equations 

(9.2) 
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were independent, then in a coordinate system Xi the functions gik(XI) 
would be uniquely determined by the values of the gik and their first 
derivatives on the initial-value hypersurface X4 = O. But, M0ller continues, 
such a unique determinism is impossible. Assume for purposes of contradic
tion that it is possible, and introduce a new coordinate system where the 
coordinate transformation is indicated by 

(9.3) 

By general covariance, M'ik is the same function of g'ik '  iJg'ikliJx'l, and 
iJ2g'ikliJx'liJx'm as Mik is of gik, iJgikliJxl, and iJ2gikliJxliJxm. And again by 
general covariance, if (9.2) is true, then so is 

M'ik = O. (9.4) 

So if they were independent, the equations (9.4) would uniquely determine 
the functions g'lk(X,I) from the values of g'ik and their first derivatives on 
X4 = O. Now choose the new coordinates so that X'i = Xi on and near the 
initial value hypersurface but X'i -# X i elsewhere. By the first part of the 
choice, g'ik = gik and iJg'ikliJx,1 = iJgikliJxl on the initial value hypersurface, 
with the result that the g'ik must be the same functions of X'I as the gik are 
of Xl. But this contradicts the second part of the choice, since 

iJxl iJxm 
g'ik = 

iJx'l iJx'k 
glm · (9.5) 

M0ller concludes that the ten equations (9.2) cannot be independent but 
must satisfy four identities. "This means that the solutions gik of the field 
equations (9.2) contain four arbitrary functions corresponding to the four 
arbitrary functions in the transformations (9.3), which only change our 
space-time description, but not the physical system which produces the 
gravitational field" ( 1972, p. 425).6 

The lineage of M0ller's argument traces back to Einstein's hole argu
ment. M0ller credits Hilbert,7 and Hilbert in turn had read Einstein's 
papers and most likely had heard the hole argument first hand from a 
lecture Einstein gave in Gottingen in 1 9 1 5.8  But M0ller's version leaves the 
upshot in doubt. The field equations do not uniquely determine the gik as 
functions of Xl, but that underdetermination, M0ller seems to indicate, is 
not a failure of determinism, since the coordinate transformations "only 
change our space-time description, but not the physical system." But is that 
because (trivially) different coordinate components of the same g-field in 



General Relativity and Substantivalism 183  

different coordinate systems describe the same physical situation, or be
cause (more interestingly) different but diffeomorphically related g-fields 
describe the same physical situation? Other textbooks likewise leave the 
question hanging. After going through the same construction, Adler, Bazin, 
and Schiff er ( 1975) conclude that 

The initial data on S [the initial-value hypersurface] do not determine the resulting 
metric in a unique way; the solution contains four arbitrary functions 82gi

4
/8x48x4 

which are at our disposal. It should be observed that this arbitrariness is due to the 
fact that we can pick an arbitrary coordinate system for the description of the 
space-time continuum. However, the solutions obtained will differ only formally; 
they will describe the same geometrico-physical situation in different reference 
systems.9 ( 1975, p. 279) 

More recent textbooks leave no room for equivocation. Hawking and Ellis 
1973, for example, states that in the initial-value problem in GTR, one can 
expect uniqueness only "up to a diffeomorphism." 

5 The Role of the Mutability of Space-Time Structure 

I have given the impression that the mutability of space-time structure 
entailed by GTR plays a key role in generating the conflict between sub
stantivalism and the possibility of determinism. One might question that 
impression by noting that special relativistic theories can be written in 
forms that apparently allow the construction of section 3 to be applied. For 
example, take a special relativistic theory of motion and rewrite the equa
tions using covariant derivatives with respect to an undetermined Lorentz 
metric g. Then write a "field equation" for g, namely, 

(9.6) 

where Rijkl is the Riemann curvature tensor. This maneuver appears to let 
one have one's cake and eat a large slice of it too. Equation (9.6) and the 
requirement that the manifold be 1R4 entail that the space-time is Minkow
skian, as required by the standard interpretation ofSTR. But it also appears 
to allow one to say that the space-time metric is not given ab initio but is 
determined, to the extent that it is determined at all, in the same way that 
other physical variables are determined. A similar maneuver can also be 
applied to classical space-time theories. 

While such formalism is unassailable qua formalism, its uncritical use 
papers over some important distinctions. With respect to classical and 
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special-relativistic space-times it is possible to be a hypersubstantivalist and 
maintain that there is just one space-time and that talk about different 
worlds is to be translated as talk about different arrangements of matter 
and fields in the fixed space-time. I take it that this was Newton's attitude 
in "De gravitatione," and the attitude is consistent with the passage from 
Truesdell quoted in the appendix to chapter 2. The point is that the 
hypersubstantivalist who takes the structure of the fixed space-time to be 
strong enough-e.g., neo-Newtonian or Minkowskian-can have both 
substantivalism and determinism. The problem is that such hypersubstan
tivalism seems to go against the requirement of general covariance as used 
above and in previous chapters. 

Formalism generated the problem, and formalism is needed to resolve 
it. I shall suppose that we have made a distinction between absolute and 
dynamic objects and that this distinction corresponds to the distinction 
between the object fields (Ai) that characterize the structure of space-time 
and those (lj) that characterize the physical contents of space-time. The 
space-time structure need only be assumed to be absolute in the following 
minimal sense: for any two dynamically possible models of the theory 
.A = <M, Al o A2 , • • •  , P1 , P2 , • • •  ) and .A' = <M', A� , A2 , . . .  , P� , P2 , . . .  ), 
there is a diffeomorphism d : M � M' such that d * Ai = A; for all i. (This 
is the "remains similar" requirement of the appendix to chapter 2.) I shall 
call such a d an absolute map. We can then say that the theory is minimally 
Laplacian-deterministic just in case for any models .A and .A' and any 
absolute map d, if d * ljld*t :S: O  = Pild*t :S: O  for all j, then d * lj = Pi for all j, 
where t = 0 is a plane of absolute simultaneity or a Cauchy surface of the 
space-time of .A. 

Generally covariant special-relativistic theories using Minkowski struc
ture or generally co variant classical theories using neo-Newtonian space
time structure can be minimally deterministic, but the substitution of 
weaker structures such as those of Machian, Leibnizian, or Maxwellian 
space-time (sections 2. 1 to 2.3) undermines determinism. In addition, mov
ing an item from the A side to the P side of the absolute-dynamic cut can 
also change the fortunes of determinism. Thus, in Cartan's formulation of 
Newtonian gravitation the affine connection er is in general not flat, and 
more to the point, it varies from model to model, with its values being 
determined by a field equation that relates er to the mass distribution. In 
the language of the appendix of chapter 2, er neither remains similar nor 
remains immovable, and so we are justified in putting it on the P side 
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of the cut. The result is that an absolute map now has only to match up 
the planes of absolute simultaneity, the 1E3 structure of the planes, and 
the intervals between nonsimultaneous events. Such a map still contains 
enough freedom to violate minimal Laplacian determinism, at least if 
space-time substantivalism is adhered to. The extreme case occurs when 
all the A s  are erased, with only Ps remaining. In that case substantivalism 
leads to the demise of any interesting form of determinism. That is the case 
of GTR. 

6 The Leibnizian Reaction 

I am morally certain that Leibniz would have endorsed the argument of 
sections 3 and 4; indeed, I think that he would have claimed it as his own. 1 0 
The claim has some plausibility. Although Leibniz never advocated the 
mutability of space-time structure, mutability is a comfortable companion 
to his doctrine that space is the order of relations of coexistences and time 
is the order of relations of successive events. And more important, the core 
of the argument in sections 3 and 4 consists of an application of the causal 
version of PSR. In his Second Reply, Clarke conceded, " 'Tis very true, 
that nothing is, without a sufficient reason why it is, and why it is thus 
rather than otherwise. And therefore, where there is no cause, there can be 
no effect" (Alexander 1984, p. 20). Applying the "where there is no cause, 
there can be no effect" version of PSR to the case of GTR, Leibniz could 
argue that the difference in the g- and T-fields after t = 0 must be traceable 
to differences before t = O. But by construction, there is no difference prior 
to t = O. Thus, to avoid a violation of the causal version of PSR, substan
tivalism must be abandoned. I would only add that the specific form of the 
argument given in sections 3 and 4 is stronger than the one I have put in 
Leibniz's mouth, for my version allows that the differences after t = 0 might 
be traceable not to a difference before t = 0 but to space invaders, stochastic 
elements, etc., but it shows that even if these and other defeasors are ruled 
out, substantivalism is inconsistent with "where there is no cause, there can 
be no effect." 

Finally, the obvious way to save the causal version of PSR is to say that 
the two substantival models constructed in section 3 are just different 
modes of presentation of the same physical state of affairs, and it is only a 
short step from there to say that any two diffeomorphically related substan
tival models provide equivalent descriptions. Since this notion is clearly a 
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straightforward extension of Leibniz's treatment of the different substan
tivalist models obtained by shifting bodies in space (see sections 6.2 to 6.5), 
I have called the equivalence Leibniz equivalence in anticipation (see 
section 8.7). 

Modern general-relativists come close to adopting a Leibnizian stance, 
although there is admittedly room for equivocation. Thus, Hawking and 
Ellis write, "Strictly speaking then, the model for space-time is not just one 
pair (M, g) but a whole equivalence class of pairs (M', g ' )  which are equi
valent to (M, g)" ( 1973, p. 56). (Their notion of equivalence of space-time 
models is just the one I have been using above.) And in a similar vein, Wald 
writes: 

If 4J :  M -+ N is a diffeomorphism, then M and N have identical manifold structure. 
If a theory describes nature in terms of a space-time manifold, M, and tensor fields, 
T(i), defined on the manifold, then if 4J : M -+ N is a diffeomorphism, the solutions 
(M, T(i) and (N, 4J * T(i») have physically identical properties. Any physically 
meaningful statement about (M, T(i)) will hold with equal validity for (N, 4J * T(ll). 
(Wald 1984, p. 438) 

Of course, to say that two models are "physically equivalent" or "have 
physically identical properties" is ambiguous between (1 )  corresponding to 
distinct but physically indistinguishable states of affairs, and (2) giving 
different descriptions of the same state of affairs. But I take it that the 
endorsement of determinism for Einstein's field equations favors (2). 

The next obvious question is what is entailed by taking (2) seriously. But 
before turning to that matter, it is worth pausing to survey Einstein's own 
considered reaction to his hole argument. 

7 Einstein's Reaction 

Since Einstein's hole argument set off the line of inquiry pursued in this 
chapter, it is only natural to wonder how he came to assess the implications 
of his argument. In particular, after he reaffirmed general covariance and 
after he had realized that the dialectic of the argument leads to a widespread 
underdetermination, not just to an underdetermination of the g-field by 
the T-field, how did he read the significance of the underdetermination? 

The first answer is more than a little disappointing in its reliance on a 
crude verificationism and an impoverished conception of physical reality. 
In the paper that laid the foundations of the final GTR, Einstein wrote: 
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All our space-time verifications invariably amount to a determination of space-time 
coincidences. If, for example, events consisted merely in the motion of material 
points, then ultimately nothing would be observable but the meeting of two or more 
of these points. Moreover, the results of our measurings are nothing but verifica
tions of such meeting of the material points of our measuring instruments with 
other material points, coincidences between the hands of a clock and the points on 
a clock dial, the -observed point-events happening at the same place at the same 
time. ( 19 16, p. 1 1 7) 

Now since all of our physical experiences can be reduced to such coin
cidences and since all physical laws are just summaries of patterns of such 
experiences, it follows that the freedom to perform diffeomorphisms does 
not lead to an underdetermination in physics, for diffeomorphisms pre
serve such coincidences. This is not quite the language Einstein used in his 
19 16  paper-he was using the terminology of coordinate systems and 
coordinate transformations-but the basic thrust emerges nonetheless: 

The introduction of a system of reference serves no other purpose than to facilitate 
the totality of such coincidences. We allot to the universe four space-time variables 
X I '  X2, X3' X4 in such a way that for every point-event there is a corresponding system 
of values of the variables . . . .  To two coincident point-events there corresponds 
one system of values of the variables X I ' "  X4, i.e. coincidence is characterized by 
the identity of the coordinates. If, in place of the variables X I ' "  X4, we introduce 
functions of them x� , x� , x; ,  x�, as a new system of coordinates, so that the systems 
of values are made to correspond to one another without ambiguity, the equality 
of all four coordinates in the new system will also serve as an expression of the 
space-time coincidence of the two point-events. ( 1 9 16, pp. 1 1 7- 1 1 8) 

Lest the reader think that these remarks of Einstein's are not to be taken 
seriously because they are only introductory filler to the serious part of his 
paper, it is worth quoting from a letter Einstein wrote in January of 19 16  
to  his friend Paul Ehrenfest. Having previously convinced Ehrenfest o f  the 
need to abandon general covariance, Einstein was then in the curious 
position of having to unconvince him. Einstein's persuasion was couched 
in terms of an example of Ehrenfest's involving the illumination of a 
photographic plate by means of starlight that passes through an aperture. 

Your example somewhat simplified: you consider two solutions with the same 
boundary conditions at infinity, in which the coordinates of the star, the material 
points of the aperture and of the plate are the same. [See figure 9.3(a).] You ask 
whether "the direction of the wave normal" at the aperture always comes out the 
same. As soon as you speak of "the direction of the wave normal at the aperture," 
you treat this space with respect to the functions g/lV as an infinitely small space. 
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Figure 9.3 
Einstein's thought experiment 

From this and the determinateness of the coordinates of the aperture it follows that 
the direction of the wave normal AT T H E  APERTURE for all solutions are the same. 

This is my thesis. For a more detailed explanation [I offer] the following. In the 
following way you recover all solutions allowed by general covariance in the above 
special case. Trace the above little figure onto completely deformable tracing paper. 
Then deform the paper arbitrarily in the plane of the paper. Then make a carbon 
copy back onto the writing paper. Then you recover e.g. the figure [fig. 9.3(b)] .  
When you relate the figure once again to orthogonal writing paper coordinates, the 
solution is mathematically different from the original, and naturally also with 
respect to the g" •. But physically it is exactly the same, since the writing paper 
coordinate system is only something imaginary. The same point of the plate always 
receives the light. . . .  

The essential thing is: as long as the drawing paper, i.e. "space," has no reality, 
then there is no difference whatever between the two figures. It [all] depends on 
coincidences. 1 1  

The second answer is more interesting but also more cryptic. In the 
fifteenth edition of Relativity: The Special and the General Theory, Einstein 
added an appendix that showed he had dropped the narrowly positivistic 
conception of physical reality assumed in his first response, in favor of a 
view that accords fields, especially the g-field, a basic role: 

If we imagine the gravitational field, i.e., the functions gik , to be removed, there does 
not remain a space of the type ( 1 )  [Minkowski space-time], but absolutely nothing, 
and also no "topological space." For the functions gik describe not only the field, 
but at the same time also the topological and metrical structural properties of the 
manifold . . . .  There is no such thing as an empty space, i.e., a space without field. 
Space-time does not claim existence on its own, but only as a structural quality of 
the field. ( 196 1 ,  p. 1 55) 

Philosophers of every persuasion have claimed to nestle under Einstein's 
wing, and it is no different in the absolute-relational debate. Relationists 
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will no doubt see Einstein's dictum that "space-time does not claim an 
existence of its own, but only as a structural quality of the field" to be an 
endorsement of antisubstantivalism. How such an antisubstantivalism is 
to be realized, Einstein did not say, but his remarks could be taken to 
suggest the view to be explored in section 9 below. On the other hand, 
substantivalists might also take comfort from Einstein's remarks, as we 
shall see in sections 1 1  and 12. But before turning to details, it will be useful 
to structure the discussion by setting out a taxonomy of possible reactions 
to Einstein's hole construction. 

8 A Catalog of Responses to Einstein's Hole Construction 

In what follows I shall ignore instrumentalist responses, such as Einstein's 
initial idea that no real form of underdetermination is involved, because 
all of physical reality reduces to space-time coincidences such as the inter
section of light rays. The common thread to all of the noninstrumentalist 
reactions discussed below is a realism about fields in general and about the 
metric field in particular. But this thread is much too slender to stitch 
together any significant unity, for the noninstrumentalist responses are 
sharply divided between the relationist and absolutist camps, and within 
the latter there is an untidy variety of subcamps. 

The relationist will wish to urge that the hole construction, which may 
be viewed as a causal version of Leibniz's PSR argument, is polemically 
effective where Leibniz's original theological version was not. That is, the 
construction is to be interpreted as showing that if one is a realist about 
fields in the context of theories like GTR, then one must be an instrumen
talist about space-time points. The main challenge to this point of view is 
the apparent need to use space-time as support for fields. Two possible 
responses to this challenge are discussed below in sections 9 and 10. 

In reaction to the hole construction the absolutist may contemplate a 
partial retreat or may opt for an uncompromising hold-the-line response. 
The strategy of partial retreat would involve giving up space-time points 
but would maintain that space-time remains substantival at some deeper 
level. Reasons for this sentiment will emerge in sections 9 and 10. The 
no-retreat strategy would continue to maintain a realism with respect to 
space-time points either by defending manifold substantivalism or by re
placing it with some other form of space-time substantivalism. 
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The first fork of the no-retreat strategy can be implemented by a tactic 
that seeks to absorb the blow of the hole construction or alternatively by 
a tactic that seeks to dodge the blow. The absorption tactic would cheer
fully admit that the hole construction shows that determinism fails but 
would claim that this failure is far from fatal to manifold substantivalism. 1 2 

The failure is certainly not as pernicious as, say, that involved in an 
irreducibly stochastic process. Moreover, general-relativists can be taken 
as endorsing this point of view when they say that the initial-value problem 
in GTR can have a unique solution only "up to a diffeomorphism." How
ever, as seen in section 6 above, the very same physicists want to overcome 
the underdetermination problem by taking Leibniz-equivalence classes of 
absolutist models and claiming that they correspond one to one to physical 
states. This tension suggests that the tactic of trying to absorb the blow is 
not a happy one. 

Dodging the blow would be achieved by showing that, contrary to first 
appearances, no underdetermination is involved in the hole construction. 
Taking the cue from the discussions of M011er and of Adler, Bazin, and 
Schiffer reviewed above in section 4, one could hold that all gs pro
duced in the hole construction differ only formally and describe the same 
geometric physical situation. This tactic would be understandable on a 
passive construal of the hole construction, for then d1 * g, d2 * g, . . .  for 
various ds would stand not for different metrics but merely for different 
presentations of the same metric in different coordinate systems, and thus 
there would be no more underdetermination in physics than there is in the 
expression of the mass of a particle in different systems of units. But on the 
active interpretation of the construction, there are in the offing many 
different metrics that, according to manifold substantivalism, predict objec
tively different properties of space-time points; for example, d1 * 9 may say 
that points p and q are relatively lightlike, while d1 * 9 says that they are 
relatively spacelike, which leads to the conflicting predictions that p and q 
can and cannot be connected by a non broken light ray. 

The appearance of attributing contradictory properties can perhaps be 
avoided by taking space-time points to possess multiple conjunctive prop
erties each of which is multiply conditionaV 3 namely, point p carries g(p) 
when q carries g(q) and r carries g(r), etc. through all the points; p carries 
d1 * g(p) when q carries d1 * g(q), etc.; and so on through all the diffeo
morphisms. One can wonder, however, how the substantivalist can use 
such properties to explain the phenomena without also invoking some 
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determinate metrical properties of  space-time points and thereby unravel
ing the web of conjunctive conditionals. One can also wonder whether such 
conditional properties ought to be countenanced in the discussion of 
determinism. For if they are admitted, it may be hard to find a principled 
way to exclude such properties as 'futurizes up (down)' which now applies 
to a spin t particle just in case it emerges spin up (down) from a 
Stern-Gerlach apparatus the first time in the future it is run through. With 
the admission of such properties, determinism seems to dissolve into a 
triviality. 

If manifold substantivalism cannot be sustained under the pressure of 
the hole construction, there are still three ways to uphold substantivalism 
with respect to space-time points: adopt a structural-role theory of identity 
for space-time points, claim that metrical properties are essential to space
time points, or apply counterpart theory to space-time models. These three 
tactics will be discussed in turn in sections 12, 1 3, and 14. 

9 Trying to Do without Space-Time Points 

One way to ground the idea that substantivalist models are merely different 
representations of the same physical reality is to carry out the program 
outlined in section 8.7. In view of the discussion in this chapter, one should 
add to the list of requirements on the Leibniz models the further demand 
that they make determinism possible. I now propose to argue that although 
the relationist can carry out the program part way by eliminating space
time points, it is dubious that the program can be pushed so far as to 
eliminate all substantivalist entities, at least as long as the field concept is 
retained in some recognizable form. 

As an example of how points can be eliminated at one level but recovered 
in terms of representations at another level, let us start with a topological 
space X, consisting of a point set and a collection of open sets. Consider 
the collection Co(X) of all continuous real-valued functions on X. Equipped 
with the operations of point wise addition and multiplication, Co(X) forms 
a ring. The subring of all bounded continuous functions is denoted by 
ct(X), and if X is compact, ct(X) = Co (X). Once we have constructed the 
rings, we can throw away the underlying point space and consider Co and 
ct as algebraic objects in their own right. These algebraic objects can in 
turn be represented and realized respectively as rings of continuous and 
bounded continuous functions on a topological space. Many such realiza-
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tions of the same algebraic object are possible, but if the representing spaces 
have some nice properties, the algebraic object determines the representing 
space up to topological equivalence. For if X and X' are two bases of 
realization of the same algebraic object, then Co(X) and CO(X') are isomor
phic as rings, and likewise for CS(X) and CS (X'). And if X and X' are 
compact, the isomorphism of Co(X) and CO(X') implies that X :;;;: X' (i.e., 
X and X' are homomorphic). And if X and X' are completely regular and 
satisfy the first axiom of countability, conditions satisfied by spaces used 
in physics, then the isomorphism of CS(X) and ct(X') again implies that 
X :;;;: X' (see Gillman and Jerison 1960 and Nagata 1974). 14 In sum, for a 
broad category of topological spaces there is an algebraic structure com
mon to topologically equivalent spaces, and this structure is in turn strong 
enough to determine the topology. Thus, one can view the basic objects of 
analysis as algebraic objects and treat different but equivalent topological 
spaces as merely different representations of the same basic object. 

Geroch ( 1972) showed how to extend these ideas to general relativity and 
similar theories. A Coo manifold M allows us to define in addition to Co(M) 
and CS(M) two other rings, Coo (M) (the ring of COO real-valued functions), 
and Cc (M) (the ring of constant functions), which is isomorphic to lIt As 
we saw in section 8.3, a smooth contra variant vector field on V can be 
characterized as a mapping from Coo (M) to Cc (M) such that V(,1f + jig) = 
,1V(f) + JL V(g) and V(f g) = fV(g) + V(f)g for J, g E Coo (M) and A, JL E 
Cc(M). Covariant tensor fields can then be characterized as multilinear 
maps from tuples of contravariant vector fields to Cc(M). And in fact, all 
the machinery needed to do general-relativistic gravitation can be coded 
up in terms of such operations. Now in parallel with the move made for 
topological spaces, throw away the manifold M and keep the algebraic 
structure, which we may call a Leibniz algebra. 1 s Such an .!l' can be realized 
or represented by a standard model <M, g, T) in many ways, but any two 
such realizations of the same .!l' will be Leibniz-equivalent. 1 6 Thus, it is 
open to take the .!l's as giving a direct characterization of physical reality 
and view the different members of the corresponding Leibniz-equivalence 
class of substantival models as giving different representations of the same 
reality. This provides one plausible reading, I think, of Einstein's idea that 
space-time, M, "does not claim an existence of its own, but only as a 
structural quality of the field." 

While the Leibniz algebras provide a solution to the problem of charac
terizing the structure common to a Leibniz-equivalence class of substantival 
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models and the solution eschews substantivalism in the form of space-time 
points, the solution is nevertheless substantival, only at a deeper level. And 
the Leibniz algebras do not escape the theological version of Leibniz's PSR 
objection, for while it is true that all the members of a Leibniz-equivalence 
class of substantival models can be recovered as realizations of a single ft', 
it is equally true that the different members of the equivalence class can be 
taken to generate different but isomorphic Leibniz algebras. The prolifera
tion of equivalent substantival models is thus matched by an equinumerous 
proliferation of equivalent Leibniz algebras, and the problem of why God 
should choose to actualize one rather than another of the former is trans
ferred to the problem of why He should choose to actualize one rather than 
another of the latter. 

As noted in chapter 6, no theory formulated in a standard logical 
language can hope to fix the models more uniquely than up to isomorphism. 
So the existence of isomorphic models does not by itself impugn the theory 
or give grounds for dOUbting the existence of the entities postulated by 
theory. To generate such qualms, an additional consideration must be 
supplied. In the case of theories presupposing manifold substantivalism, 
the relevant consideration is the demand for the possibility of determinism. 
In the case of the Leibniz algebras the desire to secure the possibility of de
terminism does not add any additional pressure to find a purely relational 
solution to the PSR problem, for the proliferation of Leibniz algebras 
does not threaten determinism. In keeping with the spirit of the present 
approach, the laws of nature must be expressed directly in terms of the 
Leibniz algebras, but the meaning of determinism is to be understood in 
terms of the space-time realizations of the algebras. Suppose that the laws 
of nature have spoken and that the physically possible Leibniz algebras 
have been picked out. Then in its minimal form, Laplacian determinism 
demands that for any physically possible ft' and ft" ,  the class of space-time 
representations of ft' is identical to the class of space-time representations 
of ft" if the restrictions to t :::; 0 of the classes of representations are 
identical. 1 7 Whether or not this property holds is a contingent matter, but 
nothing about the construction of the ft's precludes the possibility that it 
holds. 

For those who want a more thoroughgoing relationism, it would be 
necessary to exorcise from the Leibniz algebras the ghost of substantival 
space-time-the prespace, as it were-or else to follow some rather different 
path. The former route seems to me to be unpromising, at least if the 
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concept of field is retained and interesting representation theorems are to 
remain provable. Another path to relationism is explored in the next 
section. 

10 Another Relationist Approach 

Another more thoroughly relational and more constructivist approach 
would proceed in two steps: first, the space-time manifold would be built 
up from physical events and their relations, and then with the manifold in 
hand the characterization of fields could proceed as usual. To implement 
the crucial first step, we start with a plenum of physical events $. (From the 
substantivalist's point of view, $ would consist of puncta I events that cover 
M; i.e., for any P E M, there is an e E $ such that e occurs at p . Of course, 
the relationist cannot in good conscience take this as a definition of pleni
tude.) And we suppose that $ is equipped with a set of relations, which for 
definiteness we, following the Reichenbach school, take to be causal rela
tions. In particular, consider the binary relations t, c, 1 of timelike, causal, 
and lightlike precedence. (From the substantivalist's perspective, t(el , e2 ) 
[respectively, c(e l , e2 ), I(e l , e2 )] just in case el and e2 occur respectively at 
points Pl ' P2 E M and there is a future-directed timelike (respectively, causal, 
lightlike) curve from Pl to P2 . l S But for the relationist these are primitive 
relations, and the substantivalist's "explanation" of these relations is turned 
on its head.) Two events el ' e2 E $ are said to be causally equivalent just in 
case for any e3 E $, t(el , e3 ) if and only if t(e2 , e3 ), t(e3 ' el ) if and only if 
t(e3 ' e2 ), and similarly for c and I. A space-time point is then defined as a 
causal-equivalence class of events, and the causal relations t, c, and 1 are 
transferred in the obvious way to relations t, c, Ton the set of points P(e.g., 
T(Pl , P2 ) if and only if there are el and e2 in the equivalence classes of 
events corresponding respectively to Pl and P2 such that t(e l , e2 » .  A 
topology is then induced on P by taking as a basis for open sets, sets of the 
form r(p ) (') r(q), p ,  q E P, where r(p ) =. { p ' E P : t(p , p ' )} and r(q) =. 

{q' E P : t(q', q)} .  
From the substantivalist's perspective the construction of  points will be 

satisfactory only if distinct space-time points have distinct causal pasts 
and/or futures. And the definition of topology will be satisfactory only if 
the space-time is strongly causal (Le., for every p E M and every neighbor
hood of p ,  there is a subneighborhood that is not intersected more than 
once by any timelike (curve), for then and only then will the causal 
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topology coincide with the manifold topology (see Hawking and Ellis 1973, 
pp. 196- 197). Since there are various general-relativistic cosmological 
models that violate these causality conditions, the relationist will have to 
advance considerations that show such models are beyond the pale of 
physical possibility. It is sometimes claimed that the causal paradoxes that 
would result from closed timelike curves demonstrate the conceptual absur
dity of such things. I think that this is a mistake, 1 9 and in any case a viola
tion of strong causality can occur without there being closed causal curves. 

Furthermore, even accepting the above causal construction of topology, 
I do not see how to continue the construction to include the differential 
structure. And the entire procedure gives off whiffs of circularity. It is one 
thing to start with events of the type Einstein imagined (e.g., coincidences 
such as the collision of two particles), but it is quite another to resort, as 
presumably one must to get a plenum of events, to events that the absolutist 
takes to be the tokening of values of fields at space-time points and the 
relationist takes as unanalyzed primitives. 

I do not want to be taken as suggesting that the type of program alluded 
to above is not worth pursuing; on the contrary, I think we have much to 
learn from it whether or not it succeeds. But I would again note the 
recurring point that relational theorists leave more promissory notes than 
completed theories. 

11  An Absolutist Counterattack 

The absolutist might rest content with trying to establish what I left as 
conjectures in sections 9 and 10, namely, that the models of reality produced 
in the program of section 9 remain substantival at some level even if 
space-time points are given up, and that the program of section 10 cannot 
succeed. 

The more resolute absolutist will want to dig in his heels at an earlier 
juncture. If he wants to preserve the possibility of determinism, he will have 
to agree with Leibniz that Leibniz-equivalent substantivalist models cor
respond to the same reality. But he may wish to claim that this is so not 
because the equivalent models provide different descriptions of a reality 
devoid of space-time points but rather because the identity of the points is 
determined by their metrical properties and relations. 20 Both sides in the 
absolute-relational debate complain that the devil quotes scripture. The 
antisubstantivalist described in section 9 quoted Einstein's remark that 
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space-time "is a structural quality of the field" and took it to mean that 
space-time points exist in only a secondhand representational sense. Now 
the absolutist can also quote Einstein's remark, giving it the different 
reading that space-time points exist but have their identities settled by the 
structural roles they play in the g-field. Although my sympathies generally 
lie with the absolutist side of the absolute-relational debate, I must confess 
a number of qualms about this resolute absolutism, the most serious being 
tha� I do not see how it can be supported by a defensible account of identity 
and individuation. The point will be developed in the context of a discussion 
of the metaphysics of predication. 

12 Predication and Identity 

Nothing is so familiar and straightforward in its application as predication 
and yet so baffling in its theoretical underpinnings. What helps to make 
the everyday attribution of redness to individual a and greenness to individ
ual b a straightforward matter is the assumption that a and b have already 
been picked out as distinct objects-an assumption that is often unprob
lematic in concrete applications. But to carry the assumption to its logical 
extreme of bare particulars-items that differ solo numero-is to invite a 
conundrum, namely, what is the principle of individuation of such items? 
It was precisely to avoid such unsolvable puzzles that Leibniz insisted on 
his principle of identity of indiscernibles. 

(P) [P(a) +-+ P(b)] -+ a = b (PIdIn) 

And yet I believe that by asking how it is to be enforced, we can see that a 
kind of particularism, semibare if not entirely nude, is entailed by both 
traditional relationism as well as traditional substantivalism. The partic
ularism I have in mind asserts that PIdIn will not be true in general unless 
the quantifier ranges over properties that are nonqualitative in the sense 
that they refer to particular individuals. I have no general characterization 
of the qualitative/nonqualitative distinction, but examples should suffice for 
purposes of the argument. Consider two kinds of interpretations of P(x): 

P(x) means that 

x = c  x is red 

x =/- c  x is not red 

x is ten feet from c there is a y 10 feet from x 
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where c names a particular individual. Under the interpretations on 
the left-hand list, but not the right-hand list, P(x) refers to particular 
individuals. 2 1 

I take it as obvious that traditional space substantivalism entails the form 
of particularism in question. Let a and b denote space points, and suppose 
that space is homogeneous and isotropic and that it is devoid of bodies. 
Then to make PIdIn hold, it is necessary either to resort to items like those 
in the left-hand list or to postulate that the points are distinguished by, say, 
different hues of a radiation they give off. Traditional absolutists never 
thought that they had to countenance such emanations. 

To explore the implications of relationism, suppose that a and b denote 
bodies, that these are the only bodies that exist, and that they have exactly 
the same size, shape, composition, etc. The absolutist can say that a and b 
are distinguished by their properties of location in the container space. By 
(R3) of section 1 . 5  the relationist is barred from using primitive monadic 
properties of spatial location, and by (R2), properties of spatial location do 
not derive from the relation of the bodies to a spatial substratum. And to 
assert that there must be some purely qualitative, nonspatial properties of 
a and b that ground the difference between them is to make an assertion 
that is unsupported by anything that physical investigations have been able 
to uncover. Clarke taxed Leibniz with just these considerations when he 
claimed that "there is no impossibility for God to make two drops of water 
exactly alike" and that "two things, by being exactly alike, do not cease to 
be two" (Alexander 1 984, p. 46). Leibniz was forced to concede, "When I 
deny that there are two drops of water perfectly alike, or any two bodies 
indiscernible from each other; I don't say, 'tis absolutely impossible to 
suppose them; but it is a thing contrary to the divine wisdom, and which 
consequently does not exist" (p. 62). The concession of logical possibility 
already grants Clarke's point. Nor is it evident why the existence of two 
qualitatively indistinguishable water droplets is supposed to be contrary 
to divine wisdom, if by that it is meant contrary to PSR. 22 

The opposite of individuals that differ solo numero seems no less absurd. 
To say that an individual is just a collection of its properties is to utter 
nonsense if for no other reason than that predication assumes an object to 
bear the property, as Leibniz himself insisted. And yet there is a sense in 
which Leibniz's notion of the complete concept of an individual captures 
a form of the idea that an individual is a bundle of properties. Namely, the 
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principle of the identity of indiscernibles and its converse, the principle of 
indiscernibility of identicals, 

a = b -+ (P) [P(a) +-+ P(b)], (Plnld) 

are both to be applied across possible worlds as well as within a world; 
that is, every property of an individual is an essential property, and the 
individual just is the thing that satisfies the list of properties constituting 
its essence. This account of individuation does not succeed in capturing a 
workable version of the traditional idea of individuals as bundles of prop
erties since as already noted, Pldln is confounded unless the bundle in
cludes, as it apparently must, properties that refer to particular individuals. 

Another way to try to implement the idea of individuals as bundles of 
properties is to try to settle matters of identity and individuation not 
piecemeal but collectively for an entire system of entities. On this holistic 
understanding of identity, Pldln is to be applied not within a world or 
across worlds to individuals in the usual sense but rather to entire worlds, 
in which case the principle asserts that isomorphic worlds are identical. 
The individuals in a world are then just those entities that play such and 
such a structural role in the overall scheme of things. Alternatively, it might 
be held that the identity of various types of individuals is determined by 
the structural role the individuals of the given type play with respect to 
some circumscribed list of properties. I take it that this is the view of the 
resolute substantivalist of section 10 who finds support in Einstein's dictum 
that space-time "is a structural quality of the [g-]field," which, on the 
preferred reading, means that the identity of space-time points is fixed by 
the structural role the points play in the metric field. Metaphysics as well 
as politics makes strange bedfellows. Here we have the spectacle of a 
space-time substantivalist trying to defend his position by appealing to a 
Leibnizian theory of identity. The manifold substantivalist can also buy 
into this structural-role theory of identity, only for him the relevant struc
tural role is played out at the level of topology and differential structure. 

What is common to all these structuralist views is the notion that identity 
follows isomorphism, the differences being whether the isomorphism has 
to be total or partial, and if partial, with respect to what set of properties. 
As already remarked in chapter 6, this common core is in general incoherent 
if "identity" means literal identity and if isomorphism is not unique. If 
1/11 : W -+ W' and 1/12 : W -+ W' are relevant isomorphisms, total or partial 
as thr view of identity requires, and if i is an individual of W, it follows that 
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i is identical with t/ll (i) and with t/l2(i). And so by transitivity of identity, 
t/ll (i) = t/l2(i), which gives a contradiction if t/ll and t/l2 are distinct. Per
haps literal identity follows t/ll but not t/l2 . But since t/l2 is an isomorphism, 
to fail to identify the corresponding individuals of t/l2 is to back away from 
the idea that identity and individuation are settled by the structural roles 
played by the individuals. And it raises the problem of which isomorphisms 
determine identity and which do not. The intractability of this problem is, 
I suggest, a strong clue that the view that generates it is badly amiss. 

One could try to escape these difficulties by saying of space-time points 
what has been said of the natural numbers, namely, that they are abstract 
rather than concrete objects in that they are to be identified with an order 
type. But this escape route robs space-time points of much of their sub
stantiality and thus renders obscure the meaning of physical determinism 
understood, as the substantivalist would have it, as a doctrine about the 
uniqueness of the unfolding of events at space-time locations. 

I conclude that the most straightforward ways of trying to understand 
the resolute absolutist position of section 10 are indefensible. 

13 Essentialism 

The discussion of section 1 1  and the more sophisticated arguments of 
Adams ( 1979) indicate that individuals possess a primitive nonqualitative 
haecceitas ("thisness"). It does not follow automatically that transworld 
identity of individuals is primitive, nor that there cannot be any qualitative 
necessary conditions for the thisness of an individual. I begin this section 
by assuming not only that these things do not follow but also that they are 
not true. In a provocative and learned paper that confronts Einstein with 
Aristotle, Tim Maudlin ( 1 988) argues that metrical properties are essential 
to space-time points (a space-time point wouldn't be the very point it is if 
it lacked the metrical properties it actually has) and that therefore, Einstein's 
hole construction cannot be used to saddle the space-time substantivalist 
with indeterminism. In the language of the preceding section, this essen
tialism applies within a world and across worlds a restricted version of 
Plnld, a = b -+ (P)[P(a) � P(b)], in which the property variable ranges 
over metrical properties, but it leaves in abeyance intra- and transworld 
applications of Pldln and thereby avoids the difficulties with the structural
role theory of identity. Since Maudlin's views on the details of the applica
tion of essentialism to space-time substantivalism are still evolving, it 
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should be understood that the form of essentialism I criticize here may bear 
only a distant relation to the one he now wishes to advocate. 

Let us temporarily set aside qualms about how the essential/accidental 
cut is to be drawn in order to inquire in more detail how metric essentialism 
is supposed to save determinism. For theories like GTR, manifold substan
tivalism apparently leads to automatic violations of 

D For dynamically possible models, sameness before t = 0 implies same
ness after t = O. 

There are three ways to prevent violations of (D) from turning into genuine 
violations of ontological determinism. The first is to claim that the theory 
is incomplete. Because the theory underdescribes the world, its dynamically 
possible models correspond one-many to physically possible worlds. And 
consequently, the splitting of models involved in the failure of (D) need not 
correspond to a splitting of physically possible worlds. The second way is 
to claim that theory overdescribes rather than underdescribes the world, 
that its dynamically possible models correspond many-one to physically 
possible worlds. This is the way of the relationist. The third way is to say 
that the theory misdescribes, that some of its dynamically possible models 
do not correspond to physically possible worlds. This is the way of the 
metrical essentialist. The hole construction generates innumerably many 
models, each of which is intended to describes a physically possible world. 
According to metric essentialism, however, the intention fails save in at 
most one instance; indeed, all those models, except the one corresponding 
to the actual world, fail to describe a logically possible world, since they 
ascribe to some space-time points metrical properties that are contrary to 
the essence of the points. 

Saving ontological determinism in the face of a violation of (D) requires 
more than bald assertion. If one claims that the failure of (D) indicates only 
that the theory is incomplete, then one is under obligation to show how to 
supplement the theory so as to restore (D). In the case of the hole construc
tion I argued that the relevant supplementation is not forthcoming, for after 
additional variables are adjoined to the theory, the hole construction can 
be cranked up anew. Next, if one claims that the failure of (D) indicates 
only that the theory overdescribes, then one is under obligation to show, 
without loss of empirical content, how the theory can be purged of its 
descriptive fluff. Section 9 described how one such purging might go, but 
that purging went in a relationist direction. And finally, if one claims that 
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the failure of (0) indicates only that the theory mistakenly reads physical 
possibility for logical impossibility, then one is under obligation to show 
how the theory can be cured of its mistakes. 

The last challenge can be raised various ways. From the point of view 
of orthodox space-time theories, it seems unfortunate to try to put metrical 
properties on the essential side of the essential/accidental cut in the context 
of GTR, where the space-time metric is a dynamic field. As explained in 
chapter 8, fields are not properties of an undressed set of space-time points 
but rather properties of the manifold M, which implies that fields are 
properties jointly of the points and of their topological and differential 
properties. (It is just this fact that was taken advantage of in section 9 above 
to get rid of space-time points. The trick was to regard functions from 
space-time points to IR as objects in their own right and then to characterize 
vector fields, for example, as derivations of these objects.) Thus, before the 
second-order field properties can be specified, first-order predications must 
already be in place, which presupposes that the identity and individuation 
of the points has been settled prior to the application of the field properties. 
By claiming that the identity of points depends upon the g-field, the metric 
essentialist is claiming that the differential geometer literally does not know 
what he is talking about. The substantivalist wants to appeal to the fact 
that the best available scientific theories quantify over space-time points 
as a reason for believing in the existence of space-time points. For the metric 
essentialist to make such an appeal is awkward, since those same theories 
characterize fields in a way the essentialist regards as embodying a false 
theory of identity. It then seems fair to ask what alternative characterization 
of fields the essentialist proposes to give. The only alternative I am aware 
of is the one sketched in section 9, but it points in a direction opposite to 
the one in which the essentialist-substantivalist wants to go. 

Leaving aside the technicalia of the mathematics of field theory, there 
remains the fact that metrical essentialism must resort to unnatural contor
tions to explain the most striking feature of Einstein's GTR: the dynamic 
character of the space-time metric. The most straightforward way to say 
what this feature means is to assert, for example, that if some extra mass 
were brought close to some point, then the curvature at that very point 
would be different. But the metrical essentialist views such assertions as 
literally self-contradictory.2 3 In addition, the metrical essentialist must 
resort to contortions in making sense ofWitten's ( 1 988a, 1988b) topological 
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theory of quantum gravity, which views the space-time metric as arising 
through symmetry breaking. 24 

Finally, one can wonder how metrical essentialism saves determinism 
against the threat posed by the hole-construction argument without seri
ously weakening if not entirely trivializing it. Suppose that Einstein's field 
equations were weakened so as to allow as solutions M, g1 ' T1 and M, g2 ' 
T2 such that before t = 0, the g- and the T-fields can be matched up by a 
diffeomorphism, but after t = 0, no diffeomorphism matches them. Assum
ing the theory to be complete, this would generally be regarded as a genuine 
failure of determinism. But by metrical essentialism, if M, g1 ' T1 corres
ponds to the actual world, then M, g2 ' T2 does not correspond to a 
physically possible world or indeed to a logically possible world; hence, 
contrary to intuition, the bifurcation of the models of the theory does not 
indicate a failure of ontological determinism. Metrical essentialism must 
once again resort to special contortions to explain how determinism can 
fail. I do not say that the contortions cannot succeed, but I do say that 
together with the other contortions, they do make metrical essentialism 
unattractive as an answer to the hole problem. 

The committed essentialist need not lose heart in the face of the problems 
surveyed above, for some of what he wants to say can be said under the 
protective mantle of counterpart theory. 

14 Counterpart Theory 

The counterpart theorist shares with the metrical essentialist the conviction 
that the underdetermination that the hole construction exhibits in models 
of GTR does not translate into an ontological indeterminism, because the 
theory systematically misdescribes physical and logical possibilities. Before 
turning to details, I want to register some general qualms both about the 
motivation for counterpart theory and about its application to the deter
minism problem. 

While I have nothing new to add to the literature on transworld identity, 
a few points should nevertheless be stated for the record. First, if possible 
worlds are not to be thought of as distant planets to be discovered by use 
of a metaphysical telescope focused into the outer space of possibilities, but 
as Kripke would have it, possible worlds are stipulated, then much of the 
worry about transworld identification of individuals disappears. Second, 
one could force out the result that an individual exists in only one possible 
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world by insisting with Leibniz that every property of an individual is 
essential to that individual. Such a view elevates W. C. Fields's fatal glass 
of beer to a ridiculous extreme: if I had had one more (or one less) glass of 
beer yesterday, then I would not be the very person I am. Such talk can 
only be read as a very deviant version of English. Third, as N athan Salmon 
( 198 1 )  has shown, it is no good to claim that counterpart theory is needed 
because identity is a vague relation. If it is supposed to be indeterminate 
whether or not a is identical with b, then it is determinate that the pair ( a, b) 
is not identical with (a, a) or with (b, b), and therefore it is determinate after 
all that a =1= b.2 5 Finally, I note that the standard mathematics of field 
theory does not encourage the notion that there is some difficulty in 
identifying points of the space-time manifold across different physical 
situations; indeed, as I have been emphasizing, just the opposite is true. 

A potential disadvantage of the application of counterpart theory to the 
hole problem is that a counterpart formulation of determinism would seem 
to take away much of the sting or, if you prefer, the excitement of inde
terminism. By way of analogy, recall the well-known problem Leibniz had 
in explaining the basis of human freedom. Leibniz wanted to say that when 
Adam chose to eat the forbidden fruit, he was free to sin or not to sin. But 
for Leibniz there is a problem in trying to establish what is commonly 
regarded as a necessary condition for freedom, namely, that Adam could 
have done otherwise. For on Leibniz's account of personal identity, Adam 
would not be the very person he is if he lacked any predicate that belongs 
to his complete concept. Thus, 'Adam might not have sinned' cannot be 
true if it is counted as true just in case there is a possible world in which 
Adam did not sin; for that Adam look-alike who did not partake of the 
forbidden fruit in such and such possible world is not Adam. Of course, 
the semantics of subjunctive and counterfactual conditionals can be done 
in terms of counterpart theory, and 'Adam might not have sinned' can be 
counted as true just in case there is a possible world in which some 
appropriate counterpart of Adam does not bite the apple. But how does 
pointing out the actions of a counterfeit Adam help to establish the freedom 
of the actual Adam any more than pointing out the actions of a saint who 
never beheld the fruit? In a similar way, how does it help to establish the 
"openness" of the future of the actual world to point out that there are 
possible worlds that resemble the actual world in the past but not in the 
future if those worlds cannot be identical with the actual world for past 
times? Of course, as far as the substantivalist is concerned, the force of 
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this rhetorical question is diminished if counterpart theory succeeds in 
reconciling determinism and substantivalism in the presence of the hole 
construction. 

How then does counterpart theory help? Consider again the manner in 
which the hole construction produces an apparent example of how GTR, 
even with its models restricted to those possessing Cauchy surfaces, is 
nondeterministic. One starts with a dynamically possible model <M, g, T) 
and applies a hole diffeomorphism to produce another dynamically pos
sible model <M, g', T' ) that exhibits the same g- and T-states at all points 
of M on or before some Cauchy slice but that exhibits different states at 
future points. Counterpart theorists might try to save ontological deter
minism by following the metrical essentialists in denying that both models 
correspond to possible worlds. But a more plausible and natural move for 
the counterpart theorist is to claim that while both models correspond to 
possible worlds, GTR is misleading when it suggests that the same space
time points inhabit both worlds; the theory gives the same names to the 
points of both worlds, but strictly speaking there is no transworld identity 
of space-time points, so that the hole construction does not produce models 
where identically the same points carry the same fields in the past but not 
in the future. (To reflect this point of view, let us agree to write <M', g', T' ) 
instead of <M, g ', T' ). This is somewhat awkward in that it appears to 
abandon the active form of general covariance, which demands that if 
<M, g, T) is a dynamically possible model, then so is <M, d * g, d * T). Such 
awkwardness underscores the need for the counterpart theorist to face the 
challenge of providing a modified apparatus for treating fields that con
tinues to use space-time points or regions as basic objects of predication 
but that does not involve the systematic misdescription of physical possi
bilities that he claims to detect in manifold substantivalism.) While this 
move means that the hole construction ceases to produce an immediate 
conflict between determinism and substantivalism, the ultimate fate of 
determinism can only be discerned after the counterpart theorist has told 
us more about how he proposes to understand the doctrine of determinism. 

The hole construction loses its power to threaten the deterministic 
character of theories like GTR if our criterion of determinism is not (D) 
but (D'). 

D' For dynamically possible models, Leibniz equivalence before t = 0 (in 
the sense of the existence of a partial diffeomorphism that matches up 
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the field values for t � 0) implies Leibniz equivalence for all times (in 
the sense of the existence of a global diffeomorphism that extends the 
partial diffeomorphism for t � 0 and matches up the field values for all 
times). 

The issue is whether the substantivalist can avail himself of this escape 
route. The relationist, of course, has a sound motivation for adopting 
(D'), since for him Leibniz-equivalent models correspond to the same 
point-free physical reality and therefore cannot be used against ontological 
determinism. The substantivalist can also try to motivate (D') with the 
claim that Leibniz-equivalent models describe literally identical worlds 
populated with the same space-time points, but this claim seems to involve 
the incoherent structural-role theory of identity. 

The counterpart theorist can try to motivate a definition analogous to 
(D') in the following way. Suppose that for some pair of dynamically 
possible models there is a way of matching up the space-time points on or 
before t = 0 so that the matching points are counterparts and so that the 
counterparts have corresponding field values.26 But suppose that there is 
no extension of this matching to all the space-time points so that the 
matching future points are also counterparts with corresponding field 
values. The combination of these two suppositions is a violation of deter
minism, and ruling out such a combination gives a definition of deter
minism with the structure of(D'). Call this the weak counterpart conception 
of determinism (WCCD). Notice that by the lights of WC CD, the general
relativistic worlds are deterministic on a purely topological-differential 
version of the counterpart relation. That is, if d : M -+ M' is a diffeomor
phism and we take the corresponding points under d to be counterparts, 
then the hole construction fails to disturb determinism under WCCD. 

But WCCD is inadequate, for the motivation leading up to this definition 
neglects a second way in which determinism can fail. For suppose that there 
is some extension of the matching of past points such that the matching 
future points are counterparts but do not have corresponding field values. 
Then it would seem that by the lights of counterpart theory the laws of 
nature allow for a branching in the temporal evolution of the world. Adding 
a clause to WCCD to rule out this possibility produces the strong counter
part conception of determinism (SCCD). But by SCCD, determinism fails 
in general-relativistic worlds if the topological-differential conception of 
counterpart is adopted, as the hole construction shows. 
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To protect determinism against the hole construction, the counterpart 
theorist apparently has to take a page from the metrical essentialist and 
resort to a more stringent counterpart relation involving alikeness of metric 
properties. Here is an initial try. For space-time M, g and M', g ' say that 
p E  M and p' E M' are counterparts just in case they share the same metrical 
properties in that there are isometric neighborhoods of p and p'. This is 
not a stringent enough notion of counterpart, since the hole construction 
still produces a violation of SCCD. 27 Stipulating that the counterparthood 
of p and p' requires that M, g and M', g ' are globally isometric does suffice 
to make SCCD proof against the hole construction, but it also trivializes 
determinism. 

As suggested by Butterfield ( 1 989), perhaps the best course for the 
counterpart theorist is to apply the counterpart relation not to individual 
space-time points but to regions. Consider regions R e M  and R' c M' 
respectively of the space-times M, g and M', g '. If there is a diffeomorphism 
d : R -+ R' that is an isometry, call R and R' counterparts under d. Call a 
region a past (respectively, future) if it consists of all points lying on or 
below (respectively, above) a global spacelike hypersurface. Then deter
minism for GTR can be taken to mean that for any pair of dynamically 
possible models, if the pasts belonging to some Cauchy surfaces of those 
models are counterparts under some diffeomorphism d that matches up 
the values of nonmetric fields at past points, then d is extendible to a 
d' under which the futures are counterparts and the future points have 
matching nonmetric field values. No additional content is gained by adding 
that any other extension d" that makes the futures counterparts also 
matches up the nonmetric field values. 

This latest definition of determinism succeeds in making determinism 
immune to the hole construction by loading the elastic notion of counter
part with much of the content of the doctrine of determinism; indeed, in 
the matter-free case the latest counterpart notion bears the full weight of 
determinism! In addition, this stretching of the elastic also removes some 
of substantiality from space-time points. If we are to think of these entities 
as very small, momentary, and immaterial physical objects, then the 
counterpart relation should be applicable to them individually, which is 
just what the latest definition denies. And any attempt to make the counter
part relation so applicable seems to either run afoul of the hole construction 
or to trivialize determinism. 
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Finally, some of the objections that applied to metrical essentialism also 
apply to the latest counterpart approach to determinism. In particular, if 
metrical properties are essential to the counterpart relation as applied to 
space-time points or regions, then a counterpart reading of subjunctive 
conditionals would seem to block the most direct way of expressing the 
dynamic character of the space-time metric by means of such assertions as 
'If extra mass were brought into this region, its curvature would be dif
ferent'. For there is no possible world in which a counterpart of this region 
has a different curvature, since different curvature implies a different metric, 
which in turns implies that the regions are not counterparts. Of course, we 
know that there are many different counterpart relations, and perhaps one 
that cues to metrial properties is appropriate for discussing determinism, 
while one that cues to nonmetrical properties is appropriate to analyzing 
subjunctive conditionals like the one in question. But since subjunctive and 
counterfactual conditionals, laws of nature, and determinism form a tight 
circle of concepts, this lack of uniformity cries out for some principled 
motivation to guide the stretching of the elastic counterpart notion. And 
if the lack of uniformity means that the doctrine of determinism does not 
issue in the expected counterfactuals of the form 'If the past state had been 
. . .  , then the present and futures states would be . . .  " it speaks against the 
counterpart solution to the hole construction. 

15 Conclusion 

In this chapter I have tried to show how the considerations raised in 
Leibniz's famous argument against substantivalism map onto a set of 
foundation problems in GTR that were present from its very inception. I 
have also tried to show how these problems can in turn be used to enrich 
and enliven the philosophical discussion of the issue of relationism versus 
substantivalism. In previous chapters I have argued that Leibniz's original 
version of the PSR-Pldln argument was polemically ineffective, as are the 
reconstructed versions offered by Friedman and Teller. I have claimed here 
that the causal version of the PSR argument, as embodied in Einstein's hole 
construction, is polemically effective at least to the extent that the subs tan
tivalist who wishes to secure the possibility of determinism is forced to 
abandon one form of space-time substantivalism, what I have called mani
fold substantivalism. There may, of course, be other defensible versions of 
substantivalism that escape the hole construction, but our initial survey of 
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the possibilities was not encouraging. The way thus seems open for the 
relationist to claim that the possibility of determinism is secured, because 
Leibniz-equivalent substantivalist models correspond to the same physical 
reality, for in using the fictional entities of space-time points, these models 
provide one-many representations of a point-free reality. The claim re
quires substantiation. As illustrated in section 9, one can render the reality 
underlying the Leibniz-equivalence classes free of space-time points, but 
the rendering suggested there was substantival at a deeper level. 

My own tentative conclusion from this unsatisfactory situation is that 
when the smoke of battle finally clears, what will emerge is a conception of 
space-time that fits neither traditional relationism nor traditional substan
tivalism. At present we can see only dimly if at all the outlines the third 
alternative might take. But I hope to have identified the considerations we 
need to pursue in trying to give it a more definite form. And I hope that 
even those readers who do not accept the morals I draw for the absolute
relational debate will nevertheless agree that the hole construction and the 
catalog of reactions to it serve both to reveal a previously unappreciated 
richness to the doctrines of determinism and space-time substantivalism 
and to link these doctrines in a deeper way to issues in the philosophy of 
science and in metaphysics. 2 8 



Notes 

Introduction 

1. Occasionally, articles on the absolute-relational dispute appear in the scientific literature, 
for example, Erlichson 1967 and Helier and Staruszkiewicz 1975. Of more importance here 
is the work of Barbour and Bertotti, discussed in chapter 5. 

Chapter 1 

1. The rivals of the Reverend Clarke repeated the snide but not wholly inaccurate remark that 
he would have made a good Archbishop of Canterbury if only he had been a Christian, a 
reference to his Arianism (see Hall 1980). There can be no doubt that Clarke had Newton's 
confidence, because Newton had authorized him to do a Latin translation of the Optics. Koyre 
and Cohen (1962) argue that Newton had a hand in drafting Clarke's responses to Leibniz 
(but see also Hall 1980). However, there are points at which Clarke does depart from Newton's 
own views on space; see section 6. 1 below. 

2. This theme is also found in Mach's criticism of Newton; see Mach's Science of Mechanics 
and section 4.8 below. 

3. Any reader who, after completing this book, believes that any of Rei ch en bach's theses stands 
without major qualifications is cordially invited to commit this book to the flames. 

4. For an analysis of the doctrine that space is an emanent effect of God, see McGuire 1978. 

5. In C. D. Broad's (1946) terminology, this is an assertion of the adjectival over the qualitative 
theory. 

6. See Horwich 1978 and Teller 1987 for discussions of the property view. 

7. See my 1978. 

8. The first quotation is from "First Truths" (1 680-1 684; Loemker 1970, p. 270); the second 
is from the correspondence with Arnauld (1 687; Loemker 1 970, p. 343). 

9. See McGuire (1976) and Cover and Hartz (1986). 

10. From "Reply to the Thoughts on the System of Preestablished Harmony . . .  " (1 702; 
Loemker 1970, p. 583). 

1 1 .  From a letter to de Volder (1 706; Loemker 1970, p. 539). 

12. I have not been able to pinpoint the beginnings of this doctrine. In the 1 671 essay "Studies 
in the Physics and Nature of Body," Leibniz begins by apparently affirming a commonsensical 
view of the continuum: "There are actually parts in a continuum . . . .  And these are actually 
infinite" (Loemker 1 970, p. 1 39). But then he continues, "There is no minimum in space or in a 
body" because otherwise it would follow that "there are as many minima in the whole as in 
the part, which implies a contradiction." 

13. See, for example, Malament 1977 for an elucidation and criticism of this doctrine. 

14. Lucas 1984, p. 194. A very similar idea is found in Feig1 1953. 

15. In the corollaries to proposition VI of book 3 of the first edition of the Principia, Newton 
maintained against Descartes that not all spaces are equally filled and, thus, that there are 
vacuums in nature. This claim, which was the subject of correspondence with Cotes (see Hall 
and Tilling 1975) is modified in the second edition, where Newton makes only the conditional 
assertion that "If all the solid particles of all bodies are of the same density, and cannot be 
rarefied without pores, then a void, space, or vacuum must be granted." 

16. See Friedman 1983, chapter 6, for further discussion. 
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1 7. See Wald 1 986. 

18. For this reason 1 make no apology for neglecting, at least initially, various issues and 
positions taken on these issues. 

Chapter 2 

1. The standard summation convention on repeated indices is in effect. Latin indices run from 
1 to 4; Greek indices from 1 to 3. The condition that gijtj = 0 is well defined under different 
choices for the allowed t, for if t ...... t' = J(t), dJ/dt > 0, then t; = t;(dJ/dt) and gl}t; = 0 if and 
only if giitj = O. 

2. Unless otherwise specified, the space-time manifold is assumed to be Coo, as are vector fields 
and congruences of curves defining reference frames. 

3. Chapter 5 will tackle the more difficult matter of relativistic rigid motion. 

4. See the appendix to chapter 3 for further discussion of this notion. 

5. We want Eijkl to be totally antisymmetric, i.e., Eljkl = E[ijkl]' This fixes the volume ele
ment up to scale factor which can be set be requiring that in a coordinate system in which 
gl} = diag (l ,  1, 1 , 0) and hI} = diag (O, 0, 0, 1 ), Eljkl = (dX ' )i " (dx2)j " (dX3)k " (dX

4
)l ' John 

Norton has shown in a private communication that this condition is equivalent to requiring 
gjj'gkk'g ll'EijklEl'i'k'l' = 3! (dx4lE(dx4) .. and that these requirements determine Eijkl uniquely. 

6. If, for example, Vi = (wy, - wx, O, 1 ), with w constant (i.e., there is a uniform rotation about 
the z axis), ni = (0, 0, w, 0) in a coordinate system that is inertial with respect to one of the 
preferred connections that define nonrotating motion. 

7, See, for example, Havas 1964; Kuchar 198 1 ;  and Torretti 1983, 

8, Answers to the quiz. Ql: 6 only, Q2: 5 + .  Q3: 5 + .  Q4: 5 + .  Q5: 5 + .  Q6: 3 + .  Q7: 2 + .  Q8: 
2 + ,  Q9: 1 +. QI0: 5 + ,  Here n +  means that the question is meaningful for the space-time n 
and all of those that follow, 

9, Here d* stands for the dragging along by the diffeomorphism d. The bold 01 denotes an 
object type and 0 i denotes a value, See section 8.3 for more on the notion of a geometric object. 

Chapter 3 

1. Descartes adds the qualification "considered at rest" as a sop to ordinary language, Without 
this qualification it follows that "transference is reciprocal; and we cannot conceive of the 
body AB being transported from the vicinity of the body CD without also understanding that 
the body CD is transported from the vicinity of body AB. . .  , [Therefore,] we should say that 
there is as much movement in the one as in the other, However, [I admit that] that would 
depart greatly from the usual manner of speaking" (1 644, 11.29), 

2. Translations of the passages from Huygens were kindly provided by M, Spranzi-Zuber 
and J. E. McGuire. 

3. On theories of meaning that take the meaning of a word or concept to be given by the 
associated sense impressions, there is no real distinction between the meaning claims and the 
epistemological claims. 

4. Or at least this is what Huygens should have objected; whether he fully grasped the point 
is not clear from the text. For further discussion of this point, see chapter 4 below. 

5. See Hempel 1965, van Fraassen 1 980, and Salmon 1984 for various views on this matter, 
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6. See Armstrong 1983 and chapter 5 of my 1986 for a review of various positions on this issue. 

7. See the appendix ofthis chapter for a discussion of other conceptions of dynamic symmetries. 

8. See Rynasiewicz 1986 for further analysis of the relevant concepts. 

9. Einstein perceived the development as moving in this direction, and the perception may 
have helped to lead him to STR (see Earman et al. 1983). In "Ether and the Theory of 
Relativity" Einstein wrote: "As to the mechanical nature of the Lorentzian ether, it may be 
said of it, in a somewhat playful spirit, that immobility is the only mechanical property of 
which it has not been deprived by H. A. Lorentz. It may be added that the whole change in 
the conception of the ether which the special theory of relativity has brought about consisted 
in taking away from the ether its last mechanical quality, namely, its immobility" ( 1920, 
pp. 10- 1 1). 

10. This and other aspects of determinism are discussed in my 1986. 

Chapter 4 

1. Before proceeding further the reader may wish to review the Scholium, reproduced as an 
appendix to chapter 1 .  

2 .  Newton intimates that he has performed the experiment ("as I have experienced"). Whether 
or not Newton actually carried out the experiment in the form described in the Scholium is 
beside the point, since the relevant phenomena are a matter of daily experience. 

3. See chapter 3 above and Laymon 1978, pp. 404-407. 

4. Think about it for a moment. Would you seriously entertain the possibility that the reason 
you get seasick is due to your motion relative to the stars? Is this notion any more plausible 
than astrology? 

5. Cotes, not Gregory, was responsible for the new edition. Had Huygens lived to see it, he 
would have found no retraction. The translations of the Huygens-Leibniz correspondence 
used in the text are taken from Degas 1958, pp. 490-492. M. Spranzi-Zuber and J. E. McGuire 
kindly provided the translations of Huygens's manuscripts on absolute motion. 

6. The cagey, cards-held-close-to-the-vest style of this part of the Huygens-Leibniz corres
pondence is so obvious that only a very strong preformed judgment can explain Reichenbach's 
characterization of the exchange: "Apparently, the belief that he could expect a complete 
understanding of his ideas from his former mathematics teacher encouraged Leibniz to be 
more open in his communications with Huyghens . . . .  Discussions among like-minded scholars 
who are working in the same field are usually briefer in their expositions than those presenta
tions intended for a wider audience . . . .  The lucid style of this correspondence reveals at once 
a most fortunate meeting of minds" ( 1924, pp. 59-60). 

7. As befits the importance of the topic, Huygens wrote in Latin. A German translation of 
some passages was given by Schouten ( 1920). English translations of some passages are to be 
found in Stein 1977 and Bemstein 1984, but no complete English translation has been 
published. The commentaries of Stein and Bemstein are the best available, and although I 
differ from each on several points, my discussion owes much to theirs. 

8. Proposition 5 of Huygens's De vi centrifuga ( 1 659) reads, "When a mobile moves on a 
circumference with the velocity it would acquire in falling from a height equal to a quarter of 
its diameter, its centrifugal force is equal to its gravity; in other words, it will pull on the string 
by which it is attached with the same force as ifit were suspended by it" (Huygens 1888-1950, 
1 6 : 275; trans. Degas 1958, p. 296). 

9. Here I am in agreement with Bemstein (1984, p. 92). 
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10. The first part of Leibniz's "Specimen dynamicum" is at pains to point out that Descartes's 
laws of impact cannot be correct, because they violate Galilean relativity. It was Huygens 
who first derived the correct laws ofimpact for perfectly hard (i.e, elastic) bodies. His derivation 
heavily exploited Galilean invariance. 

1 1 .  Compare this to Newton's corollary 6 to the Axioms of Principia: "If bodies, moved in 
any manner among themselves, are urged in the direction of parallel lines by equal accelerative 
forces, they will all continue to move among themselves, after the same manner as if they had 
not been urged by those forces" ( 1 729, p. 21). 

12. For further details of how classical and quantum mechanics can be done in the setting of 
Maxwellian space-time, see Hood 1970 and Rosen 1972. 

13. Of course, Leibniz and other founders of relationism would have rejected any action-at
a-distance formulation of mechanics. 

14. See, for example, Loemker 1970, p. 419, and Gerhardt 1 849- 1855, 6 :  144- 147. 

1 5. These examples are suggested by the thought experiments discussed by Newton in "De 
gravitatione"; see section 1 above. For further discussion of the instrumentalist move, see 
section 9 below. 

1 6. Recently it has been claimed that Mach's supposed rejection of relativity theory in the 
preface to the second edition of the Optics was a fabrication of his son Ludwig; see Ham: 
1986, pp. 1 5- 1 6. Whatever the merits of this claim, it seems clear that a negative attitude 
toward relativity theory flows naturally from Mach's general philosophical orientation. 

17.  For Mach's influence on Einstein see Holton 1973, pp. 2 19-259. See chapter 5 below for 
a discussion of the relativistic treatment of rotation. 

18 .  Poincare's reasoning is sophistical. He seems to be hankering here for a space-time in 
which rectilinear motion is well defined but rotation isn't. Can there be such a space-time? 

19. This idea is found in current textbooks; e.g., Griffiths ( 1985, p. 82) says: "In the application 
of classical dynamics it is therefore essential to determine initially an inertial frame of 
reference." 

20. Here 'second-order' and 'third-order' have their usual meanings, not Poincare's non
standard meanings. 

2 1 .  Paul Teller in a private communication. Note that some of the examples Clarke urges 
against Leibniz involve motion in a line. 

Chapter 5 

1. The flexibility afforded by Machian space-time in choosing a time parameter will come into 
play below. 

2. As required to make Ld)' invariant under ). � ).' = f().), dfld)' > O. 

3. That is, (dld).)(aLlaf) - (aLlar) = 0 follows directly from (aLlaf)r - L = O. 

4. Before switching to local time, the first term on the right hand side of (5.6) is multiplied by 
a factor proportional to M31R2 (as would be expected from [5.4] ), so that in cosmic time the 
total momentum L; aLlar; is not constant if R is changing. 

5. The 1982 theory of Barbour and Bertotti was designed to escape this difficulty. However, 
this new theory seems to amount to a reworking of the approach of Zanstra ( 1924). 

6. I will work with signature ( +  + + - ). Since there are many excellent textbooks covering 
the relevant material on relativistic space-times (e.g., Hawking and Ellis 1973 and Wald 1984), 
I will not review any of it here, save for the topic of relativistic rigid motion, which can be 
found only in more inaccessible sources. 
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7 .  A s  follows from differentiating Vi V; = - 1 . 

8. The symbol £ denotes the Lie derivative. See the appendix to this chapter for computations 
using £. 

9. A follow here the usual convention of using round and square brackets around indices to 
indicate respectively symmetrization and antisymmetrization. 

10. In Minkowski space-time the stationarity of Vi implies that the magnitude of rotation is 
constant along the trajectories of Vi. In a curved space-time, constancy of rotation can be 
deduced from stationarity plus two additional assumptions, namely, that Vi is an eigenvector 
of Tij and that Einstein's field equations are satisfied. 

1 1 .  Of course, it is open to respond that this confutation shows that Born rigidity is not an 
adequate explication of rigid motion. But this response carries with it the responsibility to 
provide an alternative explication. 

12. Temperature differentials are the most plausible explanation of Miller's results (see 
Shankland 1964 and Shankland et al. 1952. 

13. This assumes that the space-time is temporally orientable. 

14. See Hawking and Ellis 1973 and Malament 1985. 

1 5. See Hawking and Ellis 1973. 

16. See Adler et al. 1975, p. 443, for a detailed justification of this identification. 

17. Adler et al. 1975, pp. 446-447. 

18 .  A result due to Carter ( 1973) shows that under certain global restrictions, stationarity 
implies nonrotation; specifically, if ( 1 )  the space-time manifold M is topologically �4, (2) the 
metric is asymptotically Minkowskian, (3) Einstein's field equations hold, (4) the velocity field 
Vi of matter is a Killing field that is nonvanishing on M, and (5) Vi is an eigenvector of the 
energy-momentum tensor, then Vi is nonrotating. 

19. The connection between this issue and space-time substantivalism will be taken up in 
chapter 9. 

20. The next Weyl cites is a letter to de Volder (Gerhardt 1 875- 1 890, 2 :  1 68-1 75; Loemker 
1970, pp. 5 1 5-518). The main thrust of the letter is Leibniz's familiar attack on Descartes's 
notion that the concept of extension suffices to explain inertia and a reiteration of the claim 
that substance is not constituted by extension alone but requires "force." 

21 .  The sense in which uniqueness can be expected is a little tricky to pin down (see chapter 9). 

Chapter 6 

1. This is probably at best a partial explanation, for as noted in chapter 4, I suspect that 
Leibniz was not confident of his response to Newton's bucket experiment and that this lack 
of confidence may have made him reluctant to raise the matter in the correspondence with 
Clarke. 

2. See Clarke's Boyle lectures ( 1738, 2 : 527-530). 

3. Newton's account is prefaced by the remark, "I am reluctant to say positively what the 
nature of bodies is, but I rather describe a certain kind of being similar in every way to bodies" 
(Hall and Hall 1962, p. 138). 

4. The ambiguity is not an artifact of the English translation of the original French ("par un 
echange d'orient et de I'occident" [Gerhardt 1 875- 1 890, 7 : 364] ). The German translation 
available to Kant would nbt have suggested the ambiguity; see chapter 7 below. 
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5 .  The importance of  the distinction between the causal and deterministic reading i s  brought 
out in my 1986. 

6. There is also the question of whether the proper application of Pldln is to individuals within 
a world. Transworld applications and the implications for substantivalism are treated in 
section 7 below and in chapter 9. 

7. Another attempt by Friedman ( 1983) to state a nonverificationist version of Leibniz's 
argument is considered in chapter 9. 

8. The correspondence represents but a small piece of an ongoing dispute, the most bitter part 
of which centered on the priority for the invention of the calculus (see Hall 1980). 

9. Indeed, Einstein's GTR forces us to take this possibility seriously. 

10. Friedman ( 1983) and others credit Sklar with a major new insight. I believe that Sklar is 
to be credited with a very clever conjuring trick. However, the trick points to a very interesting 
view, which will be explored in chapters 8 and 9. 

1 1 .  As noted by Friedman ( 1983, p. 233). 

12. As suggested by Friedman ( 1983, p. 233, n. 10). 

13. I am grateful to Tim Maudlin for urging me to consider the kind of approach described 
in this section. 

14. I am indebted to Robert Geroch for this point. 

1 5. Newton's Scholium on absolute space is attached to definition VIII. 

1 6. Actually what Leibniz says is that force "is ofimportance not only in physics and mechanics 
in finding the true laws of nature and rules of motion, and even in correcting many errors 
which have slipped into the writing of a number of able mathematicians, but also in metaphys
ics for the better understanding of the principles" (Loemker 1970, p. 3 15). 

17. The translation is by Daniel Garber. 

18. This absence makes one suspect the 1 688 date assigned to the manuscript. 

Chapter 7 

1. Euler's paper appeared in the History of the Royal Berlin Academy, 1748. An English 
translation can be found in Koslow 1967. 

2. The full quotation reads: "Let it be imagined that the first created thing were a human hand, 
then it must necessarily be either a right hand or a left hand. In order to produce the one a 
different action of the creative cause is necessary from that, by means of which its counterpart 
could be produced" ( 1 768, p. 42). 

3 . There was a 1 720 edition by Heinrich Kohler and a second edition in 1740. 

4. Van Cleve ( 1987) argues that orientable, (n + I)-dimensional spaces serve the same function 
here as do nonorientable n-dimensional spaces. I think that this contention is incorrect. First, 
he maintains that "a nonorientable space of n dimensions is possible only in an ambient space 
of n + 1 dimensions" (p. 45). This contention is false. One way to conceive of a nonorientable 
n space is to embed it in an orientable n + 1 space, just as one way to picture a curved n space 
is to embed it in a higher dimensional flat space (in general, a flat space of n(n + 1)/2 
dimensions is needed). But nonorientable and curved spaces exist in their own right: they 
possess intrinsic characterizations, and there is no need to define them by means of higher
dimensional embedding spaces. Second, he takes higher-dimensional, orientable spaces to 
show that "there are possible spaces in which a solitary hand would be neither right nor left; 
hence a hand with the same internal relations as a given right hand might fail to be right, for 
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i t  might be the sole occupant of such a space. S o  the rightness of a hand i s  not entailed b y  its 
having the internal relations it does, contrary to internalism" (p. 52). But an n-dimensional 
"hand" in an n + 1 space is not a hand in even the most minimal sense; namely, it is not an 
enantiomorph (see definition below). How, then, can considerations of higher dimensions, 
which convert hands into "hands," show anything about hands? Perhaps the answer is that 
higher-dimensional spaces show that the enantiomorphism of an object depends upon the 
dimensionality of the space and, in that sense, is not an internal property of the object. But 
that sense is irrelevant to the absolute-relational controversy. If the relationist cannot give a 
satisfactory account of the dimensionality of space, then relationism fails even before the 
question of incongruent counterparts arises. If the relationist can produce a satisfactory 
account, then the question becomes whether n-enantiomorphism in an n-dimensional space 
is a matter of the internal relations of the body. I show in section 2 that the re1ationist can 
give a positive answer to this question. I also show why being right- or left-handed is not the 
sort of property a relationist would want to count as being internal. 

5. The full quotation reads, "The region, however, to which this order of the parts is directed, 
is related to space outside, but not with reference to its localities, for this would be nothing 
else than the position of just those parts in an external relation; region is rather related to 
space in general as a unity, of which each extension must be regarded as a part" ( 1 768, p. 37). 

6. Such a space must be of constant curvature. 

7. This definition presupposes that space is locally orientable, a presupposition assured by 
the restriction to spaces that are manifolds. 'Reflection' means a single reflection. The product 
of an even number of reflections is equivalent to a rotation and/or translation. See note 1 1 .  

8 .  Here I part company with Nerlich ( 1976, p .  35), whose definition of enantiomorphism is 
nonlocal. 

9. Jeremy Butterfield and Michael Redhead have urged that more should be required of the 
relationist; namely, he should have a general relationist definition of 'enantiomorph' and 
should demonstrate that all and only objects satisfying this definition will satisfy the absolutist 
definition of enantiomorph under any appropriate absolutist representation. They are skepti
cal that this demand can be met. 

10. Perhaps this is the place where, as Sklar ( 1974) suggests, the re1ationist must make use of 
possibilia. There are other places where possibilia enter the discussion; see, for example, 
sections 6. 12  and 8.6. However, I do not think that the core of the absolute-relational 
controversy turns on the use or status of possibilia. 

1 1 .  In three spatial dimensions the parity operation is x ..... - x, y ..... -y, z ..... - z. In spaces of 
an even number of dimensions the parity operation does not correspond to mirror image 
reflection, since the product of an even number of reflections is equivalent to a rotation and/or 
translation. 

12. This picture is taken from Sakurai 1 964. 

13. The meaning of invariance under the parity transformation needs a bit of explanation. 
Let I/IP denote the parity image of 1/1. Since in three spatial dimensions the parity operation is 
equivalent to mirror image reflection plus a rotation, we can write M (for mirror) in place of 
P. Invariance under the parity operation demands that 

If l/l! ..... 1/12 by Schrodinger evolution, then SchrOdinger evolution also requires that I/Ir ..... I/I�. 
The transition probability from initial state I/Ii to final state I/If is 

where T(t, to) is the time evolution operator and ( , ) is the inner product on the Hilbert space 
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of states. The demand of parity invariance can be shown to be equivalent to P;r = Pit, i.e., the 
probabilities for the process and its mirror image are the same: 

Now if !/I; = !/Ii"', as in the experiment I describe, then 

i.e. the mirror-image final outcomes !/Ir and !/Ir should be equally likely. But since the 
probabilities (as evidenced by the statistics) are different in the experiment, parity is violated. 
Using the type of experiment in which !/I; = !/Ii"' helps to alleviate problems in communicating 
to the inhabitants of a distant planet the difference between right and left (in the sense of 
Which is which?). Compare this to Bennett 1970. 

14. There is a possible but measure-zero set of cases in which the relative frequencies do not 
conform to the propensity probabilities. 

1 5. The sense of universality appropriate here is not captured by conditions on the syntactic 
form of the law statement (e.g., that laws are written in universally quantified form or that 
their mathematical expression is generally covariant). Rather, the requirement is that the law 
be invariant under space-time translations. Such invariance conditions are best expressed in 
terms of semantic-model theory. See Rynasiewicz 1986. 

1 6. When we take into account space-time and CPT invariance (that is, invariance under the 
combined operations of charge conjugation, parity, and time reversal), a more complicated 
conclusion emerges. See Earman 1971 .  

1 7. Although something of a straw man, the conservative interpretation is  nevertheless a useful 
straw man. It is not too far removed from the reading Broad (1978) gives. 

18 .  See also Kant 1 790s, where it is claimed that Leibniz cannot account for the fact that 
'Space is three dimensional' is "an apodictic a priori proposition" (p. 89). 

19. In both the 1 768 essay and the Prolegomena Kant uses the same German word 'inner', 
which is variously translated as 'inner' and 'internal'. 

20. Broad attempts to preserve a conservative reading of the Prolegomena by taking Kant to 
be arguing, first, that incongruent counterparts show that space is absolute and, second, that 
absolute space has a property that is incompatible with its being a thing in itself: "In absolute 
space the existence and nature of every part would be dependent upon the existence and 
nature of the whole" (Broad 1978, p. 41). But Broad's reconstruction is a very strained reading 
of Kant's announced claim that the "paradox" of incongruent counterparts itself leads one to 
suspect that "the reduction of space and time to mere forms of sensuous intuition may perhaps 
be well founded" ( 1 770, p. 29). In addition, the Prolegomena does not contain the quotation 
Broad attributes to Kant but rather the assertion "That is to say, the part is possible only 
through the whole, which is never the case with things in themselves" ( 1783, p. 30). The phrase 
'that is to say' indicates that Kant was not giving a separate argument but only emphasizing 
the previous line, "Space is the form of external intuition of this sensibility." 

21 .  Starting from some of the observations made above, Harper (1989) has written a thought
ful study of Kant's use of incongruent counterparts. I will not spoil the reader's pleasure of 
discovering this piece for himself. 

Chapter 8 

1. Field defines reductive relationism to be the view that space-time points are set-theoretic 
constructions out of physical objects and their parts, while eliminative relationism holds that 
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i t  i s  illegitimate t o  quantify over space-time points at all (Field 1983, p. 34). Although useful 
and important, this distinction will not feature in the discussion below. 

2. For a collection of reprints of relevant articles, see Kerner 1972. 

3. For simplicity I will deal with Coo manifolds. A "smooth map" is thus a Coo map. The 
definitions given below are adapted from Hawking and Ellis 1973 and Wald 1984, to which 
the reader is referred for further details. 

4. M is HausdorlTjust in case for any distinct p, q e M, there exist open sets U, V c M such 
that U n V = 0 and p e U and q e V. M is paracompact if every open cover of M has a locally 
finite refinement. 

5. The standard treatment of geometric objects goes back to Schouten and Haantjes 1936. 
The definition given here comes from Trautman 1965. 

6. Salvioli (1972), for example, uses the fact, assumed above, that geometric object fields are 
well-defined under the operation of dragging along by a dilTeomorphism d; namely, if F : (p, Xi) 
..... (F1 , F2 , • • •  , FN)' then d * F : (d(p), d * Xi) ..... (F1 , F2 ,  • • •  , FN)' where d * Xi(p) = xi(d-I  (p» . 

7. Once again, it is assumed that M is HausdorIT, paracompact, and without boundaries. That 
M carries a Lorentz signature metric implies the additional restriction that M must be 
noncompact or else have an Euler characteristic of zero. 

8. Ideally, the first part of the challenge should be met by means of conditions formulated in 
terms of the relationist's models of reality. Since the relationist has not supplied such as yet, 
we have to work in terms of the substantivalist models. 

9. This definition is due to Geroch ( 1977). 

10. See the discussion in section 1 .6. 

1 1 .  See the discussion in section 6.6. 

12. See Friedman 1983, p. 221 ,  and, mea culpa, my 1970. 

13 .  Friedman thinks that there is an objection to substantivalism that is independent of 
observationality; see section 8 below. 

14. Here I am echoing the points made by Nerlich (1976, chapter 2). 

1 5. This condition neglects the fact that even if we fix on Minkowski space-time, there 
are, according to the substantivalist, many Minkowski space-times according to how the 
Minkowski metric is placed on �4. 

16. Penrose (1971) and Kaplunovsky and Weinstein ( 1985) provide programmatic sketches 
of such creative alternatives. 

17. On this matter see Mundy 1986. 

18. It was the struggle against such defeat that led Huygens, Leibniz, and others to such 
extreme lengths in trying to account for rotation (see chapter 4). 

19. Field (1985) has argued in addition that the relationist faces difficulties in accounting for 
physical quantities, a charge originally made by Clarke in the Leibniz-Clarke correspon
dence. For a response, see Mundy 1987. 

Chapter 9 

1. See Einstein 1914a, 1914b and Einstein and Grossmann 19 13, 1914. 

2. For a detailed analysis of the various versions of Einstein's hole argument, see N orton 1987. 
For a new interpretation of Einstein's use of coordinate terminology, see Norton 1988. The 
reader should also consult Stachel 1986. 
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3. For a discussion of this matter, see chapter 3 of my 1986. 

4. For a more precise version of this construction, see Earman and Norton 1987. 

5. Recall relationist thesis (R3) from section 1 .5. 

6. I have taken the liberty of substituting my numbering of equations for M0Iler's. 

7. M0i1er cites Hilbert 19 15, but the correct reference is Hilbert 1917. 

8. Hilbert cites a 1914 version of Einstein's hole argument; see Norton 1987. Don Howard 
and John Norton (private communication) have turned up evidence that the circle closes in 
that Hilbert's response to the hole construction was communicated to Einstein by a Gottingen 
colleague of Hilbert's. How Einstein's understanding of the hole argument was influenced by 
this correspondence is still a matter of conjecture. 

9. I have taken the liberty of altering the notation to conform to mine. 

10. I am grateful to Arthur Fine for emphasizing this point to me. 

1 1 . No. 9 372, Einstein Archive, Princeton University. The English translation is from Norton 
1987. 

12. This was suggested to me by Michael Redhead. 

13 .  As suggested, though not advocated, by Jeremy Butterfield in a private communication. 

14. A completely regular space X is such that for every P E S  and every open neighborhood 
V of p, there is a continuous real valued function f on S such that f(p) = 0 for all p E V and 
f(x) = 1 for all x E S - U. A completely regular space X is first-countable if for every P E S, 
there is a countable basis for the open sets containing p. 

1 5. Geroch ( 1972) uses the term "Einstein algebra." 

16. As we have already seen, C.(M) and C:(M) determine the topology of M. Once the 
topology is fixed, the ring C",, (M) determines the differential structure; see Nomizu 1956. 

17. In more detail, let 91(2') stand for the set of all space-time realizations of 2'. For each 
member of 91(2'), choose a Cauchy surface, and let 9l(2')L .. stand for the restriction of the 
members of 91(2') to those times up to and including the instants on the chosen Cauchy 
surfaces. The demand of minimal Laplacian determinism is then that if [I' and [1" are such 
that 91(2')1.9' = 91(2" ) 1.9'. then 91(2') = 91(2" ). 
1 8. This assumes that the space-time is temporally orientable. 

19. See chapter 10 of my 1986 and chapter 7 of Horwich 1987. 

20. Newton might be read as propounding such a view in "De gravitatione" when he wrote: 

The parts of space derive their character from their positions, so that if any two could change 
their positions, they would change their character at the same time and each would be 
converted numerically into the other. The parts of duration and space are only understood 
to be the same as they really are because of their mutual order and position; nor do they have 
any hint of individuality apart from that order and position which consequently cannot be 
altered. (p. 1 36) 

Note that this passage is designed to support Newton's assertion that "the parts of space are 
motionless." Now suppose that Newton had lived to participate in tht; development of theories 
in which the metric of space-time admits no rigid motion, so that the points of space, however 
defined, are not motionless; i.e., they change their distances with respect to one another. Would 
Newton have then wanted to say that as a result, the identity of space points changes with 
time? I doubt it. Imagine also that Newton came to realize that the metric of space or 
space-time is different in different physically possible situations. Combine that realization with 
Newton's treatment of matter in terms of field-theoretic properties of space (see chapter 6). 
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Since the metric becomes just another dynamical field, one could predict that Newton would 
have adopted what I call manifold substantivalism. This position is consistent with his 
statement that the points of space do not have an individuality apart from their order and 
position if this phrase is interpreted in terms of topological and differential properties rather 
than in terms of metrical properties. 

21 .  For a more careful discussion of this distinction, see Adams 1979. 

22. Hacking ( 1975) maintains that if we are clever enough, we can always redescribe the 
situation in such a way that Leibniz's interpretation of the Pldln is preserved; e.g., we can 
describe it in such a way that there is only one rain drop instead of two. This is too clever by 
half. If there are no constraints on our descriptions, then Hacking's claim is correct but 
uninteresting. On the other hand, if we accept the constraints of the best available scientific 
theories, whether Newtonian, relativistic, or quantum, then the redescription ploy is ruled 
out, since those theories all allow for the existence of states falsifying the Leibnizian alternative. 

23. Michael Redhead (private communication) has urged this point. 

24. I am grateful to Robert Weingard for bringing this point to my attention. 

25. In fairness, it has to be acknowledged that there are interesting arguments on the other 
side; see Lewis 1986. 

26. In Butterfield's ( 1989) version of counterpart theory for space-time points, the counterpart 
definition cues to all fields, nonmetrical as well as metrical, which makes the second conjunct 
of the supposition redundant. This view, however, does not affect the difficulties discussed in 
the next two paragraphs if we consider empty-space solutions to GTR. This brief section does 
not do justice to Butterfield's rich and ingenious discussion, which, in my opinion, offers the 
substantivalist the best method for dealing with the hole construction. 

27. In fact, there will be dynamically possible models <M, g, T) and <M', g ', T' ) with the 
following properties. T and T' vanish identically. M, g and M', g' have Cauchy surfaces S and 
S' respectively such that there is a diffeomorphism � from the past of S to the past of S' that 
is an isometry. Further, there is an extension of rP to rP that maps M onto M' in such a way that 
for any p E M to the future of S, p and p' = �(p) are counterparts in the present sense; that is, 
there are neighborhoods N(p) and N'(p') and a diffeomorphism '" : N ..... N' that is an isometry. 
And yet � is not an isometry for all future points. The counterpart theorist may respond that 
we need a definition of determinism that requires not only that the matching points of � be 
counterparts but also that they be counterparts under � itself. This has the effect of changing 
the focus of the counterpart relation from individual points to regions, as is discussed below. 

28. The issues raised in this chapter have already touched off a lively debate. For a sampling 
of opinions, the reader is referred to the articles by 1. Butterfield, T. Maudlin, J. Norton, and 
J. Stachel in PSA 1 988, vo!. 2, edited by M. Forbes and A. Fine (East Lansing: Philosophy of 
Science Assoc., in press). 
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