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spacetime in various theories, the so-called ‘problem of time’ in canonical quantum
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Preface

Both philosophy and quantum gravity are concerned with fundamental questions
regarding the nature of space, time, and matter, so it is not surprising that they have
a great deal to say to each other. Yet the methods and skills that philosophers and
physicists bring to bear on these problems are often very different. However, and
especially in recent years, there is an increasing recognition that these two groups
are indeed tackling the same issues, and moreover, that these different methods and
skills may all be of use in answering these fundamental questions. Our aim in this
volume is thus to introduce and explore the philosophical foundations of quantum
gravity and the philosophical issues within this field.

We believe that some insight will be gained into the many deep questions raised by
quantum gravity by examining these issues from a variety of perspectives. Toward
this end, we collected together ten original and three previously published con-
tributions on this topic from eminent philosophers of science, mathematicians,
and physicists. Though the papers assume that the reader is scientifically literate,
the majority are written with the non-specialist in philosophy or quantum gravity
in mind. The brief that we gave the contributors was to write pieces that would
introduce the key elements of the physics and philosophy, whilst making original
contributions to the debates. The book should therefore be of interest to (and appro-
priate for) anyone challenged and fascinated by the deep questions facing the cutting
edge of fundamental theoretical physics. We also feel that these essays will lay the
foundation for a wider consideration of quantum gravity in the philosophical com-
munity, and hopefully a fruitful dialogue between physicists and philosophers. After
all, many of the greatest advances in physics were inseparable from philosophical
reflection on foundational questions.

We could not have completed this volume without a great deal of support and
assistance, and we owe thanks to many people: to all our contributors for their efforts;
to Carlo Rovelli and John Baez especially, for their encouragement and advice in the
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early stages; to Jeeva Anandan, Jossi Berkovitz, Jeremy Butterfield, Joy Christian,
Carl Hoefer, Jeffrey Ketland, Tom Imbo, and Steve Savitt for help and comments on
a number of issues; to Adam Black and Ellen Carlin, our editors, and Alan Hunt
of Keyword Publishing Services Ltd. for their enthusiasm, help, and (most of all)
patience. We are also grateful to Andrew Hanson for letting us use his wonderful
4-D projection of Calabi-Yau space on the cover. We also thank Damian Steer for his
efforts with the bibliography and Jason Wellner for his help preparing the reprinted
articles. Nick thanks the Centre for Philosophy of Natural and Social Sciences at the
London School of Economics for support during a residence, and the Center for
the Humanities and the Office of the Vice Chancellor for Research at the University
of Illinois at Chicago for a faculty fellowship and Grants-in-Aid support. Finally,
we thank Robert Weingard who taught us that these ideas existed, and of course
our families, Joanna and Lisa, Ewan and Lily, without whom none of this would be
worthwhile.

Craig Callender
Nick Huggett

x



[10:14 2000/10/5 g:/tex/key-tex/callendr/3663-001.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 1 Page: 1 1–30

1 Introduction

Craig Callender and Nick Huggett

In recent years it has sometimes been difficult to distinguish between articles in
quantum gravity journals and articles in philosophy journals. It is not uncommon
for physics journals such as Physical Review D, General Relativity and Gravitation
and others to contain discussion of philosophers such as Parmenides, Aristotle,
Leibniz, and Reichenbach; meanwhile, Philosophy of Science, British Journal for the
Philosophy of Science and others now contain papers on the emergence of spacetime,
the problem of time in quantum gravity, the meaning of general covariance, etc. At
various academic conferences on quantum gravity one often finds philosophers at
physicists’ gatherings and physicists at philosophers’ gatherings. While we exaggerate
a little, there is in recent years a definite trend of increased communication (even
collaboration) between physicists working in quantum gravity and philosophers of
science. What explains this trend?

Part of the reason for the connection between these two fields is no doubt negative:
to date, there is no recognized experimental evidence of characteristically quantum
gravitational effects. As a consequence, physicists building a theory of quantum
gravity are left without direct guidance from empirical findings. In attempting to
build such a theory almost from first principles it is not surprising that physicists
should turn to theoretical issues overlapping those studied by philosophers.

But there is also a more positive reason for the connection between quantum
gravity and philosophy: many of the issues arising in quantum gravity are genuinely
philosophical in nature. Since quantum gravity forces us to challenge some of our
deepest assumptions about the physical world, all the different approaches to the
subject broach questions discussed by philosophers. How should we understand
general relativity’s general covariance – is it a significant physical principle, or is it
merely a question about the language with which one writes an equation? What is
the nature of time and change? Can there be a theory of the universe’s boundary
conditions? Must space and time be fundamental? And so on. Physicists thinking
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about these issues have noticed that philosophers have investigated each of them.
(Philosophers have discussed the first question for roughly 20 years; the others for
at least 2,500 years.) Not surprisingly, then, some physicists have turned to the
work of classic and contemporary philosophers to see what they have been saying
about time, space, motion, change and so on. Some philosophers, noticing this
work, have responded by studying quantum gravity. They have diverse motives:
some hope that their logical skills and acquaintance with such topics may serve the
physicists in their quest for a theory of quantum gravity; others hope that work in
the field may shed some light on these ancient questions, in the way that modern
physics has greatly clarified other traditional areas of metaphysics, and still others
think of quantum gravity as an intriguing ‘case study’ of scientific discovery in
practice. In all these regards, it is interesting to note that Rovelli (1997) explicitly
and positively draws a parallel between the current interaction between physics and
philosophy and that which accompanied the scientific revolution, from Galileo to
Newton.

This volume explores some of the areas that philosophers and physicists have in
common with respect to quantum gravity. It brings together some of the leading
thinkers in contemporary physics and philosophy of science to introduce and discuss
philosophical issues in the foundations of quantum gravity. In the remainder of this
introduction we aim to sketch an outline of the field, introducing the basic physical
ideas to philosophers, and introducing philosophical background for physicists. We
are especially concerned with the questions: Why should there be a quantum theory
of gravity? What are the leading approaches? And what issues might constitute the
overlap between quantum gravity and philosophy?

More specifically, the plan of the Introduction is as follows. Section 1.1 sets
the stage for the volume by briefly considering why one might want a quantum
theory of gravity in the first place. Section 1.2 is more substantive, for it tackles the
question of whether the gravitational field must be quantized. One often hears the
idea that it is actually inconsistent with known physics to have a world wherein
the gravitational field exists unquantized. But is this right? Section 1.2.1 considers
an interesting argument which claims that if the world exists in a half-quantized
and half-unquantized form, then either superluminal signalling will be allowed or
energy–momentum will not be conserved. Section 1.2.2 then takes up the idea of
so-called ‘semiclassical’ quantum gravity. We show that the arguments for quantizing
gravity are not conclusive, but that the alternative is not particularly promising either.
We feel that it is important to address this issue so that readers will understand how
one is led to consider the kind of theories – with their extraordinary conceptual
difficulties – discussed in the book. However, those not interested in pursuing this
issue immediately are invited to skip ahead to Section 1.3, which outlines (and
hints at some conceptual problems with) the two main theories of quantum gravity,
superstring theory and canonical quantum gravity. Finally, Section 1.4 turns to the
question of what quantum gravity and philosophy have to say to each other. Here,
we discuss in the context of the papers in the volume many of the issues where
philosophers and physicists have interests that overlap in quantum gravity.

A word to the wise before we begin. Because this is a book concerned
with the philosophical dimensions of quantum gravity, our contributors stress

2



[10:14 2000/10/5 g:/tex/key-tex/callendr/3663-001.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 1 Page: 3 1–30

Introduction

philosophical discussion over accounts of state-of-the-art technical developments in
physics: especially, loop quantum gravity and M-theory are treated only in passing
(see Rovelli 1998 and Witten 1997 for reviews, and Major 1999 for a very accesible
formal introduction). Aside from sheer constraints on space, the reasons for this
emphasis are two-fold: First, developments at the leading edge of the field occur
very fast and do not always endure; and second, the central philosophical themes
in the field can (to a large extent) be understood and motivated by consideration of
the core parts of the theory that have survived subsequent developments. We have
thus aimed to provide an introduction to the philosophy of quantum gravity that
will retain its relevance as the field evolves: hopefully, as answers are worked out, the
papers here will still raise the important questions and outline their possible solu-
tions. But the reader should be aware that there will have been important advances
in the physics that are not reflected in this volume: we invite them to learn here what
issues are philosophically interesting about quantum gravity, and then discover for
themselves how more recent developments in physics relate to those issues.

1.1 Why quantum gravity?

We should emphasize at the outset that currently there is no quantum theory of
gravity in the sense that there is, say, a quantum theory of gauge fields. ‘Quantum
gravity’ is merely a placeholder for whatever theory or theories eventually manage
to bring together our theory of the very small, quantum mechanics, with our theory
of the very large, general relativity. This absence of a theory might be thought
to present something of an impediment to a book supposedly on its foundations.
However, there do exist many more-or-less developed approaches to the task –
especially superstring theory and canonical quantum gravity (see Section 1.3) – and
the assumptions of these theories and the difficulties they share can be profitably
studied from a variety of philosophical perspectives.

First, though, a few words about why we ought to expect there to be a theory of
quantum gravity. Since we have no unequivocal experimental evidence conflicting
with either general relativity or quantum mechanics, do we really need a quan-
tum theory of gravitation? Why can’t we just leave well enough alone, as some
philosophical approaches to scientific theories seem to suggest?

It might be thought that ‘instrumentalists’ are able to ignore quantum gravity.
Instrumentalism, as commonly understood, conceives of scientific theories merely
as tools for prediction. Scientific theories, on this view, are not (or ought not to be)
in the business of providing an accurate picture of reality in any deeper sense. Since
there are currently no observations demanding a quantum gravitational theory, it
might be thought that advocates of such a position would view the endeavour as
empty and misguided speculation, perhaps of formal interest, but with no physical
relevance.

However, while certain thinkers may indeed feel this way, we don’t think that
instrumentalists can safely ignore quantum gravity. It would be unwise for them to
construe instrumentalism so narrowly as to make it unnecessary. The reason is that
some of the approaches to the field may well be testable in the near future. The work
that won first prize in the 1999 Gravity Research Foundation Essay Competition,

3
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for instance, sketches how both photons from distant astrophysical sources and
laboratory experiments on neutral kaon decays may be sensitive to quantum gravi-
tational effects (Ellis et al. 1999). And Kane (1997) explains how possible predictions
of superstring theory – if only the theory was sufficiently tractable for them to be
made – could be tested with currently available technologies. We will never observe
the effects of gravitational interactions between an electron and a proton in a hydro-
gen atom (Feynman 1995, p. 11, calculates that such interaction would change the
wave function phase by a tiny 43 arcseconds in 100T , where T is the age of the
universe!), but other effects may be directly or indirectly observable, perhaps given
relatively small theoretical or experimental advances. Presumably, instrumentalists
will want physics to be empirically adequate with respect to these phenomena. (We
might also add the common observation that since one often doesn’t know what is
observable until a theory is constructed, even an instrumentalist should not restrict
the scope of new theories to extant evidence.)

Another philosophical position, which we might dub the ‘disunified physics’ view
might in this context claim that general relativity describes certain aspects of the
world, quantum mechanics other distinct aspects, and that would be that. According
to this view, physics (and indeed, science) need not offer a single universal theory
encompassing all physical phenomena. We shall not debate the correctness of this
view here, but we would like to point out that if physics aspires to provide a complete
account of the world, as it traditionally has, then there must be a quantum theory of
gravity. The simple reason is that general relativity and quantum mechanics cannot
both be correct even in their domains of applicability.

First, general relativity and quantum mechanics cannot both be universal in
scope, for the latter strictly predicts that all matter is quantum, and the former only
describes the gravitational effects of classical matter: they cannot both take the whole
(physical) world as their domain of applicability. But neither is the world split neatly
into systems appropriately described by one and systems appropriately described
by the other. For the majority of situations treated by physics, such as electrons
or planets, one can indeed get by admirably using only one of these theories: for
example, the gravitational effects of a hydrogen nucleus on an electron are negligible,
as we noted above, and the quantum spreading of the wavepacket representing
Mercury won’t much affect its orbit. But in principle, the two theories govern the
same systems: we cannot think of the world as divided in two, with matter fields
governed by quantum mechanics evolving on a curved spacetime manifold, itself
governed by general relativity. This is, of course, because general relativity, and in
particular, the Einstein field equation

Gµν = 8πTµν , (1.1)

couples the matter–energy fields in the form of the stress–energy tensor, Tµν , with
the spacetime geometry, in the form of the Einstein tensor, Gµν . Quantum fields
carry energy and mass; therefore, if general relativity is true, quantum fields distort
the curvature of spacetime and the curvature of spacetime affects the motion of
the quantum fields. If these theories are to yield a complete account of physical
phenomena, there will be no way to avoid those situations – involving very high
energies – in which there are non-negligible interactions between the quantum

4
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and gravitational fields; yet we do not have a theory characterizing this interaction.
Indeed, the influence of gravity on the quantum realm is an experimental fact: Peters
et al. (1999) measured interference between entangled systems following different
paths in the Earth’s gravitational field to measure gravitational acceleration to three
parts in 109. Further, we do not know whether new low energy, non-perturbative,
phenomena might result from a full treatment of the connection between quantum
matter and spacetime. In general, the fact that gravity and quantum matter are
inseparable ‘in principle’ will have in practice consequences, and we are forced to
consider how the theories connect.

One natural reaction is to correct this ‘oversight’ and extend quantum methods to
the gravitational interaction in the way that they were applied to describe the electro-
magnetic and nuclear interactions of matter, yielding the tremendously successful
‘standard model’ of quantum field theory. One way to develop this approach is to
say that the spacetime metric, gµν , be broken into two parts, ηµν + hµν , representing
a flat background spacetime and a gravitational disturbance respectively; and that
we look for a quantum field theory of hµν propagating in a flat spacetime described
by ηµν . However, in contrast to the other known forces, it turns out that all unitary
local quantum field theories for gravity are non-renormalizable. That is, the coupling
strength parameter has the dimensions of a negative power of mass, and so stan-
dard arguments imply that the divergences that appear in perturbative calculations
of physical quantities cannot be cancelled by rescaling a finite number of physical
parameters: ultimately the theory depends on an infinite number of quantities that
would need to be fixed empirically. More troubling is the strong suggestion from
study of the ‘renormalization group’ that such non-renormalizable theories become
pathological at short distances (e.g. Weinberg 1983) – perhaps not too surprising a
result for a theory which attempts in some sense to ‘quantize distance’.

Thus the approach that worked so well for the other forces of nature does not seem
applicable to gravity. Some new strategy seems in order if we are to marry quantum
theory and relativity. The different programmes – both the two main ones, canonical
quantum gravity and superstring theory, and alternatives such as twistor theory,
the holographic hypothesis, non-commutative geometry, topological quantum field
theory, etc. – all explore different avenues of attack. What goes, of course, is the
picture of gravity as just another quantum field on a flat classical spacetime – again,
not too surprising if one considers that there is no proper distinction between gravity
and spacetime in general relativity. But what is to be expected, if gravity will not fit
neatly into our standard quantum picture of the world, is that developing quantum
gravity will require technical and philosophical revolutions in our conceptions of
space and time.

1.2 Must the gravitational field be quantized?

1.2.1 No-go theorems?

Although a theory of quantum gravity may be unavoidable, this does not automati-
cally mean that we must quantize the classical gravitational field of general relativity.
A theory is clearly needed to characterize systems subject to strong quantum and
gravitational effects, but it does not follow that the correct thing to do is to take

5
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classical relativistic objects such as the Riemann tensor or metric field and quantize
them: that is, make them operators subject to non-vanishing commutation rela-
tions. All that follows from Section 1.1 is that a new theory is needed – nothing
about the nature of this new theory was assumed. Nevertheless, there are arguments
in the literature to the effect that it is inconsistent to have quantized fields interact
with non-quantized fields: the world cannot be half-quantized-and-half-classical. If
correct, given the (apparent) necessity of quantizing matter fields, it would follow
that we must also quantize the gravitational field. We would like to comment briefly
on this type of argument, for we believe that they are interesting, even if they fall
short of strict no-go theorems for any half-and-half theory of quantum gravity.

We are aware of two different arguments for the necessity of quantizing fields
that interact with quantum matter. One is an argument (e.g. DeWitt 1962) based
on a famous paper by Bohr and Rosenfeld (1933) that analysed a semiclassical
theory of the electromagnetic field in which ‘quantum disturbances’ spread into the
classical field. These papers argue that the quantization of a given system implies the
quantization of any system to which it can be coupled, since the uncertainty relations
of the quantized field ‘infect’ the coupled non-quantized field. Thus, since quantum
matter fields interact with the gravitational field, these arguments, if correct, would
prove that the gravitational field must also be quantized. We will not discuss this
argument here, since Brown and Redhead (1981) contains a sound critique of the
‘disturbance’ view of the uncertainty principle underpinning these arguments.

Interestingly, Rosenfeld (1963) actually denied that the 1933 paper showed any
inconsistency in semiclassical approaches. He felt that empirical evidence, not logic,
forced us to quantize fields; in the absence of such evidence ‘this temptation [to
quantize] must be resisted’ (1963, p. 354). Emphasizing this point, Rosenfeld ends
his paper with the remark, ‘Even the legendary Chicago machine cannot deliver
sausages if it is not supplied with hogs’ (1963, p. 356). This encapsulates the point
of view we would like to defend here.

The second argument, which we will consider, is due to Eppley and Hannah (1977)
(but see also Page and Geilker 1981 and Unruh 1984). The argument – modified
in places by us – goes like this. Suppose that the gravitational field were relativistic
(Lorentzian) and classical: not quantized, not subject to uncertainty relations, and
not allowing gravitational states to superpose in a way that makes the classical field
indeterminate. The contrast is exactly like that between a classical and quantum
particle.1 Let us also momentarily assume the standard interpretation of quantum
mechanics, whereby a measurement interaction instantaneously collapses the wave
function into an eigenstate of the relevant observable. (See, for example Aharonov
and Albert 1981, for a discussion of the plausibility of this interpretation in the
relativistic context.)

Now we ask how this classical field interacts with quantized matter, for the
moment keeping all possibilities on the table. Eppley and Hannah (1977) see two
(supposedly) exhaustive cases: gravitational interactions either collapse or do not
collapse quantum states.

Take the first horn of the dilemma: suppose the gravitational field does not collapse
the quantum state of a piece of matter with which it interacts. Then we can send
superluminal signals, in violation of relativity, as conventionally understood. Eppley

6
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and Hannah (1977) (and Pearle and Squires 1996) suggest some simple ways in
which this can be accomplished using a pair of entangled particles, but we will use
a modification of Einstein’s ‘electron in a box’ thought experiment. However, the
key to these examples is the (seemingly unavoidable) claim that if a gravitational
interaction does not collapse a quantum state, then the dynamics of the interaction
depend on the state. In particular, the way a classical gravitational wave scatters off
a quantum object would depend on the spatial wave function of the object, much as
it would depend on a classical mass distribution. Thus, scattering experiments are at
least sensitive to changes in the wave function, and at best will allow one to determine
the form of the wave function – without collapsing it. It is not hard to see how this
postulate, together with the usual interpretation of quantum measurements, allows
superluminal signalling.

We start with a rectangular box containing a single electron (or perhaps a micro-
scopic black hole), in a quantum state that makes it equally likely that the electron
will be found in either half of the box. We then introduce a barrier between the two
halves and separate them, leaving the electron in a superposition of states corre-
sponding to being in the left box and being in the right box. If the probabilities of
being in each box are equal, then the state of the particle will be:

ψ(x) = 1/
√

2(ψL(x) + ψR(x)), (1.2)

where ψL(x) and ψR(x) are wave functions of identical shape but with supports
inside the left and right boxes respectively.

Next we give the boxes to two friends Lefty and Righty, who carry them far apart
(without ever looking in them of course). In Einstein’s original version (in a letter
discussed by Fine 1986, p. 35–39, which is a clarification of the EPR argument in its
published form), when Lefty looked inside her box – and say found it empty – an
element of reality was instantaneously present in Righty’s box – the presence of the
electron – even though the boxes were spacelike separated. Assuming the collapse
postulate, when Lefty looks in her box a state transition,

1/
√

2(ψL(x) + ψR(x)) → ψR(x) (1.3)

occurs. In the familiar way, either some kind of spooky non-local ‘action’ occurs or
the electron was always in Righty’s box and quantum mechanics is incomplete, since
ψ(x) is indeterminate between the boxes. Of course, this experiment does not allow
signalling, for if Righty now looks in his box and sees the electron, he could just as
well conclude that he was the first to look in the box, collapsing the superposition.
And the long run statistics generated by repeated measurements that Righty observes
will be 50 : 50, electron : empty, whatever Lefty does – they can only determine the
correlation by examining the joint probability distribution, to which Righty, at his
wing, does not have access.

In the present case the situation is far more dire, for Righty can use our non-
collapsing gravitational field to ‘see’ what the wave function in his box is without
collapsing it. We simply imagine that the right-hand box is equipped with apertures
that allow gravitational waves in and out, and that Righty arranges a gravitational
wave source at one of them and detectors at the others.2

7
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Since the scattering depends on the form of the wave function in the box, any
changes in the wave function will show up as changes in the scattering pattern reg-
istered by the detectors. Hence, when Lefty now looks in her box – and suppose this
time she finds the electron – Righty’s apparatus will register the collapse instanta-
neously; there will be no scattering source at all, and the waves will pass straight
through Righty’s box. That is, before Lefty looks, the electron wave function is ψ(x)
and Righty’s gravity wave scatters off ψR(x); after Lefty collapses the electron, its
state isψL(x) + 0 and so Righty’s gravity wave has no scattering source. And since we
make the usual assumption that the collapse is instantaneous, the effect of looking
in the left box is registered on the right box superluminally. So, if Righty and Lefty
have a prior agreement that if Lefty performs the measurement then she fancies
a drink after work, otherwise she wants to go to the movies, then the apparatus
provides Righty with information about Lefty’s intentions at a spacelike separated
location.3

It is crucial to understand that this experiment is not a variant of ‘Wigner’s friend’.
One should absolutely not think that scattering the gravity wave off the electron
wave function leads to an entangled state in which the gravity wave is in a quantum
superposition, which is itself collapsed when measured by the detectors, producing
a consequent collapse in the electron wave function. Of course, such things might
occur in a theory of quantum gravity, but they cannot occur in the kind of theory that
we are presently discussing: a theory with a classical gravitational field, which just
means a theory in which there are no quantum superpositions of the gravitational
field. There is in this theory no way of avoiding signalling by introducing quantum
collapses of the gravitational field, since there is nothing to collapse.

It is also important to see how the argument depends on the interpretation of
quantum mechanics. On the one hand it does not strictly require the standard
interpretation of quantum mechanics, but can be made somewhat more general.
In our example, the component of the wave function with support on Righty’s box
went from ψR(x) to 0, which is a very sharp change. But the argument doesn’t need
a sharp change, it just needs a detectable change, to εψR(x), say. On the other hand,
it is necessary for the argument that normal measurements can produce effects at
spacelike separated regions. For then the gravitational waves provide an abnormal
way of watching a wave function without collapsing it, to see when such effects
occur. Thus, an interpretation of quantum mechanics that admits a dynamics which
prevents superluminal propagation of any disturbance in the wave function will
escape this argument. Any no-collapse theory whose wave function is governed at
all times by a relativistic wave equation will be of this type.

The conclusion of this horn of the dilemma is then the following. If one adopts
the standard interpretation of quantum mechanics, and one claims that the world is
divided into classical (gravitational) and quantum (matter) parts, and one models
quantum–classical interactions without collapse, then one must accept the possibil-
ity of superluminal signalling. And further, though practical difficulties may prevent
one from ever building a useful signalling device, the usual understanding of relativ-
ity prohibits superluminal signalling, even in principle. Of course, this interpretation
of relativity is a subtle matter in a number of ways, for instance concerning the pos-
sibility of Lorentz-invariant signalling (Maudlin 1994) and even the possibility of
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time travel (see, e.g. Earman 1995a). And of course, given the practical difficulty
of performing such an experiment, we do not have definitive empirical grounds for
ruling out such signalling. But since the kind of signalling described here could pick
out a preferred foliation of spacetime – on which the collapse occurs – it does violate
relativity in an important sense. Thus, someone who advocates a standard interpre-
tation of quantum mechanics, a half-and-half view of the world and a no-collapse
theory of classical–quantum interactions must deny relativity as commonly under-
stood. They would need a very different theory that could accommodate the kind of
superluminal signalling demonstrated, but that also approximates the causal struc-
ture of general relativity in all the extant experiments. (Note that this conclusion
is in line with our earlier, more general, argument for the existence of a theory of
quantum gravity; and note that the present argument really only demonstrates the
need for a new theory – it does not show that quantizing the metric field is the only
way to escape this problem.)

Of course, as mentioned, one might be able to avoid this horn of the dilemma
by opting for a no-collapse interpretation of quantum mechanics, e.g. some version
of Bohmian mechanics, or Everettian theories. We are not aware of any actual pro-
posal for a half-and-half world that exploits this possibility (e.g. Bohmian quantum
gravity – see below – aims to quantize the gravitational field). But the space may
exist in the logical geography. In Bohm’s theory, however measurements can have
non-local effects on particle positions. Signalling could therefore occur if scattering
at the gravitational field depended on the particle configuration and not only the
wave function.

Let’s turn to the other horn of the dilemma, where now we suppose that grav-
itational interactions can collapse quantum states of matter. Interestingly enough,
there are a number of concrete suggestions that gravity should be thus implicated in
the measurement problem, so it is perhaps not too surprising that attempts to close
off this horn are, if anything, even less secure.

Eppley and Hannah’s (1977) argument against a collapsing half-and-half theory
is that it entails a violation of energy–momentum conservation. First, we assume
that when our classical gravitational wave scatters off a quantum particle its wave
function collapses, to a narrow Gaussian say. Second, we assume that the gravity wave
scatters off the collapsed wave function as if there were a point particle localized at
the collapse site. Then the argument is straightforward: take a quantum particle with
sharp momentum but uncertain position, and scatter a gravity wave off it. The wave
function collapses, producing a localized particle (whose position is determined
by observing the scattered wave), but with uncertain momentum according to the
uncertainty relations. Making the initial particle slow and measuring the scattered
gravity wave with sufficient accuracy, one can pinpoint the final location sharply
enough to ensure that the uncertainty in final momentum is far greater than the sharp
value of the initial momentum. Eppley and Hannah conclude that we have a case of
momentum non-conservation, at least on the grounds that a subsequent momentum
measurement could lead to a far greater value than the initial momentum. (Or
perhaps, if we envision performing the experiment on an ensemble of such particles,
we have no reason to think that the momentum expectation value after will be the
same as before.)

9
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As with the first argument, the first thing that strikes one about this second argu-
ment is that it does not obviously depend on the fact that it is an interaction with
the gravitational field that produces collapse. Identical reasoning could be applied
to any sufficiently high resolution particle detector, given the standard collapse
interpretation of measurement. Since this problem for the collapse interpretation is
rather obvious, we should ask whether it has any standard response. It seems that
it does: as long as the momentum associated with the measuring device is much
greater than the uncertainty it produces, then we can sweep the problem under
the rug. The non-conservation is just not relevant to the measurement undertaken.
If this response works for generic measurements, then we can apply it in partic-
ular to gravitationally induced collapse, leaving Eppley and Hannah’s argument
inconclusive.

But how satisfactory is this response in the generic case? Just as satisfactory as
the basic collapse interpretation: not terribly, we would say. Without rehearsing the
familiar arguments, ‘sweeping quantities under the rug’ in this way seems troublingly
ad hoc, pointing to some missing piece of the quantum puzzle: hidden variables
perhaps or, as we shall consider here, a precise theory of collapse. Without some
such addition to quantum mechanics it is hard to evaluate whether such momentum
non-conservation should be taken seriously or not, but with a more detailed collapse
theory it is possible to pose some determinate questions. Take, as an important
example, the ‘spontaneous localization’ approaches of Ghirardi, Rimini, and Weber
(1986) or, more particularly here, of Pearle and Squires (1996). In their models,
energy is indeed not conserved in collapse, but with suitable tuning (essentially
smearing matter over a fundamental scale), the effect can be made to shrink below
anything that might have been detected to date.4

Whether such an answer to non-conservation is satisfactory depends on whether
we must take the postulate of momentum conservation as a fundamental or exper-
imental fact, which in turn depends on our reasons for holding the postulate.
In quantum mechanics, the reasons are of course that the spacetime symmetries
imply that the self-adjoint generators of temporal and spatial translations commute,
[Ĥ , P̂] = 0, and the considerations that lead us to identify the generator of spa-
tial transformations with momentum (cf., e.g. Jordan 1969). The conservation law,
d〈P̂〉/dt = 0 then follows simply. But of course, implicit in the assumption that
there is a self-adjoint generator for temporal translations, Ĥ , is the assumption that
the evolution operator, Û (t ) = e−iĤ t/h̄ , is unitary. But in a collapse, it is exactly
this assumption that breaks down: so what Eppley and Hannah in fact show is only
that in a collapse our fundamental reasons for expecting momentum conservation
fail. But if all that remains are our empirical reasons, then the spontaneous localiza-
tion approaches are satisfactory on this issue, as are other collapse models that hide
momentum non-conservation below the limits of observation. Thus, the incom-
pleteness problem aside, sweeping momentum uncertainty under the rug need not
do any harm.5 In this respect, it is worth noting that if gravitational waves cause
quantum jumps, then the effect must depend in some way on the strength of the
waves. The evidence for this assertion is the terrestrial success of quantum mechanics
despite the constant presence on Earth of gravity waves from deep space sources (and
indeed from the motions of local objects). If collapse into states sharp in position
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were occurring at a significant rate then, for instance, we would not expect matter to
be stable, since energy eigenstates are typically not sharp in position, nor would we
observe electron diffraction, since electrons with sharp positions move as localized
particles, without interfering.6

Since the size of the collapse effect must depend on the gravitational field in
some way, one could look for a theory in which the momentum of a gravitational
wave was always much larger than the uncertainty in any collapse it causes. Then any
momentum non-conserving effect would be undetectable, and Eppley and Hannah’s
qualms could again be swept under the rug.

Indeed, the spontaneous localization model developed by Pearle and Squires
(1996) has these features to some degree. They do not explicitly model a collapse
caused by a gravitational wave, but rather use a gravitational field whose source is a
collection of point sources, which punctuate independently in and out of existence.
In their model, the rate at which collapse occurs depends (directly) on the mass of
the sources and (as a square root) on the probability for source creation at any time,
so that a stronger source field produces a stronger gravitational field and a greater
rate of collapse. And the amount of energy produced by collapse is undetectable
by present instruments, given a suitable fixing of constants, sweeping it under the
rug. (Pearle and Squires also argue that the collapse rate is great enough to prevent
signalling.)

Finally, Roger Penrose also links gravity to collapse (see Chapter 13). He in fact
advocates a model in which gravity is quantized, but this is not crucial to the measure
of collapse rate he offers. He proposes that the time rate of collapse of a superposition
of two separated wave packets, T , is determined by the (Newtonian) gravitational
self-energy of the difference of the two packets, E∆: T ∼ h̄/E∆. Penrose also
proposes a test for this model, which Joy Christian criticizes and refines in Chapter 14.

As we said at the start of this section, arguments in the style of Eppley and
Hannah do not constitute no-go theorems against half-and-half theories of quantum
gravity. There are ways to evade both horns of the dilemma: adopting a no-collapse
theory could preclude superluminal signalling in the first horn, and allowing for
unobservable momentum non-conservation makes the result of the second horn
something one could also live with. This particular argument, which is often repeated
in the literature and in conversation, fails. Though we have not shown it, we would
like to here register our skepticism that any argument in the style of Eppley and
Hannah’s could prove that it is inconsistent to have a world that is part quantum
and part classical. Rosenfeld (1963) is right. Empirical considerations must create
the necessity, if there is any, of quantizing the gravitational field.

Even so, the mere possibility of half-and-half theories does not make them attrac-
tive, and aside from their serious attention to the measurement problem, it is
important to emphasize that they have not yielded the kind of powerful new insights
that attract large research communities. Note too that most physicists arguing for
the necessity of quantum gravity do not take the above argument as the main reason
for quantizing the gravitational field. Rather, they usually point to a list of what
one might call methodological points in favour of quantum gravity; see Chapter 2
for one such list. These points typically include various perceived weaknesses in
contemporary theory, and find these sufficiently suggestive of the need for a theory
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wherein gravity is quantized. We have no qualms with this kind of argument, so
long as it is recognized that the need for such a theory is not one of logical or (yet)
empirical necessity.

1.2.2 The semiclassical theory

Finally, we should discuss a specific suggestion for a half-and-half theory due to
Møller (1962) and Rosenfeld (1963), which appears – often as a foil – in the literature
from time to time (see Chapters 2 and 13). This theory, ‘semiclassical quantum
gravity’ (though any half-and-half theory is in some sense semiclassical), postulates
first that the spacetime geometry couples to the expectation value of the stress–energy
tensor:

Gµν = 8π〈T̂µν〉Ψ. (1.4)

Gµν is the classical Einstein tensor and 〈T̂µν〉Ψ is the expectation value for the stress–
energy operator given that the quantum state of the matter fields is Ψ. Clearly this
is the most obvious equation to write down given the Einstein field equation of
classical general relativity, and given quantum rather than classical matter: 〈Tµν〉Ψ
is the most obvious ‘classical’ quantity that can be coupled to Gµν .

Now, eqn. 1.4 differs importantly from the classical equation (eqn. 1.1), in that
the latter is supposed to be ‘complete’, coding all matter–space and matter–matter
dynamics: in principle, no other dynamical equations are required. Equation 1.4
cannot be complete in this sense, for it only imposes a relation between the spacetime
geometry and the expectation value of the matter density, but typically many quan-
tum states share any given expectation value. For example, being given the energy
expectation value of some system as a function of time does not, by itself, deter-
mine the evolution of the quantum state (one also needs the standard connection
between the Hamiltonian and the dynamics). So the semiclassical theory requires a
separate specification of the quantum evolution of the matter fields: a Schrödinger
equation on a curved spacetime. But this means that semiclassical quantum grav-
ity is governed by an unpleasantly complicated dynamics: one for which we must
seek ‘self-consistent’ solutions to two disparate of motions. Finding a model typi-
cally proceeds by first picking a spacetime – say a Schwarzschild black hole – and
solving the Schrödinger equation for the matter fields on the spacetime. But this
ignores the effect of the field on the spacetime, so next one wants to find the stress–
energy tensor for this solution, and plug that into the semiclassical equation, to find
corrections to the original spacetime. But then the assumption of a Schwarzschild
solution no longer holds, and the Schrödinger equation must be solved for the
new geometry, giving a new stress–energy expectation value to be fed back into the
semiclassical equation, and so on and so on. What one of course hopes is that this
process converges on a spacetime and matter field that satisfy both equations, but
in the absence of such solutions it is not even clear that the equations are mutually
consistent.

This lack of unity is one reason that physicists by-and-large do not take the
semiclassical theory seriously as a ‘fundamental’ theory. The idea instead is that it
can be used as an heuristic guide to some suggestive results in the absence of a real
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theory of quantum gravity; in the famous case mentioned, ‘Hawking radiation’ is
produced by quantum fields in a Schwarzschild spacetime, and if one could feed
the ‘back reaction’ into the semiclassical equation one would expect to find the
black hole radius decreasing as it evaporated. Unfortunately, a number of technical
problems face even this example, and though research is active and understanding
is increasing, there are still no known interesting solutions with evolving spacetimes
in four dimensions (see Wald 1994 for a discussion).

Things look even worse when one considers the collapse dynamics for quantum
mechanics. On the standard interpretation, the unitary dynamics for a system must
be supplemented with a collapse during certain ‘measurement’ interactions. If the
semiclassical theory were complete, then not only would the unitary evolution of
quantum matter need to be contained in eqn. 1.4, but so would the collapse. But –
turning around an argument of Unruh’s (1984) – it is impossible for eqn. 1.4 to
contain a sharp collapse: the Einstein tensor is necessarily conserved, Gµ;ν

ν = 0,
but a collapse would lead to a discontinuity in the stress–energy expectation value,
〈T̂µ

ν〉;ν �= 0. Nor does it seem plausible that eqn. 1.4 contains a smoother collapse:
why should measuring events invariably produce the appropriate change in Gµν? In
that case, the theory needs to be supplemented with a collapse dynamics, perhaps
along the lines suggested by Pearle and Squires, but certainly constrained by the
arguments considered in Section 1.2.1. In this context one point is worth noting: if
the collapse mechanism is sharp then Unruh’s argument shows either that eqn. 1.4 is
incorrect, or that the LHS is not a tensor field everywhere, but only on local patches
of spacetime, with ‘jumps’ in the field outside the patches.7

Our assessment of the semiclassical theory as a candidate fundamental theory is
much the same as for half-and-half theories in general: while they are not impos-
sible, if one weighs the insights they offer against the epicycles they require for
their maintenance, then they do not appear to be terribly progressive. Certainly
they take seriously the measurement problem, and so address arguments by, for
instance, Penrose (1989) that gravity and collapse are interrelated. And certainly,
the semiclassical theory has provided an invaluable and revealing tool for exploring
the boundary between general relativity and quantum mechanics, yielding a picture
of what phenomena – such as black hole thermodynamics – might be expected of
a theory of quantum gravity. But on the other hand, arguing that half-and-half
theories are fundamental involves more negotiating pitfalls than producing posi-
tive results. Thus it is not surprising that, although half-and-half theories have not
been shown to be inconsistent, they are not the focus of most work in quantum
gravity.

1.3 Approaches to quantum gravity

As we mentioned earlier, there currently is no quantum theory of gravity. There
are, however, some more-or-less developed approaches to the field, of which the
most actively researched fall into one of two broad classes, superstring theory and
canonical quantum gravity. Correspondingly, most of the chapters in this book that
deal explicitly with current research in the field discuss one or the other of these
programmes; thus it will be useful to give here preparatory sketches of both classes.
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(A warning: more space is devoted here to the canonical approach than to string
theory. This does not mirror their relative popularities in the contemporary physics
community, but reflects the greater development of philosophical discussion within
the canonical programme.)

1.3.1 Superstrings

First, superstring theory, which is discussed in Chapters 5, 6, and 7. Superstring
theory seeks to provide a unified quantum theory of all interactions, in which the
elementary entities are one-dimensional extended objects (strings), not point parti-
cles. Superstring theory arose from work on the strong interaction in the late 1960s
and early 1970s when it was shown that all the properties of a certain interest-
ing model of the strong interaction (Veneziano’s model) could be duplicated by a
Lagrangian theory of a relativistic string. Though interesting, this idea did not really
take off. In the mid-1970s, however, it was demonstrated that graviton–graviton
(quanta of the gravitational field) scattering amplitudes were the same as the ampli-
tudes of a certain type of closed string. This fact led to the idea that superstring
theory is a theory of all forces, not only the strong interaction.

Superstrings, consequently, are not meant to represent single particles or single
interactions, but rather they represent the entire spectrum of particles through
their vibrations. In this way, superstring theory promises a novel and attractive
‘ontological unification’. That is, unlike electrons, protons and neutrons – which
together compose atoms – and unlike quarks and gluons – which together compose
protons – strings would not be merely the smallest object in the universe, one from
which other types of matter are composed. Strings would not be merely constituents
of electrons or protons in the same manner as these entities are constituents of atoms.
Rather, strings would be all that there is: electrons, quarks, and so on would simply
be different vibrational modes of a string. In the mid-1980s this idea was taken up
by a number of researchers, who developed a unitary quantum theory of gravity in
ten dimensions.

A sketch of the basic idea is as follows (see Chapters 5 and 6 for more extensive
treatments). Consider a classical one-dimensional string propagating in a relativistic
spacetime, sweeping out a two-dimensional worldsheet, which we can treat as a
manifold with ‘internal’ co-ordinates (σ, τ ). One can give a classical treatment of
this system in which the canonical variables are Xµ(σ, τ ), where Xµ (µ = 0, 1, 2, 3)
are the spacetime co-ordinates of points on the string worldsheet. When the theory is
quantized, this embedding function is treated as a quantum field theory of excitations
on the string, X̂µ(σ, τ ). A number of fascinating and suggestive properties arise as
necessary consequences of such quantization.

• For instance, it was found that every consistent interacting quantized superstring
theory necessarily includes gravity. That is, closed strings all have gravitons
(massless spin-2 particles) in their excitation spectrum and open strings contain
them as intermediate states.

• In addition, the classical spacetime metric on the background spacetime must
satisfy a version of Einstein’s field equations (plus small perturbations) if we
(plausibly) demand that Xµ(σ, τ ) be conformally invariant on the string. Thus,
arguably, general relativity follows from string theory in the appropriate limit.
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• It is also necessary that the theory be supersymmetric (a symmetry allowing
transformations between bosons and fermions), a property independently
attractive to physicists seeking unified theories.

So part of the motivation for string theory comes from the feeling that it is
almost too good to be a coincidence that the mere requirement of quantizing a
classical string automatically brings with it gravity and supersymmetry. Of course,
another notorious consequence of quantizing a string is that spacetime must have a
dimension n, where n > 4 (n = 26 for the bosonic string, n = 10 when fermions are
added). But even here it can be claimed that the extra spacetime dimensions do not
arise by being put in artificially (as is the case, arguably, in Kaluza–Klein theory).
Rather, they again arise as a necessary condition for consistent quantization.

More recently, since the mid-1990s, string theorists have explored various sym-
metries known as ‘dualities’ in order to find clues to the non-perturbative aspects of
the theory. These dualities, they believe, hint that the five different existing classes of
string theories may in fact just be aspects of an underlying theory sometimes called
‘M-theory’, where ‘M’ = ‘magic’, ‘mystery’, ‘membrane’, or we might add, ‘maybe’. (In
a sense, superstring theory can be seen as returning to its early foundations, since the
ideas of Veneziano were based upon a [different] kind of ‘duality’ in his model of the
strong interaction.) There have been many exciting results along these lines during
the 1990s. These are briefly described in Chapters 2 and 5 (see also Witten 1997).
In addition, important and impressive results concerning the thermodynamics of
black holes have also been derived from the perspective of string theory, and these
are described and discussed in Chapter 7.

It is perhaps legitimate to view the difference between the perturbative superstring
theory of the mid-1980s and the non-perturbative M-theory of 1994–present as the
difference between whether superstring theory is a new fundamental theory or not.
The older superstring theory is, in a sense, not fundamental; quantum mechanics still
was. Superstring theory was ‘just’ quantum mechanics applied to classical strings.
(Of course there was no ‘just’ about it as regards the mathematical and physical
insight needed to devise the theory!) But with today’s string field theory, we see
intimations of a wholly new fundamental theory in the various novel dualities and
non-perturbative results. However, it is still troubling that so much of the success of
string theory derives from the enormous mathematical power and elegance of the
theory, rather than from empirical input. In his article, Weingard draws attention
to this point, arguing that, unlike other theories which turned out to be successful,
such as general relativity, string theory is not based on any obvious physical ‘clues’.
This article was written before the recent developments in M-theory, so we leave it
to the reader to consider whether the situation has changed.

Another issue of philosophical significance, discussed in Chapters 5 and 6, con-
cerns the nature of spacetime according to string theory. The original formulation
of string theory was envisaged as an extension of perturbative quantum field theory
from point particles to strings; thus, as we described earlier, strings were taken to
carry the gravitational field on a flat background spacetime. (Part of the promise
of this approach was that renormalization difficulties are at least rendered more
tractable, and at best do not occur at all.) On this view, then, spacetime appears
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very much as it did classically: we have matter and forces evolving on an ‘absolute’,
non-dynamical manifold. One disadvantage of this approach is easily overcome: as
Witten describes, it is simple to generalize from the assumption of a flat background
by inserting your metric of choice into the Lagrangian for the string field. This obser-
vation, plus the fact that conformal invariance for the field on the string demands
that the Einstein equation be satisfied by the spacetime metric, leads Witten to pro-
pose that we should not see spacetime as an absolute background in string theory
after all. Since spacetime is captured by the field theory on the string, ‘one does not
have to have spacetime any more, except to the extent that one can extract it from a
two-dimensional field theory’. (In Chapter 6, Weingard makes a similar point in his
discussion of the second quantization of string theory.) To support his claim Witten
also describes a duality symmetry of string theory that identifies small circles with
larger circles. The idea is that no circle can be shrunk beneath a certain scale, and so
there is a minimum – quantum – size in spacetime, and so no absolute background
continuum. More on this claim in the final section.

1.3.2 Canonical quantum gravity

In contrast to superstring theory, canonical quantum gravity seeks a non-
perturbative quantum theory of only the gravitational field. It aims for consistency
between quantum mechanics and gravity, not unification of all the different fields.
The main idea is to apply standard quantization procedures to the general theory
of relativity. To apply these procedures, it is necessary to cast general relativity into
canonical (Hamiltonian) form, and then quantize in the usual way. This was (par-
tially) successfully done by Dirac (1964) and (differently) by Arnowitt, Deser, and
Misner (1962). Since it puts relativity into a more familiar form, it makes an other-
wise daunting task seem hard but manageable. In the remainder of this section we
will give an intuitive sketch of the steps involved in this process, but be aware that
many (unsolved) difficulties lie in the way of its successful completion. The reader
should also be warned that we introduce these ideas with an out-of-date formula-
tion of the theory, namely, the geometrodynamical formulation. More sophisticated
and successful formulations exist – notably, the Ashtekar variable and loop variable
approaches – but as these do not by themselves significantly affect the philosophical
issues facing canonical quantum gravity, we here confine ourselves to the simpler
and more intuitive picture.

In the standard Hamiltonian formulation (all this material is covered more fully
in Chapter 10), one starts with canonical variables – say the position, x , and momen-
tum, p, of a particle – which define the appropriate phase space for the system. Given
a point in the phase space – say the instantaneous position and momentum of the
particle – the Hamiltonian, H (x , p), for the system will generate a unique trajectory
with respect to a time parameter. So, to apply this approach to general relativity
the first job is to define the relevant variables. The intuitive picture sought is one in
which a three-dimensional spatial manifold, Σ, evolves through an arbitrary time
parameter τ , so the natural thing is to decompose spacetime into space and time. In
the geometrodynamical formulation, a spatial 3-metric hab(x) on Σ plays the role
of the canonical position, and a canonically conjugate momentum pab(x) is also
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defined (it is closely related to the extrinsic curvature of Σ in the spacetime). The
phase space for this system is thus the space of all possible 3-spaces and conjugate
momenta, so the pair (h, p) fix an instantaneous state of Σ. (It is worth noting
that the foliation of spacetime implied by this procedure is at odds with the central
tenets of general relativity and will be a source of difficulties further down the line.)
Finally, one gives a Hamiltonian that generates trajectories through phase space in
agreement with relativity: trajectories such that the stack of 3-spaces form a model
of Einstein’s field equation.

Canonical quantization of such a system then means (in the first place) finding
an operator representation of the canonical variables obeying the canonical com-
mutation relations, say, [x̂ , p̂] = ih̄, or in our case [ĥ, p̂] = ih̄. Usually one hopes
that smooth (wave) functions, ψ(x), on the canonical position space (configuration
space) will carry such a representation (since x̂ = x and p̂ = ih̄ ∂/∂x are opera-
tors on such functions satisfying the commutation relations). One finally obtains
a quantum Hamiltonian operator by replacing the canonical variables in the clas-
sical Hamiltonian with their operator representations: H (x , p) → Ĥ (x̂ , p̂). States
of the quantum system are of course represented by the wave functions, and evo-
lutions are generated by the quantized Hamiltonian via the Schrödinger equation:
Ĥψ = ih̄ ∂ψ/∂t . If all this went through for general relativity, then we would expect
states of quantum gravity to be wave functions ψ(h) over the configuration space of
possible – Riemannian – 3-metrics, Riem(3), and physical quantities including the
canonical variables to be represented as operators on this space.

The general relativistic Hamiltonian generates evolutions in the direction of the
time that parameterizes the stack of 3-spaces, but there is no reason why this should
be normal to any given point on a 3-space. So, if T is a vector (field) in the direction
of increasing stack time in the spacetime, and n is a unit vector (field) everywhere
normal to the 3-spaces, we can decompose T into normal and tangential compo-
nents, T = Nn + �N . N is the ‘lapse’ function, coding the normal component of
T , and �N is the ‘shift’ vector (field), which is always tangent to the 3-space. Not
surprisingly, when one works through the problem (writing down a Lagrangian,
then using Hamilton’s equations), the Hamiltonian for the system can be split into
parts generating evolutions normal and tangent to the 3-spaces. Added together,
these parts generate transformations in the direction of the time parameter. Thus,
a standard Hamiltonian takes the form (for certain functions, Cµ, of the canonical
variables):

H =

∫
d3x (C · N + N iCi). (1.5)

Variation of h and p yields six of the Einstein equation’s ten equations of motion,
and variation of the N and �N produces the so-called ‘Hamiltonian’ and ‘momentum’
constraints’ (which hold at each point in spacetime):

C = Ci = 0. (1.6)

In other words, not every point of our phase space actually corresponds to a
(hypersurface of a) solution of general relativity, but only those for which (h, p)
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satisfy eqn. 1.6: in the formulation general relativity is a constrained Hamiltonian
system. As a consequence of eqn. 1.6, H = 0, though in the classical case at least, this
does not mean that there is no dynamics: the first six equations of motion ensure that
the 3-space geometry varies with time. It does however lead to some deep problems
in the theory, both in the classical and quantum contexts.

The idea of a constraint is of course fairly straightforward: consider, for example, a
free particle moving on a plane with freely specifiable values of position, x and y , and
of momentum, px and py : there are four degrees of freedom. However, if confined
to a circle, x2 + y2 = a, the particle must satisfy the constraint xpx + ypy = 0, which
allows us to solve for one of the variables in terms of the others: the constrained
system has only three degrees of freedom. Pictorially, the unconstrained particle’s
state may be represented anywhere in the four-dimensional phase space spanned
by the two position and two momenta axes, but the constrained particle can only
‘live’ on the three-dimensional subspace – the ‘constraint hypersurface’ – on which
the constraint holds. In this model the simplest way to approach the motion is to
reparameterize the system to three variables in which the constraint is automatically
satisfied: effectively making the constraint hypersurface the phase space.

Now, finding a constraint for a Hamiltonian system often (though not in the pre-
vious toy example) indicates that we are dealing with a gauge theory: there is some
symmetry transformation between states in the phase space that leaves all dynamical
parameters unchanged. The usual understanding is that since any physical quantities
must ‘make a difference’ dynamically, all observables (physically real quantities) must
be gauge invariant. (Note that this is a much stronger notion than a covariant sym-
metry, the idea that transformed quantities, though distinguishable, obey the same
equations of motion.) Such systems are of course fundamental to contemporary
field theory, since imposing local gauge invariance on a field requires introducing
a ‘connection’, A, which allows comparisons of values of the field at infinitesimally
separated points (working as the affine connection to allow differentiation of fields
over spacetime). A acts as a second field in the gauge invariant field equation, medi-
ating interactions; in quantum field theory, the original field represents ‘matter’ and
the connection field represents exchange particles, such as photons (see Redhead
1983). Note however that A is an example of a gauge non-invariant quantity, so
although it is crucial for understanding interactions, it contains unphysical degrees
of freedom. This apparent paradox shows the subtleties involved in understanding
gauge theories.8

We can apply these lessons to the Hamiltonian formulation of general relativity.
The constraint appears to be connected to a symmetry, this time the general covari-
ance of the theory, understood as diffeomorphism invariance. That is, if 〈M , g , T 〉
represents a spacetime of the theory (where M is a manifold, g represents the metric
field and T the matter fields), and D∗ is a smooth invertible mapping on M , then
〈M , D ∗ g , D ∗ T 〉 represents the very same spacetime. Crudely, smooth differences
in how the fields are arranged over the manifold are not physically significant.

It is vital to note that we have already reached the point at which controversial
philosophical stances must be taken. As Belot and Earman explain, to understand
diffeomorphism this way, as a gauge symmetry, is to take a stance on Einstein’s
infamous ‘hole argument’, and hence on various issues concerning the nature of
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spacetime; in turn, these issues will bear on the ‘problem of time’, introduced below.
We will maintain the gauge understanding at this point, since it is fairly conventional
among physicists (as several articles here testify).

Though the matter is subtle, if intuitively plausible, the momentum and
Hamiltonian constraints (eqn. 1.6) are believed to capture the invariance of general
relativity under spacelike and timelike diffeomorphisms respectively (e.g. Unruh and
Wald 1989). As it happens (unlike the toy case) the constraints cause the Hamiltonian
to vanish. This is not atypical of generally covariant Hamiltonian systems (see Belot
and Earman’s discussion of a parametrized free particle in Chapter 10 for an exam-
ple), but what is atypical in this theory is that the Hamiltonian is entirely composed
of constraints.

In fact, since things have been chosen nicely so that the momentum and
Hamiltonian constraints are associated with diffeomorphisms tangent and normal
to the 3-space, Σ, respectively, satisfying the former with a reparameterization is
easy: instead of counting every h on Σ as a distinct possibility, we take only equiv-
alence classes of 3-spaces related by diffeomorphisms to represent distinct states.
This move turns our earlier configuration space into ‘superspace’, so we now want
quantum states to be wave functions over superspace.

Once this move is made, all that is left of the Hamiltonian is the Hamiltonian con-
straint. But now a reparameterization seems out of the question, for the Hamiltonian
constraint is related to diffeomorphisms in the time direction. If we try to form a
state space in which all states related by temporal diffeomorphisms are counted as
the same, then we have no choice but to treat whole spacetimes, not just 3-spaces,
as states. Otherwise it just makes no sense to pose the question of whether the two
states are related by the diffeomorphism. But in this case the state space consists, not
of 3-geometries, but of full solutions of general relativity. And in this case there are
no trajectories of evolving solutions, and the Hamiltonian and Schrödinger pictures
no longer apply.

Despite this difficulty, it is still possible to quantize our system by (more or less)
following Dirac’s quantization scheme and requiring that the constraint equations
be satisfied as operator equations, heuristically writing:

ĈΨ = Ĉ iΨ = 0. (1.7)

Since the momentum constraints are automatically satisfied in superspace, the focus
in canonical quantum gravity is on

ĈΨ = 0, (1.8)

the so-called Wheeler–DeWitt equation. This equation’s interpretation has generated
much controversy, as we shall describe in the next section. For now, be aware that
very significant conceptual and formal difficulties confront the intuitive picture
we have sketched: not least that there are no known solutions to the problem as
constructed so far!9 There are, however, some solutions to this equation when one
writes the theory in terms of Ashtekar’s so-called ‘new variables’. These variables have
overcome many technical obstacles to the older canonical theory, and have greatly
reinvigorated the canonical programme in the past decade (see Rovelli 1998b for a
review).
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Finally, and extremely speculatively, we note that both superstring theory and
the canonical programme have evolved greatly from their initial formulations, and,
as far as we are aware, it is possible that they are converging in some way: for
example, perhaps some descendent of the Ashtekar formulation will turn out to be
a realization of M-theory. That is, the future may reveal an analogy between the
historical developments of quantum gravity and the Schrödinger and Heisenberg
formulations of quantum mechanics. Were this to be the case, then one would
expect fruitful new insights into all the issues raised here.

1.4 What quantum gravity and philosophy have to say to each other

Quantum gravity raises a multitude of issues interesting to philosophically minded
thinkers. Physicists working in the field challenge some of our deepest assumptions
about the world, and the philosophical tradition has a strong interest in many of
these assumptions. In this final section we will describe a variety of topics in the
subject that are of mutual concern to physicists and philosophers: some issues that
bear on historically philosophical questions, and some new foundational issues. Our
aim is to give philosophers a good outline of the problems that define the field, and
to give physicists a sketch of how philosophers have investigated such issues – and
of course to show how the arguments of our contributors fit into a broad dialogue
concerning the foundations of quantum gravity. (Note that the papers are not exactly
organized according to the following scheme, because many of them address several
distinct issues.)

1.4.1 The demise of classical spacetime

• A number of the contributors make comments relevant to the ‘fate of spacetime’
in the quantum regime. Since we have already mentioned Witten’s views, we will
start there. He claims that, despite the original idea of strings propagating on a
fixed background spacetime, spacetime arises entirely from the more fundamental
two-dimensional conformal field on the string (an argument supported by duality
symmetry). If correct (and if string theory is correct), then this view constitutes a
considerable advance on our philosophical understanding of the nature of space.
Views on the nature of space are as old as the idea of a general account of motion
(see Huggett 1999): Plato and Descartes believed that matter and space were iden-
tical; Aristotle and other plenists often denied the existence of space by denying
the vacuum of the atomists; and of course Newton and Leibniz were in famous
opposition on the question of whether space was ‘absolute’ or ‘relative’. The recent
philosophical tradition (Friedman 1983 is especially influential here) has divided
this question up in a number of ways: whether spacetime is dynamical or not;
whether there is literally a manifold of points distinct from matter; and the mean-
ing of ‘relativity principles’ as symmetries. Naturally, postgeneral relativity the
answer to the first question is affirmative (though not without subtleties), but the
other two topics are addressed by quantum gravity; the nature of the symmetries
will come up later, for now we see the claim that in string theory spacetime is not
distinct from matter (i.e. strings) but derives from it. The physical argument seems
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pretty straightforward, and it seems to us that philosophers should pick up this
challenge: does Witten offer a sound answer to the problem of the nature of space,
and how does it fit with historical proposals?

One oddity with this view is worth mentioning at once: the spacetime metric
field that appears in the stringy Lagrangian must apparently be defined everywhere,
not just on those points which the string occupies. Witten’s spacetime seems to
exist where matter and hence the fundamental two-dimensional field does not, so
does it truely fade away?
• Canonical quantum gravity also has implications for the nature of spacetime,

raised here by John Baez and Carlo Rovelli in Chapters 8 and 4 respectively. At
first, it might seem that this approach should diverge from that of Witten by
postulating a manifold as distinct from matter as that of general relativity, though
subject to quantum effects: quantum spacetime should be to quantum matter as
classical spacetime is to classical matter. However, as we shall mention below, it
seems unlikely that canonical quantum gravity can be formulated in the space
of 3-metrics as suggested earlier, and the significant advances in the theory of
the last fifteen years have come from the ‘loop’ formulation due, inter alia, to
Ashtekar, Rovelli, and Smolin, introduced here by Rovelli as a logical development
of the insights of general relativity and quantum mechanics. The idea is that
quantum gravity has as a basis (of quantum states) networks with spins values
( 1

2 , 1, 3
2 . . . ) associated with the vertices. The picture may not seem intuitive, but

if the nodes represent quantized regions, then suitable operators for geometrical
quantities, such as volume, can be found, and so an understanding of the spacetime
represented by such a state attained. (What is unknown at present is how the theory
relates to general relativity in a classical limit.) If the loop basis is not unitarily
equivalent to the 3-metric basis then (if it is correct) it too offers a picture in which
spacetime is not fundamental, but a result of a more basic reality: in this case the
spin network. Rovelli, in Chapter 4, claims that this too is a form of relationism.
• A closely related question is raised in Chapter 8 by Baez in his discussion of

‘topological quantum field theory’. This is an approach to quantum gravity that
gets away from a background spacetime by utilizing an analogy – brought out in
‘category theory’ – between the topological properties of a space and the quantum
formalism. This enables one to construct models of quantum evolutions, involving
topological change, satisfying a set of appropriate axioms, without worrying about
the details of the dynamics of (quantum) geometry. The analogy is very suggestive,
and may be a clue to uniting quantum mechanics and general relativity, but it
comes at a price: the spacetimes in the theory have no local properties, such
as a metric or causal structure, and so the theory cannot be the whole story.
As Baez mentions, the ideas have been useful in canonical quantum gravity to
study the dynamics in analogy to the Feynman approach of quantum field theory:
one calculates sums over ways in which surfaces can interact by branching and
joining – ‘spin foams’.

An important philosophical question brought up here is how the causal structure
of spacetime is to be built into this kind of theory. Causation is a perennial topic
for philosophers: from Aristotle, to Hume and his sceptical descendants, who
claim that causation is just ‘constant conjunction’ of some kind; to contemporary
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accounts in subjunctive terms – ‘A caused B just in case if A had not happened then
neither would B have happened’ – or based on statistical considerations; to the
understanding of causal structure in relativity. Apparently this is not a topic that is
well understood in quantum gravity, but it is one that philosophers should address.
Another question of philosophical interest here concerns the topology change that
is the basis of the theory. Philosophers have rarely considered the exotic possibility
of the topology of space changing with time, but it is a possibility with relevance
to some traditional philosophical issues, for example Aristotle’s, Descartes’, and
Kant’s claimed ‘unity of space’ (see Callender and Weingard 2000).
• As we have just indicated, the fate of spacetime in many approaches to the sub-

ject is that classical spacetime structure (loosely, a semi-Riemannian metric on a
continuous manifold) breaks down. In Chapter 2, Butterfield and Isham treat at
greater length the consequences of the various programmes and speculations for
the notion of spacetime. Common to these programmes and speculations is talk
of the gravitational field in quantum gravity ‘fluctuating’. But can this really make
sense? In Chapter 3, Weinstein (a philosopher) takes this naive idea seriously, to
see whether it can really hold water. He argues that it cannot without the theory
failing to capture all observable gravitational phenomena. The main idea behind
some of his critique is that fluctuations in the gravitational field imply fluctuations
in the spatiotemporal, and hence causal, structure of the world. But it is hard to see
how one can make sense of canonical commutation relations and hence quantize
anything in the absence of a stable causal structure.

1.4.2 The nature of time

• Next, consider what is possibly the deepest of all philosophical puzzles, the nature
of time (see, e.g. Le Poidevin and MacBeath 1993). Not only do certain programmes
imply the breakdown of classical spacetime structure, but they also threaten to say
something ‘special’ about time. Indeed, quantum gravity in all of its formulations
seems forced to say something novel about this subject, for it must reconcile
a conflict in the understanding of time between quantum theory and general
relativity. Canonical quantum mechanics, since it is based on the Hamiltonian
formulation, describes systems evolving with respect to a time parameter: either
the preferred foliation of Galilean spacetime or – covariantly – the instantaneous
hypersurfaces of an inertial frame. But general relativity is famously hostile to any
such time parametrization (except in very special cases with nice symmetries). First
of all, there is no such thing as time, simpliciter, in the theory, but rather a variety
of time variables. There is the completely arbitrary co-ordinate time which, unlike
time in Minkowski spacetime, has no metrical properties. There is also the proper
time of an observer, but this cannot be extrapolated out to be the unique measure
of time for all observers. And then there are various ‘cosmic time’ variables, such as
Weyl’s and Milne’s definitions of cosmic time, though these are usually dependent
upon special distributions of matter–energy or on special geometrical properties
of the spacetime holding. In general relativity, there are plenty of cosmological
solutions that do not even allow the possibility of spacetime being foliated by
global spacelike hypersurfaces. Finally, the spacetime metric is dynamical in general
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relativity but non-dynamical in quantum mechanics. Thus, the two conceptions
of time are very different. Quantum gravity, therefore, must say something about
time, even if only that one of these two conceptions is fundamentally correct and
the other only approximately right. Its verdict on this issue and others like it will
be of interest to philosophers and physicists alike. In Chapter 2, Butterfield and
Isham survey this problem (among others) and explain what some of the major
programmes suggest is right.
• Some more specific problems connected with time arise in canonical quantum

gravity. First, there is the notorious ‘problem of time’. Since Belot and Earman
discuss this in detail in Chapter 10, we will only briefly mention the problem. The
problem is obvious enough: the Wheeler–DeWitt equation has no time depen-
dence! Like a particle in a (non-degenerate) eigenstate of zero energy, the quantum
state of the universe does not change, contrary to experience. (Note that this prob-
lem does not affect the classical theory: in that context a spacetime can evolve
even if its Hamiltonian vanishes. It is only when we follow Dirac’s prescription
for the quantum interpretation of the constraints that trouble strikes.) Further,
since the Wheeler–DeWitt equation must hold at all times, it holds before and
after measurements. Thus there is no way to encode the information gained from
a measurement back into the equation, which aggravates the first problem.
• Then, there is the related problem of observables. As we explained above, the

natural interpretation of a gauge theory is that the gauge degrees of freedom
do not correspond to physical transformations, and thus one concludes that all
observable quantities must be gauge invariant, unchanged under the action of the
gauge transformations (actually this is what is usually meant by a gauge symmetry).
In formal terms this means classically that the Poisson bracket of any constraint and
observable vanishes, {C , O} = 0; on quantizing according to the Dirac scheme,
the operators corresponding to the constraint and observable must commute,
[Ĉ , Ô] = 0. Now in general relativity we find that the Hamiltonian, H , which is
supposed to generate evolutions is itself a constraint, and so commutes with any
observable; but {H , O} = 0 and [Ĥ , Ô] = 0 mean that any observable quantity
(its value or expectation value) is a constant of the motion. Equivalently, since the
two parts of the Hamiltonian generate diffeomorphisms, all physical quantities
must be diffeomorphism invariant. As a rule, constants of the motion tend to be
pretty dull physical quantities. In fact, if Σ is compact, the system has no known
observables; if Σ is open, then trivial quantities may be defined, but they are
generally acknowledged to be useless to quantum gravity. In particular, since the
spatial 3-metric presumably changes with time, it cannot be an observable (which
leaves one wondering what the point is of promoting it to an operator). Of course
this flies in the face of the conventional understanding of general relativity, which
holds that the metric is observable.

Note that although the problem described afflicts both classical and quantum
versions of the theory, it raises an additional conflict between quantum general
relativity and the usual interpretation of quantum mechanics. Any quantum
mechanical observable with time-dependent values will satisfy [Ĥ , Q̂] �= 0, which
means that there are no simultaneous eigenstates of Ĥ and Q̂. But since H is a con-
straint, the fundamental postulate of Dirac’s quantization is that every state of the
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system is an eigenstate of Ĥ : ĤΨ = 0. But then no possible states are eigenstates of
such a Q̂, and so the usual account of quantum measurement breaks down: there
simply cannot be a collapse into a state of definite Q if no such states exist!

Proposed solutions to these problems are compared and evaluated in detail by
Belot and Earman in Chapter 10, and we think they are only half-joking when
they divide them into ‘Parmenidean’ and ‘Hericlitean’ kinds. Parmenides (later
followed by the more familiar Zeno) argued that all change was illusion, and the
view associated with Rovelli (intimated in Chapter 4, but outlined more fully in
Chapter 10 by Belot and Earman) has this character. According to Rovelli, all
physical quantities are irreducibly relational, and hence timeless: for example, ‘the
clock read one as the mouse ran down’ is a physical property, but it is not analysable
into ‘(at t the clock read one) and (at t the mouse ran down)’, since readings and
positions at t are not physical. The idea of course is to bite the bullet, and accept that
only diffeomorphism invariant quantities are physical, so there are only timeless
truths.

Heraclites, on the other hand, argued for permanent flux, and the views pro-
posed by Kuchař (e.g. 1992), among others, have this character. In the more
extreme formulations they go against the spirit of general relativity and assume a
preferred foliation, which gives physical significance to observable quantities that
are time-specific. Kuchař’s proposal is more subtle, seeking to find a meaningful
time-parameter without violating the spirit of general relativity, but strong enough
to deny that the scalar constraint has the same force as the vector constraint: quan-
tities should be invariant under spatial diffeomorphisms, but not under timelike
diffeomorphisms.

We would speculate that the problem of change is perhaps the oldest philosoph-
ical subject, and its solutions are the source of many metaphysical problems. The
oldest version asks how change is possible at all: if A changes, then it is no longer the
same, and hence no longer A, so A has not changed, but ceased to exist! In recent
years the problem has been most focussed on the nature of identity – especially the
nature of persistence through time – and the meaning of the spacetime view of the
world: are all truths ‘tenseless’, or is some sense to be made of a ‘specious present’
(see Le Poidevin and MacBeath 1993 and references therein; Williams 1951 is an
enjoyable classic article on this topic). Clearly, the views of Rovelli and Kuchař have
crucial bearing on these arguments, and must be taken seriously by philosophers
of time, though, as Belot and Earman point out in Chapter 10 , which (if either)
of their insights is correct is something to be determined in part by the success of
their approaches in solving physical problems.

1.4.3 The interpretation of general relativity

• Since diffeomorphism invariance is the symmetry underlying general relativity’s
general covariance, the interpretation of general covariance – a hotly disputed
topic since the theory’s inception – may be relevant to solving some of the above
problems. Indeed, as many of the chapters in this volume make abundantly clear
(especially Chapters 9 and 10), there most certainly is a connection between issues
in quantum gravity and the interpretation of general covariance, and in particular,
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Einstein’s famous hole argument, which itself bears on the relational–substantival
debate concerning space. In recent years this argument has attracted a great deal
of attention among philosophers. Earman and Norton (1987) argued that the
example shows that the ‘manifold substantivalist’ – one committed to the literal
existence of a spacetime manifold distinct from matter – had to accept radical
indeterminism: there are infinitely many models of general relativity that agree
outside the hole, but disagree inside. Put another way (as Belot and Earman
suggest in Chapter 10), the substantivalist must accept that the points of two
manifolds can be compared, independently of the various fields on them; that is
the meaning of their distinctness from matter. Substantivalists have replied in a
variety of ways, some by arguing that while the comparison can be made without
regard to matter fields, it cannot be made without regard for the metric field, others
use the developments in our understanding of the logic of possibility to argue
that diffeomorphism invariance is compatible with substantivalism. Since one’s
preferred solution to the problem of time bears on the meaning of diffeomorphism
invariance, it is only natural to expect that it will have bearing on the hole argument
and hence the nature of spacetime. (Looked at from another angle, as Belot and
Earman again point out, the issues here are a very special case of the philosophical
issues that arise in understanding gauge degrees of freedom, which are at once
unphysical, but also seemingly essential for modern field theories. See also Redhead
1975.)
• Another issue, raised by Penrose in Chapter 13, suggests that there are problems

with approaches in which there are quantum superpositions of spacetime, as, for
instance, there would be in the intuitive approach to canonical quantum gravity we
sketched in Section 1.3 (though it is less clear what to say about the loop approach).
Penrose points out that general relativity’s principle of general covariance seems
at odds with the quantum mechanical principle of superposition. For suppose
|α〉 = |φ(x)〉|Ψ〉 represents a state in which a particle is localized in a spacetime
with a sharp metric, and |β〉 = |φ(x + a)〉|Ψ′〉 represents the particle shifted
and the appropriate new metric eigenstate. Now, we can imagine the state |α〉 +
|β〉 representing an entangled system involving particle and gravitational field
superpositions. Certainly such a state is distinct from either |α〉 or |β〉, but how can
these two states be distinct? Since the particles only differ by a displacement, we can
suppose the metrics to as well, and so the spacetimes involved are diffeomorphic:
given (one reading of) general covariance the two spacetimes and hence quantum
states are one and the same.

In Chapter 9, Julian Barbour tackles this issue (and the preceding one), arguing
that there is a canonical way to identify points between slightly differing spacetimes;
the key insight, he thinks, comes from a method of deducing the ‘best match’
between one relative configuration of particles and another. In the case of 3-
geometries he claims this method is simply Hilbert’s variational principle. This
idea traces its origins to work in mechanics by Lagrange, Lange, and Mach, among
others, and it has relevance to Machianism about spacetime and the hole argument.
• It is often thought that only quantum mechanics has a problem of interpretation.

However, the above issues and others make it plausible that even general relativ-
ity has a problem of interpretation. The interpretation of general relativity is of
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obvious importance to quantum gravity: it is important to understand properly
the assumptions that go into relativity so that one can better appreciate what one
can and cannot give up when creating a new theory. In this spirit, in Chapter 11
Harvey Brown and Oliver Pooley examine John S. Bell’s (1976) paper ‘How to
Teach Special Relativity’, and apply the lesson they learn from it regarding special
relativity to general relativity. Bell’s paper explains the Lorentz transformations
dynamically à la Lorentz: by showing how they can be derived from the structure
of matter (in particular from electrodynamics) in relative motion. Einstein related
this explanation of relativity to his own account, as kinetic theory explanations
(so-called ‘constructive theory’ explanations) relate to thermodynamical explana-
tions (so-called ‘principle theory’ explanations). Like Bell, Einstein claimed that
Lorentz’s constructive explanation was necessary for a proper understanding of
special relativity. Brown and Pooley seek to extend this point to general relativity.
They claim it clarifies the role of kinematics and dynamics in special and general
relativity, as well as the role of rods and clocks in the two theories.

1.4.4 The interpretation of quantum mechanics

• Another connection between philosophy and quantum gravity involves the notori-
ous measurement problem in quantum mechanics. Physicists and philosophers of
science have both devoted much time and energy to discussing this topic. Is the
measurement problem and the interpretation of quantum mechanics relevant to
quantum gravity? In this volume we are fortunate enough to have sharply divided
answers to this controversial question. In Chapter 4, Rovelli emphatically claims
that there is no connection between the two, whereas Sheldon Goldstein and Stefan
Teufel in Chapter 12 claim that the connection makes all the difference in the world,
and that the failure to acknowledge it is responsible for many of the conceptual
problems in the field, such as the problem of time.

• The Bohmian approach, here advocated by Goldstein and Teufel, also falls under
this heading. In the case of particle quantum mechanics, Bohm’s theory describes
point bodies – ‘beables’ – whose definite motions are determined by their collec-
tive locations (not momentum) and the wave function, which is itself determined
by the ordinary Schrödinger equation (not the particle locations). Goldstein and
Teufel explain in Chapter 12 how this picture can be carried over to canonical
quantum gravity, where the evolution of a definite 3-geometry – the beable – is
determined by a wave function, which is itself determined by the Wheeler–DeWitt
equation. This time, since the wave function is not representing the physical state
but, as it were, driving the 3-geometry, the problem of time does not arise: there
is no inconsistency in a stationary wave function leading to an evolving spacetime
in this theory. Further, in Bohmian mechanics the usual quantum formalism for
observables is not taken as a matter of fundamental postulate, but rather should
emerge from analysis of experiments within the framework. In this case the prob-
lem of observables cannot get off the ground: whatever quantities can be shown
to be measurable in experiment are observable. Finally, since physical quantities
come directly from the beables, not the wave function, and since in a model of
Bohmian quantum gravity there is only one stationary wave function, it also seems

26



[10:14 2000/10/5 g:/tex/key-tex/callendr/3663-001.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 1 Page: 27 1–30

Introduction

that the need for an inner product is moot: the theory simply sidesteps one of the
hardest technical problems of canonical quantum gravity (explained below). On
the downside, despite many interesting applications of Bohmian quantum gravity
to conceptual and physical problems – for example to the problem of time by
Holland (1993), Callender and Weingard (1994, 1996), and many others; to black
holes by Kenmoku et al. (1997); to the initial singularity by Callender and Wein-
gard (1995); and to various cosmological models by Blaut and Kowalski-Glikman
(1996) – Bohmian quantum gravity has not been developed as seriously as some
other approaches, so it is difficult to say whether or not it has hard problems of
its own.
• In Chapters 13 and 14, Roger Penrose and Joy Christian also see a connection

between gravity and the measurement problem. Penrose develops the attractive
idea that the gravitational field can be drafted in to help answer the measurement
problem. The idea is that the gravitational field is the ‘trigger’ that stimulates col-
lapses of quantum superpositions before they become macroscopic. In principle,
this interpretation should give slightly (though currently unobserved) different
results than standard quantum mechanics. We therefore have the exciting possi-
bility of testing this collapse theory against the standard theory. Penrose, here and
elsewhere, proposes some such experiments. But will they really succeed in testing
his theory? Christian claims that one type of experiment will not work and pro-
poses some others in its place, as well as greatly elaborating the conceptual position
of Penrose’s model within quantum gravity.
• Issues analogous to those concerning collapses arise from Hawking’s (1974) cel-

ebrated results concerning the ‘evaporation’ of black holes (the most important
achievement of the semiclassical theory). In a non-unitary wave function col-
lapse, information about the prior state must be erased: one cannot invert the
dynamics to reconstruct the original wave function. Similarly, information about
a system’s state falls into a black hole with the system, but – on the standard
treatment – is neither contained in the thermal radiation given off as the black
hole evaporates away nor in the black hole itself. Like measurement, it is hard to
reconcile this ‘information loss’ with the unitary evolution required by quantum
mechanics.

In Chapter 7, Unruh explains the ideas of black hole thermodynamics, and
especially the significance of black hole entropy. He also uses an ingenious parallel
between light transmission in spacetime and sound transmission in moving water
(if a black hole is a region from which light cannot escape, then a ‘dumb hole’ is
a region from which sound cannot escape, for instance because the water inside is
moving in the opposite direction supersonically) to show that Hawking’s result is
insensitive to short length scale physics. However, it is such short length physics,
and in particular string theory, that may offer a solution to the information loss
problem according to recent proposals.

First of all, one can (in some very special cases) calculate a ‘traditional’ entropy
for a black hole by counting the number of corresponding (in a loose sense) string
states and taking their logarithm; the result is (in those special cases) in agreement
with the Hawking-style calculation. This raises the possibility that the information
about systems which fall into the black hole is in fact contained in the strings.
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That is, knowing the details of the thermal radiation and the exact string state
might suffice to reconstruct the in-falling state, as knowledge of the radiation and
internal state of a hot poker would allow resconstruction of the heating process.
Unruh criticizes this proposal, arguing that if the strings are inside the black hole
then they cannot influence the thermal radiation in the appropriate way, but if they
are outside the black hole then they cannot be suitably affected by the in-falling
system. The only possiblity seems to be some kind of non-local interaction between
strings inside and outside the hole, but this scenario is deeply unappealing.

1.4.5 The status of the wave function

• Another topic of interest to both physicists and philosophers concerns the status of
quantum cosmology. Quantum cosmology, in contrast to quantum gravity, aims
to provide a rationale for a particular choice of boundary conditions for our uni-
verse. The most familiar schemes of this kind are the famous Hartle and Hawking
(1983) No-Boundary Proposal and the Vilenkin (1982) initial wave function of the
universe. Some physicists conceive of quantum cosmology as a prescriptive enter-
prise: they believe that there are laws of quantum cosmology. Hawking, Hartle,
and Vilenkin are all engaged in what we might call ‘cosmogenic’ theories. They are
trying to find laws that uniquely determine the initial conditions of the universe.
But is this search scientifically respectable? What possible justification could there
be for the choice of a particular boundary condition – aside from the fact that it
works, i.e. that it leads to what we observe? Any inductive inference from a single
case is unwarranted, so how can we scientifically justify talk of laws and causes for
the universe as a whole? While none of the contributors addresses this question
directly, Goldstein and Teufel in Chapter 12 do speculate about the meaning of the
universal wave function. And these considerations do raise the question of whether
the usual probabilistic interpretation of the wave function can be carried over to
the case of the universal wave function.
• Related problems arise in particular approaches to quantum gravity. To give an

example, consider the problem of the interpretation of the Wheeler–DeWitt equa-
tion (eqn. 1.8). The naive suggestion is that it receive the same interpretation as
does quantum mechanics. (By interpretation we here mean only rules for extract-
ing predictions, not a solution to the measurement problem; until we know how
to extract predictions from the theory it doesn’t even have the luxury of having
a measurement problem!) The naive interpretation would be to think of Ψ(h, p)
as a probability, which when squared yields the probability that an observer will
measure the values h and p. Even putting aside the question of where this observer
of the whole universe is, we know this scheme cannot work (at least straightfor-
wardly). This can be seen by comparing the Wheeler–DeWitt equation to the more
familiar Klein–Gordon equation. If we impose the Klein–Gordon Hamiltonian as
a restriction on the space of physical states, then the analogy between the result-
ing equation and the Wheeler–DeWitt equation is very strong. In fact, when the
Wheeler–DeWitt equation is reduced to two degrees of freedom, it is this resulting
equation. Now recall that the Klein–Gordon equation suffers from a very serious
problem: its inner product 〈Ψ1|Ψ2〉 is not positive definite and therefore cannot be
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used to define a probability. Thus we have a problem with defining a sensible inner
product for the position representation (see, e.g. Teller 1995). The same problem
threatens here, and is one motivation for loop quantization, for one can define an
inner product on the space of 3-metrics in that approach.

The first sections of this introduction sought to clarify the motivations for the
search for a theory of quantum gravity and give a useful outline of the two major
programmes. In this final section we provided a sketch of many (but surely not all)
of the major philosophical dimensions of quantum gravity. We hope that the reader,
equipped with these ideas will now have sufficient context to tackle the chapters of
this book, seeing how they relate to the broad physical and philosophical issues that
surround the topic; if so, he or she will surely find them as exciting and illuminating
as we have. We look forward to the debates that they will spark!

Notes

Many thanks to John Baez, Jossi Berkovitz, Jeremy Butterfield, Carl Hoefer, Tom Imbo,
Jeffrey Ketland and Carlo Rovelli for indispensable comments on this introduction. Portions
of the Introduction are based on ‘Why Quantize Gravity (or Any Other Field for that Matter)?’,
presented at the Philosophy of Science Association Conference (Callender and Huggett 2001).

1. In fact, it is these assumptions of classicality that do the work in the argument; the fact that the
field of interest is not just classical, but also gravitational, does not play a role.

2. Obviously this thought experiment relies on some extreme idealizations, since we in effect
postulate that the electron is screened off from all other fields so that no correlations are lost.
But this does not detract from the point of the example: superluminal signalling that picks out
a preferred foliation of spacetime must be impossible in principle, not just practice, if we take
relativity seriously and literally.

3. A couple of other comments: (a) If Lefty found her box empty then Righty would still measure
an effect, providing that the scattering is sensitive to the amplitude of the wave function (if
not, one could still arrange signalling either by using enough boxes to ensure that Lefty will
find an electron in one, or by using one of the other schemes mentioned above); (b) As
Aharanov and Vaidman (1993) point out, this kind of arrangement will not permit signalling
with their ‘protective observations’, though they are similar in allowing measurements of the
wave function without collapse.

4. Of course, one might be concerned that such ad hoc fine-tuning of parameters is an indication
that we are reaching a ‘degenerating’ phase of the spontaneous localization program, adding
epicycles to save the theory. But this judgement may be premature: Pearle and Squires (1996)
suggest how some such parameters may be derived.

5. Alternately, one might try to maintain momentum conservation on average (as Brown and
Redhead 1981, footnote 21, suggest) in collapses. That is, one could seek to complete the
collapse dynamics of QM in such a way that the expectation value for momentum was always
conserved.

6. If gravitational waves do cause quantum jumps, then a wave empinging on the Earth could
clearly have disastrous consequences if it were sufficiently powerful to collapse every piece of
matter!

7. One issue that has captured a great deal of attention in the semiclassical theory is the so-called
‘loss of information’ problem (e.g. Belot, Earman, and Ruetsche 1999): as the black hole
evaporates away, there is a transition from a pure to mixed state for the matter fields,
reminiscent of the collapse in measurement. While this has worried many, it is not really so
surprising given what we have been saying: no unitary evolution can produce such a
transition, but in the model one is effectively invoking eqn. 1.4 as a second – non-unitary –
equation of motion. It is really just another reflection of the point that in a half-and-half
approach, one must be careful about how to include collapses.
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8. So too does comparison with our toy example of a constraint. For instance, if one takes
electromagnetism written in terms of the gauge potential A, and attempts to remove the
unphysical degrees of freedom by reparameterizing with gauge invariant quantities, such as
the magnetic field, B = ∇ × A, one introduces non-locality into the theory (as shown by the
notorious Aharonov–Bohm effect).

9. We should point out that there are reasons to wonder whether this intuitive picture of
3-metrics evolving on superspace is anything other than a metaphor. The 3-metric does not
weave its path between Cauchy hypersurfaces like point particles in classical dynamics do.
Wheeler’s so-called ‘Thick Sandwich’ conjecture is false: that given any two 3-metrics in
superspace there exists a spacetime between them such that they arise as induced metrics on
two disjoint Cauchy surfaces. Different foliations between the two surfaces changes the curve
between them. And even the Thin Sandwich conjecture – that given a point and tangent vector
in superspace, there is a unique spacetime realizing the initial condition – has only limited
applicability. See Bartnik and Fodor (1993) for more.

On the positive side, note that Christian (1997) shows how to exactly quantize a simpler
spacetime theory – Newton–Cartan theory – along these lines.
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2 Spacetime and the philosophical challenge of
quantum gravity

Jeremy Butterfield and Christopher Isham

2.1 Introduction

2.1.1 Prologue

Any branch of physics will pose various philosophical questions: for example about
its concepts and general framework, and the comparison of these with analogous
structures in other branches of physics. Indeed, a thoughtful consideration of any
field of science leads naturally to questions within the philosophy of science.

However, in the case of quantum gravity we rapidly encounter fundamental issues
that go well beyond questions within the philosophy of science in general. To explain
this point, we should first note that by ‘quantum gravity’ we mean any approach
to the problem of combining (or in some way ‘reconciling’) quantum theory with
general relativity.1 An immense amount of effort has been devoted during the past
forty years to combining these two pillars of modern physics. Yet although a great
deal has been learned in the course of this endeavour, there is still no satisfactory
theory: rather, there are several competing approaches, each of which faces severe
problems, both technical and conceptual.

This situation means that there are three broad ways in which quantum gravity
raises philosophical questions beyond the philosophy of science in general.

(1) Each of the ‘ingredient theories’ – quantum theory and general relativity – poses
significant conceptual problems in its own right. Since several of these problems are
relevant for various topics in quantum gravity (as Chapter 8 of this volume bears
witness), we must discuss them, albeit briefly. We will do this in Section 2.2, to help
set the stage for our study of quantum gravity. But since these problems are familiar
from the literature in the philosophy, and foundations, of physics, we shall be as
brief as possible.

(2) The fundamentally disparate bases of the two ingredient theories generate major
new problems when any attempt is made to combine them. This will be the main
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focus of this chapter. But even to summarize these new conceptual problems is a
complicated and controversial task: complicated because these problems are closely
related to one another, and to the technical problems; and controversial because
what the problems are, and how they are related to one another, depends in part on
problematic matters in the interpretation of the ingredient theories. Accordingly,
the main task of this chapter will be just to give such a summary; or rather, part of
such a summary – roughly speaking, the part that relates to the treatment of
spacetime.2 We undertake this task in Section 2.3 and the following sections.

(3) The contrast between our lacking a satisfactory theory of quantum gravity and our
having supremely successful ingredient theories, raises questions about the nature
and function of philosophical discussion of quantum gravity. It clearly cannot ‘take
the theory as given’ in the way that most philosophy of physics does; so how should
it proceed? Though we are cautious about the value of pursuing meta-philosophical
questions, we think this question deserves to be addressed. We do so in the course
of Section 2.1.2 (where we also emphasize how unusual quantum gravity is, as a
branch of physics).

So much by way of gesturing at the entire scope of ‘philosophy of quantum
gravity’. In the rest of this subsection, we shall make some brief general comments
about the source of the conceptual problems of quantum gravity, and thereby lead
up to a more detailed prospectus.

Despite the variety of programmes, and of controversies, in quantum gravity,
most workers would agree on the following, admittedly very general, diagnosis of
what is at the root of most of the conceptual problems of quantum gravity. Namely:
general relativity is not just a theory of gravity – in an appropriate sense, it is also
a theory of spacetime itself; and hence a theory of quantum gravity must have
something to say about the quantum nature of space and time. But though the
phrase ‘the quantum nature of space and time’ is portentous, it is also very obscure,
and opens up a Pandora’s box of challenging notions.

To disentangle these notions, the first thing to stress is that – despite the porten-
tous phrase – there is, in fact, a great deal in common between the treatments of space
and time given by the ingredient theories, quantum theory and general relativity.
Specifically, they both treat space and time as aspects of spacetime, which is repre-
sented as a four-dimensional differentiable manifold, while the metrical structure of
spacetime is represented by a Lorentzian metric on this manifold.

In view of this, one naturally expects that a theory of quantum gravity will itself
adopt this common treatment, or at least its main ingredient, the manifold con-
ception of space and time. Indeed, we will see in Section 2.4 that the three main
research programmes in quantum gravity do accept this conception. So returning
to our phrase, ‘the quantum nature of space and time’: although ‘quantum’ might
suggest ‘discrete’, the ‘quantum nature of space and time’ need not mean abandoning
a manifold conception of space and time at the most fundamental level. And conse-
quently, the clash mentioned above – between the disparate bases of the ingredient
theories, quantum theory and general relativity – need not be so straightforward as
the contradiction between discreteness and continuity. As we shall see in Section 2.3
and following sections, the clash is in fact both subtle and multi-faceted.

But we will also see in Section 2.4 that in various ways, and for various reasons,
these programmes do not accept all of the common treatment, especially as regards
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the dimensionality and metric structure of spacetime: the main difference being
their use of some type of quantized metric. Furthermore, the two main current pro-
grammes even suggest, in various ways, that the manifold conception of spacetime
is inapplicable on the minuscule length–scales characteristic of quantum gravity.

So the situation is curious: although the ingredient theories have much in com-
mon in their treatments of space and time, this common treatment is threatened by
their attempted unification. This situation prompts the idea of departing more rad-
ically from the common treatment. Besides, quite apart from the challenges to the
manifold conception that come from the programmes in Section 2.4, other quantum
gravity programmes reject this conception from the outset. We explore these ideas
in Section 2.5.

Here it is helpful to distinguish two general strategies for going beyond the com-
mon treatment, the first more specific than the second. First, one can quantize
a classical structure which is part of that treatment, and then recover it as some
sort of classical limit of the ensuing quantum theory. Second, and more generally,
one can regard such a structure as phenomenological, in the physicists’ sense of
being an approximation, valid only in regimes where quantum gravity effects can
be neglected, to some other theory (not necessarily a quantum theory). In more
philosophical jargon, this second strategy is to regard the classical structure as emer-
gent from the other theory – though here ‘emergence’ must of course be understood
as a relation between theories, not as a temporal process. As we will see, both
these strategies can be applied either to metrical structure (as in the programmes in
Section 2.4), or to structures required just by the manifold conception, such as
topology (Section 2.5).

But whichever of these two strategies one adopts, there are clearly two rather
different ways of thinking about the relation between the familiar treatment of space
and time – in common between the ingredient theories – and the treatment given
by the, as yet unknown, theory of quantum gravity (with or without a manifold
at the fundamental level). First, one can emphasize the emergence of the familiar
treatment: its being ‘good enough’ in certain regimes. We adopt this perspective in
a complementary essay.3 Second, one can emphasize instead ‘the error of its ways’.
That is, one can emphasize how quantum gravity suggests limitations of the familiar
treatment (though the conclusions of the examination will of course be tentative,
since we have no satisfactory theory of quantum gravity). That is the perspective of
this paper.4

In more detail, our plan is as follows. First we make some general orient-
ing remarks about philosophy of quantum gravity (Section 2.1.2) and realism
(Section 2.1.3). We then briefly review the bearing on quantum gravity of the
conceptual problems of the ingredient theories: quantum theory (Section 2.2.1),
and more briefly, general relativity (Section 2.2.2). In Section 2.3, we introduce the
enterprise of quantum gravity proper. We state some of the main approaches to the
subject; summarize some of the main motivations for studying it (Section 2.3.1);
and introduce some of the conceptual aspects that relate closely to spacetime: the
role of diffeomorphisms (Section 2.3.2) and the problem of time (Section 2.3.3).

In Section 2.4, we first set up the four topics in terms of which we will sur-
vey three well-developed research programmes in quantum gravity. The topics
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are: (i) the extent to which the programme uses standard quantum theory; (ii) the
extent to which it uses standard spacetime concepts; (iii) how it treats spacetime
diffeomorphisms; and (iv) how it treats the problem of time. After some historical
remarks (Section 2.4.2), we turn to our three research programmes: the old particle-
physics approach (Section 2.4.3), superstring theory (Section 2.4.4), and canonical
quantum gravity (Section 2.4.5). (We also briefly treat a distinctive version of the
latter, the Euclidean programme.) By and large, these three programmes are ‘conser-
vative’ in the sense that although they in some way quantize metric structure, they
use standard quantum theory, and they treat the spacetime manifold in a standard
way. But in various ways, they also suggest that this treatment of spacetime is phe-
nomenological. To mention two obvious examples: in the superstring programme,
there are suggestions that many different manifolds play a role. And in the main
current version of canonical quantum gravity, there are suggestions that quantities
such as area and volume are quantized; and that the underlying structure of space
or spacetime may be more like a combinatorial network than a standard continuum
manifold.

This situation prompts the idea of a quantum gravity programme that ab initio
goes beyond the standard treatments of spacetime and/or quantum theory. So in
Section 2.5, we discuss some of these more radical ideas: quantizing spacetime
structures other than the metric, or regarding such structures as phenomenological –
where this could involve abandoning the manifold conception in favour of a variety
of novel mathematical structures.

Finally, a caveat about the scope of the chapter. Even for the well-established
research programmes, we shall omit – or mention only in passing – many of the more
recent ideas. This is partly because of lack of space, and partly because technical ideas
need to acquire a certain degree of maturity before philosophical reflection becomes
appropriate. Similarly, we will not mention many of the more speculative ideas that
have emerged over the years. Instead, we have deliberately limited ourselves to some
of the well-established ideas in a few of the well-established research programmes,
and to just a few of the more speculative ideas.

2.1.2 No data, no theory, no philosophy?

Before embarking on this detailed analysis of the conceptual challenge of quantum
gravity, it is important to consider briefly the general idea of philosophical discussion
of quantum gravity: more pointedly, to defend the idea, in the face of the fact that
there is far from being a universally agreed theory of quantum gravity! So in this
subsection, we will point out the peculiarity of quantum gravity in comparison with
other branches of theoretical physics, and discuss how this affects the way in which
one can write about the subject from a philosophical perspective. This will lead
to some discussion of the philosophical positions we intend to adopt, especially as
regards realism.

The most obvious peculiarity is a dire lack of data. That is, there are no phenomena
that can be identified unequivocally as the result of an interplay between general
relativity and quantum theory5 – a feature that arguably challenges the right of
quantum gravity to be considered as a genuine branch of science at all!
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This lack of obvious empirical data results from a simple dimensional argument
that quantum gravity has a natural length scale – the Planck length defined using
dimensional analysis as6 LP := (Gh̄/c3)1/2 – and this is extremely small: namely
10−35 m. By comparison: the diameters of an atom, proton, and quark are, respec-
tively, about 10−10 m, 10−15 m, and 10−18 m. So the Planck length is as many orders
of magnitude from the (upper limit for) the diameter of a quark, as that diameter
is from our familiar scale of a metre! The other so-called ‘Planck scales’, such as the
Planck energy and the Planck time, are equally extreme: the Planck energy EP has a
value of 1022 MeV, which is far beyond the range of any foreseeable laboratory-based
experiments; and the Planck time (defined as TP := LP/c) has a value of about
10−42 s.

These values suggest that the only physical regime where effects of quantum
gravity might be studied directly – in the sense that something very specific can be
expected – is in the immediate post big-bang era of the universe – which is not
the easiest thing to probe experimentally! This problem is compounded by the fact
that, modulo certain technical niceties, any Lorentz-invariant theory of interacting
spin-2 gravitons with a conserved energy–momentum tensor will yield the same low
energy scattering amplitudes as those obtained from a perturbative expansion of
the Einstein Lagrangian. Thus different quantum gravity theories might only reveal
their differences empirically at very high energies.

This lack of data has implications for both physics and philosophy. For physics,
the main consequence is simply that it becomes very difficult to build a theory:
witness the fact that a fully satisfactory quantum theory of gravity remains elusive
after forty years of intense effort. Of course, a great deal has been learnt about the
features that such a theory might possess, albeit partly by eliminating features that
are now known not to work. A good example is the perturbative unrenormalizability
of the particle-physics approach to quantum gravity (see Section 2.4.3).

But there is more to the difficulty of theory-construction than just the lack of data:
and this ‘more’ relates to philosophy in two ways. Firstly, this difficulty is partly due
to conceptual problems which clearly bear on philosophical discussions of concepts
such as space, time, and matter. Here we have in mind both kinds of conceptual
problem, listed as (1) and (2) in Section 2.1.1 (see pp. 33–34): those arising from
the disparateness of the bases of general relativity and quantum theory, and also
problems about each of these theories in themselves. To take an obvious example
of the latter, quantum gravity is usually taken to include quantum cosmology; and
here, the idea of a ‘quantum state of the universe’ immediately confronts conceptual
problems about quantum theory such as the meaning of probability, and the inter-
pretation of the quantum state of a closed system – in this case, the universe in its
entirety.7 And as we shall see in Section 2.2.2, such examples do not only come from
quantum theory, with its notorious conceptual problems. They also come from
general relativity – whose foundations are murkier than philosophers commonly
take them to be. To sum up: the difficulty of theory-construction is partly due to
conceptual problems (and is thereby related to philosophy), not just lack of data.

Secondly, theory-construction is difficult because there is not even agreement on
what sorts of data a quantum theory of gravity would yield, if only we could get
access to them! More precisely, the dimensional argument discussed above suggests
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that only phenomena at these very small distances, or high energies, would exhibit
quantum gravity effects; which implies that the main application of the quantum
theory of gravity may be to the physics of the very early universe. However, this
argument rests on the assumption that any physically measurable quantity can be
expressed as a power series in a number like E/EP (where E is some characteristic
energy scale for an experiment), so that the quantity’s predicted value is tiny in any
experiment that probes energy-scales that are much lower than EP . But experience
elsewhere in quantum field theory suggests that ‘non-perturbative effects’ could
also occur, in which the predicted values of certain measurable quantities are not
analytic functions of the coupling constant, and this totally changes the argument:
for example, if x is a very small number, then |log x| is very large! But, in the case
of quantum gravity it is anybody’s guess what sort of effects would be exhibited –
and therefore, what sort of predictions the envisaged quantum theory of gravity is
meant to give. For example, for all we know, it might predict the masses of all the
elementary particles.

This uncertainty puts us in a ‘double bind’. On the one hand, it is ferociously
difficult to find the theory without the help of data, or even an agreed conception
of the sort of data that would be relevant. On the other hand, we can only apply our
present theories to (and get evidence from) regimes well way from those determined
by the Planck scale; and we cannot judge what phenomena might be relevant to a
theory of quantum gravity, until we know what the theory is.

In this predicament, theory-construction inevitably becomes much more strongly
influenced by broad theoretical considerations, than in mainstream areas of physics.
More precisely, it tends to be based on various prima facie views about what the
theory should look like – these being grounded partly on the philosophical prejudices
of the researcher concerned, and partly on the existence of mathematical techniques
that have been successful in what are deemed (perhaps erroneously) to be closely
related areas of theoretical physics, such as non-abelian gauge theories. In such
circumstances, the goal of a research programme tends towards the construction of
abstract theoretical schemes that are compatible with some preconceived conceptual
framework, and are internally consistent in a mathematical sense.

This situation does not just result in an extreme ‘underdetermination of theory
by data’, in which many theories or schemes, not just a unique one, are presented for
philosophical assessment. More problematically, it tends to produce schemes based
on a wide range of philosophical motivations, which (since they are rarely articu-
lated) might be presumed to be unconscious projections of the chthonic psyche of
the individual researcher – and might be dismissed as such! Indeed, practitioners of a
given research programme frequently have difficulty in understanding, or ascribing
validity to, what members of a rival programme are trying to do. This is one reason
why it is important to uncover as many as possible of the assumptions that lie behind
each approach: one person’s ‘deep’ problem may seem irrelevant to another, simply
because the starting positions are so different.

This situation also underlines the importance of trying to find some area of physics
in which any putative theory could be tested directly. A particularly important
question in this context is whether the dimensional argument discussed above can
be overcome, i.e. whether there are measurable quantum gravity effects well below
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the Planck scales; presumably arising from some sort of non-perturbative effect.
However, the existence of such effects, and the kind of phenomena which they
predict, are themselves likely to be strongly theory-dependent.

It follows from all this that the subject of quantum gravity does not present
the philosopher with a conceptually or methodologically unified branch of physics,
let alone a well-defined theory; but instead with a wide and disparate range of
approaches. We must turn now to discussing what this situation implies about the
scope and possible topics of philosophical discussion.

As we conceive it, philosophy of physics is usually concerned with either: (i) meta-
physical/ontological issues, such as the nature of space, or physical probability; or
(ii) epistemological/methodological issues, such as underdetermination of theories,
or scientific realism, with special reference to physics. And in both areas (i) and (ii),
the discussion is usually held in focus by restricting itself to a reasonably well-defined
and well-established physical theory; or at worst, to a small and homogeneous set
of reasonably well-defined rival theories. Hence the image of philosophy of physics
as a Greek chorus, commenting post facto on the dramatic action taking place on a
well-defined stage. But, as we have seen, this kind of role is not available in quantum
gravity, where there are no reasonably well-defined, let alone well-established, the-
ories. So should philosophical discussion simply wait until the subject of quantum
gravity is much better established?

We think not. For there are at least three (albeit overlapping) ways in which to
pursue the subject ‘philosophy of quantum gravity’; each of them valuable, and
each encompassing many possible projects. The first two are straightforward in
that all will agree that they are coherent endeavours; the third is more problematic.
This chapter will be an example of the second way. Broadly speaking, they are, in
increasing order of radicalism:

(1) One can undertake the ‘normal’ sort of philosophical analysis of some sufficiently
specific and well-defined piece of research in quantum gravity; even though the
price of it being well-defined may be that it is too specific/narrow to warrant the
name ‘theory’ – so that, in particular, it would be unwise to give much credence to
the ontological or interpretative claims it suggests. An example might be one of the
specific perturbative approaches to string theory – for example, the type II-B
superstring – which recent research in the area suggests might merely be one
particular perturbative regime of an underlying theory (‘M-theory’) whose
mathematical and conceptual structures are quite different from those of a
quantized loop propagating in a spacetime manifold. This sort of analysis is
certainly valuable, even if the limitations of any specific example must make one
wary of any ontological or interpretative suggestions which arise. For examples of
such analyses, see Chapters 8–11.

(2) One can try to relate a range of conceptual problems about general relativity,
quantum theory, and their having disparate bases, to a range of approaches or
research programmes in quantum gravity.

To make this endeavour manageable, one must inevitably operate at a less
detailed level than in (1) above. The hope is that despite the loss of detail, there will
be a compensating value in seeing the overall pattern of relationships between
conceptual problems and mathematical/physical approaches to quantum gravity.
Indeed, one can hope that such a pattern will be illuminating, precisely because it is
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not tied to details of some specific programme that may be on the proverbial hiding
to nowhere.

Such a pattern of relationships can be envisioned in two ways, according to
which ‘side’ one thinks of as constraining the other. One can think of problems and
ideas about general relativity and quantum theory as giving constraints on – or
heuristic guides to our search for – quantum gravity. (Of course, we harbour no
illusions that such conceptual discussion is a prerequisite for successful
theory-construction – of that, only time will tell.) And vice versa, one can think of
quantum gravity as constraining those problems and ideas, and even as suggesting
possible changes to the foundations of these constituent theories. In what follows,
we shall see examples of both kinds of constraint.

(3) One can try to study quantum gravity in the context of some traditional
philosophical ideas that have nothing to do with the interpretation of general
relativity and quantum theory per se – for example, traditional concepts of
substance and attribute. Again, one can think of such a relation in two ways: the
philosophical idea giving constraints on quantum gravity; and vice versa, quantum
gravity reflecting back on the philosophical idea.

We admit to finding this endeavour alluring. But, again, we harbour no illusions
that such traditional philosophical ideas are likely to be heuristically helpful, let
alone a prerequisite, for theory-construction. Similarly, one must be tentative about
constraints in the opposite direction; i.e. about the idea that a traditional
philosophical position could be ‘knocked out’ by a quantum gravity proposal,
where ‘knocked out’ means that the position is shown to be, if not false, at least
‘merely’ phenomenological, or approximately true, in ways that philosophers tend
not to realize is on the cards. Since no quantum gravity proposal is well-established,
any such ‘knock-out’ is tentative.

This chapter will exemplify type (2) above, although we emphasize that we are
sympathetic to type (3). More generally, we are inclined to think that in the search for
a satisfactory theory of quantum gravity, a fundamental reappraisal of our standard
concepts of space, time, and matter may well be a necessary preliminary. Thus we
are sceptical of the widespread idea that at the present stage of quantum gravity
research, it is better to try first to construct an internally consistent mathematical
model and only then to worry about what it ‘means’. But such a reappraisal is fiercely
hard to undertake; and accordingly, this chapter adopts ‘the middle way’ – type (2).

A final remark about the various ways to pursue ‘philosophy of quantum grav-
ity’. Although type (2) involves, by definition, surveying ideas and approaches, this
by no means implies that it encompasses a single project, or even that it encom-
passes only one project focussing on the nature of space and time. For example,
here is an alternative project, relating to traditional positions in the philosophy of
geometry.

The immense developments in pure and physical geometry from Riemann’s
habilitationsschrift of 1854 to the establishment of general relativity, led to a trans-
formation of the philosophy of geometry beyond recognition. In particular, Kant’s
apriorism fell by the wayside, to be replaced by empiricism and conventionalism of
various stripes. With this transformation, the idea that at very small length–scales,
space might have a non-manifold structure became a ‘live option’ in a way that it
could not have been while Kant’s influence held sway in its original form. Yet, in
fact, this idea has had only a small role in the philosophy of geometry of the last
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150 years – for the perfectly good reason that no significant physical theory took it
up. (Its main role is via the view – endorsed by, for example, Grünbaum – that in
a discrete space, but not a manifold, the metric is, or can be, intrinsic, and thereby
non-conventional.)

But nowadays, there are several ‘unconventional’ approaches to quantum grav-
ity that postulate a non-manifold structure for spacetime; and even in the more
conventional approaches, which do model space or spacetime with a differentiable
manifold, there are often hints of a discrete structure that lies beneath the contin-
uum picture with which one starts. For example, in the canonical programme, area
and volume variables become discrete; and in superstring theory there are strong
indications that there is a minimal size for length.

These proposals prompt many questions for philosophers of geometry; the obvi-
ous main one being, how well can the traditional positions – the various versions of
empiricism and conventionalism – accommodate such proposals? We will not take
up such questions here, though we like to think that this chapter’s survey of issues
will help philosophers to address them.

2.1.3 Realism?

Finally, we should briefly discuss the bearing of our discussion on the fundamental
questions of realism. Thus it is natural to ask us (as one might any authors in the
philosophy of physics): Does the discussion count for or against realism, in particular
scientific realism; or does it perhaps presuppose realism, or instead its falsity?

Our answer to this is broadly as follows. We will write as if we take proposals
in quantum gravity realistically, but in fact our discussion will not count in favour
of scientific realism – nor indeed, against it. This lack of commitment is hardly
surprising, if only because, as emphasized in Section 2.1.2, quantum gravity is too
problematical as a scientific field, to be a reliable test-bed for scientific realism. But
we will fill out this answer in the rest of this subsection. In short, we will claim that:
(i) we are not committed to scientific realism; and (ii) there is a specific reason to be
wary of reifying the mathematical objects postulated by the mathematical models
of theoretical physics. We shall also make a comment relating to transcendental
idealism.

2.1.3.1 Beware scientific realism
Scientific realism says, roughly speaking, that the theoretical claims of a successful,
or a mature, scientific theory are true or approximately true, in a correspondence
sense, of a reality independent of us. So it is a conjunctive thesis, with an ontological
conjunct about the notion of truth as correspondence, and an independent reality;
and an epistemic conjunct of ‘optimism’ – about our mature theories ‘living up’ to
the first conjunct’s notions.

Obviously, discussions of quantum gravity (of any of the three types of
Section 2.1.2) need not be committed to such a doctrine, simply because, what-
ever exactly ‘successful’ and ‘mature’ mean, quantum gravity hardly supplies us with
such theories! That is: even if one endorses the first conjunct of scientific realism,
the second conjunct does not apply to quantum gravity. So there is no commitment,
whatever one’s view of the first conjunct.
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But there is another way in which we might seem to be committed to scientific
realism: namely, through our treatment of the ‘ingredient theories’, quantum theory
and general relativity. In Section 2.2 and following sections we will often write about
the interpretation of these theories, in an ontological (rather than epistemological
or methodological) sense; as does much current work in the philosophy of physics.
For example, we will mention the so-called ‘interpretations’ of quantum theory
(Copenhagen, Everettian, pilot-wave, etc.), which are in fact ontologies, or world-
views, which the philosopher of quantum theory elaborates and evaluates. Similarly,
as regards general relativity for example, we will sometimes write about the existence
of spacetime points as if they were objects.

But it should not be inferred from our writing about these topics in this way that we
are committed to some form of scientific realism. There is no such entailment; for two
reasons, one relating to each of scientific realism’s two conjuncts. The first, obvious
reason concerns the epistemic optimism of scientific realism. Clearly, elaborating
and evaluating ontologies suggested by scientific theories is quite compatible with
denying this optimism.

The second reason is perhaps less obvious. We maintain that such elaboration
and evaluation of ontologies involves no commitment to a correspondence notion
of truth, or approximate truth, characteristic of realism. This can seem surprising
since for philosophers of physics, ‘electron’ and ‘spacetime point’ come as trippingly
off the tongue, as ‘chair’ and other words for Austin’s ‘medium-sized dry goods’
come off all our tongues, in everyday life. And this suggests that these philosophers’
account of reference and truth about such topics as electrons is as realist, as is the
account by the so-called ‘common-sense realist’ of reference to chairs, and of the
truth of propositions about chairs. But the suggestion is clearly false. Whatever
general arguments (for example, about ontological relativity) can be given against
realist accounts of reference and truth in regard to chairs (and of course, rabbits
and cats – Quine’s and Putnam’s ‘medium-sized wet goods’!) can no doubt also be
applied to electrons and spacetime points. Indeed, if there is to be a difference, one
expects them to apply with greater, not lesser, force; not least because (at least, in the
case of the electron) of the notorious difficulty in understanding a quantum ‘thing’
in any simple realist way.

Here we should add that in our experience, philosophers of physics do in fact
tend to endorse realist accounts of reference and truth. We suspect that the main
cause of this is the powerful psychological tendency to take there to be real physical
objects, corresponding in their properties and relations to the mathematical objects
in mathematical models, especially when those models are very successful. But this
tendency is a cause, not a reason; i.e. it does not support the suggestion we denied
above, that elaborating a physical theory’s ontology implies commitment to realism.
Whitehead had a vivid phrase for this tendency to reification: ‘the fallacy of misplaced
concreteness’.

For this chapter, the main example of this psychological urge will be the tendency
to reify spacetime points, which we shall discuss in more detail in Section 2.2.2.
For now, we want just to make three general points about this tendency to reifi-
cation. The third is more substantial, and so we devote the next subsection
to it.
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First, such reification is of course a common syndrome in the praxis of physics,
and indeed the rest of science; carried over, no doubt, from an excessive zeal for
realism about say, chairs, in everyday life. Certainly, in so far as they take a view
on these matters, the great majority of physicists tend to be straightforward realists
when referring to electrons, or even such exotic entities as quarks.

Second, reification is not just a psychological tendency, or a pedagogic crutch. It
can also be heuristically fruitful, as shown by successful physical prediction based
on the mathematics of a theory; for example, Dirac’s prediction of the positron
as a ‘hole’ in his negative energy ‘sea’ (though he at first identified the holes with
protons!).

2.1.3.2 The fragility of ontology in physics
Setting aside our general cautiousness about scientific realism, there is a specific rea-
son to be wary of misplaced concreteness in theoretical physics. We cannot develop
it fully here, but we must state it; for it applies in particular to such putative objects
as spacetime points, which will of course be centre-stage in this chapter.

The reason arises from the idea that physics aims to supply a complete description
of its subject matter. It does not matter how exactly this idea is made precise: for
example, what exactly ‘complete description’ means, and whether this aim is part
of what we mean by ‘physics’. The rough idea of physics aiming to be complete is
enough. For it entails that in physics, or at least theoretical physics, a change of
doctrine about a subject matter is more plausibly construed as a change of subject
matter itself , than is the case in other sciences. So in physics (at least theoretical
physics), old ontologies are more liable to be rejected in the light of new doctrine.

We can make the point with a common-sense example. Consider some body of
common-sense doctrine, say about a specific table, or tables in general. Not only is it
fallible – it might get the colour of the specific table wrong, or it might falsely say that
all tables have four legs – it is also bound to be incomplete, since there will be many
facts that it does not include – facts which it is the business of the special sciences,
or other disciplines, to investigate; for example, the material science of wood, or the
history of the table(s). Similarly for a body of doctrine, not from common sense, but
from a science or discipline such as chemistry or history, about any subject matter,
be it wood or the Napoleonic wars. There are always further facts about the subject
matter, not included in the doctrine. Indeed this is so, even if the body of doctrine is
the conjunction of all the facts about the subject matter expressible in the taxonomy
(vocabulary) of the discipline concerned. Even for such a giant conjunction, no
enthusiast of such a science or discipline is mad enough, or imperialist enough, to
believe that it gives a complete description of its subject matter. There are always
other conjuncts to be had, typically from other disciplines.

Not so, we submit, for physics – or at least theoretical physics. Whether it be
madness, imperialism, or part of what we mean by ‘physics’, physics does aspire to
give just this sort of complete description of its subject matter. And this implies
that when ‘other conjuncts arrive’ – i.e. new facts come to light in addition to those
given by the most complete available physical description – it is more reasonable
to construe the new facts as involving a change of subject matter, rather than as an
additional piece of doctrine about the old subject matter.
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Note that we do not say that the first construal is always more reasonable than
the second – by no means! Only that it is usually more reasonable than in other
sciences, simply because of physics’ aspiration to completeness. To take an obvious
example: the very fact that a quantum-theoretic description of the electron before the
discovery of spin aspired to be complete, makes it more reasonable to construe the
discovery of the magnetic moment of the electron as a change of subject matter –
the replacement of the ‘old’ ontology comprising the spinless electron, by one with
a spinning electron – rather than as just additional doctrine about the old subject
matter, the ‘old electron’. To sum up this point: the fact that physics aspires to give
a complete description of its subject matter gives a specific reason to be wary of
reifying the objects postulated by physical theories.8

2.1.3.3 The question of transcendental idealism
Any discussion about realism – even one mainly concerned, as we are, with scientific
realism – raises the issue of ‘transcendental idealism’. By this we mean the issue
of whether a distinction can, or should, be made between ‘appearances’ – i.e. in
modern terms, the results obtainable by scientific enquiry (obtainable perhaps in
principle, or in ideal conditions, if not in fact) – and ‘things-in-themselves’, i.e. the
world ‘in itself ’. This issue comes to mind all the more readily in a discussion of
realism concerning space and time, since it was in connection with these notions
that Kant forged his transcendental idealism.

Of course we have no space here to address this enormous issue.9 Instead, we
confine ourselves to two short remarks. First, like most authors in the philosophy of
physics (and almost all theoretical physicists),10 we will write for convenience and
brevity ‘as if ’ there is nothing beyond ‘appearances’: i.e. the distinction above cannot
be made.

Second, a remark specific to quantum gravity that relates to the minuscule size of
the Planck length, emphasized at the start of Section 2.1.2. Namely, it is so minuscule
as to suggest that some aspects of reality that underly a theory of quantum gravity
do not deserve such names as ‘appearance’, ‘phenomenon’, or ‘empirical’. Agreed,
there is no hint in the writings of Kant or other Kantians that one should restrict the
word ‘appearance’ to what is practically accessible. And one naturally thinks that an
‘item’ (event, state of affairs, call it what you will) that is localized in spacetime, or
that somehow has aspects localized in spacetime, is ipso facto an appearance, part of
empirical reality – be it, or its aspects, ever so small. But our present suggestion is
that one should resist this, and consider taking the inaccessibility of these scales of
length, energy, etc. to be so extreme as to be truly ‘in principle’. To put the point in
terms of ‘empirical’: the suggestion is that these items, or their localized aspects, are
not empirical, though one might still call them ‘real’ and ‘actual’.11

If this is right, one could perhaps reconcile various Kantian claims that space and
time must have some features – for example, being continua – as an a priori matter
with the claims of those quantum gravity programmes that deny space and time
those features. The apparent contradiction would be an artefact of an ambiguity in
‘space and time’: the quantum gravity programmes would not be about space and
time in the Kantian sense. Finally, we should emphasize that in envisaging such a
reconciliation, we are not trying to defend specific Kantian claims, such as its being
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an a priori matter that space and time are continua; or that geometry is Euclidean.
Indeed, we join most physicists in being sceptical of such specific claims, not least
because the history of physics gives remarkable examples of the creative, albeit
fallible, forging of new concepts. But we are sympathetic to the broader Kantian
idea that human understanding of reality must, as an a priori matter, involve certain
notions of space and time.

2.2 Conceptual problems of quantum theory and general relativity

As discussed in Section 2.1.1, the overarching question of this chapter is: what part (if
any) of the ingredient theories’ common treatment of spacetime – i.e. as a differen-
tiable manifold with a Lorentzian metric – needs to be given up in quantum gravity?
It is already clear (sad to say!) that there is no agreement about the answer to this
question. As we shall see in more detail in Sections 3 and following sections, there is
a wide variety of different quantum gravity programmes, giving different answers.
And more confusingly, these different answers do not always represent simple dis-
agreements between the programmes: sometimes two programmes are aiming to
do such very different things, that their different answers need not contradict each
other. Hence this chapter’s project of undertaking a survey.

But as we shall also see, this variety of programmes (and of aims) is due in part to
the fact that significant conceptual problems about the ingredient theories are still
unsolved: both problems about the nature of quantum reality, and problems about
the nature of space and time – in part, traditional philosophical problems, though of
course modified in the light of general relativity and quantum theory. So it will help
to set the stage for our survey, to devote this section to describing such problems.
Of course, we cannot give a thorough discussion, or even an agreed complete list ,
of these problems.12 We confine ourselves to briefly discussing some issues that are
specifically related to quantum gravity.

In this discussion, we will place the emphasis on problems of quantum theory,
for two reasons; only the second of which concerns quantum gravity. First, we agree
with the ‘folklore’ in the philosophy of physics that quantum theory faces more,
and worse, conceptual problems than does general relativity. In a nutshell, gen-
eral relativity is a classical field theory (of gravitation); and broadly speaking, such
theories are not mysterious, and their interpretation is not controversial. On the
other hand, quantum theory is mysterious, and its interpretation is controversial.
This is attested not only by the struggles of its founding fathers, but also by the
ongoing struggles with issues such as the non-Boolean structure of the set of
properties of a physical system, the lack of values for quantities associated with
superpositions, the phenomenon of quantum entanglement – and of course, the
‘confluence’ of these three issues in the ‘measurement problem’. Indeed, thanks to
these struggles, the issues are not nearly so intractable as they were seventy, or even
forty, years ago. Though mystery remains, there are nowadays several flourishing
schools of thought about how to interpret quantum theory: we will mention some
of them in Section 2.2.1 below.

Second, as we shall see in Section 2.4, despite general relativity’s ‘merits’ of inter-
pretative clarity over quantum theory, the main quantum gravity programmes tend
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to put much more pressure on the framework of standard general relativity, and
thus on spacetime concepts, than they do on quantum theory. Like most other
research programmes using quantum theory, they simply use the standard quantum
theoretic formalism, and do not address its conceptual problems. It is this disparity
that motivates this chapter’s choice of spacetime as the main topic of its survey. But
arguably, this acceptance of standard quantum theory is a mistake, for two reasons.
First, in general, it would seem wise for a research programme that aims to combine
(or somehow reconcile) two theories, to rely more heavily on the clearer ingredient
theory, than on the mistier one! Second, as we shall see in Section 2.2.1, it turns out
that in various ways the search for a quantum theory of gravity raises the conceptual
problems of quantum theory in a particularly acute form – and even puts some pres-
sure on its mathematical formalism. In any case – whether or not this acceptance
of quantum theory is a mistake – in this section we will briefly ‘redress the balance’.
That is to say, we will emphasize the pressure that quantum gravity puts on quantum
theory.13

Accordingly, our plan will be to discuss first (in Section 2.2.1) the conceptual
problems of quantum theory, especially in relation to quantum gravity; and then
the conceptual problems of general relativity (in Section 2.2.2).

2.2.1 Interpreting quantum theory

In this subsection, our strategy will be to distinguish four main approaches to
interpreting quantum theory, in order of increasing radicalism; and to show how
each relates to topics, or even specific approaches, in quantum gravity. The first two
approaches (discussed in Sections 2.2.1.1 and 2.2.1.2) are both conservative about
the quantum formalism – they introduce no new equations. But they differ as to
whether they are ‘cautious’ or ‘enthusiastic’ about the interpretative peculiarities of
quantum theory. The third and fourth approaches (discussed in Sections 2.2.1.3 and
2.2.1.4) do introduce new equations, but in various (different) ways remain close
enough to standard quantum theory to be called ‘interpretations’ of it.

We stress that although our catalogue of four approaches is by no means maverick,
we make no claim that it is the best, let alone the only, way to classify the various, and
complexly interrelated, interpretations of quantum theory. But of course we believe
that with other such classifications, we could make much the same points about the
connections between interpreting quantum theory and quantum gravity.

On the other hand, we cannot consider the details of individual interpretations
within each approach. And in view of the chapter’s overall project, we shall emphasize
how the interpretations we do mention relate to space and time – at the expense of
other aspects of the interpretation. For example, we will not mention even such
basic aspects as whether the interpretation is deterministic – except in so far as such
aspects relate to space and time.

2.2.1.1 Instrumentalism
We dub our first approach to interpreting quantum theory, ‘instrumentalism’. We
intend it as a broad church. It includes views that apply to quantum theory some
general instrumentalism about all scientific theories; and views that advocate instru-
mentalism only about quantum theory, based on special considerations about that
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subject. We will not comment on the first group, since we see no special connec-
tions with quantum gravity. Or more precisely, we see no connections other than
those which we already adumbrated from another perspective, that of realism, in
Section 2.1, especially Section 2.1.3.

On the other hand, some views in the second group do have connections with
quantum gravity, albeit ‘negative’ ones. Thus consider the Copenhagen interpreta-
tion of quantum theory: understood, not just as the minimal statistical interpretation
of the quantum formalism in terms of frequencies of measurement results, but as
insisting on a classical realm external to the quantum system, with a firm ‘cut’
between them, and with no quantum description of the former. In so far as this
classical realm is normally taken to include classical space and time,14 this suggests
that, in talking about ‘quantum gravity’, we are making a category error by trying
to apply quantum theory to something that forms part of the classical background
of that theory: ‘what God has put assunder, let no man bring together’. We shall
say more later about the view that a quantum theory of gravity should, or can, be
avoided (Section 2.3.1.2). But for the most part we will accept that serious attempts
should be made to construct a ‘quantum theory of space and time’ (or, at least, of
certain aspects of space and time); with the understanding that, in doing so, it may
be necessary radically to change the interpretation – and, perhaps, the mathematical
formalism – of quantum theory itself.

In endeavouring to interpret quantum theory, regardless of quantum gravity, this
second group of views is notoriously problematic. It is not just a matter of it being
difficult to understand (or to defend) Bohr’s own views, or views similar to his. There
are quite general problems, as follows. Any view that counts as ‘instrumentalism
specifically about quantum theory’ (i.e. any view in this group) must presumably do
either or both of the following:

(1) Deny that the quantum state describes individual systems, at least between
measurements; or in some similar way, it must be very cautious about the quantum
description of such systems.

(2) Postulate a ‘non-quantum’ realm, whose description can be taken literally (i.e. not
instrumentalistically, as in (1)); usually this realm is postulated to be ‘the classical
realm’, understood as macroscopic, and/or the domain of ‘measurement results’,
and/or described by classical physics.

But recent successful applications of quantum theory to individual microphysical
systems (such as atoms in a trap), and to mesoscopic systems (such as SQUIDs)
have made both (1) and (2) problematic. This suggests in particular that we should
seek an interpretation in which no fundamental role is ascribed to ‘measurement’,
understood as an operation external to the domain of the formalism (see the next
subsection).

2.2.1.2 Literalism
Like instrumentalism, we intend this approach to be a broad church. The idea is
to make the interpretation of quantum theory as ‘close’ as possible to the quantum
formalism. (Hence the name ‘literalism’; ‘realism’ would also be a good name, were
it not for its applying equally well to our third and fourth approaches.) In particular,
one rejects the use of a primitive notion of measurement, and associated ideas such

47



[10:17 2000/10/5 g:/tex/key-tex/callendr/3663-002.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 2 Page: 48 33–89

Jeremy Butterfield and Christopher Isham

as a special ‘classical realm’, or ‘external observer’ that is denied a quantum-theoretic
description. Rather, one ‘cuts the interpretation to suit the cloth of the formalism’;
revising, if necessary, traditional philosophical opinions, in order to do so. Hence
our remark at the start of Section 2.2.1 that this approach is ‘enthusiastic’ about the
interpretative peculiarities of quantum theory, while instrumentalism is ‘cautious’.

As we see it, there are two main types of literalist view: Everettian views, and
those based on quantum logic. Of these types, the first has been much discussed in
connection with quantum gravity (especially quantum cosmology); but the second,
hardly at all in this connection. Accordingly, we shall only treat the first.15

As usually presented, the main aim of an Everettian view (or, as it is sometimes
called these days, a ‘post-Everett’ view) is to solve the ‘measurement problem’: i.e. the
threat that at the end of a measurement, macroscopic objects (such as an instrument
pointer) will have no definite values for familiar quantities like position – contrary to
our experience. More specifically, the aim is to solve this problem without invoking
a collapse of the state vector, or an external observer. This involves: (i) resolving
the state vector of a closed system as a superposition of eigenstates of a ‘preferred
quantity’; (ii) interpreting each of the components as representing definite positions
for pointers and other macroscopic objects; and then (iii) arguing that, although
there is no collapse, you will only ‘see’ one component in the superposition.

This summary description leaves open some crucial questions. For example:

(a) How is the preferred quantity to be chosen? Should it be in terms of familiar
quantities such as position of macroscopic objects, so that each summand secures a
definite macroscopic realm (‘many worlds’); or should it involve arcane quantities
concerning brains, whose eigenstates correspond to experiences of a definite
macroscopic realm (‘many minds’)?

(b) Should one say that for each component there is a physically real ‘branch’, not just
the possibility of one?

(c) How should one justify the claim that you will not ‘see the other components’: by
some process of ‘splitting of the branches’, or by appeal to decoherence making the
interference terms that are characteristic of the presence of other components,
negligibly small?

We do not need to discuss these issues here, which have been much debated in
the philosophy of quantum theory.16 For our purposes, it suffices to note the four
main connections of Everettian views with quantum gravity, specifically quantum
cosmology.

The first connection has been evident from the earliest discussions of Everettian
views. Namely, whatever the exact aims of a theory of quantum cosmology, in so
far as it posits a ‘quantum state of the universe’, the Everettian promise to make
sense of the quantum state of a closed system makes this interpretation particularly
attractive.

The second connection concerns the more extreme Everettian view in which the
universe is deemed literally to ‘split’. In so far as this might involve some transfor-
mation of the topology of space, one naturally imagines implementing this with the
aid of ideas from quantum gravity.

The third connection relates to decoherence, mentioned in question (c) above.
Much recent work has shown decoherence to be a very efficient and ubiquitous
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mechanism for making interference terms small (and so for securing an apparent
reduction of a quantum system’s state vector); essentially by having the correla-
tional information that these terms represent ‘leak out’ to the system’s environment.
Though this work in no way relies on Everettian views, Everettians can, and do,
appeal to it in answering question (c). Furthermore, the work has been adapted to
the discussion within quantum cosmology of how we ‘see’ a single classical space
or spacetimes, despite the fact that in quantum cosmological models the quan-
tum state of the universe assigns non-zero amplitude to many such spaces. The
idea is that decoherence destroys the interference terms, ‘hiding all but one’. (Typi-
cally, inhomogeneous modes of the gravitational field act as the environment of the
homogeneous modes, which form the system.) (For more discussion, see Ridderbos
1999.)

The fourth connection relates to time. Presumably, any Everettian view must
specify not only probabilities for values of its preferred quantity at each time; it
must also specify joint (‘conjunctive’) probabilities for values at sequences of times,
i.e. a rule for the temporal evolution of these values. Traditionally, Everettians tended
not to give such a rule, but recently they have done so, often in the context of the
‘consistent-histories’ approach to quantum theory.

There is a specific reason for quantum cosmologists to focus on the consistent-
histories formalism, apart from the general need to specify a rule for the evolution
of values. As we shall see in more detail in Section 2.3.3, quantum gravity, and
thereby quantum cosmology, is beset by ‘the problem of time’. One response to this
severe problem is to seek a new type of quantum theory in which time does not
play the central role that it does in the standard approach. And precisely because
the consistent-histories approach concerns many times, it suggests various ways in
which the formalism of quantum theory can be generalized to be less dependent on
the classical concept of time (Hartle 1995, Isham and Linden 1994).

This last point gives an example of an important, more general idea, which goes
beyond the discussion of Everettian views. Namely, it is an example of how issues
in quantum gravity can put pressure on the actual formalism of quantum theory –
not just on some traditional interpretative views of it, such as the Copenhagen
interpretation.

2.2.1.3 Extra values
Again, we intend this approach to be a broad church. Like the Everettian views
discussed above, it aims to interpret quantum theory – in particular, to solve the
measurement problem – without invoking a collapse of the state vector. And it
aims to do this by postulating values for some ‘preferred quantity’ or quantities, in
addition to those given by the orthodox ‘eigenvalue–eigenstate link’,17 together with
a rule for the evolution of such values.

But there are two differences from the Everettian views. First, ‘extra values’ makes
no suggestion that there is a physically real ‘branch’ for every component in the
resolution of the state vector in terms of the preferred quantity. (So there is no
suggestion that ‘branches splitting’ prevents the detection of interference terms.)
Second, ‘extra values’ aspires to be more precise from the outset about which quantity
is preferred, and the dynamics of its values.18
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The best-known examples of this approach are the deBroglie–Bohm ‘pilot-wave’
or ‘causal’ interpretation of quantum theory (Valentini 2000), and the various kinds
of modal interpretation (Bub 1997). Thus the pilot-wave interpretation of quantum
mechanics postulates a definite value for the position of each point-particle, evolving
according to a deterministic guidance equation. The corresponding interpretation
of quantum field theory postulates a definite field configuration, and again a deter-
ministic guidance equation. On the other hand, modal interpretations postulate
that which quantity is ‘preferred’ depends on the state, and they consider various
stochastic dynamics for values.

Within this approach, only the pilot-wave interpretation has been discussed in
connection with quantum gravity. The main idea is to ‘make a virtue of necessity’,
as follows.19 On the one hand, the guidance equations (at least as developed so
far) require an absolute time structure, with respect to which the positions or field
configurations evolve. (So for familiar quantum theories on Minkowski spacetime,
the relativity of simultaneity, and the Lorentz-invariance of the theory, is lost at
the fundamental level – but recovered at a phenomenological level.) On the other
hand: in quantum gravity, one response to the problem of time is to ‘blame’ it on
general relativity’s allowing arbitrary foliations of spacetime; and then to postulate
a preferred foliation of spacetime with respect to which quantum theory should be
written. Most general relativists feel this response is too radical to countenance: they
regard foliation-independence as an undeniable insight of relativity. But an advocate
of the pilot-wave interpretation will reply that the virtues of that interpretation show
that sacrificing fundamental Lorentz-invariance is a price worth paying in the context
of flat spacetime; so why not also ‘make a virtue of necessity’ in the context of curved
spacetime, i.e. general relativity?

Indeed, this suggestion has been developed in connection with one main approach
to quantum gravity; namely, the quantum geometrodynamics version of the canoni-
cal quantum gravity programme. We will discuss this in more detail in Section 2.4.5.
For the moment, we just note that the main idea of the pilot-wave interpretation
of quantum geometrodynamics is to proceed by analogy with the interpretation of
quantum field theories such as electrodynamics on flat spacetime. Specifically, a
wave function defined on 3-geometries (belonging to the three-dimensional slices
of a preferred foliation) evolves in time, and deterministically guides the evolution
of a definite 3-geometry.

To sum up: ‘extra values’ preserves the usual unitary dynamics (the Schrödinger
equation) of quantum theory, but adds equations describing the temporal evolution
of its extra values. And the best developed version of ‘extra values’ – the pilot-wave
interpretation – has been applied only to the quantum gravity programme based on
quantum geometrodynamics.

2.2.1.4 New dynamics
This approach is more radical than ‘extra values’. Instead of adding to the usual
unitary dynamics of quantum theory, it replaces that dynamics, the motivation
being to solve the measurement problem by dynamically suppressing the threatened
superpositions of macroscopically distinguishable states. During the past fifteen
years, there has been considerable development of this approach, especially in the
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wake of the ‘spontaneous localization’ theories of Ghirardi, Rimini, and Weber
(1986), and Pearle (1989).

This approach has natural links with quantum gravity. Indeed, from the point of
view of physical theory itself, rather than its interpretation, it is a closer connection
than those reviewed in the previous subsections. For it is natural to suggest that
the proposed deviation from the usual dynamics be induced by gravity (rather than
being truly ‘spontaneous’). This is natural for at least two reasons: (i) gravity is the
only universal force we know, and hence the only force that can be guaranteed to
be present in all physical interactions; and (ii) gravitational effects grow with the
size of the objects concerned – and it is in the context of macroscopic objects that
superpositions are particularly problematic.

We emphasize that this idea – that gravity is involved in the reduction of the state
vector – is different from, and more radical than, the idea in Section 2.2.1.2 that
some modes of the gravitational field might act as the environment of a system for
a decoherence process that yields an apparent state-vector reduction. Here, there is
no invocation of an environment; i.e. there is reduction for a strictly isolated system.

This idea has been pursued in various ways for several decades. In particular,
adapting the idea to quantum gravity: since general relativity treats gravity as space-
time curvature, the most straightforward implementation of the idea will require
that a quantum superposition of two spacetime geometries, corresponding to two
macroscopically different distributions of mass-energy, should be suppressed after a
very short time. Penrose has been particularly active in advocating this idea. More
specific implementations of the idea involve variants of the spontaneous localiza-
tion theories; for example, Pearle and Squires (1996), which also contains a good
bibliography.20

2.2.2 Interpreting general relativity

We turn now to consider the conceptual problems of general relativity, especially
those related to quantum gravity. However, our discussion will be briefer than that
of Section 2.2.1, for the two reasons given at the start of the section. First, general
relativity is essentially a classical field theory, and its interpretation is less mysterious
and controversial than that of quantum theory. Second, subsequent sections will give
ample discussion of the pressure that quantum gravity puts on general relativity.

Specifically, we shall confine ourselves to brief remarks about one aspect of the
grand debate between ‘absolute’ versus ‘relational’ conceptions of space and time:
namely, the question in what sense, if any, spacetime points are objects.21 (We shall
discuss spacetime points, but most of the discussion could be straightforwardly
rephrased as about whether regions in spacetime are objects; or, indeed – in a
canonical approach – points or regions in 3-space, or in time.) For this question
bears directly on the discussion in subsequent sections of the treatment of spacetime
in quantum gravity.22

The debate between ‘absolute’ and ‘relational’ conceptions of space and time
has many strands. Nowadays, philosophers separate them (at least in part) by dis-
tinguishing various senses. For example, does a spatio-temporal structure being
‘absolute’ mean that it is ‘non-dynamical’, i.e. unaffected by material events; or that
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it is not determined by (supervenient on) the spatio-temporal relations of mate-
rial bodies?23 And what spatio-temporal structure does the ‘absolutist’ take to be
absolute: space (as by Newton), or the four-dimensional metric of spacetime, or
the connection? Once these senses are distinguished, it becomes clear that general
relativity supports ‘relationism’ in the senses that: (i) its four-dimensional metric
and connection are dynamical; and (ii) in its generic models, no space, i.e. no foli-
ation of spacetime, is preferred (whether dynamically or non-dynamically). On the
other hand, it supports absolutism in the sense that the presence in the theory of
the metric and connection is not determined by the spatio-temporal relations of
material bodies.

But the consensus on these issues about relatively technical senses of ‘absolute’
leaves outstanding the question whether we should interpret general relativity as
commited to the existence of spacetime points (or regions) as physical objects.
We are wary of the ‘Yes’ answer to this question (which became popular in the
1960s, with the rise of scientific realism). But this is not just because we are wary of
scientific realism; and in particular, of reifying the objects and structures postulated
by physical theories (as discussed in Section 2.1.3). We also have two more specific
reasons. The first contains a more general moral about reification; the second is
specific to spacetime points:

(1) To explain the first reason, we should begin by admitting that it is especially
tempting to take spacetime points as the fundamental physical objects of both our
‘ingredient theories’ – general relativity and quantum theory – and not just as points
in mathematical models. There are two specific factors prompting this reification.

Roughly speaking, the first factor is this. As usually formulated, the theories agree
with one another in using such points, endowed with the (highly sophisticated)
structure of a differentiable manifold. But to be precise, one needs to respect the
distinction between a (putative) physical spacetime point, and an (undeniably pos-
tulated!) point in a mathematical model of spacetime based on standard set theory.
So one should express this first factor by saying that, as usually formulated, the
theories agree in using the latter points, i.e. those in the mathematical models. Even
the most ardent realist must allow this distinction in principle, if he or she is to
avoid begging the question; though he or she may well go on to suggest that as a
realist, they can take (and perhaps prefers to take) the physical points in which they
believe, as elements of the mathematical model – say as the bottom-level elements
in a set-theoretic definition of a manifold equipped with a Lorentzian metric and
some matter fields.

The second factor is that, as usually formulated, the theories postulate the points
(in the sense of using set theory) initially, i.e. at the beginning of their formalism;
the rest of physical reality being represented by mathematical structures (vector,
tensor, and operator fields, etc.) defined over the sets of points.24 Here, as in the
first factor, to be precise – and to avoid begging the question – one must take these
postulated points to be those in the mathematical models, not the putative physical
points. The other structures representing fields, etc., then become properties and
relations among these postulated points; or, more generally, higher-order properties
and relations; or in a formal formulation of the theory, set-theoretic surrogates for
such properties and relations. And again, to avoid begging the question one must
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understand ‘represent’ as not committing one to the represented fields really being
properties and relations. For that would commit one to there being objects which
instantiated them; and these would no doubt be spacetime points and n-tuples
of them.

However, notwithstanding these cautionary remarks, most people who bother to
think about such matters succumb to Whitehead’s fallacy of misplaced concreteness,
by positing a one-to-one correspondence between what is undeniably real in the
Platonic realm of mathematical form, and what is, more problematically, ‘real’ in
the world of physical ‘stuff ’.

But tempting though this reification is, it is very questionable: not least because it
overlooks the fact that these theories can be formulated in other (usually less well-
known) ways, so as to postulate initial structures that, from the usual viewpoint, are
complex structures defined on the points.

More precisely, the theories can be formulated so as to postulate initially not:
(i) mathematical objects that represent spacetime points (again, understanding
‘represent’ as not committing one to spacetime points being genuine physical
objects); but rather (ii) mathematical objects that represent (again understood
non-commitally) fields, and similar items – items that in the usual formula-
tions are represented by complex mathematical structures (formally, set-theoretic
constructions) defined over the initially postulated representatives of spacetime
points.

To give the flavour of such formulations, here is a standard example from the
simpler setting of topological spaces, rather than differentiable manifolds. Consider
a compact Hausdorff space X and letA denote the ring of real-valued functions on
X . Then it is a famous theorem in topology that both the set X (i.e. its points) and
the topology of X can be uniquely reconstructed from just the algebraic structure of
A. Specifically, the closed subsets of X are in one-to-one correspondence with the
(closed) ideals in the commutative ring (actually, C∗-algebra) A; and the points of
X correspond to maximal ideals inA.

The implication of this result is that, from a mathematical perspective, a theory
based on such a topological space – modelling, say, physical space – can be formulated
in such a way that the fundamental mathematical entity is not the set X of spatial
points – on which fields are then defined – but rather a commutative ring, on which
spatial points are then defined: viz. as maximal ideals. Put in graphic terms, rather
than writing φ(x), one writes x(φ)!

We emphasize that this idea is by no means esoteric from the perspective of
theoretical physics. For example, the subject of ‘non-commutative’ geometry starts
from precisely this situation and then posits a non-commutative extension ofA. In
this case the algebra remains, but the points go in the sense that the algebra can no
longer be written as an algebra of functions on anything.

(2) There is also another reason for wariness about the existence of spacetime
points as physical objects; a reason relating to symmetry transformations. The idea
goes back to Leibniz; but in modern terms, it is as follows: given that a model of
a theory represents a physical possibility, the model obtained by applying a global
symmetry transformation to it describes the same physical possibility. In the con-
text of spacetime theories, this idea means that taking points to be physical objects
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involves a distinction without a difference. So in particular, the existence of trans-
lation invariance in Newtonian or Minkowski spacetime shows that points should
not be taken as physical objects. We think that most physicists would concur with
this idea.

In the context of general relativity, such considerations become perhaps yet more
convincing, in view of Einstein’s ‘hole argument’. We cannot enter into details about
this argument,25 which has interesting historical and physical, as well as philo-
sophical, aspects. Suffice it to say that: (i) the argument applies not just to general
relativity, but to any generally covariant theory postulating a spacetime manifold;
and (ii) according to the argument, general covariance (that is: the diffeomorphism–
invariance of the theory), together with spacetime points being physical objects,
implies a radical indeterminism: and such indeterminism is unacceptable – so that
we should conclude that points are not physical objects. That is, the points occur-
ring in the base-sets of differentiable manifolds with which general relativity models
spacetime should not be reified as physically real.26 We shall take up this theme again
in more detail in Section 2.3.2.

2.3 Introducing quantum gravity

We turn now to our main project: surveying how quantum gravity suggests funda-
mental limitations in the familiar treatment of space and time that is common to the
‘ingredient theories’ – quantum theory and general relativity. In this section, we first
give some details about the variety of approaches to quantum gravity (Section 2.3.1).
We then give a more detailed discussion of two conceptual aspects relating specifi-
cally to spacetime: viz. the role of diffeomorphisms (Section 2.3.2) and the problem
of time (Section 2.3.3). This will set the stage for the discussion in Section 2.4 of
the treatment of spacetime in three of the main research programmes in quantum
gravity.

2.3.1 Approaches to quantum gravity

In this section, we begin to give a more detailed picture of quantum gravity research.
We will first survey some motivations for studying quantum gravity (Section 2.3.1.1).
Then we will consider, but reject, the view that quantum gravity can be avoided
(Section 2.3.1.2). We will then describe four broad approaches to quantum gravity
(Section 2.3.1.3).

2.3.1.1 Motivations for studying quantum gravity
In surveying quantum gravity, it is useful to begin with the various motivations for
studying the subject. For as we have seen, quantum gravity does not have a well-
established body of ‘facts’ against which theories can be tested in the traditional way.
In consequence, although some people’s motivations refer to potential observations
or experiments – particularly in the area of cosmology – most motivations are
of a more internal nature: namely, the search for mathematical consistency, or
the implementation of various quasi-philosophical views on the nature of space
and time. And, since these different motivations have had a strong influence on
researchers’ technical approaches to the subject, it is important to appreciate them
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in order to understand what people have done in the past, and to be able to judge if
they succeeded in their endeavours: since to be adjudged ‘successful’ a theory must
presumably either point beyond itself to new or existing ‘facts’ in the world, or else
achieve some of its own internal goals.

It is useful pedagogically to classify motivations for studying quantum gravity
according to whether they pertain to the perspective of elementary particle physics
and quantum field theory, or to the perspective of general relativity. As we shall see,
this divide substantially affects one’s approach to the subject, in terms of both the
goals of research and the techniques employed.

Motivations from the perspective of elementary particle physics and
quantum field theory:

(i) Matter is built from elementary particles that are described in quantum theoretical
terms, and that certainly interact with each other gravitationally. Hence it is
necessary to say something about the interface between quantum theory and general
relativity, even if it is only to claim that, ‘for all practical purposes’, the subject can
be ignored; (see Section 2.3.1.2 for further discussion).

(ii) Relativistic quantum field theory might only make proper sense if gravity is
included from the outset. In particular, the short-distance divergences present in
most such theories – including those that are renormalizable, but not truly finite –
might be removed by a fundamental cut-off at the Planck energy. Superstring
theory (see Section 2.4.4) is arguably the latest claimant to implement this idea.

(iii) A related claim is that considerations about quantum gravity will be a necessary
ingredient in any fully consistent theory of the unification of the three
non-gravitational forces of nature.27 The underlying idea here is as follows.

The mark of unification in a field theory is the equality of the coupling constants
that determine the strengths of the different forces. However, in the quantum
version these coupling ‘constants’ are energy dependent (they are said to ‘run’ with
the energy) and therefore forces that are not unified at one energy may become so at
a different one. It turns out that the running constants of the electromagnetic, weak
and strong nuclear forces can be shown to ‘meet’, i.e. to be equal or at least
approximately equal, at around 1020 MeV. The fact that 1020 MeV is ‘quite close to’
the Planck energy (viz. only two orders of magnitude less) then suggests that
quantum gravity may have a role to play in this unification of forces.

This line of thought also prompts the more specific suggestion that a successful
theory of quantum gravity must involve the unification of all four fundamental
forces. As we shall see in Section 2.4, one of the key differences between the two
most currently active research programmes, superstring theory and canonical
quantum gravity, is that the former adopts this suggestion – it aims to provide a
scheme that encompasses all the forces – while the latter asserts that a quantum
theory of pure gravity is possible.

Motivations from the perspective of a general relativist:

(i) Spacetime singularities arise inevitably in general relativity if the energy and
momentum of any matter that is present satisfies certain, physically well-motivated,
positivity conditions. It has long been hoped that the prediction of such
pathological behaviour can be avoided by the correct introduction of quantum
effects.
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(ii) A related point is that, once quantum mechanical effects are included, black holes
produce Hawking radiation and, in the process, slowly lose their mass. But the
nature of the final state of such a system is unclear, and much debated, providing
another reason for studying quantum gravity.

(iii) Quantum gravity should play a vital role in the physics of the very early universe,
not least because, in standard classical cosmology, the ‘initial event’ is an example of
a spacetime singularity. Possible applications include:
(a) finding an explanation of why spacetime has a macroscopic dimension of four;28

(b) accounting for the origin of the inflationary evolution that is believed by many
cosmologists to describe the universe as it expanded after the initial big-bang.

(iv) Yet more ambitiously, one can hope that a theory of quantum gravity will provide a
quantum cosmology, and thereby an understanding of the very origin of the
universe in the big-bang as some type of quantum ‘event’.

However, special problems are posed by quantum cosmology, for example about
the interpretation of the quantum state (see Section 2.2.1); so one might well take
the view that quantum gravity research should not get distracted by debating these
problems. Certainly it would be a signal achievement to have a theory that
successfully handled quantum theory and general relativity ‘in the small’, even if it
could not be applied to the ‘universe in its totality’ – a problematic concept on any
view! In any case, we shall from now on largely set aside quantum cosmology, and
its special problems.29

2.3.1.2 Can quantum gravity be avoided?
The argument is sometimes put forward that the Planck length LP := (Gh̄/c3)1/2 �
10−35 m is so small that there is no need to worry about quantum gravity except,
perhaps, in recherché considerations of the extremely early universe – i.e. within a
Planck time (�10−42 s) of the big-bang. However, as we hinted in the first motiva-
tion listed in Section 2.3.1.1:

• Such a claim is only really meaningful if a theory exists within whose framework
genuine perturbative expansions in LP/L can be performed, where L is the length
scale at which the system is probed: one can then legitimately argue that quantum
effects are ignorable if LP/L � 1. So we must try to find a viable theory, even if we
promptly declare it to be irrelevant for anything other than the physics of the very
early universe.

• The argument concerning the size of LP neglects the possibility of non-perturbative
effects – an idea that has often been associated with the claim that quantum gravity
produces an intrinsic cut-off in quantum field theory.

A very different, and less radical, view is that – although we presumably need some
sort of theory of quantum gravity for the types of reason listed in Section 2.3.1.1 –
it is wrong to try to construct this theory by quantizing the gravitational field,
i.e. by applying a quantization algorithm to general relativity (or to any other classical
theory of gravity). We shall develop this distinction between the general idea of a
theory of quantum gravity, and the more specific idea of quantized version of general
relativity, immediately below (Section 2.3.1.3). For the moment, we mention some
reasons advanced in support of this view.

• The metric tensor should not be viewed as a ‘fundamental’ field in physics, but
rather as a phenomenological description of gravitational effects that applies only in
regimes well away from those characterized by the Planck scale. Again, diverse
reasons can be given for this viewpoint: we cite three. One example is superstring
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theory. Here, the basic quantum entities are very different from those in classical
general relativity, which is nevertheless recovered as a phenomenological
description. Another (very different) example is Jacobson’s re-derivation of the
Einstein field equations as an equation of state (Jacobson 1995), which
(presumably) it would be no more appropriate to ‘quantize’ than it would the
equations of fluid dynamics.30 Yet a third example is Brown’s view of the metric,
even in special relativity, as phenomenological (see Chapter 11).

• The gravitational field is concerned with the structure of space and time – and these
are, par excellence, fundamentally classical in nature and mode of functioning. As
we mentioned before, this might be defended from the viewpoint of (a version of)
the Copenhagen interpretation (Section 2.2.1) – or even from a Kantian perspective
(Section 2.1.3).

If it is indeed wrong to quantize the gravitational field (for whichever of the above
reasons), it becomes an urgent question how matter – which presumably is subject
to the laws of quantum theory – should be incorporated in the overall scheme. To
discuss this, we shall focus on the so-called ‘semiclassical quantum gravity’ approach.
Here, one replaces the right-hand side of Einstein’s field equations by a quantum
expectation value, so as to couple a classical spacetime metric γ to quantized matter
by an equation of the form

Gµν(γ) = 〈ψ|Tµν(g , φ̂)|ψ〉, (2.1)

where |ψ〉 is some state in the Hilbert space of the quantized matter variables φ̂.
Thus the source for the gravitational field, i.e. the right-hand side of eqn. 2.1 – is
the expectation value of the energy–momentum tensor Tµν of the quantized matter
variables. In this context, we note the following:

• In the case of electromagnetism, the well-known analysis by Bohr and Rosenfeld
(1933) of the analogue of eqn. 2.1 concluded that the electromagnetic field had to
be quantized to be consistent with the quantized nature of the matter to which it
couples. However, the analogous argument for general relativity does not go
through (Rosenfeld 1963), and – in spite of much discussion since then (for
example, see Page and Geilker 1981) – there is arguably still no definitive proof that
general relativity has to be quantized in some way.

• The right-hand side of eqn. 2.1 generates a number of technical problems. For
example, the expectation value has the familiar ‘ultra-violet’ divergences that come
from the mathematically ill-defined short-distance behaviour of quantum fields.
Regularization methods only yield an unambiguous expression when the spacetime
metric γ is time-independent – but there is no reason why a semiclassical metric
should have this property.31 In addition, there have been several arguments
implying that solutions to eqn. 2.1 are likely to be unstable against small
perturbations, and – therefore – physically unacceptable.

• It is not at all clear how the state |ψ〉 is to be chosen. In addition, if |ψ1〉 and |ψ2〉
are associated with a pair of solutions γ1 and γ2 to eqn. 2.1, there is no obvious
connection between γ1 and γ2 and any solution associated with a linear
combination of |ψ1〉 and |ψ2〉. Thus the quantum sector of the theory has curious
non-linear features, and these generate many new problems of both a technical and
a conceptual nature.

So much by way of reviewing the reasons one might give for not quantizing general
relativity. We make no claim that our ‘replies’ to these reasons – for example, our

57



[10:17 2000/10/5 g:/tex/key-tex/callendr/3663-002.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 2 Page: 58 33–89

Jeremy Butterfield and Christopher Isham

last two ‘bullet-points’ – are definitive. But we will from now on accept that some
type of theory of quantum gravity should be sought.

2.3.1.3 Four types of approach to quantum gravity
In seeking such a theory, there are four broad types of approach one can adopt. We
shall introduce them as answers to a series of questions (questions which develop
Section 2.1.1’s contrast between the two strategies, quantization and emergence).
Broadly speaking, these questions will place them in an order of increasing radical-
ism. So, let us ask: should we adopt a diorthotic scheme in which general relativity is
regarded as ‘just another classical field theory’ to be quantized in a more-or-less stan-
dard way? Or should we instead expect the theory of quantum gravity to look quite
different from quantized general relativity, but nevertheless have general relativity
emerge from it as some sort of low-energy (large-length) limit? This option itself
breaks down into two alternatives, according to whether the theory is a quantization
of some classical theory; or something that is constructed with no prior reference
at all to a classical system. A fourth alternative is, should both quantum theory and
general relativity emerge from a theory that looks quite different from both?

We will now develop the contrast between these four alternatives. Our survey in
later sections will not need to decide between them, but of the three programmes
that we discuss in Section 2.4, two adopt the first alternative, and indeed, their
implications for the treatment of spacetime are better understood than those of pro-
grammes adopting the other alternatives. Aspects of the third and fourth alternatives
will be taken up in Section 2.5.

1. Quantize general relativity. The idea is to start with the classical theory of
general relativity and then to apply some type of quantization algorithm. This is
intended to be analogous to the way in which the classical theory of, for example,
an atom bound by the Coulomb potential is ‘quantized’ by replacing certain clas-
sical observables with self-adjoint operators on a Hilbert space; or, to take another
example, the way in which classical electromagnetism is quantized to yield quantum
electrodynamics.32

In the context of quantum gravity, the task is usually taken to be quantization of the
metric tensor regarded as a special type of field. In practice, the techniques that have
been adopted fall into two classes: (i) those based on a spacetime approach to quan-
tum field theory – in which the operator fields are defined on a four-dimensional
manifold representing spacetime; and (ii) those based on a canonical approach – in
which the operator fields are defined on a three-dimensional manifold representing
physical space. We shall discuss (i) and (ii) in more detail in Sections 2.4.3 and 2.4.5,
respectively.

2. General relativity as the low-energy limit of a quantization of a different classical
theory. If a quantization algorithm is applied to some classical theory, then that
theory is naturally recovered as a classical limit of the ensuing quantum theory. In
particular, this procedure provides a natural interpretation of the physical variables
that arise in the quantum theory as the result of ‘quantizing’ the corresponding
classical theory.

But there are various senses of ‘classical limit’: it can refer to special states whose
evolution over time follows classical laws, or to certain quantum quantities taking
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values in a range where classical theory is successful. So given a quantization of a
classical theory, some other classical theory might also be a classical limit of it, in
some good sense.

Hence the idea in the context of quantum gravity, that general relativity might
emerge as a low-energy (large-distance) classical limit of a quantum theory, that is
given to us as a quantization of a different classical theory. Of course, in view of
our lack of data about quantum gravity, one expects it will be very hard to guess the
correct classical theory from which to start.

Despite this difficulty, this type of approach is exemplified by the main current
research programme: superstring theory, which quantizes a classical ‘string theory’
and yet has general relativity as a low-energy limit. We shall discuss this programme
in Section 2.4.4.33 For the moment, suffice it to say that the dimensional nature of the
basic Planck units lends support to the idea of a theory that could reproduce standard
general relativity in regimes whose scales are well away from that of the Planck time,
length, energy, etc. This remark is reinforced by a well-known body of work to the
effect that, with appropriate caveats, general relativity is necessarily recovered as the
low-energy limit of any interacting theory of massless spin-2 particles propagating
on a Minkowski background, in which the energy and momentum are conserved
(Boulware and Deser 1975). The most notable example of this type is the theory of
closed superstrings which has a natural massless, spin-2 excitation.

However, superstring theory is by no means the only example of this type of
approach. For it is conservative, in that the classical ‘string theory’ that it quan-
tizes assumes the classical concept of a manifold. Roughly speaking, in perturbative
superstring theory, the quantum variables are the functions that embed the string
in a continuum spacetime manifold. But there have been more radical attempts to
quantize aspects of space, or spacetime, itself. For example, there have been several
attempts to construct a quantum theory of topology; and there have been attempts to
quantize causal structures in which the underlying set is discrete. However, recover-
ing general relativity as a classical limit of theories of this type is by no means trivial,
since the implication is that the differentiable manifold structure of spacetime – not
just its metric tensor – must be understood in some phenomenological sense. We
will postpone to Section 2.5 discussion of these more radical attempts to quantize
‘spacetime itself ’.

Finally, a general point about this type of approach. Given the general scenario
where we obtain a classical theory as a limit of a quantum theory, it is natural to
wonder what would happen if one tried to quantize this derivative classical theory
(in the case of interest to us, general relativity). Generally speaking, this does not
give back the initial quantum theory. That is unsurprising, in view of our comments
above about the variety of classical limits. But we should also make two more specific
remarks. First, one reason why one does not get back the initial quantum theory
may be that the classical limit is non-renormalizable: this is well known to be the
case for general relativity (as we will discuss in Section 2.4.3). Second, this feature
does not render the ‘re-quantization’ procedure completely useless. Indeed, genuine
quantum predictions can be obtained by empirically fixing the appropriate number
of renormalization constants, where what is ‘appropriate’ is determined by the energy
at which the theory is to be employed. Theories of this type are called ‘effective field
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theories’, and are a valuable tool in modern theoretical physics. For a recent review
in the context of general relativity see Donoghue (1998).

3. General relativity as the low-energy limit of a quantum theory that is not a quan-
tization of a classical theory. The procedure of going from classical to quantum has
become so ubiquitous (for example, look at the content of a typical undergraduate
lecture course on quantum theory!) that one might be tempted to assume that all
quantum theories necessarily arise in this way. However, there is no good reason
why this should be so. So it is certainly reasonable to consider the construction of a
quantum theory ab initio with no fundamental reference to an underlying classical
theory – for example as a representation of some group or algebra. The question
then arises whether a quantum theory of this type may have a classical limit of some
sort, even though it is not obtained by the quantization of such. A good example of a
quantum theory of this kind was the ‘current algebra’ approach to strong-interaction
physics that was intensely studied in the 1960s.

Of course, one might well fear that in quantum gravity, with its dire lack of
data, this type of approach will be at least as hard to implement successfully as
is the previous one: the correct group or algebra might be as hard to guess, as is
the correct classical system to quantize in the previous approach. However, recent
developments in understanding the non-perturbative aspects of superstring theory
suggest that this type of approach may well come to the fore in that programme (see
Section 2.4.4).

4. Start ab initio with a radically new theory. The idea here is that both classical
general relativity and standard quantum theory emerge from a theory that looks very
different from both. Such a theory would indeed be radically new. Recall that we
classified as examples of the second type of approach above, quantizations of spatial
or spatio-temporal structure other than the metric; for example, quantizations of
topology or causal structure. So the kind of theory envisaged here would somehow
be still more radical than that; presumably by not being a quantum theory, even in
a broad sense – for example, in the sense of states giving amplitudes to the values of
quantities, whose norms squared give probabilities.

Of course, very little is known about potential schemes of this type, let alone
whether it is necessary to adopt such an iconoclastic position in order to solve the
problem of quantum gravity. We shall mention some possible clues in Section 2.5.
For the moment, we want just to emphasize the philosophical interest of this type
of approach, for it is often motivated by the view that the basic ideas behind general
relativity and quantum theory are so fundamentally incompatible that any complete
reconciliation will necessitate a total rethinking of the central categories of space,
time, and matter. And as we mentioned in Section 2.1.2 (item 3), we like to think
that philosophy could have a role in that enterprise!

As mentioned above, all four types of approach have been followed in the past
(albeit in a very limited way in regard to the third and fourth types). Until fifteen years
ago, the bulk of the effort was devoted to the first – the active quantization of classical
general relativity, so that two of the three programmes reviewed in Section 2.4 are
of this type. But nowadays the dominant programme, viz. superstrings, is of the
second type; although the second most dominant programme – canonical quantum
gravity – is of the first type; and both these programmes have touches of the third
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type. In short, it remains a matter of vigorous debate which of these types of approach
will ultimately prove to be the most fruitful.

2.3.2 The role of diffeomorphisms

To set the stage for Section 2.4, we devote the rest of this section to discussing two con-
ceptual aspects that relate specifically to spacetime: viz. the role of diffeomorphisms
(this subsection); and the problem of time (Section 2.3.3).

2.3.2.1 Spacetime diffeomorphisms in classical general relativity
The group of spacetime diffeomorphisms D plays a key role in classical gen-
eral relativity; and its status in quantum gravity raises some major conceptual
issues.34

In considering these matters, it is important to distinguish between the pseudo-
group of local co-ordinate transformations and the genuine group D of global
diffeomorphisms. Compatibility with the former can be taken to imply that the
theory should be written using tensorial objects on spacetime. On the other hand,
diffeomorphisms are active transformations of spacetime, and invariance under D
implies, we take it, that the points in spacetime have no direct physical significance
(see the discussion of realism, and the hole argument in Sections 2.1.3 and 2.2.2.) Of
course, this is also true in special relativity, but it is mitigated there by the existence
of inertial reference frames that can be transformed into each other by the Poincaré
group of isometries of the Minkowski metric.

Put somewhat differently, the action of D induces an action on the space of
spacetime fields, and the only thing that has immediate physical meaning is the space
of equivalence classes under this action, i.e. two field configurations are regarded
as physically equivalent if they are connected by a diffeomorphism transformation.
Technically, this is analogous in certain respects to the situation in electromagnetism
whereby a vector potential Aµ is equivalent to Aµ +∂µf for all functions f . However,
there is an important difference between electromagnetism and general relativity.
Electromagnetic gauge transformations occur at a fixed spacetime point X , and the
physical configurations can be identified with the values of the field tensor Fµν(X),
which depends locally on points ofM. On the other hand, a diffeomorphism maps
one spacetime point to another, and therefore one obvious way of constructing a
diffeomorphism-invariant object is to take a scalar function of spacetime fields and
integrate it over the whole of spacetime, which gives something that is very non-
local. The idea that ‘physical observables’ are naturally non-local is an important
ingredient in some approaches to quantum gravity.

2.3.2.2 Diffeomorphisms in quantum gravity
The role of diffeomorphisms in quantum gravity depends strongly on the approach
taken to the subject. For example, if the structure of classical relativity is expected
to appear only in a low-energy limit – as, for example, is the case for superstring
theory – there is no strong reason to suppose that the group of spacetime diffeo-
morphisms D will play any fundamental role in the quantum theory. On the other
hand, in schemes which involve the active quantization of the classical gravitational
field, D is likely to be a key ingredient in forcing the quantum theory to comply
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with the demands of general relativity. However, it should be noted that the situa-
tion in ‘canonical’ quantum gravity is less clear-cut: this programme is based on a
prior decomposition into space plus time, and this is bound to obscure the role of
spacetime diffeomorphisms.

In general terms, there are at least three35 ways in which D could appear in
the quantum theory; which will be exemplified in the programmes surveyed in
Sections 2.4 and following sections:

(i) as an exact covariance/invariance group;36

(ii) as a subgroup of a bigger group;
(iii) as a limited concept associated with a phenomenological view of spacetime (or

space).

In the first two options one could say that the diffeomorphisms form a ‘precise’
concept since the mathematical object that occurs in the formalism is exactly the
classical group D. The third option, (iii), is somewhat different and flows nat-
urally from the view that spacetime is a phenomenological concept of limited
applicability: the same would then be expected for the diffeomorphisms of the man-
ifold that models spacetime in this limited sense. We shall say more about this in
Section 2.5.

The idea that D is an exact covariance/invariance group (option (i) above) plays
a key role in several approaches to quantum gravity. For example, (i) is one of the
central properties of so-called ‘topological quantum field theory’, which seems to
have potential applications in quantum gravity. And we will see in Section 2.4 that
(i) also plays a major role in the particle-physics programme (Section 2.4.3), albeit
with the qualification mentioned in note 36 [to option (i)]; and in a less clear-cut
way, in canonical quantum gravity.

On the other hand, the idea that D is a subgroup of a bigger covariance group
(option (ii) above) is endorsed by the perturbative approach to superstring theory.
In short, the idea is that the extra fields associated with supersymmetry lead to a
much larger covariance group; more details are provided in Section 2.4.4.

2.3.3 The problem of time

Closely related to the role of diffeomorphisms is the infamous ‘problem of time’.
This problem is central in any approach to quantum gravity that assigns a significant
prima facie role to classical general relativity (unlike, say, superstring theory). For
the problem arises from the very different roles played by the concept of time in
quantum theory and in general relativity; and the problem lies at the heart of many
of the deepest conceptual issues in such approaches to quantum gravity. To present
the problem, we will consider the roles of time, first in quantum theory, and then in
general relativity.37

2.3.3.1 Time in quantum theory
In quantum theory, time is not a physical quantity in the normal sense, since it
is not represented by an operator. Rather, it is treated as a background parameter
which, as in classical physics, is used to mark the evolution of the system; witness
the parameter t in the time-dependent Schrödinger equation.38
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Besides, the idea of an event happening at a given time plays a crucial role in the
technical and conceptual foundations of quantum theory:

• One of the central requirements of the scalar product on the Hilbert space of states is
that it is conserved under the time evolution given by the Schrödinger equation. This
is closely connected to the unitarity requirement that probabilities always sum to one.

• More generally, a key ingredient
in the construction of the Hilbert space for a quantum system is the selection
of a complete set of quantities that are required to commute at a fixed value of time.

• Conceptually, the notion of measuring a quantity at a given time, to find its value at
that time, is a fundamental ingredient of both the minimal statistical interpretation
of the theory, and the Copenhagen interpretation (see Section 2.2.1.1).

Furthermore, all these ideas can be extended to systems that are compatible with
special relativity: the unique time system of Newtonian physics is simply replaced
with the set of relativistic inertial reference frames. The quantum theory can be
made independent of a choice of frame, provided that the theory carries a uni-
tary representation of the Poincaré group of isometries of the metric of Minkowski
spacetime. In the case of a relativistic quantum field theory, the existence of such a
representation is closely related to the microcausality requirement that fields eval-
uated at spacelike-separated points must commute. For example, a scalar quantum
field φ̂(X) satisfies the commutation relations

[φ̂(X), φ̂(Y )] = 0 (2.2)

whenever the spacetime points X and Y are spacelike separated.
Finally, we note that this background time is truly an abstraction in the sense that

according to quantum theory, no physical clock can provide a precise measure of
it (Unruh and Wald 1989): there is always a small probability that a real clock will
sometimes run backwards with respect to it.

2.3.3.2 Time in general relativity; and the problem of time
When we turn to classical general relativity, the treatment of time is very different.
Time is not treated as a background parameter, even in the liberal sense used in
special relativity, viz. as an aspect of a fixed, background spacetime structure. Rather,
what counts as a choice of a time (i.e of a timelike direction) is influenced by what
matter is present (as is, of course, the spatial metrical structure). The existence of
many such times is reflected in the fact that if the spacetime manifold has a topology
such that it can be foliated as a one-parameter family of spacelike surfaces, this can
generally be done in many ways – without any subset of foliations being singled out in
the way families of inertial reference frames are singled out in special relativity. From
one perspective, each such parameter might be regarded as a legitimate definition of
(global) time. However, in general, there is no way of selecting a particular foliation,
or a special family of such, that is ‘natural’ within the context of the theory alone. In
particular, these definitions of time are in general unphysical, in that they provide
no hint as to how their time might be measured or registered.

But the main problem about time in general relativity arises when we turn to quan-
tum gravity, where the disparate nature of the treatments of time in quantum theory
and in general relativity becomes of paramount significance. We shall see various
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more specific versions of this problem in each of the research programmes reviewed
in Section 2.4. But for the moment, we introduce the problem in general terms.

General relativity accustoms us to the ideas that: (i) the causal structure of space-
time depends on the metric structure, represented by the metric tensor γ; and (ii) the
metric and causal structures are influenced by matter, and so vary from one model of
the theory to another. In general relativity, these ideas are ‘kept under control’ in the
sense that in each model, there is of course a single metric tensor γ, representing a
single metric and causal structure. But once we embark on constructing a quantum
theory of gravity, we expect some sort of quantum fluctuations in the metric, and
so also in the causal structure. But in that case, how are we to formulate a quantum
theory with a fluctuating causal structure?

This general statement of the problem is clearly relevant if one proposes a
spacetime-oriented approach to formulating the quantum theory; since then one’s
prototype quantum theories will emphasize a fixed background causal structure. But
the same statement of the problem arises on various other approaches to quantum
gravity. For example, if one takes the view that the spacetime metric is only a coarse-
grained, phenomenological construct of some type, then so is the causal structure.
And again, the question arises how we are to formulate a quantum theory with such
a causal structure.39

Though this problem is at bottom conceptual, it has clear technical aspects. In
particular, a probabilistic causal structure poses severe technical problems for rela-
tivistic quantum field theory, whose standard formulation presupposes a fixed causal
structure. For example, a quantum scalar field satisfies the microcausal commuta-
tion relations in eqn. 2.2, whereby fields evaluated at spacelike separated spacetime
points commute. However, the concept of two points being spacelike separated has
no meaning if the spacetime metric is probabilistic or phenomenological. In the
former case, the most likely scenario is that the right-hand side of the commutator
in eqn. 2.2 never vanishes, thereby removing one of the foundations of conventional
quantum field theory.

In practice, the techniques that have been used to address the problem of time
fall into one of the following three strategies, to all of which we shall return in
Section 2.4:

(1) Use a fixed background metric – often chosen to be that of Minkowski spacetime –
to define a fiducial causal structure with respect to which standard quantum field
theoretical techniques can be employed. This is the strategy adopted by the old
particle-physics programme, using Minkowski spacetime (Section 2.4.3).

This strategy raises questions about how the background structure is to be
chosen. Of course, Minkowski spacetime seems very natural from the perspective of
standard quantum field theory, but it is rather arbitrary when seen in the context of
general relativity. One possibility is that the background structure could come from
a contingent feature of the actual universe; for example, the 3◦K microwave
background radiation. However, structure of this type is approximate and is
therefore applicable only if fine details are ignored. In addition, the problem of
rigorously constructing (even free) quantum fields has only been solved for a very
small number of background spacetimes; certainly there is no reason to suppose
that well-defined quantum field theories exist on a generic spacetime manifold.
Also, there is a general matter of principle: should we require a theory of quantum
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gravity to work for ‘all possible’ universes (however that is made precise), or can it
depend on special features of the actual one in which we live?

(2) Accept the fact that there is no background spacetime reference system and attempt
to locate events, both spatially and temporally, with specific functionals of the
gravitational and other fields. This important idea is of course motivated by the
analysis of the ‘hole argument’ and spacetime diffeomorphisms (see Sections 2.2.2
and 2.3.2). Thus the idea is that for the example of a scalar field φ, the value φ(X) of
φ at a particular spacetime point X has no physical meaning because of the action of
the spacetime diffeomorphism group; but, the value of φ where something ‘is’ does
have a physical meaning in the sense that ‘φ(thing)’ is diffeomorphism invariant. In
practice, this strategy seems only to have been adopted by some of the approaches
to the problem of time as it manifests itself in canonical quantum gravity.

(3) And indeed, one approach is to drop spacetime methods and instead adopt a
canonical approach to general relativity, so that the basic ingredients are
geometrical fields on a three-dimensional manifold. The problem then is to
reconstruct some type of spatio-temporal picture within which the quantum
calculations can be interpreted. This is the strategy adopted by the canonical
quantum gravity programme (Section 2.4.5).

Studies of the problem of time in canonical quantum gravity raise the alluring
question whether a meaningful quantum theory can be constructed in a way that
contains no fundamental reference to time at all. That this is a far from trivial
matter is shown by our earlier remarks about the crucial role of time in conventional
quantum theory (see the references in note 37).

2.4 Research programmes in quantum gravity

As we have seen, we are far from having an ‘axiomatic’ framework for quantum
gravity, or even a broad consensus about what to strive for beyond the minimal
requirement that the theory should recover classical general relativity and normal
quantum theory in the appropriate domains – usually taken to be all physical regimes
well away from those characterized by the Planck length.

In this section, we shall focus on three specific research programmes. Our aim is
not to review the technical status of these programmes, but rather to explore their
treatments of spacetime. Of these three programmes, two are the main current focus
for work in quantum gravity: superstring theory and canonical quantum gravity.
These programmes complement each other nicely, and enable the special ideas
of either of them to be viewed in a different perspective by invoking the other – a
feature that is rather useful in a subject that lacks unequivocal experimental data! For
example, they exemplify the choice of approaches we discussed in Section 2.3.1.3,
about whether to quantize general relativity, or to have classical general relativity
emerge from a quantum theory of something quite different. Superstring theory
takes the latter approach; canonical quantum gravity the former.

The other programme we shall discuss is a spacetime-oriented quantization of
general relativity, which we dub ‘the particle-physics programme’. This programme
is no longer regarded as capable of providing a full theory of quantum gravity; but
it predated, and so influenced, both the other two programmes, and this means that
discussing its own treatment of spacetime will form a helpful backdrop to discussing
theirs.40
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All three programmes postulate at the fundamental level a spacetime manifold.
But it may differ in its dimension, metric structure, etc. from the four-dimensional
Lorentzian manifold familiar from classical general relativity. And, in fact, these
programmes suggest limitations to the applicability of the concept of a spacetime
manifold itself. We shall explore this possibility further in Section 2.5.

We begin in Section 2.4.1 by listing four topics that will act as ‘probes’ in our survey
of how concepts of space and time are treated in these programmes. This is followed
by some historical orientation to these programmes (Section 2.4.2), and then we
consider them seriatim, in the following order: the particle-physics programme
(Section 2.4.3); superstring theory (Section 2.4.4); and canonical quantum gravity
(Section 2.4.5).

2.4.1 Focussing the question: how is spacetime treated?

We will take the following four topics as ‘probes’ in our survey of how the concept of
spacetime is treated in the various quantum gravity programmes. We present them
as a sequence of questions; but of course they overlap with one another.

(1) Use of standard quantum theory . Are the technical formalism and conceptual
framework of present-day quantum theory adequate for the programme’s envis-
aged theory of quantum gravity? In particular, do any features of the programme
suggest advantages, or indeed disadvantages, of the ‘heterodox’ interpretations
of quantum theory, discussed in Sections 2.2.1.2–2.2.1.4?

(2) Use of standard spacetime concepts. How much of the familiar treatment of spatio-
temporal concepts, adopted by general relativity and quantum theory, does the
programme adopt? In particular, does it model spacetime as a four-dimensional
differentiable manifold? If so, does it add to this manifold a quantized metric
tensor? And if so, what exactly is the relation of this to a classical Lorentzian
metric on the manifold?

(3) The spacetime diffeomorphism group. Assuming the programme models space-
time as a manifold, what role does it assign to the group of spacetime
diffeomorphisms? Or if it decomposes spacetime into space and time, what
role is given to spatial diffeomorphisms?

(4) The problem of time. How does the problem of time manifest itself in the pro-
gramme, and how does the programme address it? In particular: how much of
the familiar treatment of spacetime must be retained for the envisaged theory
of quantum gravity to be constructed? Must both metric and manifold be fixed;
or can we work with a fixed background manifold, but no background metric?
Could we also do without the background manifold?

2.4.2 Some historical background to the three programmes

To introduce the survey of our three chosen research programmes, it is useful
to sketch some of the historical development of quantum gravity research – a
development from which these programmes have all sprung.

The early history of attempts to quantize general relativity goes back at least to the
1960s, and was marked by a deep division of opinion about whether quantum gravity
should be tackled from a spacetime perspective – the so-called ‘covariant’ approach,
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whose leading champion was Bryce DeWitt – or from a ‘canonical’ approach, in
which spacetime is decomposed into space plus time before the theory is quantized.

The early predominance of the canonical programme stemmed partly from the
fact that the attitude in the 1960s towards quantum field theory was very different
from that of today. With the exception of quantum electrodynamics, quantum field
theory was poorly rated as a fundamental way of describing the interactions of
elementary particles. Instead, this was the era of the S-matrix, the Chew axioms,
Regge poles, and – towards the end of that period – the dual resonance model and
the Veneziano amplitude that led eventually to superstring theory.

In so far as it was invoked at all in strong interaction physics, quantum field theory
was mainly used as a phenomenological tool to explore the predictions of current
algebra, which was thought to be more fundamental. When quantum field theory
was studied seriously, it was largely in the context of an ‘axiomatic’ programme –
such as the Wightman axioms for the n-point functions.

This neglect of quantum field theory influenced the way quantum gravity devel-
oped. In particular, with a few notable exceptions, physicists trained in particle
physics and quantum field theory were not interested in quantum gravity, and the
subject was mainly left to those whose primary training had been in general relativ-
ity. This imparted a special flavour to much of the work in that era. In particular, the
geometrical aspects of the theory were often emphasized at the expense of quantum
field theoretic issues – thereby giving rise to a tension that has affected the subject to
this day.

However, a major change took place in the early 1970s when t’Hooft demonstrated
the renormalizability of quantized Yang–Mills theory. Although not directly con-
nected with gravity, these results had a strong effect on attitudes towards quantum
field theory in general, and reawakened a wide interest in the subject. One spin-off
was that many young workers in particle physics became intrigued by the challenge
of applying the new methods to quantum gravity. This led to a revival of the covari-
ant approach; more specifically, to the particle-physics programme (Section 2.4.3),
and thereby eventually to supergravity and superstring theory (Section 2.4.4).

On the other hand, the canonical programme has also continued to flourish
since the 1970s; indeed, until the relatively recent advent of ‘superstring cosmology’,
canonical quantum gravity provided the only technical framework in which to dis-
cuss quantum cosmology. A major development in canonical quantum gravity was
Ashtekar’s discovery in 1986 of a new set of variables that dramatically simplifies
the intractable Wheeler–DeWitt equation which lies at the heart of the programme’s
quantum formalism. This in turn led to Rovelli’s and Smolin’s discovery of yet other
variables, labelled by loops in space.

2.4.3 The particle-physics programme

2.4.3.1 The basic ideas
In this programme, the basic entity is the graviton – the quantum of the gravitational
field. Such a particle is deemed to propagate in a background Minkowski spacetime,
and – like all elementary particles – is associated with a specific representation of
the Poincaré group which is labelled by its mass and its spin. The possible values
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of mass and spin are sharply limited by the physical functions which the graviton is
to serve. In particular, replication of the inverse-square law behaviour of the static
gravitational force requires the graviton to have mass zero, and the spin must be either
0 or 2h̄. However, zero spin is associated with a scalar field φ(X), whereas spin-2
comes from a symmetric Lorentz tensor field hµν(X); the obvious implication is that
these spin values correspond to Newtonian gravity and general relativity respectively.

The key to relating spin-2 particles and general relativity is to fix the back-
ground topology and differential structure of spacetimeM to be that of Minkowski
spacetime, and then to write the Lorentzian metric γ onM as

γαβ(X) = ηαβ + κhαβ(X). (2.3)

Here, h measures the departure of γ from the flat spacetime metric η and is regarded
as the ‘physical’ gravitational field with the coupling constant κ2 = 8πG/c2, where
G is Newton’s constant.

The use of the expansion in eqn. 2.3 strongly suggests a perturbative approach in
which quantum gravity is seen as a theory of small quantum fluctuations around a
background Minkowski spacetime. Indeed, when this expansion is substituted into
the Einstein–Hilbert action for pure gravity, S =

∫
d4X |γ|1/2R(γ) (where R(γ) is the

scalar curvature), it yields (i) a term that is bilinear in the fields h and which – when
quantized in a standard way – gives a theory of non-interacting, massless spin-2
gravitons; and (ii) a series of higher-order terms that describe the interactions of the
gravitons with each other. Thus, a typical task would be to compute the probabilities
for various numbers of gravitons to scatter with each other and with the quanta of
whatever matter fields might be added to the system.

This approach to quantum gravity has some problematic conceptual features (see
below). But, nonetheless, had it worked it would have been a major result, and would
undoubtedly have triggered a substantial effort to construct a spacetime-focussed
quantum gravity theory in a non-perturbative way. A good analogue is the great
increase in studies of lattice gauge theory that followed the proof by t’Hooft that
Yang–Mills theory is perturbatively renormalizable.

However, this is not what happened. Instead, a number of calculations were
performed around 1973 that confirmed earlier suspicions that perturbative quan-
tum gravity is non-renormalizable.41 There have been four main reactions to this
situation:

• Adopt the view in which general relativity is an ‘effective field theory’ and simply
add as many empirically determined counterterms as are appropriate at the energy
concerned. The ensuing structure will break down at the Planck scale, but a
pragmatic particle physicist might argue that this is of no importance since the
Planck energy is so much larger than anything that could be feasibly attainable in
any foreseeable particle accelerator (see the discussion at the end of the second
approach in Section 2.3.1.3).

• Continue to use standard perturbative quantum field theory, but change the
classical theory of general relativity so that the quantum theory becomes
renormalizable. Examples of such attempts include: (i) adding higher powers of the
Riemann curvature Rα

βµν(γ) to the action; and (ii) supergravity (see Section 2.4.4).
• Keep classical general relativity as it is, but develop quantization methods that are

intrinsically non-perturbative. Examples of this philosophy are ‘Regge calculus’
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(which involves simplicial approximations to spacetime) and techniques based on
lattice gauge theory. Of particular importance in recent years is the Ashtekar
programme for canonical quantization which is fundamentally non-perturbative
(see Section 2.4.5.2).

• Adopt the view that the non-renormalizability of perturbative quantum gravity is a
catastrophic failure that requires a very different type of approach. In terms of the
classification in Section 2.3.1.3, this would mean adopting its second, or third or
fourth types of approach: quantizing a classical theory that is quite different from
general relativity (such as a string theory); or having general relativity emerge as a
low-energy limit of a quantum theory that is not a quantization of any classical
system; or having it and quantum theory both emerge from something completely
different.

2.4.3.2 Spacetime according to the particle-physics programme
The response given by this programme to our four conceptual probes presented in
Section 2.4.1 is as follows.

1. Use of standard quantum theory . The basic technical ideas of standard quantum
theory are employed, suitably adapted to handle the gauge structure of the theory of
massless spin-2 particles. Furthermore, the traditional, Copenhagen interpretation
of the theory is applicable (even if not right!), in that the background Minkowski
metric and spacetime manifold are available to serve as the classical framework, in
which measurements of the quantum system, according to this interpretation, are
to be made.

Of course, other interpretations of quantum theory discussed in Section 2.2.1,
such as Everettian or pilot-wave interpretations, may well also be applicable to this
programme. Our present point is simply that the particle-physics programme gives
no special reasons in favour of such interpretations.

2. Use of standard spacetime concepts. The background manifold and metric are
described in the language of standard differential geometry. Note that, from a phys-
ical perspective, the restriction to a specific background topology means a scheme
of this type is not well adapted to addressing some of the most interesting questions
in quantum gravity such as the role of black holes, quantum cosmology, the idea of
possible spacetime ‘phase changes’, etc.

3. The spacetime diffeomorphism group. The action of the group of spacetime dif-
feomorphisms is usually studied infinitesimally. The transformation of the graviton
field hµν(X) under a vector-field generator ξ of such a diffeomorphism is simply
hµν(X) �→ hµν(X) + ∂µξν(X) + ∂νξµ(X), which is very reminiscent of the gauge
transformations of the electromagnetic vector potential, Aµ(X) �→ Aµ(X)+∂µφ(X).

Indeed, in this infinitesimal sense, the effect of spacetime diffeomorphisms is
strictly analogous to the conventional gauge transformations of electromagnetism
or Yang–Mills theory (in that spacetime points are fixed); and the same type of
quantization procedure can be used. In particular, the invariance of the quantum
theory under these transformations is reflected in a set of ‘Ward identities’ that must
be satisfied by the vacuum expectation values of time-ordered products (the ‘n-point
functions’) of the operator field at different spacetime points.

4. The problem of time. The background metric η provides a fixed causal structure
with the associated family of Lorentzian inertial frames. Thus, at this level, there
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is no problem of time. The causal structure also allows a notion of microcausality,
thereby permitting a conventional type of relativistic quantum field theory to be
applied to the field hαβ .

However, many people object strongly to an expansion like eqn. 2.3 since it
is unclear how this background causal structure is to be related to the physical
one; or, indeed, what the latter really means. For example, does the ‘physical’
causal structure depend on the state of the quantum system? There have certainly
been conjectures to the effect that a non-perturbative quantization of this system
would lead to quantum fluctuations of the causal structure around a quantum-
averaged background that is not the original Minkowskian metric. As emphasized
earlier, it is not clear what happens to the microcausal commutativity condi-
tion in such circumstances; or, indeed, what is meant in general by ‘causality’
and ‘time’ in a system whose light-cones are themselves the subject of quantum
fluctuations.

2.4.4 The superstrings programme

2.4.4.1 The introduction of supersymmetry
When confronted with the non-renormalizability of covariant quantum gravity, the
majority of particle physicists followed a line motivated by the successful transition
from the old non-renormalizable theory of the weak interactions (the ‘four-fermion’
theory) to the new renormalizable unification of the weak and electromagnetic forces
found by Salam, Glashow, and Weinberg. Thus the aim was to construct a well-
defined theory of quantum gravity by adding carefully chosen matter fields to the
classical theory of general relativity with the hope that the ultraviolet divergences
would cancel, leaving a theory that is perturbatively well-behaved.

A key observation in this respect is that the divergence associated with a loop
of gravitons might possibly be cancelled by introducing fermions, on the grounds
that the numerical sign of a loop of virtual fermions is opposite to that of a loop of
bosons. With this motivation, supergravity was born, the underlying supersymmetry
invariance being associated with a spin- 3

2 fermionic partner (the ‘gravitino’) for the
bosonic spin-2 graviton. Moreover, since supersymmetry requires very special types
of matter, such a scheme lends credence to the claim that a successful theory of
quantum gravity must involve unifying the fundamental forces, i.e. the extra fields
needed to cancel the graviton infinities might be precisely those associated with some
grand unified scheme.

Recall from Section 2.3.1 that the mark of unification of two forces is the equality
of their coupling constants; and that the energy-dependence of the coupling con-
stants for the electromagnetic, weak and strong nuclear forces renders them at least
approximately equal at around 1020 MeV. Here, it is of considerable interest to note
that the introduction of supersymmetry greatly improves the prospects for exact
equality: there is every expectation that these three fundamental forces do unify
exactly in the supersymmetric version of the theory. The fact that 1020 MeV is not
that far away from the Planck energy (1022 MeV) adds further weight to the idea that
a supersymmetric version of gravity may be needed to guarantee its inclusion in the
pantheon of unified forces.
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Early expectations for supergravity theory were high following successful low-
order results, but it is now generally accepted that if higher-loop calculations could
be performed (they are very complex) intractable divergences would appear once
more. However, this line of thought continues and the torch is currently carried by
the superstring programme, which in terms of number of papers produced per week
is now by far the dominant research programme in quantum gravity.

The superstrings programme has had two phases. The first phase began in earnest
in the mid-1980s (following seminal work in the mid-1970s) and used a perturbative
approach; as we shall see, its treatment of spacetime can be presented readily enough
in terms of our four probes listed in Section 2.4.1. The second phase began in the
early 1990s, and ‘still rages’. It has yielded rich insights into the underlying non-
perturbative theory. But the dust has by no means settled. Even the overall structure
of the underlying theory remains very unclear; and in particular, its treatment of
spacetime is too uncertain for our four probes to be applied. Accordingly, our
discussion of the second phase will forsake the probes, and just report how recent
developments indicate some fundamental limitations in the manifold conception of
spacetime.42

2.4.4.2 Perturbative superstrings
The perturbative superstrings programme involves quantizing a classical system;
but the system concerned is not general relativity, but rather a system in which a
one-dimensional closed string propagates in a spacetime M (whose dimension is
in general not 4). More precisely, the propagation of the string is viewed as a map
X : W → M from a two-dimensional ‘world-sheet’ W to spacetime M (the
‘target spacetime’). The quantization procedure quantizes X , but not the metric γ
on M, which remains classical. The appropriate classical theory for the simplest
such system is described by the famous Polyakov action, which is invariant under
conformal transformations on W . To preserve this conformal invariance in the
quantized theory, and to satisfy other desirable conditions, the following conditions
are necessary:

(i) the theory is made supersymmetric;
(ii) the spacetime M has a certain critical dimension (the exact value depends on what

other fields are added to the simple bosonic string); and
(iii) the classical spacetime metric γ on M satisfies a set of field equations that are

equivalent to the (supergravity version of) Einstein’s field equations for general
relativity plus small corrections of Planck size: this is the sense in which general
relativity emerges from string theory as a low-energy limit.43

Superstring theory has the great advantage over the particle-physics programme
that, for certain string theories, the individual terms in the appropriate perturbation
expansion are finite. Furthermore, the particle content of theories of this type could
be such as to relate the fundamental forces in a unified way. Thus these theories
provide a concrete realization of the old hope that quantum gravity necessarily
involves a unification with the other fundamental forces in nature.

2.4.4.3 Spacetime according to the perturbative superstrings programme
The response given by the perturbative superstrings programme to the four
conceptual probes in Section 2.4.1 is broadly as follows.
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1. Use of standard quantum theory . As in the case of the particle-physics pro-
gramme, the basic technical ideas of standard quantum theory are employed, albeit
with suitable adaptations to handle the gauge structure of the theory. Similarly, the
Copenhagen interpretation of the theory is, arguably, applicable; namely, by using
as the required classical framework or background structure, the solution of the
low-energy field equations for the spacetime metric γ. On the other hand, one can
also argue contrariwise, that it is unsatisfactory to have the interpretation of our
fundamental quantum theory only apply in a special regime, viz. low energies.

And as for the particle-physics programme, other interpretations of quantum the-
ory discussed in Section 2.2.1 might be applicable. But they have not been developed
in connection with superstrings, and so far as we can see, perturbative superstring
theory gives no special reason in favour of them.

2. Use of standard spacetime concepts. In perturbative superstring theories, the
target spacetime M is modelled using standard differential geometry, and there
seems to be no room for any deviation from the classical view of spacetime. However,
in so far as the dimension of M is greater than four, some type of ‘Kaluza–Klein’
scenario is required in which the extra dimensions are sufficiently curled up to
produce no perceivable effect in normal physics, whose arena is a four-dimensional
spacetime.

3. The spacetime diffeomorphism group. Superstring theory shows clearly how
general relativity can occur as a fragment of a much larger structure – thereby
removing much of the fundamental significance formerly ascribed to the notions of
space and time. True, the low-energy limit of these theories is a form of supergravity
but, nevertheless, standard spacetime ideas do not play a central role. This is reflected
by the graviton being only one of an infinite number of particles in the theory. In
particular, the spacetime diffeomorphism group D appears only as part of a much
bigger structure, as in option (ii) of the discussion in Section 2.3.2. Consequently,
its technical importance for the quantum scheme is largely subsumed by the bigger
group.

4. The problem of time. The perturbative expansion in a superstring theory takes
place around the background given by the solution to the low-energy field equations
for the spacetime metricγ. In particular, this provides a background causal structure;
and hence – in that sense – there is no problem of time.

On the other hand, the situation is similar in many respects to that of the particle-
physics programme; in particular, there are the same worries about the meaning of
‘causality’ and ‘time’ in any precise sense. There is, however, an important difference
between superstring theory and the simple perturbative quantization of general
relativity – namely, there are realistic hopes that a proper non-perturbative version
of the former is technically viable. If such a theory is found it will be possible to
address the conceptual problems with time and causality in a direct way – something
that is very difficult in the context of the (mathematically non-existent!) theory of
perturbatively quantized general relativity.

2.4.4.4 The second phase of superstrings
Since the early 1990s, a lot of work in the superstrings programme has focussed
on exploring the underlying non-perturbative theory. These developments seem to
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have striking implications for our conception of space and time at the Planck scale.
So now we turn to these, albeit with trepidation, since the dust has by no means yet
settled in this area of research; and what the implications are is far from clear!

These developments are based on various types of ‘duality’ transformation or
symmetry. For example, one of the simplest forms of duality (‘T -duality’) arises
when the target space is a five-dimensional manifold of the form M4 × S1 (S1 is
the circle). It transpires that the physical predictions of the theory are invariant
under replacement of the radius R of the fifth dimension with 2α′/R where α′ is a
fundamental constant in the theory. Thus we cannot differentiate physically between
a very small, and a very large, radius for the additional dimension – indeed, there is
a precise sense in which they are ‘gauge’ equivalent to each other. One of the most
important implications of this invariance is that there exists a minimum length of
Rmin =

√
2α′ – an idea that must surely have significant implications for our overall

understanding of the conceptual implications of the theory.44

Another type of duality (‘S-duality’) involves the idea that, for certain theories,
the physics in the large-coupling limit is given by the weak-coupling limit of a ‘dual’
theory whose fundamental entities can be identified with solitonic excitations of
the original theory. It is believed that the several known consistent perturbative
superstring theories are related in this way to each other45 and also to the theories
involving extended objects (‘membranes’) of dimension greater than one. Ideas of
this type are certainly attractive, not least because they provide a real possibility of
theoretically probing the physically interesting, high-energy regimes of such theories.

In short, these developments suggest rather strongly that the manifold conception
of spacetime is not applicable at the Planck length; but is only an emergent notion,
approximately valid at much larger length–scales. We shall take up this idea, in
general terms, in Section 2.5. At a more technical level, the new ideas suggest that
Lagrangian field-theoretic methods (which are used in the perturbative superstring
theories) are reaching the limit of their domain of applicability, and should be
replaced by (for example) a more algebraic approach to theory construction that
places less reliance on an underlying classical system of fields (i.e. the third of the
four types of approach we listed in Section 2.3.1.3).

2.4.5 The canonical quantum gravity programme

2.4.5.1 Quantum geometrodynamics
The canonical approach to quantum gravity starts with a reference foliation of
spacetime with respect to which the appropriate canonical variables are defined.46

These are the 3-metric gab(x) on a spatial slice Σ of the foliation, and a canonical
conjugate pab(x) that – from a spacetime perspective – is related to the extrinsic
curvature of Σ as embedded in the four-dimensional spacetime.

A key property of general relativity – which reflects the role of the group D of
spacetime diffeomorphisms – is that these variables are not independent, but instead
satisfy certain constraints, usually written as

Ha(x) = 0 (2.4)

H⊥(x) = 0, (2.5)
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where Ha(x) and H⊥(x) are complicated functions of the g and p, and their
derivatives.

The constraint functionsHa andH⊥ play a fundamental role in the theory since
their Poisson bracket algebra (known as the ‘Dirac algebra’) is that of the group
D of spacetime diffeomorphisms projected along, and normal to, the spacelike
hypersurfaces of the reference foliation. Thus, the basic question of understanding
the role of spacetime diffeomorphisms is coded in the structure of these constraints.

In addition to the constraint equations (eqns. 2.4–2.5), there is also a collection of
dynamical equations that specify how the canonical fields gab(x) and pcd (x) evolve
with respect to the time variable associated with the given foliation. However, it
transpires that these equations are redundant since it can be shown that if γ is a
spacetime metric onM that satisfies the constraint equations (eqns. 2.4–2.5) on any
spacelike hypersurface, then necessarily the projected canonical variables gab(x) and
pcd (x) will satisfy the dynamical equations. In this sense, the entire theory is already
coded into just the four constraint equations (eqns. 2.4–2.5); so, in practice, attention
is almost invariably focussed on them alone. Furthermore, among these equations,
(eqn. 2.5) is the crucial one, essentially because – when viewed from a spacetime
perspective – H⊥ is associated with the canonical generators of displacements in
timelike directions.

This system can be quantized in a variety of ways. One possibility is to impose
a gauge for the invariance associated with the Dirac algebra; solve the constraint
equations (eqns. 2.4–2.5) classically; and then quantize the resulting ‘true’ canonical
system in a standard way. However, the final equations are intractable in anything
other than a perturbative sense, where they promptly succumb to virulent ultraviolet
divergences.

Most approaches to canonical quantum gravity do not proceed in this way.
Instead, the full set of fields (gab(x), pcd (x)) is quantized via the ‘canonical
commutation relations’

[ĝ ab(x), ĝ cd (x ′)] = 0 (2.6)

[p̂ab(x), p̂cd (x ′)] = 0 (2.7)

[ĝ ab(x), p̂cd (x ′)] = ih̄δc
(aδ

d
b)δ

(3)(x , x ′) (2.8)

of operators defined on the 3-manifold Σ. Following Dirac, the constraints are
interpreted as constraints on the allowed state vectors Ψ, so that Ĥa(x)Ψ = 0 =
Ĥ⊥(x)Ψ for all x ∈ Σ. In particular, on choosing the states as functions of the
3-geometry g – and with operator representatives (ĝ ab(x)Ψ)[g ] := gab(x)Ψ[g ] and
(p̂cd (x)Ψ)[g ] := −ih̄ δΨ[g ]/δgab(x) – the constraints ĤaΨ = 0 imply that Ψ[g ]
is constant under changes of g induced by infinitesimal diffeomorphisms of the
spatial 3-manifold Σ; and the crucial constraint Ĥ⊥(x)Ψ = 0 becomes the famous
Wheeler–DeWitt equation.

But the Wheeler–DeWitt equation is horribly ill-defined in any exact mathemat-
ical sense and, unfortunately, perturbative approaches to its definition and solution
are as virulently badly behaved as are its particle-physics-based cousins: in both
cases the problem is trying to define products of operator fields defined at the same
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point. Indeed, until the rise of the Ashtekar programme (see below), most of the
work developing and using the Wheeler–DeWitt equation in anything other than a
purely heuristic sense relied on truncating the gravitational field to just a few degrees
of freedom, so that it becomes a partial differential equation in a finite number of
variables, which one can at least contemplate attempting to solve exactly.47

In this context, we should mention again the Euclidean programme in quan-
tum gravity. Here, the central role is played by functional integrals over all the
Riemannian – rather than Lorentzian – metrics on a four-dimensional manifold
M. (The motivation for Riemannian metrics is partly an analogy with the success-
ful use of imaginary time in Yang–Mills theory.) It can be shown that the functional
Ψ[g ] of g defined by certain such functional integrals satisfies (at least, in a heuristic
way) the Wheeler–DeWitt equation; in particular, this is the basis of the famous
Hartle–Hawking ‘no boundary’ proposal for the ‘wave function of the universe’ in
quantum cosmology. So in this sense, the Euclidean programme amounts to a way
of constructing states for quantum geometrodynamics. For this reason, and also
because we discuss this programme (and its use in quantum cosmology) in detail
elsewhere (Butterfield and Isham 1999), we set it aside here.

2.4.5.2 The Ashtekar programme and loop variables
As emphasized above, the Wheeler–DeWitt equation is ill-defined in any exact math-
ematical sense. However, a major advance took place in 1986 when Ashtekar (1986)
found a set of canonical variables which produce a dramatic simplification of the
structure of the central constraint functions Ha(x) and H⊥(x). Since then there
has been a very active programme to exploit these new variables, both in classical
general relativity and in quantum gravity.

From a technical perspective, one of the great dangers in canonical quantum
gravity is the generation of anomalous quantum excitations of non-physical modes
of the gravitational field. However, even to talk of such things requires the operators
to be defined rigorously – a task that is highly non-trivial, since this is the point
at which the infamous ultraviolet divergences are likely to appear. One of the main
reasons why these new developments are potentially so important is the hope it offers
of being able to define these operators properly, and hence address such crucial issues
as the existence of anomalous excitations.

The developments during the past decade have been very impressive and, in par-
ticular, there is now real evidence in support of the old idea that non-perturbative
methods must play a key role in constructing a theory of quantum gravity. If suc-
cessful in its current form, this programme will yield a theory of quantum gravity
in which unification of the forces is not a necessary ingredient. This demonstrates
the importance of distinguishing between a quantum theory of gravity itself, and a
‘theory of everything’ which of necessity includes gravity.

In spite of their great structural significance, the use of the Ashtekar variables has
had little impact so far on the conceptual problems in canonical quantum gravity,
and so we shall not discuss the technical foundations of this programme here. How-
ever, it is important to note that one of the new variables is a spin-connection, which
suggested the use of a gravitational analogue of the gauge-invariant loop variables
introduced by Wilson in Yang–Mills theory. Seminal work in this area by Rovelli
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and Smolin (1990) has produced many fascinating ideas, including a demonstration
that the area and volume of space are quantized – something that is evidently of
philosophical interest and which has no analogue in quantum geometrodynamics.
We shall return to these ideas briefly in Section 2.5.

2.4.5.3 Spacetime according to the canonical quantum gravity programme
The response given by the canonical quantum gravity programme to the four probes
in Section 2.4.1 is broadly as follows.

1. Use of standard quantum theory . The basic technical ideas of standard quantum
theory are employed, suitably adapted to handle the non-linear constraints satis-
fied by the canonical variables. On the other hand, the traditional, Copenhagen
interpretation of quantum theory is certainly not applicable unless a background
spatial metric is assumed, and a resolution is found of the problem of time, at
least at some semiclassical level. However, most attempts to implement the canon-
ical scheme abhor the introduction of any type of background metric, and hence
major conceptual problems can be expected to arise if this programme is ever fully
realized.

Of course, one radical strategy for coping with this situation is ‘to make a virtue of
necessity’, as discussed in Section 2.2.1.3; i.e. to adopt the pilot-wave interpretation
of quantum theory, and thereby introduce a background metric in a strong sense,
involving a preferred foliation of spacetime. Note, however, that with its emphasis on
configuration space, this interpretation would not seem appropriate for the Ashtekar
and loops programmes where, unlike quantum geometrodynamics, the states are not
functions on the configuration space of all 3-metrics.

Although we are setting aside quantum cosmology, we should add that since
most work in quantum cosmology has been done within the canonical quantum
gravity programme, there is another sense in which the Copenhagen interpretation
is certainly not applicable to canonical quantum gravity; whereas (as discussed in
Section 2.2.1.2), rivals such as Everettian interpretations might be.

2. Use of standard spacetime concepts. In this regard, canonical quantum gravity
in effect ‘lies between’ the conservatism of the particle-physics programme, and the
radicalism of superstrings. For like the former, it uses a background dimensional
manifold (but it uses no background metric). More precisely, the canonical theory
of classical relativity assumes ab initio that the spacetime manifoldM is diffeomor-
phic to Σ × R where Σ is some 3-manifold; and this 3-manifold becomes part of
the fixed background in the quantum theory – so that, as for the particle-physics
programme, there is no immediate possibility of discussing quantum changes in the
spatial topology.

3. The spacetime diffeomorphism group. In the canonical quantum gravity pro-
gramme, the classical Poisson-bracket algebra of the constraint functions (i.e. the
Dirac algebra) can be interpreted as the algebra of spacetime diffeomorphisms pro-
jected along, and normal to, spacelike hypersurfaces. In the quantum theory, it is
usually assumed that this Poisson-bracket algebra is to be replaced with the analogous
commutator algebra of the corresponding quantum operators.

The Dirac algebra contains the group of spatial diffeomorphisms, Diff (Σ), as a
subgroup, but it is not itself a genuine group. Invariance under Diff (Σ) means that
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the functionals of the canonical variables that correspond to physical variables are
naturally construed as being non-local with respect to Σ. Recent work with the loop-
variable approach to canonical quantum gravity has been particularly productive in
regard to the implications of invariance under spatial diffeomorphisms.

The role of the full Dirac algebra is more subtle and varies according to the precise
canonical scheme that is followed. There are still contentious issues in this area –
particularly in regard to exactly what counts as an ‘observable’ in the canonical
scheme.

4. The problem of time. One of the main aspirations of the canonical approach to
quantum gravity has always been to build a formalism with no background spatial,
or spacetime, metric (this is particularly important, of course, in the context of
quantum cosmology). In the absence of any such background structure, the problem
of time becomes a major issue.

There are various obvious manifestations of this. One is that the Wheeler–DeWitt
equation makes no apparent reference to time, and yet this is to be regarded as
the crucial ‘dynamical’ equation of the theory! Another manifestation concerns
the starting canonical commutation relations (eqns. 2.6–2.8). The vanishing of a
commutator like eqn. 2.6 would normally reflect the fact that the points x and x ′ are
‘spatially separated’. But what does this mean in a theory with no background causal
structure?

The situation is usually understood to imply that, as mentioned in Section 2.3.3.2
(strategies 2 and 3), ‘time’ has to be reintroduced as the values of special physical
entities in the theory – either gravitational or material – with which the values of
other physical quantities are to be correlated. Thus, rather than talking about clocks
measuring time – which suggests there is some external temporal reference system –
we think of time as being defined by a clock, which in this case means part of the
overall system that is being quantized. Thus, physical time is introduced as a reading
on a ‘physical’ clock.

Unfortunately, it is a major unsolved problem whether: (i) this can be done at all
in an exact way; and (ii) if so, how the results of two different such choices compare
with each other, and how this is related to spatio-temporal concepts. In fact, there
are good reasons for thinking that it is not possible to find any ‘exact’ internal time,
and that the standard notion of time only applies in some semiclassical limit of the
theory. In this way time would be an emergent or phenomenological concept, rather
like temperature or pressure in statistical physics. We discuss this line of thought
further in Section 2.5.4 of Butterfield and Isham (1999); here, we just emphasize
that it is specifically about time, not spacetime – and in that sense, not this chapter’s
concern. Section 2.5 will discuss the idea that spacetime, though not distinctively
time, is phenomenological.

2.5 Towards quantum spacetime?

2.5.1 Introduction: quantization and emergence

In this section, we turn to discuss some treatments of spacetime that are in various
ways more radical than those given by the programmes in Section 2.4. We shall adopt
the classification in Section 2.3.1.3 of four types of approach to quantum gravity.
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Recall that they were:

(1) quantizing general relativity;
(2) quantizing a different classical theory, while still having general relativity emerge as

a low-energy (large-distance) limit;
(3) having general relativity emerge as a low-energy limit of a quantum theory that is

not a quantization of a classical theory; and finally, and most radically,
(4) having both general relativity and quantum theory emerge from a theory very

different from both.

Thus in Section 2.5.2, we will discuss type (2); in Section 2.5.3, type (3); and in
Section 2.5.4, type (4). But it will help set these discussions in context, to take up
two topics as preliminaries: (i) the relation of the programmes in Section 2.4 to this
classification; and (ii) the notion of emergence, and its relation to quantization, in
general.

2.5.1.1 Some suggestions from the three programmes
It is easy to place the three programmes in Section 2.4 within the above classification.
We have seen that the particle-physics and canonical programmes are examples of
type (1), while the superstrings programme is an example of type (2) (at least in its
perturbative version). But we should add two remarks to ‘sketch in the landscape’ of
this classification.

(i) All three programmes are similar in that the main way they go beyond what we
called the common treatment of spacetime of our ‘ingredient theories’ (viz. as a
four-dimensional manifold with a (classical) Lorentzian metric), is by quantizing a
quantity that is a standard type of physical variable within the context of classical
physics defined using the familiar tools of differential geometry. For the
particle-physics and canonical programmes (Sections 2.4.3, 2.4.5), this is the
spatio-temporal metric γ, and the 3-metric g respectively. In the perturbative
superstrings programme, the variable concerned is the function X that maps a loop
into the target spacetime. However, in this section, we will discuss treatments that
in some way or other ‘go beyond’ quantizing standard classical objects.

(ii) On the other hand, we should stress that the two main current programmes
discussed in Section 2.4 make various radical suggestions about spacetime:
suggestions which are not reflected by their being classified as types (1) and (2) in
the schema above. We already saw some of these suggestions in Section 2.4. In
particular, we saw that the superstrings programme requires spacetime to have a
dimension which is in general not four; and – more strikingly – recent work on
non-perturbative approaches suggests that more than one manifold may contribute
at the Planck scale, or that models based on ‘non-commutative geometry’ may be
appropriate. And for the canonical quantum gravity programme, we mentioned the
discrete spectra of the spatial area and spatial volume quantities: results that
arguably suggest some type of underlying discrete structure of space itself.

But these programmes also make other such suggestions. For example, we will
see in Section 2.5.2 a general way in which quantizing a metric (as in these pro-
grammes) suggests a quantization of logically weaker structure such as differential
or topological structure; these are called ‘trickle-down effects’.

To sum up: Both these programmes threaten the ingredient theories’ common
treatment of spacetime, quite apart from their quantizing the metric; indeed they
even threaten the manifold conception of space or spacetime.
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2.5.1.2 Emergence and quantization
At this point it is worth developing the contrast (introduced in Section 2.1.1) between
two general strategies which one can adopt when attempting to go beyond the
common treatment of spacetime. The distinction can be made in terms of any part
of the common treatment, not just metrical structure on which the programmes in
Section 2.4 focus: for example, topological structure.

To ‘go beyond’ such a structure, one strategy is to argue that it is emergent (in
physics’ jargon: ‘phenomenological’). ‘Emergence’ is vague, and indeed contentious;
for along with related notions like reduction, it is involved in disputes, central in
philosophy of science, about relations between theories and even sciences. But here,
we only need the general idea of one theory T1 being emergent from another T2 if
in a certain part of T2’s domain of application (in physics’ jargon, a ‘regime’: usually
specified by certain ranges of values of certain of T2’s quantities), the results of T2

are well approximated by those of T1 – where ‘results’ can include theoretical propo-
sitions as well as observational ones, and even ‘larger structures’ such as derivations
and explanations.

This relation of emergence can of course be iterated, yielding the idea of a ‘tower’
of theories, each emerging from the one above it. Figure 2.1 portrays this idea, for
the case of interest to us, viz. where the ‘bottom theory’ is classical general relativity.
Figure 2.1 also uses the physics jargon of a theory being ‘phenomenological’; and
for the sake of definiteness, it assumes an uppermost ‘ultimate’ theory – an assump-
tion to which, as is clear from Section 2.1.3, we are not committed. We should

Fig. 2.1. A hierarchy of phenomenological theories.

79



[10:17 2000/10/5 g:/tex/key-tex/callendr/3663-002.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 2 Page: 80 33–89

Jeremy Butterfield and Christopher Isham

add that of course many different towers will in general branch off from a given
theory.48

So much for the general idea of emergence. The other strategy for ‘going beyond a
classical structure’ is to try to quantize it, in some sense; and then to recover it as some
sort of classical limit of the ensuing quantum theory. We say ‘quantize in some sense’,
because although ‘quantization’ is certainly less vague than ‘emergence’, it is far from
being precise. There is an open-ended family of ‘quantization procedures’ that are
only provably equivalent on some simple cases (such as certain finite-dimensional,
unconstrained Hamiltonian systems); and there is no procedure known whereby
an arbitrary classical system can be quantized in an unequivocal way. Similarly, we
say ‘some sort of classical limit’, because (as we said in Section 2.3.1.3) ‘classical
limit’ also has various senses: it can refer to special states whose evolution over time
follows classical laws, or to certain quantum quantities taking values in a range where
classical theory is successful.

Though these two strategies are vague, the general idea of them is enough to make
it clear that they are independent. That is: neither implies the other, though of course
they can be combined (as the classification of approaches (1)–(4) makes clear).

Thus one can maintain that some classical structure is emergent, without quantiz-
ing it (i.e. exhibiting it as a classical limit of a quantization). Indeed, there are at least
two ways one can do this. The first is familiar from our discussion of superstrings
(Section 2.4.4): a classical structure (there, the metric geometry of general relativity)
can emerge from a quantum theory (superstrings) which is not a quantized version
of a classical theory of the structure. The second way is independent of quantum
theory: viz. a classical structure could emerge from some theory which has nothing
to do with quantum theory. (In the context of quantum gravity, this way is taken by
approach (4) in the classification of Section 2.3.1.3.)

The converse implication can also be questioned. Quantizing a structure does not
ipso facto render the original classical structure emergent. Agreed, if we quantize a
structure, then we can investigate the resulting quantum theory’s classical limits: and
even allowing for the vagueness of ‘quantization’ and ‘classical limit’, we are more or
less guaranteed to be able to identify the original classical structure as such a limit, or
as a feature of such a limit. But in view of the vagueness of ‘emergence’, this might not
count as showing the classical structure to be emergent within the quantum theory.
Indeed, quite apart from subtleties about the philosophical notion of ‘emergence’,
the measurement problem of quantum theory looms over the interpretation of such
limits as ‘recovering the classical world’.

So much by way of general discussion of these two strategies, and their indepen-
dence. The upshot, for our topic of how to depart more radically from the common
treatment of spacetime than ‘just’ by quantizing metrical structure, is that one can
apply either or both of these two strategies to other classical structures – for example
to topological structure. We will see such applications in more detail in the next
three subsections’ discussions of approaches (2)–(4) respectively.

Before embarking on those discussions, we should enter two caveats. First, the
ideas we are about to discuss are far less established and understood, than are the trio
of bona fide research programmes in Section 2.4; so our discussion needs must be
much more tentative. Second, we will downplay the first strategy, i.e. emergence, on
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the grounds that our complementary paper Butterfield and Isham (1999) discusses
it – both in general philosophical terms, and (for classical spacetime structure), in
terms of classical limits of a theory of quantum gravity. Also very little is known
about the prospects for this strategy used on its own, i.e. uncombined with the
second strategy of quantization – as we will see in Sections 2.5.3 and 2.5.4.

2.5.2 Quantization ‘below’ the metric

We turn to discuss approach (2), where one quantizes a theory other than classi-
cal general relativity, but obtains it as a low-energy limit of the quantized theory.
Needless to say, only a tiny fraction of the vast range of classical theories has been
quantized, so that in full generality, little is known about this approach; and much
of what is known concerns the superstrings programme.

So in this subsection, we will confine ourselves to general comments about the
treatment of spacetime to be expected once one adopts this approach. Furthermore,
we will only consider applying this approach to quantizing classical spacetime struc-
tures (hence this subsection’s title). Given this restriction, our discussion is given a
natural structure by the fact that the common treatment of spacetime – viz. as a pair
(M, γ), with M a four-dimensional differentiable manifold, and γ a Lorentzian
metric – appears at one end of a hierarchical chain of structure; so that we can pic-
ture the introduction of a quantum effect ‘below the metric γ’ in terms of an earlier
point in the chain. Of course, a given mathematical structure can often be placed in
more than one such chain, and the question then arises of which chain to use.

The common treatment of spacetime as a pair (M, γ) fits naturally into the chain

set of spacetime points → topology → differential structure

→ (M, γ). (2.9)

Indeed, this chain is implicit in much of our previous discussion. The bottom level
is a set M, whose elements are to be identified with spacetime points; but this set
is formless, its only general mathematical property being its cardinal number. In
particular, there are no relations between the elements ofM, and no special way of
labelling any such element. The next step is to impose a topology onM so that each
point acquires a family of neighbourhoods. Then one can talk about relationships
between points, albeit in a rather non-physical way. This defect is overcome by
adding the key ingredient of the conventional treatment of spacetime: the topology
ofMmust be compatible with that of a differentiable manifold, so that a point inM
can be labelled smoothly (at least, locally) by giving the values of four real numbers.
In the final step a Lorentzian metric γ is placed on M, thereby introducing the
ideas of the lengths of a path joining two spacetime points, parallel transport with
respect to a connection, causal relations between pairs of points, etc. Note that an
analogous discussion applies to the usual modelling of space and time individually
by a three-dimensional, and one-dimensional manifold respectively.

Note that a variety of intermediate stages can be inserted: for example, the link
‘differential structure → (M, γ)’ could be factored as

differential structure → causal structure → (M, γ). (2.10)
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A quite different scheme arises by exploiting the fact that a differentiable manifold
M is uniquely determined by the algebraic structure of its commutative ring of
differentiable functions, F(M) (cf. our discussion in Section 2.2.2 of the spectral
theorem for commutative C*algebras). And a ring is itself a complicated algebraic
structure that can be analysed into a hierarchy of substructures in several ways. Thus,
one alternative chain to eqn. 2.9 is

set → abelian group → vector space → F(M) → (M, γ). (2.11)

Given these chains of structure leading to (M, γ), and others like them, it is clear
what are the options facing approach (2). One must decide:

(i) which of the chains to (M, γ) to use; and
(ii) at what level in the chosen chain to try to quantize.

For example, if one uses the first chain, one faces such questions as: should we
accept a fixed set of spacetime (or, for a canonical approach: spatial) points, but let
the topology and/or differential structure be subject to quantum effects? Or should
we say that the notion of a spacetime point itself is not meaningful at a fundamental
level: i.e. it is a concept that should not appear in the theory, even in a mathematical
sense?

We end by making two general comments about this situation, corresponding to
the two decisions, (i) and (ii).

In regard to (i), we stress that the details of one’s programme will depend strongly
on the initial decision about which chain to use. Thus if one decides to apply quan-
tization to the second chain (eqn. 2.11), one is led naturally to consideration of
the algebraic approach to classical general relativity pioneered by Geroch (1972)
(‘Einstein algebras’) and non-commutative analogues thereof (Parfionov and
Zapatrin 1995). And, of course, the idea of a non-commutative version of the
algebra F(M) was one of the motivating factors behind Connes’ seminal ideas on
non-commutative geometry (Connes 1994).

Concerning (ii), one should be aware that, once a chain has been chosen, quanti-
zation at one level could ‘trickle down’ to produce quantum effects at a ‘lower’, more
general, level in the chain (i.e. to the left in our diagrams). For example, quantization
of the metric could trickle down to the differential structure or topology.49

Such ‘trickle-down’ effects were envisaged by Wheeler (1968) in his original ideas
about quantum topology in the context of canonical quantization. His idea was that
large quantum fluctuations in a quantized 3-metric ĝ ab(x) would generate changes
in the spatial topology; for the effects of quantum gravity would become more
pronounced at decreasing distances, resulting eventually in a ‘foam-like’ structure
at around the Planck length.

We stress that such effects depend on an appropriate mechanism. Thus, against
Wheeler’s intuition that quantum gravity effects become stronger at decreasing dis-
tances, one might hold that, in fact, quantum gravity is ‘asymptotically-free’ – so
that the effects become smaller as the scale reduces. Under these circumstances, there
would be no metric-driven topology changes.50

Another, more radical, example of trickle-down effects arises in connection with
Penrose’s thesis that a projective view of spacetime structure is more appropriate
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in quantum gravity: in particular, a spacetime point should be identified with the
collection of all null rays that pass through it. Quantizing the spacetime metric will
then induce quantum fluctuations in the null rays, which will therefore no longer
intersect in a single point. In this way, quantum fluctuations at the top of the first
chain (eqn. 2.9) trickle right down to the bottom of the chain, so that the very notion
of a ‘spacetime point’ acquires quantum overtones.

2.5.3 Spacetime from a non-quantization

We turn to approach (3) in our classification, according to which general relativ-
ity emerges as a low-energy limit of a quantum theory that is not given as the
quantization of a classical theory, but rather ‘intrinsically’ in some way.

By and large, programmes following this approach will reject the conception
of spacetime as a manifold (‘from the outset’, rather than ‘sneaking up’ on this
conclusion in the way the programmes in Section 2.4 do). Agreed, the envisaged
quantum theory might in principle include the postulation of a spacetime manifold
(though it is not a quantization of a classical theory defined on that manifold): a
manifold which then turns out to be the manifold on which the low-energy limit,
general relativity, is defined. But by and large, this circumstance would be odd:
why should the quantum theory postulate just what the emergent approximation
needs? Accordingly, we will here consider programmes (or, more precisely, mainly
one fragment of one possible programme!) which do indeed reject the spacetime
manifold at the fundamental level.

An example of the way the envisaged quantum theory might have general relativity
as a low-energy limit is as follows. Return to the tower of theories of Section 2.5.2,
and imagine that one result of emergence at some level in the tower is: (i) the idea of
a ‘local region’ – not regarded as a subset of something called ‘spacetime’, but rather
as an emergent concept in its own right; together with (ii) an algebra of such regions
that specifies their theoretical use, and that can be identified mathematically as the
algebra of a certain open covering of a genuine continuum manifold M. Hence –
as long as one keeps to the phenomena appropriate to this level – it is as if physics
is based on the spacetime manifold M, even though this plays no fundamental
role in the ‘ultimate’ theory with which we started. Specific ideas of this type have
arisen in the context of attempts to quantize the point-set topology of a set (Sorkin
1991, Isham 1990). We note in passing that the mathematics of locales, and more
generally topos theory (in particular, the idea of a ‘Grothendieck topos’) provides a
natural framework in which to develop the idea that regions are more important than
points.

The possible significance of regions, rather than points, arises also in recent ideas
about the nature of quantum physics in a bounded region. These go back to an
old remark of Bekenstein (1974) to the effect that any attempt to place a quantity of
energy E in a spatial region with boundary area A (and such that E >

√
A) will cause

a black hole to form, and this puts a natural upper bound on the value of the energy
in the region. The implication is that in any theory of quantum gravity whose
semiclassical states contain something like black-hole backgrounds, the quantum
physics of a bounded region will involve only a finite-dimensional Hilbert space.

83



[10:17 2000/10/5 g:/tex/key-tex/callendr/3663-002.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 2 Page: 84 33–89

Jeremy Butterfield and Christopher Isham

This intriguing possibility is closely related to the so-called ‘holographic’ hypothesis
of t’Hooft (1993) and Susskind (1995) to the effect that physical states in a bounded
region are described by a quantum field theory on the surface of the region, with a
Hilbert space of states that has a finite dimension.

Ideas of this type could have major implications for quantum gravity. In partic-
ular – and in terms of the tower in Fig. 2.1 – the implication is that at one level
of phenomenological theory the idea of local spacetime regions makes sense, and
in those regions the quantum theory of gravity is finite-dimensional. However, in
the (possibly different) tower of phenomenological approximations that includes
weak-field perturbative approaches to quantum gravity, the effective theory uses
an infinite-dimensional Hilbert space to describe the states of weakly excited gravi-
tons. And, at this level, spacetime is modelled by a continuum manifold, with a full
complement of spacetime points.

We should emphasize that an approach like this does not necessarily exclude
the proposals of the more familiar research programmes in quantum gravity: such
proposals would however become phenomenological, i.e. part of the emergence of
general relativity and quantum theory. If our present understanding of quantum
gravity is any guide, this effective quantization of the gravitational field will involve
a non-local – possibly string-like – structure. This raises the intriguing question of
whether superstring theory and the loop-variable approach to canonical quantum
gravity can both be regarded as different modes (or phases) of a more basic, common
structure (Smolin 1998).

2.5.4 Spacetime emergent from a non-quantum theory

Finally, let us raise the question of the justification in quantum gravity of the use of
standard quantum theory itself. So, in terms of the portrayal of the emergence of
general relativity shown in Fig. 2.1, the idea now is that there would also be a tower
of theories leading down to the emergence of standard quantum theory. Of course,
in accordance with the point that towers can branch off from each other, this tower
may well not be the same one as that leading to general relativity.

One particularly relevant issue in regard to quantum theory – and the only one that
we shall discuss in any detail – is the question of what justifies its use of continuum
concepts: specifically, its use of real and complex numbers. This question is very
pertinent if one is already worried about the use of continuum ideas in the manifold
model of space or time.

The formalism of quantum theory immediately suggests two answers: one con-
cerning eigenvalues, and the other probabilities. Thus, one might answer by saying
that real numbers represent the possible results of measurements (so that if eigen-
values of operators are to represent results, we want the operators to be self-adjoint).
But why should measurement results be represented by real numbers? One natural
(if not compelling) answer is that apparently all measurement results can in principle
be reduced to the positions of a pointer in space – and space is modelled using real
numbers. At the very least, this is certainly true of the elementary wave mechanics
of a point particle moving in Euclidean space; and this example, particularly the
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Hilbert space generalization of its specific mathematical structure – has become one
of the paradigms for quantum theory in general.

So according to this line of thought, the use of real numbers (and similarly,
complex numbers) in quantum theory in effect involves a prior assumption that
space should be modelled as a continuum. If so, then the suggestion that standard
spacetime concepts break down at the scale of the Planck length and time, and
must be replaced by some discrete structure which only ‘looks like’ a differentiable
manifold at larger scales, means that we cannot expect to construct a theory of
this discrete structure using standard quantum theory – with its real and complex
numbers. Of course, this argument is not water-tight, but it does illustrate how
potentially unwarranted assumptions can enter speculative theoretical physics, and
thereby undermine the enterprise.

The second possible answer to the question ‘what justifies quantum theory’s use
of real and complex numbers?’ is that probabilities are real numbers between 0 and 1
(so that if probabilities are to be given by the squared norm of state vectors, the vector
space must have R or C as its ground-field). But why should probabilities be repre-
sented by real numbers? Of course, if probability is construed as ‘relative frequencies’
of sequences of measurements, then the real numbers do arise naturally as the ideal
limits of collections of rational numbers. However, the idea of measurement ‘at the
Planck length’ is distinctly problematic (cf. our remarks in Section 2.1.3.3 about
‘in principle inaccessibility’), and if the concept of probability is relevant at all in
such regimes, one may feel that a different interpretation of this concept is more
appropriate: for example, the propensity interpretation.

But there is no a priori reason why a ‘propensity’ (whatever that may mean!)
should be modelled by a real number lying between 0 and 1. Agreed, it may well
be appropriate sometimes to say that one propensity is ‘larger’ than another; but
there may also be propensities that cannot be compared at all (a not unreasonable
suggestion in the context of non-commuting operators in a quantum theory), and
this suggests that a minimal model for such probabilities would be a partially ordered
set with some type of additional algebraic structure (so that ‘sums’ of probabilities
can be defined for disjoint propositions).

For these reasons, a good case can be made that a complete theory of quantum
gravity may require a revision of quantum theory itself in a way that removes the
a priori use of continuum numbers in its mathematical formalism.

Finally, we note that (from time to time) a few hardy souls have suggested that a full
theory of quantum gravity may require changing the foundations of mathematics
itself. A typical argument is that standard mathematics is based on set theory, and
certain aspects of the latter (for example, the notion of the continuum) are grounded
ultimately in our spatial perceptions. However, our perceptions probe only the world
of classical physics – and hence we feed into the mathematical structures currently
used in all domains of physics, ideas that are essentially classical in nature. The
ensuing category error can be remedied only by thinking quantum theoretically
from the very outset – in other words, we must look for ‘quantum analogues’ of the
categories of standard mathematics.

How this might be done is by no means obvious.51 One approach is to claim
that, since classical logic and set theory are so closely linked (a proposition P
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determines – and is determined by – the class of all entities for which P can be
rightly asserted), one should start instead with the formal structure of quantum
logic and try to derive an analogous ‘non-Boolean set theory’. Such ideas are related
to the exciting subject of topos theory, which can be viewed as a far-reaching gen-
eralization of standard set theory. This is why, as mentioned in Section 2.5.3, topos
theory is a natural arena within which to develop speculative schemes in which
‘regions’ of spacetime (or space, or time) are more important than ‘points’ (which
may not exist at all).52

2.5.5 Envoi

Clearly, this section has opened up a Pandora’s box of possibilities for the overall
shape of a theory of quantum gravity: possibilities that it is well-nigh impossible
to adjudicate between – not least because it is very hard even to make individual
possibilities precise and detailed. So we will make no pretence of judging them here.

Instead, by way of a modest and (mercifully brief!) conclusion, we want to stress
some of this chapter’s lines of thought, that led to this Pandora’s box. We began
with the question how spacetime might be treated in a theory of quantum gravity.
We described how the search for such a theory was beset by various conceptual
difficulties, including difficulties about the ingredient theories, and about space-
time concepts – and also beset by a dire lack of data (a predicament reviewed in
Sections 2.1–2.3). On the other hand, we could not ‘duck out’ of searching for
some such theory (Sections 2.3.1.1–2.3.1.2). We reviewed in Section 2.4 three main
programmes that all proceed by quantizing a classical theory which postulates a
spacetime manifold. In various ways, these programmes suggest that there are fun-
damental limitations to the applicability of the manifold conception of spacetime;
(of course, they also have various more specific problems, both physical and con-
ceptual). Thus our attention was turned to the more radical programmes of this
section . . .where we admit to having to suspend judgement.

To sum up: Quantum gravity is most unusual in comparison with other branches
of physics, and indeed with most other branches of human enquiry – or with other
‘games people play’. It is an exciting unpredictable game, with very few rules – and
yet, as the sports commentators say, ‘there is everything to play for!’.

Notes

Chris Isham would like to thank the Mrs. L. D. Rope Third Charitable Settlement for financial
support. We thank Joy Christian, Oliver Pooley, Roberto Torretti, and the Editors for
comments on a previous version.

1. Though this construal of ‘quantum gravity’ is broad, we take it to exclude studies of a
quantum field propagating in a spacetime manifold equipped with a fixed background
Lorentzian metric. That is to say, ‘quantum gravity’ must involve in some way a quantum
interaction of the gravitational field with itself. Quantum field theory in a fixed background is
a rich subject in its own right, and it is a useful way of probing certain aspects of quantum
gravity. But it does not raise the philosophical problems that we will pursue in this paper.

2. We choose this topic partly in the light of this volume’s emphasis on spacetime, especially in
Chapters 5–7 and 12–14.
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3. See Butterfield and Isham (1999), which discusses philosophical aspects of emergence, which
here we only treat very briefly, in Section 2.5. But in another regard, it is more limited: it
discusses the emergence of spatio-temporal concepts for only one of the three programmes in
Section 2.4.

4. We should add that though this chapter focuses on the treatment of spacetime, quantum
gravity also ‘puts pressure’ on the formalism of, and usual interpretative ideas about, quantum
theory; as we shall briefly discuss in Section 2.2. Furthermore, quantum gravity even puts
pressure on standard mathematics itself, in that constructing a theory of quantum gravity
might require some non-standard mathematical ideas: for example, spacetime might be
modelled mathematically by something that is not a set . We will briefly discuss this line of
thought in Section 2.5.

5. We note however that there have been recent suggestions about possible tests for quantum
gravity: for example, Ellis, Mavromatos, and Nanopoulos (1999).

6. Here G is Newton’s constant, h̄ is Planck’s constant (divided by 2π), and c is the speed of light.
7. There is another connection with the conceptual problems about quantum theory. Namely,

the lack of data in quantum gravity research is analogous to that which – until relatively
recently – faced research in conceptual problems about quantum theory. In view of these
connections, it is curious that there has been so little interaction between the two research
communities.

8. As mentioned, lack of space prevents a full defence of this point. Suffice it here to add two
comments. (1) The point does not assume that new doctrine which does not change the
subject matter must be cumulative, i.e. must not contradict old doctrine. Suppose doctrine
can be withdrawn or adjusted, without the subject matter changing: the point still holds good.
(2) The point is independent of physicalism. For it turns on physics aspiring to give a complete
description of its subject matter. But this implies nothing about whether the subject matter of
physics exhausts all (empirical) subject matters, i.e. about whether physicalism is true.

9. After all, even if one confines oneself to the topic of space and time, and to authors who seem
to deserve the name ‘transcendental idealists’, there are several positions to evaluate; for
example, Kant’s view of space and time as transcendentally ideal, though empirically real – the
a priori conditions for all experience – and Kuhn’s view (on one reading) that space and time
are not transcendentally ideal but are instead part of the world in itself.

10. In fact, the theoretical physicist (C.J.I.) in this collaboration does not hold this view.
11. The suggestion also allows what we hoped for in Section 2.1.2: namely, the existence of

quantum gravity effects at much more accessible length–scales. It only contends that aspects
we cannot thus probe are not empirical.

12. For further discussion, see Chapters 8, 12, 13, and 14.
13. For more such pressure, see Chapter 8.
14. Kantian themes about the a priori nature of space and time arise here, just as in Section 2.1.3;

for Kantian aspects of Bohr, see Kaiser (1992).
15. About the second, suffice it to say that such views propose to revise the logic of discourse

about quantum systems (so we do not intend the type to include purely technical
investigations of non-Boolean structures). But it is unclear how such proposals solve the
interpretative problems of quantum theory, such as the measurement problem or
non-locality; and indeed, these proposals now seem to have few advocates – at least
compared with 25 years ago. In any case, their advocates hardly connect them with quantum
gravity.

16. We do so, albeit briefly, in Butterfield and Isham (1999); see also Butterfield (1995) and (1996).
17. This asserts that a system has a real number r as its value for a quantity Q if and only if the

quantum state is an eigenstate of Q with eigenvalue r .
18. Agreed, this second difference is a matter of degree. Furthermore, Everettians’ imprecision

about the preferred quantity, and the dynamics of its values, is partly just an accident, due to
the facts that: (i) their view first developed within traditional quantum measurement theory,
which invokes imprecise notions like ‘apparatus’ and ‘pointer-position’; and (ii) they are
willing to secure only the appearance of a definite macroscopic realm, not a truly definite one,
and are therefore able to leave future psychophysics to specify the preferred quantities. But this
matter of degree is no problem for us: our taxonomy of four approaches is not intended to be
rigid.
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19. For further discussion, see Chapter 12 and Valentini (2000).
20. For further discussion and references, see Chapter 14.
21. We should stress that here we take the word ‘object’ in the ‘post-Fregean’ sense of anything

that could be the referent of a singular term. In particular, it does not necessarily mean a ‘thing
out there’ as a physicist might construe the phrase.

22. Agreed, there are many other conceptual aspects of general relativity that bear on quantum
gravity. We mentioned the philosophy of geometry at the end of Section 2.1.2. Another
obvious example is the global structure of time, which bears on quantum cosmology. Here,
one faces such issues as: In what sense could a quantum event ‘precede’ the big-bang? This is
related to the ‘problem of time’ in quantum gravity; which will be discussed later
(Section 2.3.3); see also Chapters 5–7, and Section 5 of our essay (Butterfield and Isham 1999).
For a philosophical discussion of several other conceptual aspects of general relativity bearing
on quantum gravity, see Earman (1995).

23. In any case, the rise of field theory undermines the contrast one naively learns in everyday life,
between empty space and material bodies.

24. This of course reflects the rise, from the mid-nineteenth century onwards, of the
field-theoretic conception of matter, whether classical or quantum. From another perspective,
it reflects the dominant position of set theory in the foundations of mathematics.

25. For further discussion, see Chapters 9 and 14.
26. This view of the argument seems to have been Einstein’s own view, from the time of his

discovery of general relativity in 1915 onwards. For discussion and references (including
replies on behalf of points being physically real) see Earman and Norton (1987) and Earman
(1989).

27. The four ‘fundamental’ forces recognized by present-day physicists are the electromagnetic
force; the ‘weak’ nuclear force, that is responsible for radioactive decay; the ‘strong’ nuclear
force, that binds together the constituents of nuclei; and the gravitational force.

28. This does not exclude a Kaluza–Klein-type higher dimension at Planckian scales. Indeed,
superstring theory suggests strongly that something like this does occur.

29. Our complementary essay, Butterfield and Isham (1999), discusses this in some detail,
especially as regards the Euclidean programme – which is mentioned in Section 2.4 below only
as a species of canonical quantum gravity.

30. In 1971, one of us (C.J.I.) took part in a public debate with John Stachel, who challenged the
former on this very issue. As a keen young quantum field theorist, C.J.I. replied that he was
delighted to quantize everything in sight. These days, not least because of the moderating
influence of his philosopher friends, he is more cautious!

31. More precisely, the spacetime metric must be static or stationary.
32. Essentially this approach was also used in developing important elementary-particle physics

theories, where there was no pre-existing classical theory; for example, the
Salam–Glashow–Weinberg electro-weak theory, and the quantum chromodynamics
description of the strong nuclear force.

33. For further discussion, see Chapters 9–11.
34. The diffeomorphisms concerned are those of compact support, i.e. they are equal to the unit

map outside some closed and bounded region of the spacetime (for some purposes, more
subtle ‘fall-off ’ rates at infinity may be appropriate). Thus, for example, a Poincaré-group
transformation of Minkowski spacetime is not included. This restriction is imposed because
the role of transformations with a non-trivial action in the asymptotic regions of spacetime is
quite different from those that act trivially.

35. Another possibility – not exemplified in the programmes surveyed in this chapter – is that the
diffeomorphism group D could be related to a bigger group G in a projective way, i.e. there is
some normal subgroup K of G so that G/K � D.

36. Here we should distinguish the invariance of each individual expression in a theory’s
formalism from the invariance of all the physically measurable values of quantities; the latter
being of course a weaker property. In fact, most of the programmes whose basic framework
treats D as an exact covariance group in practice ‘fix a gauge’ for their formalism, and so work
with non-covariant/non-diffeomorphism-invariant expressions, and then show physically
measurable values to be gauge-invariant. So in practice, these programmes enjoy only the
weaker property.
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37. For much fuller expositions of the problem from the point of view of canonical quantum
gravity, see Chapters 3 and 10; see also Kuchař (1992) and Isham (1993).

38. This is why the meaning assigned to the time-energy uncertainty relation δt δE ≥ 1
2 h̄ is quite

different from that associated with, for example, the position and the momentum of a particle.
39. Note that this general statement of the problem of time would have an analogue in a stochastic

version of classical general relativity, in which the metric tensor is regarded as a random
variable. Of course, the other difficult problem of understanding what is meant by
‘superpositions’ of spacetime geometries would be absent in this case.

40. Clearly, one could also discuss other programmes so as to provide still more of a backdrop to
the two main ones. One obvious choice is the Euclidean programme, which can be viewed as a
spacetime-oriented species of the traditional geometrodynamic version of canonical quantum
gravity. But we ignore it here, since (i) it is especially connected with quantum cosmology,
which we have set aside; and (ii) we discuss it in Butterfield and Isham (1999).

41. Full references can be found in reviews written around that time; for example, in the
proceedings of the first two Oxford conferences on quantum gravity (Isham, Penrose, and
Sciama 1975, 1981).

42. For more detailed discussion of superstrings, see Chapters 9–11.
43. The more realistic superstring theories involve an additional massless ‘dilaton’ scalar field φ,

and a massless vector particle described by a three-component field strength Hµνρ. The
presence of these extra fundamental fields has a major effect on the classical solutions of the
field equations; in particular, there have been many studies recently of black-hole and
cosmological solutions.

44. The phenomenon can be generalized to more than one extra dimension and with a topology
that is more complex than just a product of circles.

45. A third type of duality known as ‘mirror symmetry’ also plays an important role here.
46. A fairly comprehensive bibliography of papers on canonical general relativity can be found in

the review papers Isham (1991) and Kuchař (1993).
47. So one should not attach too much weight to the results of such simple approximations.

Admittedly, models of this type can be valuable tools for exploring the many conceptual
problems that arise in quantum cosmology.

48. For more discussion of emergence, especially in relation to reduction, see Section 2 of our
complementary essay (Butterfield and Isham 1999).

49. This was mentioned in Section 2.5.1.1, as a way in which the programmes in Section 2.4 put
pressure on the manifold conception of spacetime; a way additional to those already discussed.

50. The idea that gravity might be asymptotically-free was studied some years ago by Fradkin and
Tseytlin (1981) in the context of R + R2 theories of gravity.

51. A recent example of this type of thinking can be found in Finkelstein (1996).
52. Topos theory has a related deep connection with non-standard logical structures: something

we have exploited in recent work using presheaf logic to analyse the Kochen–Specker theorem
in standard quantum theory (Butterfield and Isham 1998, 1999a).
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3.1 Introduction

The world of classical, relativistic physics is a world in which the interactions between
material bodies are mediated by fields. The ‘black body catastrophe’ provided the
first indication that these fields (in particular the electromagnetic field) should be
‘quantized’.1 Modern field theory contains quantum field–theoretic descriptions of
three of the four known interactions (forces) – all except gravity. It is characteristic
of the theories of these three forces that the values of the fields carrying the forces are
subject to the Heisenberg uncertainty relations, such that not all the field strengths
at any given point can be specified with arbitrary precision.

Gravity, however, has resisted quantization. There exist several current research
programmes in this area, including superstring theory and canonical quantum
gravity.2 One often comes across the claim that the gravitational field must be
quantized, and that quantization will give rise to a similar local uncertainty in the
gravitational field. Here we will examine this claim, and see how the very things that
make general relativity such an unusual ‘field’ theory not only make the quantiza-
tion of the theory so technically difficult, but make the very idea of a ‘fluctuating
gravitational field’ so problematic.

3.2 What is a field?

Maxwell’s theory of electromagnetism describes the interaction of electrically
charged matter (consisting of ‘charges’) and the electromagnetic field.3 Charges
act as ‘sources’ for the field, and the field in turn exerts a force on the charges, caus-
ing them to accelerate. The field is specified against a background of space and time,
assigning values for the various components Ei , Bj , etc., of the electric and magnetic
fields to each point in space at a given time.4 The acceleration of a charged object at
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a given point is then given by the Lorentz law

�̈x =
�F

m
=

qE (�E + �̇x × �B)

m
, (3.1)

where m is the mass of the object, qE is its electrical charge, and �̇x the velocity of the
object (in appropriate units). In short, the acceleration of a given object in a given
field is directly proportional to the charge, and inversely proportional to the mass.

Maxwell theory is the paradigmatic field theory, yet there are three other ‘inter-
actions’ known in nature, associated with different sorts of charge.5 As noted in the
Introduction to this chapter, the theories of the strong and weak nuclear interactions
are also field theories, specifying the fields associated with their respective charges,
and the resulting forces on the charges.

The remaining interaction is gravity. As in the theories of other interactions,
objects carry a charge, the charge acts as a source for something like a field, and the
theory quantifies how the properties of this field affect the behaviour of the object
(and vice versa). What is uniquely characteristic of gravity is that the gravitational
charge qG of an object is identical to its mass (in Newtonian theory) or mass-energy
(in general relativity). This has far-reaching consequences. One, it means that gravity
is universal, since all objects have a mass (respectively, mass-energy). Two, it means
that all objects behave the same in a gravitational field (because the ratio of the
charge to the mass qG/m = m/m = 1). This equivalence of gravitational charge and
inertial mass is what we shall refer to as the ‘principle of equivalence’ or ‘equivalence
principle’.6

If gravity were universal, yet objects reacted differently to gravitational effects,
then there would be no particular reason to associate the gravitational field with
spacetime geometry. It is the fact that objects behave the same in a gravitational field
that leads to describing gravity as a property of spacetime itself.7 The reason for
this is that ‘behave the same’ means ‘follow the same spacetime trajectory’. Einstein
noticed that if these trajectories could be construed as characteristic features of a
curved spacetime geometry, then gravity could be represented geometrically. They
can – the special trajectories are ‘geodesics’.8

An alternative way to conceive of gravity would of course be to follow the lead of
other theories, and regard the gravitational field as simply a distribution of properties
(the field strengths) in flat spacetime.9 What ultimately makes this unattractive is
that the distinctive properties of this spacetime would be completely unobservable,
because all matter and fields gravitate. In particular, light rays would not lie on the
‘light cone’ in a flat spacetime, once one incorporated the influence of gravity. It was
ultimately the unobservability of the inertial structure of Minkowski spacetime that
led Einstein to eliminate it from his theory of gravitation and embrace the geometric
approach.

Nonetheless, we shall see that this attribution of gravity to the curvature of space-
time leads to great conceptual and technical difficulties, essentially because it makes
it difficult, if not impossible, to treat gravity within the conceptual and mathemat-
ical framework of other field theories. Thus, it is worth asking whether it is at all
possible to construe gravitation as a universal interaction that nonetheless propa-
gates in flat, Minkowski spacetime. The idea might be to still construe the field
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geometrically (retaining part of Einstein’s insight into the significance of the equiv-
alence principle), but to construe the geometrical aspect as ‘bumps’ on a special, flat
background.

The short answer is, ‘No’, for three reasons. First, the ‘invisibility’ of the flat space-
time means that there is no privileged way to decompose a given curved spacetime
into a flat background and a curved perturbation about that background. Though
this non-uniqueness is not particularly problematical for the classical theory, it is
quite problematical for the quantum theory, because different ways of decompos-
ing the geometry (and thus retrieving a flat background geometry) yield different
quantum theories.10 Second, not all topologies admit a flat metric, and therefore
spacetimes formulated on such topologies do not admit a decomposition into flat
metric and curved perturbation.11 Third, it is not clear a priori that, in seeking to
make a decomposition into background and perturbations about the background,
that the background should be flat. For example, why not use a background of
constant curvature?

The upshot is that, for general spacetimes, the gravitational field can only be
locally decomposed into a flat Minkowski background and a curved foreground,
and even then there is no unique way to do it. Thus, we are stuck with a theory in
which the gravitational field seems irrevocably tied to a fully geometric description,
which in particular means that the field, such as it is, defines its own background –
it is both ‘stage’ and ‘actor’.

3.3 The uncertainty of quantization

Quantum theory applies to all sorts of systems. In a quantum theory, the deter-
minate properties of classical mechanics are replaced by indeterminate properties,
represented by self-adjoint operators on a Hilbert space. For example, objects such
as low-energy particles have indeterminate position�x = (xi , xj , xk) and momentum
�p = (pi , p j , pk). These quantities (the components of the vectors) are represented by
self-adjoint operators x̂ i and p̂j satisfying commutation relations

[x̂ i , p̂j ] = ih̄δij . (3.2)

As conventionally understood, the commutation relations imply that the position
and momentum of the particle cannot be specified with arbitrary accuracy at a
given time.

Quantum fields, such as the quantum electromagnetic field, are similarly rep-
resented. The relevant observable properties of the electromagnetic field are the
various components of the electric and magnetic field at each point in space (at
some time – we are working in the canonical framework), and these are formally
represented by the six operators Ê i(�x) and B̂i(�x) (i = 1, 2, 3).12 For a scalar field,
we have simply φ̂(x) and its conjugate π̂(x). These operators all satisfy canonical
commutation relations.13 For example,

[φ̂(�x), π̂(�x ′)] = ih̄δ3(�x − �x ′). (3.3)

One might well think that the gravitational field should also be quantized, and
that analogous commutation relations should hold for the operators representing
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its properties. This line of thinking is implicit in the writings of many physicists. But
in fact it is not at all obvious what it even means for the gravitational ‘field’ to be
subject to uncertainty relations. The two obstacles are:

(1) The uncertainty relations apply to physical, observable quantities, such as the
position and the momentum of a particle, or the values of the magnetic and electric
fields at each point. Such observable quantities correspond to the canonical degrees
of freedom of the theory. But no one has succeeded in isolating such quantities for
the gravitational field.14

(2) We use classical matter and fields to physically identify points of spacetime. If all
fields except for the gravitational field are treated quantum-mechanically, we can
still use the gravitational field. But what does it even mean to talk about the values
of the gravitational field at a point (or commutation relations between points) if the
field itself is subject to quantum ‘fluctuations’?15

Regarding the first obstacle, even though it is relatively well known that gravity
has not been reduced to a true canonical system, the relevance of this to the lack
of local observables seems to be quite underappreciated. Perhaps the reason for
this is that, insofar as one understands the gravitational field to be represented by
the Riemann tensor Rαβγδ (itself composed of first- and second-derivatives of the
metric gαβ), and insofar as this tensor has a value at every point, it is thought that
the gravitational field is well-defined at every point. In the second half of the next
section we will discuss the utility of this characterization of the field.

The second point is more straightforward. The significance of the ‘diffeomor-
phism invariance’ of general relativity is that one needs some sort of classical
structure like the metric or other physically meaningful tensorial objects (such as
the Maxwell tensor Fαβ corresponding to the electromagnetic field) in order to give
physical meaning to ‘spacetime points’. Thus, if we quantize the metric and other
fields, it is difficult to see how to talk meaningfully about the relation between the
quantum fluctuations of a field at, and between, points.16 We shall explore this idea
further in the subsequent section.

3.4 Quantifying the effects of gravity: local field strength

3.4.1 Absolute acceleration

Traditionally, the physical significance of the values of a field at a given point is to
determine the motion of a charge at that point. More specifically, the strength and
direction of the field at the point determines the acceleration of the charge. So for
instance in Maxwell theory, the acceleration of an electric charge at a given point is
directly proportional to the strength and direction of the electric and magnetic fields
at that point (see eqn. 3.1 above).

Note that the energy density of the field is calculated from these field strengths.
For Maxwell theory, the energy H in an infinitesimal spatial volume dV is
dH =

(|�E|2 + |�B|2) dV . This is significant in that the fact that the function giv-
ing the total energy H =

∫
Σ dH over a region of space Σ is the Hamiltonian, and the

Hamiltonian is the ‘generator’ of time-evolution in the canonical formalism. Thus,
the fact that the energy of the field is well defined corresponds to the fact that the
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time-evolution is well defined. As we shall see, in general relativity the energy is not
well defined in general, and the time-evolution is ambiguous.17

Implicit in the definition of field strength here is the use of inertial frames as
canonical reference frames. The acceleration of the charged particle is defined with
respect to inertial frames – acceleration is the deviation from inertial motion. But
as we saw above, the presence of gravity means that there are no inertial frames.
On the face of it, this presents a problem for the definition of field strength in
Maxwell theory in the presence of gravity. But one can recover a useful analogue
of the previous definition by utilizing the nearest analogue to inertial motion in
curved spacetime, which is motion along a geodesic. The field strengths in curved
spacetime then just give the acceleration with respect to a given geodesic, i.e. the
deviation from geodesic motion. (Technically, they assign a ‘four-acceleration’ to a
charge at each point, the value of which determines the extent to which the charge
will deviate from geodesic motion.)

It now follows that, according to this definition of field strength, the gravitational
field strength at a point is always zero, no matter what the value of the Riemann
tensor is at that point! If a freely falling observer (i.e. one following a geodesic)
releases a gravitational ‘test charge’ (any massive object, i.e. any object at all), then
the test charge will not accelerate relative to the observer.18 Rather, it will remain
stationary with respect to the observer. In short, if one conceives of field strength
as deviation from geodesic motion, then the gravitational field strength must be
zero everywhere. Similarly, the energy density must be zero everywhere, since the
magnitude of the velocity of a test particle never changes.

This claim, that the gravitational field strength is zero at each point, must be taken
with a grain of salt. The argument is really that if one carries over to gravity the
traditional notion of field strength, then one finds that the gravitational field strength
is zero. Though it will turn out that there is no fully adequate local characterization
of the gravitational field, we can do a bit better, and it is instructive to see how.

3.4.2 Relative acceleration and the Riemann tensor

Of course, we can and do observe the effects of gravitation. But as we have seen,
what we observe is neither the acceleration of test objects relative to inertial observers
(for there are no inertial observers) nor, with respect to their nearest gravitational
analogues, geodesics in curved spacetime. Typically, what we observe are tidal effects,
which involve the way in which bits of matter (or observers) distributed in space
accelerate toward or away from each other. This relative acceleration is encoded in
the Riemann curvature tensor Rαβγδ.

As with any tensor, the Riemann tensor is defined at every spacetime point, and
thus it might seem that it offers a way of characterizing the local properties of the
gravitational field. Given an observer at a point, we can find the relative acceleration
aα of nearby matter (which will follow nearby geodesics) by the geodesic deviation
equation

aα = Rαβγδuβvγuδ, (3.4)

where uα is the tangent vector to the observer’s worldline (representing his or her
velocity) and vα is a ‘geodesic selector’, the purpose of which is to select a particular
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neighbouring geodesic to compare with the geodesic traced out by the observer
(i.e. his or her worldline). The quantity aα then represents the relative acceleration
of the two geodesics.

The fact that the Riemann curvature tensor seems to encode the effects of gravity
in the neighbourhood of any given point might suggest that it, like the Maxwell
tensor in electromagnetism, fully characterizes the gravitational field. If this were
the case, then one might expect that knowing the Riemann tensor at a given time
would determine the Riemann tensor at future times, just as knowing the Maxwell
tensor at a given time (the �E and �B field at a given time) determines the Maxwell
tensor in the future.19

Looked at in a certain light, this construal of the Riemann tensor has a certain
plausibility. After all, just as one can form the Maxwell tensor Fαβ from the deriva-
tives of a vector potential Aα via the equation Fαβ = ∇[αAβ], one can form the
Riemann tensor Rαβγδ from derivatives of the metric gαβ . In the electromagnetic
case, the quantities of physical significance are captured in the Maxwell tensor, and
transformations Aα −→ A′

α of the vector potential that leave the Maxwell tensor
unchanged are thus regarded as non-physical ‘gauge’ transformations. One might be
tempted to guess, then, that since the Riemann tensor may be formed from deriva-
tives of the metric, transformations of the metric which leave the Riemann tensor
invariant are physically meaningless ‘gauge’ transformations. However, this is not
the case.

To understand this, let us consider a situation in which one is given a manifold
(thus a topology) and the Riemann tensor on the manifold. Suppose we have the
manifold S1 × R, and we are told that the Riemann tensor vanishes everywhere.
This means that the metric is flat, and therefore that we are considering a cylinder.
Does this information determine the metric on the cylinder? No, it does not. If it
did, it would tell us the circumference of the cylinder, hence its radius. But since all
cylinders have the same (vanishing) curvature, the curvature underdetermines the
metric.

To what extent does the curvature underdetermine the metric? In cases of high
symmetry, e.g. the hypersurfaces of constant curvature in typical idealized cosmo-
logical models, it underdetermines it by quite a bit. In the general case, where the
Riemann tensor varies from point to point, one can often determine the metric
up to a conformal factor. But this is insufficient to extract unambiguous physical
information from the Riemann tensor.

For example, suppose one is given the Riemann tensor at a point, and one wants
to know the way in which particles in the neighbourhood of the point will accelerate
toward or away from a given observer at the point. An observer is characterized by
a worldline in spacetime, and an observer at a given point is characterized by the
tangent vector uα to the worldline at that point. Therefore, one could construct a
tensor

Zα
γ = Rαβγδuβuδ (3.5)

which represents the acceleration of nearby matter relative to an observer moving
along a worldline with tangent vector uα. However, there is something wrong with
this picture, and it has to do with how we choose the tangent vector. A tangent vector
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is constrained to be of unit length, but we cannot tell how long a vector is without
the metric. Therefore, to each of the conformally related metrics gαβ associated
with a given Riemann tensor, there is associated a different set of candidate tangent
vectors uα. In the absence of a specific metric, one cannot even form the tensor
Zα

γ , because one has no way of normalizing candidate tangent vectors uα. In short,
the fact that the Riemann tensor by itself contains no physical information suggests
that it is a mistake to regard it as fully characterizing the gravitational field, in any
conventional sense.

3.5 Causal structure

In the previous section, we examined one of the difficulties in applying the uncer-
tainty principle to the gravitational field, the difficulty that the values of the
gravitational field at a point are not even well defined in general relativity. In this
section and the next, we will address another difficulty, which concerns the sta-
tus of commutation relations in a theory in which the spacetime geometry itself is
quantized.

In a conventional classical field theory in a flat background spacetime, the causal
structure tells us the ‘domain of dependence’ of the field values at a point. In other
words, we know that the values of a field at spacetime point x are related to the values
of the field at points in its forward and backward lightcones. In the corresponding
quantum field theory, this is reflected in the fact that the (covariant) field operators
φ̂i(x) at spacelike separated points x and y commute:

[φ̂i(x), φ̂j (y)] = 0. (3.6)

The intuitive physical picture behind this is that measurements of the field at point
x do not reveal anything about the field at point y , because they are not in causal
contact with each other.

Of course, when one incorporates the gravitational effects of a classical field, one
formulates it in a curved spacetime, where the curvature respects the stress–energy
properties of the matter in accord with Einstein’s equation. If one wants to treat
the fields quantum-mechanically, there are two choices: one can attempt to leave
the spacetime classical and use that structure in the quantization (‘semiclassical’
gravity), or one can attempt to quantize gravity. The difficulty with the former is
that one wants a determinate spacetime structure despite the indeterminate (because
quantum) stress–energy of the field. One can pursue this by using the ‘expectation
value’ (the average value) of the fields in a given state to determine the spacetime
curvature – this is the approach taken by those working in the field of ‘quantum field
theory in curved spacetime’.20 In such a theory, one can make sense of commutation
relations like eqn. 3.6, because one can determine whether or not two points are
spacelike separated. But such a theory can make no claim to being fundamental
(Duff 1981, Kibble 1981).

Suppose, then, that we opt for the second alternative and allow some of the
components of the gravitational field to ‘fluctuate’, so that, for example, the curvature
at each point is subject to quantum fluctuations. In that case, we would expect that
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the metric itself is subject to quantum fluctuations (since the curvature is built from
derivatives of the metric). But if the metric is indefinite, then it is by no means clear
that it will be meaningful to talk about whether x and y are spacelike separated,
unless the metric fluctuations somehow leave the causal (i.e. conformal) structure
alone.

Assuming that the metric fluctuations do affect the causal structure, one would
expect that the commutation relations themselves should reflect this by also under-
going quantum fluctuations of some sort. However, it is not at all clear what this
means, or how it might be represented. And in particular, it should be noted that
such a commutator would have no apparent counterpart in the classical theory. In
allowing metric fluctuations to affect causal structure, one is clearly at some remove
from ordinary field–theoretic quantization schemes.

3.6 What’s the point?

We began by taking a close look at how one might characterize the gravitational
field at a given point, and we then went on to examine the consequences of turning
whatever local quantities we might find into operators, in a quantum theory of
gravity. Both of these are problems peculiar to gravitational physics, in that they
arise as a result of the principle of equivalence, the equivalence of gravitational and
inertial mass that practically compels us to regard classical gravity as a theory of
spacetime geometry.

The final point, however, has less to do with gravity per se than the fact that any
theoretical framework incorporating gravity must seemingly be diffeomorphism-
invariant. Up to this point we have adopted the polite fiction that, for example,
the Riemann tensor at a point x is a physically meaningful quantity. In practice,
however, we need to know how to locate x in order to extract such information.
Classically, this is not a problem, as long as reference objects or observers are part
of the model. Thus, we can make sense of the value of the Riemann tensor at x , if x
means something like ‘in the southeast corner of the lab at 5 o’clock’ or ‘where Jim
will be standing in 10 minutes’. But it is entirely unclear how to carry this sort of
thing over to the case in which all matter (including the lab and Jim) and all fields
(including gravity) are quantized. If we treat the lab quantum mechanically, then the
location of the southeast corner of the lab at 5 o’clock will not designate a particular
point at all.

This is also true in ordinary quantum field theory. In order to give any physical
content to a field operator defined at a spacetime point x , we need a physical object
that we can identify with the point x . In practice, this means that we need objects
which are very massive, so that, barring macroscopic Schrödinger-cat states, they
track a definite spacetime trajectory. However, this will not do for a quantum theory
of gravity, for although increasing the mass of an object localizes it, it also amounts
to increasing its gravitational ‘charge’. This means that the more accurate (with
respect to a classical background) one’s reference system might be expected to be, the
more it actually interacts with the quantum-gravitational background one is trying
to measure. Ultimately, of course, this is why classical gravitational observables
are diffemorphism-invariant – one cannot isolate a system gravitationally, and all
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matter, including the reference objects, must be included in the description. But this
raises profound difficulties at the quantum level.21

3.7 Conclusion

We began by looking at the idea of a gravitational field subject to quantum fluctua-
tions at each point of spacetime – a naive yet popular conception of what a quantum
theory of gravity might entail. Upon examination, it turned out that the only way
to quantify the effects of gravity at a point makes use of relational properties, which
fail to capture all observable gravitational phenomena. Furthermore, because any
fluctuations in the field would mean fluctuations in the spacetime structure itself,
one is left with no way of individuating the points that lends itself to the structure
of quantum theory.

In the real world of quantum gravity research, one finds these problems cropping
up, albeit in sometimes oblique ways. In canonical quantum gravity, the most
obvious counterpart of the first problem is the extreme difficulty of finding any
observables (Torre 1994).22 Should one find them, one would expect that they would
not be local observables, but some sort of non-local or perhaps global (i.e. over all of
space) observables. It is worth noting in this connection that one of the great ironies
of quantum gravity is that it is a theory which is generally supposed to be applicable
only at an incredibly small scale (the Planck length is 10−33 cm), yet any candidate
gravitational observables would have to be highly non-local.

Another counterpart to the first problem is the notorious ‘problem of time’ in
quantum gravity. As we saw, the lack of any complete specification of local field
strength for gravity implies that there is no adequate definition of local energy den-
sity. For the important case of spatially closed spacetimes, this raises great difficulty
for a global characterization of energy. In conventional physics, the function that
characterizes the energy (the ‘Hamiltonian’) is the function that mathematically
generates time translation, and the ill-definedness of energy in general relativ-
ity corresponds to our inability to isolate a Hamiltonian for the theory. In this
light, it is not surprising that time-evolution is inherently ambiguous, and that
consequently there are great difficulties in even formally constructing a quantum
theory.23

The counterpart of the second problem, identifying the causal structure, is skirted
in canonical quantum gravity by positing a split of spacetime into space and time
at the outset. This is not without consequences, however. Among the most serious
is the fact that the diffeomorphism group (the invariance group of the full the-
ory of general relativity) is represented in a distorted way in the canonical theory,
so that it is unclear that one is actually quantizing general relativity at all. Fur-
thermore, it is characteristic of the classical theory that hypersurfaces which begin
as spacelike can evolve into null surfaces, thus killing the evolution. One should
expect an analogue of this problem in the canonical quantum theory, though how
this would arise depends on how the problem of time is resolved. All this sug-
gests that a theory that truly unifies quantum theory and gravity will be one in
which the idea of local fluctuations in a field plays no role, and so a theory which
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is radically different from any quantum field theory with which we are familiar at
present.24

Notes

1. See the first chapter of Bohm’s textbook (Bohm 1951) for a concise history of the origins of
quantum theory.

2. See Rovelli (1998) for a recent review.
3. Here we understand ‘field’ to mean an assignment of properties (the ‘values’ of the field) to

each point in space or spacetime. ‘Spacetime’ will be represented, for our purposes, by a
four-dimensional differentiable manifold equipped with a Lorentz metric satisfying Einstein’s
equations. ‘Space’ then refers to a spacelike hypersurface in some spacetime.

4. For simplicity of presentation, we use the canonical picture for electromagnetism and thus
make an arbitrary split of spacetime into space and time.

5. Quantum-mechanically, these fields are usually identified with various symmetry groups:
U (1) for the electromagnetic interaction (Maxwell theory), SU (2) × U (1) for the electroweak
interaction (combined theory of the electromagnetic and weak interaction), and SU (3) for the
strong interaction.

6. There are many different versions of the equivalence principle in the literature – the version
here is what Ciufolini and Wheeler (1995) call the ‘weak equivalence principle’. The review
article by Norton (1993) contains an excellent taxonomy of the various senses of ‘equivalence
principle’.

7. We are actually considering an idealized limit in which we ignore the contribution of the
object itself to the gravitational field. It is only in this limit that it makes sense to talk about
two different massive objects moving in the same field, for the objects themselves change the
field in proportion to their energy and momentum.

8. The ambiguities that arise in the geometry when the equivalence principle is not respected are
discussed in Weinstein (1996).

9. An interesting philosophical analysis of this line of thinking may be found in Reichenbach
(1958).

10. However, the decomposition of a curved spacetime into a flat part and a curved perturbation
is useful in many classical (i.e. non-quantum) applications. See Chapter 11 of Thorne (1994)
for a popular exposition.

11. For example, S4 does not admit a flat metric. See the classic paper by Geroch and Horowitz
(1979) for further discussion of this and related topological issues.

12. Technically, these objects correspond to operator-valued distributions, which must be
‘smeared’ with test functions in order to yield well-defined operators. Chapter 3 of Fulling
(1989) contains a lucid discussion.

13. The canonical commutation relations for the electromagnetic field are rather messy, due to the
presence of the constraints �∇ · �B = 0 and �∇ · �E = 0 (in the vacuum case). The commutation
relations are [Ê i (�x), B̂j (�x′)] = ih̄(δij − ∂j∂i/∇2) δ3(�x − �x′).

14. Technically, the point here is that we lack an explicit characterization of the reduced phase
space of general relativity.

15. This point is taken up at greater length in Weinstein (2001).
16. We are speaking loosely here. There are only four canonical degrees of freedom per spacetime

point, whereas the metric has ten components. Thus, if we are attempting to quantize general
relativity as we would quantize an ordinary field theory, only four of the ten components
should be subject to ‘quantum fluctuations’.

17. This ambiguity is behind the notion of ‘many-fingered time’ that one finds in texts such as
Misner, Thorne, and Wheeler (1973).

18. To be precise, the test charge will not accelerate relative to the observer as long as its
centre-of-mass and the observer’s centre-of-mass coincide at the time of release. If the
observer holds the test object out to one side and lets it go, then the difference in the
gravitational field at the points where the centres-of-mass of the two objects are located will
result in a relative acceleration if the Riemann tensor is non-zero at those points. (This is
known as a ‘tidal effect’.)
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19. Here we are supposing that the Cauchy problem is well-posed, i.e. that the spacetime is
spatially closed or that appropriate boundary conditions have been specified.

20. See Fulling (1989) or Wald (1994) for a modern introduction.
21. See Weinstein (2001) for a more extensive discussion of the difficulties of diffeomorphism-

invariant quantum theory.
22. Rovelli and Smolin (1995) claim that the area and volume operators in loop quantum gravity

are observables, but this relies on a procedure in which matter, treated classically, is used to
‘gauge fix’ the theory.

23. Excellent reviews of the problem of time are Isham (1993) and Kuchař (1992). See also
Weinstein (1998, 1998a).

24. For examples of some of the more radical speculations, see Smolin (1995, 1995a), Susskind
(1995), ’t Hooft (1997).
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4.1 The incomplete revolution

Quantum mechanics (QM) and general relativity (GR) have profoundly modified
our understanding of the physical world. However, they have left us with a gen-
eral picture of the physical world which is unclear, incomplete, and fragmented.
Combining what we have learned about our world from the two theories and find-
ing a new synthesis is a major challenge, perhaps the major challenge, in today’s
fundamental physics.

The two theories have opened a major scientific revolution, but this revolution is
not completed. Most of the physics of this century has been a series of triumphant
explorations of the new worlds opened by QM and GR. QM leads to nuclear physics,
solid state physics, and particle physics; GR leads to relativistic astrophysics, cos-
mology, and is today leading us towards gravitational astronomy. The urgency of
applying the two theories to increasingly larger domains, and the momentous devel-
opments and the dominant pragmatic attitude of the middle of the twentieth century
have obscured the fact that a consistent picture of the physical world, more or less
stable for three centuries, has been lost with the advent of QM and GR. This prag-
matic attitude cannot be satisfactory, or productive, in the long run. The basic
Cartesian–Newtonian notions such as matter, space, time, and causality, have been
deeply modified, and the new notions do not stay together. At the basis of our under-
standing of the world reigns a surprising confusion. From QM and GR we know that
we live in a spacetime with quantum properties: a quantum spacetime. But what is a
quantum spacetime?

During the past decade, the attention of the theoretical physicists has been increas-
ingly focussed on this major problem. Whatever the outcome of the enterprise, we
are witnessing a large scale intellectual effort directed at accomplishing a major aim:
completing the twentieth century scientific revolution, and finding a new synthesis.
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In this effort, physics is once more facing conceptual problems: What is mat-
ter? What is causality? What is the role of the observer in physics? What is time?
What is the meaning of ‘being somewhere’? What is the meaning of ‘now’? What
is the meaning of ‘moving’? Is motion to be defined with respect to objects or
with respect to space? These foundational questions, or sophisticated versions of
these questions, were central in the thinking and results of Einstein, Heisenberg,
Bohr, Dirac, and their colleagues. But these are also precisely the same questions
that Descartes, Galileo, Huygens, Newton, and their contemporaries debated with
passion – the questions that led them to create modern science. For the physicists
of the middle of the twentieth century, these questions were irrelevant: one does
not need to worry about first principles in order to apply the Schrödinger equa-
tion to the helium atom, or to understand how a neutron star stays together. But
today, if we want to find a novel picture of the world, if we want to understand
what quantum spacetime is, we have to return, once again, to those founda-
tional issues. We have to find a new answer to these questions – different from
Newton’s – which takes into account what we have learned about the world with QM
and GR.

Of course, we have little, if any, direct empirical access to the regimes in which
we expect genuine quantum gravitational phenomena to appear. Anything could
happen at those fantastically small distance scales, far removed from our experience.
Nevertheless, we do have information about quantum gravity, and we do have
indications of how to search for it. In fact, we are precisely in one of the very typical
situations in which good fundamental theoretical physics has worked at its best in
the past: we have learned two new extremely general ‘facts’ about our world, QM
and GR, and we have ‘just’ to figure out what they imply, when taken together. The
most striking advances in theoretical physics happened in situations analogous to
this one.

Here, I present some reflections on these issues.1 What have we learned about
the world from QM and, especially, GR? What do we know about space, time, and
matter? What can we expect from a quantum theory of spacetime? To what extent
does taking QM and GR into account force us to modify the notion of time? What
can we already say about quantum spacetime?

I also present a few reflections on issues raised by the relationship between phi-
losophy of science and research in quantum gravity. I am not a philosopher, and
I can touch on philosophical issues only at the risk of being naive. I neverthe-
less take this risk here, encouraged by Craig Callender and Nick Huggett, within
the extremely stimulating concept of this book. I present some methodological
considerations: – How shall we search? How can present successful theories can lead
us towards a theory that does not yet exist? – as well as some general considerations. I
also discuss the relationship between physical theories that supersede each other and
the attitude we may have with respect to the truth-content of a physical theory – with
respect to the reality of the theoretical objects the theory postulates in particular,
and to its factual statements about the world in general.

I am convinced of the reciprocal usefulness of a dialogue between physics and
philosophy (Rovelli 1997). This dialogue has played a major role during other peri-
ods in which science faced foundational problems. In my opinion, most physicists
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underestimate the effect of their own epistemological prejudices on their research,
and many philosophers underestimate the influence – either positive or negative –
they have on fundamental research. On the one hand, a more acute philosphical
awarness would greatly help physicists engaged in fundamental research: Newton,
Heisenberg, and Einstein could not have done what they did if they were not nur-
tured by (good or bad) philosophy. On the other hand, I wish that contemporary
philosophers concerned with science would be more interested in the foundational
problems that science is facing today. It is here, I believe, that stimulating and vital
issues lie.

4.2 The problem

What is the task of a quantum theory of gravity, and how should we search for such a
theory? The task of the search is clear and well defined. It is determined by recalling
the three major steps that led to the present problematical situation.

4.2.1 First step. A new actor on the stage: the field

The first step is in the works of Faraday, Maxwell, and Einstein. Faraday and Maxwell
introduced a new fundamental notion in physics, the field. Faraday’s (1991) book
includes a fascinating chapter with the discussion of whether a field (in Faraday’s
terminology, the ‘lines of force’) is ‘real’. As far as I understand this subtle chapter
(understanding Faraday is tricky: it took the genius of Maxwell), in modern terms
what Faraday is asking is whether there are independent degrees of freedom in
the electric and magnetic fields. A degree of freedom is a quantity that I need to
specify (more precisely: whose value and whose time derivative I need to specify)
in order to be able to predict univocally the future evolution of the system. Thus
Faraday is asking: if we have a system of interacting charges, and we know their
positions and velocities, is this knowledge sufficient to predict the future motions of
the charges? Or rather, in order to predict the future, do we also have to specify the
instantaneous configuration of the field (the field’s degrees of freedom)? The answer
is in Maxwell equations: the field has independent degrees of freedom. We cannot
predict the future evolution of the system from its present state unless we know the
instantaneous field configuration. Learning to use these degrees of freedom led to
radio, television, and cellular telephone.

To which physical entity do the degrees of freedom of the electromagnetic field
refer? This was one of the most debated issues in physics towards the end of the
nineteenth century. Electromagnetic waves have aspects in common with water
waves, or with sound waves, which describe vibrations of some material medium,
so the natural interpretation of the electromagnetic field was that it too describes
the vibrations of some material medium – for which the name ‘ether’ was chosen.
A strong argument supports this idea: the wave equations for water or sound waves
fail to be Galilean-invariant. They do so because they describe propagation over a
medium (water, air) whose state of motion breaks Galilean invariance and defines
a preferred reference frame. Maxwell equations break Galilean invariance as well,
and it was thus natural to hypothesize a material medium determining the preferred
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reference frame. But a convincing dynamical theory of the ether compatible with
the various experiments (for instance on the constancy of the speed of light) could
not be found.

Rather, physics took a different course. Einstein believed Maxwell theory as a
fundamental theory and believed the Galilean insight that velocity is relative and
inertial systems are equivalent. Merging the two, he found special relativity. A main
result of special relativity is that the field cannot be regarded as describing vibrations
of underlying matter. The idea of the ether is abandoned, and the field has to be
taken seriously as an elementary constituent of reality. This is a major change from
the ontology of Cartesian–Newtonian physics. In the best description we can give of
the physical world, there is a new actor: the field, for instance, the electromagnetic
field described by the Maxwell potential Aµ(x),µ = 0, 1, 2, 3. The entity described
by Aµ(x) (more precisely, by a gauge-equivalent class of Aµ(x)’s) is one of the
elementary constituents of the physical world, according to the best conceptual
scheme physics has found, so far, for grasping our world.

4.2.2 Second step. Dynamical entities have quantum properties

The second step (out of chronological order) is the replacement of the mechanics of
Newton, Lagrange, and Hamilton with QM. Like classical mechanics, QM provides
a very general framework. By formulating a specific dynamical theory within this
framework, one obtains a number of important physical consequences, substantially
different from those implied by the Newtonian scheme. Evolution is determined only
probabilistically; some physical quantities can take only certain discrete values (they
are ‘quantized’); if a system can be in a state A, where a physical quantity q has value
a, as well as in state B, where q has value b, then the system can also be in states
(denoted Ψ = caA + cbB) where q has value a with probability |ca|2/(|ca|2 + |cb|2),
or, alternatively, b with probability |cb|2/(|ca|2 + |cb|2) (superposition principle);
conjugate variables cannot be assumed to have value at the same time (uncertainty
principle); and what we can say about the properties that the system will have the day
after tomorrow is not determined just by what we can say about the system today,
but also on what we will be able to say about the system tomorrow. (Bohr would
have simply said that observations affect the system. Formulations such as Bohm’s or
consistent histories force us to use intricate wordings to describe the same physical
fact.)

The formalism of QM exists in a number of more or less equivalent versions:
Hilbert spaces and self-adjoint observables, Feynman’s sum over histories, the alge-
braic formulation, and others. Often, we are able to translate from one formulation
to another. However, often we cannot do easily in one formulation what we can do
in another.

QM is not the theory of micro-objects. It is our best form of mechanics. If
quantum mechanics failed for macro-objects, we would have detected the bound-
ary of its domain of validity in mesoscopic physics. We have not.2 The classical
regime raises some problems (why are effects of macroscopic superposition difficult
to detect?). Solving these problems requires good understanding of physical deco-
herence and perhaps more. But there is no reason to doubt that QM represents a
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deeper – not a shallower – level of understanding of nature than classical mechan-
ics. Trying to resolve the difficulties in our grasping of our quantum world by
resorting to old classical intuition is just lack of courage. We have learned that
the world has quantum properties. This discovery will stay with us, like the dis-
covery that velocity is only relational, or that the Earth is not the centre of the
universe.

The empirical success of QM is immense, and its physical obscurity is undeniable.
Physicists do not yet agree on what QM precisely says about the world (the diffi-
culty, of course, refers to the physical meaning of notions such as ‘measurement’,
‘history’, ‘hidden variable’ . . . ). It is a bit like the Lorentz transformations before
Einstein: correct, but what do they mean?

In my opinion, what QM means is that the contingent (variable) properties of
any physical system, or the state of the system, are relational notions which only
make sense when referred to a second physical system. I have argued for this thesis
(Rovelli 1996, 1998a), but I will not enter into this discussion here, because the issue
of the interpretation of QM has no direct connection with quantum gravity. Quan-
tum gravity and the interpretation of QM are two major but (virtually) completely
unrelated problems.

QM was first developed for systems with a finite number of degrees of freedom.
As discussed in the previous section, Faraday, Maxwell, and Einstein introduced
the field, which has an infinite number of degrees of freedom. Dirac put the two
ideas together. He believed quantum mechanics and he believed Maxwell’s field the-
ory much beyond their established domain of validity (respectively: the dynamics
of finite dimensional systems, and the classical regime) and constructed quantum
field theory (QFT), in its first two incarnations, the quantum theory of the electro-
magnetic field and the relativistic quantum theory of the electron. In this exercise,
Dirac derived the existence of the photon just from Maxwell theory and the basics of
QM. Furthermore, by just believing special relativity and believing quantum theory,
namely assuming their validity far beyond their empirically explored domains of
validity, he predicted the existence of antimatter.

The two embrionic QFTs of Dirac were combined in the 1950s by Feynman
and his colleagues, giving rise to quantum electrodynamics, the first non-trivial
interacting QFT. A remarkable picture of the world was born: quantum fields over
Minkowski space. Equivalently, à la Feynman: the world as a quantum superposition
of histories of real and virtual interacting particles. QFT had its ups and downs, then
triumphed with the standard model: a consistent QFT for all interactions (except
gravity), which, in principle, can be used to predict anything we can measure (except
gravitational phenomena), and which, in the past fifteen years has received nothing
but empirical verifications.

4.2.3 Third step. The stage becomes an actor

Descartes, in The Principles, gave a fully relational definition of localization (space)
and motion (on the relational/substantivalist issue see for instance Barbour 1989,
Earman 1989, Rovelli 1991). According to Descartes, there is no ‘empty space’; there
are only objects, and it makes sense to say that an object A is contiguous to an object B.
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The ‘location’ of an object A is the set of the objects to which A is contiguous. ‘Motion’
is change in location; that is, when we say that A moves we mean that A goes from
the contiguity of an object B to the contiguity of an object C.3 A consequence of this
relationalism is that there is no meaning in saying ‘A moves’, except if we specify with
respect to which other objects (B, C . . . ) it is moving. Thus, there is no ‘absolute’
motion. This is the same definition of space, location, and motion, that we find in
Aristotle.4

Relationalism, namely the idea that motion can be defined only in relation to
other objects – should not be confused with Galilean relativity. Galilean relativity is
the statement that ‘rectilinear uniform motion’ is indistinguishable from stasis: that
velocity (but just velocity!) is relative to other bodies. Relationalism holds that any
motion (however zigzagging) is indistinguishable from stasis. The very formulation
of Galilean relativity requires a non-relational definition of motion (‘rectilinear and
uniform’ with respect to what?).

Newton took a very different course. He devotes much energy to criticize
Descartes’ relationalism, and to introduce a different view. According to him, space
exists, and it exists even if there are no bodies in it. Location of an object is the part
of space that the object occupies, and motion is change of location.5 Thus, we can
say whether an object moves or not, independently of surrounding objects. Newton
argues that the notion of absolute motion is necessary for constructing mechanics,
for instance with his famous discussion of the experiment of the rotating bucket in
the Principia.

This point has often raised confusion because one of the corollaries of Newtonian
mechanics is that there is no detectable preferred reference frame. Therefore, in
Newtonian mechanics the notion of absolute velocity is actually meaningless. The
important point, however, is that in Newtonian mechanics velocity is relative, but
any other feature of motion is not relative: it is absolute. In particular, accelera-
tion is absolute. It is acceleration that Newton needs to construct his mechanics;
it is acceleration that the bucket experiment is supposed to prove to be abso-
lute, against Descartes. In a sense, Newton overdid things somewhat, introducing
the notion of absolute position and velocity (perhaps even just for explanatory
purposes), and many people later criticized Newton for his unnecessary use of
absolute position, but this is irrelevant for the present discussion. The impor-
tant point here is that Newtonian mechanics requires absolute acceleration, against
Aristotle and against Descartes. Precisely the same is true for special relativistic
mechanics.

Similarly, Newton introduced absolute time. Newtonian space and time or, in
modern terms spacetime, are like a stage over which the action of physics takes
place, the various dynamical entities being the actors.

The key feature of this stage – Newtonian spacetime – is its metrical structure.
Curves have length, surfaces have area, regions of spacetime have volume. Spacetime
points are at fixed distances one from another. Revealing, or measuring, this distance,
is very simple. It is sufficient to take a rod and put it between two points. Any two
points which are one rod apart are at the same distance. Using modern terminology,
physical space is a linear three-dimensional space, with a preferred metric. On this
space there exist preferred coordinates xi , i = 1, 2, 3, in terms of which the metric is
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just δij . Time is described by a single variable t . The metric δij determines lengths,
areas and volumes and defines what we mean by straight lines in space. If a particle
deviates with respect to this straight line, it is, according to Newton, accelerating. It
is not accelerating with respect to this or that dynamical object: it is accelerating in
absolute terms.

Special relativity changes this picture only marginally, loosing up the strict dis-
tinction between the ‘space’ and the ‘time’ components of spacetime. In Newtonian
spacetime, space is given by fixed three-dimensional planes. In special relativistic
spacetime, which three-dimensional plane you call space depends on your state of
motion. Spacetime is now a four-dimensional manifold M with a flat Lorentzian
metricηµν . Again, there are preferred coordinates xµ,µ = 0, 1, 2, 3, in terms of which
ηµν = diag[1,−1,−1,−1]. This tensor, ηµν , enters all physical equations, represent-
ing the influence of the stage and of its metrical properties on the motion of anything.
Absolute acceleration is deviation of the world line of a particle from the straight lines
defined by ηµν . The only essential novelty with special relativity is that the ‘dynamical
objects’ or ‘bodies’ moving over spacetime now also include the fields. For exam-
ple, a violent burst of electromagnetic waves coming from a distant supernova has
travelled across space and reached our instruments. For the rest, the Newtonian con-
struct of a fixed background stage over which physics happens is not altered by special
relativity.

The profound change comes with general relativity (GR). The central discovery
of GR, can be enunciated in three points. One of these is conceptually simple,
the other two are tremendous. First, the gravitational force is mediated by a field,
very much like the electromagnetic field: the gravitational field. Second, Newton’s
spacetime – the background stage that Newton introduced against most of the earlier
European tradition – and the gravitational field, are the same thing. Third, the
dynamics of the gravitational field, of the other fields such as the electromagnetic
field, and any other dynamical object, is fully relational, in the Aristotelian–Cartesian
sense. Let me illustrate these three points.

First, the gravitational field is represented by a field on spacetime, gµν(x), just
like the electromagnetic field Aµ(x). They are both very concrete entities: a strong
electromagnetic wave can hit you and knock you down; and so can a strong grav-
itational wave. The gravitational field has independent degrees of freedom, and is
governed by dynamical equations, the Einstein equations.

Second, the spacetime metric ηµν disappears from all equations of physics (recall
it was ubiquitous). In its place – we are instructed by GR – we must insert the
gravitational field gµν(x). This is a spectacular step: Newton’s background spacetime
was nothing but the gravitational field! The stage is promoted to one of the actors.
Thus, in all physical equations one now sees the direct influence of the gravitational
field. How can the gravitational field determine the metrical properties of things,
which are revealed, say, by rods and clocks? Simply, the interatomic separation
of the rods’ atoms, and the frequency of the clock’s pendulum are determined by
explicit couplings of the rod’s and clock’s variables with the gravitational field gµν(x),
which enters the equations of motion of these variables. Thus, any measurement of
length, area or volume is, in reality, a measurement of features of the gravitational
field.
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But what is really formidable in GR, the truly momentous novelty, is the third
point: the Einstein equations, as well as all other equations of physics appropriately
modified according to GR instructions, are fully relational in the Aristotelian–
Cartesian sense. This point is independent of the previous one. Let me give first
a conceptual, and then a technical account of it.

The point is that the only physically meaningful definition of location within
GR is relational. GR describes the world as a set of interacting fields including
gµν(x), and possibly other objects, and motion can be defined only by positions and
displacements of these dynamical objects relative to each other (for more details on
this, see Rovelli 1991, and especially 1997).

To describe the motion of a dynamical object, Newton had to assume that acceler-
ation is absolute, namely that it is not relative to this or that other dynamical object.
Rather, it is relative to a background space. Faraday, Maxwell, and Einstein extended
the notion of ‘dynamical object’: the stuff of the world is fields, not just bodies.
Finally, GR tells us that the background space is itself one of these fields. Thus, the
circle is closed, and we are back to relationalism: Newton’s motion with respect to
space is indeed motion with respect to a dynamical object – the gravitational field.

All this is coded in the active diffeomorphism invariance (diff invariance) of GR.6

Because active diff invariance is a gauge, the physical content of GR is expressed
only by those quantities, derived from the basic dynamical variables, which are fully
independent from the points of the manifold.

In introducing the background stage, Newton introduced two structures: a
spacetime manifold, and its non-dynamical metric structure. GR gets rid of the
non-dynamical metric, by replacing it with the gravitational field. More impor-
tantly, it gets rid of the manifold, by means of active diff invariance. In GR, the
objects of which the world is made do not live over a stage and do not live on
spacetime; they live, so to say, over each other’s shoulders.

Of course, nothing prevents us, if we wish so to do, from singling out the gravita-
tional field as ‘the more equal among equals’, and declaring that location is absolute
in GR, because it can be defined with respect to it. But this can be done within any
relationalism: we can always single out a set of objects, and declare them as not
moving by definition.7 The problem with this attitude is that it fully misses the great
Einsteinian insight: that Newtonian spacetime is just one field among the others.
More seriously, this attitude sends us into a nightmare when we have to deal with
the motion of the gravitational field itself (which certainly ‘moves’: we are spending
millions of dollars for constructing gravity wave detectors to detect its tiny vibra-
tions). There is no absolute referent of motion in GR: the dynamical fields ‘move’
with respect to each other.

Notice that the third step was not easy for Einstein, and came later than the
previous two. Having well understood the first two, but still missing the third,
Einstein actively searched for non-generally covariant equations of motion for the
gravitational field between 1912 and 1915. With his famous ‘hole argument’ he
had convinced himself that generally covariant equations of motion (and therefore,
in this context, active diffeomorphism invariance) would imply a truly dramatic
revolution with respect to the Newtonian notions of space and time (with regard
to the hole argument, see Earman and Norton 1987, Rovelli 1991, Belot 1998a). In
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1912, Einstein was unable to take this profoundly revolutionary step (Norton 1984,
Stachel 1989), but in 1915 he took it, and found what Landau calls ‘the most beautiful
of the physical theories’.

4.2.4 Bringing the three steps together

In the light of the three steps described above, the task of quantum gravity is clear
and well defined. We have learned from GR that spacetime is a dynamical field
among others, obeying dynamical equations, and having independent degrees of
freedom: a gravitational wave is extremely similar to an electromagnetic wave. We
have learned from QM that every dynamical object has quantum properties, which
can be captured by appropriately formulating its dynamical theory within the general
scheme of QM.

Therefore, spacetime itself must exhibit quantum properties. Its properties –
including the metrical properties it defines – must be represented in quantum
mechanical terms. Notice that the strength of this ‘therefore’ derives from the
confidence we have in the two theories, QM and GR.

Now, there is nothing in the basis of QM which contradicts the physical ideas of
GR. Similarly, there is nothing in the basis of GR that contradicts the physical ideas
of QM. Therefore, there is no a priori impediment in searching for a quantum theory
of the gravitational fields, that is, a quantum theory of spacetime. The problem is
(with some qualification) rather well posed: is there a quantum theory (say, in one
formulation, a Hilbert space H , and a set of self-adjoint operators) whose classical
limit is GR?

On the other hand, all previous applications of QM to field theory, namely con-
ventional QFTs, rely heavily on the existence of the ‘stage’, the fixed, non-dynamical,
background metric structure. The Minkowski metric ηµν is essential for the con-
struction of a conventional QFT (it enters everywhere; for instance, in the canonical
commutation relations, in the propagator, in the Gaussian measure . . . ). We cer-
tainly cannot simply replace ηµν with a quantum field, because these equations
become nonsense.

Therefore, to search for a quantum theory of gravity, we have two possible direc-
tions. One possibility is to ‘disvalue’ the GR conceptual revolution, reintroduce a
background spacetime with a non-dynamical metric ηµν , expand the gravitational
field gµν as gµν = ηµν + fluctuations, quantize only the fluctuations, and hope to
recover full GR somewhere down the road. This is the path followed, for instance,
by perturbative string theory.

The second direction means being faithful to what we have learned about the
world so far, namely to QM and GR’s insights. We must then search for a QFT that,
genuinely, does not require a background space. But the past three decades have
been characterized by the great success of conventional QFT, which neglects GR and
is based on the existence of a background spacetime, and we live in the aftermath
of this success. It is not easy to get away from the conceptual and technical habits
of conventional QFT. Still, this is necessary if we want to build a QFT which fully
incorporates active diff invariance, and in which localization is fully relational. In
my opinion, this is the right way to go.
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4.3 Quantum spacetime

4.3.1 Space

Spacetime, or the gravitational field, is a dynamical entity (GR). All dynamical enti-
ties have quantum properties (QM). Therefore, spacetime is a quantum object. It
must be described (picking one formulation of QM, but keeping in mind that others
may be equivalent, or more effective) in terms of states Ψ in a Hilbert space. Local-
ization is relational. Therefore, these states cannot represent quantum excitations
localized in some space, but must define space themselves. They must be quantum
excitations ‘of ’ space, not ‘in’ space. Physical quantities in GR that capture the true
degrees of freedom of the theory are invariant under active diff, therefore the self-
adjoint operators that correspond to physical (predictable) observables in quantum
gravity must be associated with diff invariant quantities.

Examples of diff invariant geometric quantities are physical lengths, areas, vol-
umes, or time intervals of regions determined by dynamical physical objects. These
must be represented by operators. Indeed, a measurement of length, area or volume
is a measurement of features of the gravitational field. If the gravitational field is a
quantum field, then length, area and volume are quantum observables. If the corre-
sponding operator has a discrete spectrum, they will be quantized; namely, they can
take certain discrete values only. In this sense we should expect a discrete geometry.
This discreteness of the geometry, implied by the conjunction of GR and QM, is very
different from the naive idea that the world is made by discrete bits of something.
It is like the discreteness of the quanta of the excitations of a harmonic oscillator.
A generic state of spacetime will be a continuous quantum superposition of states
whose geometry has discrete features, not a collection of elementary discrete objects.

A concrete attempt to construct such a theory is loop quantum gravity. (For
an introduction to the theory, an overview of its structure and results, and full
references, see Rovelli 1998b.) Here, I present only a few remarks on the theory. Loop
quantum gravity is a rather straightforward application of quantum mechanics to
Hamiltonian general relativity. It is a QFT in the sense that it is a quantum version of
a field theory, or a quantum theory for an infinite number of degrees of freedom, but
it is profoundly different from conventional, non-general-relativistic QFT theory.
In conventional QFT, states are quantum excitations of a field over Minkowski (or
over a curved) spacetime. In loop quantum gravity, the quantum states turn out
to be represented by (suitable linear combinations of) spin networks (Rovelli and
Smolin 1995a, Baez 1996, Smolin 1997). A spin network is an abstract graph with
links labelled by half-integers (Fig. 4.1).

Intuitively, we can view each node of the graph as an elementary ‘quantum chunk
of space’; the links represent (transverse) surfaces separating the quanta of space,
and the half-integers associated with the links determine the (quantized) area of
these surfaces. The spin network represent relational quantum states: they are not
located in a space. Localization must be defined in relation to them. For instance, if
we have, say, a matter quantum excitation, this will be located on the spin network;
while the spin network itself is not located anywhere.

The operators corresponding to area and volume have been constructed in the
theory, simply by starting from the classical expression for the area in terms of the
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Fig. 4.1. A simple spin network.

metric, then replacing the metric with the gravitational field (this is the input of
GR) and then replacing the gravitational field with the corresponding quantum field
operator (this is the input of QM). The construction of these operators requires
appropriate generally covariant regularization techniques, but no renormalization:
no infinities appear. The spectrum of these operators has been computed and turns
out to be discrete (Rovelli and Smolin 1995, Ashtekar and Lewandowski 1997,
1997a). Thus, loop quantum gravity provides a family of precise quantitative pre-
dictions: the quantized values of area and volume. For instance, the (main sequence
of the) spectrum of the area is

A = 8πh̄G
∑
i=1,n

√
ji(ji + 1),

where (ji) = (j1 . . . jn) is any finite sequence of half-integers. This formula gives the
area of a surface pinched by n links of a spin network state. The half-integers j1 . . . jn
are associated with the n links that pinch the surface. This illustrates how the links
of the spin network states can be viewed as transverse ‘quanta of area’. The picture of
macroscopic physical space that emerges is then that of a tangle of one-dimensional
intersecting quantum excitations, called the weave (Ashtekar, Rovelli, and Smolin
1992). Continuous space is formed by the weave in the same manner in which the
continuous two-dimensional surface of a T-shirt is formed by woven threads.

4.3.2 Time

The aspect of GR’s relationalism that concerns space was largely anticipated by
earlier European thinking. Much less so (as far as I am aware) was the aspect of this
relationalism that concerns time. GR’s treatment of time is surprising, difficult to
fully appreciate, and hard to digest, for the time of our perceptions is very different
from the time that theoretical physics finds in the world as soon as one exits the
minuscule range of physical regimes we are accustomed to. We seem to have a very
special difficulty in being open-minded about this particular notion.

Already, special relativity teaches us something about time which many of us have
difficulty accepting. According to special relativity, there is absolutely no meaning
in saying ‘right now on Andromeda’: there is no physical meaning in the idea of
‘the state of the world right now’, because which set of events we consider as ‘now’
is perspectival, so the ‘now’ on Andromeda for me might correspond to ‘a century
ago’ on Andromeda for you. Thus, there is no single well-defined universal time in
which the history of the universe ‘happens’. The modification of the concept of time
introduced by GR is much deeper. Let me illustrate this modification.
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Consider a simple pendulum described by a variable Q. In Newtonian mechanics,
the motion of the pendulum is given by the evolution of Q in time, namely by
Q(T ), which is governed by the equation of motion, say Q̈ = −ωQ, which has
(the two-parameter family of) solutions Q(T ) = A sin(ωT + φ). The state of the
pendulum at time T can be characterized by its position and velocity. From these
two, we can compute A and φ and therefore Q(T ) at any T . From the physical point
of view, we are really describing a situation in which there are two physical objects:
a pendulum, whose position is Q, and a clock, indicating T . If we want to take data,
we have repeatedly to observe Q and T . Their relation will be given by the equation
above. The relation can be represented (for given A and φ) by a line in the (Q, T )
plane.

In Newtonian terms, time flows in its absolute way, the clock is just a device to
keep track of it, and the dynamical system is formed by the pendulum alone. But we
can view the same physical situation from a different perspective. We can say that
we have a physical system formed by the clock and the pendulum together, and view
the dynamical system as expressing the relative motion of one with respect to the
other. This is precisely the perspective of GR: to express the relative motion of the
variables, with respect to each other, in a ‘democratic’ fashion.

To do that, we can introduce an ‘arbitrary parameter time’ τ as a co-ordinate on
the line in the (Q, T ) plane. (But bear in mind that the physically relevant infor-
mation is in the line, not in its co-ordinatization!) Then the line is represented by
two functions, Q(τ ) and T (τ ), but a reparametrization of τ in the two functions
is a gauge, namely it does not modify the physics described. Indeed, τ does not
correspond to anything observable, and the equations of motion satisfied by Q(τ )
and T (τ ) (easy to write, but I will not write them down here) will be invariant under
arbitrary reparametrizations of τ . Only τ -independent quantities have physical
meaning.

This is precisely what happens in GR, where the ‘arbitrary parameters’, analogous
to the τ of the example, are the co-ordinates xµ. Namely, the spatial co-ordinate
�x and the temporal co-ordinate t . These have no physical meaning whatsoever in
GR: the connection between the theory and the measurable physical quantities that
the theory predict is only via quantities independent from �x and t . Thus, �x and t
in GR have a very different physical meaning than their homonyms in non-general-
relativistic physics. The latter correspond to readings on rods and clocks; the former
correspond to nothing at all. Recall that Einstein described his great intellectual
struggle to find GR as ‘understanding the meaning of the co-ordinates’.

In the example, the invariance of the equations of motion for Q(τ ) and T (τ )
under reparametrization of τ , implies that if we develop the Hamiltonian formalism
in τ we obtain a constrained system with a (weakly) vanishing Hamiltonian. This is
because the Hamiltonian generates evolutions in τ , evolution in τ is a gauge, and
the generators of gauge transformations are constraints. In canonical GR we have
precisely the same situation: the Hamiltonian vanishes, and the constraints generate
evolution in t , which is unobservable – it is gauge. GR does not describe evolution in
time: it describes the relative evolution of many variables with respect to each other.
All these variables are democratically equal: there is not a preferred one that ‘is the
true time’. This is the temporal aspect of GR’s relationalism.
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A large part of the machinery of theoretical physics relies on the notion of time
(on the different meanings of time in different physical theories, see Rovelli 1995).
A theory of quantum gravity should do without it. Fortunately, many essential tools
that are usually introduced using the notion of time can equally well be defined
without mentioning time at all. This, by the way, shows that time plays a much
weaker role in the structure of theoretical physics than what is mostly assumed. Two
crucial examples are ‘phase space’ and ‘state’.

The phase space is usually introduced in textbooks as the space of the states
of the systems ‘at a given time’. In a general relativistic context, this definition is
useless. However, it has been known since Lagrange that there is an alternative,
equivalent, definition of phase space as the space of solutions of the equations of
motion, and this definition does not require that we know what we mean by time.
Thus, in the example above the phase space can be co-ordinatized by A and φ, which
co-ordinatize the space of the solutions of the equations of motion.

A time-independent notion of ‘state’ is then provided by a point of this phase
space, namely by a particular solution of the equations of motion. For instance, for
an oscillator a ‘state’, in this atemporal sense, is characterized by an amplitude A and
a phaseφ. Notice that given the (time-independent) state (A andφ), we can compute
any observable: in particular, the value QT of Q at any desired T . Notice also that
QT is independent from τ . This point often raises confusion: one may think that if
we restrict to τ -independent quantities then we cannot describe evolution. This is
wrong: the true evolution is the relation between Q and T , which is τ -independent.
This relation is expressed in particular by the value (let us denote it QT ) of Q at a
given T . QT is given, obviously, by

QT (A,φ) = A sin(ωT + φ).

This can be seen as a one-parameter (the parameter is T ) family of observables
on the gauge-invariant phase space co-ordinatized by A and φ. Notice that this is a
perfectly τ -independent expression. In fact, an explicit computation shows that the
Poisson bracket between QT and the Hamiltonian constraint that generates evolution
in τ vanishes.

This time-independent notion of states is well known in its quantum mechanical
version: it is the Heisenberg state (as opposed to Schrödinger state). Similarly, the
operator corresponding to the observable QT is the Heisenberg operator that gives
the value of Q at T . The Heisenberg and Schrödinger pictures are equivalent if there
is a normal time evolution in the theory, but in the absence of a normal notion of
time evolution, the Heisenberg picture remains viable, and the Schrödinger picture
becomes meaningless.8 In quantum gravity, only the Heisenberg picture makes sense
(Rovelli 1991c, 1991e).

In classical GR, a point in the physical phase space, or a state, is a solution
of the Einstein equations, up to active diffeomorphisms, so a state represents a
‘history’ of spacetime. The quantities that can be univocally predicted are those
that are independent from the co-ordinates, namely those that are invariant under
diffeomorphisms. These quantities have vanishing Poisson brackets with all the
constraints, and given a state, the value of each of these quantities is determined. In
quantum gravity, a quantum state represents a ‘history’ of quantum spacetime, and
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the observables are represented by operators that commute with all the quantum
constraints. If we know the quantum state of spacetime, we can then compute the
expectation value of any diffeomorphism invariant quantity, by taking the mean
value of the corresponding operator. The observable quantities in quantum gravity
are precisely the same as in classical GR.

Some of these quantities may express the value of certain variables ‘when and
where’ certain other quantities have certain given values. They are the analogue of
the reparametrization invariant observable QT in the example above. These quan-
tities describe evolution in a way which is fully invariant under the parameter time,
unphysical gauge evolution (Rovelli 1991b, 1991c). The corresponding quantum
operators are Heisenberg operators. There is no Schrödinger picture, because there
is no unitary time evolution. There is no need to expect or to search for unitary
time evolution in quantum gravity, because there is no time in which we could have
unitary evolution. It is just a tenacious prejudice that unitary evolution is required
for the consistency of the probabilistic interpretation. This idea is wrong.

What I have described is the general form that one may expect a quantum theory
of GR to have. I have used the Hilbert space version of QM; but this structure can
be translated in other formulations of QM. Of course, physics then works with
dirty hands: gauge-dependent quantities, approximations, expansions, unphysical
structures, and so on. A fully satisfactory construction of the above kind does not
yet exist, but a concrete attempt to construct the physical states and the physical
observables in loop quantum gravity is given by the spin foam models approach,
which is the formulation one obtains by starting from loop quantum gravity and
constructing a Feynman sum over histories (Reisenberger and Rovelli 1997, Baez
1998, Barrett and Crane 1998). (See Chapter 8 for more details on ideas underlying
these developments.)

In quantum gravity, I see no reason to expect a fundamental notion of time to
play any role. But the nostalgia for time is hard to resist for technical as well as
emotional reasons. Many approaches to quantum gravity go out of their way to
reinsert in the theory what GR teaches us to abandon: a preferred time. The time
‘along which’ things happen is a notion which makes sense only for describing a
limited regime of reality. This notion is meaningless already in the (gauge-invariant)
general relativistic classical dynamics of the gravitational field. At the fundamental
level, we should, simply, forget time.

4.3.3 Glimpses

I close this section by briefly mentioning two more speculative ideas. One regards
the emergence of time; the second the connection between relationalism in GR and
relationalism in QM.

First, in the previous section, I argued that we should search for a quantum theory
of gravity in which there is no independent time variable ‘along’ which dynamics
‘happens’. A problem left open by this position is to understand the emergence of
time in our world, with those features which are familiar to us. An idea discussed
(Rovelli 1993a, 1993b, Connes and Rovelli 1994) is that the notion of time is not
dynamical but rather thermodynamical. We can never give a complete account of

114



[18:28 2000/10/3 g:/tex/key-tex/callendr/3663-004.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 4 Page: 115 101–122

Quantum spacetime: What do we know?

the state of a system in a field theory (we cannot access the infinite amount of data
needed to characterize completely a state). Therefore we have at best a statistical
description of the state. But given a statistical state of a generally covariant system,
a notion of a flow (more precisely a one-parameter group of automorphisms of
the algebra of the observables) follows immediately. (In the quantum context, this
corresponds to the Tomita flow of the state.) The relationship between this flow and
the state is the relationship between the time flow generated by the Hamiltonian and
a Gibbs state: the two essentially determine each other. In the absence of a preferred
time, however, any statistical state selects its own notion of statistical time. This
statistical time has a striking number of properties that allow us to identify it with
the time of non-general relativistic physics. In particular, a Schrödinger equation
with respect to this statistical time holds, in an appropriate sense. In addition, the
time flows generated by different states are equivalent up to inner automorphisms of
the observable algebra and therefore define a common ‘outer’ flow: a one-paramater
group of outer automorphisms. This determines a state independent notion of time
flow, which shows that a general covariant QFT has an intrinsic ‘dynamics’, even
in the absence of a Hamiltonian and of a time variable. The suggestion is therefore
that the temporal aspects of our world have statistical and thermodynamical origin,
rather than dynamical. ‘Time’ is ignorance: a reflex of our incomplete knoweldge of
the state of the world.

Second, what is QM really telling us about our world? In Rovelli (1996, 1998a), I
have argued that what QM is telling us is that the contingent properties of any system
– the state of any system – must be seen as relative to a second physical system, the
‘observing system’. That is, quantum states and values that observables take are rela-
tional notions, in the same sense in which velocity is relational in classical mechanics
(it is a relationship between two systems, not a property of a single system). I find
the consonance between this relationalism in QM and the relationalism in GR quite
striking, and it is tempting to speculate that they are related. Any quantum inter-
action (or quantum measurement) involving a system A and a system B requires A
and B to be spatio-temporally contiguous. Vice versa, spatio-temporal contiguity,
which ground the notions of space and time (derived and dynamical, not primary,
in GR) can only be verified quantum mechanically (just because any interaction is
quantum mechanical in nature). Thus, the net of quantum mechanical elementary
interactions and the spacetime fabric are actually the same thing. Can we build a
consistent picture in which we take this fact into account? To do that, we must iden-
tify two notions: the notion of a spatio-temporal (or spatial?) region, and the notion
of a quantum system. For intriguing ideas in this direction, see Crane (1991) and
Chapter 8 of this book.

4.4 Considerations on method and content

4.4.1 Method

Part of recent reflection on science has emphasized the ‘non-cumulative’ aspect of
the development of scientific knowledge. According to this view, the evolution of
scientific theories is marked by large or small breaking points, in which, to put it very
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crudely, the empirical facts are just reorganized within new theories. These would
be to some extent ‘incommensurable’ with respect to their antecedents. Such ideas
have influenced physicists.

The reader may have remarked that the discussion of quantum gravity I have
given above assumes a different reading of the evolution of scientific knowledge.
I have based the above discussion of quantum gravity on the idea that the central
physical ideas of QM and GR represent our best guide for accessing the extreme
and unexplored territories of the quantum-gravitational regime. In my opinion,
the emphasis on the incommensurability between theories has probably clarified
an important aspect of science, but risks obscuring something of the internal logic
according to which, historically, physics finds knowledge. There is a subtle, but
definite, cumulative aspect in the progress of physics, which goes far beyond the
growth of validity and precision of the empirical content of theories. In moving
from a theory to the theory that supersedes it, we do not save just the verified
empirical content of the old theory, but more. This ‘more’ is a central concern for
good physics. It is the source, I think, of the spectacular and undeniable predictive
power of theoretical physics.

Let me illustrate the point I am trying to make with a historical case. There was a
conflict between Maxwell’s equations and Galileo’s transformations, and there were
two obvious ways out: disvalue Maxwell theory, degrading it to a phenomenological
theory of some yet-to-be-discovered ether’s dynamics; or disvalue Galilean invari-
ance, accepting the idea that inertial systems are not equivalent in electromagnetic
phenomena. Both approaches were pursued at the end of the century. Both are sound
applications of the idea that a scientific revolution may very well change in depth
what old theories teach us about the world. Which of the two ways did Einstein take?

None of them. For Einstein, Maxwell theory was a source of great awe. Einstein
rhapsodizes about his admiration for Maxwell theory. For him, Maxwell had
opened a new window on the world. Given the astonishing success of Maxwell
theory, empirical (electromagnetic waves), technological (radio) as well as concep-
tual (understanding what light is), Einstein’s admiration is comprehensible. But
Einstein also had a tremendous respect for Galileo’s insight; young Einstein was
amazed by a book with Huygens’ derivation of collision theory virtually out of
Galilean invariance alone. Einstein understood that Galileo’s great intuition – that
the notion of velocity is only relative – could not be wrong. I am convinced that
in Einstein’s faith in the core of the great Galilean discovery there is very much to
learn, for philosophers of science, as well as for contemporary theoretical physicists.
So, Einstein believed the two theories, Maxwell and Galileo: he assumed that they
would hold far beyond the regime in which they had been tested. Moreover, he
assumed that Galileo had grasped something about the physical world, which was,
simply, correct. And so had Maxwell. Of course, details had to be adjusted. The core
of Galileo’s insight was that all inertial systems are equivalent and that velocity is
relative, not the details of the Galilean transformations. Einstein knew the Lorentz
transformations (found, of course, by Lorentz, not by Einstein), and was able to see
that they do not contradict Galileo’s insight. If there was contradiction in putting the
two together, the problem was ours: we were surreptitiously sneaking some incor-
rect assumption into our deductions. He found the incorrect assumption, which,
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of course, was that simultaneity could be well defined. It was Einstein’s faith in the
essential physical correctness of the old theories that guided him to his spectacular
discovery.

There are innumerable similar examples in the history of physics that could equally
well illustrate this point. Einstein found GR ‘out of pure thought’, having Newton
theory on the one hand and special relativity – the understanding that any interaction
is mediated by a field – on the other; Dirac found quantum field theory from
Maxwell’s equations and quantum mechanics; Newton combined Galileo’s insight
that acceleration governs dynamics with Kepler’s insight that the source of the force
that governs the motion of the planets is the sun . . .The list could be long. In all
these cases, confidence in the insight that came with some theory, or ‘taking a theory
seriously’, led to major advances that largely extended the original theory itself. Of
course, it is far from me to suggest that there is anything simple, or automatic, in
figuring out where the true insights are and in finding the way of making them work
together. But what I am saying is that figuring out where the true insights are and
finding the way of making them work together is the work of fundamental physics.
This work is grounded on confidence in the old theories, not on random searches for
new ones.

One of the central concerns of modern philosophy of science is to face the apparent
paradox that scientific theories change, but are nevertheless credible. Modern phi-
losophy of science is to some extent an after-shock reaction to the fall of Newtonian
mechanics, a tormented recognition that an extremely successful scientific theory can
nevertheless be untrue. But it is a narrow-minded notion of truth that is called into
question by a successful physical theory being superseded by a more successful one.

A physical theory, in my view, is a conceptual structure that we use in order
to organize, read and understand the world, and to make predictions about it. A
successful physical theory is a theory that does so effectively and consistently. In
the light of our experience, there is no reason not to expect that a more effective
conceptual structure might always exist. Therefore an effective theory may always
show its limits and be replaced by a better one. On the other hand, however, a novel
conceptualization cannot but rely on what the previous one has already achieved.

When we move to a new city, we are at first confused about its geography. Then
we find a few reference points, and we make a rough mental map of the city in terms
of these points. Perhaps we see that there is part of the city on the hills and part on
the plane. As time goes on, the map gets better, but there are moments in which we
suddenly realize that we had it wrong. Perhaps there were indeed two areas with hills,
and we were previously confusing the two. Or we had mistaken a big red building
for the City Hall, when it was only a residential construction. So we adjust the
mental map. Sometime later, we learn names and features of neighbourhoods and
streets, and the hills, as references, fade away, because the neighbourhoods structure
of knowledge is more effective than the hill/plane one . . . . The structure changes,
but knowledge increases. And the big red building, now we know it, is not the City
Hall – and we know it forever.

There are discoveries that are forever: that the Earth is not the centre of the
universe, that simultaneity is relative, that we do not get rain by dancing. These are
steps that humanity takes, and does not take back. Some of these discoveries amount
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simply to cleaning from our thinking wrong, encrusted, or provisional credences. But
also discovering classical mechanics, or discovering electromagnetism, or quantum
mechanics, are discoveries forever. Not because the details of these theories cannot
change, but because we have discovered that a large portion of the world admits to
understanding in certain terms, and this is a fact that we will have to face forever.

One of the theses of this chapter, is that general relativity is the expression of one
of these insights, which will stay with us ‘forever’. The insight is that the physical
world does not have a stage, that localization and motion are relational only, that
diff invariance (or something physically analogous) is required for any fundamental
description of our world.

How can a theory be effective even outside the domain in which it was found?
How could Maxwell predict radio waves, Dirac predict antimatter, and GR predict
black holes? How can theoretical thinking be so magically powerful? Of course, we
may think that these successes are chance, and only appear striking because of a
deformed historical perspective: hundreds of theories are proposed, most of them
die, and the ones that survive are the ones remembered – just as there is always
somebody who wins the lottery, but this is not a sign that humans can magically
predict the outcome of the lottery. My opinion is that such an interpretation of the
development of science is unjust and, worse, misleading. It may explain something,
but there is more in science. Tens of thousands play the lottery, but there were only
two relativistic theories of gravity in 1916, when Einstein predicted that the light
would be deflected by the sun precisely by an angle of 1.75′′. Familiarity with the
history of physics, I feel confident to claim, rules out the lottery picture.

I think that the answer is simpler. Somebody predicts that the sun will rise tomor-
row, and the sun rises. It is not a matter of chance (there aren’t hundreds of people
making random predictions of every sort of strange object appearing at the horizon).
The prediction that tomorrow the sun will rise, is sound. However, it is not certain
either: a neutron star could rush in, close to the speed of light, and sweep the sun
away. More philosophically, who grants me the right of induction? Why should I be
confident that the sun will rise, just because it has risen so many times in the past?
I do not know the answer to this question. But what I know is that the predictive
power of a theory beyond its own domain is precisely of the same sort. Simply, we
learn something about nature (whatever this means), and what we learn is effective
in guiding us to predict nature’s behaviour. Thus, the spectacular predictive power
of theoretical physics is nothing less and nothing more than common induction,
and it is as comprehensible (or as incomprehensible) as my ability to predict that the
sun will rise tomorrow. Simply, nature around us happens to be full of regularities
that we understand , whether or not we understand why regularities exist at all. These
regularities give us strong confidence – although not certainty – that the sun will
rise tomorrow, and that the basic facts about the world found with QM and GR
will be confirmed, not violated, in quantum-gravitational regimes that we have not
empirically probed.

This view is not dominant nowadays in theoretical physics. Other attitudes dom-
inate. The ‘pragmatic’ scientist ignores conceptual questions and physical insights,
and only cares about developing a theory. This attitude was successful in the 1960s
in getting to the standard model. The ‘pessimistic’ scientist has little faith in the
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possibilities of theoretical physics, because he or she worries that all possibilities
are open, and anything might happen between here and the Planck length. The
‘wild’ scientist observes that great scientists had the courage to break with old and
respected ideas and assumptions, and to explore new and strange hypotheses. From
this observation, the ‘wild’ scientist concludes that to do great science one has to
explore strange hypotheses and violate respected ideas: the wilder the hypothesis,
the better. I think such wildness in physics is sterile; the greatest revolutionaries in
science were extremely, almost obsessively, conservative. The greatest revolutionary,
Copernicus, certainly was – and so was Planck. Copernicus was pushed to the great
jump from his pedantic labour on the minute technicalities of the Ptolemaic system
(fixing the equant). Kepler was forced to abandon circles by his extremely techni-
cal work on the details of Mars’ orbit. He was using ellipses as approximations to
the epicycle-deferent system, when he began to realize that the approximation was
fitting the data better than the (supposedly) exact curve. And Einstein and Dirac
were also extremely conservative: their vertiginous steps ahead were not pulled out
of blue sky, from violating respected ideas but, on the contrary, they came from
respect towards physical insights. In physics, novelty has always emerged from new
data and from a humble, devoted interrogation of old theories: from turning these
theories around and around, immerging into them, making them clash, merge, and
talk until, through them, the missing gear could be seen. In my opinion, precious
research energies are today lost in these attitudes. I worry that a philosophy of science
that downplays the component of factual knowledge in physical theories might have
part of the responsibility.

4.4.2 On content and truth in physical theories

If a physical theory is a conceptual structure that we use to organize, read and
understand the world, then scientific thinking is not much different from common-
sense thinking. In fact, it is only a better instance of the same activity: thinking about
the world. Science is the enterprise of continuously exploring the possible ways of
thinking about the world, and constantly selecting the ones that work best.

If so, there cannot be any qualitative difference between the theoretical notions
introduced in science and the terms in our everyday language. A fundamental intu-
ition of classical empiricism is that nothing grants us the ‘reality’ of the referents of
the notions we use to organize our perceptions. Some modern philosophy of sci-
ence has emphasized the application of this intuition to the concepts introduced by
science. Thus, we are warned to doubt the ‘reality’ of theoretical objects (electrons,
fields, black holes . . . ). I find these warnings incomprehensible. Not because they
are ill-founded, but because they are not applied consistently. The fathers of empiri-
cism consistently applied this intuition to any physical object. Who grants me the
reality of a chair? Why should a chair be more than a theoretical concept organizing
certain regularities in my perceptions? I will not venture here to dispute or agree
with this doctrine. What I find incomprehensible is the position of those who grant
the solid status of reality to a chair, but not to an electron; the arguments against the
reality of the electron apply to the chair as well, and the arguments in favour of the
reality of the chair apply to the electron as well. A chair, as well as an electron, is a
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concept that we use to organize, read, and understand the world. They are equally
real. They are equally volatile and uncertain.

Perhaps, this curious schizophrenic attitude of antirealism about electrons and
iron realism about chairs is the result of a complex historical evolution. First there
was the rebellion against ‘metaphysics’, and, with it, the granting of confidence to
science alone. From this point of view, metaphysical questioning of the reality of
chairs is sterile – true knowledge is in science. Thus, it is to scientific knowledge that
we apply empiricist rigour. But understanding science in empiricist terms required
making sense of the raw empirical data on which science is based. With time, the
idea of raw empirical data increasingly showed its limits, and the common-sense
view of the world was reconsidered as a player in our picture of knowledge. This
common-sense view gives us a language and a ground from which to start – the old
antimetaphysical prejudice still preventing us, however, from applying empiricist
rigor to this common sense view of the world as well. But if one is not interested
in questioning the reality of chairs, for the very same reason, why should one be
interested in questioning the ‘reality of the electrons’?

Again, I think this point is important for science itself. The factual content of
a theory is our best tool. Faith in this factual content does not prevent us from
being ready to question the theory itself, if sufficiently compelled to do so by novel
empirical evidence or by putting the theory in relation to other things we know
about the world. Scientific antirealism, in my opinion, is not only a short sighted
application of a deep classical empiricist insight; it is also a negative influence on the
development of science. H. Stein (1999) has recently beautifully illustrated a case
in which a great scientist, Poincaré, was blocked from getting to a major discovery
(special relativity) by a philosophy that restrained him from ‘taking seriously’ his
own findings.

Science teaches us that our naive view of the world is imprecise, inappropriate, and
biased. It constructs better views of the world. Electrons, if anything at all, are ‘more
real’ than chairs, not ‘less real’, in the sense that they ground a more powerful way
of conceptualizing the world. On the other hand, the process of scientific discovery,
and the experience of this century in particular, has made us painfully aware of
the provisional character of any form of knowledge. Our mental and mathematical
pictures of the world are only mental and mathematical pictures. This is true for
abstract scientific theories as well as from the image we have of our dining room.
Nevertheless, the pictures are powerful and effective and we can’t do any better
than that.

So, is there anything we can say with confidence about the ‘real world’? A large
part of recent reflection on science has taught us that raw data do not exist, and that
any information about the world is already deeply filtered and interpreted by theory.
Further than that, we could even think, as in the dream of Berkeley, that there is
no ‘reality’ outside. Recent European reflection (and part of the American as well)
has emphasized the fact that truth is always internal to the theory, that we can never
exit language, and that we can never exit the circle of discourse within which we
are speaking. It might very well be so. But, if the only notion of truth is internal to
the theory, then this internal truth is what we mean by truth. We cannot exit from
our own conceptual scheme. We cannot put ourself outside our discourse: outside
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our theory. There may be no notion of truth outside our own discourse. But it is
precisely ‘from within the language’ that we can assert the reality of the world. And
we certainly do so. Indeed, it is more than that: it is structural to our language to
be a language about the world, and to our thinking to be a thinking of the world.
Therefore, precisely because there is no notion of truth except the one in our own
discourse, there is no sense in denying the reality of the world. The world is real,
solid, and understandable by science. The best we can say about the physical world,
and about what is there in the world, is what good physics says about it.

At the same time, our perceiving, understanding, and conceptualizing the world
is in continuous evolution, and science is the form of this evolution. At every stage,
the best we can say about the reality of the world is precisely what we are saying. The
fact we will understand it better later on does not make our present understanding
less valuable, or less credible. A map is not false because there is a better map, even if
the better one looks quite different. Searching for a fixed point on which to rest is, in
my opinion, naive, useless, and counterproductive for the development of science.
It is only by believing our insights and, at the same time, questioning our mental
habits, that we can go ahead. This process of cautious faith and self-confident doubt
is the core of scientific thinking. Exploring the possible ways of thinking of the world,
being ready to subvert (if required) our ancient prejudices, is among the greatest and
the most beautiful of human adventures. In my view, quantum gravity – in its effort
to conceptualize quantum spacetime, and to modify in depth the notion of time – is
a step of this adventure.

Notes

1. For recent general overviews of current approaches to quantum gravity, see Butterfield and
Isham (1999) and Rovelli (1998).

2. Following Roger Penrose’s opposite suggestions of a failure of conventional QM induced by
gravity (Penrose 1994a), Antony Zeilinger is preparing an experiment to test such a possible
failure of QM (Zeilinger 1997). It would be very exciting if Roger turned out to be right, but I
am afraid that QM, as usual, will win.

3. ‘We can say that movement is the transference of one part of matter or of one body, from the
vicinity of those bodies immediately contiguous to it, and considered at rest, into the vicinity
of some others’ (Descartes, Principia Philosophiae, Sec. II-25, p. 51).

4. Aristotle insists on this point, using the example of the river that moves with respect to the
ground, in which there is a boat that moves with respect to the water, on which there is a man
that walks with respect to the boat . . . . Aristotle’s relationalism is tempered by the fact that
there is, after all, a preferred set of objects that we can use as universal reference: the Earth
at the centre of the universe, the celestial spheres, the fixed stars. Thus, we can say, if we desire
so, that something is moving ‘in absolute terms’, if it moves with respect to the Earth. Of
course, there are two preferred frames in ancient cosmology: the one of the Earth and the one
of the fixed stars; the two rotate with respect to each other. It is interesting to notice that the
thinkers of the Middle Ages did not miss this point, and discussed whether we can say that the
stars rotate around the Earth, rather than being the Earth that rotates under the fixed stars.
Buridan concluded that, on grounds of reason, in no way is one view more defensible than the
other. For Descartes, who writes, of course, after the great Copernican divide, the Earth is not
anymore the centre of the Universe and cannot offer a naturally preferred definition of
stillness. According to certain (possibly unfairly) unsympathetic commentators, Descartes,
fearing the Church and scared by what happened to Galileo’s stubborn defence of the idea that
‘the Earth moves’, resorted to relationalism, in The Principles, precisely to be able to hold
Copernicanism without having to commit himself to the absolute motion of the Earth!
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5. ‘So, it is necessary that the definition of places, and hence local motion, be referred to some
motionless thing such as extension alone or space, in so far as space is seen truly distinct from
moving bodies’ (Newton, De gravitatione et Aequipondio Fluidorum, 89–156). Compare with
the quotation from Descartes in footnote 3.

6. Active diff invariance should not be confused with passive diff invariance, or invariance under
change of co-ordinates. GR can be formulated in a co-ordinate-free manner, where there are
no co-ordinates, and no changes of co-ordinates. In this formulation, the field equations are
still invariant under active diffs. Passive diff invariance is a property of a formulation of a
dynamical theory, while active diff invariance is a property of the dynamical theory itself. A
field theory is formulated in manner invariant under passive diffs (or change of co-ordinates),
if we can change the co-ordinates of the manifold, re-express all the geometric quantities
(dynamical and non-dynamical) in the new co-ordinates, and the form of the equations of
motion does not change. A theory is invariant under active diffs, when a smooth displacement
of the dynamical fields (the dynamical fields alone) over the manifold, sends solutions of the
equations of motion into solutions of the equations of motion. Distinguishing a truly
dynamical field, namely a field with independent degrees of freedom, from a non-dynamical
field disguised as dynamical (such as a metric field g with the equations of motion
Riemann[g] = 0) might require a detailed analysis (of, for instance, the Hamiltonian) of the
theory.

7. Notice that Newton, in the passage quoted in footnote 5 argues that motion must be defined
with respect to motionless space ‘in so far as space is seen truly distinct from moving bodies’.
That is: motion should be defined with respect to something that has no dynamics.

8. In the first edition of his celebrated book on quantum mechanics, Dirac (1930) used
Heisenberg states (he calls them relativistic). In later editions, he switched to Schrödinger
states, explaining in a preface that it was easier to calculate with these, but it was nevertheless a
pity to give up the Heisenberg states, which are more fundamental. In what was perhaps his
last public seminar, in Sicily, Dirac used just a single transparency, with just one sentence: ‘The
Heisenberg picture is the right one’.
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5 Reflections on the fate of spacetime

Edward Witten

5.1 Introduction

Our basic ideas about physics went through several upheavals early this century.
Quantum mechanics taught us that the classical notions of the position and velocity
of a particle were only approximations of the truth. With general relativity, spacetime
became a dynamical variable, curving in response to mass and energy. Contempo-
rary developments in theoretical physics suggest that another revolution may be in
progress, through which a new source of ‘fuzziness’ may enter physics, and space-
time itself may be reinterpreted as an approximate, derived concept (see Fig. 5.1). In
this article I survey some of these developments.

Let us begin our excursion by reviewing a few facts about ordinary quantum
field theory. Much of what we know about field theory comes from perturbation
theory; perturbation theory can be described by means of Feynman diagrams, or
graphs, which are used to calculate scattering amplitudes. Textbooks give efficient
algorithms for evaluating the amplitude derived from a diagram. But let us think
about a Feynman diagram intuitively, as Feynman did, as representing a history of
a spacetime process in which particles interact by the branching and rejoining of
their worldlines. For instance, Fig. 5.2 shows two incident particles, coming in at a
and b, and two outgoing particles, at c and d . These particles branch and rejoin at
spacetime events labelled x , y , z , and w in the figure.

According to Feynman, to calculate a scattering amplitude one sums over all
possible arrangements of particles branching and rejoining. Moreover, for a particle
travelling between two spacetime events x and y , one must in quantum mechanics
allow for all possible classical trajectories, as in Fig. 5.3. To evaluate the propagator
of a particle from x to y , one integrates over all possible paths between x and y ,
using a weight factor derived from the classical action for the path.

So when one sees a Feynman diagram such as that of Fig. 5.2, one should contem-
plate a sum over all physical processes that the diagram could describe. One must
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Fig. 5.1. Four views of reality: (a) In classical physics, particles have definite
locations and follow exact trajectories in a precise, curved spacetime. (b) Closer
examination reveals the effects of quantum mechanics, h̄ �= 0. Wavepackets
propagate through spacetime, their positions and velocities uncertain according to
Heisenberg. (c) In string theory, point particles are replaced by tiny loops having a
‘string tension’ α′ �= 0. Even ignoring quantum mechanics (̄h = 0), the concept of
spacetime becomes ‘fuzzy’ at scales comparable to

√
α′. (d) The full theory,

employing both a string tension and quantum effects, is only beginning to take
shape. Remarkable results are being uncovered that may overturn our conventional
notions of spacetime.

integrate over all spacetime events at which interactions – branching and rejoining
of particles – could have occurred, and integrate over the trajectories followed by
the particles between the various vertices. And, of course, to actually predict the
outcome of an experiment, one must (as in Fig. 5.4) sum over all possible Feynman
diagrams – that is, all possible sequences of interactions by which a given initial state
can evolve into a given final state.
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Fig. 5.2. A Feynman diagram with two incident particles at spacetime events a, b
and two outgoing particles at c , d . The particles interact by branching and rejoining
at the spacetime events x , y , z , and w . Those vertices lead to fundamental problems
in field theory.

Fig. 5.3. Some classical trajectories for a particle propagating from x to y ; they all
contribute to the Feynman propagator.

This beautiful recipe – formulated in the early days of quantum field the-
ory – brought marvelous success and efficient, precision computations. Yet
this recipe also exhibits certain of the present-day troubles in physics. One
important property of a Feynman graph is that the graph itself, regarded as a
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Fig. 5.4. Several Feynman diagrams contributing to the same physical process.

Fig. 5.5. Arbitrary factors associated with arbitrary branchings of particles in
conventional field theory. In the ‘standard model’ of particle physics, this freedom
leads to about seventeen parameters whose values are not understood theoretically.

one-dimensional manifold, is singular; that is, at the branching and joining points,
the graph does not look like a true one-dimensional manifold. Everyone can agree,
in Fig. 5.2 for instance, that x , y , z , and w were the spacetime events at which
interactions occurred. Two central difficulties spring directly from this:

Infinities. Quantum field theory is plagued with infinities, starting with the infinite
electrostatic self-energy of the electron. The infinities come from the singularities
of the Feynman diagrams. For instance, in Fig. 5.2, the potential infinities come
from the part of the integration region where the spacetime events x , y , z , and w
all nearly coincide. Sometimes the infinities can be ‘renormalized’ away; that is the
case for electrodynamics and – ultimately – for the weak and strong interactions in
the Standard Model of elementary-particle physics. But for gravity, renormalization
theory fails, because of the nature of the inherent non-linearities in general relativity.
So we come to a key puzzle: the existence of gravity clashes with our description of
the rest of physics by quantum fields.
Too many theories. There are many quantum field theories, depending on many free
parameters, because one can introduce fairly arbitrary rules governing the branching
and joining of particles. For instance, one could permit higher-order branchings of
particles, as in Fig. 5.5. With every elementary branching process, one can (with cer-
tain restrictions) associate a ‘coupling constant’, an extra factor included in the evalu-
ation of a Feynman diagram. In practice, the Standard Model describes the equations
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that underlie almost all the phenomena we know, in a framework that is compelling
and highly predictive – but that also has (depending on precisely how one counts)
roughly seventeen free parameters whose values are not understood theoretically.
The seventeen parameters enter as special factors associated with the singularities of
the Feynman diagrams. There must be some way to reduce this ambiguity!

5.2 String theory

We have one real candidate for changing the rules; this is string theory. In string
theory the one-dimensional trajectory of a particle in spacetime is replaced by a
two-dimensional orbit of a string (see Fig. 5.6). Such strings can be of any size, but
under ordinary circumstances they are quite tiny, around 10−32 cm in diameter, a
value determined by comparing the predictions of the theory for Newton’s constant
and the fine structure constant to experimental values. This is so small (about
sixteen orders of magnitude less than the distances directly probed by high-energy
experiments) that for many purposes the replacement of particles by strings is not
very important; for other purposes, though, it changes everything. The situation
is somewhat analogous to the introduction of Planck’s constant h̄ in passing from
classical to quantum physics: for many purposes, h̄ is so tiny as to be unimportant,
but for many other purposes it is crucial. Likewise, in string theory one introduces
a new fundamental constant α′ ≈ (10−32 cm)2 controlling the tension of the string.
Many things then change.

One consequence of replacing worldlines of particles by worldtubes of strings
is that Feynman diagrams get smoothed out. Worldlines join abruptly at inter-
action events, as in Fig. 5.7(a), but worldtubes join smoothly, as in Fig. 5.7(b).

Fig. 5.6. Particles and strings. (a) A point particle traces out a one-dimensional
worldline in spacetime. (b) The orbit of a closed string is a two-dimensional tube or
‘worldsheet’ in spacetime.
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Fig. 5.7. String theory’s smoothing effect is apparent when one compares a
Feynman graph (a) with its stringy counterpart (b). The string diagram has no
singular interaction points.

There is no longer an invariant notion of when and where interactions occur, so
from the description above of the origin of the problems of field theory, we might
optimistically hope to have finiteness, and only a few theories.

These hopes are realized. In fact, once one replaces worldlines by worldtubes, it is
all but impossible to construct any consistent theories at all. That such theories do
exist was established through a long and complex process stretching over roughly
fifteen years, from the late 1960s to the early 1980s.1 Moreover, there are only
a few such theories; in fact, the very latest discoveries strongly suggest that they
are all equivalent to each other so that apparently there is really only one such
theory.

Moreover, these theories have (or this one theory has) the remarkable property
of predicting gravity – that is, of requiring the existence of a massless spin-2 particle
whose couplings at long distances are those of general relativity. (There are also cal-
culable, generally covariant corrections that are unfortunately unmeasureably small
under ordinary conditions.) This result is in striking contrast to the situation in
field theory, where gravity is impossible because of the singularities of the Feynman
graphs.

String theory (especially the heterotic string) also generates Yang–Mills gauge
fields and gauge invariance in close parallel with gravity. Further, if one assumes
that the weak interactions violate parity, one is practically forced to consider models
with the right gauge groups and fermion quantum numbers for the conventional
description of particle physics. Thus, the innocent-sounding operation of replac-
ing worldlines by worldtubes forces upon us not only gravity but extra degrees of
freedom appropriate for unifying gravity with the rest of physics. Since 1984, when
generalized methods of ‘anomaly cancellation’ were discovered and the heterotic
string was introduced, one has known how to derive from string theory uncannily
simple and qualitatively correct models of the strong, weak, electromagnetic, and
gravitational interactions.

Apart from gravity and gauge invariance, the most important general prediction
of string theory is supersymmetry, a symmetry between bosons and fermions that
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string theory requires (at some energy scale). Searching for supersymmetry is one of
the main goals of the next generation of particle accelerators. Its discovery would be
quite a statement about nature and would undoubtedly provide a lot of clues about
how theorists should proceed.

If this is the good news, what is the bad news? Perhaps what is most glaringly
unsatisfactory is this: Crudely speaking there is wave-particle duality in physics,
but in reality everything comes from the description by waves, which are then
quantized to give particles. Thus a massless classical particle follows a light-like
geodesic, while the wave description involves the Einstein, or Maxwell, or Yang–
Mills equations, which are certainly much closer to the fundamental concepts of
physics. Unfortunately, in string theory so far, one has generalized only the less
fundamental point of view. As a result, we understand in a practical sense how
to do many computations in string theory, but we do not yet understand the new
underlying principles analogous to gauge invariance. The situation is illustrated in
Fig. 5.8.

Fig. 5.8. The ‘magic square’ of string theory. The two rows represent ordinary
physics and string theory, respectively, while the two columns represent particles
and waves. In the upper left-hand corner, a line drawn at a 45 degree angle to the
horizontal symbolizes a classical massless particle, propagating at the speed of light.
In the lower left, we show the stringy analogue of this, the worldtube. In the upper
right are crown jewels such as the Einstein–Hilbert action of general relativity. In
the lower right should be the synthesis, related to the Einstein–Hilbert action as
worldtubes are related to worldlines.
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5.3 Some of the symptoms

Not knowing the concepts by which string theory will eventually be understood,
here I can only describe some of the symptoms, some of the curious phenomena
that occur in physics when α′ �= 0. In so doing, I hope to give the reader a taste of
the conceptual issues that theoretical physicists are grappling with.

But first we need some more background. A point particle moving in Minkowski
space with proper time τ is described by giving its position X i(τ ) as a function
of τ – here X i are the Minkowski co-ordinates. The action, or Lagrangian, for this
particle is

I =
1

2

∫
dτ

∑
ij

ηij
dX i

dτ

dX j

dτ
, (5.1)

with ηij the metric of Minkowski space. If the particle is massless, the Lagrangian
must be supplemented with a constraint saying that the velocity is light-like.

For a string, because the worldtube is two-dimensional, one has not just a proper
time τ along the trajectory, but a proper position σ as well. We combine them into
co-ordinates σα = (σ, τ ) along the worldtube. Then the motion of the string is
described by giving functions X i(σα). The Lagrangian for the string is the obvious
analogue of eqn. 5.1:

I =
1

2α′

∫
d2σ

∑
ijα

ηij
dX i

dσα

dX j

dσα
. (5.2)

This must again be supplemented with a constraint analogous to saying that a particle
velocity is light-like. Notice that the stringy constant α′ appears in eqn. 5.2 to make
the action dimensionless. If one sets h̄ = c = 1, as particle physicists often do, then
α′ has dimensions of length squared.

Now, regardless of its origins, eqn. 5.2 is a Lagrangian quite similar to what one
might meet in many problems of two-dimensional statistical mechanics or field
theory. For instance, the σα might be co-ordinates along the interface between two
media and the X i might be fields of some kind defined on the interface.

Let us study this problem by standard methods of field theory. First we look at
the symmetries. Our problem had Poincaré invariance – that is, invariance under

X i → Λi
j X

j + ai , (5.3)

with Λ a Lorentz transformation and a a constant. For simplicity we consider here
only the constant translations, obtained by setting Λ to be the unit matrix:

X i → X i + ai . (5.4)

In field theory or statistical mechanics, one of the first things that one calculates
is the propagator or two-point correlation function 〈X i(σ)X j (0)〉. In the present
problem, we have a conundrum because it is impossible for the two-point function
to be invariant under transformation 5.4: under 5.4, 〈X i(σ)X j (0)〉 picks up a non-
zero term aiaj . This number is a c-number, that is, an ordinary number and not

132



[11:02 2000/10/5 g:/tex/key-tex/callendr/3663-005.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 5 Page: 133 125–137

Reflections on the fate of spacetime

an operator, and so is non-zero and cannot be cancelled for arbitrary ai by other
contributions, as they are lower order in ai .

Thus, there are two options. Either the two-point function in question is ill-
defined, or Poincaré invariance is spontaneously broken in this theory and would
not be observed as a symmetry of physical processes.

In fact, the first option prevails. By the standard recipe, the two-point function of
this theory should be

〈X i(σ)X j (0)〉 = ηij

∫
d2k

(2π)2

eik·σ

k2
. (5.5)

The integral is infrared divergent. This divergence means that the ‘elementary field’
X i is ill-behaved quantum mechanically (but other fields are well-behaved and the
theory exists).

This infrared divergence – which is central in string theory – was in fact first stud-
ied in the theory of two-dimensional XY ferromagnets. In that context, the infrared
divergence means that there is a low temperature phase with power law correlations
but no long-range order. This is an example of a general theme: properties of space-
time in string theory (in this case, unbroken Poincaré invariance) reflect phenomena
in two-dimensional statistical mechanics and field theory.

For instance, condensed matter theorists and field theorists are often interested
in the anomalous dimensions of operators – how the renormalized operators scale
with changes in the length or energy scale. In this case, by studying the anomalous
dimension of a certain operator – namely, (∂X)2eik·X – we could go on to explain
why string theory predicts the existence of gravity. This tale has been told many
times.2 Here I prefer to convey the radical change that taking α′ �= 0 brings in
physics.

In analysing Poincaré invariance, we took the spacetime metric to be flat – we used
the Minkowski metric ηij in eqn. 5.2. Nothing prevents us from replacing the flat
metric by a general spacetime metric gij (X), taking the worldtube Lagrangian to be

I =
1

2α′

∫
d2σ

∑
ijα

gij (X)
dX i

dσα
dX j

dσα
. (5.6)

Simply by writing eqn. 5.6, we get, for each classical spacetime metric g , a
two-dimensional quantum field theory, or at least the Lagrangian for one.

So spacetime with its metric determines a two-dimensional field theory. And that
two-dimensional field theory is all one needs to compute stringy Feynman diagrams.
The reason that theory suffices is that (as explained above) stringy Feynman diagrams
are non-singular. Thus, in a field theory diagram, as in Fig. 5.7(a), even when one
explains how free particles propagate (what factor is associated with the lines in the
Feynman diagram) one must separately explain how particles interact (what vertices
are permitted and what factors are associated with them). As the stringy Feynman
diagram of Fig. 5.7(b) is non-singular, once one understands the propagation of
the free string there is nothing else to say – there are no interaction points whose
properties must be described.
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Thus, once one replaces ordinary Feynman diagrams with stringy ones, one does
not really need spacetime any more; one just needs a two-dimensional field theory
describing the propagation of strings. And perhaps more fatefully still, one does
not have spacetime any more, except to the extent that one can extract it from a
two-dimensional field theory.

So we arrive at a quite beautiful paradigm. Whereas in ordinary physics one talks
about spacetime and classical fields it may contain, in string theory one talks about an
auxiliary two-dimensional field theory that encodes the information. The paradigm
has a quite beautiful extension: a spacetime that obeys its classical field equations
corresponds to a two-dimensional field theory that is conformally invariant (that
is, invariant under changes in how one measures distances along the string). If one
computes the conditions needed for conformal invariance of the quantum theory
derived from eqn. 5.6, assuming the fields to be slowly varying on the stringy scale,
one gets generally covariant equations that are simply the Einstein equations plus
corrections of order α′.

We are far from coming to grips fully with this paradigm, and one can scarcely
now imagine how it will all turn out. But two remarks seem fairly safe. All the
vicissitudes of two-dimensional field theory and statistical mechanics are reflected
in ‘spacetime’, leading to many striking phenomena. And once α′ is turned on, even
in the classical world with h̄ = 0, ‘spacetime’ seems destined to turn out to be only
an approximate, derived notion, much as classical concepts such as the position and
velocity of a particle are understood as approximate concepts in the light of quantum
mechanics.

5.4 Duality and the minimum length

A famous vicissitude of two-dimensional statistical mechanics is the duality of the
Ising model. The Ising model is a simple model of a ferromagnet in two dimensions.
As was discovered sixty years ago, the Ising model on a square lattice is equivalent
to a ‘dual’ spin system on a dual lattice, as sketched in Fig. 5.9. If the original system
is at temperature T , the dual system has temperature 1/T . Thus, high and low
temperatures are exchanged, and if there is precisely one phase transition, it must
occur at the critical temperature, T = 1.

This duality has an analogue if the Z 2 symmetry of the Ising model (spin up
and spin down) is replaced by Z n (spins pointing in any of n directions equispaced
around a circle). For large n, there is an interesting ‘continuum limit’, which leads
to the following assertion: there is a smallest circle in string theory; a circle of
radius R is equivalent to a circle of radius α′/R. By this we mean most simply
the following. Imagine that the universe as a whole is not infinite in spatial extent,
but that one of the three space dimensions is wrapped in a circle, making it a
periodic variable with period 2πR. Then there is a smallest possible value of R.
When R is large, things will look normal, but if one tries to shrink things down until
the period is less than 2π

√
α′, space will re-expand in another ‘direction’ peculiar

to string theory, and one will not really succeed in creating a circle with radius
less than

√
α′.
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Fig. 5.9. A system of Ising spins on the lattice indicated by dots is equivalent to
another spin system on the ‘dual’ lattice indicated by crosses. In string theory,
analogous dualities of an underlying two-dimensional field theory result in dualities
of spacetimes.

Technically, this arises as follows. A massless particle – or string – on a circle of
radius R has quantized momentum p = n/R, with integer n, and energy levels

En =
|n|
R

. (5.7)

A string can also wrap m times around the circle, with energy

Ẽn =
|m|R
α′ . (5.8)

There is a duality symmetry – generalizing the duality of the Ising model – that
exchanges the two spectra, exchanging also R with α′/R (see Fig. 5.10).

As presented here, the argument might seem to apply only to circles wrapped
around a periodic dimension of the universe. In fact, similar arguments can be
made for any circle in spacetime.

The fact that one cannot compress a circle below a certain length–scale might be
taken to suggest that the smaller distances just are not there. Let us try to disprove
this. A traditional way to go to short distances is to go to large momenta. According
to Heisenberg, at a momentum scale p, one can probe a distance x ≈ h̄/p. It
would appear that by going to large p, one can probe small x and verify that the
small distances do exist. However (as described in Gross and Mende 1988), the
Heisenberg microscope does not work in string theory if the energy is too large.
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Fig. 5.10. Small circles don’t exist. The spectrum of string states on a circle has two
components, n/R due to momentum quantization and mR/α′ due to wrapping of
the string around the circle m times. When the circle radius shrinks to about size√
α′, the ‘momentum’ and ‘wrapping’ states become equivalent. As one tries to

compress the circle further, the states become equivalent to those on a large ‘dual’
circle with ‘momentum’ and ‘wrapping’ states swapped.

Instead, the strings expand and – when one accelerates past the string scale – instead
of probing short distances one just watches the propagation of large strings. It is
roughly as if the uncertainty principle has two terms,

∆x ≥ h̄

∆p
+ α′ ∆p

h̄
, (5.9)

where the first term is the familiar quantum uncertainty and the second term reflects
a new uncertainty or fuzziness due to string theory. With the two terms together,
there is an absolute minimum uncertainty in length – of order

√
α′ ≈ 10−32 cm –

in any experiment. But a proper theoretical framework for the extra term has not
yet emerged.

A somewhat similar conclusion arises if one tries to compute the free energy at high
temperature. In field theory, at high temperature T , one gets (in four dimensions)
a free energy per unit volume F ≈ T 4/(̄hc)3, as if each box of linear size h̄c/T
contains one quantum of energy T . In string theory, the behaviour is similar until
one reaches ‘stringy’ temperatures, after which the free energy seems to grow more
slowly, roughly as if one cannot divide space into boxes less than 10−32 cm on a side,
with each such box containing one string.

The duality symmetry described above also has a number of non-linear analogues,
such as ‘mirror symmetry’, which is a relationship between two spacetimes that
would be quite distinct in ordinary physics but turn out to be equivalent in string
theory. The equivalence is possible because in string theory one does not really
have a classical spacetime, but only the corresponding two-dimensional field theory;
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two apparently different spacetimes X and Y might correspond to equivalent two-
dimensional field theories.

A cousin of mirror symmetry is the phenomenon of topology change. Here one
considers how space changes as a parameter – which might be the time – is varied.
One starts with a spatial manifold X so large that stringy effects are unimportant.
As time goes on, X shrinks and stringy effects become large; the classical ideas of
spacetime break down. At still later times, the distances are large again and classical
ideas are again valid, but one is on an entirely different spatial manifold Y ! Quite
precise computations of such processes have been developed.

5.5 Strings and quantum mechanics

In this article, I have generally suppressed the effects of quantum mechanics, or h̄,
and have attempted to explain how physics changes when one turns on α′. My goal
has been to explain that the phenomena and the change in viewpoint associated
with α′ – or string theory – are as striking as those associated with h̄ – or quantum
mechanics.

Of course, in the real world, h̄ and (if string theory is correct) α′ are both non-
zero. What happens then? That is perhaps the main focus of current work in the field.
We are far from getting to the bottom of things, but lately there have been enough
surprising new ideas and discoveries to make up what some have characterized as
‘the second superstring revolution’. (From that point of view, the ‘first superstring
revolution’ was the period in the mid-1980s when the scope of superstring theory
first came to be widely appreciated.) New dualities – generalizing the duality of
Maxwell’s equations between electric and magnetic fields – appear when h̄ and α′

are considered together. These new symmetries have enabled us to understand that –
as I mentioned earlier – there is apparently only one string theory, the previously
formulated theories being equivalent. Their richness is illustrated by the fact that (in
their field theory limit) they have provided new insights about quark confinement,
the geometry of four-dimensional spacetime and many other things.

Moreover, these new dualities mix h̄ and α′ in a way quite unlike anything previ-
ously encountered in physics. The existence of such symmetries that hold only for
h̄ �= 0 gives one the feeling that the natural formulation of the theory may eventu-
ally prove to be inherently quantum mechanical and thus, in a sense, may entail an
explanation of quantum mechanics.

We shall have to leave further discussion of these matters for another occasion.
Even so, I hope to have communicated a sense of some of the storm clouds in
theoretical physics, and a feeling for the likely fate of the concept of spacetime.

Notes

Reprinted with permission from Witten, E., ‘Reflections on the Fate of Spacetime’, Physics
Today, 96(4), 1996, pp. 24–30. Copyright 1996, American Institute of Physics.

1. See Schwarz (1985).
2. For instance, see Volume 1, Chapter 1 of Green et al. (1987).
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Before we, as philosophers, take a look at string theory I want to mention that
more than one person has suggested to me that it is still too early for philosophi-
cal and foundational studies of string theory. Indeed, the suggestion emphasizes,
since string theory is still in the process of development, and its physical and
mathematical principles are not completely formulated, there is, in a sense, no
theory for the philosopher to analyse. And I must admit that I think there is some-
thing to this suggestion. In a sense I hope I will make clear, there does not yet
exist a precise mathematical formulation for string theory as there is Hilbert space
for (elementary) quantum theory, and Riemann spacetime for general relativity.
Because these latter formulations exist, we can ask precise questions and prove
precise theorems about their interpretation. The Kochen–Specker theorem about
non-contextualist hidden variable theories, the Fine–Brown proof of the insolv-
ability of the quantum measurement problem, and the current determinism–hole
argument debate are some examples. Without a clearly formulated mathemat-
ical structure, I don’t think we can expect to get analogous distinctly stringy
results.

This suggests a related worry. String theory, at least in the first quantized theory,
is a relativistic quantum theory of strings (one-dimensional extended objects). One
may well agree that of course all of the standard philosophical and foundational
issues of quantum theory and relativity are still there, but be sceptical about whether
string theory will either shed any light on these old problems, or give rise to stringy
problems. Some philosophers have expressed analogous doubts about quantum field
theory.

Again, there is something to this worry. But only something. I think it is
true, as I have said, that string theory is not ready for certain kinds of foun-
dational studies. And I don’t think string theory (or quantum field theory) will
shed light on those favourite topics of philosophers of physics, Bell’s theorem and
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realism-hidden variable theories in quantum mechanics. But there is more to physics
than non-relativistic quantum mechanics.

For the past fifteen years, quantum gauge field theories have been our best theories
of the physical universe. If we wanted to understand the basic ontology of the
universe, at least according to the best source of information available, then we
needed to understand these theories. And we needed to answer such questions as
‘What is the ontological significance of a quantum field?’, ‘Do Fermi fields have a
different ontological status than Bose fields?’, ‘What is the geometrical significance
of the gauge connection and its associated fibre bundle?’, among many others.

These questions still need answering. But now many physicists believe that string
theory may (will?) replace quantum field theory as our best fundamental theory of
physics. And in the process it is claimed that it will give us a unified theory of all the
fundamental interactions, a consistent quantum theory of gravity (and thus of the
metric field), and an explanation of the family structure of elementary particles, to
name a few. If this is correct, then we will have to ask of string theory the kind of
questions we should have been asking of quantum field theory.

Therefore I would like to talk about the following. First, I want to describe some
simple, but interesting, string theory to give you some idea of what this theory is
all about. Then I want to discuss string field theory and suggest that even though
we do not have a complete mathematical formulation, we can get an idea of some
of its ontological implications. This is one of the philosophically exciting aspects of
string theory. However, I also want to ask whether there is, in fact (good) reason
to think that string theory may (or will) emerge to replace quantum field theory.
Unfortunately, this may dampen our excitement somewhat.

It is time, then, to turn to string theory. Strings – one-dimensional extended
objects – come in two kinds, open and closed (Fig. 6.1). Classically, strings can have
translational as well as vibrational motion. The vibrational motion can be decom-
posed into left- and right-moving normal modes. For the open string, boundary
conditions require that these left and right movers be identified, while for the closed
string they are independent. When we quantize, these different normal modes
become states of different mass and spin. The difference between the open and
closed string is that the Hilbert space of states for the closed string is a product space
H = HR×HL , of the left and right movers – roughly speaking, it is a product of two
open string Hilbert spaces.

Of special interest are the massless modes. String theory is fundamentally a theory
of the very early universe, when the mass scale was the planck mass, mp . This is the
natural mass scale of the theory, so that the massive modes of the string will have

Fig. 6.1. Open and closed strings.
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masses that are, roughly, multiples of mp . Thus, only the massless modes of the
string will correspond to the particles we see at the relatively low energy scale of
the laboratory – the masses of observed particles will instead come from symmetry
breaking.

The massless states of the open string form a spacetime vector, so the massless
states of the closed string form a second-rank spacetime tensor. The significance
of this emerges when we try to make string theory into a unified theory of the
fundamental interactions of physics. Since the strong and electroweak interactions
are mediated by spin-1 vector particles, while gravity is carried by a spin-2 graviton –
the quanta of the second-rank metric field gµν – a stringy unification requires at least
that the gauge vector particles and the graviton are massless states of a single string.
Our above remarks, however, suggest that the graviton must come from the massless
modes of the closed string, while the gauge bosons must be massless states of the
open string. As we will see, string theory has the resources to overcome this problem.

So far we have been talking about the bosonic string; the degrees of freedom are
the spacetime co-ordinates, xµ, of the string, and its excitations have integral spin.
To add fermions to the theory we put a spinor at each point of the string world
sheet (the surface the string sweeps out in spacetime). Let us draw a picture of this
situation (Fig. 6.2).

Amazingly, ψ can be either a world sheet spinor (that is, a spinor with respect
to transformations of the world sheet co-ordinates σ, t ) or an explicitly spacetime
spinor (the Green–Schwartz string). When done properly, in either case we get a
theory with the same spectrum of spacetime bosons and fermions. In particular,
we can note two things. First, the purely bosonic string contains a tachyon in its
spectrum (a state with spacelike four momentum). By requiring the fermionic string
to have spacetime supersymmetry the tachyon is eliminated. Second, it turns out that
the (interacting) bosonic string can be consistently formulated only in twenty-six-
dimensional spacetime. When we add fermions, the number of required spacetime
dimensions is reduced to ten (at least for the standard formulations).

Since in everyday life only four dimensions of spacetime are apparent, in either
case all but four of the dimensions must be compactified. That is, each of them
is rolled up into a ‘cylinder’ of very small radius, explaining why we normally do
not ‘see’ them. Compactification may seem like an ad hoc move designed merely
to remove the embarrassment of more than four spacetime dimensions. But in
fact (at least in the standard version of the theory) it does much more than hide

Fig. 6.2. Open string world sheet: x(σ, t ) are the spacetime co-ordinates of the
sheet point, and ψ(σ, t ) is a spinor field on the sheet.
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the extra dimensions. It is meant to explain how the spectrum of particles and
interactions we see at our energy scale come from the ‘pure’ high-energy string
theory. We can get an idea of how this is supposed to work by looking at the heterotic
string.

But first, a preliminary point. Consider a vector Aµ in a D-dimensional space-
time, in which i = 1 . . . n dimensions are not compactified, the N = n + 1 . . .D
dimensions are compactified. The Ai are thus the components of Aµ in the n uncom-
pactified dimensions and AN the components in the compactified dimensions. Then
from the point of view of the uncompactified dimensions, since N is not a spacetime
index, only the Ai form a vector, while the AN are D−n scalar fields, which transform
into each other according to what the i dimensions regard as an internal symmetry
group. In fact, this is a geometrical symmetry of the compactified dimension.

We turn next to the heterotic string. This is a theory of closed strings, in which
the left-moving modes are those of a twenty-six-dimensional bosonic string, while
the right movers are those of a ten-dimensional fermionic string. This is possible
because, as we mentioned, the left and right movers of the closed string are inde-
pendent. Spacetime therefore has twenty-six dimensions, but the right movers have
non-zero components in only ten of them.

We can think of the compactification as occurring in two stages. In stage one
we compactify the sixteen purely bosonic dimensions, and then in stage two, six
more spacelike dimensions are compactified to give an effectively four-dimensional
theory. Let’s consider stage one. A vector excitation of the bosonic left movers will
be of the form αµ−n|0〉, where αµ−n is a creation operator with n labelling the mode
created. This will break up into αµ−n|0〉 = (αi

−n|0〉,αN
−n|0〉). The ith components

form a vector in the ten (so far) uncompactified dimensions while, as we saw above,
the N th components will be sixteen scalar fields from the ten-dimensional point of
view, with the internal symmetry index N .

Similarly, a right-moving vector will be of the form βi
−m|0〉, where the βi

−m are
suitable creation operators. And note that here we only have the i index since the
right movers have only ten components. The closed string states, as we saw, will
be products of the left and right movers, so here of the form, αµ−n|0〉 × βi

−m|0〉 =

(αj
−n|0〉 × βi

−m|0〉,αN
−n|0〉 × βi

−m|0〉).
The case of interest to us is n = m = 1, the massless vectors. Then there are

two important points, since the αN
−1|0〉 are ten-dimensional scalars, the products

αN
−1|0〉 × βi

−1|0〉 are still (massless) ten-dimensional vectors. Second, these vec-
tors form a multiplet indexed by N , which transforms according to a symmetry
determined by the compactification. Thus, we have solved two problems.

We have obtained massless vectors from the closed string, and we have introduced
an internal symmetry. (The open string has two distinguished points, the two end
points, on which we can put charges. But each point of the closed string is ‘the same’,
so there is no place to put a charge without breaking the symmetry of the closed
string.) It turns out that given the proper compactification, we get an N = 1 Yang–
Mills supermultiplet, whose internal (gauge) symmetry is either E8 × E8 or SO(32).

In addition, the αj
−n|0〉×β j

−1|0〉 form a second-rank tensor in ten dimensions and,
as you would expect, this contains the graviton.
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We have obtained the graviton and the Yang–Mills vector bosons, but it has been
accomplished in ten, rather than four dimensions. To achieve a realistic theory, we
need to complete stage two and compactify from ten down to four dimensions. Here
the E8×E8 gauge group offers a possibility. Namely, that the compactification breaks
one of the E8s to an E6 symmetry in four dimensions. Unlike E8, E6 has complex
representations (which means left- and right-handed particles transform differently
under the group), and ones large enough to contain a complete family of the known
fermions. The other E8 would remain unbroken and could be the gauge group
of the so-called ‘shadow’ matter – matter that would interact only gravitationally
with normal matter. It would be a candidate, then, for the missing mass of the
universe.

The heterotic string provides a way of getting massless vector bosons from the
closed string. It turns out that conversely, the graviton is contained in the open
string. Not as an excitation of the free string, however, but as an intermediate state
in the interaction of open strings. To see this, consider the one-loop contribution
to an amplitude involving four external strings. There are three kinds of loops that
will contribute to this: a planar loop, a non-planar loop (a planar loop with an even
number of twists), and a non-orientable loop (a planar loop with an odd number of
twists). We can picture these as shown in Fig. 6.3. Because the theory is conformally
invariant, the non-planar loop is equivalent to the world sheet pictured in Fig. 6.4,
which shows two open strings interacting through a closed string intermediate state!
And indeed, exact calculation shows that in D = 26, the non-planar loop amplitude
contains a closed string pole. Interestingly, here is a place where the necessity of
twenty-six dimensions for the bosonic string can be seen. In D �= 26 this simple pole
becomes a branch point which destroys the unitarity of the one-loop amplitude.

We see here an important difference between string theory and quantum field
theory. We can do quantum field theory without having to have a (quantum) theory

Fig. 6.3. One-loop contributions to four string scattering: (a) a planar loop, (b) a
non-orientable loop (the ‘pinches’ in the figure represent twists) and (c) a
non-planar loop; (d) shows the non-planar loop ‘untwisted’.

Fig. 6.4. Closed string intermediate state of two interacting open strings.
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of gravity. For example, we can do quantum electrodynamics in flat spacetime
without the involvement of gravity because the photon field Aµ, and the Dirac fields
ψ (ψ̄) create only photons and positrons (electrons) respectively. This is fortunate
because Einstein’s gravity is non-renormalizable as a quantum field theory.

However, since the free closed string already contains the graviton in its spectrum,
only the classical open string is consistent without gravity. The minute we quantize,
that is, go beyond tree diagrams to the one-loop level, then we have to include gravity
to get a consistent theory. Given the non-renormalizability of Einstein gravity, this
might have spelled disaster for string theory. But there is a lot of confidence that the
superstring is not just renormalizable, but finite. That is, that the different diver-
gences that arise cancel each other, and do not have to be removed by counterterms.
Unfortunately, I cannot tell whether this confidence is justified.

Even if we do not have to worry about divergences, however, gravity still poses a
problem for string theory. The reason is that at present, string theory provides only
a perturbative theory of gravity. Given a background spacetime in which the string
propagates, one can calculate graviton scattering to any order in perturbation theory,
i.e. up to any number of loops. But the metric of the background spacetime is itself,
presumably, a condensate (or coherent state) of some of the massless modes of the
strings propagating in it, since, macroscopically, the metric is the gravitational field.
At present the background spacetime has to be assumed, but clearly this is at best
incomplete. In a deeper and more complete theory, we would expect an explanation
of how the metric of spacetime emerges from the string dynamics.

Another aspect of this problem emerges when we realize that so far we have been
speaking of first quantized strings. The string is given as the basic object, and when
we quantize we get a Hilbert space of states of the string. But this theory can be
reformulated as a string field theory, where the fields are functionals of the string
co-ordinate functions, xµ(σ, t ), as opposed to being functions of spacetime position
as in point particle field theory. But this field theory has two drawbacks. It too is
defined only in perturbation theory, and it has resisted a covariant formulation. It
must be done in a particular co-ordinate system, such as light cone co-ordinates.
Clearly, this too is unsatisfactory.

On the one hand, such non-perturbative objects as monopoles and instantons
emphasize that the content of a field theory is not exhausted by its perturbation
theory. On the other hand, a covariant formulation of a complete string field theory
would (presumably) reveal symmetries of the theory that are hidden by the non-
covariant formulation. Therefore, we can see at least two possible benefits from
having such a covariant string field theory.

First, we should get an explanation of the fundamental interactions of the theory.
For example, the gauge invariance of quantum electrodynamics (QED) explains the
origin of the basic trilinear coupling (Fig. 6.5) between electrons and photons. And
the non-Abelian gauge symmetry of quantum chromodynamics (QCD) explains
why there are four gluon and three gluon self-interaction terms. Unlike the Abelian
field strength,

Fµν = ∂µAν − ∂νAµ,
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Fig. 6.5. Electron–photon coupling in QED: the coupling is ψ̄γuAuψ.

Fig. 6.6. String ‘potentials’ are associative but not commutative: A ∗ B �= B ∗ A.

whose Lagrangian, FµνFµν , contains only kinetic terms like ∂µAν ∂
µAν and no

self-interaction terms, the non-Abelian field strength is

F a
µν = ∂µAa

ν − ∂νAa
µ + gf abc Ab

µAc
ν .

This has the extra piece proportional to [Aµ, Av ], so that it transforms correctly
under the gauge group. And it is this extra piece which gives rise to the new trilinear
and quartic self-interaction terms in the Lagrangian, F a

µνF aµν .
Second, we might get an explanation of the metric in terms of some kind of

symmetry breaking of the field theory. We can illustrate both of these points, in
a stringy context, by looking at a proposal of Witten’s (1986) for a covariant field
theory of open strings.

Witten’s proposal is a generalization of Yang–Mills theory, involving a non-
commutative algebra of string forms. If we write Yang–Mills theory in the language
of forms, then the gauge-invariant action, SYM is

SYM =

∫
tr F ∧ F̂ ,

where F is the gauge field strength 2-form, F = dA + A ∧ A, A is the gauge field
1-form, and F̂ is the dual field strength. As a stringy generalization of F , Witten
writes,

G = QB + B ∗ B,

where G and B are the stringy analogues of F and A, and ∗ generalizes the wedge
product ∧. It is defined by (B ∗ C) = (BL , CR)δ(BR − CL), that is, the left half of
B joins to the right hand of C . By singling out the midpoint we get an associative
product, (A ∗ B) ∗ C = A ∗ (B ∗ C), for parameterized strings, but one that is not
commutative, even up to a sign like the wedge product (Fig. 6.6). Finally, Q plays
the role of the exterior derivative in string form space. Witten identifies it with the
BRST charge.1
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There is no analogue of the dual of a form (we cannot raise and lower indices)
in this formalism, so the closest analogue of SYM for strings would be

∫
G ∗ G

(with
∫

combining integration and taking the trace). But an arbitrary variation
of this vanishes identically, and thus cannot yield any equations of motion. To get
an alternative gauge invariant action, Witten turns to the analogue of the Chern
Simmons three form w , which in Yang–Mills theory obeys, dw = tr F ∧ F . He
postulates the action, S =

∫
w ,

S =

∫
B ∗ QB +

2

3
B ∗ B ∗ B,

which is invariant under the infinitesimal gauge transformation δB = QΛ+ B ∗Λ−
Λ ∗ B (Λ is a zero form gauge function), and under an arbitrary variation yields
the equation of motion G = 0. Unlike Yang–Mills theory, therefore, we have only a
cubic interaction term 2

3 B ∗ B ∗ B.
But perhaps of more interest to us is the fact (Horowitz et al. 1986) that we can

derive Witten’s action from an action containing no kinetic term, by expanding
around a background. We postulate action Sc , containing only the cubic interaction
of S, where Sc is invariant under the infinitesimal gauge transformation δc B =
B ∗ Λ− Λ ∗ B, and δSc = 0 implies the equation of motion B ∗ B = 0.

To obtain Witten’s form of the action we need the fact that each 1-form B
determines a DB given by,

DBC = B ∗ C − (−1)nc C ∗ B,

where nc is an integer. If we then split B into a fluctuation B̃, and background Bo ,

B = Bo + B̃,

and require that Bo satisfies the equation of motion, Bo ∗ Bo = 0, we get,∫
B ∗ B ∗ B =

3

2

∫ (
B̃ ∗ DBo B̃ +

2

3
B̃ ∗ B̃ ∗ B̃

)
.

If δc Bo = 0, then B transforms according to δ under a gauge transformation and for
suitable Bo , DBo = Q. Thus, the recovery of Witten’s action is complete.

The important point for us is that Q depends on the metric. But if we can define∫
and * so that they do not depend on a metric – as in the case of differential forms –

then with the simple cubic action we do not have to assume a background gravity
field or metric. Instead, the metric of spacetime comes from how the fundamental
field B is split (by God?) into a background Bo , and fluctuation B̃.

Earlier, when I said that a precise mathematical formulation of string theory did
not exist yet, this is exactly what I had in mind. Witten’s theory is suggestive, but a
complete satisfactory covariant string field theory does not exist yet. Nonetheless, as
I have tried to show, I think we can get some idea of the ontological implications of
such a theory, namely, that the metric of spacetime is not a fundamental field.

I want to return now to the topics of supersymmetry and extra dimensions, to
amplify the remarks I made earlier. After all, we are discussing the superstring.
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Supersymmetry is a symmetry of a theory (of the action) under a transformation
which changes bosons to fermions, and fermions to bosons. The supersymmetry
transformations are closely connected to spacetime transformations. In particular,
the result of two supersymmetry transformations is a spacetime translation. In
four-dimensional spacetime this is expressed by

{Qα, Qβ} = (σµ)αβPµ,

where Pµ is the four-momentum operator (the generator of translations), Qα the
supersymmetry generators, and σµ the Pauli matrices. This is an important point so
let me try to make it plausible, and illustrate supersymmetry generally, with a simple
example from quantum mechanics.

Consider a system consisting of an harmonic oscillator and a spin- 1
2 fermion.

Then we know that we can represent the harmonic oscillator by annihilation and
creation operators, a and a+, such that [a, a+] = 1, and [a, a] = [a+, a+] = 0. The
Hamiltonian is then, Ha = Na + 1

2 , where Na = a+a is the number operator. If |0〉 is
the ground state, then

a|0〉 = 0, (a+)n|0〉 = (n!)1/2 · |n〉, Na|n〉 = n|n〉.
For the fermion, we introduce the operators b and b+, which obey the anti-

commutators {b, b+} = 1, {b, b} = {b+, b+} = 0. Then if b|0〉 = 0, it follows
that,

|α〉 |β〉
b 0 |α〉

b+ |β〉 0

and b and b+ are annihilation and creation operators for the states |α〉 and |β〉. For
our analogy we will regard |β〉 as a spin- 1

2 state, while |α〉 is the ground state. The
states |n〉|α〉 are then regarded as bosonic, and the |n〉|β〉 as fermionic.

It follows that for this system, Q = a+b changes fermions to bosons, while
Q+ = b+a changes bosons to fermions,

Q|n〉|β〉 = (n + 1)1/2|n + 1〉|α〉,
Q+|n〉|α〉 = (n)1/2|n − 1〉|β〉,

and,

{Q, Q+} = (a+bb+a + b+aa+b) = a+a + b+b,

by [a+, a] = {b, b+} = 1, and [a, a] = [a+, a+] = {b, b} = {b+, b+} = 0. So,

{Q, Q+} = Na + Nb = H .

The Hamiltonian H is the generator of time translations, and we have the analogue
of the relation {Qa , Q̄β} = (σµ)abPµ (note that we are taking Hb = Nb − 1

2 ).
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That the supersymmetry generators form a non-trivial algebra with spacetime
generators suggests that we can interpret a supersymmetry transformation as a
transformation in some sort of an extension or generalization of spacetime. And
this is indeed the case. This extension, called superspace, is obtained by adding
anticommuting spinoral co-ordinates ϑα to the usual spacetime co-ordinates xµ

and then the supersymmetry generator Qα can be expressed in terms of both the
spacetime and spinorial derivatives, ∂/∂xµ and ∂/∂ϑα.

Earlier, we obtained the fermionic string by putting a spinor at each point of
the string world sheet. But this was unmotivated. We had no understanding of
why there should be a fermionic string. But if superspace is the fundamental
manifold, then the co-ordinates of the string will be the superspace co-ordinates
zm = (xµ(σ, τ ),ϑα(σ, τ )). Both xµ and ϑα will be degrees of freedom of the string,
and quantizing the string will mean quantizing both of them.

Since supersymmetry transformations change bosons and fermions into each
other, bosons and fermions occur in the same multiplets (representations) of the
supersymmetry transformations. In our simple example, the multiplets have the
form, (|n〉|α〉, |n− 1〉|β〉), each state in the multiplet having energy n. According to
superstring theory, before compactification the fermionic string in ten dimensions
has supersymmetry. This implies that every bosonic state (particle) has a fermionic
partner of the same mass. But the compactification to four dimensions must break
the supersymmetry because observed particles do not form supersymmetry multi-
plets. Since the supersymmetry generators change the spin by 1

2 , there should be a
scalar electron, a massless spin- 1

2 partner of the photon (this can’t be the neutrino
which interacts weakly, unlike the photon), and a spin- 3

2 partner of the graviton.
None of these super partners has been observed.

Nonetheless, at a fundamental level, there is supersymmetry, and the question
arises as to the ontological significance of this fact. Does the fact that (before sym-
metry breaking) a boson can be transformed into a fermion by the supersymmetry
transformations mean that the two are, at a deeper level, a single particle that can
appear as a boson or a fermion? Or does it just mean that physically the two can
change into each other?

An often expressed point is that matter is composed of fermions (quarks and
leptons), while the forces which hold matter together are bosonic, that is, the inter-
actions are mediated by gauge bosons. The division is not absolutely sharp because
bosonic gluons can self-interact and form glue balls. But that is a minor exception.
If nature is supersymmetric, then force and matter appear in the same multiplets.
But is this really ontological unification?

The answer appears to hinge on how realistically we can (or should) interpret
superspace.2 The 2n + 1 z-components of a particle with spin n (in four dimen-
sions) form a representation of the three-dimensional rotation group. Therefore,
for example, the difference between a spin z = 1

2 electron and z = − 1
2 electron is

that of the orientation of a single particle. And this is so even if the symmetry is
broken by a magnetic field and the two have different energies. But such an inter-
pretation does not work when the symmetry transformations are merely ‘rotations’
in an internal space like isospin space. Because such an internal space is, apparently,
just a mathematical space, the symmetry transformations just represent the fact that
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the particles can be transformed into each other. In the case of supersymmetry,
the appropriate space, as we have seen, is superspace. Whether superspace can (or
should) be interpreted realistically as an extension of spacetime, ontologically on
a par with extending spacetime by adding more (regular) spacetime dimensions,
is a question I find it hard to deal with clearly. In as much as I can, the anticom-
mutator connecting Qα and Pµ argues that it can. Perhaps another relevant point
is the fact, emphasized by Green and Schwartz (1984), that the superstring field is
not a finite polynomial of the ϑα as in the case of ordinary (point particle) super
fields.

This question about superspace is similar to the question I raised at the begin-
ning about the geometrical significance of the gauge connection. These are difficult
interpretive questions, but I think they are important.

Finally, I want to turn to the question I raised earlier, about whether there is any
reason to think string theory may (or will) emerge to replace quantum field theory
as the framework for fundamental physics. It is often pointed out, even by the most
enthusiastic string theorists, that there is absolutely no experimental evidence for
string theory. Partly, no one knows how to calculate precisely anything observable
at conceivable laboratory energies. But also, there is not even qualitative evidence,
such as jets provide for QCD.

But I do not want to dwell on this here. It seems to me that one could be optimistic
about a developing theory, even without such evidence, if there were at least some
clues in either theory or experiment to suggest that the new theory was on the right
track. Unfortunately, even this is lacking in string theory. Let me give some examples
of what I mean here by a ‘clue’ that the theory is on the right track.

I want to mention briefly two examples: general relativity and the SU (2)× U (1)
electroweak theory. In both cases we have a problem which gives a clue to its solution.
For the case of general relativity, a clue emerges when we consider the problem of
trying to fit gravity into flat spacetime (into special relativity). The natural move
would be to consider the gravitational field to be a flat spacetime tensor field on
analogy with the electromagnetic field. But then, gravity would not affect the null
cone structure of spacetime, and either light would not be affected by gravity (since
light worldlines would remain null geodesics in the presence of gravity), or light
would be affected by gravity and light worldlines would be timelike in the presence
of gravity.

However, if we think the connection between special relativity and local inertial
frames is correct, then it would follow both that light is affected by gravity (the
equivalence principle), and that light travels null geodesics. These can be reconciled
only if we give up flat spacetime and postulate that spacetime in the presence of
a gravitational field is curved but locally flat. Even if we did not have the ability
to determine whether or not light is affected by gravity, we would have a clue, or
suggestion to an important part of general relativity.

In the case of the weak interactions, the problem was that the V − A theory of
Feynman and Gell–Mann is non-renormalizable. According to this theory, the weak
interaction has the current–current form J −

µ J +µ, an example of which is pictured
in Fig. 6.7. The current J −

µ is a (electric) charge-lowering operator, here changing
the neutral electron neutrino (ν) into a negatively charged electron (e), while J +

µ
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Fig. 6.7. V − A weak interaction.

is a charge-raising operator, here changing the neutral neutron (n) to the positive
proton (p). And in each case the currents change the electric charge by one unit (the
charge on the electron).

Now the fact that the weak currents are electric charge-raising and lowering
operators certainly suggests a connection between the weak and electromagnetic
interactions. But the electromagnetic interaction is not a current–current point
interaction. Instead, QED is a renormalizable theory in which a gauge vector field
mediates the interaction. So given that there is a connection between the two inter-
actions, a natural thought is to try to gauge the weak interaction as well, hopefully
getting a renormalizable theory. But how do we do this? What is an appropriate
gauge group, and how do we fit the relationship between the two interactions into
this theory? Here is where the weak currents provide another clue.

We know that any continuous group G, with n generators, which is a symmetry
of the weak interactions (of the action) will generate n conserved currents, J a

µ , a =
1, . . . , n. And the spatial integral of the time component of J a

µ will be a generator,
Qa , of the group G,

Qa =

∫
J a

o d3x .

If G is a Lie group, the Qa will satisfy the the Lie algebra of the group. Of relevance
here, we know that SU (2) has the generators La , where L+(−) = L1 ± iL2 are raising
(+) and lowering (−) operators with respect to L3. That is, if the charge of ψ is m,
so that L3ψ = mψ, the charge of L+(−)ψ is m ± 1.

This suggests that SU (2) is a symmetry of the weak interaction, with

J 1
µ = 1

2 (J +
µ + J −

µ ), J 2
µ = 1

2 i(J +
µ − J −

µ ),

forming two of the conserved currents of that symmetry. And there should be a third
conserved neutral current whose time component J 3

o gives us the charge operator,
L3 =

∫
J 3

o d3x . We would like this to be the electromagnetic current. However, when
we use the known particles to form the currents, the generators do not obey the
SU (2) commutation relations.

There are at least two moves we can make, while staying with the basic idea of
SU (2) symmetry. We can postulate the appropriate additional particles so that the
generators close under commutation to form SU (2), as in the theory of Georgi
and Glashow (1972). Or we can try a minimal enlargement of the symmetry
group by adding a U (1) factor, which gives a weak neutral current as well as the
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electromagnetic neutral current. The detection of the weak neutral current in 1973
therefore ruled out the pure SU (2) theory.

This latter example is interesting for us because two things that are often cited in
support of string theory are that it provides (hopefully) a finite theory of quantum
gravity, and that it unifies the fundamental interactions. And if correct, these do
make string theory tremendously interesting. But one thing we have learned from
the many attempts at unified field theories in this century, I would argue, is that
unification, in itself, is not a guide to a successful theory.

Consider the attempts by Einstein, Weyl, Schrödinger, Misner and Wheeler, and
others to fashion a unified geometrical theory of gravity and electromagnetism. All
of these were essentially mathematical investigations, because unlike the two cases
we have just discussed, there were no empirical or theoretical clues as to how such a
unification should take place. Indeed, there was no indication, classically, that such a
unification was needed. After all, electromagnetism, conceived as an antisymmetric
second-rank tensor field in curved spacetime is perfectly compatible with Einstein’s
gravity.

True, Einstein’s gravity is non-renormalizable, while string theory promises to be
a finite theory of quantum gravity. But again, there is not even a hint in what we
know about physics, that this is the right way to get a workable quantum theory of
gravity. Unless we have some reasons for thinking this, I do not think either of our
reasons – providing a unified theory of the fundamental forces, and a finite theory of
gravity – can, by themselves, give us (much) reason for thinking string theory may
(or will) emerge as the fundamental framework for physics.

Undoubtedly, this is because, as I mentioned earlier, string theory at the funda-
mental level is a theory of very high energies, many orders of magnitude greater than
are obtainable in the laboratory. And this raises an interesting question. If there are
no clues in our low-energy world to the high-energy world of strings, how was string
theory discovered? Why did anyone think of it in the first place? A two-paragraph
history follows.

In the late 1960s it was proposed that the strong interactions obeyed duality.
Duality involves the ideas of s-channel and t -channel processes, which are pictured
in Fig. 6.8. In the s-channel the incoming particles combine to form an intermediary
particle, while in the t -channel, the incoming particles exchange an intermediate
particle. If M (s, t ) is the amplitude for a + b → c + d , then duality says that we
can regard M as a sum of s-channel amplitudes or a sum of t -channel amplitudes.

Fig. 6.8. (a)s-channel scattering (s = pa + pb) and (b)t -channel scattering
(t = pa − pb).
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The two are just different ways of describing the same process. (Compare this with
quantum field theory where we have to include both types of diagrams to get the
correct amplitude.)

In 1968, G. Veneziano wrote down a formula for M (s, t ) that actually exhibited
duality. From the analysis of this formula and its generalizations developed the
theory of dual models. Then in the early 1970s, it was shown that all the properties
of the model could be derived from an underlying Lagrangian theory – that of
the relativistic string! However, remember that this was supposed to be a theory
of the strong interactions. By then, QCD was emerging and it became clear that
dual models do not give a correct account of the strong interaction. But in 1974,
Scherk and Schwartz showed that the scattering amplitudes of massless spin two
states of the closed string equals the graviton–graviton scattering amplitudes of
quantum gravity (in the lowest order of approximation). They therefore proposed
reinterpreting string theory as a theory of all interactions, but at the mass scale of
the Planck length, rather than that of the strong interaction.

Thus was string theory born. To my mind, this is the most amazing thing about
string theory – that it exists at all!

Notes

Editors’ note: Tragically, our mentor Robert Weingard died in 1996.
Reprinted with permission from Weingard, R. ‘A Philosopher Looks at String Theory’, in
Proceedings of the Philosophy of Science Association 1988: Volume 2, Fine and Leplin (eds),
1989, pp. 95–106. Copyright 1989, Philosophy of Science Association: permission granted by
University of Chicago Press.

1. Using the BRST charge operator Q we can define a ghost-free spectrum (i.e. no negative norm
states). Namely. Q|ψ〉 = 0 implies 〈ψ|ψ〉 ≥ 0. However, since Q2 = 0, there are zero norm
states. For example, Q|φ〉 has zero norm if |φ〉 is not a physical state (so |φ〉 is not annihilated
by Q).

2. This has been discussed by Redhead (1983) and Weingard (1984).
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It has now been 25 years since Hawking (Hawking 1974, 1975, Bardeen, Carter, and
Hawking 1973) first surprised the world of physics with his analysis of quantum
fields near black holes. Black holes, as their name implies, were believed to be
objects into which things could fall, but out of which nothing could come. They
were the epitome of black and dark objects. However, Hawking’s analysis predicted
that black holes should radiate, the radiation should be continuous and thermal,
and the temperature should be inversely proportional to the mass of the black hole.
Since black holes can also be said to have an energy proportional to their mass, this
result led to opening of a whole new field of black hole thermodynamics.

That black holes could behave like thermodynamic objects had been intimated
by results over the the previous five years. Christodolou (1970), Hawking and Ellis
(1973, especially Lemma 9.2.2), Misner, Thorne, and Wheeler (1973) and Bekenstein
(1973, 1974) had shown that there were certain formal similarities between black
holes and thermodynamic objects. In particular, if one assumed positive energy for
matter (an uncontested assumption), then – as Hawking most clearly showed – the
area of a black hole horizon does not decrease. However, this formal similarity with
entropy, which also does not decrease for an isolated system, did not seem to have any
real relation with thermodynamics. The entropy of a body does not decrease only if
the body is isolated, and not in interaction with any other system. In interaction with
other systems, it can, and often does decrease. Furthermore, for ordinary systems,
entropy and thermodynamics are primarily of interest in situations in which the
system is able to traverse a closed cycle. Black holes on the other hand, have a surface
area which always increases when in interaction with other systems. They could
never engage in a closed thermodynamic cycle.

Hawking’s discovery overturned that picture of black holes. The mass, and thus
also the surface area (which is a function only of the mass) of a black hole could
decrease, by the emission of thermal radiation into the outside world. That thermal
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radiation carries away energy, and thus mass, from the black hole. At least formally,
the emission of energy was accompanied by the absorption of negative energy by
the black hole. This negative energy violated the assumptions of the Christodolou–
Hawking theorems, and could therefore result in the shrinkage of the area of the
black hole. Suddenly the formal analogy of area to entropy seemed far from simply
formal.

This interpretation of the area as an entropy also fits together with the thermal
nature of the emission. Since the black hole has a mass, and thus an energy, and since
the radiation emitted was thermal with a universal temperature which depended only
on the properties of the black hole, and not of the matter fields which were radiated,
one could use the standard thermodynamic relations to derive an entropy:

T dS = dE (7.1)

or

dS

dM
=

1

T
. (7.2)

Since (in the simplest cases) T was only a function of M , one could (up to a
constant of integration) obtain an expression for the entropy. Surprisingly (or not)
this entropy is exactly proportional to the surface area of the black hole. Working in
units where G = h̄ = c = k = 1, this relationship turned out to be just

S =
1

4π
A, (7.3)

where A is the area of the horizon of the black hole.
One thus had the astonishing situation that an entropy (in statistical mechanics,

a measure of microscopic plenitude for a given macroscopic state) arising from
purely quantum considerations was determined by a purely classical macroscopic
non-quantum feature of the black hole, namely its area. The past twenty-five years
have seen a persistent attempt to understand this puzzle, and a persistent failure to
do so. This chapter will outline some of the directions which the attempt to do so
has taken.

This chapter makes no pretense to be an exhaustive catalogue of the many ways
in which people have tried to understand black hole thermodynamics. Instead, it
treads a path which I have followed in trying to attack the problem. As a personal
odyssey, it is thus as idiosyncratic as could be expected. It also will neglect to mention
other approaches, not because I think they should be ignored – they certainly should
not – but because of space limitations, and because I am often not sufficiently expert
to present them here. I thus apologize in advance to both the reader and to my
colleagues for my sins of omission.

In trying to understand black hole thermodynamics, there are at least two separate
things one must try to understand: what causes the radiation which the black hole
gives off and why is that radiation thermal; and how does the entropy fit in with the
standard view we have of the statistical origin of entropy for all systems other than
black holes. My own efforts have concentrated on the former question, and thus
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this chapter will also concentrate on that same question, coming back to the latter
problem in the later sections.

One note about units. I will work throughout in a natural system of units called
Planck units. In these units, the fundamental constants – the velocity of light, Planck’s
constant, Newton’s gravitational constant, and Boltzmann’s constant – all have the
value of unity. In this system of units all dimensioned quantities are expressed in
terms of fundamental units. Thus distances are expressed in units of 1. 6×10−33 cm,
time in units of approximately 5 × 10−44 s, mass in terms of 2. 1 × 10−5 g, and
temperature in terms of 1. 4× 1032 K.

7.1 Thermodynamics of black holes

With Hawking’s calculation, we were faced with the necessity of taking seriously
the idea that black holes were true thermodynamic objects. One of the key uses of
thermodynamics, and the reason for its invention in the nineteenth century, was
its explanation of the operation of heat engines. In particular, the second law of
thermodynamics proved to be very powerful in its predictions concerning what
kinds of engines could be built, and what the ultimate efficiency of any heat engine
was. The limitations imposed on the operations of engines by the second law were
so powerful that they led throughout the past two centuries to persistent attempts
to violate the second law, to create heat engines which were far more efficient in
their conversion of heat to work than was allowed by the strictures of this law. It
has of course been one of the minor embarrassments of physics that no complete
fundamental proof of the second law exists. However, thousands of examples of the
failure of attempts to violate it have given us great confidence in its validity, as do
very strong statistical plausibility arguments.

If black holes are thermodynamic objects, we now have another system which one
can introduce into the operation of a heat engine, and we have to ask once again
whether or not machines which now make use of black holes in a fundamental way
also obey the second law, or whether closed thermodynamic cycles can be found in
the operation of heat machines with black holes which violate that second law.

This investigation began with Bekenstein and Geroch1 well before Hawking’s dis-
covery. When Bekenstein suggested that the Christodolou–Hawking results could be
interpreted as showing that black holes had an entropy, Geroch suggested an exam-
ple of a heat engine which could then be used to violate the second law (including
black holes). Fill a box full of high-entropy radiation. Slowly lower the box toward
the black hole by means of a rope. As the box is lowered, the tension in the rope
far away from the hole can be used to perform work. In an ideal case, the energy
extracted from the box goes as

W = E ·
(

1−
√

1− 2M

R

)
, (7.4)

where R is the radius away from the black hole to which the box has been lowered, M
is the mass of the black hole, and E is the energy in the box. In principle, it would be
possible to lower the box arbitrarily close to the black hole. It would thus be possible
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to extract arbitrarily much of the energy of the radiation in the box in the form of
useful work by lowering the box very very near to the horizon. (The requirements
on the rope that it not break and on the box that it not to crack open are severe, but
since this is an ‘in-principle’ argument, they will be ignored.) Now, once the box
is very near the black hole horizon, open it and allow the radiation to fall into the
black hole. The entropy of the radiation within the box is thus lost to the outside
world. However, the black hole’s entropy increases by an amount proportional to
the energy which falls into the black hole, i.e. the energy of the radiation which has
not been extracted as useful work. Since that remaining energy can be made as small
as desired, the increase in entropy of the black hole is as small as desired, and in
particular it can be made smaller than the entropy lost down the black hole when
the radiation fell in. Thus, the second law could be violated.

Geroch’s argument was basically irrelevant at the time, since black holes could not
engage in a cyclic processes; the black hole always grew bigger. Also, since classical
black holes had no temperature, they could be regarded as zero temperature heat
baths, and it is well known that with a zero temperature heat bath, one can convert
all of the heat energy in any system to useful work.

However, with the advent of Hawking’s discovery of black hole temperatures, this
sanguine dismissal of the problem failed. Black holes could participate in closed
cycles within a heat engine. You just needed to wait until the black hole had radiated
the tiny bit of energy you had deposited into it. Black holes had a finite temperature,
and the laws of thermodynamics dictated a maximum efficiency for the conversion
of energy to work. Geroch’s argument thus became critical. Could this process be
used (in principle) to violate the second law of thermodynamics?

Bekenstein (1981) suggested that the reason that the Geroch argument failed was
because the assumption that one could extract an arbitrary amount of work by
lowering the box arbitrarily near the black hole was wrong. Boxes have finite sizes.
One cannot lower a box closer to the black hole than the vertical dimension of the
box. He postulated that there existed another law of nature, namely that the ratio of
energy to entropy of the box was limited by the dimension of the box, i.e. that for
any system,

S/E <
H

2π
, (7.5)

where H is the minimum dimension of the box. Since the box cannot be lowered to
closer than H from the black hole, we have a limit on the maximum amount of work
which can be extracted during the lowering of the box. Since S is also limited by that
same H we have a limit on the maximum amount of entropy that can be deposited
into the black hole. The factor of 2π is chosen to ensure that this maximum deposited
entropy is less than the increase in area due to the residual unextracted energy left
in the box. It is astonishing that the mass of the black hole does not enter into this
equation. Bekenstein has examined a number of systems, and has found that most
(if not all realistic) in fact obey a bound very similar to this one.

However, his argument ignores the fact that the radiation would tend to gather
at the bottom of the box in the arbitrarily large gravitational field felt by the box
when near the horizon, i.e. the radiation would be nearer the horizon than the
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dimension of the box when it was released. Furthermore, I was always disturbed by
this line of argument. It implies that one must posit a new law of nature (the entropy
to energy bound) in order to rescue the second law of thermodynamics for black
holes. Furthermore, it would seem that there are cases in which one could imagine
this law to be violated. For example, the entropy of a system with given energy
contained within a box, but with N different species of massless particles, is that of
a single species times ln(N ). By making the number of species of massless particles
sufficiently large, one could thus violate the bound. The fact that the real world does
not have this sort of a proliferation of massless particles is surely irrelevant to the
validity of the second law. It seems unlikely that black hole thermodynamics could
be used to place a bound on the number of species of particles.

The framework for an answer came one day at a Texas Symposium in a lunch
lineup, when Kip Thorne and Freeman Dyson posed the Geroch argument to me.
After I had told them of my objections to Bekenstein’s argument, they asked what
a correct answer would be. The glimmering of an answer which came to me then
was developed into a complete argument by Bob Wald and myself (Unruh and
Wald 1982, 1983) the following summer. At the time of Hawking’s work, I had
independently discovered (Unruh 1976) a closely related feature of quantum fields
in flat spacetime (i.e. in the absence of any gravitational field). I had been worried
about how one could define particles in a quantum field theory. Fields are not
particles, and the particle aspects of quantum fields arise as secondary features of
those fields in their interactions with other matter. Due to the quantization of the
energy levels of localized matter, the interaction of that matter with the fields takes
place by the absorption and emission of discrete quanta of energy. It is that process
which makes the field behave as though its excitations were composed of particles.

The question I posed to myself was how one could interpret the excitations of
quantum fields in terms of particles in the presence of strong gravitational fields.
The principle I came up with was that particles should be defined to be that which
particle detectors detect. Although this definition of particles seems to be a tautology,
it focusses attention on a productive aspect of the problem. It is easy to design a
system (at least in principle) which will detect particles when the state of the field is
such that we usually consider it to have particles. One can now take that same detector
and ask how it will respond in novel situations. One can then use that response to
define what one means by particles in that novel situation. If it reacts in the same
way that it would in detecting particles in well-understood situations, we can say
that the field acts as though it were composed of particles in that novel situation.

The novel situation I examined was to accelerate a model of a particle detector
in the vacuum state of the field. Now, an unaccelerated detector in that same state
will see nothing. The detector will not click: it will respond as though there are
no particles present. However, I found that if I examined an accelerated detector
with the field left in exactly that same state, it would respond exactly as though that
state of the field were populated by an isotropic thermal bath of particles. If the
detector is left in contact with that state of the field (and continues in its state of
constant acceleration), it will come into thermal equilibrium with a temperature
just proportional to the acceleration of the detector. That is, an accelerated object
immersed into the vacuum state of the field behaves as though it was in a thermal
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bath of particles of that field, with the temperature equal to

T =
a

2π

h̄

ck
, (7.6)

where I have in this case reintroduced Planck’s constant, the velocity of light, and
Boltzmann’s constant. This temperature is such that it requires an acceleration of
1024 cm/s2 to achieve a temperature of 1 K.

This phenomenon of acceleration radiation can be used to explain why the Geroch
argument does not work. As one lowers the box full of radiation toward the black
hole, one requires a tension in the rope to keep the box from following a geodesic
(straight line) and falling into the black hole: the box must be accelerated to hold
it outside the black hole. This accelerated box thus sees the field outside the box as
though it is in a thermal state with a temperature proportional to the acceleration.
In addition, because it is accelerated, the box also sees itself as being in a gravita-
tional field. Finally, in order that the box hold the radiation inside the box, it must
also exclude the radiation outside. Thus, we have exactly the situation analyzed by
Archimedes in a preprint over 2000 years ago.2 A body immersed in a fluid will suffer
a buoyant force equal to the weight of the displaced fluid. Thus, the box, immersed
in the fluid of that thermal radiation and in the apparent gravitational field due to
its own acceleration, will feel a buoyant force proportional to the weight (in that
apparent gravitational field) of the displaced thermal fluid. Therefore, the tension
in the rope holding the box from falling into the black hole is less than it would be
if that thermal fluid were absent. Since the tension in the rope is less, the energy
extracted by the work done by that tension far away from the black hole as the box
is lowered is also less. In fact, the maximum amount of work extracted occurs not
when the box has been lowered to the horizon (where the acceleration is infinite
and the resultant buoyant force is thus infinite), but when it has been lowered to the
‘floating point’ where the weight of the displaced thermal fluid is just equal to the
weight of the radiation inside the box.

Our calculation showed that the energy remaining to fall down the black hole
(i.e. the total original energy in the box minus the work extracted by lowering the
box) was precisely what was needed to increase the mass of the black hole, and thus
increase its entropy to a value larger than or equal to the entropy contained in the
box. That is, the entropy falling into the black hole in the form of radiation was
always less than the entropy increase of the black hole due to its increase in surface
area. The second law of thermodynamics was valid, even if one included black
holes in the operation of the heat engine. This argument – unlike the Bekenstein
argument – is universally valid, no matter how many species of field one imagines,
since the buoyant force also increases if the box encloses, and thus excludes, more
species of field. Black holes are truly thermodynamic objects: they obey the second
law of thermodynamics.

7.2 A problem in the derivation of black hole evaporation

Despite this beautiful constancy of the black hole thermodynamics, it was clear from
the beginning that the derivation that Hawking gave for the thermal emission from
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black holes was flawed at a very fundamental level. The derivation took the back-
ground gravitational field of a black hole as a given. On this background spacetime,
one looked at the evolution of quantized fields. The first calculations were for scalar
fields, and that is what I will use in this chapter, but the calculations for other fields
quickly followed and gave exactly the same results.

Let us look at how Hawking actually carried out his calculation. While this may
seem to be somewhat technical, it is important to understand why I made the
statement above that his derivation was clearly wrong (even though, as I will argue,
the results are almost certainly correct). A field (a concept first introduced, with
much controversy, into physics by Faraday) is something which exists at all places
in space at all times. It is characterized, not like particles by positions, but rather by
the whole set of values that the field takes at each point in space and at each instant
in time. Those values at different places and times are related to each other via the
equations of motion that the field obeys. The field thus does not move or travel,
but one can talk about excitations – places where the field has non-zero values, or
certain patterns in the values of that the field takes at different points – travelling.
The field, whether classical or quantum, is a deterministic system, in which the field
values now are determined by the values at an earlier time. Since the disturbances
in the field travel, the state of those disturbances is determined by the state of the
disturbances at an earlier time in different places. We are interested in understanding
where the radiation given off by the black hole came from. To do so, we can propagate
those disturbances back in time to see what aspect of the early state of the field must
have caused the disturbance we are interested in. In particular, disturbances which
are now, at late times, coming out of the black hole must have been caused by
disturbances which came in toward the black hole at a much earlier time.

Although the above is a classical description, in which the magnitude of the fields
at each point has some definite value, the same is true of a quantum field where the
amplitude of the field is a quantum operator with the set of all such operators being in
a certain quantum state. The state of the quantum field can be divided into in-going
and out-going parts, the state of the out-going parts having been determined by the
state of the in-going components far in the past. The gravitational field for a black
hole is such that the spacetime becomes flat far from the black hole, and one can thus
use the usual interpretation of the behaviour of quantized fields in a flat spacetime,
as long as one concentrated on the behaviour of the fields far from the black hole.
The in-going part of the fields were assumed to be in the vacuum state, the state of
lowest energy, or the state in which, under the conventional picture, there exist no
particles corresponding to that field. One then uses the field equations to propagate
those fields into the region of the black hole and then back out to become out-going
components of the field in a region far from the black hole again. Far from the black
hole those out-going fields could again be analysed in the conventional way and the
particle content of the resultant out-going state could be determined.

The result was that if one began with the in-going components of the field in its
vacuum state and with some (non-quantized) matter collapsing together to form a
black hole, then very quickly (on a time scale of the light travel time across a distance
corresponding to the circumference of the black hole) the out-going portions of
the quantum field would settle down to a state such that the out-going field looked
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like a thermal state with a temperature of 1/8πM (for a spherically symmetric
black hole).

However, one could, for any particle emitted out of the region of the black hole
(or for any mode of the field), trace back, by use of the equations of motion of the
field, the disturbances which corresponded to that particle to the in-going aspects
of the field which must have created that particle. It was in this determination that
one obtains nonsensical answers. Consider a particle which was emitted from the
black hole at a time t − t0 after the formation of the black hole at time t0. That
particle would have a typical energy of order of 1/M and a wavelength of order
M , the radius of the black hole. However, the initial fluctuations in the field which
must have caused this particle would have had an energy of order (1/M )e(t−t0)/M

and a wavelength of order Me−(t−t0)/M . Let us consider a solar mass black hole, for
which the typical wavelength of the emitted particles would be a few kilometres,
and typical frequency of the order of kilohertz, and consider a particle emitted one
second after the black hole had formed. This emitted excitation of the field must
have had its origin in the incoming fluctuations in the field with a frequency of e104

and wavelength e−104

(units are irrelevant since any known system of units would
make only a negligible change in that exponent of 104). It is clear that at these
scales the very assumptions which went into the derivation are nonsense. At these
frequencies, a single quantum of the field has an energy not only larger than that the
energy of the black hole, but also inconceivably larger than the energy of the whole
universe. At these scales, the assumption that the quantum field is simply a small
perturbation, which does not affect the gravitational field of the black hole, is clearly
wrong: Hawking’s calculation contains its own destruction. If it is correct, all of the
assumptions which were necessary to make his derivation are clearly wrong. But it
is equally clear that his results are far too appealing to be wrong. But how can the
derivation be nonsense, and the results still be correct? This is a puzzle which has
bothered me ever since Hawking’s original paper. The problem of course is that this
derivation (or essentially equivalent ones, like certain analyticity arguments) were
the only evidence for the thermal nature of black holes. Black holes have never been
seen to evaporate, nor are we likely to get any such experimental evidence for the
validity of this result.

Thus, the picture of the origin of black hole radiation painted by the standard
derivation is that we have a mode of the field with such an absurdly high energy.
This mode is in its lowest energy state, the vacuum state and is travelling toward the
region in which the black hole will form. It enters the collapsing matter just before it
forms a black hole. It crosses through the matter, and emerges from the matter just
(exponentially ‘just’ – e−104

s or less) before the horizon forms. It is trapped against
the horizon of the future black hole, exponentially red-shifting, and being torn apart
by the horizon, until finally its frequency and wavelength are of the characteristic
scale of the black hole. At this point part of this mode escapes from the black hole,
leaving part behind to fall into the black hole. The part that escapes is no longer in its
ground, or lowest energy state. Instead it is excited and behaves just like an excitation
which we would associate with a particle coming out of the black hole. Because of the
correlations that existed between the various parts of this mode in the initial state,
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there are correlations between the part of the mode which escapes from the black
hole, and the part left behind inside the black hole. These correlations ensure that
the excitation of the field coming out of the black hole is precisely thermal in nature.

The natural question to ask is whether the predication of thermal radiation really
does depend on this exponential red-shifting, or whether this apparent dependence
is only a result of the approximations made in the derivation. In particular, could
an alteration in the theory at high frequencies and energies destroy the prediction of
thermal evaporation? That is, is the prediction of thermal radiation from black holes
robust against changes to the theory at those high energies which we know must
occur? There seemed to be nothing in that original derivation which would indicate
that the prediction was robust, except for the beauty of the result. (Of course physics is
not supposed to use the appeal of a result as an argument for the truth of that result.)

7.3 Dumb holes

Is there some way of testing the idea that the truth of the thermal emission from
black holes is independent of the obvious absurdity of assuming that the quantum
field theory was valid at arbitrarily high frequencies and short distances? Although
any ultimate answer must depend on our being able to solve for the emission of
radiation in some complete quantum theory of gravity, one can get clues from some
analogous system. One such analogue is what I have called dumb holes, the sonic
equivalent to black holes (Unruh 1980).

Let me introduce the analogy by means of a story. Consider a world in which fish
swimming in an ocean have become physicists. These fish experience their world,
not through sight (they are blind) but through their ears: through sound alone. In
this world there exists a particularly virulent waterfall, in which the water, as it runs
over the falls, achieves a velocity greater than the velocity of sound. This waterfall will
act as an attractor to fish and to sound. Sound waves travelling by this waterfall, will
be pulled toward the waterfall, just as light passing by a star is pulled toward the star
and bent. Fish swimming near this waterfall will be attracted to it. However, as long
as a fish swims outside the boundary surface at which the velocity of water equals
the velocity of sound, its voice and the shouts it makes will travel out to any other
fish also swimming outside that surface. However, the closer the fish comes to the
surface, the longer it will take the sound to get out, since its velocity out is partially
cancelled by the flow of the water over the waterfall; the sound waves are swept over
the falls along with anything else. Now consider a fish which falls over those falls and
calls for help as it does so. The closer to the surface where the velocity of the water
equals the velocity of sound, the slower the effective speed of sound getting out is,
and the longer the sound takes to get out. A sound wave emitted just at the brink of
that surface will take a very long time to escape. Because the sound takes longer and
longer to get out, the frequency of the sound emitted by that fish will be bass-shifted
to lower and lower frequencies. Any sound emitted after the fish passed through the
surface will never get out, and will be swept onto the rocks below along with the fish
itself (for a picture and a description of this process, see Susskind 1997).

This description is very similar to that of light around a black hole. The surface
where the water speed exceeds the velocity of sound is an analogue of the horizon
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of a black hole. The bass-shifting of the sound emitted by a fish falling through
that surface is analogous to the red-shifting of the light emitted by an object falling
through the horizon of a black hole. These dumb holes (holes unable to speak or to
emit sound) are thus an analogue to black holes and, since the physics of fluid flow
is believed to be well understood, an analogue which one could hope to understand
in a way that black holes are not yet understood.

These physicist fish will develop a theory of their surroundings, and in particular
will develop a theory of sound waves very similar to our theory of light within
General Relativity, Einstein’s theory of gravity. This theory will furthermore have in
it structures, these waterfalls, which share many of their features with black holes in
our world.

It is important to point out that there are features of these dumb holes which
are not analogous. If a fish stays stationary outside the waterfall, the frequencies
of its sound are not bass-shifted, while the light from such a stationary source is
red-shifted. The flow of time is not altered by the presence of the waterfall as is the
flow of time in the gravitational field of the black hole. The size of the waterfall, of
the sonic horizon, is not a function of how much matter or energy has fallen over
the falls, while the black hole size is a direct measure of the amount of energy which
has fallen into the black hole. Despite these differences however, the dumb holes
still turn out to be ideal subjects for understanding the quantum behaviour of black
holes.

Let us consider sound waves in slightly more detail. They are small perturbations
in the density and velocity of the background flow of the fluid. As is well known, if
one examines only the lowest-order perturbations around a background fluid flow,
perturbations which represent sound waves in that fluid, then those perturbations
obey a second-order linear partial differential equation. If we furthermore assume
inviscid flow, so that the perturbations are conservative (do not lose energy due to
dissipation) then the equations are homogeneous second-order equations in space
and time derivatives. This can be cast into the form

∂µaµν ∂νΦ = 0, (7.7)

where the tensor aµν depends on the background fluid flow, and Φ is some scalar
such as the density perturbation or the velocity potential. But by defining

g = det(aµν), (7.8)

gµν =
1√
g

aµν , (7.9)

this is cast into the form of the perturbation of a scalar field Φ on a background
metric gµν : the equations of motion for the sound waves on a background fluid
flow obey exactly the same equations as a massless field on a background spacetime
metric. Furthermore, if the fluid flow has a surface on which it becomes supersonic,
the metric associated with that fluid flow is the metric of a black hole with that
supersonic surface as the horizon of the black hole.

Those small perturbations of sound waves in the fluid flow can be quantized just
as can the scalar field on a background metric (quantized sound waves are often
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called phonons). Furthermore, one can use Hawking’s argument to conclude that
such a dumb hole should emit radiation in the form of phonons in exactly the same
way as a black hole will emit thermal radiation. The fish physicists would come up
with a theory that their dumb, sonic, holes would emit thermal radiation, just as
black holes do.

Of course in the case of dumb holes, there is no analogue of the mass or energy
of the dumb hole. The structure of the sonic horizon is just a consequence of the
peculiarities of the flow set-up, and not of the amount of energy that has gone
down the dumb hole. There is no analogy to the energy of a black hole, and the
relationship between that energy and the temperature that occurs with a black hole
does not occur for a dumb hole. Dumb holes would not be thermodynamic objects
as black holes are. They are however hot objects. The temperature of dumb holes is
an exact analogue of the temperature of black holes.

Because of the pivotal role that the temperature plays in black hole thermody-
namics, the existence of a dumb hole temperature makes them a sufficient analogue
of black holes to, one hopes, give us clues as to the origin of the radiation from black
holes. In particular, in the case of black holes we have no idea as to the form that a
correct theory at high energies would have, or at least no idea as to how we could
calculate the effects that the alterations of any such theory at high frequencies would
have on the thermal emission process. However, for dumb holes we have a good idea
as to the correct theory.

Real fluids are made of atoms. We know that once the wavelengths of the sound
waves are of order the interatomic spacing then the fluid picture becomes inappli-
cable. Of course, calculating the behaviour of 1023 atoms in a fluid is as far out of
our reach as is calculating the effects of any putative theory of quantum gravity on
the emission process around black holes. This fact kept me from being able to use
dumb holes to understand black hole thermal emission for over ten years. However,
Jacobson (1991) realized that there are approximations that can be made. One of
the key effects of the atomic nature of matter on the behaviour of sound waves is
to alter the dispersion relation (the relation between wavelength and frequency) of
the sound waves. While sound waves at lower frequencies have a direct proportion-
ality between wavelength and the inverse frequency, just given by a fixed velocity
of sound, at higher frequencies this relation can become much more complex. The
effective velocity of sound at high frequencies can increase or decrease from its value
at low frequencies. Thus, the location of the sonic horizon, which is determined by
where the background flow equals the velocity of sound, can be different at different
frequencies of the sound waves.

This allows one to ask, and answer, the more limited question: ‘If we alter the
dispersion relation of the sound waves at high frequencies, does this alter the predic-
tion of thermal radiation at low frequencies?’ The calculation proceeds in precisely
the same way as it does for a black hole. Consider a wave packet travelling away
from the dumb hole in the future, and at a time when it is far from the dumb hole.
In order to represent a real particle, we choose that wave packet so that it is made
purely of waves with positive frequencies (i.e. their Fourier transform in time at
any position is such that only positive and no negative frequencies non-zero). We
now propagate that wave backward in time, to see what configuration of the field
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would have created that wave packet in the future. Going backward in time, that
wave packet approaches closer and closer to the (sonic) horizon of the dumb hole.
In order to have come from infinity in the past, and if the velocity of sound does not
change with frequency, that wave must remain outside the horizon (nothing from
inside can escape). But in this propagation backward in time, the wave is squeezed
up closer and closer to the horizon, in a process which grows exponentially with
time. It is only when we get to the time at which the sonic hole first formed that
those waves can escape and propagate (backwards in time) back out to infinity. By
that time that exponential squeezing against the horizon has produced a wave with
with an incredibly short wavelength, and thus incredibly high frequency. One can
now analyse that resultant wave packet to see what its frequency components are. In
general they are very high. However, now one can find that that packet which began
with purely positive-frequency components, also has negative-frequency compo-
nents. Those negative-frequency components are a direct measure of the number of
particles which were produced in that mode by the process of passing by the dumb
hole. In particular, Hawking showed for black holes (and the same follows for dumb
holes) that the ratio of amplitudes for those negative- and positive-frequency com-
ponents is given by eω/T , where T is the Hawking Temperature of the black hole,
proportional to the inverse mass of the black hole, or, in our case, is the temperature
of the dumb hole, proportional to the rate of change of velocity of the fluid as it
passes through the dumb hole horizon.

What happens if we change the dispersion relation at high frequencies for the
fluid? In this case, squeezing against the horizon as one propagates the wave packet
back in time no longer occurs to the same extent. As the packet is squeezed, its
frequency goes up and the velocity of sound for that packet changes. What was the
horizon – the place where the fluid flow equals the velocity of sound – is no longer
the horizon for these high-frequency waves. They no longer get squeezed against
the horizon, but rather can once again travel freely and leave the vicinity of that
low-frequency horizon long ‘before’ (remember we are actually going backward in
time in this description so ‘before’ means after in the conventional sense) we get
back to the time at which the dumb hole formed. Again, we can wait until this
wave propagates back to a regime in which the velocity of the water is constant, and
we can take the Fourier transform of these waves. Again, we can measure the ratio
of the positive and negative frequencies in the incoming wave, and determine the
particle creation rate. The astonishing answer I found (Unruh 1995) (and which
has been amply confirmed by for example Jacobson and Corley (1996) in a wide
variety of situations) is that this ratio is again, to a very good approximation, a
thermal factor, with precisely the same temperature as one obtained in the naive
case. The history of that packet is entirely different (for example, it never came
near the time of formation of the dumb hole, as it did in the naive analysis), and
yet the number of particles produced by the interaction with the dumb hole is the
same: i.e. such dumb holes produce thermal radiation despite the drastic alteration
of the behaviour of the fields at high frequencies. This has been calculated for a wide
variety of situations, both where the high-frequency velocity of sound decreases over
its low-frequency value, and where it increases sufficiently that there is no longer any
horizon at high frequencies. The prediction of thermal radiation from a dumb hole
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appears to be remarkably robust and independent of the high-frequency nature of the
theory.

How can this be understood? The calculation, done for example by Hawking,
used exponential red-shifting of the radiation in an essential way. The ultra high-
frequency aspects of the theory appeared to be crucial to the argument. Yet we find
here that it is not crucial at all. All that appears to be crucial is the the low-frequency
behaviour of the theory and the nature of the horizon at low frequencies.

Although the best way of understanding the particle production process by a black
hole or a dumb hole has not yet been found, there are at least hints of a possible
answer. If we examine the history of such a wave packet from the past to the future,
we find that the packet, while near the horizon, suffers an exponential red-shifting.
However, the time scale of the red-shifting is of the order of the inverse temperature
associated with the hole, h̄/kT . When the packet has a very high frequency, that
time scale is very long compared with the inverse frequency of the packet. The
packet sees the effects of this red-shifting as occurring very slowly – adiabatically.
Now, we know that a quantum system undergoing adiabatic change remains in the
state it started in. If the packet started in its ground state, it remains in its ground
state during this adiabatic phase. If the packet began in the vacuum, it remains in
the vacuum. Thus, during most of the red-shifting that occurs near the horizon, or
during the approach of the packet to the horizon, the packet does not notice the
fact that something is happening around it. It gets stretched (red-shifted), but so
slowly that it remains in its vacuum state (zero particle state). However, eventually
it is stretched sufficiently that its frequency is now low enough that the time scale
of red-shifting is of the same order as its inverse frequency. The surroundings now
change rapidly over the timescale of oscillation of the packet, and it begins to change
its state. It is excited from its ground state to a many particle state. Furthermore,
because of the correlations across the horizon at these low frequencies, the particles
which are emitted out toward infinity are in an incoherent, thermal, state.

Appealing as this scenario is, it still needs to be fleshed out via compelling cal-
culations. However, even at this point it strongly supports one conclusion, namely
that the thermal emission process of a black or dumb hole is a low-frequency, low-
energy, long-wavelength phenomenon. Despite the apparent importance of high
frequencies in the naive calculation, it is only aspects of the theory on scales of the
same order as those set by the temperature of the hole (e.g. the inverse mass for
black holes) which are important to the emission of thermal radiation. The thermal
emission is a low-energy, low-frequency, long-wavelength process, and is insensitive
to any short-scale, high-energy or high-frequency physics. This conclusion will play
an important role in the following.

7.4 Entropy and the ‘information paradox’

Having discussed the temperature of black holes, and come to the conclusion that
the thermal radiation is created at low frequencies and long wavelengths outside the
horizon, let us now return to the issue of the entropy of the black hole. All of our
arguments about black holes in the above have been thermodynamic arguments.
Black holes have certain macroscopic attributes of mass (energy) and temperature.
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This is not the place to enter into a detailed discussion of what entropy really is,
but it is important to state the usual relationship of entropy to the internal states
of the system under consideration. For all material objects, the work of Boltzmann,
Maxwell, Gibbs, etc., showed that this thermodynamic quantity of a system could
be related to a counting of the number of microscopic states of a system under the
macroscopic constraints imposed by the mode of operation of the heat engine which
wished to use the system as part of its ‘working fluid’.

This classical analysis of the nature of entropy is closely coupled to the notion
of the deterministic evolution of the system. In the evolution of a system, unique
initial states evolve to unique final states for the ‘universe’ as a whole. In quantum
physics, this is the unitary evolution of the state of the system: orthogonal initial
states must evolve to orthogonal final states. The number of distinct initial states
must be the same as the number of distinct intermediate states, and must equal the
number of final states. These states may (and will in general) differ in the extent to
which a heat engine can differentiate between them. But on a fundamental level the
extent to which each state is different from each other state is conserved throughout
the evolutions. The law of the increase of entropy then arises when one considers a
highly differentiated initial state (as far as the heat engine is concerned). In general
this will evolve to a much less differentiated final state. But in principle, if the heat
engine were sufficiently accurate in its ability to differentiate between the various
states of the system, all systems would evolve with a constant, zero entropy.

However, black holes, as classical objects, have a small number of parameters
describing the exterior spacetime (the spacetime in which a heat engine can oper-
ate), namely the mass, angular momentum, and the variety of long-range charges
which a black hole can support. All aspects of the matter that falls into the black hole
fall into the singularity at its centre, taking the complexity of the structure and state
of that matter with them. The horizon presents a one-way membrane, impervious to
any prying hands, no matter how sophisticated. Arbitrarily complicated initial states
all evolve, if the matter falls into the black hole, into simple final states of a black hole.

Does the situation change in a quantum theory of black holes? One difficulty is
that no such theory exists, making the question difficult to answer definitively, but
one can at least try to understand why the question has proven as difficult to answer
as it has.

Ever since black hole thermodynamics was discovered in the 1970s, attempts
have been made to try to understand black hole entropy in a statistical mechanical
sense. At the semiclassical level, black holes evaporate giving off maximal entropy
thermal radiation, no matter how the black hole was formed. They can however be
formed in a wide variety of ways. Is the emission from black holes truly thermal, and
independent of the formation of the black hole, or are there subtleties in the out-
going radiation which carry off the information as to how the black hole was formed?
If one forms a black hole in two distinct (orthogonal) ways, are the final states, after
the black hole in each case has evaporated, also distinct? The fact that the radiation
in the intermediate times looks thermal is no barrier to this being true. A hot lump
of coal looks superficially as though it is emitting incoherent thermal radiation.
However, we strongly believe that the final states of the radiation field would be
distinct if the initial states which heated up the lump of coal had been distinct.
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How does the situation proceed for that lump of coal? If the coal were heated by
a pure, zero entropy, state initially, how does it come about that finally the radiation
field again has zero (fine-grained) entropy despite the fact that at intermediate
times the coal was emitting apparently thermal incoherent radiation? The answer is
that the coal has an internal memory, in the various states which the constituents of
the coal can assume. When the coal is originally heated by the incoming radiation,
the precise state in which those internal degrees of freedom of the coal are left is
completely and uniquely determined by the state of the heating radiation. The coal
will then emit radiation, in an incoherent fashion: i.e. the radiation emitted will be
probabilistically scattered over a huge variety of ways in which it could be emitted.
However, each way of emitting the radiation will leave the internal state of the coal in
a different, completely correlated state. The coal remembers both how it was heated,
and exactly how it has cooled since that time. Thus as the coal cools, its state will
help determine how the radiation at late times is given off, and that radiation will
then be correlated with what was given off at early times. The state of the emitted
radiation, after the coal has cooled, will look – if looked at in a limited region or
a limited time – as though it were completely incoherent and thermal. However,
there will exist subtle correlations between the radiation in the various regions of
space and at various times. It is those correlations which will make the final state a
unique function of the initial state of the heating radiation. And the possibility of
that final state being uniquely determined is predicated on that coal’s internal state
being uniquely determined by the initial state and the state of the radiation emitted
up to the point of time in question. It is entirely predicated on the coal’s having a
memory (those possible internal states) and on it remembering how it was formed
and how it radiated.

If black holes also behave this way then they also must have a memory, and retain
a memory of how they were formed. Furthermore, that memory must affect the
nature and state of the radiation which is subsequently given off by the black hole.
The radiation given off by the black hole at any time must depend on both the state
of the matter which originally formed the black hole, and the state of the radiation
which has already been given off by the black hole.

Of course the alternative is simply to accept that black holes are different from
other bodies, in that the out-going radiation is unaffected either by how the hole
was formed or by how it has decayed since that time. Black holes would then differ
fundamentally from all other forms of matter. The final incoherent state of the
radiation emitted by a black hole would not be determined by the initial state of
the matter that formed the black hole. All initial states would produce the same
final, incoherent, mixed state. Of course this is of no practical importance, since
those subtle correlations in the emitted radiation responsible for the maintenance
of unitarity from even a small lump of coal are entirely unmeasurable.

In the 1980s Banks, Susskind, and Peskin (1984) presented a reductio ad absurdum
argument that black holes must have a memory, and must preserve unitary evolution.
Their argument was that if the black hole really was a memoryless system, then
the out-going radiation would be what is technically known as Markovian. They
then showed that such a Markovian evaporation process would lead to energy non-
conservation, and furthermore that the energy non-conservation would be extreme
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for small black holes. For black holes of the order of the Plank mass (10−5 g) one
would expect radiation to be emitted in quanta whose energy was also of the order
of that same Plank mass. Furthermore, one might expect virtual quantum processes
to create such Plank mass black holes which would then evaporate creating a severe
energy non-conservation in which one might expect energies of that order to be
liberated. Since that is of the order of a ton of TNT, one could argue that such
non-conservation has been experimentally ruled out, as physicists all might have
noticed the presence of an extra ton of TNT in energy liberated in their labs (or
indeed even non-physicists might have noticed this). Therefore, they concluded
that black holes could not be memoryless: that they must remember how they were
formed. However this argument assumed that black holes remembered nothing, not
even how much energy went into their formation and evaporation. But black holes
clearly have a locus for the memory of the energy, angular momentum, and charge
of their formation, namely in the gravitational and other long-range fields which can
surround a black hole (Unruh and Wald 1995). There is thus no reason in principle
or in experiment why black holes could not be objects very different from other
matter, lacking all memory of their formation (apart from those few bits of memory
stored outside the horizon).

However, many people have found this conclusion too radical to countenance.
While I do not share their horror of black holes being afflicted by this ultimate in
Alzheimer’s disease, it is certainly important to examine the alternatives.3

Various suggestions have been made through the years for a statistical mechanical
origin for the black hole entropy. One suggestion has been that the entropy of a
black hole is equal to the logarithm of the number of distinct ways that the black
hole could have been formed (Thorne, Zurek, and Price 1986). However, this clearly
does not identify any locus of memory for the black hole. It is, in fact, simply a
statement that the black hole obeys the second law of thermodynamics. If the black
hole had many more ways of being formed than the exponential of its entropy, then
one could prepare a state which was an incoherent sum of all of the possible ways
of forming the black hole. The entropy of this state would just be the logarithm of
that number of states. Once the black hole had formed and evaporated, then the
entropy of the resulting matter radiation would just be the entropy of the black hole.
Thus the entropy of matter, under this process, would have decreased, leading to
a violation of the second law of thermodynamics. Similarly, if the entropy of the
black hole were larger than the logarithm of the number of all the possible states
which went into its formation, the entropy of the world would increase under the
evaporation process. However, one of the ways of increasing the size of a black hole
would simply be to reverse the radiation which was emitted back to the black hole:
the time reverse of the emitted radiation is one of the ways of creating the black
hole. Thus the entropy of the emitted radiation also forms a lower bound on the
logarithm of the number of ways of creating the black hole. Thus the statement that
the number of ways of forming a black hole gives a measure of its entropy is simply
a thermodynamic consistency condition, and gives no clues as to the form of the
memory (internal states) of a black hole.

Within the past four years, however, string theorists (originally Strominger and
Vaffa 1996) have suggested that they may have found a statistical origin for the
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black hole entropy, a description of those internal states which would form the
black hole’s memory. These suggestions are as yet only that – suggestions – but they
carry a powerful conviction and hope that they may offer a way of describing black
hole entropy. This hope has been adequately broadcast, so what I wish to do in the
remainder of this chapter is to raise some potential difficulties which may beset this
explanation.

Let me give a cartoon review of the string theory argument. At long distances,
and low energy, one can regard string theory as leading to an effective field theory,
with the various excitations of the strings corresponding to various types of fields.
That low-energy field theory includes gravity, and has, in certain cases, black holes
as solutions. In the case where one demands that these solutions to the low-energy
field theory retain some of the super-symmetries of the string theory, the fields must
be chosen carefully so as to obtain a black hole solution, rather than some singular
solution of the field equations. These super-symmetric black holes have, in addition
to their gravitational field, a combination of other massless fields. These other fields,
like the electromagnetic field, imply that the black hole must also carry certain
charges. The mass of these black holes is furthermore a given function of those
charges. It is not an independent parameter, as it would be for a generic black hole.

If one wishes to create a model for these black holes within string theory, one
requires that the model have sources for those fields, that the configuration of the
strings carries those charges. For some of the fields, such sources were no prob-
lem. They arise in the perturbative form of string theory. However for other fields,
the so-called ‘RR fields’, there was nothing within standard perturbative theory
which carried these RR charges. Polchinski introduced additional structures, called
‘D-Branes’, into string theory precisely to carry those RR charges: to be sources
for the associated fields. D-Branes are higher dimensional surfaces on which open
strings could have their endpoints.4 It is assumed that they will arise in string theory
from non-perturbative effects. However, if super-symmetric black holes were to have
a string theory analogue, that analogue would have to contain not only the standard
strings, but also D-Branes to act as the origin for the charges carried by the black hole.

D-Branes are extended surfaces without edges. In order that the black hole be a
localized object, it is assumed that our ordinary four dimensions (three space and one
time) are all orthogonal to these D-Brane surfaces. In order that the extra dimensions
demanded of string theory not embarrass us by not having been observed, these extra
dimensions (in which the D-Branes stretch) are assumed to be ‘curled up’ so that
travelling a (very small) distance along one of these extra dimensions always brings
one back to the origin. Thus to us, these D-Branes would look as though they were
located at a point (or at least a very small region) of our observable three dimensions
of space.

In a certain limit, one could carry out a calculation of how such an analogue
structure would behave. If one adjusted one of the parameters in the string theory –
the so-called ‘string coupling constant’ – so that the couplings between strings were
turned off, then those D-Branes and their attached strings would constitute a free
gas of particles. The D-Branes would be held together by a coherent collection of
strings which connected them to each other, preserving the localized nature of this
black hole analogue.
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Now one could ask in how many ways the D-Branes be could distributed in order
to produce the same macroscopic total charges. And in how many ways could the
open strings connect the various D-Branes together and to each other? In the weak
coupling limit, since the D-Branes and their attached open strings have a perturbative
description, the number of states of the system could be calculated by solving the
low-energy super-gravity conformal field theory to count the degeneracy of these
states, and thus their entropy. The answer was that the entropy, as a function of the
charges, was precisely the same as the entropy one would have for a super-symmetric,
maximal black hole with those same charges.

Now the string theory analogue is not a black hole. The only way in which
the calculations can be carried out is by assuming that the gravitational constant
(proportional to the string coupling constant) is essentially zero. In that case the
string analogue would be spread out over a region much larger than the radius of
the horizon of the black hole which those charges would form. The string theory
calculation is a calculation in which everything is embedded in a flat spacetime.

As a thermodynamic object, a super-symmetric black hole is anomalous.
Although it can be said to have both entropy and energy, its temperature is identi-
cally zero. It does not evaporate. However, one (Maldecena and Strominger 1997)
can also carry out calculations for the D-Brane model if one goes very slightly away
from the exactly super-symmetric model. In this case both the black hole and the
D-Brane models radiate. The spectrum of the radiation, assuming that the D-Brane
is in thermal equilibrium, is again identical in both cases, and in neither case is it
thermal. In the case of the black hole, this non-thermality is caused by the non-zero
albedo of the black hole. If the wavelength of the radiation is much longer than
the diameter of the black hole, most of the radiation scatters from the curvature
around the black hole, and is not absorbed. By detailed balance, the emitted radi-
ation is suppressed for exactly those components which would have been scattered
if they were incoming radiation. In the D-Brane calculation, the emitted radiation
is caused by the collision of open strings of differing temperatures on the D-Branes.
The astonishing result is that both calculations give the same, very non-trivial result.

Both of these results, the entropy and the low-temperature emission, make one
feel that surely string theory is giving us an insight into the behaviour of black holes.
In the case of D-Branes, the entropy has its origin in the standard way, as a measure of
the number of ways that the internal configuration (fluctuations of the open strings
and configurations of the D-Branes) of the system can vary, constrained by the
macroscopic parameters (the charges). The entropy of the D-Branes is an entropy
of the same type as the entropy of a lump of coal. The D-Brane analogue has a locus
for its memory, that locus being the various configurations of D-Branes and strings
which make up the object.

However, it is again important to emphasize that these D-Brane bound states are
just analogues to black holes, they are not themselves black holes. As one increases the
gravitational constant to a value commensurate with the structure forming a black
hole, perturbative calculations in string theory become impossible.5 Thus the crucial
question becomes ‘does this D-Brane analogue give us an insight into the entropy of
black holes?’ Or is the equality of the entropy calculations – one a thermodynamic
one from the temperature of the radiation given off by the black hole, and the other
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a statistical one from the degeneracy of D-Brane bound states and strings – either an
accident or an indication that in any theory the black hole entropy is the maximum
entropy that any system could have? One could then argue that since the D-Branes
also form such a maximal entropic system, they must have the same entropy as does
the black hole.

The key problem is that if string theory is going to give a statistical origin for
the entropy of a black hole, it must identify the locus of the memory of the black
hole. How can the black hole remember how it was formed and what the state of the
radiation was which was previously emitted by the black hole during its evaporation?
If one believes that some sort of D-Brane structures are responsible for this memory,
where in the black hole are they located? Let us examine some of the possibilities.

(i) Inside the black hole: The interior of the black hole, as a classical object, con-
tains a singularity. While the existence of singularities in string theory is unknown,
the suspicion is that the theory will not be singular. However, in the field theory
description of a charged black hole, it is the singularity which carries the charges
associated with the black hole. It is at the singularity that one would therefore expect
to find the D-Branes, the carriers of the RR charges, in the string theory formula-
tion. While the presence of the D-Branes might well smooth out the singularity, or
make irrelevant the notion of a spacetime in which the singularity lives, one would
expect them to live in the region of the spacetime where the curvatures and field
strengths approach the string scale. In regions where the curvatures and strengths
are much less, the field theory approximation to string theory should be good, and
it contains no sources for the charges of the fields making up the super-symmetric
black hole.

Could D-Branes living at or near the singularity be the location for the black
hole memory (Horowitz and Marolf 1997)? The singularity certainly forms a place
which one would expect to be affected by any matter falling into the black hole or
by the radiation emitted by the black hole. (That emitted radiation, in the standard
calculations, is correlated with radiation which is created inside the horizon and falls
into the singularity.) Thus, the formation and evaporation of the black hole could
certainly affect the memory of the black hole if this is where it was located. However,
to be effective as a source of entropy the memory cannot simply remember, like the
unread books of an academic historian, but must also affect the future behaviour of
the radiation emitted by the black hole. The radiation emitted late in the life of the
black hole must be exquisitely and exactly correlated with the radiation emitted early
in its life, in order that the state of the total radiation field be precisely determined
by the state of the matter which formed the black hole. The memory must affect, in
detail, the radiation which the black hole emits.

But here the low-frequency nature of the emitted radiation gets in the way. As I
argued from the behaviour of the dumb hole, the radiation created by black holes is
insensitive to the high-frequency behaviour and interactions of the radiation fields.
It is a product of the behaviour of the spacetime at the low frequencies and long-
distance scales typical of the black hole (milliseconds and kilometres for a solar mass
black hole). At these scales the classical spacetime picture of the black hole is surely
an accurate one, and at these scales the interior of the black hole is causally entirely
separate from the exterior. Anything happening inside the black hole, at its centre,
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can have no effect on the detailed nature of the radiation emitted. The D-Brane
memory, if it exists at the centre of a black hole, must be sterile.

(ii) Outside the horizon: I have argued above that black holes are not completely
forgetful. They do have a memory for energy, charges, and angular momentum.
Since this memory is encoded in the fields outside the black hole, it would not be
expected to be sterile, but can (and we believe does) have a determining effect on
the emitted radiation. Could not the rest of the memory be encoded in the same
way? Could not the memory of a black hole be in the curvature of the gravitational
field or the structures of the other fields outside the black hole? As stated it would
be hard to use D-Branes, as a black hole carries no RR charges outside the horizon.
However, other string-like structures perhaps could have a wide variety of states for
any macroscopic distribution of the gravitational field.

Let me first give some completely disparate evidence in favour of this possibility,
before expressing my reservations. In the late 1970s, Paul Davies, Steve Fulling, and
I (Davies, Fulling, and Unruh 1976) were looking at the stress–energy tensor of
a massless scalar field in a two-dimensional model spacetime. Now, as a massless
conformal field, the stress–energy tensor obeys the relation that its trace is zero:

gµνTµν = 0. (7.10)

However, when we tried to calculate the expectation value of the tensor it was,
as expected, infinite. By regularizing the value (in that case via ‘point splitting’ –
taking the fields which form Tµν at slightly different locations and looking at the
behaviour of Tµν as the points were brought together) we found that we were faced
with a choice. We could either take the trace to be zero, and then either lose the
conservation equation

Tµν
;ν = 0, (7.11)

or demand that the conservation equation be satisfied and lose the trace-free nature
of Tµν . The most natural choice which follows from the regularization is to keep the
trace-free nature and get

Tµν
;ν = R,µ. (7.12)

That is, the stress–energy tensor is not conserved. However the standard attitude to
this problem is to maintain conservation and allow the trace to be non-zero. This is
the so-called ‘conformal’ or ‘trace anomaly’ (rather than the ‘divergence anomaly’).

However, if we take the other route, namely abandoning conservation, then we
can interpret this equation as saying that in the quantum regime, stress–energy is
created by the curvature of spacetime. This interpretation is especially interesting
because this conservation equation is really all we need in two dimensions to derive
the Hawking radiation. This interpretation would say that the radiation in black hole
evaporation is caused by the curvature of spacetime.

The chief argument against this view is that the expectation of the stress–energy
tensor is supposed to form the right side of Einstein’s equations, and the left side, Gµν

satisfies the conservation law as an identity. However, if the metric gµν is taken as an
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operator, then that identity depends on the commutation of various derivatives of
the metric and the metric itself: Gµν itself does not necessarily obey the conservation
law (the Bianchi identity).

This is not the place to follow this line of reasoning any further (especially since
I am not sure that I have anything else to say). The suggestive point is that this
interpretation would indicate that the source of the black hole radiation is cur-
vature outside the black hole. Short-scale fluctuations in the curvature, due to
the strings and perhaps D-Branes, could then affect the radiation given off by the
black hole.

The problem with this locus for the memory is that it is very hard to see how this
memory could be affected by the matter which formed the black hole, or which is
emitted by the black hole. In particular, the matter which falls into the black hole
would have to leave behind all of the quantum correlations and information which
distinguishes one state from the other. In the case of the long-range fields (coupled
to the mass, charges, and angular momentum), the natural equations of motion of
the fields can retain this information in the external fields. However, in the case of
all of the other aspects of the fields falling in, there is no known mechanism to strip
each of the physical systems of all of their information before they fall into the hole.
(The suggestion that, perhaps, because someone looking at matter falling into the
black hole never sees it ever crossing the horizon, the information never enters the
black hole either, I find very difficult to understand. It would be similar to claiming
that because the fish outside the waterfall never hear the fish actually cross the sonic
horizon of a dumb hole, the fish and all of the information which constitute the fish,
never cross the sonic horizon either.)

We are thus left with the uncomfortable situation that if the memory is located
where it can be affected, it cannot affect the out-going radiation, while if it is located
where it can affect, it is not affected. In either case it is not efficacious as memory for
allowing the black hole entropy to be explainable as having a statistical origin.

(iii) Inside and Outside: There is of course one other possibility, namely that
the memory is located at both the centre and outside at the same time, i.e. that
the memory is non-local, in two causally separated (at least at low frequencies and
wavelengths) places at once (Susskind and Uglum 1994). For a solar mass black
hole this would require a non-locality over distances of kilometres. The structure of
the stringy world, acting on macroscopic low-energy phenomena, would have to be
such that a single item could exist in two places, separated by a kilometre, and have
macroscopic effects (although very subtle and long time scale) over those distances.
This is very hard to accept, and would require a radical alteration of our views of
how the world operates.

7.5 Conclusion

Black hole evaporation presents us still, twenty-five years after its discovery, with
some fascinating and frustrating problems. What causes the radiation? Why do
black holes behave like thermodynamic objects? What is the link, if any, between the
thermodynamics of black holes and the statistical origin of all other thermodynamic
systems?
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Dumb holes, the sonic analogue of black holes, suggest that any ultimate under-
standing of the thermal radiation must concentrate on its creation as a low-energy,
large length–scale, phenomenon. The radiation is created on scales of the order of
the size of the black hole, and at time scales of the order of the light crossing time
for the black hole, by the non-adiabatic nature of the black hole spacetime seen by
the fields at such scales.

On the other hand, the only candidate we have for a statistical origin for the black
hole thermodynamics, D-Branes and strings, are phenomena at the string scale (the
Planck scale). If they are, as would naturally be expected, located inside the horizon,
there seems no way that they could affect the low-energy radiation given off outside
the horizon. If they correspond to structures lying outside the black hole, it is difficult
to see how they could strip off all of the information from matter falling into the
black hole.

As with all situations in which alternative explanations for a phenomenon lead to
contradictory conclusions and where we do not really understand the physics, this
paradox holds within itself the chance that it will uncover fundamental alterations
in our view of physics. Black holes are a far from dead subject, and their under-
standing will lead to some crucial changes in our understanding of nature and our
philosophical stance toward what a physical explanation can look like. Truly, black
holes form one of the key frontiers where philosophy and physics meet at the Planck
scale.

Notes

I would like to thank a number of people with whom I have discussed these issues. In addition
to my collaborators (I would especially single out Bob Wald) through the years, I would thank
Gary Horowitz for explaining to me much of what little I know about string theory, both in
discussions and in his papers. I also thank Lenny Susskind for being a goad. We often disagree,
but I at least have learned a lot in trying to understand why I disagree. Finally, I would like to
thank N. Hambli for reading earlier versions and preventing me from making at least some
mistakes in string theory I would otherwise have done. (All remaining mistakes are my fault,
not his.) I would thank the Canadian Institute for Advanced Research for their salary support
throughout the past 15 years, and the Natural Science and Engineering Research Council for
their support of the costs of my research.

1. Geroch presented a model for extracting all of the energy of a system by lowering it into a
black hole in a colloquium at Princeton University in 1972.

2. ‘Oχoυµένωνά’. For an English translation of a Latin translation (by William of Moerbeck in
1269) see ‘On Floating Bodies’ in Heath (1897).

3. For an extensive analysis of the possibilities for the ‘loss of information’ by black holes, see the
review paper by Page (1994). He makes many of the points I do (though pre D-Branes) and
gives a calculation of how the correlations in the out-going radiation could contain details of
the initial state, despite the apparent thermal and random character of emission process.

4. For a pedagogical (though technical) discussion of D-Branes, see Polchinski (1998).
5. Horowitz and Polchinski (1997) argue that one would expect the entropy of an excited string

to (of order of magnitude) smoothly join to the entropy of a black hole as one increased the
string coupling, and thus the gravity, from zero: even in the strongly coupled regime, the
string entropy and the black hole entropy should be comparable.
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8 Higher-dimensional algebra and
Planck scale physics

John C. Baez

8.1 Introduction

At present, our physical worldview is deeply schizophrenic. We have, not one, but two
fundamental theories of the physical universe: general relativity, and the Standard
Model of particle physics based on quantum field theory. The former takes grav-
ity into account but ignores quantum mechanics, while the latter takes quantum
mechanics into account but ignores gravity. In other words, the former recognizes
that spacetime is curved but neglects the uncertainty principle, while the latter
takes the uncertainty principle into account but pretends that spacetime is flat. Both
theories have been spectacularly successful in their own domain, but neither can be
anything more than an approximation to the truth. Clearly some synthesis is needed:
at the very least, a theory of quantum gravity, which might or might not be part of an
overarching ‘theory of everything’. Unfortunately, attempts to achieve this synthesis
have not yet succeeded.

Modern theoretical physics is difficult to understand for anyone outside the sub-
ject. Can philosophers really contribute to the project of reconciling general relativity
and quantum field theory? Or is this a technical business best left to the experts?
I would argue for the former. General relativity and quantum field theory are based
on some profound insights about the nature of reality. These insights are crystallized
in the form of mathematics, but there is a limit to how much progress we can make
by just playing around with this mathematics. We need to go back to the insights
behind general relativity and quantum field theory, learn to hold them together in
our minds, and dare to imagine a world more strange, more beautiful, but ultimately
more reasonable than our current theories of it. For this daunting task, philosophical
reflection is bound to be of help.

However, a word of warning is in order. The paucity of experimental evidence con-
cerning quantum gravity has allowed research to proceed in a rather unconstrained
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manner, leading to divergent schools of opinion. If one asks a string theorist about
quantum gravity, one will get utterly different answers than if one asks someone
working on loop quantum gravity or some other approach. To make matters worse,
experts often fail to emphasize the difference between experimental results, theories
supported by experiment, speculative theories that have gained a certain plausibility
after years of study, and the latest fads. Philosophers must take what physicists say
about quantum gravity with a grain of salt.

To lay my own cards on the table, I should say that as a mathematical physicist with
an interest in philosophy, I am drawn to a strand of work that emphasizes ‘higher-
dimensional algebra’. This branch of mathematics goes back and reconsiders some of
the presuppositions that mathematicians usually take for granted, such as the notion
of equality and the emphasis on doing mathematics using one-dimensional strings
of symbols. Starting in the late 1980s, it became apparent that higher-dimensional
algebra is the correct language to formulate so-called ‘topological quantum field
theories’. More recently, various people have begun to formulate theories of quantum
gravity using ideas from higher-dimensional algebra. While they have tantalizing
connections to string theory, these theories are best seen as an outgrowth of loop
quantum gravity.

The plan of this chapter is as follows. In Section 8.2, I begin by recalling why some
physicists expect general relativity and quantum field theory to collide at the Planck
length. This is a unit of distance concocted from three fundamental constants: the
speed of light c , Newton’s gravitational constant G, and Planck’s constant h̄. General
relativity idealizes reality by treating Planck’s constant as negligible, while quantum
field theory idealizes it by treating Newton’s gravitational constant as negligible. By
analysing the physics of c , G, and h̄, we get a glimpse of the sort of theory that
would be needed to deal with situations where these idealizations break down. In
particular, I shall argue that we need a background-free quantum theory with local
degrees of freedom propagating causally.

In Section 8.3, I discuss ‘topological quantum field theories’. These are the first
examples of background-free quantum theories, but they lack local degrees of free-
dom. In other words, they describe imaginary worlds in which everywhere looks
like everywhere else! This might at first seem to condemn them to the status of
mathematical curiosities. However, they suggest an important analogy between the
mathematics of spacetime and the mathematics of quantum theory. I argue that this
is the beginning of a new bridge between general relativity and quantum field theory.

In Section 8.4, I describe one of the most important examples of a topological
quantum field theory: the Turaev–Viro model of quantum gravity in three-
dimensional spacetime. This theory is just a warm-up for the four-dimensional case
that is of real interest in physics. Nonetheless, it has some startling features which
perhaps hint at the radical changes in our worldview that a successful synthesis of
general relativity and quantum field theory would require.

In Section 8.5, I discuss the role of higher-dimensional algebra in topological
quantum field theory. I begin with a brief introduction to categories. Category
theory can be thought of as an attempt to treat processes (or ‘morphisms’) on an
equal footing with things (or ‘objects’), and it is ultimately for this reason that it serves
as a good framework for topological quantum field theory. In particular, category
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theory allows one to make the analogy between the mathematics of spacetime and
the mathematics of quantum theory quite precise. But to fully explore this analogy
one must introduce ‘n-categories’, a generalization of categories that allows one
to speak of processes between processes between processes . . . and so on to the
nth degree. Since n-categories are purely algebraic structures but have a natural
relationship to the study of n-dimensional spacetime, their study is sometimes called
‘higher-dimensional algebra’.

Finally, in Section 8.6 I briefly touch upon recent attempts to construct theories of
four-dimensional quantum gravity using higher-dimensional algebra. This subject
is still in its infancy. Throughout the chapter, but especially in this last section, the
reader must turn to the references for details. To make the bibliography as useful
as possible, I have chosen references of an expository nature whenever they exist,
rather than always citing the first paper in which something was done.

8.2 The Planck length

Two constants appear throughout general relativity: the speed of light c and Newton’s
gravitational constant G. This should be no surprise, since Einstein created general
relativity to reconcile the success of Newton’s theory of gravity, based on instan-
taneous action at a distance, with his new theory of special relativity, in which no
influence travels faster than light. The constant c also appears in quantum field
theory, but paired with a different partner: Planck’s constant h̄. The reason is that
quantum field theory takes into account special relativity and quantum theory, in
which h̄ sets the scale at which the uncertainty principle becomes important.

It is reasonable to suspect that any theory reconciling general relativity and quan-
tum theory will involve all three constants c , G, and h̄. Planck noted that apart from
numerical factors there is a unique way to use these constants to define units of
length, time, and mass. For example, we can define the unit of length now called the
‘Planck length’ as follows:

�P =

√
h̄G

c3
.

This is extremely small: about 1. 6 × 10−35 m. Physicists have long suspected that
quantum gravity will become important for understanding physics at about this
scale. The reason is very simple: any calculation that predicts a length using only
the constants c , G, and h̄ must give the Planck length, possibly multiplied by an
unimportant numerical factor like 2π.

For example, quantum field theory says that associated to any mass m there is a
length called its Compton wavelength, �C , such that determining the position of a
particle of mass m to within one Compton wavelength requires enough energy to
create another particle of that mass. Particle creation is a quintessentially quantum-
field-theoretic phenomenon. Thus, we may say that the Compton wavelength sets
the distance scale at which quantum field theory becomes crucial for understanding
the behaviour of a particle of a given mass. On the other hand, general relativity says
that associated to any mass m there is a length called the Schwarzschild radius, �S ,
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such that compressing an object of mass m to a size smaller than this results in the
formation of a black hole. The Schwarzschild radius is roughly the distance scale
at which general relativity becomes crucial for understanding the behaviour of an
object of a given mass. Now, ignoring some numerical factors, we have

�C =
h̄

mc

and

�S =
Gm

c2
.

These two lengths become equal when m is the Planck mass. And when this happens,
they both equal the Planck length!

At least naively, we thus expect that both general relativity and quantum field
theory would be needed to understand the behaviour of an object whose mass
is about the Planck mass and whose radius is about the Planck length. This not
only explains some of the importance of the Planck scale, but also some of the
difficulties in obtaining experimental evidence about physics at this scale. Most of
our information about general relativity comes from observing heavy objects like
planets and stars, for which �S � �C . Most of our information about quantum
field theory comes from observing light objects like electrons and protons, for which
�C � �S . The Planck mass is intermediate between these: about the mass of a largish
cell. But the Planck length is about 10−20 times the radius of a proton! To study a
situation where both general relativity and quantum field theory are important, we
could try to compress a cell to a size 10−20 times that of a proton. We know no reason
why this is impossible in principle, but we have no idea how to actually accomplish
such a feat.

There are some well-known loopholes in the above argument. The ‘unimportant
numerical factor’ I mentioned above might actually be very large, or very small.
A theory of quantum gravity might make testable predictions of dimensionless
quantities like the ratio of the muon and electron masses. For that matter, a theory
of quantum gravity might involve physical constants other than c , G, and h̄. The
latter two alternatives are especially plausible if we study quantum gravity as part of a
larger theory describing other forces and particles. However, even though we cannot
prove that the Planck length is significant for quantum gravity, I think we can glean
some wisdom from pondering the constants c , G, and h̄ – and more importantly,
the physical insights that lead us to regard these constants as important.

What is the importance of the constant c? In special relativity, what matters is the
appearance of this constant in the Minkowski metric

ds2 = c2 dt 2 − dx2 − dy2 − dz2

which defines the geometry of spacetime, and in particular the lightcone through
each point. Stepping back from the specific formalism here, we can see several
ideas at work. First, space and time form a unified whole which can be thought of
geometrically. Second, the quantities whose values we seek to predict are localized.
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That is, we can measure them in small regions of spacetime (sometimes idealized
as points). Physicists call such quantities ‘local degrees of freedom’. And third, to
predict the value of a quantity that can be measured in some region R, we only need
to use values of quantities measured in regions that stand in a certain geometrical
relation to R. This relation is called the ‘causal structure’ of spacetime. For example,
in a relativistic field theory, to predict the value of the fields in some region R, it
suffices to use their values in any other region that intersects every timelike path
passing through R. The common way of summarizing this idea is to say that nothing
travels faster than light. I prefer to say that a good theory of physics should have local
degrees of freedom propagating causally.

In Newtonian gravity, G is simply the strength of the gravitational field. It takes on
a deeper significance in general relativity, where the gravitational field is described
in terms of the curvature of the spacetime metric. Unlike in special relativity, where
the Minkowski metric is a ‘background structure’ given a priori, in general relativity
the metric is treated as a field which not only affects, but also is affected by, the other
fields present. In other words, the geometry of spacetime becomes a local degree of
freedom of the theory. Quantitatively, the interaction of the metric and other fields
is described by Einstein’s equation

Gµν = 8πGTµν ,

where the Einstein tensor Gµν depends on the curvature of the metric, while the
stress–energy tensor Tµν describes the flow of energy and momentum due to all
the other fields. The role of the constant G is thus simply to quantify how much
the geometry of spacetime is affected by other fields. Over the years, people have
realized that the great lesson of general relativity is that a good theory of physics
should contain no geometrical structures that affect local degrees of freedom while
remaining unaffected by them. Instead, all geometrical structures – and in particular
the causal structure – should themselves be local degrees of freedom. For short, one
says that the theory should be background-free.

The struggle to free ourselves from background structures began long before
Einstein developed general relativity, and is still not complete. The conflict between
Ptolemaic and Copernican cosmologies, the dispute between Newton and Leibniz
concerning absolute and relative motion, and the modern arguments concerning the
‘problem of time’ in quantum gravity – all are but chapters in the story of this struggle.
I do not have room to sketch this story here, nor even to make more precise the all-
important notion of ‘geometrical structure’. I can only point the reader towards the
literature, starting perhaps with the books by Barbour (1989) and Earman (1989),
various papers by Rovelli (1991, 1997), and the many references therein.

Finally, what of h̄? In quantum theory, this appears most prominently in the
commutation relation between the momentum p and position q of a particle:

pq − qp = −ih̄,

together with similar commutation relations involving other pairs of measurable
quantities. Because our ability to measure two quantities simultaneously with com-
plete precision is limited by their failure to commute, h̄ quantifies our inability
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to simultaneously know everything one might choose to know about the world.
But there is far more to quantum theory than the uncertainty principle. In prac-
tice, h̄ comes along with the whole formalism of complex Hilbert spaces and linear
operators.

There is a widespread sense that the principles behind quantum theory are poorly
understood compared to those of general relativity. This has led to many discussions
about interpretational issues. However, I do not think that quantum theory will
lose its mystery through such discussions. I believe the real challenge is to better
understand why the mathematical formalism of quantum theory is precisely what it
is. Research in quantum logic has done a wonderful job of understanding the field of
candidates from which the particular formalism we use has been chosen. But what is
so special about this particular choice? Why, for example, do we use complex Hilbert
spaces rather than real or quaternionic ones? Is this decision made solely to fit the
experimental data, or is there a deeper reason? Since questions like this do not yet
have clear answers, I shall summarize the physical insight behind h̄ by saying simply
that a good theory of the physical universe should be a quantum theory – leaving
open the possibility of eventually saying something more illuminating.

Having attempted to extract the ideas lying behind the constants c ,G, and h̄, we
are in a better position to understand the task of constructing a theory of quantum
gravity. General relativity acknowledges the importance of c and G, but idealizes
reality by treating h̄ as negligibly small. From our discussion above, we see that
this is because general relativity is a background-free classical theory with local
degrees of freedom propagating causally. On the other hand, quantum field theory
as normally practised acknowledges c and h̄ but treats G as negligible, because it is a
background-dependent quantum theory with local degrees of freedom propagating
causally.

The most conservative approach to quantum gravity is to seek a theory that com-
bines the best features of general relativity and quantum field theory. To do this,
we must try to find a background-free quantum theory with local degrees of freedom
propagating causally. While this approach may not succeed, it is definitely worth
pursuing. Given the lack of experimental evidence that would point us towards fun-
damentally new principles, we should do our best to understand the full implications
of the principles we already have!

From my description of the goal one can perhaps see some of the difficulties. Since
quantum gravity should be background-free, the geometrical structures defining
the causal structure of spacetime should themselves be local degrees of freedom
propagating causally. This much is already true in general relativity. But because
quantum gravity should be a quantum theory, these degrees of freedom should be
treated quantum-mechanically. So at the very least, we should develop a quantum
theory of some sort of geometrical structure that can define a causal structure on
spacetime.

String theory has not gone far in this direction. This theory is usually formulated
with the help of a metric on spacetime, which is treated as a background structure
rather than a local degree of freedom like the rest. Most string theorists recognize
that this is an unsatisfactory situation, and by now many are struggling towards a
background-free formulation of the theory. However, in the words of two experts,
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‘it seems that a still more radical departure from conventional ideas about space
and time may be required in order to arrive at a truly background independent
formulation’ (Helling and Nicolai 1998).

Loop quantum gravity has gone a long way towards developing a background-free
quantum theory of the geometry of space (Ashtekar 1999, Rovelli 1998b), but not so
far when it comes to spacetime. This has made it difficult to understand dynamics,
and in particular the causal propagation of degrees of freedom. Work in earnest on
these issues has begun only recently. One reason for optimism is the recent success
in understanding quantum gravity in three spacetime dimensions. But to explain
this, I must first say something about topological quantum field theory.

8.3 Topological quantum field theory

Besides general relativity and quantum field theory as usually practised, a third sort
of idealization of the physical world has attracted a great deal of attention during the
past decade. These are called topological quantum field theories, or ‘TQFTs’. In the
terminology of the previous section, a TQFT is a background-free quantum theory
with no local degrees of freedom.1

A good example is quantum gravity in three-dimensional spacetime. First let us
recall some features of classical gravity in three-dimensional spacetime. Classically,
Einstein’s equations predict qualitatively very different phenomena depending on
the dimension of spacetime. If spacetime has four or more dimensions, Einstein’s
equations imply that the metric has local degrees of freedom. In other words, the
curvature of spacetime at a given point is not completely determined by the flow
of energy and momentum through that point: it is an independent variable in its
own right. For example, even in the vacuum, where the energy–momentum tensor
vanishes, localized ripples of curvature can propagate in the form of gravitational
radiation. In three-dimensional spacetime, however, Einstein’s equations suffice to
completely determine the curvature at a given point of spacetime in terms of the
flow of energy and momentum through that point. We thus say that the metric has
no local degrees of freedom. In particular, in the vacuum the metric is flat, so every
small patch of empty spacetime looks exactly like every other.

The absence of local degrees of freedom makes general relativity far simpler in
three-dimensional spacetime than in higher dimensions. Perhaps surprisingly, it is
still somewhat interesting. The reason is the presence of ‘global’ degrees of freedom.
For example, if we chop a cube out of flat three-dimensional Minkowski space and
form a three-dimensional torus by identifying the opposite faces of this cube, we
get a spacetime with a flat metric on it, and thus a solution of the vacuum Einstein
equations. If we do the same starting with a larger cube, or a parallelipiped, we
get a different spacetime that also satisfies the vacuum Einstein equations. The
two spacetimes are locally indistinguishable, since locally both look just like flat
Minkowski spacetime. However, they can be distinguished globally – for example,
by measuring the volume of the whole spacetime, or studying the behaviour of
geodesics that wrap all the way around the torus.

Since the metric has no local degrees of freedom in three-dimensional gen-
eral relativity, this theory is much easier to quantize than the physically relevant
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four-dimensional case. In the simplest situation, where we consider ‘pure’ gravity
without matter, we obtain a background-free quantum field theory with no local
degrees of freedom whatsoever: a TQFT.

I shall say more about three-dimensional quantum gravity in Section 8.4. To set
the stage, let me sketch the axiomatic approach to topological quantum field theory
proposed by Atiyah (1990). My earlier definition of a TQFT as a ‘background-free
quantum field theory with no local degrees of freedom’ corresponds fairly well to
how physicists think about TQFTs. But mathematicians who wish to prove theorems
about TQFTs need to start with something more precise, so they often use Atiyah’s
axioms.

An important feature of TQFTs is that they do not presume a fixed topology for
space or spacetime. In other words, when dealing with an n-dimensional TQFT, we
are free to choose any (n − 1)-dimensional manifold to represent space at a given
time2. Moreover given two such manifolds, say S and S′, we are free to choose any
n-dimensional manifold M to represent the portion of spacetime between S and S′,
as long as the boundary of M is the union of S and S′. Mathematicians call M a
‘cobordism’ from S to S′. We write M : S → S′, because we may think of M as the
process of time passing from the moment S to the moment S′.

For example, in Fig. 8.1 we depict a two-dimensional manifold M going from
a one-dimensional manifold S (a pair of circles) to a one-dimensional manifold S′

(a single circle). Crudely speaking, M represents a process in which two separate
spaces collide to form a single one! This may seem outré, but these days physicists
are quite willing to speculate about processes in which the topology of space changes
with the passage of time. Other forms of topology change include the formation of
a wormhole, the appearance of the universe in a ‘big bang’, or its disappearance in a
‘big crunch’.

There are various important operations that one can perform on cobordisms, but
I will only describe two. First, we may ‘compose’ two cobordisms M : S → S′ and
M ′ : S′ → S′′, obtaining a cobordism M ′M : S → S′′, as illustrated in Fig. 8.2. The
idea here is that the passage of time corresponding to M followed by the passage of
time corresponding to M ′ equals the passage of time corresponding to M ′M . This is
analogous to the familiar idea that waiting t seconds followed by waiting t ′ seconds is
the same as waiting t + t ′ seconds. The big difference is that in topological quantum

Fig. 8.1. A cobordism.
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Fig. 8.2. Composition of cobordisms.

Fig. 8.3. An identity cobordism.

field theory we cannot measure time in seconds, because there is no background
metric available to let us count the passage of time! We can only keep track of
topology change. Just as ordinary addition is associative, composition of cobordisms
satisfies the associative law:

(M ′′M ′)M = M ′′(M ′M ).

However, composition of cobordisms is not commutative. As we shall see, this is
related to the famous non-commutativity of observables in quantum theory.

Second, for any (n − 1)-dimensional manifold S representing space, there is a
cobordism 1S : S → S called the ‘identity’ cobordism, which represents a passage
of time without any topology change. For example, when S is a circle, the identity
cobordism 1S is a cylinder, as shown in Fig. 8.3. In general, the identity cobordism
1S has the property that for any cobordism M : S′ → S we have

1SM = M ,
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while for any cobordism M : S → S′ we have

M1S = M .

These properties say that an identity cobordism is analogous to waiting 0 seconds:
if you wait 0 seconds and then wait t more seconds, or wait t seconds and then wait
0 more seconds, this is the same as waiting t seconds.

These operations just formalize the notion of ‘the passage of time’ in a context
where the topology of spacetime is arbitrary and there is no background metric.
Atiyah’s axioms relate this notion to quantum theory as follows. First, a TQFT must
assign a Hilbert space Z (S) to each (n − 1)-dimensional manifold S. Vectors in this
Hilbert space represent possible states of the universe given that space is the manifold
S. Second, the TQFT must assign a linear operator Z (M ) : Z (S) → Z (S′) to each
n-dimensional cobordism M : S → S′. This operator describes how states change
given that the portion of spacetime between S and S′ is the manifold M . In other
words, if space is initially the manifold S and the state of the universe is ψ, after the
passage of time corresponding to M the state of the universe will be Z (M )ψ.

In addition, the TQFT must satisfy a list of properties. Let me just mention two.
First, the TQFT must preserve composition. That is, given cobordisms M : S → S′

and M ′ : S′ → S′′, we must have

Z (M ′M ) = Z (M ′)Z (M ),

where the right-hand side denotes the composite of the operators Z (M ) and Z (M ′).
Second, it must preserve identities. That is, given any manifold S representing space,
we must have

Z (1S) = 1Z (S),

where the right-hand side denotes the identity operator on the Hilbert space Z (S).
Both these axioms are eminently reasonable if one ponders them a bit. The first

says that the passage of time corresponding to the cobordism M followed by the
passage of time corresponding to M ′ has the same effect on a state as the combined
passage of time corresponding to M ′M . The second says that a passage of time in
which no topology change occurs has no effect at all on the state of the universe.
This seems paradoxical at first, since it seems we regularly observe things happening
even in the absence of topology change. However, this paradox is easily resolved: a
TQFT describes a world quite unlike ours, one without local degrees of freedom. In
such a world, nothing local happens, so the state of the universe can only change
when the topology of space itself changes.3

The most interesting thing about the TQFT axioms is their common formal
character. Loosely speaking, they all say that a TQFT maps structures in differential
topology – by which I mean the study of manifolds – to corresponding structures
in quantum theory. In devising these axioms, Atiyah took advantage of a powerful
analogy between differential topology and quantum theory, summarized in Table
8.1.

I shall explain this analogy between differential topology and quantum theory
further in Section 8.5. For now, let me just emphasize that this analogy is exactly the
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Table 8.1. Analogy between differential topology and quantum theory

Differential topology Quantum theory

(n − 1)-dimensional manifold (space) Hilbert space (states)
cobordism between (n − 1)-dimensional operator (process)

manifolds (spacetime)
composition of cobordisms composition of operators
identity cobordism identity operator

sort of clue we should pursue for a deeper understanding of quantum gravity. At first
glance, general relativity and quantum theory look very different mathematically:
one deals with space and spacetime, the other with Hilbert spaces and operators.
Combining them has always seemed a bit like mixing oil and water. But topolog-
ical quantum field theory suggests that perhaps they are not so different after all!
Even better, it suggests a concrete programme of synthesizing the two, which many
mathematical physicists are currently pursuing. Sometimes this goes by the name of
‘quantum topology’ (Baadhio and Kauffman 1993, Turaev 1994).

Quantum topology is very technical, as anything involving mathematical physi-
cists inevitably becomes. But if we stand back a moment, it should be perfectly
obvious that differential topology and quantum theory must merge if we are to
understand background-free quantum field theories. In physics that ignores general
relativity, we treat space as a background on which states of the world are displayed.
Similarly, we treat spacetime as a background on which the process of change occurs.
But these are idealizations which we must overcome in a background-free theory.
In fact, the concepts of ‘space’ and ‘state’ are two aspects of a unified whole, and
likewise for the concepts of ‘spacetime’ and ‘process’. It is a challenge, not just for
mathematical physicists, but also for philosophers, to understand this more deeply.

8.4 Three-dimensional quantum gravity

Before the late 1980s, quantum gravity was widely thought to be just as intractable
in three spacetime dimensions as in the physically important four-dimensional case.
The situation changed drastically when physicists and mathematicians developed
the tools for handling background-free quantum theories without local degrees of
freedom. By now, it is easier to give a complete description of three-dimensional
quantum gravity than most quantum field theories of the traditional sort!

Let me sketch how one sets up a theory of three-dimensional quantum gravity
satisfying Atiyah’s axioms for a TQFT. Before doing so, I should warn the reader that
there are a number of inequivalent theories of three-dimensional quantum gravity
(Carlip 1998). The one I shall describe is called the Turaev–Viro model (Turaev
1994). While in some ways this is not the most physically realistic one, since it is
a quantum theory of Riemannian rather than Lorentzian metrics, it illustrates the
points I want to make here.
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Fig. 8.4. A state in the preliminary Hilbert space for three-dimensional quantum
gravity.

To get a TQFT satisfying Atiyah’s axioms we need to describe a Hilbert space
of states for each two-dimensional manifold and an operator for each cobor-
dism between two-dimensional manifolds. We begin by constructing a preliminary
Hilbert space Z̃ (S) for any two-dimensional manifold S. This construction requires
choosing a background structure: a way of chopping S into triangles. Later we
will eliminate this background-dependence and construct the Hilbert space of real
physical interest.

To define the Hilbert space Z̃ (S), it is enough to specify an orthonormal basis for
it. We decree that states in this basis are ways of labelling the edges of the triangles in S
by numbers of the form 0, 1

2 , 1, 3
2 , . . . , k/2. An example is shown in Fig. 8.4, where we

take S to be a sphere. Physicists call the numbers labelling the edges ‘spins’, alluding to
the fact that we are using mathematics developed in the study of angular momentum.
But here these numbers represent the lengths of the edges as measured in units of the
Planck length. In this theory, length is a discrete rather than continuous quantity!

We then construct an operator Z̃ (M ) : Z̃ (S) → Z̃ (S′) for each cobordism
M : S → S′. Again, we do this with the help of a background structure on M :
we choose a way to chop it into tetrahedra, whose triangular faces must include
among them the triangles of S and S′. To define Z̃ (M ) it is enough to specify the
transition amplitudes 〈ψ′, Z̃ (M )ψ〉 when ψ and ψ′ are states in the bases given
above. We do this as follows. The states ψ and ψ′ tell us how to label the edges of
triangles in S and S′ by spins. Consider any way to label the edges of M by spins
that is compatible with these labellings of edges in S and S′. We can think of this as
a ‘quantum geometry’ for spacetime, since it tells us the shape of every tetrahedron
in M . Using a certain recipe we can compute a complex number for this geometry,
which we think of as its ‘amplitude’ in the quantum-mechanical sense. We then
sum these amplitudes over all such geometries to get the total transition amplitude
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from ψ to ψ′. The reader familiar with quantum field theory may note that this
construction is a discrete version of a ‘path integral’.

Now let me describe how we erase the background-dependence from this con-
struction. Given an identity cobordism 1S : S → S, the operator Z̃ (1S) is usually not
the identity, thus violating one of Atiyah’s axioms for a topological quantum field
theory. However, the next best thing happens: this operator maps Z̃ (S) onto a sub-
space, and it acts as the identity on this subspace. This subspace, which we call Z (S),
is the Hilbert space of real physical interest in three-dimensional quantum gravity.
Amazingly, this subspace does not depend on how we chopped S into triangles. Even
better, for any cobordism M : S → S′, the operator Z̃ (M ) maps Z (S) to Z (S′).
Thus, it restricts to an operator Z (M ) : Z (S) → Z (S′). Moreover, this operator
Z (M ) turns out not to depend on how we chopped M into tetrahedra. To top it all
off, it turns out that the Hilbert spaces Z (S) and operators Z (M ) satisfy Atiyah’s
axioms.

In short, we started by chopping space into triangles and spacetime into tetrahe-
dra, but at the end of the day nothing depends on this choice of background structure.
It also turns out that the final theory has no local degrees of freedom: all the mea-
surable quantities are global in character. For example, there is no operator on Z (S)
corresponding to the ‘length of a triangle’s edge’, but there is an operator correspond-
ing to the length of the shortest geodesic wrapping around the space S in a particular
way. Even better, if we take this theory and consider the limit as h̄ → 0, we recover the
classical version of Einstein’s equations for Riemannian metrics in three dimensions.
These miracles are among the main reasons for interest in quantum topology. They
only happen because of the carefully chosen recipe for computing amplitudes for
spacetime geometries. This recipe is the real core of the whole construction. Sadly,
it is a bit too technical to describe here, so the reader will have to turn elsewhere for
details (Kauffman 1993, Turaev 1994). I can say this, though: the reason this recipe
works so well is that it neatly combines ideas from general relativity, quantum field
theory, and a third subject that might at first seem unrelated – higher-dimensional
algebra.

8.5 Higher-dimensional algebra

One of the most remarkable accomplishments of the early twentieth century was to
formalize all of mathematics in terms of a language with a deliberately impoverished
vocabulary: the language of set theory. In Zermelo–Fraenkel set theory, everything is
a set, the only fundamental relationships between sets are membership and equality,
and two sets are equal if and only if they have the same elements. If in Zermelo–
Fraenkel set theory you ask what sort of thing is the number π, the relationship
‘less than’, or the exponential function, the answer is always the same: a set! Of
course one must bend over backwards to think of such varied entities as sets, so
this formalization may seem almost deliberately perverse. However, it represents the
culmination of a worldview in which things are regarded as more fundamental than
processes or relationships.

More recently, mathematicians have developed a somewhat more flexible lang-
uage, the language of category theory. Category theory is an attempt to put processes
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and relationships on an equal status with things. A category consists of a collection
of ‘objects’, and for each pair of objects x and y , a collection of ‘morphisms’ from
x to y . We write a morphism from x to y as f : x → y . We demand that for
any morphisms f : x → y and g : y → z , we can ‘compose’ them to obtain a
morphism g f : x → z . We also demand that composition be associative. Finally,
we demand that for any object x there be a morphism 1x , called the ‘identity’ of
x , such that f 1x = f for any morphism f : x → y and 1x g = g for any morphism
g : y → x .

Perhaps the most familiar example of a category is Set. Here, the objects are
sets and the morphisms are functions between sets. However, there are many other
examples. Fundamental to quantum theory is the category Hilb. Here, the objects
are complex Hilbert spaces and the morphisms are linear operators between Hilbert
spaces. In Section 8.3 we also met a category which is important in differential top-
ology, the category nCob. Here, the objects are (n − 1)-dimensional manifolds and
the morphisms are cobordisms between such manifolds. Note that in this exam-
ple, the morphisms are not functions! Nonetheless, we can still think of them as
‘processes’ going from one object to another.

An important part of learning category theory is breaking certain habits that one
may have acquired from set theory. For example, in category theory one must resist
the temptation to ‘peek into the objects’. Traditionally, the first thing one asks about a
set is: what are its elements? A set is like a container, and the contents of this container
are the most interesting thing about it. But in category theory, an object need not
have ‘elements’ or any sort of internal structure. Even if it does, this is not what really
matters! What really matters about an object is its morphisms to and from other
objects. Thus, category theory encourages a relational worldview in which things
are described, not in terms of their constituents, but by their relationships to other
things.

Category theory also downplays the importance of equality between objects. Given
two elements of a set, the first thing one asks about them is: are they equal? But for
objects in a category, we should ask instead whether they are isomorphic. Technically,
the objects x and y are said to be ‘isomorphic’ if there is a morphism f : x → y that
has an ‘inverse’: a morphism f −1 : y → x for which f −1f = 1x and f f −1 = 1y .
A morphism with an inverse is called an ‘isomorphism’. An isomorphism between
two objects lets turn any morphism to or from one of them into a morphism to
or from the other in a reversible sort of way. Since what matters about objects are
their morphisms to and from other objects, specifying an isomorphism between two
objects lets us treat them as ‘the same’ for all practical purposes.

Categories can be regarded as higher-dimensional analogues of sets. As shown in
Fig. 8.5, we may visualize a set as a bunch of points, namely its elements. Similarly, we
may visualize a category as a bunch of points corresponding to its objects, together
with a bunch of one-dimensional arrows corresponding to its morphisms. (For
simplicity, I have not drawn the identity morphisms in Fig. 8.5.)

We may use the analogy between sets and categories to ‘categorify’ almost any
set-theoretic concept, obtaining a category-theoretic counterpart (Baez and Dolan
1998). For example, just as there are functions between sets, there are ‘functors’
between categories. A function from one set to another sends each element of the
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Table 8.2. Analogy between set theory and category theory

Set theory Category theory

elements objects
equations between elements isomorphisms between objects
sets categories
functions between sets functors between categories
equations between functions natural isomorphisms between functors

Fig. 8.5. A set and a category.

first to an element of the second. Similarly, a functor F from one category to another
sends each object x of the first to an object F(x) of the second, and also sends each
morphism f : x → y of the first to a morphism F(f ) : F(x) → F(y) of the second.
In addition, functors are required to preserve composition and identities:

F(f ′f ) = F(f ′)F(f )

and

F(1x ) = 1F(x).

Functors are important because they allow us to apply the relational worldview
discussed above, not just to objects in a given category, but to categories themselves.
Ultimately what matters about a category is not its ‘contents’ – its objects and
morphisms – but its functors to and from other categories!

We summarize the analogy between set theory and category theory in Table 8.2. In
addition to the terms already discussed, there is a concept of ‘natural isomorphism’
between functors. This is the correct analogue of an equation between functions,
but we will not need it here – I include it just for the sake of completeness.

The full impact of category-theoretic thinking has taken a while to be felt. Cat-
egories were invented in the 1940s by Eilenberg and MacLane for the purpose of
clarifying relationships between algebra and topology. As time passed, they became
increasingly recognized as a powerful tool for exploiting analogies throughout math-
ematics (MacLane 1988). In the early 1960s they led to revolutionary – and still
controversial – developments in mathematical logic (Goldblatt 1979). It gradually
became clear that category theory was a part of a deeper subject, ‘higher-dimensional
algebra’ (Brown 1992), in which the concept of a category is generalized to that of an
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‘n-category’. But only by the 1990s did the real importance of categories for physics
become evident, with the discovery that higher-dimensional algebra is the perfect
language for topological quantum field theory (Lawrence 1993).

Why are categories important in topological quantum field theory? The most
obvious answer is that a TQFT is a functor. Recall from Section 8.3 that a TQFT
maps each manifold S representing space to a Hilbert space Z (S) and each cobordism
M : S → S′ representing spacetime to an operator Z (M ) : Z (S) → Z (S′), in such
a way that composition and identities are preserved. We may summarize all this by
saying that a TQFT is a functor

Z : nCob → Hilb.

In short, category theory makes the analogy in Table 8.1 completely precise.
In terms of this analogy, many somewhat mysterious aspects of quantum the-
ory correspond to easily understood facts about spacetime! For example, the
non-commutativity of operators in quantum theory corresponds to the non-
commutativity of composing cobordisms. Similarly, the all-important ‘adjoint’
operation in quantum theory, which turns an operator A : H → H ′ into an
operator A∗ : H ′ → H , corresponds to the operation of reversing the roles of past
and future in a cobordism M : S → S′, obtaining a cobordism M ∗ : S′ → S.

But the role of category theory goes far beyond this. The real surprise comes when
one examines the details of specific TQFTs. In Section 8.4 I sketched the construc-
tion of three-dimensional quantum gravity, but I left out the recipe for computing
amplitudes for spacetime geometries. Thus, the most interesting features of the
whole business were left as unexplained ‘miracles’: the background-independence
of the Hilbert spaces Z (S) and operators Z (M ), and the fact that they satisfy
Atiyah’s axioms for a TQFT. In fact, the recipe for amplitudes and the verifica-
tion of these facts make heavy use of category theory. The same is true for all
other theories for which Atiyah’s axioms have been verified. For some strange rea-
son, it seems that category theory is precisely suited to explaining what makes a
TQFT tick.

For the past ten years or so, various researchers have been trying to understand this
more deeply. Much remains mysterious, but it now seems that TQFTs are intimately
related to category theory because of special properties of the category nCob. While
nCob is defined using concepts from differential topology, a great deal of evidence
suggests that it admits a simple description in terms of ‘n-categories’.

I have already alluded to the concept of ‘categorification’ – the process of replac-
ing sets by categories, functions by functors and so on, as indicated in Table 8.2.
The concept of ‘n-category’ is obtained from the concept of ‘set’ by categorifying
it n times! An n-category has objects, morphisms between objects, 2-morphisms
between morphisms, and so on up to n-morphisms, together with various composi-
tion operations satisfying various reasonable laws (Baez 1997). Increasing the value
of n allows an ever more nuanced treatment of the notion of ‘sameness’. A 0-category
is just a set, and in a set the elements are simply equal or unequal. A 1-category is a
category, and in this context we may speak not only of equal but also of isomorphic
objects. Unfortunately, this careful distinction between equality and isomorphism
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breaks down when we study the morphisms. Morphisms in a category are either the
same or different; there is no concept of isomorphic morphisms. In a 2-category this
is remedied by introducing 2-morphisms between morphisms. Unfortunately, in a
2-category we cannot speak of isomorphic 2-morphisms. To remedy this we must
introduce the notion of 3-category, and so on.

We may visualize the objects of an n-category as points, the morphisms as
arrows going between these points, the 2-morphisms as two-dimensional sur-
faces going between these arrows, and so on. There is thus a natural link between
n-categories and n-dimensional topology. Indeed, one reason why n-categories are
somewhat formidable is that calculations with them are most naturally done using
n-dimensional diagrams. But this link between n-categories and n-dimensional
topology is precisely why there may be a nice description of nCob in the language of
n-categories.

Dolan and I have proposed such a description, which we call the ‘cobordism
hypothesis’ (Baez and Dolan 1995). Much work remains to be done to make this
hypothesis precise and prove or disprove it. Proving it would lay the groundwork for
understanding topological quantum field theories in a systematic way. But beyond
this, it would help us towards a purely algebraic understanding of ‘space’ and ‘space-
time’ – which is precisely what we need to marry them to the quantum-mechanical
notions of ‘state’ and ‘process’.

8.6 Four-dimensional quantum gravity

How important are the lessons of topological quantum field theory for four-
dimensional quantum gravity? This is still an open question. Since TQFTs lack
local degrees of freedom, they are at best a warm-up for the problem we really want
to tackle: constructing a background-free quantum theory with local degrees of free-
dom propagating causally. Thus, even though work on TQFTs has suggested new
ideas linking quantum theory and general relativity, these ideas may be too simplistic
to be useful in real-world physics.

However, physics is not done by sitting on one’s hands and pessimistically pon-
dering the immense magnitude of the problems. For decades, our only insights into
quantum gravity came from general relativity and quantum field theory on space-
time with a fixed background metric. Now we can view it from a third angle, that
of topological quantum field theory. Surely it makes sense to invest some effort in
trying to combine the best aspects of all three theories!

And indeed, during the past few years various people have begun to do just
this, largely motivated by tantalizing connections between topological quantum
field theory and loop quantum gravity. In loop quantum gravity, the preliminary
Hilbert space has a basis given by ‘spin networks’ – roughly speaking, graphs with
edges labelled by spins (Baez 1996, Smolin 1997). We now understand quite well
how a spin network describes a quantum state of the geometry of space. But spin
networks are also used to describe states in TQFTs, where they arise naturally from
considerations of higher-dimensional algebra. For example, in three-dimensional
quantum gravity the state shown in Fig. 8.4 can also be described using the spin
network shown in Fig. 8.6.
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Fig. 8.6. A spin network.

Using the relationships between four-dimensional quantum gravity and topolo-
gical quantum field theory, researchers have begun to formulate theories in which the
quantum geometry of spacetime is described using ‘spin foams’ – roughly speaking,
two-dimensional structures made of polygons joined at their edges, with all the
polygons being labelled by spins (Baez 1998, Barrett and Crane 1998, Freidel and
Krasnov 1998, Reisenberger 1996, Reisenberger and Rovelli 1997). The most impor-
tant part of a spin foam model is a recipe assigning an amplitude to each spin
foam. Much as Feynman diagrams in ordinary quantum field theory describe pro-
cesses by which one collection of particles evolves into another, spin foams describe
processes by which one spin network evolves into another. Indeed, there is a cate-
gory whose objects are spin networks and whose morphisms are spin foams! And
like nCob, this category appears to arise very naturally from purely n-categorical
considerations.

In the most radical approaches, the concepts of ‘space’ and ‘state’ are completely
merged in the notion of ‘spin network’, and similarly the concepts of ‘spacetime’ and
‘process’ are merged in the notion of ‘spin foam’, eliminating the scaffolding of a
spacetime manifold entirely. To me, at least, this is a very appealing vision. However,
there are a great many obstacles to overcome before we have a full-fledged theory of
quantum gravity along these lines. Let me mention just a few of the most pressing.
First, there is the problem of developing quantum theories of Lorentzian rather than
Riemannian metrics. Second, and closely related, we need to better understand the
concept of ‘causal structure’ in the context of spin foam models. Only the work
of Markopoulou and Smolin (1998) has addressed this point so far. Third, there
is the problem of formulating physical questions in these theories in such a way
that divergent sums are eliminated. And fourth, there is the problem of developing
computational techniques to the point where we can check whether these theories
approximate general relativity in the limit of large distance scales – i.e. distances
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much greater than the Planck length. Starting from familiar territory we have sailed
into strange new waters, but only if we circle back to the physics we know will the
journey be complete.

Notes

Conversations and correspondence with many people have helped form my views on these
issues. I cannot list them all, but I especially want to thank Abhay Ashtekar, John Barrett,
Louis Crane, James Dolan, Louis Kauffman, Kirill Krasnov, Carlo Rovelli, and Lee Smolin.

1. It would be nicely symmetrical if TQFTs involved the constants G and h̄ but not c .
Unfortunately I cannot quite see how to make this idea precise.

2. Here and in what follows, by ‘manifold’ I really mean ‘compact oriented smooth manifold’,
and cobordisms between these will also be compact, oriented, and smooth.

3. Actually, while perfectly correct as far as it goes, this resolution dodges an important issue.
Some physicists have suggested that the second axiom may hold even in quantum field
theories with local degrees of freedom, so long as they are background-free (Barrett 1995).
Unfortunately, a discussion of this would take us too far afield here.

195



[19:02 2000/10/3 g:/tex/key-tex/callendr/3663-008.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 8 Page: 196 177–196



[14:17 2000/8/21 g:/tex/key-tex/callendr/3663-PT4.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Part IV Page: 197 197–198

Part IV

Quantum Gravity and
the Interpretation of General Relativity



[14:17 2000/8/21 g:/tex/key-tex/callendr/3663-PT4.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Part IV Page: 198 197–198



[10:22 2000/10/5 g:/tex/key-tex/callendr/3663-009.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 9 Page: 199 199–212

9 On general covariance and best matching

Julian B. Barbour

9.1 Introduction

This chapter addresses issues raised by Christian (Chapter 14), Penrose (Chapter 13),
and others in this volume: What is the physical significance, if any, of general
covariance? Norton (1993) has given a valuable historical survey of the tangled
history of this question. His subtitle ‘Eight decades of dispute’ is very apt! Many
people attribute the difficulties inherent in the quantization of gravity to the general
covariance of Einstein’s general theory of relativity, so clarification of its true nature
is important.

Christian gives a clear account of what may be called the current orthodoxy with
regard to the status of general covariance, and I disagree with little of what he says.
However, in my view that merely draws attention to a problem – it does not say
how the problem is overcome. I believe general relativity does resolve the problem,
but that this has escaped notice. If this view is correct – and most of this chapter
will be devoted to arguing that it is – then I believe it has important implications
for the problem that Penrose is trying to solve in Chapter 13. I think he is trying
to solve a problem that has already been solved. Nevertheless, I do feel all attempts
to construct viable models of physical collapse are valuable, since they constitute
one of the few alternatives to many-worlds interpretations of quantum mechanics.
Though I personally incline to such interpretations, it is always important to seek
alternatives. I also welcome Christian’s attempt to give concrete form to the notion
of transience, since I think an explicit theory of it would be most interesting.

9.2 Einstein’s understanding of general covariance

9.2.1 The historical background

Up to and even after he created general relativity, Einstein was convinced that the
requirement of general covariance had deep physical significance. At the same time,
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he got into quite a muddle with his hole argument. The argument and its resolution
have been discussed by many people since Stachel brought it to widespread notice
(Stachel 1989, 1993). Christian gives an excellent historical account of the hole argu-
ment, but ends with Einstein’s recognition of his error and realization that general
covariance is not incompatible with unique statements of the physical content of a
generally covariant theory. However, to form an accurate picture of the complete
question we need to consider some of the earlier history and some of the later history.

The root of the issue goes back to Newton’s famous scholium on absolute and
relative motion and his failure to make good a promise at its end (‘For it was to this
end that I composed it [the Principia]’). The promise was to show how his absolute
motions could be deduced from observed relative motions. Ironically, this problem
was completely and most beautifully solved in 1771 for the three-body problem
in a celebrated prize-winning essay by Lagrange. Lagrange showed how Newton’s
equations could be reformulated in such a way that they contained only the time
and the relative co-ordinates of the system (the three sides of the triangle formed
by the three gravitationally interacting bodies). The most significant thing about
his equations is that they contain two constants of the motion, the total energy
E and the square of the intrinsic angular momentum M 2. In addition, one of his
equations contains the third derivatives of the sides of the triangle with respect to the
time, while the two remaining equations contain only second derivatives. Lagrange
also showed how, from knowledge of only the relative quantities (the sides of the
triangle), the co-ordinates in absolute space (or rather, in the center-of-mass inertial
frame of reference) could be deduced. Dziobek (1888) gives the best account of this
work that I know.

Ironically, Lagrange was not much interested in this aspect of his work, which has
considerable implications for the absolute–relative debate that raged in Newton’s
time. Eighty-five years on from the publication of the Principia, the existence of abso-
lute space was no longer a contentious issue. Even more ironic was the subsequent
history. In 1872 and again in 1883, Mach raised very forcibly the issue of whether
absolute space existed and through his writings prompted Ludwig Lange in Germany
to attack the problem of how inertial frames of reference could be determined from
known relative data (Lange 1884). Independently, James Thomson (the brother of
Lord Kelvin) and Peter Tait addressed the same problem in Edinburgh (Thomson
1883, Tait 1883). None of these authors seems to have been aware of Lagrange’s
work, or at least aware of its significance for their proposals. The point is that they
only attempted to establish the inertial frames of reference from the motions of mass
points known to be moving inertially, whereas Lagrange had already completely
solved the vastly more difficult problem with interacting particles! The solutions
found by Thomson and Lange are mechanical and ungainly, whereas Tait’s is ele-
gant and recommended to the reader. It is unfortunate that his paper passed almost
completely unnoticed, because he showed how not only the absolute motions but
also the absolute times could be constructed from the relative motions of three iner-
tial particles. In contrast, by sheer persistence Lange ensured that his work became
reasonably widely known, and he is rightly credited with introducing the concept of
an inertial system (or inertial frame of reference). Mach brought his work to wide
attention (Mach 1960).
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It is nevertheless a strange fact that most theoretical physicists simply adopted the
notion of an inertial system as, so to speak, God given and never bothered themselves
with the details of Lange’s construction, which contains some subtle issues. Among
the relativists of stature, only von Laue (von Laue 1951) drew attention to Lange’s
achievement. In a late letter to von Laue, Einstein argued (incorrectly) that Lange’s
contribution was trivial (Einstein 1952a).

The most important fact that emerges from Tait’s superior treatment is as fol-
lows. If one knows three instantaneous relative configurations of n inertially moving
point masses at certain unknown times, then (up to the unit of time) one can (if
n > 5) determine the family of inertial frames in which they satisfy Newton’s laws
of motion and construct a clock that measures absolute time. For n = 3 and 4,
more than three configurations are needed. But the really important thing is that
two relative configurations are never enough to solve the Lange–Tait problem. This
exactly matches the fact that one of Lagrange’s equations must necessarily contain
a third time derivative. The underlying reason for this state of affairs is that two
relative configurations give no information about the rotational state of the system
and so contain no information about the angular momentum, which however has a
profound effect on the dynamics.

9.2.2 Einstein and the determination of inertial frames

For reasons that I shall not go into here (see Barbour 1999, 1999a, in preparation),
when Einstein (1905) and Minkowski (1908) created special relativity they both
completely side-stepped the issue of how inertial frames of reference can be deter-
mined from observable relative quantities. They simply assumed that they already
had access to one. The central point of their papers is that, if one already has one
such frame of reference, then there exist transformation laws leading to other similar
frames of reference moving uniformly relatively to the first in which the laws of nature
take the identical form. Einstein says virtually nothing (in any of his papers) about
how one is to obtain the all-important first inertial frame of reference. Minkowski
says a bit more:

‘From the totality of natural phenomena it is possible, by successively enhanced
approximations, to derive more and more exactly a system of reference x , y , z , t ,
space and time, by means of which these phenomena then present themselves in
agreement with definite laws.’

He then points out that one such reference system is by no means uniquely
determined and that there are transformations that lead from it to a whole fam-
ily of others, in all of which the laws of nature take the same form. However,
he never says what he means by the totality of natural phenomena or what steps
must be taken to perform the envisaged successive approximations. But how is
it done? This is a perfectly reasonable question to ask. We are told how to get
from one such reference system to another, but not how to find the first one.
Had either Einstein or Minkowski asked this question explicitly and gone through
the steps that must be taken, the importance of extended relative configurations
of matter would have become apparent. (When bodies interact, determination
of the inertial frame of reference involves in principle all matter in the universe
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(Barbour, in preparation). This will be important later in the discussion of Penrose’s
proposal.)

The curious circumstance that two such configurations are never sufficient to find
the inertial frames might have made them more aware of another issue. For the fact
is that, rather remarkably, Einstein never said what he meant by the laws of nature.
How are they to be expressed? However, it is implicit in the manner in which he
proceeded that he took them to have the form of differential equations formulated
in any of the allowed inertial frames of reference. But what determines the inertial
frames of reference? Does some law of nature do that? If so, what form does it take?
Einstein’s persistent failure to ask let alone answer these questions directly has been
the cause of great confusion.

9.2.3 Einstein, Kretschmann, and the relativity principle

Omitting again the reasons (given in Barbour 1999, 1999a, in preparation) for his
approach, let me simply point out that Einstein believed that he would arrive at
a satisfactory theory of gravitation and inertia if he could generalize his restricted
principle of relativity to encompass absolutely all possible co-ordinate transforma-
tions. To the arguments in support of this standpoint that he had advanced prior
to the autumn of 1915 (when he saw the flaw in his hole argument), he then added
another based on the argument he had correctly used to defuse it. I need to give his
argument in full (Einstein 1916):

‘All our space-time verifications invariably amount to a determination of
space-time coincidences. If, for example, events consisted merely in the motion of
material points, then ultimately nothing would be observable but the meetings of
two or more of these points. Moreover, the results of our measurings are nothing
but verifications of such meetings of the material points of our measuring
instruments with other material points, coincidences between the hands of a clock
and points on the clock dial, and observed point-events happening at the same
place at the same time. The introduction of a system of reference serves no other
purpose than to facilitate the description of the totality of such coincidences.’

It was this argument that Kretschmann picked up. What Einstein says above about
the nature of (objective) verifications is unquestionably true. It is a fact of life that
the physics is in the coincidences, not in any co-ordinates that we may choose to lay
out over them. It follows from this that general covariance is not a physical principle,
but a formal necessity. When Kretschmann pointed this out, Einstein immediately
conceded the point. This is his complete response in 1918:

‘Relativity Principle: The laws of nature are merely statements about space-time
coincidences; they therefore find their only natural expression in generally
covariant equations. . . .

Kretschmann has commented that, formulated in this way, the relativity
principle is not a statement about physical reality, i.e. not a statement about the
content of the laws of nature but only a requirement on their mathematical
formulation. For since our entire physical experience rests solely on coincidences, it
must always be possible to represent the laws that connect these coincidences in a
generally covariant form. He therefore believes it is necessary to associate a different
meaning with the principle of relativity. I consider Kretschmann’s argument to be
correct, but do not feel that the new proposal he makes is to be recommended. Even
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though it is correct that one must be able to cast every empirical law into a generally
covariant form, the relativity principle (as formulated above) still possesses a
significant heuristic power that has already been brilliantly demonstrated in the
problem of gravitation and is based on the following. From two theoretical systems
that are compatible (reading the printed vereinbarten as a misprint for vereinbaren)
with experimental data, one should choose the one that is simpler and more
transparent from the point of view of the absolute differential calculus. If one were
to attempt to bring Newton’s gravitational calculus into the form of (four-
dimensional) absolutely covariant equations, one would surely be persuaded that
the resulting theory is admittedly theoretically possible but in practice ruled out!’

Einstein never wavered from this ‘Kretschmann-corrected’ position until the end
of his life. He repeatedly said that general covariance (and the relativity principle!)
has no physical significance. This conclusion seems to be in direct conflict with the
positions of Christian and Penrose, both of whom (Christian explicitly) seem to
regard general covariance as an important property that general relativity possesses
and other theories do not. Christian, drawing on a paper of Stachel (1993), seeks to
pin down the difference to the presence or absence of a priori individuation of the
points of the spacetime manifold used to express the theory.

9.3 General covariance is not a physical principle

9.3.1 Newtonian mechanics in generally covariant form

In this chapter I want to argue that Einstein’s revised position was quite right. No
theory that has any hope of describing nature can fail to be generally covariant. As
Kretschmann argued (and Christian denies), general covariance is physically vacu-
ous. I believe that the physically significant issue is not whether or not points have
a priori individuation, but the relative complexity of rival theories when expressed in
generally covariant form. We shall see that this is closely related to the determination
of inertial frames of reference and also an issue central to Penrose’s proposal.

Following Stachel, Christian says that ‘if there are any non-dynamical structures
present, such as the globally specified Minkowski metric tensor field . . . of special
relativity then the impact of general covariance is severely mitigated.’ This is because
they can be used to introduce what Stachel calls ‘inertial individuating fields’, which
can be used ‘to set apart a point q from a point p of a manifold, bestowing a priori
spatio-temporal individuality to the points of the manifold’. In further support of
this statement, Christian cites Wald (1984).

Such views arise, in my opinion, because theoretical physicists – and above all
Einstein – have paid insufficient attention to the work of Lagrange and Tait and the
actual determination of inertial frames of reference. It is widely held that Newton’s
theory contains a non-dynamical structure and thus points with a priori individ-
uality. However, Lagrange’s formulation of the three-body problem (which can be
expanded to the general n-body problem) is generally covariant as regards the treat-
ment of the spatial variables (I shall come to time later). It uses the distances between
the particles and nothing else. No points of the space in which the particles reside
are singled out. There is no a priori individuation. Stachel’s attempt (followed by
Christian) to distinguish between genuinely covariant theories and theories with
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individuating fields must ultimately fail for this reason. I shall come back to this
point. Einstein was much closer to the truth when he said that what counts is
the relative simplicity and transparency of a theory when cast in generally covariant
form. Interestingly, what Lagrange’s work does show is that Newtonian theory, when
cast in generally covariant form, is actually several different theories at once. This
is because, as Poincaré (1902) noted (without, unfortunately referring explicitly to
Lagrange’s paper which would have made things clearer and strengthened the impact
of his remarks), the constants E and M 2 that appear in Newton’s equations for n
bodies regarded as representing the universe can be interpreted, not as the reflection
of contingent initial conditions, but as universal constants. We shall see shortly that
there is a very close parallel between E and the cosmological constant in Einstein’s
equation. The point is that the equations and solutions of Newton’s theory are char-
acteristically and qualitatively different for different numerical values of E and M 2.
Especially interesting in this connection are the theories that arise if E or M 2 (espe-
cially the latter) is zero. The corresponding theories for these special cases are then
very different, as I shall shortly show.

9.3.2 Poincaré and the initial-value problem

The most distinctive property of Newton’s equations when cast into the generally
covariant form found by Lagrange is the presence of the two freely disposable con-
stants E and M 2 and the third time derivative. As Poincaré (1902) noted in the
same penetrating remarks, this makes Newton’s theory rather unsatisfactory. If only
relative quantities count in the world, one would have hoped that specification of
the relative separations and the time rates of change of these separations would suf-
fice to predict the future uniquely. However, even if one knew the values of E and
M 2, this hope is thwarted by the presence of the third time derivatives in Lagrange’s
equations. However, Poincaré failed to note that if M 2 = 0 the form of Lagrange’s
equations changes qualitatively and the third derivatives disappear.

9.3.3 Mechanics without background structures

In fact, during the 1980s the special status of Newtonian motions with vanishing
intrinsic angular momentum was discovered independently by Bertotti and myself
in work on Mach’s principle (Barbour and Bertotti 1982), by Guichardet (1984) in
molecular dynamics, and by Shapere and Wilczek (1987, 1989) in a study of how
micro-organisms swim in viscous fluids! Littlejohn and Reinsch (1997) have given a
beautiful review of the work that developed from the discoveries of Guichardet and
Shapere and Wilczek. Among other things, this makes elegant use of a connection
with associated geometric (Berry) phase that is defined on the relative configuration
space of any n-body system by the condition that its motions are constrained to have
vanishing intrinsic angular momentum in absolute space.

Perhaps the most important thing about these results, which has a close bearing
on Penrose’s proposal, is that there exists a way to derive motions of the universe
that have vanishing intrinsic angular momentum and makes no use at all of any
external Newtonian structures like absolute space and time. A metric is defined on
the relative configuration space of the universe by a ‘best-matching’ procedure as
follows. Take one relative configuration of n point masses and another that differs
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from it slightly. Hold the first fixed, and try to move the second around relative to it
so that it is brought into the closest fit in the following sense. For any relative placing
of the second configuration, there will be some distance dxi between the position of
particle i with mass mi in the two relative configurations. Now consider the quantity[∑

i

mi(dxi)
2

]1/2

. (9.1)

It is a measure of the difference between the two configurations but is arbitrary as
yet because the placing of the second configuration relative to the first is arbitrary.
However, this placing can be varied until eqn. 9.1 is extremalized (minimized in this
case). That will then give a completely co-ordinate-free and objective measure of the
difference between the two relative configurations. A non-trivial geodesic principle
on the relative configuration space is then defined by the action principle

δ

∫ [
(E − V )

∑
i

(mi/2)(Dxi)
2

]1/2

= 0, (9.2)

where Dxi is the displacement in the ‘best-matching’ position, E is a constant, and
V =

∑
i mimj/rij .

It is easy to show (Barbour and Bertotti 1982) that the sequence of relative con-
figurations through which a universe that satisfies eqn. 9.2 passes is identical to a
sequence of relative configurations through which a Newtonian universe of the same
point masses passes, provided that it has the total energy E and vanishing intrinsic
angular momentum. It should be noted that eqn. 9.2, which is a Machian form of
Jacobi’s principle for the timeless orbit of a dynamical system in its configuration
space (Lanczos 1949, Barbour 1994, 1994a), makes no use of either absolute time
or absolute space. Nothing but relative configurations appears in it. It is manifestly
general covariant.

In the light of the earlier discussion, eqn. 9.2 represents a distinct physical theory
for each value of E . It is worth mentioning in this connection that Einstein’s general
relativity can be cast in a form very like eqn. 9.2 with the cosmological constant
playing the role of E (see, for example, Brown and York 1989). Everyone accepts
that the forms of general relativity with different values of that constant represent
different physical theories, so it is obvious that the same should be done here. It
is important here that eqn. 9.2 is meant to describe the complete universe, not
subsystems of it. Even though the complete universe described by eqn. 9.2 will have
vanishing total angular momentum and energy, subsystems within it can have all
values of these quantities. In addition, the complete family of theories represented
by eqn. 9.2 with different values of E are to be seen as theories distinct from the
general Newtonian solutions with non-vanishing intrinsic angular momentum. For
the three-body problem these are described in generally covariant form by Lagrange’s
equations, which are much more complicated than the ones that follow from eqn. 9.2.
For the n-body problem, the equations have only been found (to the best of my
knowledge) in implicit form (Zanstra 1924).

It is important to note that the generally covariant principle eqn. 9.2 comes with an
automatic prescription that makes it possible to cast it into a form in which it seems
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to be formulated with an external framework. Namely, if one has found a sequence of
n-body relative configurations by means of eqn. 9.2 and its underlying best-matching
prescription to determine the Dx2

i , the same best matching can be used to ‘stack
the configurations horizontally’. One starts with the first configuration, which one
supposes to be placed anywhere in absolute space. The second configuration is then
brought into the best-matching position relative to the first and thereby acquires a
definite position in absolute space. The third is then placed by best-matching relative
to the second, and so on. At the end, the configurations have exactly the positions
in absolute space that the corresponding solution with vanishing intrinsic angular
momentum has. All this has been done using the directly observable matter, not any
‘individuating’ marks in non-dynamical frames.

This has an important bearing on my contention that Stachel’s attempt to intro-
duce inertial individuating fields will not solve the problem of establishing the true
content of general covariance. The point is that in all the different generally covari-
ant theories that correspond to Newtonian mechanics in its standard form one can
introduce distinguished frames of reference. All the theories seem to contain non-
dynamical elements. (Even general relativity has such elements, since spacetime
is always Minkowskian in the small – that is what one could call an absolute ele-
ment.) Nevertheless, the theories differ in their complexity and predictive power:
the simpler the theory, the greater its predictive power. Most arguments about the
formulation and content of general covariance are mere shadow boxing. Since all
viable theories must be generally covariant, the only question of interest is their
relative simplicity and the nuts and bolts of their construction.

Returning to the question of the construction of (Newtonian) spacetime from
purely relative configurations, the times at which the positions are occupied in the
constructed ‘absolute space’ has not yet been determined. This is, however, readily
done without recourse to any knowledge of an external time. The equations of
motion that follow from eqn. 9.2 have the form (for an arbitrary parameter λ that
labels the configurations along the path in the configuration space)

(d/dλ)

{[
(E − V )/

∑
i

(mi/2)(Dxi)
2

]1/2

mi(Dxi/dλ)

}

= −
[∑

i

(mi/2)(Dxi/dλ)2/(E − V )

]
∂V/∂x i . (9.3)

There is a unique choice of the parameter that simplifies eqn. 9.3 dramatically. It
is the one for which

E − V =
∑

i

(mi/2)(Dxi/dλ)2. (9.4)

Then eqn. 9.3 becomes identical to Newton’s second law, and in Newtonian terms
eqn. 9.4 becomes the statement that the total energy is given by E .

The parameter λ is then indistinguishable from Newton’s absolute time, while in
the ‘horizontal stacking’ achieved by the best-matching construction Dxi/dλ simply
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becomes the Newtonian velocity in absolute space. From a variational principle
formulated solely with relative configurations and no external framework, we have
constructed a framework identical to Newton’s absolute space and time.

However, this is a framework that also contains whole families of solutions that
belong to different generally covariant theories when the Lagrangian variables are
employed. The Newtonian solutions with different intrinsic (centre-of-mass) values
of E and M 2 belong to different theories.

9.3.4 A modification of Einstein’s simplicity argument

This is one way in which one can examine the manner in which Newtonian mechanics
is generally covariant. It was used unconsciously by Lagrange and Jacobi, and it tells
one how a four-dimensional framework of space and time can be put together
from three-dimensional relative configurations. There are characteristically different
ways in which this can be done. The Machian theory corresponding to eqn. 9.2 is
manifestly simpler than the families of theories corresponding to all the different
non-vanishing values of M 2.

It is very tempting to modify and make somewhat more precise Einstein’s stand-
point as expressed in his (1918) paper. He seems to be implying that the choice that
has to be made is between general relativity in the generally covariant form in which
he found it and Newtonian theory when it is cast in (four-dimensional) generally
covariant form. But this is a somewhat artificial and unsatisfactory choice. The two
theories have very different underlying ontologies (curved space and point particles
in Euclidean space respectively), and Newton’s theory was already then known to be
no longer fully compatible with observations.

It is much more illuminating to consider the many different (three-dimensionally)
generally covariant theories hidden within general Newtonian theory and apply to
them Einstein’s simplicity requirement. It will immediately rule out the theories with
M 2 �= 0, which have a vastly more complicated generally covariant structure, and,
less emphatically, suggest the choice E = 0 among the remaining family of theories
(avoiding the specification of an arbitrary constant). We shall see shortly that the
family of theories with M 2 = 0 and E �= 0 (E fixed) should be seen as the true
non-relativistic generally covariant analogues of general relativity.

9.3.5 Cartan’s reformulation misses the point

Because this rich substructure of generally covariant theories within Newtonian
theory escaped wide notice, no one has hitherto thought about the meaning of gen-
eral covariance in such terms. Instead, Cartan (1923), Friedrichs (1927), and many
others took up Einstein’s challenge to cast Newtonian theory into a four-dimensional
generally covariant form. This is done purely formally by the introduction of general
co-ordinates and two distinct (and rather bizarre) vector fields on four-dimensional
Newtonian spacetime. It is clear that the physical content of Newton’s theory is com-
pletely unaffected by this treatment. In fact, even then only imperfect analogy with
Einstein’s theory is achieved.

Despite the absence of change, the Cartan form of Newtonian theory is held to
cast light on the conceptual problems associated with general covariance. I believe
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this is incorrect. Since no new physical principle has been added, no new physical
insight can be extracted. Far from clarifying the situation with regard to covariance,
it has muddied the waters. (However, I think the Cartan formulation might well cast
useful light, as I think Christian argues, on quantization of connections.)

The problem is that the general covariance of a dynamical theory raises two quite
different issues. The first has been clearly recognized and well understood ever since
Einstein saw the flaw in his hole argument. This is that the objective content of a
four-dimensional theory cannot be changed merely by changing the co-ordinates
used to describe it. Equally, using different and more modern terminology, it cannot
be changed by an active diffeomorphism. Essentially, when Einstein saw the flaw
in his hole argument he actually rediscovered Leibniz’s principle of the identity of
indiscernibles. No one will disagree on this, and for further interesting discussion
see Chapter 13 in this volume.

It is the second issue that has not been grasped. It is this: Can four-dimensional
structures like Newtonian spacetime or Einstein’s spacetime be conceived as being
put together from three-dimensional structures? If so, what does the recognition of
the truth first stated for four-dimensional structures imply for the task of putting
together three-dimensional structures? For they too are structures whose objective
content cannot be changed by painting co-ordinates on them. Equally significantly,
mere co-ordinate values can in no way be used to identify points belonging to
objectively different three-dimensional structures.

9.4 Penrose’s argument

This point is central to the arguments that Penrose develops. For example, he says:

‘It is clear from the principles of general relativity that it is not appropriate, in
general, to make a precise identification between points of one space-time and
corresponding points of the other . . . all that we can expect will be some kind of
approximate pointwise identification. . . . There is no canonical way of identifying
the individual points of a section of one space-time with corresponding points of
the other.’

Penrose argues that exactly the same thing applies to the comparison of three-
dimensional spaces and for this reason is critical of things that are ‘common in
discussions of quantum gravity’:

‘According to the sorts of procedure that are often adopted in quantum gravity, the
superposition of different space-times is indeed treated in a very formal way, in
terms of complex functions on the space of 3-geometries (or 4-geometries), for
example, where there is no pretence at a pointwise identification of the different
geometries under consideration.’

In disagreement with the thrust of what Penrose says here, I believe that there
is a canonical way in which one could achieve exact pairwise identification of
points between slightly differing spacetimes if, inappropriately, one wanted to (in
order, perhaps, to construct some five-dimensional structure) and more significantly
that there is an equally well-defined canonical procedure for doing the same with
3-geometries. This canonical procedure is nothing more nor less than the Hilbert
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variational principle that leads to Einstein’s field equations in general relativity. I
shall amplify this in a moment.

Moreover, the actual superpositions of 3-geometries envisaged in the discussions
in quantum gravity are far from formal. Quite the opposite, the coefficients that
appear in them are determined by exactly the same variational procedure that leads
to Einstein’s field equations and solves the problem that Penrose says is insoluble
in any exact sense: the pairwise identification of points in different 3-geometries.
The superpositions that Penrose distrusts are simply Einstein’s field equations in a
different guise. This is why John Wheeler correctly calls the Wheeler–DeWitt equa-
tion the Einstein–Schrödinger equation. Just as the ordinary Schrödinger equation
is really Newton’s laws in quantum clothes, the two constraints of quantum gravity
are simply Einstein’s equations in a quantum guise. They match exactly. (However,
it would be wrong to think that the superpositions of 3-geometries allowed by the
Wheeler–DeWitt equation are to be thought of as somehow residing in the same
space. They are simply there in their separate totalities and in their own right.)

Before I spell out how this happens, it is worth noting that Leibniz’s principle
of the identity of indiscernibles only revealed to Einstein the reason why his hole
argument was wrong. But it could also have told him something much more exciting.
It could have explained why there is something very right and appropriate about the
way an Einsteinian spacetime is constructed.

9.5 The significant issue

Penrose correctly identifies a deep problem. Given two objects that are intrinsically
different, is it possible in any objective sense to say that a certain point in one is at
the same position as a certain point in the other? One’s first reaction is exactly what
Penrose says – it will be only approximately possible to achieve such pairing. But an
exact pairing is precisely what best matching does. It brings two different objects
to what might be called the closest possible approach to congruence (established
in the case of point particles by minimizing eqn. 9.1) and then declares that the
points paired in this way are ‘at the same position’ or ‘equilocal’. This solution
to the problem is clearly meaningful and the outcome is in general unique. It is
possible because the two compared objects, while being intrinsically different, are
nevertheless generically of the same kind. It will be helpful to say something about
how the best matching is achieved in the case of 3-geometries; for a fuller account,
see Barbour and Bertotti (1982) and Barbour (1994, 1994a).

Imagine one 3-geometry and lay out co-ordinates on it in some arbitrary manner.
These will be kept fixed. Imagine a second 3-geometry that differs from it slightly
and lay out co-ordinates on it which are such that the resulting metric tensors on the
two spaces differ little at equal values of their arguments. Otherwise the co-ordinates
on the second 3-geometry are arbitrary. Even though this is the case, one could say
by definition that the points on the two 3-geometries that have the same co-ordinate
values are ‘at the same position’ or ‘equilocal’. The two sets of co-ordinates establish
a ‘trial equilocality relationship’ between the two spaces. With respect to it, one can
compare the values of the 3-metrics on the two three geometries at equilocal points.
Their difference gives a measure of how the geometry has changed between the two
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3-geometries at the points declared to be equilocal by this (as yet arbitrary) proce-
dure. This local difference can then be integrated over all of space to find a global
measure of the difference between the two 3-geometries. This too will be arbitrary.

This defect can be eliminated if one systematically seeks out all possible ways in
which the trial equilocality pairing of points is established. One will say that the best-
matching position has been achieved if the global measure of difference is extremal
(does not change to first order) with respect to all possible infinitesimal changes of
the equilocality pairing. This is the exact analogy of the simpler procedure for point
particles described above. Actual equations are given in Barbour (1994, 1994a).

The point of interest in connection with the discussion of the physical signifi-
cance of general covariance (or diffeomorphism invariance) is the manner in which
all possible changes of the equilocality pairing is implemented. It is done by a diffeo-
morphism. Using the somewhat more old-fashioned language of co-ordinates, one
first changes the co-ordinates on the second 3-geometry, obtaining a new metric ten-
sor of new arguments (g ′

ij (x ′)), after which one looks at the values of the new tensor
at the previous values of the arguments (g ′

ij (x)). This generates what is now called a
diffeomorphism. The point on the second 3-geometry with the co-ordinate value x
is not the point that has the co-ordinate value x in the untransformed co-ordinates.
Since the co-ordinate values are being used to identify points on the two different
3-geometries that are said to be equilocal, the diffeomorphism carried out on the
second 3-geometry changes the equilocality pairing between the two geometries.

This, I think, is the key point and shows how different is the conceptual issue
that is at stake. The only insight Einstein had when he saw the flaw in his hole
argument was that changing the label on a bottle of wine in no way changes the
wine within it. A given thing, be it a toadstool, a spacetime, or a 3-geometry is
completely unchanged by labels attached to it. But here we are not at all engaged
in changing the labelling on a single object just to have different representations of
it. We are making diffeomorphisms systematically in order to generate physically
different trial pairings between two different things and hence obtain a measure of
the difference between them. We are forced to this by Einstein’s insight that mere
co-ordinate values do not have any physical significance. The diffeomorphisms are
being used creatively to overcome this undoubted fact but for a purpose that goes
far beyond the obtaining of different representations of one given thing. They are
being used to compare two different things.

This realization is what has been lacking from the interminable discussions of
the significance of general covariance that Norton (1993) has chronicled so well.
What distinguishes general relativity from Newtonian theory is not the presence
or absence of individuating points in the respective four-dimensional spacetimes
corresponding to them. There are none in either case when you consider what is truly
observable. It is the manner in which the respective four-dimensional objects are
put together out of three-dimensional constituents. General relativity does it by best
matching; Newtonian theory does not, and is therefore more complicated. However,
the solutions of Newtonian theory with vanishing intrinsic angular momentum form
a different theory in which the four-dimensional spacetime is put together by best
matching. It is therefore to be regarded as the non-relativistic analogue of general
relativity.
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The most important thing that follows from this is that the idea of best matching
makes it possible to define a metric on the space of all the intrinsically different but
generically homogeneous structures that one wishes to compare, be they configu-
rations of mass points in Euclidean space or 3-geometries, as happens in general
relativity. I should mention that, in the case of general relativity, the pairing of
points between the compared 3-geometries results not from some arbitrary pairing
established at infinity, as Penrose seems to imply, but from comparison across the
whole of both 3-geometries. Both the entire 3-geometries are taken into account.
Once a metric has been defined on such a ‘superspace’, geodesics are defined. Now
to determine a geodesic, one needs not only a metric but also some point along
the geodesic and a direction at it. This brings me to the connection of all this with
Einstein’s equations and the constraints into which they are transformed in the
Hamiltonian formulation found by Arnowitt, Deser, and Misner (ADM). I shall not
give any details (which can be found in Barbour 1994, 1994a), but only the main
points. As has been shown by many people but especially Kuchař (1993), the entire
content of Einstein’s field equations are captured and faithfully reproduced by the
three equations of the so-called momentum constraints and the single equation of
the Hamiltonian constraint. As explained previously (Barbour 1994, 1994a), the
three momentum constraints really do express the guts of Einsteinian dynamics and
show that it arises through the creation of a metric on superspace by best-matching
comparison of slightly different 3-geometries. The Hamiltonian constraint is really
an expression of the fact that the initial condition for a geodesic requires specifica-
tion of a direction in superspace. (I should mention that the situation is especially
subtle in general relativity, and the Hamiltonian constraint is actually infinitely many
constraints – one at each space point – each of which defines a ‘local direction’.)

9.6 Conclusions

In the light of these comments, it does seem to me rather unlikely that nature,
having used the precise and exact global best-matching condition to put together
3-geometries into Einsteinian spacetimes, should use some more approximate and
essentially local (as Penrose envisages) matching between four-dimensional struc-
tures to collapse superpositions of spacetimes. I also feel that Cartan’s purely formal
rewriting of Newtonian mechanics in four-dimensional generally covariant form is
likely to cast less light on the problems of quantum gravity than Lagrange’s physical
reformulation of the same mechanics in a three-dimensional generally covariant
form. Quantum mechanics is, so it seems to me, about superpositions of three-
dimensional structures that classical dynamics knits together into four-dimensional
structures.

Finally, both Penrose and Christian call for a more ‘even-handed’ approach to
quantum gravity, complaining that Einstein’s beautiful theory is expected to cede
too much to the quantum formalism. It seems to me that this too is not correct if
one takes DeWitt’s canonical approach, in which the constraints are transformed
into operators and constitute the entire theory (in the case of a spatially closed
universe; see DeWitt 1967). At a stroke, this eliminates the external time and iner-
tial frames of reference that form such a characteristic part of ordinary quantum
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mechanics. In quantum cosmology there are as yet no conventional observables and
no Hilbert space. It is to be expected that they will emerge as effective concepts in
the WKB regime (Barbour 1994, 1994a, 1999). It is clear that in quantum cosmol-
ogy there will be a different measurement theory, and none of the usual business
with non-quantum classical measuring instruments external to the quantum system
under study. In fact, in DeWitt’s canonical approach, all that remains of quan-
tum mechanics is the wave function. In contrast, the entire dynamical content of
Einstein’s theory remains intact, though transfigured into quantum form, through
which, in anything but an arbitrary fashion, it determines what superpositions of
3-geometries are allowed. As I have argued previously (Barbour 1994, 1994a, 1999),
one should not look to interpret these superpositions as representing physical pro-
cesses that occur simultaneously in some common space. Rather, each 3-geometry
(with matter distribution in it) is to be regarded as an instant of time. It is a possible
instantaneous state of the universe. Ontologically, it is just the same as in classical
physics. Contrary to a widely held view, I do not believe that the most significant
difference between quantum and classical physics is in the ontology, but in what is
done with it.

Notes

I am grateful to Domenico Giulini for drawing to my attention von Laue’s interest in Lange. It
also made me check out the later correspondence between Einstein and von Laue, which is
very rewarding. In fact, their entire correspondence, spanning nearly forty years, is both
absorbing and poignant (on account of the Nazi period).
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10.1 Introduction

Physicists who work on canonical quantum gravity will sometimes remark that
the general covariance of general relativity is responsible for many of the thorniest
technical and conceptual problems in their field.1 In particular, it is sometimes
alleged that one can trace to this single source a variety of deep puzzles about the
nature of time in quantum gravity, deep disagreements surrounding the notion of
‘observable’ in classical and quantum gravity, and deep questions about the nature
of the existence of spacetime in general relativity.

Philosophers who think about these things are sometimes sceptical about such
claims. We have all learned that Kretschmann was quite correct to urge against
Einstein that the ‘General Theory of Relativity’ was no such thing, since any theory
could be cast in a generally covariant form, and hence that the general covariance
of general relativity could not have any physical content, let alone bear the kind
of weight that Einstein expected it to.2 Friedman’s assessment is widely accepted:
‘As Kretschmann first pointed out in 1917, the principle of general covariance has
no physical content whatever: it specifies no particular physical theory; rather, it
merely expresses our commitment to a certain style of formulating physical theories’
(Friedman 1983, p. 44). Such considerations suggest that general covariance, as
a technically crucial but physically contentless feature of general relativity, simply
cannot be the source of any significant conceptual or physical problems.3

Physicists are, of course, conscious of the weight of Kretschmann’s points
against Einstein. Yet they are considerably more ambivalent than their philosophical
colleagues. Consider Kuchař’s conclusion at the end of a discussion of this topic:

‘ . . . the Einstein–Kretschmann discussion is clearly relevant for the canonical
quantization of covariant theories, but, as so many times before in the ancient
controversy between the relative and the absolute, it is difficult to decide which of
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these two alternative standpoints is correct and fruitful. This leaves the canonical
quantization of covariant systems uncomfortably suspended between the relative
and the absolute’.

(Kuchař 1988, p. 118)

It becomes clear in the course of Kuchař’s discussion that he takes the physical
content of the general covariance of general relativity to reside not in the fact that
that theory, like every other, can be given a generally covariant formulation, but
in the fact that it ought to be so formulated (see, e.g., pp. 95–6). The idea is that
one does some sort of violence to the physical content of general relativity if one
breaks its general covariance by introducing preferred co-ordinates, slicings, or
other geometrical structure, in a way in which one does not when one moves from a
generally covariant formulation of Newtonian mechanics or special relativity to the
standard formulations in which inertial co-ordinates play a special role.

Central to this way of thinking about general covariance is the idea that misjudging
the physical content of a given theory can lead one astray in attempts to construct
new theories – since, e.g. empirically equivalent formulations of a given classical
theory may well lead to inequivalent quantum theories, it is important to begin with
the correct formulation. This link between content and method is the source of the
sentiment – which is widespread among physicists working on canonical quantum
gravity – that there is a tight connection between the interpretative problems of
general relativity and the technical and conceptual problems of quantum gravity.

Our goal in this chapter is to explicate this connection for a philosophical audience,
and to evaluate some of the interpretative arguments which have been adduced in
favour of various attempts to formulate quantum theories of gravity. We organize
our discussion around the question of the extent to which the general covariance of
general relativity can (or should) be understood by analogy to the gauge invariance
of theories like classical electromagnetism, and the related questions of the nature of
observables in classical and quantum gravity and the existence of time and change
in the quantum theory.

We provide neither a comprehensive introduction to the formalism of quantum
gravity, nor a survey of its interpretative problems (readers interested in the latter
should turn to the canonical survey articles: Isham 1991, 1993, Kuchař 1992). We
do, however, want the chapter to be both accessible to readers who are unfamiliar
with the formalism, and helpful for those who would like to use it as a starting point
for a serious study of the field. To this end, we have tried to keep the presentation
in the body of the text as intuitive as possible, while relegating technicalities and
references to background literature to footnotes and an Appendix (p. 249).4

We begin in the next section with a sketch of the formalism of gauge theories, and
a brief discussion of their interpretative problems. This is followed in Section 10.3
by a discussion of how general relativity itself may be cast as a gauge theory, and
how in this context the hole argument can be viewed as a special case of the gen-
eral interpretative problem of gauge invariance. In Section 10.4 we bring out some
of the potential demerits of reading the general covariance of general relativity as
a principle of gauge invariance. Most importantly, we discuss the fact that this
reading seems to force us to accept that change is not a fundamental reality in
classical and quantum gravity. This sets up the discussion of the following two
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sections, where we survey a number of proposals for understanding the general
covariance of general relativity and discuss the proposals for quantizing gravity
which they underwrite. Finally, in Section 10.7, we argue that the proposals can-
vassed in Sections 10.5 and 10.6 are directly related to interpretative views concerning
the ontological status of the spacetime of general relativity. We conclude that prob-
lems about general covariance are indeed intimately connected with questions about
the correct quantization of gravity and the nature of time and change in physical
theory.

10.2 Hamiltonian and gauge systems

There are a number of ways to formulate classical physical theories. One of the most
straightforward is to proceed as follows. Construct a space whose points represent the
physically possible states of the system in which you are interested. Then introduce
some further structure which singles out a set of curves in this space that correspond
to dynamically possible histories of the system. In the first two subsections we will
sketch two implementations of this strategy: the Hamiltonian formalism and the
gauge-theoretic formalism. We will see that the notion of a gauge system is a modest
generalization of the notion of a Hamiltonian system – one simply weakens the
geometric structure which is imposed on the space of states. As will become clear
in the third subsection, however, this relatively small difference generates some very
interesting interpretative problems: in the context of gauge systems, one is forced to
make difficult decisions concerning the nature of the representation relation which
holds between the mathematical space of states and the set of physically possible
states of the system. We close the section with a brief discussion of the quantization
of gauge systems.

10.2.1 Hamiltonian systems

Many classical physical systems can be modelled by Hamiltonian systems. These are
triples of mathematical objects, (M ,ω, H ). Here M is manifold, and ω is a tensor,
called a symplectic form, which gives M a geometric structure. The pair (M ,ω) is
called a symplectic geometry ; the dension of M , if finite, must be even. For our
purposes, it is sufficient to note two ways in which the symplectic structure ω
interacts with the set C∞(M ) of smooth real-valued functions on M . The first is
that the symplectic structure ω gives us, via Hamilton’s equations, a map f �→ Xf

between smooth functions on M and vector fields on M . Given f ∈ C∞(M ) , one can
integrate its vector field, Xf , to obtain a unique curve through each point of M (that
is, one looks for the family of curves whose tangent vector at x ∈ M is just Xf (x)).
Thus, we can associate a partition of M into curves with each smooth function on
M . The second, and related, important function of the symplectic structure is to
endow the set C∞(M ) with an interesting algebraic structure, the Poisson bracket.
This is a binary operation which associates a smooth function, denoted {f , g}, with
each pair of functions f , g ∈ C∞(M ). Intuitively, {f , g}measures the rate of change
of g along the set of curves generated by f , so that g is constant along the curves
generated by f iff (i.e. if and only if) {f , g} = 0. The Poisson bracket plays a crucial
role in quantization.
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Fig. 10.1. Hamiltonian systems.

We construct a Hamiltonian system by supplementing a symplectic geometry
(M ,ω) by a choice of a distinguished element H ∈ C∞(M ), called the Hamiltonian.
The set of curves on M determined by ω and H are called the dynamical trajectories.
Figure 10.1 depicts a Hamiltonian system: at the top, we have a symplectic geometry
(M ,ω); specifying a Hamiltonian serves to determine a unique dynamical trajectory
through each point.

Taken together, H and (M ,ω) constitute a theory of the behaviour of the system
in the following sense. We think of (M ,ω) as being the space of dynamically possible
states of some physical system – the phase space of the system. Each point of (M ,ω)
corresponds to exactly one physically possible state of the system, so a curve in phase
space corresponds to a history of physically possible states of the system. To say that
there is a unique dynamical trajectory through each point is to say that our theory
specifies a unique past and future for every possible present state of the system. It is
a complete and deterministic theory.

In the context of classical mechanics, one typically constructs a phase space by
beginning with a smaller space, Q, the configuration space, which is taken to be the
space of possible configurations of some set of particles or fields relative to physical
space. One then identifies the phase space with the cotangent bundle, T ∗Q, of Q. A
point of T ∗Q is a pair (q, p) where q ∈ Q, and p is a covector at q. If Q represents
the set of possible positions of some set of particles relative to physical space, then
T ∗Q can be thought of as the space of possible positions and momenta of these par-
ticles. We can tell a similar story about fields. There is a canonical way of endowing
T ∗Q with a symplectic structure. We can now impose the Hamiltonian, H , whose
value at a point (q, p) is just the energy of a system with that position and momen-
tum. The dynamical trajectories for this Hamiltonian ought to model the observed
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behaviour of our system. Examples of this are the free particle and the Klein–Gordon
field.

10.2.1.1 The free particle
If we are dealing with a single particle in Euclidean space, then Q = �3 – the space
of possible configurations of the particle is just the space of positions of the particle
relative to physical space. The phase space is T ∗Q = T ∗�3, and H is just the kinetic
energy. More generally, if we have a free particle moving in a physical space which is
modelled by a Riemannian geometry (S, g ), then the configuration space is S and the
phase space is T ∗S endowed with the canonical symplectic form, ω. The dynamical
trajectories corresponding to the particle moving along the geodesics of (S, g ) are
again generated by setting the Hamiltonian equal to the kinetic energy 1

2 g abpapb .

10.2.1.2 The Klein–Gordon Field
Fix a simultaneity slice, Σ, in Minkowski spacetime, and let Q be the space of
configurations on this slice of the Klein–Gordon field φ of mass m – thus each
point in Q corresponds to a φ : �3 → �. We then look at T ∗Q, where a point
corresponds to a pair (φ, φ̇). Our phase space consists of T ∗Q equipped with the
canonical symplectic structure, ω. Fixing an arbitrary timeslice, Σ, we can write:

ω((φ1, φ̇1), (φ2, φ̇2)) =

∫
Σ
φ1φ̇1 − φ2φ̇2 dx3

(here we are dealing with a linear field theory, so that Q and T ∗Q are vector spaces,
and we may identify vectors on Q with elements of T ∗Q). For our Hamiltonian,
we take:

H =
1

2

∫
Σ

(
φ̇2 +∇φ + mφ2

)
dx3.

The equation of motion is just the usual Klein–Gordon equation,

∂a ∂aφ−mφ = 0.

10.2.2 Gauge systems

We consider an especially interesting generalization of the Hamiltonian framework:
gauge systems.5 The starting point is to relax one of the conditions imposed upon
symplectic forms. This leads to a more general class of geometries, known as
presymplectic geometries, which serve as the phase spaces of gauge theories. The
presymplectic structure, σ, of a presymplectic geometry (N ,σ) determines a natu-
ral foliation of the manifold N by submanifolds of some fixed dimension – there is
one such submanifold through every point of N (see the top half of Fig. 10.2). These
submanifolds are called the gauge orbits of (N ,σ).

Since (N ,σ) is partitioned by gauge orbits, ‘being in the same gauge orbit’ is an
equivalence relation. We denote this relation by x ∼ y , and denote the gauge orbit
of x by [x]. We call a diffeomorphism Φ : N → N a gauge transformation if it
preserves gauge orbits – i.e. if x ∼ x ′ implies Φ(x) ∼ Φ(x ′). We call a function
f : N → � gauge-invariant if f is constant on each gauge orbit – i.e. if x ∼ x ′

implies f (x) = f (x ′).
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Fig. 10.2. Gauge systems.

If we take a gauge-invariant function, H , on N as our Hamiltonian, then we can
use the resulting gauge system, (N ,σ, H ), to model physical systems. We can again
investigate the dynamical trajectories generated by H . Whereas in the Hamiltonian
case there was a single dynamical trajectory through each point of phase space, we
find in the gauge-theoretic case that there are infinitely many trajectories through
each point.

The saving grace is that the family of dynamical trajectories through a given
point, although they in general disagree radically about which point represents the
future state of the system at a given time, do agree about which gauge orbit this
point lies in. That is: if x(t ) and x ′(t ) are dynamical trajectories which have their
origin at the same point x(0) = x ′(0) = x0, then we have that x(t ) ∼ x ′(t ) for
all t ∈ �. Thus, although the presymplectic geometry is not strong enough to
determine a unique dynamical trajectory through each point, it is strong enough to
force all of the dynamical trajectories through a given point to agree about which
gauge orbit the system occupies at a given time (Fig. 10.2). In particular, if f is a
gauge-invariant function on N then the initial value problem for f is well-posed
in the sense that if we fix an initial point x0 ∈ N , then for any two dynamical
trajectories x(t ) and x ′(t ) which have their origin at the same point x(0) = x ′(0) =
x0, we find that f (x(t )) = f (x ′(t )) for all t . Thus specifying the initial state of
the system completely determines the past and future values of any gauge-invariant
quantity.

In practice, the most interesting gauge systems arise as constrained Hamiltonian
systems. This means that our presymplectic phase space (N ,σ) arises by restricting
attention to a regular submanifold, N , of a symplectic geometry (M ,ω), where N
is equipped with the presymplectic form σ = ω |N (the restriction of ω to N ).6 We
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introduce the notation f ∼= g (read ‘f is weakly equal to g ’) to indicate f |N = g |N ,
where f , g ∈ C∞(M ).

Locally, we can specify N by requiring that some set, C = {Ca} of real-valued
functions on M vanish. Such functions are called constraints. There are two kinds of
constraints: if Ca ∈ C is such that for x ∈ N , XCa (x) is tangent to [x], then Ca is a
first-class constraint, and is denoted γa ; otherwise, Ca is a second-class constraint, and
is denotedχa . Equivalently, the first-class constraints are those which commute with
all of the constraints. The first-class constraints, but not the second-class constraints,
generate gauge transformations on N .7 That is: following in N the integral curve of
a vector field associated with a first-class constraint carries one along gauge orbits
of (N ,σ) (here we are thinking of vector fields as the infinitesimal generators of
diffeomorphisms). In fact, at each point x ∈ N , {Xγa (x)} is a basis for the tangent
space of [x] so that the dimensionality of the gauge orbit of x is just the cardinality
of {γa}.

A function f : M → � has a gauge-invariant restriction to N iff {f , γ} ∼= 0
for all first-class constraints γ (here {, } are the Poisson brackets on (M ,ω)). One
describes this result by saying that gauge-invariant functions commute with the first-
class constraints. In what follows we shall be exclusively concerned with first-class
constraints.

10.2.2.1 Trivial gauge-invariant function
Let (T ∗Q,ω) be a finite dimensional cotangent bundle with its canonical symplectic
structure, and let (qi , pi) be canonical co-ordinates. Now let (N ,σ) arise by imposing
the first-class constraint p1 = 0.8 The Hamiltonian vector field of p1 in (M ,ω)
generates motions in the q1 direction, so the gauge orbits in (N ,σ) are of the form
{(s, q2, . . . ; p2, . . . ): where s ∈ � and all other qi and pi are fixed}. Thus the
gauge-invariant functions on N are those which are independent of q1. For any
Hamiltonian, a dynamical trajectory is of the form (qi(t ), pi(t )), with qi(t ) and
pi(t ) determined uniquely for i ≥ 2, but with q1(t ) an arbitrary function of time –
we call the physically irrelevant q1 a gauge degree of freedom. The behaviour of this
trivial example is typical: if (N ,σ, H ) is a constrained Hamiltonian system in a finite
dimensional symplectic manifold (M ,ω), then we can always find local canonical
co-ordinates, (qi ; pi), on (M ,ω) so that the first-class constraints are of the form
pi = 0 for i ≤ k and the qi(t ) are arbitrary for i ≤ k.

10.2.2.2 Vacuum electromagnetism
Let (S, g ) be a three-dimensional Riemannian manifold representing physical space,
and let Q = {A: S → �3} be the infinite dimensional space of covector fields on S –
that is, each element of Q is a function which maps each point of S to a three-vector.
We construct the cotangent bundle, T ∗Q. A point in T ∗Q is a pair (A, E), where
E , like A, is a vector field on S (again, identifying vectors on a linear space with
elements of that space). We endow T ∗Q with the canonical symplectic structure, ω.
In order to construct the phase space of electromagnetism, we restrict attention to
those points (A, E) ∈ T ∗Q such that div E = 0. This is a first-class constraint. The
constraint manifold, N , is an infinite dimensional submanifold of T ∗Q. We equip
N with the presymplectic form, σ = ω |N . The presymplectic manifold, (N ,σ) is
the phase space of electromagnetism. The gauge orbits of (N ,σ) are determined by
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the following equivalence relation: (A, E) ∼ (A′, E ′) iff E ′ = E and A′ = A + grad Λ
for some Λ : S → �. Thus, [(A, E)] = {(A′, E): A′ = A + grad Λ, Λ : S → �}.
What are the gauge-invariant functions on this phase space? If, for example we fix
a point ξ ∈ S, then the function ξE : N → �3 whose value at (A, E) is just E(ξ)
is gauge-invariant. On the other hand, the function which returns the value A(ξ)
is clearly not gauge-invariant (in general, A(ξ) �= A′(ξ) even if (A, E) ∼ (A′, E)).
We can, however, use A to construct gauge-invariant quantities. Of these, the most
important is the magnetic field, B ≡ curl A. Since curl(A) = curl(A + grad Λ) for
any scalar Λ, we find that B(ξ) = B′(ξ) whenever (A, E) ∼ (A′, E).

We choose our Hamiltonian to be H =
∫

S(|E |2 + |curl A |2) dx . Hamilton’s
equations are Ȧ = −E and Ė = curl (curl A). These are Maxwell’s equations for
E and A, the electric field and the vector potential. Here we find the behaviour
that we expect from a gauge system: specifying an initial point does not serve to
determine a unique dynamical trajectory. But we do find that if (A(t ), E(t )) and
(A′(t ), E ′(t )) are solutions of Maxwell’s equations for the initial data (A0, E0) ∈ N ,
then for each t , E(t ) = E ′(t ) and there is a scalar function on space, Λ(t ), such
that A′(t ) = A(t ) + grad Λ(t ). Equivalently: if (A(t ), E(t )) and (A′(t ), E ′(t )) are
dynamical trajectories with their origins in the same point of (N ,σ), then we have
that [(A(t ), E(t )] = [(A′(t ), E ′(t )] for all t . Maxwell’s equations do not determine
the future value of A(t ), but they do determine in which gauge orbit A(t ) will lie.

10.2.3 Interpreting gauge theories

The interpretation of theories cast in Hamiltonian form is typically quite straight-
forward. Given a Hamiltonian system, (M ,ω, H ), one can always stipulate that it
represents a system whose dynamically possible states stand in a one-to-one corre-
spondence with the points of M (call this the literal approach to interpreting the
theory). Furthermore, in the context of classical mechanics, it often happens that
M = T ∗Q, where Q can be viewed as the space of possible configurations of a set
of particles or fields relative to some inertial frame. In this case, one ends up with
an extremely attractive interpretation of the theory as a deterministic account of a
physically reasonable system.

Unfortunately, interpreting gauge theories is seldom so simple. In the case of
electromagnetism, the application of the literal strategy leads to the claim that our
system has a distinct dynamically possible state for every pair (A, E). But then one is
committed to viewing electromagnetism as an indeterministic theory: specifying the
initial dynamical state, (A0, E0), fails to determine the future dynamical state, since
if (A, E) is a dynamically possible state at time t according to Maxwell’s equations,
then so is (A + grad Λ, E). The present state of the electromagnetic field fails to
determine the future state of the field. Clearly, the same sort of indeterminism will
arise whenever a gauge theory is given a literal interpretation.

This flies in the face of common sense: given initial data one can use Maxwell’s
equations to make highly accurate predictions. So there has to be something wrong
with our literal interpretation of the theory. There are two possible diagnoses here.
The first is that the interpretation, although essentially correct, needs to be sup-
plemented with an account of measurement which will ensure that the predictions
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derivable from our gauge theory are perfectly determinate. The second is that the
formalism of our gauge theory presented above contains ‘surplus structure’, which
must be eliminated – either at the level of formalism or the level of interpretation –
if we are to have a physically sensible understanding of the theory.9 We consider each
of these alternatives in turn.

If we wish to stick with our literal interpretation of our gauge theory, then we
have to explain how it is that the theory is used to make determinate predictions
despite its indeterminism. The most obvious way of doing so is to claim that some
physically real quantities are not measurable. In order to produce determinate pre-
dictions, we need to work with physical quantities whose initial value problems are
well-posed. A function on phase space has a well posed initial value problem iff it
is gauge-invariant. So we will want to stipulate that only gauge-invariant quantities
are measurable. This allows us to maintain predictability, even in the face of inde-
terminism. In the case of electromagnetism, implementing this strategy will mean
accepting gauge-invariant quantities like the electric field, E , and the magnetic field,
B, as measurable, while denying the vector potential, A, is directly measurable.
Nonetheless, the vector potential will be a physically real quantity: since every point
of phase space corresponds to a distinct physically possible situation, (A, E) and
(A′, E ′) will represent distinct situations in virtue of disagreeing as to the value of
the quantity A – even if [A] = [A′] so that the two states of affairs are not empirically
distinguishable.

This sort of ploy is likely to seem rather desperate, however. It seems far more
natural to insist that the only physically real quantities are gauge-invariant quan-
tities (call this strategy the adoption of a gauge-invariant interpretation). In this
case, one need not resort to a tricky account of measurement: one can stick to the
orthodox position that every classical physical quantity is (in principle) measurable
with arbitrary accuracy. Furthermore, the interpretation renders the theory deter-
ministic, since specifying the initial state determines the future and past values of
the physically real quantities. In the case of electromagnetism, for instance, it is
natural to maintain that E and B taken together encode all of the structure of the
electromagnetic field. When physical space is simply connected, the divergence free
magnetic fields are in one-to-one correspondence with the gauge orbits of vector
potentials, so that this move is tantamount to taking [A] rather than A as the phys-
ically real quantity. The resulting interpretation is fully deterministic, and supports
an orthodox account of measurement. Notice that this establishes that determin-
ism cannot be a formal property of theories: to ask whether electromagnetism is
deterministic or not is not to ask a technical question about the formalism of the
vacuum electromagnetism example; rather it is to ask whether one prefers a literal
or gauge-invariant interpretation of this formalism.

There is a formal move which is associated with the interpretative move from literal
to gauge-invariant interpretations: reduction. As it stands, our formalism is good at
predicting which gauge orbit we will end up in, but lousy at predicting which point
we will end up at. This suggests that what we really need is a theory of gauge orbits
rather than points. Thus we attempt to do the following: we build a new manifold,
M̃ , whose points are the gauge orbits of (N ,σ); we then use σ to construct a form
ω̃ on M̃ ; finally, we use H to induce a Hamiltonian H̃ on (M̃ , ω̃). This is called the
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reduced phase space. It is not always possible to carry out this construction: the set of
gauge orbits will not be a manifold, even locally, unless there exist sufficiently many
gauge-invariant quantities to fix a gauge orbit. If not, it will of course be impossible
to construct a symplectic form on M̃ . But when M̃ is well behaved, ω̃ is a symplectic
form so that (M̃ , ω̃, H̃ ) is a genuine Hamiltonian system rather than a gauge system.
This Hamiltonian system describes the way in which the trajectories of the original
gauge system travel through gauge orbits. Giving a gauge-invariant interpretation
of the original gauge theory is the same thing as giving a literal interpretation of
the reduced phase space. In a sense, then, it is always easy to find a gauge-invariant
interpretation, barring technical difficulties: simply construct the reduced phase
space and adopt a literal interpretation. It can happen, however, that the reduced
phase space does not admit any physically attractive literal interpretations – it need
not, for instance, have the structure of a cotangent bundle over configuration space
for reasonable particles or fields. Something like this actually happens in the case of
electromagnetism when space is multiply connected.10

Gauge systems differ from Hamiltonian systems in that their equations of motion
fail to determine the evolution of all of their variables. In the classical context, it
is reasonable to regard this fact as reflecting a shortcoming of the formalism (the
inclusion of excess variables) rather than a genuine ontological indeterminism. That
is: it is preferable to look for interpretations in which only those variables whose
evolution is determined by the equations of motion are taken to correspond to
physically real quantities. If we can find a large enough set of such quantities to fix
the gauge orbit of the system, and which can be taken to correspond to plausible
physical quantities, then we have found an acceptable interpretation. In the case of
ordinary vacuum electromagnetism on a simply connected spacetime, E and B serve
this function admirably. In what follows, we will see that many foundational issues
in classical and quantum gravity turn upon the difficulty of finding a complete set
of physically reasonable gauge-invariant quantities for general relativity.

10.2.4 Quantizing gauge theories

A quantization of a Hamiltonian system (M ,ω, H ) consists of a Hilbert space, H,
equipped with a Hamiltonian operator, Ĥ , and a representation of an appropriate
subalgebra of the Poisson algebra of classical observables as an algebra of self-adjoint
operators on H. If M can be written as T ∗Q for some natural configuration space
Q, then one normally choosesH to be L2(Q,µ), the space of complex functions on
Q which are square-integrable with respect to some physically relevant measure µ.

How does one quantize a gauge theory? There are two main routes. The first is
to construct the reduced phase space and apply canonical technique to the resulting
Hamiltonian system. This tends to be impracticable, however – even when the
reduced phase space exists, its structure is often difficult to determine. The alternative
is to quantize the gauge system directly, employing a technique due to Dirac.11

Suppose that one has a gauge system (N ,σ, H ) where (N ,σ) is the submanifold
of a symplectic geometry (M ,ω) determined by the first-class constraint γ given by
C ≡ 0. Then one chooses a set of co-ordinates on M , and finds a vector space, V ,
which carries a representation of their Poisson algebra as linear operators: if (p, q)
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are canonical co-ordinates on M , then one looks for operators q̂ and p̂ satisfying
[q̂, p̂] = −ih̄. One then looks for a quantum analogue, Ĉ , of the classical constraint –
e.g. if C = p2 then Ĉ = p̂2.12 Next, one imposes the quantum constraint to construct
the space of physical states: Vphys = {ψ ∈ V : Ĉψ = 0}. This ensures that the quan-
tum states are gauge-invariant: if a given degree of freedom, q, is gauge (i.e. physically
irrelevant) at the classical level, then it should be gauge at the quantum level.

Suppose, for example, that the classical constraint is C = p. Then we know from
the example on p. 219 that the classical degree of freedom, q, is gauge. Thus gauge-
invariant functions are independent of q. Working in the standard Schrödinger
representation, we have that

Ĉ = p̂ = i
∂

∂q

so that stipulating that Ĉψ = 0 amounts to requiring that the quantum wave func-
tions be independent of the gauge degree of freedom, q. Similarly, imposing the
quantum constraint corresponding to div E = 0 forces the states ψ(A) of quantum
electrodynamics to be independent of the choice of gauge (i.e. if A′ = A + grad Λ,
then ψ(A) = ψ(A′)).

Finally, one looks for an appropriate inner product to make Vphys into a Hilbert
space, and for an appropriate quantum Hamiltonian, Ĥ , which determines the
quantum dynamics via Schrödinger’s equation.

10.3 General relativity as a gauge theory

In its standard version, the hole argument looks something like the following (see
Earman and Norton 1987). LetM = (M , g ) be a model of general relativity, and let
d : M → M be a diffeomorphism (called a hole diffeomorphism) which differs from
the identity only on some small open set, U . The general covariance of the theory
implies thatM′ = (M , d∗g ) is also a model. If one viewsM andM′ as representing
distinct physically possible worlds, then one is committed to believing that general
relativity is an indeterministic theory – specifying the state of the gravitational field
on a Cauchy surface prior to U fails to determine the state of the field inside U .
Furthermore, it is claimed, if one is a substantivalist about the spacetime points
of general relativity, then, prima facie, one is committed to viewing M and M′ as
representing distinct states of affairs. The conclusion is that substantivalists are prima
facie committed to the doctrine that general relativity is an indeterministic theory.

In this section we will show that the hole argument is a special case of the obser-
vation made in the previous section: a gauge theory is indeterministic under a literal
interpretation. We sketch the formulation of general relativity as a gauge theory and
then argue that certain forms of substantivalism are, in fact, literal interpretations
of this formalism.

10.3.1 Formalism

We begin our search for a gauge-theoretic formulation of general relativity by con-
sidering how to represent an instantaneous state of a general relativistic world, since
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we will want to work with the set of such representations as our phase space. To
this end, we fix for of the remainder of this section a compact three manifold, Σ.
Now consider a globally hyperbolic vacuum solution of the Einstein field equations,
(M , g ), whose Cauchy surfaces are diffeomorphic to Σ.13 We embed Σ in (M , g ) via
a diffeomorphismφ : Σ → M such that S = φ(Σ) is a Cauchy surface of (M , g ), and
we study the geometry which g induces on S. We will take this geometry to represent
an instantaneous state of the gravitational field.14 This geometry is characterized by
two symmetric tensors on S, qab , and Kab . Here q is the Riemannian metric on S,
called the first fundamental form, which results from restricting to Tx S (for x ∈ S)
the inner product which g induces on Tx M . K is the second fundamental form, or
extrinsic curvature, which encodes information about how S is embedded in (M , g ).
Very roughly, the extrinsic curvature of S is the time derivative of q (see eqn. 10.2.13
of Wald 1984). We use φ to pull these tensors back to Σ, and henceforth regard
them as being defined on Σ rather than on S.

This tells us what sort of geometric structure Σ inherits when viewed as a subman-
ifold of (M , g ). Now suppose that we imagine Σ to come equipped with symmetric
tensors q and K , with q a Riemannian metric. It is natural to wonder under what cir-
cumstances we can view (Σ, q, K ) as being the geometry of a Cauchy surface of some
model (M , g ). The answer is that Σ may be embedded in some (M , g ) in such a way
that q and K arise as the first and second fundamental forms of Σ iff the following
two relations – known as the Gauss and Codazzi constraints respectively – hold:

R + (K a
a )2 − K abKab = 0

∇aKab −∇bK a
a = 0.

Here, the metric q on Σ is used to define the scalar curvature, R, and the covariant
derivative,∇. Note that these conditions make reference only to q and K – they do
not mention g .

All of this suggests that we should regard a pair (q, K ) as representing the dynam-
ical state of gravitational field at a given time if it satisfies the Gauss and Codazzi
constraints. The metric q describes the geometry of a Cauchy surface; the symmetric
tensor K describes the embedding of the slice in the ambient spacetime, and corre-
sponds roughly to the time derivative of q. Thus, we can regard q as the ‘position’ of
the gravitational field. The natural starting point for writing down general relativity
as a constrained Hamiltonian system is Riem(Σ), the space of Riemannian metrics
on Σ. We regard this as the configuration space, Q, of our theory of gravity. In
order to construct the phase space, we first construct T ∗Q, and then endow it with
the canonical symplectic structure, ω. The momentum canonically conjugate to q is
given not by K but by

pab ≡
√

det q(K ab − K c
c qab).

The phase space of general relativity is the constraint surface N ⊂ T ∗Q given
by the following first-class constraints, known as the scalar and vector constraints
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(or, alternatively, as the Hamiltonian and momentum constraints):

h ≡
√

det q(pabpab − 1
2 (pa

a )2 − R) = 0

ha ≡ ∇bpb
a = 0.

Each of these equations actually determines an infinite dimensional family of
constraints, since each of them must hold at every point of Σ. Notice that the scalar
and vector constraints are just the Gauss and Codazzi constraints, rewritten in terms
of p rather than K . Let σ = ω|N , and let H ≡ 0. Then general relativity is the gauge
theory (N ,σ, H ).15

At each point x ∈ N , the gauge orbit of (N ,σ, H ) is infinite dimensional. These
orbits have the following structure. Fix x = (q, p) and x ′ = (q′, p′) in N . Then
x and x ′ lie in the same gauge orbit iff there is a solution to the Einstein field
equations, (M , g ), and embeddings, φ,φ′ : Σ → M , such that: (i) φ(Σ) and φ′(Σ)
are Cauchy surfaces of (M , g ); (ii) q and q′ are the first fundamental forms of φ(Σ)
and φ′(Σ); (iii) p and p′ are the second fundamental forms of φ(Σ) and φ′(Σ).
That is, two points are gauge-related if they describe spatial geometries of the same
model of general relativity. Thus, each gauge orbit can be viewed as being the space
embeddings of Σ as a Cauchy surface of some model (M , g ) (it could, of course,
equally well be viewed as being the space of such embeddings for any other model
isometric to (M , g )). This means that each dynamical trajectory lies in a single gauge
orbit: as the gravitational field evolves, it always stays in the same gauge orbit. This
is, in fact, the significance of setting H ≡ 0: the vanishing of the Hamiltonian means
that the dynamical trajectories are always tangent to the gauge orbits, which is just
to say that once a dynamical trajectory is in a given gauge orbit, it never leaves. As
we will see below, a zero Hamiltonian is closely related to the lack of a preferred time
parameter.

Given a model M = (M , g ), we can find a dynamical trajectory of (N ,σ, H )
corresponding toM as follows. We first choose a foliation of M by Cauchy surfaces
(which are, of course, all diffeomorphic to Σ). We then choose a time function
τ : M → �, which is compatible with the foliation in the sense that the level surfaces
of τ are the Cauchy surfaces of the foliation. Finally, we choose a diffeomorphism
Φ : M → Σ × � such that each Cauchy surface of the foliation, S, is mapped
onto a set of the form Σ × {t}. We call such a diffeomorphism an identification
map, since it gives us a way of identifying the leaves of the foliation with Σ. We use
Φ to push forward g , so that M′ = (Σ × �, Φ∗g ) is isometric to M; the surfaces
Σ×{t} inM′ are Cauchy surfaces isometric to the Cauchy surfaces of our preferred
foliation ofM. Now let qab(t ) and pab(t ) characterize the geometry of the Cauchy
surface Σ × {t} in M′. As t varies, (qab(t ), pab(t )) sweeps out a curve in N –
the points on this curve representing a sequence of Cauchy surfaces. This curve is a
dynamical trajectory of (N ,σ, H ). Choosing a different foliation, time function or
identification map gives us a new dynamical trajectory, which will be related to the
first by a gauge transformation – i.e. one can map one dynamical trajectory on to
the other via a transformation of phase space which preserves gauge orbits.

The trajectories that correspond to the models M and M′ which appear in
the hole argument are so related. This shows that our approach respects the general
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covariance of general relativity in the sense that it is indifferent to changes of foliation,
time function, and identification map. Changing any of these simply carries us from
one dynamical trajectory to a gauge-related one.16

Now suppose that we look at two points x = (q, p) and x ′ = (q′, p′) which lie
in the same gauge orbit, and which can be joined by an integral curve of a vector
field generated by the vector constraint. Then we find that there is a diffeomorphism
d : Σ → Σ such that d∗q = q′ and d∗p = p′. That is, we can regard x and x ′

as agreeing on the geometrical structure of Σ, and disagreeing only as to how the
underlying geometrical properties are shared out over the points of Σ – x and x ′

may represent, for example, a geometry on Σ which has a single point of maximum
scalar curvature, but according to x this point is z ∈ Σ, whereas according to x ′

it is z ′ ∈ Σ. Thus, we can view the gauge transformations generated by the vector
constraint as shuffling the geometrical roles played by the points of Σ.

Unfortunately, the gauge transformations generated by the scalar constraint are
considerably more complex. Very roughly, they can be thought of as corresponding
to time evolution – two points differ by a gauge transformation generated by the
scalar constraint if they can be seen as representing distinct Cauchy surfaces in a
given model. In a generic spacetime, distinct Cauchy surfaces can be expected to
have very different geometries, so that points in N which are related by a gauge
transformation generated by the scalar constraint will not in general represent the
same geometry. In general, of course, a given gauge transformation is generated by
a combination of both sorts of constraint.

Next, suppose that we have two dynamical trajectories which correspond to the
same model (M , g ). Suppose, further, that the trajectories differ by a gauge trans-
formation generated by the vector constraint. Then, in terms of the construction
above which establishes a correspondence between models and dynamical trajecto-
ries: we can use the same foliation by Cauchy surfaces and the same time function τ
to generate both dynamical trajectories; the difference between the trajectories can
be attributed solely to the freedom available in the choice of an identification map.
If, on the other hand, the trajectories differ by a gauge transformation generated by
the scalar constraint, then the difference can be traced to the freedom in the choice
of foliation and time function on (M , g ).

Modulo technical difficulties to be discussed in Section 10.4, we can convert this
gauge theory into a true Hamiltonian system by factoring out the action of the
gauge transformations to construct the reduced phase space. It is illuminating to
proceed in two steps: we first partially reduce the phase space by factoring by the
action of the gauge transformations generated by the vector constraint; we then
complete the reduction by removing the gauge freedom associated with the scalar
constraint.

At the first stage, we identify any two points in N which are related by a gauge
transformation generated by the vector constraint. The partially reduced phase space
which results can be constructed as follows. We return to the beginning of our con-
struction of (N ,σ, H ), and replace the configuration space Q = Riem(Σ) of metrics
on Σ by Q0 = Riem(Σ)/Diff(Σ), the set of equivalence classes of diffeomorphically
related metrics on Σ. We call Q0 superspace. We now construct T ∗Q0 and impose
the scalar constraint, to construct the presymplectic geometry (Ñ , σ̃). The gauge
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theory (Ñ , σ̃, H ≡ 0) is the partially reduced phase space formulation of general
relativity. By identifying diffeomorphically related 3-metrics from the start, we have
eliminated the need for the vector constraint.

The gauge orbits remain infinite dimensional even after this partial reduction has
been carried out. If we now identify points in Ñ which are related by a gauge trans-
formation generated by the scalar constraint, then we end up with a Hamiltonian
system (M̃ , ω̃, H ≡ 0), where points in the phase space correspond to equivalence
classes of diffeomorphically related models of general relativity.

10.3.2 Interpretation

Classical substantivalists and relationalists about space agree with one another that
space exists, and that it has some fixed geometrical structure. They are divided over
the question of the nature of the existence of this peculiar entity. Substantivalists
hold that it consists of parts which maintain their identity over time, and that
these parts stand directly in geometrical relations to one another, while material
objects stand in spatial relations only in virtue of the relations obtaining between
those parts of space which they occupy. Relationalists deny the substantivalist claim
that space has genidentical parts. They maintain that space is best thought of as
the structure of possible spatial relations between bodies. Such relations are to
be taken as primitive, rather than being reduced to relations holding among the
points of an underlying substratum. There are a couple of vivid ways of putting
the issue between the two factions. Substantivalists, but not relationalists, believe
in genidentical points. This means that substantivalists, but not relationalists, can
help themselves to a straightforward account of the nature of absolute motion – it
is motion relative to the genidentical parts of space.17 In addition, substantivalists
will follow Clarke in affirming, while relationalists will follow Leibniz in denying,
that two possible worlds could instantiate all of the same spatial relations, but differ
in virtue of which point of space plays which role (I occupy this point rather than
that one).

Relativistic physics, however, seems to demand that one think in terms of space-
time rather than space. Thus, the traditional doctrines are often translated into the
four-dimensional context. Substantivalists and relationalists will again agree that
the world has some given geometrical structure. Substantivalists understand the
existence of spacetime in terms of the existence of its pointlike parts, and gloss
spatio-temporal relations between material events in terms of the spatio-temporal
relations between points at which the events occur. Relationalists will deny that
spacetime points enjoy this robust sort of existence, and will accept spatio-temporal
relations between events as primitive. It is now somewhat more difficult to specify
the nature of the disagreement between the two parties. It is no longer possible
to cash out the disagreement in terms of the nature of absolute motion (absolute
acceleration will be defined in terms of the four-dimensional geometrical structure
that substantivalists and relationalists agree about). We can, however, still look to
possibilia for a way of putting the issue. Some substantivalists, at least, will affirm,
while all relationalists will deny, that there are distinct possible worlds in which
the same geometries are instantiated, but which are nonetheless distinct in virtue of
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the fact that different roles are played by different spacetime points (in this world,
the maximum curvature occurs at this point, while it occurs at that point in the
other world). We will call substantivalists who go along with these sort of counter-
factuals straightforward substantivalists. Not all substantivalists are straightforward:
recent years have seen a proliferation of sophisticated substantivalists who ape rela-
tionalists’ denial of the relevant counterfactuals (see Brighouse 1994, Butterfield
1989, Field 1985, Maudlin 1990). For the time being, however, we will bracket this
option. We will address the virtues and vices of sophisticated substantivalism in
Section 10.7.

It is easy to see that (straightforward) substantivalists are committed to giving a
literal interpretation of general relativity. Consider two models, M = (M , g ) and
M′ = (M , d∗g ), which are related by a hole diffeomorphism, d . Fix a foliation,
time function, and identification map, and use them to construct dynamical tra-
jectories x(t ) and x ′(t ) in the phase space of general relativity which correspond to
M andM′. Because d is a hole diffeomorphism, we can assume that x(t ) = x ′(t )
for t ≤ 0, but x(1) �= x ′(1). Substantivalists will view x(t ) and x ′(t ) as rep-
resenting distinct physically possible histories: although they represent the same
spatio-temporal geometry (lying as they do in the same gauge orbit), they repre-
sent different distributions of their shared set of geometrical properties over the
points of spacetime (if y is a point on the spacelike surface t = 1, then x repre-
sents it as having these properties while x ′ represents it as having those). Indeed
whenever x and x ′ are distinct points in the phase space of general relativity, a sub-
stantivalist will view them as representing distinct physical situations: either they
represent distinct possible geometries for a given spacelike hypersurface, or they
represent the same pattern of geometric relations differently instantiated. This is
just to say that substantivalists are committed to a literal construal of the gauge-
theoretic formulation of general relativity. And, like any literal interpretation of a
gauge theory, substantivalism implies that the theory is indeterministic: if x(1) and
x ′(1) correspond to distinct possible situations, then the state corresponding to x0 =
x(0) = x ′(0) has multiple physically possible futures. This is the content of the hole
argument.

As in Section 10.2, the best way to avoid this sort of indeterminism is to adopt
a gauge-invariant interpretation of the theory. We can do this by giving a literal
interpretation of the reduced phase space formulation of general relativity. Recall
from above that the points of the reduced phase space are just the equivalence classes
of diffeomorphic models of general relativity. Thus, in order to avoid the indeter-
minism of the hole argument, we have to accept that diffeomorphic models always
represent the same physically possible situation (this proposition is known as Leibniz
equivalence in the literature on the hole argument). And this, of course, is just to
deny that there could be two possible worlds with the same geometry which differ
only in virtue of the way that this geometry is shared out over existent spacetime
points. Thus, modulo the existence of an attractive form of sophisticated substanti-
valism, one must be a relationalist in order to give a deterministic interpretation of
general relativity.

There is another, closely related, motive for adopting a gauge-invariant interpre-
tation of general relativity. As was noted at the end of Section 10.2, the existence of
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gauge degrees of freedom in a theory seems to tell us that the theory contains excess
variables. The natural response is to seek an interpretation in which all and only
the variables which correspond to physical degrees of freedom are taken seriously.
Typically, we will want to say that it is just those variables whose evolution is deter-
mined by the differential equations of the theory that should be taken seriously in
this way. Recently, a number of philosophers have joined the majority of physicists
in advocating such gauge-invariant interpretations of general relativity – although
almost all philosophers opt for a form of sophisticated substantivalism, while many
physicists adhere to a strict relationalism.

At this point a potential technical problem looms. Relatively little is presently
known about the structure of the reduced phase space of general relativity. It is
known that this space has singularities corresponding to models of general rela-
tivity with symmetries, and is smooth elsewhere (Marsden 1981). Interesting and
extensive smooth open sets have been constructed (Fischer and Moncrief 1996; see
footnote 25). But the concern is sometimes expressed that the structure of generic
regions of this space may not be smooth (see p. 141 of Kuchař 1993a, p. 267 of Unruh
1991, p. 2600 of Unruh and Wald 1989). Equivalently, one can wonder whether there
exists a full set of gauge-invariant quantities on the unreduced phase space of general
relativity. In fact, very few such quantities are known (see Goldberg, Lewandowski,
and Stornaiolo 1992 for a rare example). Furthermore, it is known that there are no
local gauge-invariant quantities.18

Until some progress is made on these technical questions, a dark cloud hangs over
the programme of providing gauge-invariant interpretations of general relativity.
The problem is this. One knows that the reduced phase space of general relativity
exists as a mathematical set with some topology (although this topology may not
be well enough behaved to support any interesting global geometric structure).
And one knows that the points of the reduced phase space can be characterized as
equivalence classes of models of general relativity. Philosophers who have advocated
gauge-invariant interpretations have been satisfied with this sort of approach, which
we dub extrinsic, since the characterization of the points of the reduced phase space is
in terms of the gauge orbits of the original phase space. Such an extrinsic approach
may, indeed, yield some sort of interpretation of general relativity. But we feel
that something is lacking from an interpretation which stops at this point. Ideally,
one would like an interpretation of general relativity which was underwritten by
some intrinsic characterization of the points of reduced phase space. Indeed, in
order to formulate a gauge-invariant quantum theory, one would like to be able to
find a set of co-ordinates on the reduced phase space – or, equivalently, a full set
of gauge-invariant quantities on the original phase space. This would amount to
isolating the true (i.e. gauge-invariant) degrees of freedom of the theory. Although
this is not essential for Dirac quantization, it nonetheless seems to us that it is the
approach to the theory which yields the deepest understanding, since it underwrites
an explicit characterization of the classical and quantum degrees of freedom of the
system.19

Thus, we conclude that the present state of ignorance concerning the structure
of the reduced phase space of general relativity – and the lingering worry that this
structure may be monstrous – should give pause to advocates of gauge-invariant
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interpretations of the theory. We will, however, bracket this technical objection
to gauge-invariant interpretations, and move on to discuss the two other sorts of
problem which plague such interpretations:

• It appears to be a consequence of any gauge-invariant interpretation of general
relativity that change does not exist, since any such interpretation requires us to
regard two points, x and x ′, of the phase space of general relativity which correspond
to distinct Cauchy surfaces of the same model as representing the same state of affairs,
since they are related by a gauge transformation generated by the scalar constraint.
Equivalently, if the only physical quantities are gauge-invariant, then there is
no such quantity which allows us to distinguish between two such Cauchy surfaces.

• Accepting a gauge-invariant interpretation of general relativity, and thus treating
the general covariance of general relativity as analogous to the gauge invariance
of electromagnetism, leads to nasty technical and interpretative problems when
one attempts to quantize the theory. These problems are so intractable that some
have called for a re-evaluation of the standard understanding of general covariance.

We will discuss these problems for advocates of gauge-invariant interpretations in
Sections 10.4 and 10.5. In Section 10.6, we will survey some interpretations which
lie outside of the gauge-invariant orthodoxy. All of these options will be seen to have
serious shortcomings, as well as distinctive attractive features.

10.4 Gauge invariance and change

Is there room for time or change when general covariance is understood as a principle
of gauge invariance? Prima facie, a gauge-invariant interpretation of general relativity
is descriptively inadequate because it cannot accommodate real change.

‘To maintain that the only observable quantities are those that commute with all the
constraints [i.e. the gauge-invariant quantities] seems to imply that the Universe
cannot change. For this reason, this standpoint on observables was dubbed the
frozen time formalism. The frozen time formalism never successfully explained the
evolution we see all around us’.

(Kuchař 1992, p. 293)

‘How can changes in time be described in terms of objects which are completely
time independent? In particular, since the only physical, and thus measurable
quantities are those which are time independent, how can we describe the rich set of
time dependent observations we make of the world around us? . . . The time
independent quantities in General Relativity alone are simply insufficient to
describe time dependent relations we wish to describe with the theory’.

(Unruh 1991, p. 266)

Kuchař and Unruh are putting their fingers on an important question about the
nature of time. It will be helpful in what follows to be clear on the relationship
between their question and questions about the nature of time which are currently
at the centre of philosophical discussion. Kuchař and Unruh are not interested in:
(i) the direction of time; (ii) the objectivity of the metric structure of time; (iii) the
reducibility of temporal relations to causal relations; or (iv) the existence of a moving
now or flow of time. Rather, they are interested in whether or not change itself exists.
And, of course, to the extent that the existence of time and that of change are closely
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related, they are interested in the existence, or lack thereof, of time as well. Thus, it
is tempting to see them as engaging the same problematic about time, change, and
flux that so occupied the Ancients.

In the quotations above, Kuchař and Unruh are driving at the following
point. If we accept that the only physically real quantities of general relativity are
gauge-invariant, then it follows that for any given model there is no physically real
quantity which takes on different values when evaluated on Cauchy surfaces corre-
sponding to distinct times. Which is, they claim, just to say that there is no change
when general relativity is understood in this fashion: there is no evolution in time
of the values of the physically real quantities. Prima facie, people who hold such
a view have a very simple view of the nature of change: it is illusory. For this rea-
son, Kuchař associates the reading of the general covariance of general relativity
as a principle of gauge invariance with the name of Parmenides (Kuchař 1993a,
p. 139).

Both Kuchař and Unruh denounce this Parmenidean view. They maintain that
it flies in the face of our experience of time and change, and are sceptical that any
coherent conceptual framework for the articulation of a quantum theory of gravity
can be built upon such a foundation. Many physicists working on quantum gravity
seem to be swayed by these arguments. But if the Parmenidean view of change is
to be rejected as descriptively inadequate, what sort of account should be erected
in its place? This is clearly a philosophical problem. Now, the vast majority of con-
temporary philosophical discussion about the nature of change is concerned with
the existence of a moving now. This literature, whatever its merits as metaphysics,
seems to be entirely irrelevant to the physical problems with which we are here con-
cerned – since it almost always presupposes a pre-relativistic world view, and turns
upon a question (the viability of the tenseless view of time) which is likely to appear
long-since settled to relativistically minded physicists.

Philosophers come closest to the physicists’ questions when they attempt to moti-
vate the idea of a moving now. In introducing philosophical theses related to this
latter problem, Le Poidevin and MacBeath comment that:

‘It is a commonplace that time, not space, is the dimension of change. There is a
wholly uncontroversial sense in which this is true: genuine change involves
temporal variation in the ordinary properties of things: a hot liquid cools, a tree
blossoms, an iron gate rusts. Purely spatial variation, for example the distribution
of colours in patterned rug, does not count as a genuine change. Uncontroversial as
this is, it requires explanation. What is special about time?’

(1993, p. 1)

In fact, it is not uncommon to introduce the moving now as a solution to this
problem, before going on to consider whether it is a coherent notion (see, e.g. Mellor
1993, p. 163). Unfortunately, philosophers seem to have all too little to say about
what distinguishes change from mere variation.

Unruh, however, has made a very interesting and influential suggestion along
these lines – one which is clearly motivated by physical concerns, but which strikes
us as being philosophically provocative. He calls his view Heraclitean, in honor of
Heraclitus’ characterization of time as a war of opposites. The fundamental insight
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is that ‘Time is that which allows contradictory things to occur’:

‘At any one time, the statement that a cup is both green and red makes no sense;
these are mutually contradictory attributes. At any one time, a single particle
can have only one position. However, at different times a particle can
have many different positions, as can the cup have many different
colours’.

(Unruh 1988, pp. 254–55; see also p. 2602 of Unruh and Wald 1989)

Time sets the values of the other variables, in the sense that at any given time each
object takes on exactly one property from any exhaustive and mutually exclusive set
(such as position or colour), although the property assumed is allowed to vary as
the time parameter varies. This is suggestive, but ultimately inadequate. After all,
the patterned carpet is allowed to take on different colours in different regions of
its spatial extension, just as the coloured cup assumes different colours in different
parts of its temporal extension. Furthermore, Unruh’s proposal is unsatisfactory at
the classical level because it depends on a primitive notion of genidentity, which is
unlikely to be attractive in the context of field theories.

But he goes on to make a suggestion about how to understand the Heraclitean
aspect of time in the context of quantum theories which seems to provide a means
to distinguish the spatial from the temporal. Let’s suppose that we are given a
two-dimensional spacetime continuum and a complex function ψ on this con-
tinuum which we take to represent the wave function of some quantum particle.
Can we distinguish the temporal dimension from the spatial dimensions? Well,
let {x , y} be an arbitrary set of co-ordinates. Suppose that we want to calculate
the probability of finding the particle in a given region. In order for this to make
sense, we will need the total probability to be normalized. But, if ψ is really the
wave function, then we expect

∫∞
−∞
∫∞

−∞ |ψ(x , y) |2 dx dy to be infinite – at each
time, the particle must be somewhere, so the integral over the temporal dimension
diverges. The solution is obvious: we should be looking at

∫∞
−∞ |ψ(x , y0)|2 dx and∫∞

−∞ |ψ(x0, y) |2 dy , for fixed x0 and y0. If we find that the former is constant for
all values of y0, while the latter is extremely badly behaved, then this licenses us
to conclude that y is a time variable: integrating over surfaces of constant y gives
us normalized probability densities. In this situation, we can view y but not x as
setting the conditions for the other variables in the following sense: fixing a value
of the time parameter allows us to formulate a quantum theory in which we can
interpret the square of the wave function as a probability for measurement out-
comes for the other variable. This is the Heraclitean role of time in a quantum
world.

Of course, it is not straightforward to implement this strategy in the case of quan-
tum gravity. Our discussion above presupposed that we were simply handed the
measures dx and dy . But this is to tantamount to knowing the physically relevant
inner product on our space of quantum states. And, in fact, to identify the correct
inner product is to go a long way towards solving the problem of time in quantum
gravity (see especially Kuchař 1993a on this question). Nonetheless, Unruh’s sugges-
tion provides a framework in which to talk about the notions of change and time
in quantum theories. As such, it has been influential in shaping discussion of the
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problem of time in quantum gravity, and provides a useful point of departure for
our own discussion.

In the next two sections we will sketch some of the most important Parmenidean
and Heraclitean approaches to classical and quantum gravity, as well as some of
the most telling objections to these proposals. We will begin by sketching a timeless
approach to general relativity and quantum gravity in Section 10.5, before turning
to the details of a couple of Heraclitean approaches in Section 10.6.

In what follows, it will be helpful to keep in mind the following picture of the
dispute. All parties seem to agree that understanding what the general covariance
of general relativity is telling us about change and time is a precondition for the
formulation of a theory of quantum gravity. It is true, of course, that in the context of
general relativity, we can always cash out talk about time and change in terms Cauchy
surfaces in models of general relativity. But, it is maintained, for anyone interested
in canonical quantization of general relativity the resources to speak about time
and change in quantum gravity must be found in (or imposed upon) the structure
intrinsic to the phase space of general relativity. Here one has two options, neither
of which is entirely attractive: (i) to embrace the Parmenidean view and attempt
to make sense of quantum and classical theories of gravity which are prima facie
without change or time; or (ii) to turn away from gauge-invariant interpretations
of general relativity, and thus to base one’s theories of gravity upon some other
interpretation of the significance of the general covariance of the classical theory.

10.5 Life without change

For the Parmenidean, the challenge provided by the general covariance of general
relativity is to give an account of the theory in which time and change are not
fundamental, but which (i) is consistent with our experience, and (ii) motivates a
viable programme for quantization. We will begin with the first point before turning
to the second.

10.5.1 The classical theory

Even if it is granted that change is not a fundamental reality, we are nevertheless owed
an account of how we can understand the observations of experimental physics and
everyday life – observations which would naively seem to involve recording the
presence of different properties at different moments of time. Unruh attributes
to Bryce DeWitt the suggestion that the accommodation is afforded by time-
independent correlations between non-gauge-invariant quantities, a suggestion
Unruh himself rejects:

‘The problem is that all of our observations must be expressed in terms of the
physically measurable quantities of the theory, namely those combinations of the
dynamical variables which are independent of time. One cannot try to phrase the
problem by saying that one measures gauge dependent variables, and then looks for
time independent correlations between them, since the gauge dependent variables
are not measurable quantities within the context of the theory’.

‘For example, Bryce DeWitt has stated that one could express measurements in
the form of correlations. As an example, one could define an instant of time by the
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correlation between Bryce DeWitt talking to Bill Unruh in front of a large crowd of
people, and some event in the outside world one wished to measure. To do so
however, one would have to express the sentence “Bryce DeWitt talking to Bill
Unruh in front of a large crowd of people” in terms of physical variables of the
theory which is supposed to include Bryce DeWitt, Bill Unruh, and the crowd of
people. However, in the type of theory we are interested in here, those physical
variables are all time independent, they cannot distinguish between “Bryce DeWitt
talking to Bill Unruh in front of a large crowd of people” and “Bryce DeWitt and Bill
Unruh and the crowd having grown old and died and rotted in their graves.” The
complete future time development of any set of variables is described in this theory
by exactly the same physical variables. The physical variables, those which commute
with all the constraints, can distinguish only between different complete spacetimes,
not between different places or times within any single spacetime . . . The subtle
assumption in a statement like the one ascribed to DeWitt, is that the individual
parts of the correlation, e.g. DeWitt talking, are measurable, when they are not’.

(Unruh 1991, p. 267)

We think that there is a more charitable interpretation to DeWitt’s proposal: take
it not as a way of trying to smuggle real change through the back door, but as a way of
explaining the illusion of change in a changeless world. The idea is that we measure
hyphenated relative observables, such as clock-1-reads-t1-when-and-where-clock-2-
reads-t2. Such relative observables can be gauge-invariant and hence measurable
according to the theory. We then get the illusion of change because we think that
we can dehyphenate these hyphenated relative observables and treat each of the
component variables as a genuine observable.

Rovelli’s proposal for constructing ‘evolving constants’ is the most sophisticated
and cogent way of fleshing out this suggestion.20 In order to avoid the complications
of general relativity we illustrate the proposal by means of a toy Newtonian example,
which is concocted in such a way as to resemble, in relevant features, general relativity
as a constrained Hamiltonian system (see Section 10.8.4 for a general construction).
Consider the Newtonian account of the motion of a free particle on a line. We model
this using a Hamiltonian system (T ∗�, ω, H ) where T ∗� = {(x , px )} is the cotan-
gent bundle of the configuration space �, ω is the canonical symplectic structure,
and H is the kinetic energy, 1

2 p 2
x . We now employ the following formal trick, known

as parameterization. We enlarge the phase space, by adding the time, t , and its canon-
ically conjugate momentum, pt , and we impose the constraint 0 = pt + 1

2 p 2
x ≡ C .

We also take H ′ ≡ C = 0 as our Hamiltonian. We solve Hamilton’s equations to
find that our dynamical trajectories (x(τ ), t (τ ); px (τ ), pt (τ )) are determined by the
equations ṗt = 0, ṗx = −ṫ ∂H/∂x = 0, and ẋ = ṫ ∂H/∂px = ṫ px , where ṫ is
arbitrary and the overdot indicates differentiation with respect to the arbitrary time
parameter τ . These equations are equivalent to our original equations of motion,
px = constant and x = px t + x0. Thus, each gauge orbit of the parameterized system
corresponds to a dynamical trajectory of the original Hamiltonian system.

Since H ′ = 0, we expect that the parameterized system will display some of
the same peculiar features as general relativity. The vanishing of the Hamiltonian
means that the dynamical trajectories lie in gauge orbits. This means that there
are no gauge-invariant quantities which distinguish between two points lying on
the same dynamical trajectory. Most strikingly, the position of the particle, x , fails
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to commute with the constraint, and hence is not gauge-invariant – and so is not
measurable under the standard reading of gauge invariance. Thus, the parameterized
system seems to describe a Parmenidean world in which there is no change – and,
in particular, no motion.

This is paradoxical: after all, the parameterized system is empirically equivalent to
the original Hamiltonian system, which can be thought of as describing an ordinary
Newtonian world. How can we account for this? The obvious response is that we
can deparameterize in a preferred way since t , which is supposed to represent the
absolute time of Newtonian mechanics, is in principle observable (say, by reading
an idealized clock). But suppose we did not know this, or that we wished to eschew
absolute time. How might we describe change, or something enough like change to
explain ordinary observations, in the parameterized system?

Choose a global time function on the augmented phase space: a function
T (x , t ; px , pt ) whose level surfaces are oblique to the gauge orbits. Consider any phase
function F , not necessarily a constant of motion. Define an associated one-parameter
family of phase functions {Fτ}τ∈� by the following two requirements:

(R1) {Fτ , C} = 0

(R2) Fτ=T (x ,t ; px ,pt ) = F(x , t ; px , pt ).

Here {, } is the Poisson bracket on the augmented phase space. The first require-
ment says that each Fτ is constant along the gauge orbits – so that the Fτ , unlike
F , are gauge-invariant. In the case at hand, that means that the Fτ are constants
of motion. The second requirement says that the value of Fτ is equal to the value
of the phase function F when the phase point (x , t ; px , pt ) lies on the level surface
T (x , t ; px , pt ) = τ . The Fτ are then the evolving constants which can be used to
describe change. In our toy example, take F(x , t ; px , pt ) = x . F does not commute
with the constraint, so it is not gauge-invariant. Take T (x , t ; px , pt ) = t . Then using
R2, Fτ = x − p − x(t − τ ). The value of Fτ on an orbit with initial x0 is pxτ + x0.
It is easy to verify that R1 holds: the Fτ ’s are gauge-invariant. Being constants of
the motion, the Fτ do not change. But the family {Fτ} can be said to ‘evolve’. In
our example, the law of evolution is dFτ/dτ = px . Our tendency to group gauge-
invariant quantities into families which can be viewed as ‘evolving’ is supposed to
account for our experience of change.

Kuchař (1993a) interprets Rovelli’s proposal as saying that change in a non-gauge-
invariant quantity can be observed, at least indirectly, by observing the gauge-
independent quantities Fτ1 and Fτ2 (say) and then inferring the change ∆x in x
from t = τ1 to t = τ2 to be Fτ1 − Fτ2 = px (τ1− τ2). Kuchař’s objection is that we are
not told how to observe τ – we can’t do it by observing that the value of t is τ , for t is
not an observable in the theory (this echoes the objection of Unruh discussed above).

A possible response is that we don’t have to observe τ . The Fτ are constants of the
motion so it doesn’t matter when they are observed – in principle, all the Fτ could
be observed at once. This doesn’t make Kuchař happy either: ‘If all τ is eternally
present, all time is irredeemable’ (1993a, p. 139). Perhaps another way to put the
criticism is to observe that it is hard to see how one would know which Fτ one is
measuring without measuring τ , which brings us back to Unruh’s objection.
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These criticisms are misplaced if, as we suggested above, the evolving constants
proposal is construed modestly as explaining the illusion of change. Each Fτ is to be
taken as a hyphenated relative observable: the-position-x-of-the-particle-when-the-
t -clock-reads-τ . We think that there is real change because we (mistakenly) think
that we can dehyphenate for various values of the ‘time’ to get differences in the
particle position – but the resulting ‘observable’ would fail to be gauge-invariant. To
be satisfying this line has to be extended to hook up with actual perceptions. Here one
might worry that the Kuchař–Unruh challenge comes back to haunt us at the level of
neurophysiology if, as the theory seems to demand, all explanations must ultimately
be stated in terms of gauge-invariant quantities. But one has to be careful here: we
certainly cannot expect the theory to recapitulate our full phenomenology of time –
to do so would be to demand that the theory contain a moving now, a demand
which physics left behind long ago. But it surely is reasonable to demand that there
be a place in the theory for models of human beings. In particular, it is reasonable
to demand that the theory explain the illusion of change – any gravitational theory
which cannot save such basic phenomena as the expansion of the universe will be
empirically inadequate.21

Kuchař himself seems to admit that the evolving constants framework does meet
this latter challenge, and thus does provide a way to make sense of time and change
in the context of general relativity (see his comments on pp. 138–40 of Ashtekar
and Stachel 1991). But even if this is granted, there remain problems with the
quantization of general relativity within the evolving constants framework. If these
cannot be overcome, this will be a severe blow to the credibility of Parmenidean
interpretations of general relativity.

10.5.2 Quantum gravity

One of the signal virtues of the Parmenidean approach is that it underwrites an
approach to quantizing general relativity which is very clear in its broad outlines
(although it is, like every other approach to quantum gravity, extremely difficult
in its details). If one regards the general covariance of general relativity as being
strictly analogous to the gauge invariance of electromagnetism, then one will treat
the quantum constraints of quantum gravity just as one treats the constraints of
the quantum theory of the electromagnetic field: one imposes quantum constraints
ĥψ = 0 and ĥaψ = 0 – corresponding to the scalar and vector constraints of the
classical theory – on the space of physical states of quantum gravity.

Heuristically, we proceed as follows. We work in the Schrödinger representation,
so that the quantum states, ψ(q), are elements of L2(Riem(Σ),µ), and we rep-
resent our canonical co-ordinates, qab and pab , via q̂ab(x)(ψ(q)) = qabψ(q) and
p̂ab(x)(ψ(q)) = i(∂/∂qab(x))ψ(q). Then, again heuristically, writing the quantum
vector constraint as ĥa ≡ ∇̂bp̂b

a , we can show that imposing this constraint amounts
to requiring that the quantum wave functions be invariant under three-dimensional
diffeomorphisms. Formally, we can write ĥψ = 0 as

√
det q

((
qabqcd − 1

2 qac qbd

) ∂2

∂qac ∂qbd
ψ[q]− R(q)ψ(q)

)
= 0,
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where R is the scalar curvature of q. In this form, the quantum scalar constraint
is known as the Wheeler–DeWitt equation. One then seeks a representation of an
appropriate set of observables on the space of physical states, and looks for an appro-
priate inner product. Proponents of evolving constants hope to find an appropriate
representation of the algebra of classical evolving constants as a set of linear opera-
tors on the space of physical states such that: (i) the quantum evolving constants are
in fact constants of motion (i.e. they commute with the quantum Hamiltonian);
and (ii) there is a unique inner product on the space of physical states which
makes the quantum evolving constants self-adjoint (see Ashtekar and Tate 1994,
Ashtekar 1995). Finally, one must construct a quantum Hamiltonian, Ĥ . The clas-
sical Hamiltonian can be written as a sum of the classical constraints, so that it is
identically zero on the constraint surface which forms the phase space of general
relativity. Thus, it is natural to write the quantum Hamiltonian as a sum of the
quantum constraints. But since these constraints annihilate the physical states, one
concludes that Ĥψ = 0.

This quantization programme faces some daunting technical problems (see
Hájiček 1991, Section 6.4 of Isham 1991, and Section 15 of Kuchař 1992 for critical
discussion). But there are also conceptual problems. The foremost is, of course,
the problem of time: since the quantum Hamiltonian is zero, there is no equation
which governs the dynamical evolution of the physical state. Thus there appears to
be no change in quantum gravity. Now, we have seen above that the vanishing of
the Hamiltonian is a direct consequence of requiring that the quantum constraints
should annihilate the physical states. Parmenideans claim that this move is justified
by analogy with the successful quantization of other gauge theories. If q and q′ are
related by a classical gauge transformation, then we expect that ψ(q) = ψ(q′). This
principle is particularly plausible when q and q′ are related by a gauge transforma-
tion generated by the vector constraint – demanding that ĥaψ = 0 is equivalent
to demanding that ψ(q) = ψ(q′) whenever q′ = d∗q for some diffeomorphism
d : Σ → Σ. And this is surely mandatory, since otherwise we could use quantum
gravity to distinguish between the (classically) empirically indistinguishable spatial
geometries (Σ, q) and (Σ, q′).

In the case of the scalar constraint, no such direct geometric justification is avail-
able. Here, the Parmenidean must rely upon the general analogy between general
relativity and other gauge theories, and upon the following consideration. The
scalar constraint of general relativity implements time evolution, just as the con-
straint imposed on the parameterized Newtonian particle does. Now, we can apply
our quantization algorithm to the parameterized particle. The configuration space
of the particle is Newtonian spacetime, so the quantum states are wave functions on
spacetime, subject to the constraint (p̂t + 1

2 p̂ 2
x )ψ(x , t ) = 0. In the Schrödinger repre-

sentation, in which p̂t = −ih̄ ∂/∂t , the constraint becomes the familiar Schrödinger
equation – modulo the fact that the wave functions of the parameterized particle are
defined on spacetime rather than space.22

Thus, the quantum theory of the parameterized particle is intimately related
to the quantum theory of the ordinary unparameterized particle. Now, the scalar
constraint of general relativity is quadratic in momentum, whereas the constraint
of the parameterized particle is linear in pt , so the Wheeler–DeWitt equation is
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not even formally a Schrödinger equation – it cannot be solved for the time rate of
change of the quantum state. Nonetheless, Parmenideans maintain, one may view
the Wheeler–DeWitt equation as encoding all of the information about time and
change that is relevant to quantum gravity, in analogy with the quantum constraint
of the parameterized particle (since both of them, intuitively, are the quantum
versions of classical constraints which generate time evolution).

But, if the Wheeler–DeWitt equation encodes this information, where is the
key which will grant us access to it? This is where the evolving constants come
in. One presumes that there is, for instance, a quantum evolving constant which
corresponds to the classical evolving constant which measures the volume of the
universe at different times. By asking for the expectation value of this quantum
evolving constant, we can find evolution and change in the prima facie changeless
world of quantum gravity.

It is at this point that the objections raised by Kuchař and Unruh return with
redoubled force. Our discussion of the (classical) evolving constants of parameter-
ized Newtonian particle proceeded smoothly only because we were working with
a system in which Newtonian absolute time was merely hidden, and not absent
from the beginning. But suppose that we are given a gauge system with a van-
ishing Hamiltonian, and that this system, like general relativity itself, does not
arise via parameterization from a Hamiltonian system. Then there will be consid-
erable arbitrariness in the selection of our evolving constants. In particular, we
will not have any natural criterion to appeal to in place of R2 above: we will not
know which foliations of our phase space count as foliations by surfaces of con-
stant time, and so our choice of evolving constants will be vastly underdetermined.
In particular, we will have no way of guaranteeing that the foliation chosen cor-
responds to time rather than space – intuitively our family {Fτ} may correspond
to the family {the-mass-of-the-object-at-the-point-xτ -of-space-at-time-t0} rather
than to {the-mass-of-the-rocket-at-time-t = τ}. And here we are back to the prob-
lem discussed in Section 10.4: If one doesn’t take time and change as fundamental
realities, how is one to distinguish between mere spatial variation and true temporal
change?

Rovelli himself takes a hard line on this question, and argues that, prior to quan-
tization, any set of evolving constants is as good as any other. One expects, however,
that different sets of evolving constants will lead to different quantizations, and that
experiment will eventually allow one to determine which sets of evolving constants
are viable. Indeed, this situation already arises in the context of quantum mechan-
ics. Hartle (1996) discusses the quantum mechanics of a parameterized Newtonian
description which results when non-standard time functions are employed. He
finds that predictions that depart from those of standard non-relativistic quantum
mechanics can result. This embarrassment can be overcome by restricting to ‘good’
time functions. Of course, it is not evident how such restrictions could be imple-
mented in quantum gravity – so one expects to be faced with a highly ambiguous
recipe for quantization. Whether this counts as a strength or a weakness will be a
matter of taste.

Here we reach an impasse of a sort which is quite typical of debates concerning the
conceptual foundations of classical and quantum gravity. On our reading, the heart
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of Kuchař and Unruh’s objections to the Parmenidean view is to be found at this
point. They both possess an intuition which runs directly counter to that of Rovelli.
They see the distinction between change and variation as fundamental, and doubt
that one will be able to formulate a fruitful approach to quantizing general relativ-
ity which is blind to this distinction. Thus they see Rovelli’s willingness to accept
any evolving constants as a sign of the conceptual bankruptcy of the Parmenidean
approach. Rovelli, of course, rejects this interpretation. For him, tolerance of the
radical underdetermination of the evolving constants is part of an attempt to shrug
off outmoded classical intuitions about time and change. Indeed, one of the strengths
of the Parmenidean approach has been its hints at the discrete structure of quantum
spacetime.23 Both sides agree that the proof will be in the pudding: vindication,
if it comes at all, will come in the guise of a viable theory of quantum gravity. In
the mean time, arguments about the proper way forward will continue to be cast
in terms of disagreements concerning the nature of change – debates about content
and method are inextricably intertwined.

10.6 Vive le change!

Not everyone accepts the Parmenidean approach. Some believe that the analogy
between the general covariance of general relativity and principles of gauge invari-
ance of theories like electromagnetism is profoundly misleading. These physicists are
sceptical that the Parmenidean approach sketched in the previous section is either
mathematically feasible (since they doubt that one will be able to find an appropri-
ate inner product without appealing to a Heraclitean notion of time) or physically
meaningful (since they doubt that one would be able to derive sensible physical
predictions from a timeless theory). They believe that a Heraclitean time must be
found within (or grafted on to) the conceptual structure of general relativity prior
to quantization. In this section, we attempt to give the flavour of this approach.

Heracliteans comes in two varieties. They concur that Parmenideans profoundly
misunderstand the nature of the general covariance of general relativity, but they
disagree as to the correct account. On the one hand, there is a radical wing which
forsakes a cornerstone of the traditional reading of general covariance: that in general
relativity there is no preferred splitting of spacetime into space and time. On the other
hand, there is a more conservative faction which attempts to hew to a traditional
understanding of the general covariance of general relativity, while denying that it is
a principle of gauge invariance.24

There are a number of varieties of radical Heracliteanism (see pp. 6–8 of Kuchař
1992 for an overview). The most straightforward is probably the doctrine that the
mean extrinsic curvature is a good time variable for classical and quantum gravity
(the mean extrinsic curvature at a point x ∈ Σ of a Cauchy surface with geome-
try (q, p) is τ = qabpab/

√
q). The point of departure is the observation that there

is a large open subset of the space of models of general relativity consisting of
spacetimes which admit a unique foliation by surfaces of constant mean curvature
(CMC surfaces).25 If (M , g ) is a model which is CMC sliceable, then the mean
extrinsic curvature, τ , varies monotonically within the CMC foliation. This obser-
vation motivates the following programme (see Beig 1994, Fischer and Moncrief
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1996). We restrict attention to that subset of the phase space of general relativity
which corresponds to CMC sliceable models. We then solve the vector constraint,
by moving to superspace. At this point, we have a gauge system in which the gauge
orbits are infinite dimensional. We transform this into a gauge system with one-
dimensional gauge orbits by stipulating that we are only interested in those points
of phase space which represent CMC slices.26 In effect, we have chosen a foliation
for every model, and finessed the necessity to choose an identification map by work-
ing in superspace. The only remnant of the original general covariance of general
relativity is the freedom to reparameterize the time parameter, τ . Furthermore,
the remaining constraint is linear in the momentum conjugate to τ . Thus, general
relativity is now written in the form of a parameterized system: by choosing a dis-
tinguished parameterization of τ , one can construct a time-dependent Hamiltonian
system whose parameterization is the CMC-reduced form of general relativity. The
Hamiltonian, H (τ ), measures the volume of the Cauchy surface of mean extrinsic
curvature τ . As noted by Isham (1991, p. 200), it is quite strange to have a the-
ory of the entire universe in which the dynamics is driven by a time-dependent
Hamiltonian – usually such Hamiltonians are employed to model the influence of
the environment on the system. (This observation also applies to the internal time
framework sketched below.)

One hopes that canonical quantization of this Hamiltonian system would lead
to a quantum field theory of gravity, complete with a time variable and a (time-
dependent) Hamiltonian which governs the evolution of the quantum state via an
ordinary Schrödinger equation, and that the expectation value of the volume of the
universe, 〈Ĥ (τ )〉, would vary with time. This quantization programme has been
successfully carried out for 2 + 1 general relativity, and is being actively developed in
the full 3 + 1 case (see Carlip 1998 for the 2 + 1 case). One of the remarkable results
obtained is that the CMC method of quantization is equivalent to some Parmenidean
constructions of 2 + 1 quantum gravity. But, of course, all models of 2 + 1 general
relativity are flat, so that the phase space of the classical theory is finite dimensional,
and the quantum theory is a variety of quantum mechanics. One does not expect
this sort of equivalence to arise in the 3 + 1 case, where the classical phase space is
infinite dimensional and the quantum theory is a quantum field theory.

Other radical Heraclitean proposals have similar structures. One much-discussed
method is to postulate the existence of a form of matter which allows one to introduce
a preferred foliation. For instance, one can postulate the existence of a cloud of dust,
each mote of which is a clock. This fixes a reference frame and a time parameter.27

One then uses this additional structure to reduce general relativity to a parame-
terized system, which, upon quantization, yields an ordinary Schrödinger equation.
Breaking the general covariance of general relativity by introducing preferred frames
allows one to introduce a time variable, t , at the classical level which is carried over to
quantum gravity. This time variable is Heraclitean: the wave function describing the
state of the gravitational field depends on t , and one is able to find an inner product
on the space of instantaneous quantum states which is conserved in t . This allows
one to make intelligible time-dependent predictions of measurement outcomes.

Such radical approaches view the general covariance of general relativity as an
artifact of a particular formulation of the theory. Under this reading, it is true that
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general relativity can be given a Diff(M )-invariant formulation. But, it is contended,
this formulation is by no means the most perspicuous. By using our preferred co-
ordinates to fix the gauge, we can bring to the fore the true physical content of the
theory – just as the content of Newtonian physics is most clear when the theory is
written in its traditional, non-generally covariant, form. Of course, this reading is
vulnerable to the accusation that it betrays the spirit of general relativity:

‘ . . . foliation fixing prevents one from asking what would happen if one attempted
to measure the gravitational degrees of freedom on an arbitrary hypersurface. Such
a solution . . . amounts to conceding that one can quantize gravity only by giving
up general relativity: to say that quantum gravity makes sense only when one fixes
the foliation is essentially the same as saying that quantum gravity makes sense only
in one coordinate system’.

(Kuchař 1992, p. 228)

This criticism is extremely telling. To forsake the conventional reading of general
covariance as ruling out the existence of preferred co-ordinate systems is to abandon
one of the central tenets of modern physics. Unsurprisingly, radical Heracliteanism
has few adherents – such approaches are explored because they are technically
tractable, not because they are physically plausible.

Kuchař advocates a more conservative – and ambitious – brand of Heracliteanism.
He articulates a subtle reading of general covariance which differs from both that
of the Parmenideans and that of the radical Heracliteans: he denies that general
covariance is a principle of gauge invariance, without countenancing the existence
of a preferred foliation or a preferred set of co-ordinates (see Kuchař 1972 for the
original proposal, and Kuchař 1992, 1993 for recent discussions). A good starting
point for understanding his approach is to consider the dual role that time plays
in a Newtonian world. On the one hand, we can construct a time function, t (x),
which assigns a time to each point in Newtonian spacetime. In this guise, time is
a scalar function on spacetime. However, we can also think of time as a collection
of instants. Because simultaneity is absolute in Newtonian physics, this collection
can be thought of as a one-dimensional family, parameterized by t . Equivalently,
the real numbers parameterize the ways in which one can embed an instant (surface
of simultaneity) into spacetime. Of course, a time function on spacetime suffices to
model this role of time as well: the permissible embeddings of instants are just the
level surfaces of t (x).

In the context of special relativity one doesn’t have a preferred notion of simul-
taneity, and the two roles of time are no longer so tightly intertwined. One is still
often interested in time functions, t (x), on spacetime – especially the time functions
associated with inertial observers. But in its guise as the space of instants, time can
no longer be thought of as a one-parameter family, since the spirit of special rela-
tivity forbids us from identifying the possible embeddings of the instants with the
level surfaces of the time function associated with any one inertial observer. In this
context there is considerable ambiguity in the notion of an instant. For definiteness,
let’s fix upon surfaces of simultaneity relative to inertial observers. Then the family
of instants will be four-dimensional: if we fix a fiducial instant, Σ0, then an arbitrary
instant, Σ, can be reached by applying a time translation and/or Lorentz boost to
Σ0. So we can think of time as being four-dimensional in Minkowski spacetime.28
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Let’s now consider a generic model, M = (M , g ), of general relativity. As in the
previous cases, it is easy to write down a time function, t (x), on M. One simply
requires that its level surfaces be Cauchy surfaces. Let’s fix such a time function – and
the corresponding foliation ofM by Cauchy surfaces – and enquire after a coherent
notion of ‘instant’ in general relativity. Here, in order to respect the traditional
understanding of general covariance, we will want our set of instants to include
all Cauchy surfaces of M. Thus, time, qua the set of instants, becomes infinite
dimensional. We are interested in examining the role that these two notions of time
play in the phase space of general relativity.

To this end, we focus our attention on the gauge orbit in the phase space of general
relativity which corresponds to M. For a generic M admitting no symmetries we
expect that a given point (q, p) of the phase space represents a 3-geometry which
occurs only once as a Cauchy surface of M. That is, we expect that specifying the
tensors q and p on Σ is sufficient to determine a map X : Σ → M which tells us
how Σ must be embedded in M in order to induce the geometry (q, p). Fixing an
arbitrary co-ordinate system onΣ and a co-ordinate system on M of the form{xµ} =
{t , xa}, we find that specifying the twelve independent components of qab(x) and
pab(x) on Σ determines four real functions on Σ, {X A(x)} = {T (x), X a(x)}, which
tell us how Σ is embedded inM.

We can think of these maps as functions on the phase space of general relativ-
ity: for each point (q, p) of the phase space, X A(x) is a real number. Following
Kuchař, we use the notation X A(x ; q, p] to emphasize that each X A is a function on
Σ and a functional (in the physicist’s sense) on phase space. This suggests that we
could use the X A and their conjugate momenta, PB , as co-ordinates on the phase
space, in place of the qab(x) and pab(x). Now, of course, knowing the qab(x) and
pab(x) for a given point of the phase space gives us more information than just
the way that the instant is embedded in spacetime – it also tells us about the state
of the gravitational field at that instant. Thus, the geometric variables, the qab(x)
and pab(x), contain information beyond that which is contained in the embedding
variables, X A(x ; p, q] and PB(x ; p, q]. Indeed, qab(x) and pab(x) contain twelve inde-
pendent components. So specifying the geometrical data gives us twelve functions
on Σ, whereas specifying the embedding variables gives us only eight. One surmises
that there must exist additional variables which represent the true physical degrees
of freedom of the gravitational field relative to any given instant (i.e. relative to any
fixed values of the embedding variables). Thus, we postulate that the dynamical state
of the gravitational field at a given instant is represented by gravitational configu-
ration variables, φr (x) (r = 1, 2), on Σ, together with their momentum variables,
πs(x) (s = 1, 2).

So far, we have been restricting our attention to a single gauge orbit of the phase
space of general relativity, and depending upon a particular set of co-ordinates for
the corresponding model. More ambitiously, we could look for embedding variables,
X A(x ; q, p] and PB(x ; q, p], defined globally on the phase space of general relativity.
We then look for a canonical transformation of the phase space of general relativity
of the form

{qab(x), pab(x)} �→ {X A(x), PB(x);φr (x),πs(x)}
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(i.e. we are looking for a change of co-ordinates which preserves the presymplectic
structure). Each of these new canonical variables associates a map from Σ to the real
numbers with each point of phase space. We require that the embedding variables
satisfy the following two desiderata:

(1) Global time. Each gauge orbit of general relativity contains exactly one point
corresponding to a given fixed value of the embedding variables.

(2) Spacetime interpretation. If (q, p) and (q′, p′) correspond to intersecting Cauchy
surfaces of a given model, then we demand that X A(x ; q, p] = X A(x ; q′, p′] for
points x ∈ Σ which lie in their intersection.

The first condition guarantees that the values assumed by the embedding variables
at a given point of phase space do indeed single out a single instant in any given
model of general relativity. The second condition guarantees the notion of time
as a collection of instants is compatible with the notion of time as represented by a
spacetime scalar: the time, T = X 0(x ; q, p] assigned to a given point x of a relativistic
spacetime is the same for all Cauchy surfaces (q, p) passing through that point.29 If
we can find a canonical transformation satisfying these two desiderata, we then
proceed to rewrite the constraints in terms of the new co-ordinates, where they will
assume the form CA ≡ PA(x) + hA(x ; X ,φ,π] = 0.

If all this can be achieved, then we have rewritten general relativity in the internal
time formulation (time is said to be internal in this formalism because it depends
only on phase space variables). It would allow us to reconcile the two roles of time.
The internal time on phase space admits an interpretation as a spacetime scalar for
any particular model. But general covariance is not broken: there are no preferred
foliations or co-ordinate systems.30 One can, if one likes, pay special attention to
the level surfaces of the time function which the internal time induces on models.
But the formalism itself does not privilege these level surfaces: the constraints can be
viewed as governing the evolution of the gravitational degrees of freedom between
arbitrary instants.

One could go on to apply the Dirac quantization algorithm to the internal time
formulation of general relativity. Here, the configuration variables are the embed-
ding variables, X A , and the gravitational variables, φr . Thus, the quantum states will
be wave functions over the classical configurations of X and φ, of the form ψ(X ,φ).
We will want to impose the constraints, ĈAψ[X ,φ] = 0. Because the classical con-
straints are linear in the momentum, the quantum constraints become Schrödinger
equations:

−i
∂ψ(X ,φ)

∂X A(x)
= ĥA(x ; X , φ̂, π̂]ψ(X ,φ),

which govern the change in all of the configuration variables under small variations
in the embedding variables. Let us denote the space of wave functions satisfying
these constraints by V0. At this point, one could proceed as in the Parmenidean
programme of Section 10.5: complete the quantum theory by finding quantum
evolving constants, and find an inner product on V0 which renders them self-adjoint.

Kuchař, however, rejects the Parmenidean reading of the significance of the quan-
tum constraints and as a result, he denies that the observables of quantum gravity
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are self-adjoint operators on V0 which commute with the constraints. His objec-
tions concerning the quantum constraints can be traced back to a subtle difference
between his reading of the significance of the general covariance of general relativity,
and that of the Parmenideans. As we saw above, his programme for quantization
takes as its point of departure a formulation of general relativity which fully respects
the general covariance of the theory. Kuchař does not, however, subscribe to the
Parmenidean dogma that the constraints of general relativity should be understood
as the generators of gauge transformations. Rather, he draws a sharp distinction
between the role of the vector constraint, and that of the scalar constraint. In partic-
ular, he holds that the observable quantities of general relativity must commute with
the vector constraint, but that they need not commute with the scalar constraint.

The rationale is as follows. In the case of the vector constraint, we can say that
‘[t]wo metric fields, qab(x) and q′

ab(x), that differ only by the action of Diff(Σ),
i.e. which lie on the same orbit of ha(x), are physically indistinguishable. This is due
to the fact that we have no direct way of observing the points x ∈ Σ’.31 The difference
between two geometries, qab(x) and q′

ab(x), related by a transformation generated
by the vector constraint is unobservable: it is the difference between identical spatial
geometries, which differ only in virtue of which point of Σ plays which geometrical
role. The role of the scalar constraint, h, is very different:

‘ . . . it generates the dynamical change of the data from one hypersurface to
another. The hypersurface itself is not directly observable, just as the points x ∈ Σ
are not directly observable. However, the collection of the canonical data
(qab(x), pab(x)) on the first hypersurface is clearly distinguishable from the
collection (q′

ab(x), p′
ab(x)) of the evolved data on the second hypersurface. If we

could not distinguish between those two sets of data, we would never be able to
observe dynamical evolution’.

(Kuchař 1993, p. 137)

Or, again, ‘[t]wo points on the same orbit of [the scalar constraint] are two events
in the dynamical evolution of the system. Such events are physically distinguishable
rather than being descriptions of the same physical state’ (Kuchař 1992, p. 293). Thus,
Kuchař believes that there are physically real quantities which do not commute with
the scalar constraint of general relativity.

In the internal time formulation, this point will take the following form. T =
X 0(x ; q, p] has a different status from the X a(x ; q, p] for a = 1, 2, 3. The former
can be thought of as specifying the instant corresponding to (q, p), while the latter
specify how Σ is mapped on to this instant. That is, T specifies a Cauchy surface,
while the X a tell us how Σ is mapped on to this Cauchy surface. Thus, the constraint
CT ≡ PT (x) + hT (x ; X ,φ,π] = 0 should be thought of as governing time evolution,
while the Ca ≡ Pa(x) + ha(x ; X ,φ,π] = 0 generate gauge transformations which
correspond to altering the way that Σ is mapped on to a given Cauchy surface.

Thus, according to Kuchař’s analysis, the quantum constraints should not be
treated uniformly, as they are within the Parmenidean approach. The quantum
constraints Ĉaψ = 0 should be imposed as in the standard approach. This will, as
usual, ensure that the theory is indifferent to diffeomorphisms acting on Σ. But
the quantum constraint ĈT demands a different approach. Kuchař recommends the
following procedure. Begin by arbitrarily fixing values T (x) = X 0(x) for all x ∈ Σ.
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This specifies an instant in general relativity. Fixing the state of the gravitational
field now amounts to fixing the values of φr (x) and πs(x) on Σ, and the classical
observables at this instant are just functions of these field variables. It is natural to
think of an instantaneous state of the gravitational fields as a wave function Ψ(φ1,φ2)
over field configurations over Σ (with configurations identified if they are related by
a diffeomorphism of Σ). An observable will then be any (diffeomorphism-invariant)
function of φ̂r (x) and π̂s(x). In order to bring dynamics into the picture, we impose
the constraint ĈT Ψ(X ,φ) = 0. This gives us the Schrödinger equation,

−i
∂Ψ(T ,φ)

∂T (x)
= ĥT (x ; X , φ̂, π̂]Ψ(T ,φ),

which tells us how the quantum states change under infinitesimal changes of our
instant. Now one attempts to find an inner product on the space of instantaneous
states which is preserved under the evolution induced by the constraints. If one is
successful, then one has a quantum theory of gravity: a Hilbert space, observables,
and dynamics. Notice that although the states are gauge-invariant (since they satisfy
the quantum constraints), the observables need not be: in general, one expects the
expectation values of a function of φr (x) and πs(x) to vary from embedding to
embedding (i.e. from instant to instant). Hence, Kuchař’s proposal leads to a theory
of quantum gravity in which the infinite dimensional internal time plays the role of
a Heraclitean time variable.

This quantization procedure has been successfully applied to a number of theories
which arise from general relativity by killing infinitely many degrees of freedom (see
Section 6 of Kuchař 1992). Before it can be applied to full general relativity, however,
a number of severe technical difficulties must be overcome – including the fact that
it appears to be impossible to satisfy Global Time for full general relativity, and the
fact that no one has yet been able to write down in closed form an internal time
variable which satisfies Spacetime Interpretation.32 Nonetheless, work continues on
the programme, in the hope that it is possible to overcome these difficulties (perhaps
by modifying the original programme).

There are also a number of potential difficulties in interpreting the formalism.
The great advantage of the internal time proposal is that it casts quantum gravity
into a familiar form: one has a quantum field theory whose states are wave functions
over the classical configuration space, and a Hamiltonian which determines the
temporal evolution of these states. The chief novelty is that time is now an infinite
dimensional parameter, since there are as many ways of specifying an instant as
there are Cauchy surfaces in a model.33 Thus, it seems that the interpretation of such
a quantum theory of gravity should be no more (or less) difficult a task than the
interpretation of a standard quantum field theory. But this is not quite the case, for
three reasons. (i) The fact that the observables are not required to commute with
the constraints complicates the measurement problem. If Ô is an observable which
does not commute with the constraint Ĉ , then we can find a state, Ψ, of quantum
gravity such that ĈÔΨ �= ÔĈΨ = 0. Thus, ÔΨ is not a state of quantum gravity
(if it were, it would be annihilated by the constraint Ĉ). So, naively carrying over
the formalism of quantum mechanics, it appears that measurement can throw states
out of the space of physically possible states. (ii) Since general relativity is a theory
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of the structure of spacetime, one expects to be able to recover spatio-temporal
information from states of quantum gravity, at least approximately. But this appears
to be an extremely difficult problem: one expects that the relationship between the
geometric data (q, p) and the gravitational degrees of freedom (φ,π) is highly non-
local at the classical level. The inversion of this relationship at the quantum level
presents a formidable problem. (iii) One also has to wonder how to make sense
of quantum states which are defined as wave functions on classical instants – since
these instants originally derived their significance from the classical structure of
spacetime.

Each of these problems is potentially very serious. By attempting to cast quantum
gravity into a familiar quantum field theoretic form, the advocates of internal time
may be creating an unintelligible formalism, rather than one whose interpretation is
straightforward. Such a turn of affairs would come as no surprise to Parmenideans.
On their view, Kuchař’s proposal is an attempt to carry classical notions of time
over to quantum gravity. From the Parmenidean perspective, it might be possi-
ble to formulate a consistent theory along these lines, but one should not expect
it to be a full theory of quantum gravity – since, by all rights, quantum gravity
should be a quantum theory of space and time, as well as a quantum field theory of
gravity. (As noted above, Parmenideans claim, with some justice, that their discrete-
spectra area and volume operators are the first hints of the quantum nature of space
and time at the Planck length; see footnote 23.) Here we again reach an impasse:
Parmenideans and Heracliteans have divergent intuitions about the nature of time
and change, and these intuitions condition their taste in approaches to quantizing
gravity.

10.7 The status of spacetime

In the preceding sections, we sketched three proposals for quantizing general rel-
ativity: evolving constants, CMC gauge fixing, and internal time. These proposals
are underwritten by three very different attitudes towards the general covariance of
general relativity, and lead to three very different approaches to quantum gravity.
Most notably, differences of opinion about general covariance are directly linked to
differences of opinion about the existence and nature of change at both the classical
and the quantum level. This divergence of opinion cannot be dismissed as merely
philosophical: it has important ramifications for questions about which quantities
are physically real and/or observable in classical and quantum gravity. Indeed, one
has every reason to expect that these proposals, if successfully executed, would lead
to three inequivalent theories of quantum gravity, which would make very different
predictions about the quantum behaviour of the gravitational fields.

Before bringing this discussion to a close, we would like to return to the question
of the status of the spacetime of general relativity. We proceed by constructing the
most plausible interpretation of general relativity which would underwrite each
of our quantization procedures.34 The underlying presumption is that if a given
proposal, and no other, were to lead to a successful quantum theory of gravity, that
would be a reason to prefer the corresponding interpretation of general relativity
over its rivals.
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10.7.1 Rovelli’s evolving constants

The motivation for this programme is the conviction that general covariance should
be understood as a principle of gauge invariance. Thus, one is led to deny that there
are any physically real quantities in general relativity which fail to commute with
the constraints. As we argued in Section 10.3, this drives one towards a relationalist
understanding of general relativity – or, perhaps, towards a sophisticated form of
substantivalism (more on this below). If spacetime points enjoy existence, then it
seems reasonable that a quantity like ‘the curvature at x ’ should be physically real. But
such quantities do not commute with the constraints, and hence cannot be physically
real.35 Therefore: spacetime points do not exist. Rovelli himself enthusiastically
embraces the relationalism which follows from this line of thought.36

10.7.2 Constant mean curvature as time

Under this proposal, any admissible model of general relativity comes equipped with
a preferred foliation by Cauchy surfaces, as well as a preferred parameterization of the
time variable which labels these Cauchy surfaces. The CMC time is absolute in some
respects, but not others. There is a preferred notion of simultaneity, and a preferred
parameterization of time. But this parameterization is determined by the dynamics
of the theory rather than being imposed from outside. Thus, the time which results
in this case certainly is not the absolute time of Newton. Using this time variable, we
can write general relativity as a Hamiltonian system whose configuration space is a
subset of superspace (the space of equivalence classes of metrics on Σ). Thus, general
relativity becomes a theory of the evolution in time of the geometry of space. Here,
space is best conceived of in relationalist terms: because we take Riem(Σ)/Diff(Σ),
rather than Riem(Σ), as our configuration space, we cannot imagine two identical
geometries, differently instantiated.

10.7.3 Internal time

The core of Kuchař’s reading of general covariance is that, properly understood, the
observables of general relativity should commute with the vector constraint, but not
with the scalar constraint – the qualification being essential since, as noted above,
Kuchař explicitly allows that the evolving constants proposal provides a coherent
framework for understanding observables in the classical theory. The following
interpretative stance underlies this approach.37 In Section 10.3, we argued that
straightforward substantivalists are committed to the doctrine that each point of
the phase space of general relativity represents a distinct physically possible state.
This implies that there are physically real quantities which do not commute with
any of the constraints of general relativity: presumably, for any two points of phase
space which represent distinct physically possible states there must exist a physically
real quantity which takes on different values when evaluated at these two points; we
could take these quantities to be of the form ‘the curvature at point x of spacetime’.
Now let (q, p), (q′, p′), and (q′′, p′′) be three points which lie in the same gauge
orbit of the phase space of general relativity, and suppose that (q, p) is related to
(q′, p′) by a gauge transformation generated by the vector constraint, and is related
to (q′′, p′′) by a gauge transformation generated by the scalar constraint. Then (q, p)
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and (q′, p′) represent the same geometry of Σ – they differ merely as to how this
geometry is instantiated by the points of Σ – while (q, p) and (q′′, p′′) represent dis-
tinct geometries. Thus, although (q, p) and (q′, p′) represent distinct states of affairs
for the substantivalists, they represent states of affairs which are empirically indistin-
guishable. Although there are, according to substantivalists, physically real quantities
which distinguish between (q, p) and (q′, p′), these quantities are not observables in
any literal sense. On the other hand, the states represented by (q, p) and (q′′, p′′) are
distinguishable – otherwise we could not observe change. Thus, the physically real
quantities which distinguish between (q, p) and (q′′, p′′) should be empirically acces-
sible. If we now grant that quantum observables correspond to classical quantities
which are not only physically real, but also empirically observable (i.e. they do not
distinguish between empirically indistinguishable states of affairs), then we see that
substantivalists can provide a coherent motivation for the internal time approach.

Do the points of the spacetime of general relativity, then, exist, or not? Given that
general relativity is almost certainly false – since it appears to be impossible to marry
a quantum account of the other three forces with a classical account of gravity –
the only sense that we can make of this question is whether, given our total physics,
the best interpretation of general relativity postulates the existence of spacetime.
This question will remain open until the nature of quantum gravity is clarified:
if distinct interpretations of general relativity mandate distinct quantizations of
gravity, then the empirical success of one or another theory of quantum gravity will
have repercussions for our understanding of the spacetime of general relativity.

Even at the present stage, however, we can say something about the lessons of the
hole argument for our understanding of classical spacetime. (1) Despite widespread
scepticism among philosophers, physicists are correct in seeing the hole argument
as pointing up a knot of problems concerning: the existence of spacetime points;
the difficult notion of ‘observable’ in classical and quantum gravity; and the nature
of time and change in physical theory.38 (2) There is no easy solution to the hole
argument. We have seen that both traditional relationalism and traditional sub-
stantivalism are associated with some extremely difficult technical and conceptual
problems when one turns one’s attention to quantum gravity – and that these diffi-
culties arise directly out of the doctrines’ respective pronouncements on the nature
of general covariance. Ultimately, one of the other of these positions may triumph.
But it will be because physical and mathematical ingenuity show how the atten-
dant problems can be overcome, not because either position can be ruled out on
strictly philosophical grounds internal to general relativity. (3) That being said, we
maintain that there is one sort of response to the hole argument which is clearly
undesirable: the sort of sophisticated substantivalism which mimics relationalism’s
denial of the Leibniz–Clarke counterfactuals. It would require considerable inge-
nuity to construct an (intrinsic) gauge-invariant substantivalist interpretation of
general relativity. And if one were to accomplish this, one’s reward would be to
occupy a conceptual space already occupied by relationalism. Meanwhile, one would
forego the most exciting aspect of substantivalism: its link to approaches to quan-
tum gravity, such as the internal time approach. To the extent that such links depend
upon the traditional substantivalists’ commitment to the existence of physically
real quantities which do not commute with the constraints, such approaches are
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clearly unavailable to relationalists. Seen in this light, sophisticated substantivalism,
far from being the saviour of substantivalism, is in fact a pallid imitation of rela-
tionalism, fit only for those substantivalists who are unwilling to let their beliefs
about the existence of space and time face the challenges posed by contemporary
physics.

We conclude that there is indeed a tight connection between the interpretative
questions of classical and quantum gravity. There is a correspondence between inter-
pretations of the general covariance of general relativity and approaches to – and
interpretations of – quantum gravity. This correspondence turns upon the general
covariance of the classical theory and is mediated via the processes of quantization
and the taking of classical limits. One demands that one’s interpretation of general
relativity should underwrite an approach to quantization which leads to a viable
theory of quantum gravity, and that one’s understanding of quantum gravity should
lead to a way of viewing general relativity as an appropriate classical limit. This
provides a cardinal reason to take the interpretative problems surrounding the gen-
eral covariance of general relativity seriously – at the very least, one wants to know
which interpretative approaches to general relativity mandate, open up, or close off
which approaches to quantum gravity. More ambitiously, one can hope that clarity
concerning the general covariance of the classical theory will provide insights which
prove helpful in the quest for a quantum theory of gravity.

10.8 Appendix

In this Appendix we provide a few details about the definitions and construc-
tions mentioned in the text. It falls into four sections, corresponding to material
supporting Sections 10.2.1, 10.2.2, 10.2.3, and 10.5.1, respectively.

10.8.1 Hamiltonian systems

Our phase spaces will always be manifolds. These may be either finite dimensional
or infinite dimensional. In the latter case, we require that our space be locally
homeomorphic to a Banach space rather than to �n . For details and for the infinite
dimensional versions of the material discussed below, see Choquet-Bruhat et al.
(1982) or Schmid (1987).
Definition: Non-degenerate forms. A two form,ω, on a manifold, M , non-degenerate
if for each x ∈ M the map v ∈ Tx M �→ ωx (v , ·) ∈ T ∗

x M is one-to-one. If this map
fails to be one-to-one, then there will be non-trivial v ∈ Tx M with ωx (v , ·) = 0.
These are called the null vectors of ω.
Definition: Symplectic form. A symplectic form on a manifold, M , is a closed, non-
degenerate, two form, ω, on M .
Definition: Hamiltonian vector field. The Hamiltonian vector field, Xf , of f in (M ,ω)
is the solution of the equation ω(Xf , ·) = dH . When H is the Hamiltonian, we call
the integral curves of XH the dynamical trajectories of the system.
Definition: Poisson brackets. {f , g} = ω(Xf , Xg ) = Xf (g ).
Construction: Canonical co-ordinates. When M is finite dimensional, we can
find local co-ordinates (q1, . . . , qn ; p1, . . . , pn) such that ω can be written as
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ω = dqi ∧ dpi .
39 Equivalently, in such co-ordinates we have:

ω =

∣∣∣∣ 0 I
−I 0

∣∣∣∣ ,

where I is the n×n identity matrix. Co-ordinates of this kind are known as canonical
co-ordinates; we speak of the qi as being canonically conjugate to the pi . In canoni-
cal co-ordinates the equations for our dynamical trajectories assume their familiar
form: q̇ = {q, H} and ṗ = {p, H}. Notice that conservation of energy is a trivial
consequence of the formalism: {H , H} = ω(XH , XH ) = 0 since ω is antisymmetric;
so H is a constant of motion (i.e. H is constant along each dynamical trajectory).
Construction: Cotangent symplectic structure. Let (q1, . . . , qn) be a set of local
co-ordinates on Q. We then construct a co-ordinate system on T ∗Q of the form
(q1, . . . , qn ; p1, . . . , pn), where the pi are just the components of covectors relative
to our co-ordinate system. We can now construct the canonical symplectic form,
ω = dqi ∧ dpi . That is: the qi and pi are canonically conjugate co-ordinates. This
construction is independent of the original co-ordinate system on Q, (q1, . . . , qn),
and can be extended to construct a unique symplectic form for all of T ∗Q. Thus,
the cotangent bundle structure singles out a preferred symplectic structure on T ∗Q.
This construction can be generalized to the infinite dimensional case.

10.8.2 Gauge systems

Definition: Presymplectic form. A presymplectic form on a manifold, N , is a
closed two form, σ, with the property that its space of null vectors has the same
dimensionality at each point in N .
Definition: Gauge orbit. Two points lie in the same gauge orbit if they can be
connected by a curve, all of whose tangent vectors are null vectors of σ.
Construction: Gauge orbits. The gauge orbits are constructed by integrating the null
distribution of σ. That they are manifolds follows from Frobenius’ theorem together
with the following fact: [Xf , Xg ] = X[f ,g ], where [·, ·] is the Lie bracket, so that the
map f �→ Xf is a Lie algebra homomorphism of C∞(N ) into Ξ(N ), the algebra of
vector fields on N . Since the dimensionality of the null space is constant on N , our
phase space is foliated by gauge orbits of a fixed dimensionality.
Definition: Dynamical trajectories. Again, we look at the integral curves of vector
fields, Xf , which solve σ(Xf , ·) = dH .
Discussion: Dynamical trajectories on constraint surfaces. If we are thinking of
(N ,σ, H ) as being imbedded in (M ,ω), it is natural to wonder about the rela-
tionship between the dynamical trajectories of (N ,σ, H ) and the restriction to N
of the Hamiltonian vector fields of (M ,ω). We call h ∈ C∞(M ) an extension of
H to (M ,ω) if: (i) h |N = H ; (ii) {h, c} ∼= 0 for all constraints c . The latter con-
dition means that flow generated by h carries points on N to points on N , since
the Hamiltonian vector field of h is everywhere tangent to N . If h is an exten-
sion of H , and Xh is the Hamiltonian vector field of h in (M ,ω), then Xh |N is a
Hamiltonian vector field of H in (N ,σ). Conversely, every Hamiltonian vector field
of H in (N ,σ) arises in this manner, for some extension h of H . It is not difficult
to prove that any two extensions, h and h′ of H differ by a linear combination of
first-class constraints. It follows that the transformation h �→ h + uaγa carries us
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from one set of dynamical trajectories of (N ,σ, H ) to another, where the ua are arbi-
trary functions on M ; conversely, every pair of sets of dynamical trajectories are so
related.

Whereas in the Hamiltonian case Hamilton’s equations q̇ = {q, h} and ṗ = {p, h}
determine a unique dynamical trajectory of the form (qi(t ); pi(t )) through each
x ∈ M , we see that in the case of a constrained Hamiltonian system, Hamilton’s
equations determine a different set of dynamical trajectories for each h which extends
H . Given our freedom to replace h by h′ = h + uaγa , we can write Hamilton’s
equations as q̇ = {q, h}+ ua{q, γa} and ṗ = {p, h}+ ua{p, γa}. Thus, the solutions
of Hamilton’s equations which determine the dynamical trajectories of (N ,σ, H )
contain as many arbitrary functions of time as there are first-class constraints. (Here,
for convenience, we have chosen a set of canonical co-ordinates on (M ,ω).)

10.8.3 Reduced phase spaces

Construction: Reduced phase space. The points of the reduced phase space, M̃ , are the
gauge orbits [x] of (N ,σ), equipped with the projection topology induced by the
projection π : N → M̃ . The symplectic form ω̃ is given by π∗σ. Since H is gauge-
invariant, M̃ is well defined by M̃ ([x]) = H (x). The set of dynamical trajectories
of (N ,σ, H ) which pass through x ∈ N projects down to the single dynamical
trajectory of (M̃ , ω̃, H̃ ) which passes through [x].
Example: Bad topology. Here is one way in which this problem can arise. One
can construct a constrained Hamiltonian system by starting with a Hamiltonian
system (M ,ω, H ) and imposing the constraint H = c . That is, one looks at a
surface of constant energy. This is a presymplectic manifold since it has an odd
number of dimensions. The gauge orbits of the resulting presymplectic geometry
are just the dynamical trajectories of the original Hamiltonian system. Imposing the
Hamiltonian h = 0 leads to a gauge theory with these gauge orbits as its dynamical
trajectories. We can go on to construct the reduced phase space. We simply identify
all the points which lie on the same trajectory, and impose the projection topology
on the resulting space of dynamical trajectories. What is this reduced phase space
like? This depends on the details of the system we started with. If it is integrable, we
can find constants of motion (= gauge-invariant quantities) which project down to
co-ordinates on the reduced phase space – the latter will, therefore, be a manifold.
If, however, our original Hamiltonian system was chaotic, the phase space will be
a mess. If our system is ergodic then we will be unable to find constants of motion
other than the Hamiltonian, and each trajectory will wander over the entire energy
surface. Thus, we will be unable to find a sufficient number of gauge-invariant
quantities to co-ordinatize the reduced phase space. Indeed, the topology of the
reduced phase space will not even be Hausdorff: since each trajectory of the gauge
system approaches every other arbitrarily closely, it will be impossible to separate
points of the reduced phase space by open sets.

10.8.4 Parametrized systems

Construction: Parameterization. Let (M ,ω, h) be a Hamiltonian system. We con-
struct M ′ = �2 × M by adding to M the canonically conjugate variables t and u.
Let the symplectic form on M ′ be given by ω′ = ω− du ∧ dt . Let H = h + u and let
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N be the submanifold of M ′ determined by the constraint H ≡ 0 (we extend h to
M ′ in the obvious way, by making it independent of t and u). Then the constrained
Hamiltonian system (N ,σ, H ), withσ = ω′ |N and the Hamiltonian given by H = 0,
is called the parameterization of (M ,ω, h). We can think of (N ,σ, H ) as the result
of including time among the position variables of the system, with the energy h as
its canonically conjugate momentum (since h = −u on N ). Notice that (N ,σ) is
presymplectic (in the finite dimensional case this is obvious since dim N is odd).
The gauge orbits are one-dimensional and coincide with the dynamical trajecto-
ries since H ≡ 0 (so that the solutions of XH are just the null vector fields of σ).
Each dynamical trajectory on (M ,ω, h) corresponds to a gauge orbit on (N ,σ, H ).
Pick a time t and a point x ∈ M , and look at the dynamical trajectory (q(t ), p(t ))
on M . Then the dynamical trajectories through (t , x) ∈ N will be of the form
(τ , (q(t ), p(t ))), where τ (t ) is some re-parameterization of time. The gauge orbit in
N which corresponds to the trajectory (q(τ ), p(τ )) in M will include all the points
in N which are images of the maps (τ , (q(t ), p(t ))), for all parameters τ . Thus, the
loss of the preferred parameterization of time is the price of including time among
the canonical variables. The reduced phase space of a parameterized system is just
the original Hamiltonian system.

Notes

We would like to thank Karel Kuchař and Carlo Rovelli for invaluable tutelage, and Craig
Callender, Nick Huggett, and Steve Weinstein for helpful comments.

1. Here and throughout we restrict our attention to the canonical approach to quantum gravity.
2. See Norton (1993) for a discussion of this and other episodes in the long debate over general

covariance.
3. See Belot and Earman (1999) for a discussion of some related contrasts between the

pessimistic attitudes of (many) philosophers and the optimistic attitudes of (some) physicists
with respect to the relevance of interpretative work on general relativity to ongoing research
on quantum gravity.

4. The main text presumes that the reader is familiar with the formalism of non-relativistic
quantum mechanics and with enough differential geometry to be able to read the standard
textbook presentations of general relativity. The most important technical details are collected
together in an Appendix. Although we hope that our presentation is not misleading, it does of
course leave out many details.

5. The original development of the formalism, Dirac (1964), remains the best place to learn
about gauge systems. Chapters 1–3 of Henneaux and Teitelboim (1992) include many
invaluable examples, as well as an introduction to the modern geometric point of view.

6. A regular submanifold is one which is given locally by stipulating that some subset of a set of
co-ordinates on M take on a given constant value.

7. Here we gloss over the subtleties surrounding the Dirac conjecture. See pp. 16–20 of
Henneaux and Teitelboim (1992).

8. Note that if we imposed both p1 = 0 and q1 = 0, then the constraints would be second class,
and (N ,σ) would be a symplectic geometry.

9. See Redhead (1975) for the notion of surplus structure, and its relevance to the interpretative
enterprise.

10. When space is multiply connected, the correspondence between gauge orbits and magnetic
fields is many-to-one. This means that there is additional structure that is not captured by B –
structure which is empirically accessible via the Aharonov–Bohm effect. See Belot (1998) for
an account of how this complication forces the would-be interpreter of electromagnetism to
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choose between non-locality and indeterminism. The moral is that it is not always easy to find
a gauge-invariant interpretation of a given gauge theory.

11. Again, Dirac (1964) remains one of the best sources. See also Chapter 13 of Henneaux and
Teitelboim (1992). The following description, although accurate enough for present purposes,
glosses over a large number of technicalities. One would hope, of course, that the two
techniques of quantization would lead to the same results in cases where they can both be
carried out. Unfortunately, this is not always the case; see Plyushchay and Razumov (1996).
See Landsman (1995, 1998) for an alternative to Dirac quantization.

12. Note that operator ordering problems introduce considerable ambiguity at this stage. We
ignore these below. In general, it is safe to assume that quantum gravity is beset by all of the
problems of ordinary quantum field theories – operator ordering problems, divergences,
anomalies, problems of renormalization and regularization – and then some.

13. We limit discussion to globally hyperbolic vacuum solutions of general relativity with compact
Cauchy surfaces. As a rule of thumb, one can think of the content of these restrictions as
follows. The restriction to globally hyperbolic spacetimes is substantive – much of what
follows is simply false, or poorly understood in the non-globally hyperbolic case. The
restriction to vacuum solutions, on the other hand, is largely for convenience’s sake. Much of
what will be said is true when matter fields are taken into consideration – although the
formalism involved is often more unwieldy if matter is included. The restriction to spatially
compact spacetimes lies somewhere between these two extremes. There are some interesting
and important differences between the compact and the asymptotically flat cases. But, for the
most part, taking these differences into account would involve adding many qualifications to
our technical treatment, without substantially altering the interpretative theses defended
below.

14. There are two ways to proceed here. We follow that more familiar route, and characterize the
geometry of S using a metric tensor (geometrodynamics). It is also possible to work in terms
of connections (connection dynamics). This approach, pioneered by Ashtekar, is in many
ways more tractable and has led to many significant results in recent years. The best intuitive
introductions to connection dynamics are contained in Baez and Munian (1994) and Kuchař
(1993a); see Ashtekar (1995) for a more detailed presentation. We believe that at the level of
detail of the present chapter, nothing is lost by focusing on geometrodynamics to the exclusion
of connection dynamics.

15. See Appendix E of Wald (1984) for a more complete treatment. Note that most formulations
of general relativity as a gauge theory make use of the lapse and shift as Lagrange multipliers.
In order to avoid this complication, we have followed Beig (1994) in adopting a more
geometric approach in which the lapse and shift are eliminated.

16. Actually, this glosses over an interesting detail: it could be argued that our formalism fails to
be diffeomorphism invariant, since our phase space only contains spacelike geometries. This is
closely related to the fact, emphasized to us by Steve Weinstein, that it is far from trivial to see
how the group of four-dimensional diffeomorphisms acts on the phase space of 3-geometries.
See Kuchař (1986), Isham (1991), and Weinstein (1998) for illuminating discussions of this
problem in the classical and quantum theories. The results announced in Gotay, Isenberg, and
Marsden (1998) promise to shed a great deal of light on this problem.

17. There are, however, some more sophisticated ploys which relationalists can adopt to make
sense of inertial effects. See Barbour (1982), Belot (1999), and Lynden-Bell (1995).

18. See Torre (1993). Here a quantity is local if it is an integral over Σ of the canonical variables, p
and q, and a finite number of their derivatives. The situation is slightly more encouraging if we
work with asymptotically flat spacetime, rather than spatially compact spacetimes. In that
case, their are a finite number of known local gauge-invariant quantities, such as the ADM
momenta.

19. This is, we believe, part of the explanation of the current vogue for non-local interpretations
of electromagnetism and its non-abelian cousins; see Baez and Munian (1994) for a nice
introduction to these issues. It also justifies the demand, expressed in Earman (1989), that
relationalists should produce formulations of physical theories which can be expressed in
relationally pure vocabulary.

20. See Rovelli (1991a,b,c). For criticism and discussion, see Cosgrove (1996), Hájiček (1991),
Hartle (1996), Section 6.4 of Isham (1993), and Section 15 of Kuchař (1992).
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21. One must also face the challenge posed by non-locality: in (spatially compact) general
relativity, each gauge-invariant quantity – and hence each member of some family which we
want to view as an evolving constant – is a non-local quantity, while we are accustomed to
believe that the quantities that we measure are local.

22. Heracliteans will object that this is a crucial caveat: by their lights, the choice of a correct inner
product for wave functions on spacetime is equivalent to the choice of a Heraclitean time
variable. Parmenideans hope to finesse this objection by showing that their approach singles
out a unique candidate for the correct inner product for quantum gravity. See Ashtekar and
Tate (1994).

23. Recent work in Ashtekar’s connection–dynamical formulation of general relativity, has
produced area and volume operators for quantum gravity which have discrete spectra (see
Ashtekar 1995, 1998 for a survey of these results). This is indeed exciting. But the reader is
urged to take these results with a grain of salt: (i) the operators in question do not commute
with all of the constraints, and hence are not observables within the Parmenidean framework;
(ii) although these operators have discrete spectra, the family of such operators is
parameterized by the family of volumes and areas in Σ, so that an underlying continuum
remains. Furthermore, there appears to be some difficulty in defining a physically reasonable
version of the quantum scalar constraint for the Ashtekar variables.

24. The proposal developed by Unruh and Wald (Unruh 1988, Unruh and Wald 1989) does not
quite fit into this classification, since their unimodular time introduces a preferred volume
element rather than a preferred slicing. Nonetheless, it is very similar to radical proposals. See
Section 4 of Kuchař (1993) or Section 4.4 of Isham (1993) for discussion.

25. The extent of this open set is an open question. See Isenberg and Moncrief (1996) for a recent
discussion. Fischer and Moncrief (1996) show that there are three manifold topologies such
that if we look at the phase space of CMC sliceable solutions with Cauchy surfaces of such a
topology, we find that the reduced phase space is a manifold with no singularities.

26. This is a variety of gauge fixing. In completely fixing the gauge, one kills off gauge freedom by
adding further constraints in such a way that the expanded set of constraints are all second
class and the new system is strictly Hamiltonian rather than being gauge; see footnote 8. In
electromagnetism, one can impose the Lorentz gauge condition, ∂aAa = 0. This completely
fixes the gauge, in the sense that the resulting second-class constraint surface intersects each
gauge orbit exactly once. The CMC gauge choice only partially fixes the gauge: the resulting
constraint surface still has a one-dimensional intersection with each of the original gauge
orbits.

27. These will depend upon the Lagrangian which governs the dynamics of the matter:
postulating four non-interacting massless scalar fields privileges a system of harmonic
co-ordinates; introducing a cloud of non-rotating and heat-conducting dust leads to Gaussian
co-ordinates. See Kuchař (1993a).

28. Different notions of ‘instant’ in Minkowski spacetime produce families of instants of different
dimensionalities. See Hájiček (1994) for an analysis and comparison of the distinct varieties of
relativistic quantum mechanics which correspond to different notions of instant in
Minkowski spacetime.

29. It may help to consider how the CMC time fits into this scheme. If we attempt to define
T (x ; q, p] as the extrinsic curvature of (q, p) at x , then we run afoul of the requirement
Spacetime Interpretation: if we look at two Cauchy surfaces passing through the same point of
spacetime, we expect them to have different extrinsic curvatures at that point. We could, in
accord with the CMC proposal discussed above, attempt to define T (x ; q, p] to be the value of
the extrinsic curvature of the CMC slice through x . This satisfies Spacetime Interpretation.
But it requires solving the Einstein equations in order to define the time variable on phase
space. See Section 6 of Kuchař (1992) or Section 4.2.4 of Isham (1993) for discussion.

30. Indeed, Kuchař (1986) argues that the Diff(M )-invariance of general relativity is hidden in the
ordinary Hamiltonian formulation of general relativity, but is manifest in the internal time
formulation.

31. Kuchař (1993), p. 136. Here and below, we have slightly altered Kuchař’s notation to conform
to our own.

32. See Schön and Hájiček (1990) and Torre (1992) for the former, and Sections 1, 2, and 6 of
Kuchař (1992) and Sections 3.4, 4.4, and 4.2 of Isham (1993) for the latter.
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33. But see Hájiček and Isham (1996, 1996a) for formulations of classical and quantum field
theories in terms of embedding variables. Also see Torre and Varadarajan (1998) for a problem
with unitarity in this context.

34. We note that among the many proposals for quantum gravity which we have not touched
upon, there are a number which are particularly rich in connections to the
substantival–relational debate. See especially the discussions of Barbour (1994, 1994a) and
Smolin (1991).

35. But recall that the quantities which do commute with the constraints are non-local. So today’s
relationalists find themselves in a somewhat uncomfortable position: there appears to be a
mismatch between their relationalist ontology and the non-local ideology which is forced
upon them. Traditional substantivalists and relationalists had no such problems – there was a
perfect match between their ontology and ideology (spacetime points and the relations
between them or bodies and the relations between them).

36. See Rovelli (1997) and Chapter 4 of this book. See also Rovelli (1991d), where he discusses in
some detail the relationship between the hole argument and the view that general covariance
is a principle of gauge invariance.

37. We believe that Kuchař himself is committed to this interpretative stance. We do not argue in
favour of this claim here. But note the similarity between the reasons adduced below, and the
considerations which Kuchař uses to motivate the internal time approach.

38. Some physicists might balk at these claims. But, we believe, almost all would agree with the
following statement: ‘the question as to what should be the correct notion of observables in
canonical G.R., which is clearly important for any quantum theory of gravity, is not fully
understood even on the classical level’ (Beig 1994, p. 77). We maintain that once the claim
about observables is granted, the others follow.

39. Many infinite dimensional symplectic geometries admit (suitably generalized) canonical
co-ordinates.

Note added in proof:
It now seems to us that the worry of Kuchař and Unruh about the structure of the reduced
phase space of general relativity should be largely allayed by the results of James Isenberg and
Jerrold Marsden (1982).
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11 The origin of the spacetime metric: Bell’s
‘Lorentzian pedagogy’ and its significance in
general relativity

Harvey R. Brown and Oliver Pooley

11.1 Introduction

In 1976, J.S. Bell published a paper on ‘How to teach special relativity’ (Bell 1976).
The paper was reprinted a decade later in his well-known book Speakable and
unspeakable in quantum mechanics – the only essay to stray significantly from the
theme of the title of the book. In the paper Bell was at pains to defend a dynam-
ical treatment of length contraction and time dilation, following ‘very much the
approach of H.A. Lorentz’ (Bell 1987, p. 77).

Just how closely Bell stuck to Lorentz’s thinking in this connection is debatable.
We shall return to this question shortly. In the meantime, we briefly rehearse the
central points of Bell’s rather unorthodox argument.

Bell considered a single atom modelled by an electron circling a more massive
nucleus, ignoring the back-effect of the field of the electron on the nucleus. The
question he posed was: what is the prediction in Maxwell’s electrodynamics (taken
to be valid in the frame relative to which the nucleus is initially at rest) as to the
effect on the electron orbit when the nucleus is set (gently) in motion in the plane
of the orbit? Using only Maxwell’s field equations, the Lorentz force law and the
relativistic formula linking the electron’s momentum and its velocity – which Bell
attributed to Lorentz – he concluded that the orbit undergoes the familiar longitudi-
nal (‘Fitzgerald’ (sic)) contraction, and its period changes by the familiar (‘Larmor’)
dilation. Bell went on to demonstrate that there is a system of primed variables
such that the description of the moving atom with respect to them coincides with
that of the stationary atom relative to the original variables, and the associated
transformations of co-ordinates is precisely the familiar Lorentz transformation.

Bell carefully qualified the significance of this result. He stressed that the external
forces involved in boosting a piece of matter must be suitably constrained in order
that the usual relativistic kinematical effects such as length contraction be observed
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(see Section 11.5). More importantly, Bell acknowledged that Maxwell–Lorentz
theory is incapable of accounting for the stability of solid matter, starting with that
of the very electronic orbit in his atomic model; nor can it deal with cohesion of the
nucleus. (He might also have included here the cohesion of the electron itself.) How
Bell addressed this shortcoming of his model is important, and will be discussed in
Section 11.3. In the meantime, we note that the positive point Bell wanted to make
was about the wider nature of the Lorentzian approach: that it differed from that of
Einstein in 1905 in both philosophy and style.

The difference in philosophy is well known, and Bell did not dwell on it. It is
simply that Lorentz believed in a preferred frame of reference – the rest-frame of
the ether – and Einstein did not, regarding the notion as superfluous. The inter-
esting distinction, rather, was that of style. Bell argues first that ‘we need not
accept Lorentz’s philosophy to accept a Lorentzian pedagogy. Its special merit is
to drive home the lesson that the laws of physics in any one reference frame account
for all physical phenomena, including the observations of moving observers’. He
went on to stress that Einstein postulates what Lorentz is attempting to prove (the
relativity principle). Bell has no ‘reservation whatever about the power and pre-
cision of Einstein’s approach’; his point is that ‘the longer road [of FitzGerald,
Lorentz, and Poincaré] sometimes gives more familiarity with the country’
(Bell 1987, p. 77).

The point, then, is not the existence or otherwise of a preferred frame – and we
have no wish to defend such an entity in this chapter. It is how best to understand,
and teach, the origins of the relativistic ‘kinematical’ effects. Near the end of his life,
Bell reiterated the point with more insistence:

‘If you are, for example, quite convinced of the second law of thermodynamics, of
the increase of entropy, there are many things that you can get directly from the
second law which are very difficult to get directly from a detailed study of the
kinetic theory of gases, but you have no excuse for not looking at the kinetic theory
of gases to see how the increase of entropy actually comes about. In the same way,
although Einstein’s theory of special relativity would lead you to expect the
FitzGerald contraction, you are not excused from seeing how the detailed dynamics
of the system also leads to the FitzGerald contraction’.

(Bell 1992, p. 34)

There is something almost uncanny in this exhortation. Bell did not seem to be
aware that just this distinction between thermodynamics and the kinetic theory of
gases was foremost in Einstein’s mind when he developed his fall-back strategy for
the 1905 relativity paper (see Section 11.2).

It is the principal object of this chapter to analyse the significance of what Bell calls
the ‘Lorentzian pedagogy’ in both special relativity and general relativity. Its merit is
to remind us that in so far as rigid rods and clocks can be used to survey the metrical
structure of spacetime (and the extent to which they do will vary from theory
to theory), their status as structured bodies – as ‘moving atomic configurations’
in Einstein’s words – must not be overlooked. The significance of the dynamical
nature of rods and clocks, and the more general theme of the entanglement between
kinematics and dynamics, are issues which in our opinion deserve more attention
in present-day discussions of the physical meaning of spacetime structure.
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11.2 Chalk and cheese: Einstein on the status of
special relativity theory

Comparing the explanation in special relativity (SR) of the non-null outcome of the
celebrated 1851 Fizeau interferometry experiment – a direct corroboration of the
Fresnel drag coefficient – with the earlier treatment given by Lorentz can seem like
comparing chalk and cheese.

From the perspective of SR the drag coefficient is essentially a simple con-
sequence (to first order) of the relativistic velocity transformation law, itself a
direct consequence of the Lorentz transformations. The explanation appears to be
entirely kinematical. Lorentz, on the other hand, had provided a detailed dynamical
account – based on his theory of the electron – of the microstructure of the moving
transparent medium (water in the case of the Fizeau experiment) and its interaction
with the light passing through it (Lorentz 1892). In his 1917 text Relativity, Einstein
noted with satisfaction that the explanation of Fizeau’s experiment in SR is achieved
‘without the necessity of drawing on hypotheses as to the physical nature of the
liquid’ (Einstein 1961, p. 57).

Yet Lorentz had achieved something remarkable, and Einstein knew it. In deriving
the drag coefficient from principles contained within his theory of the electron,
Lorentz was able to reconcile the null results of first-order ether-wind experiments
(all of which incorporated moving transparent media) with the claimed existence of
the luminiferous ether itself. There were few, if any, complaints that such a surprising
reconciliation was obtained on the basis of ad hoc reasoning on Lorentz’s part. But
the case of the second-order ether-wind experiments was of course different, and it
is worth noting Einstein’s take on these, again as expressed in Relativity.

In order to account for the null result of the 1887 Michelson–Morley (M-M)
experiment, Lorentz and FitzGerald assumed, says Einstein, ‘that the motion of the
body [the Michelson interferometer] relative to the aether produces a contraction
of the body in the direction of motion’ (Einstein 1961, p. 59). Einstein’s claim is not
quite right. In fact, both Lorentz and FitzGerald had correctly and independently
realized that it was sufficient to postulate any one of a certain family of motion-
induced distortions: the familiar longitudinal contraction is merely a special case
and not uniquely picked out by the M-M null result.1 But this common historical
error (repeated by Bell) should not detain us, for the real issue lies elsewhere. In SR,
Einstein stresses, ‘the contraction of moving bodies follows from the two fundamen-
tal principles of the theory [the relativity principle and the light postulate], without
the introduction of particular hypotheses’ (Einstein 1961, p. 59).

The ‘particular hypotheses’ of FitzGerald and Lorentz went beyond the phe-
nomenological claim concerning the distortion of rigid bodies caused by motion
through the ether. Both these physicists, again independently, attempted to justify
this startling claim by surmising, not unreasonably, that the molecular forces in rigid
bodies, and in particular in the stone block on which the Michelson interferometer
was mounted, are affected by the ether-wind in a manner similar to that in which
electromagnetic interactions are so affected. Unlike their contemporary Larmor,
neither FitzGerald nor Lorentz was prepared to commit himself to the claim that
the molecular forces are electromagnetic in origin. In this sense, their courageous
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solution to the conundrum posed by the M-M experiment did involve appeal to
hypotheses outside what Einstein referred to as the ‘Maxwell–Lorentz theory’.

Indeed, it was precisely their concern with rigid bodies that would have made
FitzGerald and Lorentz less than wholly persuaded by Bell’s construction above, as
it stands. It is not just that Bell’s atomic model relies on post-1905 developments in
physics. The point is rather that Bell does not discuss the forces that glue the atoms
together – the analogue of the ‘molecular forces’ – to form a rigid body like Michel-
son’s stone.2 (Bell of course must have known that they were also electromagnetic in
origin while, as we have seen, FitzGerald and Lorentz were uncertain and unwilling
to commit themselves on this point.)

Returning to Einstein, in Relativity he also mentions the case of predictions
concerning the deflection of high-velocity electrons (cathode- and beta-rays) in
electromagnetic fields (Einstein 1961, p. 56). Lorentz’s own predictions, which
coincided with Einstein’s, were obtained by assuming inter alia that the electron itself
deforms when in motion relative to the ether. It is worth recalling that predictions
conflicting with those of Lorentz and Einstein had been made by several workers;
those of M. Abraham (an acknowledged authority on Maxwellian electrodynamics)
being based on the hypothesis of the non-deformable electron.3 Einstein’s point was
that whereas Lorentz’s hypothesis is ‘not justifiable by any electrodynamical facts’
and hence seems extraneous, the predictions in SR are obtained ‘without requiring
any special hypothesis whatsoever as to the structure and behaviour of the electron’
(Einstein 1961, p. 56, our emphasis).

Whatsoever? Not quite, as we see in the next section. But for the moment let
us accept the thrust of Einstein’s point. The explanations of certain effects given
by Maxwell–Lorentz theory and SR differ in both style and degree of success: in
some cases the Maxwell–Lorentz theory actually seems incomplete. Yet there was a
stronger reason for the difference in style, and for the peculiarities of the approach
that Einstein adopted in 1905 (peculiarities which should be borne in mind when
evaluating claims – which resurface from time to time – that Poincaré was the true
father of SR). Part of the further story emerged in 1919, in a remarkable article
Einstein wrote for the London Times (Einstein 1919), when he characterized SR as
an example of a ‘principle theory’, methodologically akin to thermodynamics, as
opposed to a ‘constructive theory’, akin to the kinetic theory of gases. Like all good
distinctions, this one is hardly absolute, but it is enlightening. It is worth dwelling
on it momentarily.

In 1905, Einstein was faced with a state of confusion in theoretical physics largely
caused by Planck’s 1900 solution to the vexing problem of blackbody radiation.
Not that the real implications of Planck’s quantum revolution were widely appre-
ciated by 1905, even by Planck; but that year saw Einstein himself publish a paper
with the revolutionary suggestion that free radiation itself had a quantized, or
granular structure (Einstein 1905a). What his light-quantum proposal undoubtedly
implied in Einstein’s mind was that the Maxwell–Lorentz theory was probably only
of approximate, or statistical validity. Now within that theory, Lorentz, with the
help of Poincaré, had effectively derived the Lorentz (co-ordinate) transformations
as the relevant subgroup of the linear covariance group of Maxwell’s equations,
consistent moreover with the FitzGerald–Lorentz deformation hypothesis for rigid
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bodies. But if Maxwell’s field equations were not to be considered fundamental,
and if, furthermore, the nature of the various forces of cohesion within rigid bod-
ies and clocks was obscure, how was one to provide a rigorous derivation of these
co-ordinate transformations, which would determine the behaviour of moving rods
and clocks? Such a derivation was essential if one wanted, as Einstein did, to tackle
the difficult problem of solving Maxwell’s equations in the case of moving charge
sources.

It is important to recognize that Einstein’s solution to this conundrum was the
result of despair, as he admits in his Autobiographical Notes (Einstein 1969). Einstein
could not see any secure foundation for such a derivation on the basis of ‘construc-
tive efforts based on known facts’ (Einstein 1969, p. 53). In the face of this impasse,
Einstein latched on to the example of thermodynamics. If for some reason one is
bereft of the means of mechanically modelling the internal structure of the gas in a
single-piston heat engine, say, one can always fall back on the laws of thermodynam-
ics to shed light on the performance of that engine – laws which stipulate nothing
about the structure of the gas, or rather which hold whatever that structure might
be. The laws or principles of thermodynamics are phenomenological, the first two
laws being susceptible to formulation in terms of the impossibility of certain types
of perpetual motion machines. Could similar, well-established phenomenological
laws be found, Einstein asked, which would constrain the behaviour of moving
rods and clocks without the need to know in detail what their internal dynamical
structure is?

In a sense, Galileo’s famous thought-experiment involving a ship in uniform
motion is an impossibility claim akin to the perpetual-motion dictates of thermody-
namics: no effect of the ship’s motion is detectable in experiments being performed
in the ship’s cabin. The Galileo–Newton relativity principle was probably originally
proposed without any intention of restricting it to non-electromagnetic or non-
optical experiments (see Brown and Sypel 1995). In the light of the null ether-wind
experiments of the late nineteenth century, Einstein, like Poincaré, adopted the prin-
ciple in a form which simply restored it to its original universal status. In Einstein’s
words:

‘The universal principle of the special theory of relativity [the relativity principle]
. . . is a restricting principle for natural laws, comparable to the restricting principle
of the non-existence of the perpetuum mobile which underlies thermodynamics’.

(Einstein 1969, p. 57)

Turning to Einstein’s second postulate, how apt, if at first sight paradoxical, was its
description by Pauli as the ‘true essence of the aether point of view’ (Pauli 1981, p. 5).
Einstein’s light postulate – the claim that relative to a certain ‘resting’ co-ordinate sys-
tem, the two-way light-speed is constant (isotropic and independent of the speed of
the source) – captures that phenomenological aspect of all ether theories of electro-
magnetism which Einstein was convinced would survive the maelstrom of changes
in physics that Planck had started. Combined now with the relativity principle, it
entailed the invariance of the two-way light-speed. This was not the only application
of the relativity principle in Einstein’s 1905 derivation of the Lorentz transformations
(1905), as we discuss in the next section.4
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Einstein had now got what he wanted in the Kinematical Part of his 1905 paper,
without committing himself therein to the strict validity of Maxwell’s equations and
without speculation as to the detailed nature of the cohesion forces within material
bodies such as rods and clocks. But there was a price to be paid. In comparing
‘principle theories’ such as thermodynamics with ‘constructive theories’ such as the
kinetic theory of gases in his 1919 Times article, Einstein was quite explicit both
that special relativity is a principle theory, and that principle theories lose out to
constructive theories in terms of explanatory power:

‘. . . when we say we have succeeded in understanding a group of natural processes,
we invariably mean that a constructive theory has been found which covers the
processes in question’.

(Einstein 1982, p. 228)

This was essentially the point Bell was to make half a century later.5

11.3 The significance of the Lorentzian pedagogy

We saw in Section 11.1 that Bell was aware in his 1976 essay of the limitations
of the Maxwell–Lorentz theory in accounting for stable forms of material struc-
ture. He realized that a complete analysis of length contraction, say, in the spirit
of the Lorentzian pedagogy would also require reference to forces other than of
electromagnetic origin, and that the whole treatment would have to be couched in
a quantum framework. But it is noteworthy that Bell did not seem to believe that
articulation of a complete dynamical treatment of this kind was a necessary part of
the Lorentzian pedagogy. In order to predict, on dynamical grounds, length con-
traction for moving rods and time dilation for moving clocks, Bell recognized that
one need not know exactly how many distinct forces are at work, nor have access to
the detailed dynamics of all of these interactions or the detailed microstructure of
individual rods and clocks. It is enough, said Bell, to assume Lorentz covariance of
the complete dynamics – known or otherwise – involved in the cohesion of matter.
We call this the truncated Lorentzian pedagogy.

It is at this important point in Bell’s essay that one sees something like a re-run of
the thinking that the young Pauli brought to bear on the significance of relativistic
kinematics in his acclaimed 1921 review article on relativity theory (Pauli 1981).
Pauli was struck by the ‘great value’ of the apparent fact that in 1905 Einstein, unlike
Lorentz, had given an account of his kinematics which was free of assumptions about
the constitution of matter. He wrote:

‘Should one, then, completely abandon any attempt to explain the Lorentz
contraction atomistically? We think that the answer to this question should be No.
The contraction of a measuring rod is not an elementary but a very complicated
process. It would not take place except for the covariance with respect to the
Lorentz group of the basic equations of electron theory, as well as of those laws, as
yet unknown to us, which determine the cohesion of the electron itself ’.

(Pauli 1981, p. 15)

Both Pauli and Bell seem then to contrast the dynamical underpinning of rel-
ativistic kinematics with Einstein’s 1905 argument. But it seems to us that once
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the Lorentzian pedagogy relinquishes detailed specification of the dynamical inter-
actions involved – in other words once it takes on the truncated form – the
difference between it and Einstein’s approach, although significant, can easily be
overstated. Indeed, we regard it as plain wrong to construe Einstein’s 1905 ‘kine-
matical’ derivation of the Lorentz transformations as free of assumptions about the
constitution of matter, despite the distance between SR and the Maxwell–Lorentz
theory that Einstein urges (see above) in his Relativity.

This is best seen in the second application of the relativity principle in Einstein’s
argument. The first application, it will be recalled, establishes the invariance of the
two-way light-speed, given the light postulate. Adopting the Einstein convention for
synchronizing clocks in both the moving and rest frames, this entails that the linear
co-ordinate transformations take on the form of the Lorentz transformations up to
a non-trivial scale or conformal factor. Einstein is now faced with the problem of
reducing this factor to unity (a problem which bedevilled Lorentz virtually through-
out the development of his theory of the electron). Einstein achieves this (as did
Poincaré independently) by a second appeal to the relativity principle, in order to
guarantee the group property of the transformations – in particular to ground the
claim that the form of the transformation does not depend on the choice of frames.
This, together with an appeal to the principle of spatial isotropy, does the trick. The
details need not concern us; the interesting question is how this second application
of the relativity principle should be understood.

The co-ordinate transformations encode the behaviour of moving ideal rulers
and clocks under the crucial and universally accepted convention that these devices
retain their rest lengths and periods respectively under boosts. Suppose now that
the co-ordinate transformations between frames S and S′ are different in form from
their inverses. We expect in this case either the length contraction factor or the
time dilation factor (if any), or both, to differ when measured relative to S and
when measured relative to S′. And this would imply a violation of the relativity
principle. Specifically, it would be inconsistent with the claim that the dynam-
ics of all the fundamental non-gravitational interactions which play a role in the
cohesion of these bodies satisfy the relativity principle. Thus, the dynamical rel-
ativity principle constrains the form of the kinematical transformations, because
such kinematics encodes the universal dynamical behaviour of rods and clocks in
motion.

It was clearly of importance to Bell that the Lorentzian pedagogy relied on physics
specified relative to a single inertial frame in order to account for the ‘observations
of moving observers’, and, in particular, the very validity of the relativity principle
itself. But ultimately that physics amounted to the claim that the complete theory
of the construction of matter is Lorentz covariant, of which the relativity principle
inter alia is a consequence. Einstein on the other hand started with the relativity
principle and the light postulate, and derived (using the isotropy of space) Lorentz
covariance. In comparing these two approaches, two points must not be lost sight of.
The first is that Einstein’s argument is dynamical, since kinematics and dynamics in
this context cannot be disentangled.6 The second point is that his ‘principle theory’
approach to relativistic kinematics ruled out the truncated Lorentzian pedagogy as
a possible starting point for Einstein.
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11.4 Einstein’s unease about rods and clocks in special relativity

The extent to which Einstein understood the full dynamical implications of his 1905
derivation of the Lorentz transformations is perhaps unclear. Specifically, it is not
clear that he recognized the role that rods and clocks can be seen to play in the
derivation as structured bodies. What is clearer is that he harboured, or developed,
a sense of unease about the status of these bodies in his initial formulation of SR.
Einstein made use of these devices in the first instance to operationalize the spatial
and temporal intervals, respectively, associated with inertial frames, but he never
explained where they come from. In an essay entitled ‘Geometrie und Erfahrung’
(Einstein 1921), Einstein wrote:

‘It is . . . clear that the solid body and the clock do not in the conceptual edifice of
physics play the part of irreducible elements, but that of composite structures, which
must not play any independent part in theoretical physics. But it is my conviction
that in the present stage of development of theoretical physics these concepts must
still be employed as independent concepts; for we are still far from possessing such
certain knowledge of the theoretical principles of atomic structure as to be able to
construct solid bodies and clocks theoretically from elementary concepts’.

(Einstein 1982)

Einstein’s unease is more clearly expressed in a similar passage in his 1949
Autobiographical Notes:

‘One is struck [by the fact] that the theory [of special relativity] . . . introduces two
kinds of physical things, i.e. (1) measuring rods and clocks, (2) all other things,
e.g. the electromagnetic field, the material point, etc. This, in a certain sense, is
inconsistent; strictly speaking measuring rods and clocks would have to be
represented as solutions of the basic equations (objects consisting of moving atomic
configurations), not, as it were, as theoretically self-sufficient entities. However, the
procedure justifies itself because it was clear from the very beginning that the
postulates of the theory are not strong enough to deduce from them sufficiently
complete equations . . . in order to base upon such a foundation a theory of
measuring rods and clocks. . . . But one must not legalize the mentioned sin so far
as to imagine that intervals are physical entities of a special type, intrinsically
different from other variables (‘reducing physics to geometry’, etc.)’.

(Einstein 1969, pp. 59, 61)

It might seem that the justification Einstein provides for the self-confessed ‘sin’
of treating rods and clocks as ‘irreducible’, or ‘self-sufficient’ in 1905 is different in
the two passages. In the 1921 essay, Einstein is saying that the constructive physics of
atomic aggregation is still too ill-defined to allow for the modelling of such entities,
whereas in the 1949 passage the point is that his 1905 postulates were insufficient in
the first place to constrain the theory of matter in the required way – which is little
more than a restatement of the problem. But as we have seen, it was precisely the
uncertainties surrounding the basic constructive principles of matter and radiation
that led Einstein in 1905 to base his theory on simple, phenomenological postulates.

Now there are two ways one might interpret these passages by Einstein. One might
take him to be expressing concern that his 1905 derivation fails to recognize that rods
and clocks are complex, structured entities. We argued in the previous section that
there is no such failure. While the derivation is independent of the details of the
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laws which describe their internal structure, it is completely consistent with the true
status of rods and clocks as complex solutions of (perhaps unknown) dynamical
equations. In fact, the derivation implicitly treats them as such when the second
appeal to the relativity principle is made.

Alternatively, one might take Einstein to be concerned about the fact that his
postulates could not account for the availability of rods and clocks in the world in
the first place. If this is his concern, then it is worth noting that the possibility of the
existence of rods and clocks likewise does not follow from the mere assumption that
all the fundamental laws are Lorentz covariant. It is only a full-blown quantum
theory of matter, capable of dealing with the formation of stable macroscopic bodies
that will fill the gap.

The significance of this point for the truncated Lorentzian pedagogy and the role
of the constructive theory of rods and clocks in Einstein’s thought are themes we
will return to in Section 11.6. In the meantime, two points are worth making. First,
it is perhaps odd that in his Autobiographical Notes, Einstein makes no mention of
the advances that had occurred since 1905 in the quantum theory of matter and
radiation. The understanding of the composition of bodies capable of being used as
rods and clocks was far less opaque in 1949 than it was in 1905. Second, there is a
hint at the end of the second passage above that towards the end of his life, Einstein
did not view geometrical notions as fundamental in the special theory. An attempt
to justify this scepticism, at least in relation to four-dimensional geometry, is given
in Section 11.6.

11.5 A digression on rods and clocks in Weyl’s 1918 unified field theory

In discussing the significance of the M-M experiment in his text Raum-Zeit-Materie
(Weyl 1918a), Hermann Weyl stressed that the null result is a consequence of the fact
that ‘the interactions of the cohesive forces of matter as well as the transmission of
light’ are consistent with the requirement of Lorentz covariance (Weyl 1952, p. 173).
Weyl’s emphasis on the role of ‘the mechanics of rigid bodies’ in this context indicates
a clear understanding of the dynamical underpinnings of relativistic kinematics. But
Weyl’s awareness that rigid rods and clocks are structured dynamical entities led him
to the view that it is wrong to define the ‘metric field’ in SR on the basis of their
behaviour.

Weyl’s concern had to do with the problem of accelerated motion, or with
deviations from what he called ‘quasi-stationary’ motion. Weyl’s opinion in Raum-
Zeit-Materie seems to have been that if a clock, say, is undergoing non-inertial
motion, then it is unclear in SR whether the proper time read off by the clock is
directly related to the length of its world-line determined by the Minkowski met-
ric. For Weyl, clarification of this issue can only emerge ‘when we have built up a
dynamics based on physical and mechanical laws’ (Weyl 1952, p. 177). This theme
was to re-emerge in Weyl’s responses to Einstein’s criticisms of his 1918 attempt at a
unified field theory. Before turning to this development, it is worth looking at Weyl’s
comments on SR.

In a sense Weyl was right. The claim that the length of a specified segment of
an arbitrary time-like curve in Minkowski spacetime – obtained by integrating the
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Minkowski line element ds along the segment – is related to proper time rests on the
assumption (now commonly dubbed the ‘clock hypothesis’) that the performance
of the clock in question is unaffected by the acceleration it may be undergoing. It
is widely appreciated that this assumption is not a consequence of Einstein’s 1905
postulates. Its justification rests on the contingent dynamical requirement that the
external forces accelerating the clock are small in relation to the internal ‘restoring’
forces at work inside the clock. (Similar considerations also hold, of course, in the
case of rigid bodies.)

Today we are more sanguine about the clock hypothesis than Weyl seems to have
been in Raum-Zeit-Materie. There is experimental confirmation of the hypothesis
for nuclear clocks, for instance, with accelerations of the order 108 cm s−2. But the
question remains as to whether the behaviour of rods and clocks captures the full
significance of the ‘metric field’ of SR. Suppose accelerations exist such that for no
known clock is the hypothesis valid (assuming the availability of the external forces in
question!). Mathematically, one can still determine – using the prescription above –
the length of the time-like worldline of any clock undergoing such acceleration if it
does not disintegrate completely. From the perspective of the Lorentzian pedagogy,
should one say that such a number has no physical meaning in SR? We return to this
issue in the next section.

Weyl’s separate publication of a stunning, though doomed unification of grav-
itational and electromagnetic forces (Weyl 1918) raised a number of intriguing
questions about the meaning of spacetime structure which arguably deserve more
attention than they have received to date (see, however, Ryckman 1994). Space
prevents us from giving more than a sketch of the theory and its ramifications;
our emphasis will be on the role of the Lorentzian pedagogy in evaluating the
theory.

Weyl started from the claim that the pseudo-Riemannian spacetime geometry of
Einstein’s general relativity is not sufficiently local in that it allows the comparison
of the lengths of distant vectors. Instead, Weyl insisted that the choice of unit of
(spacetime) length at each point is arbitrary: only the ratios of the lengths of vectors
at the same point and the angles between them can be physically meaningful. Such
information is invariant under a gauge transformation of the metric field: gij → g ′

ij =

e2λ(x)gij and constitutes a conformal geometry.
In addition to this conformal structure, Weyl postulated that spacetime is

equipped with an affine connection that preserves the conformal structure under
infinitesimal parallel transport. In other words, the infinitesimal parallel transport of
all vectors at p to p′ is to produce a similar image at p′ of the vector space at p.7 For a
given choice of gauge, the constant of proportionality of this similarity mapping will
be fixed. Weyl assumed that it differed infinitesimally from 1 and thereby proceeded
to show that the coefficients of the affine connection depended on a one-form field
φi in addition to the metric coefficients gij in such a way that the change in any length
l under parallel transport from p (co-ordinates {xi}) to p′ (co-ordinates {xi + dxi})
is given by:

dl = lφi dxi . (11.1)
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Under the gauge transformation gij → g ′
ij = e2λgij , l → eλl . Substituting this

into eqn. 11.1 gives:

φi → φ′
i = φi + λ,i ,

the familiar transformation law for the electromagnetic four-potential. Weyl thus
identified the gauge-invariant, four-dimensional curl of the geometric quantity φi

with the familiar electromagnetic field tensor.
For a given choice of gauge a comparison of the length of vectors at distant

points can be effected by integrating eqn. 11.1 along a path connecting the points.
This procedure will in general be path-independent just if the electromagnetic field
tensor vanishes everywhere.

As is well known, despite his admiration for Weyl’s theory, Einstein was soon to
spot a serious difficulty with the non-integrability of length (Einstein 1918a). In the
case of a static gravitational field, a clock undergoing a round-trip in space during
which it encountered a spatially varying electromagnetic potential would return to
its starting point ticking at a rate different from that of a second clock which had
remained at the starting point and which was originally ticking at the same rate.
An effect analogous to this ‘second clock effect’ would occur for the length of an
infinitesimal rod under the same circumstances. But it is a fact of the world – and a
highly fortunate one! – that the relative periods of clocks (and the relative lengths of
rods) do not depend on their histories in this way.

Before looking at Weyl’s reply to this conundrum, it is worth remarking that it
was apparently only in 1983 that the question was asked: what became of Einstein’s
objection once the gauge principle found its natural home in quantum mechanics?
C.N. Yang pointed out that because the non-integrable scale factor in quantum
mechanics relates to phase, the second clock effect could be detected using wave
functions rather than clocks, essentially what Aharonov and Bohm had discovered
(Aharonov and Bohm 1959; see also Ehrenberg and Siday 1949).8 We note that
Yang’s question can be inverted: is there a full analogue of the Aharonov–Bohm
effect in Weyl’s gauge theory? The answer is yes, and it indicates that there was a
further sting in Einstein’s objection to Weyl that he and his contemporaries failed to
spot. The point is that the second clock effect obtains in Weyl’s theory even when the
electromagnetic field vanishes everywhere on the trajectory of the clocks, so long as
the closed path of the clocks enclose some region in which there is a non-vanishing
field. This circumstance highlights the difficulty one would face in providing a
dynamical or ‘constructive’ account of the second clock effect in the spirit of the full
Lorentzian pedagogy.9 Weyl’s theory seems to be bedevilled by non-locality of a very
striking kind.

The precise nature of Weyl’s response to Einstein’s objection would vary in the
years following 1918 as he went on to develop new formulations of his unified field
theory based on the gauge principle (see Vizgin 1994). But the common element
was Weyl’s rejection of the view that the metric field could be assigned operational
significance in terms of the behaviour of rods and clocks. His initial argument was
an extension of the point he had made about the behaviour of clocks in SR: one
cannot know how a clock will behave under accelerations and in the presence of
electromagnetic fields until a full dynamical modelling of the clock under these
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circumstances is available. The price Weyl ultimately paid for the beauty of his gauge
principle – quite apart from the complicated nature of his field equations – was the
introduction of rather tentative speculations concerning a complicated dynamical
adjustment of rods and clocks to the ‘world curvature’ so as to avoid the second
clock effect and its analogue for rods.

We finish this section with a final observation on the nature of Weyl’s theory,
with an eye to issues in standard general relativity to be discussed shortly. We noted
above that Weyl’s connection is not a metric connection. It is a function not only
of the metric and its first derivatives, but also of the electromagnetic gauge field; in
particular, for a fixed choice of gauge, the covariant derivative of the metric does not
vanish everywhere. What does this imply?

The vanishing of the covariant derivative of the metric – the condition of metric
compatibility – is sometimes introduced perfunctorily in texts on general relativity,
but Schrödinger was right to call it ‘momentous’ (Schrödinger 1985, p. 106). It
means that the local Lorentz frames associated with a spacetime point p (those
for which, at p, the metric tensor takes the form diag(1,−1,−1,−1) and the first
derivatives of all its components vanish) are also local inertial frames (relative to
which the components of the connection vanish at p).10 If the laws of physics of the
non-gravitational interactions are assumed to take their standard special relativistic
form at p relative to such local Lorentz charts (the local validity of special relativity),
then metric compatibility implies that gravity is not a force in the traditional sense –
an agency causing deviation from natural motion – in so far as the worldlines of
freely falling bodies are geodesics of the connection.

The full physical implications of the non-metric compatible connection in Weyl’s
theory remain obscure in the absence of a full-blown theory of matter. Weyl’s hints at
a solution to the Einstein objection seem to involve a violation of minimal coupling,
i.e. a violation of the prohibition of curvature coupling in the non-gravitational
equations, and hence of the local validity of special relativity. But it seems that the
familiar insight into the special nature of the gravitational interaction provided by
the strong equivalence principle – the encapsulation of the considerations given in
the previous paragraph – is lost in the Weyl theory.

11.6 The case of general relativity

There is a recurrent, Helmholtzian theme in Einstein’s writings concerning Euclidean
geometry: he claims that, as it is understood in physics, it is the science ‘des possi-
bilités de deplacement des corps solides’ (Einstein 1928), or of ‘the possibilities of
laying out or juxtaposing solid bodies’ (Einstein 1982, p. 163; see also Einstein 1982,
pp. 234–5.).

But consider a universe consisting of some large number of mass points inter-
acting by way of the Newtonian gravitational potential. Few would deny that a
well-defined theory of such objects can be constructed within the framework of
Newtonian mechanics (or its recent Machian counterparts such as Barbour and
Bertotti (1982)). In such a world, there is nothing remotely resembling rigid bod-
ies or rulers which allow for a direct operational significance to be assigned to the
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interparticle distances. Yet these distances are taken to obey the algebraic relation-
ships of Euclidean geometry; either because this is a foundational assumption of
the theory (as in the Machian approach), or because this is true of the particles’ co-
ordinate differences when referred to the privileged co-ordinate systems with respect
to which the laws take on a canonical form. Moreover, the Euclidean constraint on
the instantaneous configuration of the particles is formally the same as in a more
ramified pregeneral relativistic (quantum) theory of matter which in principle allows
for non-gravitational forces as well, and hence for the possibility of the existence of
stable, rigid bodies.

Einstein was not oblivious to this point. He stressed that the accepted theory of
matter itself (even pre-special relativistic theory) rules out the possibility of com-
pletely rigid bodies, and that atomistic conceptions exclude ‘the idea of sharply
and statically defined bounding surfaces of solid bodies’. Einstein realized that such
physics ‘must make use of geometry in the establishment of its concepts’, conclud-
ing that ‘the empirical content of geometry can be stated and tested only in the
framework of the whole of physics’ (Einstein 1982, p. 163).

Rigid bodies furnish what is an already meaningful spatial geometry with an
(approximate) direct operational significance, and the fact that they have this role
is a consequence of the theory of matter. It should be noted here that a necessary
condition for this state of affairs is that the dynamical equations governing the non-
gravitational interactions satisfy the so-called Euclidean symmetries. But this more
complicated and no doubt more correct way of looking at things surely weakens
the literal reading of Einstein’s original account of Euclidean geometry above as
the science of the possible arrangement of rigid bodies in space. The behaviour of
rigid bodies under displacements does not define so much as instantiate the spatial
geometry which might even have primordial status in the foundations of the theory
of such bodies. And this point leads to another observation which is of considerable
relevance to this chapter.

The fact that rods or rulers function as surveying devices for the primordial
Euclidean geometry is not because they ‘interact’ with it; the latter is not a dynamical
player which couples to matter. In arranging themselves in space, rigid bodies do not
‘feel’ the background geometry. To put it another way, a rod is not a ‘thermometer of
space’. Nor is it in the intrinsic nature of such bodies to survey space. It is the theory
of matter which in principle tells us what kind of entities, if any, can serve as accurate
geometrical surveying devices, and our best theories tell us rigid bodies will do. One
only has to consider the consequences of a violation of the Euclidean symmetries in
the laws of physics to dispel any doubts in this connection. (All of this is to say that
‘what is a ruler?’ is as important a question in physics as ‘what is a clock?’ An answer
to this last question ultimately depends on specifying very special devices which
‘tick’ in synchrony with an independently meaningful temporal metric – a metric
that is specified by the dynamics of the total isolated system of which the devices are
a part.)11

Turning now to the geometry of special relativity, what is of interest is the
behaviour of rods and clocks in relative motion. While the Minkowski geome-
try does not play a primordial role in the dynamics of such entities, analogous to
the role which might be attributed to the three-dimensional Euclidean geometry
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constraining relative distances, it is definable in terms of the Lorentz covariance of
the fundamental dynamical laws.12 Hence, spacetime geometry is equally not simply
‘the science of the possible behaviour of physical rods and clocks in motion’. All
of the qualifications analogous to those we were forced to consider in the case of
Euclidean geometry apply. In the context of SR, rods and clocks are surveying devices
for a four-dimensional geometric structure. But this is a structure defined in terms
of the symmetries of dynamical laws. If matter and its interactions are removed
from the picture, Minkowski spacetime is not left behind.13 Rods and clocks do not
interact with a background metric field: they are not thermometers of spacetime
structure.

There is a temptation to extend this lesson to general relativity (GR) in the fol-
lowing way. One might want to say that it is the local validity of special relativity in
GR – as defined at the end of the previous section – that accounts for the existence
of a metric field of Lorentzian signature whose metric connection coincides with
the connection defining the inertial (free-fall) trajectories. The real new dynamics
in GR has to do not with the metrical properties of spacetime but with the (gen-
erally) curved connection field and its coupling to matter. In particular, a defender
of the Lorentzian pedagogy might be forgiven for accepting the maxim: no matter,
no metric (without, however, excluding the connection). As we have argued, this is
surely the right maxim for special relativity. In a universe entirely bereft of matter
fields, even if one were to accept the primordial existence of inertial frames, it is
hard to attribute any meaning in special relativity to the claim that empty spacetime
retains a Minkowski metric as an element of reality, or equivalently to the claim that
the inertial frames are related by Lorentz transformations. (On this point Einstein
seems to have been somewhat inconsistent. It is difficult to reconcile the remarks on
special relativity in his Autobiographical Notes, where he warns about the reduction
of physics to geometry, with the claim in Appendix 5 of his Relativity – which he
added to the fifteenth edition of the book in 1952 – that with the removal of all
‘matter and field’ from Minkowski space, this space would be left behind.)14

Adopting this position in GR has fairly drastic consequences in the case of
the vacuum (matter-free) solutions to Einstein’s field equations, of which ‘empty’
Minkowski spacetime itself is one solution. It entails that while the flatness of space-
time in this case (and the curvature in other less trivial solutions) – essentially an
affine notion – may be said to have physical meaning, the metric structure of the
spacetime does not (Brown 1997). (The metric might retain a meaning if one could
adopt Feynman’s 1963 suggestion that such vacuum solutions are correctly viewed as
obtained by taking solutions involving sources and matter-free regions and allowing
these regions to become infinitely large (Feynman et al. 1995, pp. 133–4). Feynman’s
view was that gravitational fields without sources are probably unphysical, akin to
the popular view that all electrodynamical radiation comes from charged sources.
Now the analogy with electromagnetism is arguably not entirely happy given that
gravity is itself a source of gravity. Moreover, such an interpretation seems clearly
inapplicable to finite vacuum spacetimes. Be that as it may, Feynman seemed to
be happy with the flat Minkowski vacuum solution, perhaps because he could not
entirely rid himself of his alternative ‘Venutian’ view of gravity as a massless spin-2
field on an absolute Minkowski background.)
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But the temptation to take the Lorentzian pedagogy this far should perhaps be
resisted. It overlooks the simple fact that the metric field in GR (defined up to the
diffeomorphic ‘gauge’ freedom) appears to be a bona fide dynamical player, on a par
with, say, the electromagnetic field. Even if one accepts – possibly either for Machian
reasons (see Barbour 1994) or with a view to quantum gravity – the 4-metric as less
fundamental than the evolving curved 3-metrics of the Hamiltonian approach to
GR, it is nonetheless surely coherent to attribute a metric field to spacetime whether
the latter boasts matter fields or not. If absolute Euclidean distances can exist in
Newtonian universes bereft of rigid bodies, so much more can the dynamical metric
field in GR have claim to existence, even in the non-generic case of the universal
vacuum. Any alternative interpretation of the metric field in GR would seem to
require an account of the coupling of a connection field to matter which was not
mediated by the metric field as it is in Einstein’s field equations. We know of no
reason to be optimistic that this can be achieved.15

Where does this leave the Lorentzian pedagogy in GR? In our opinion, it still plays
a fundamental role in understanding in dynamical detail how rods and clocks survey
the metric field. To see this, let us consider the following claim made by Torretti, in his
magnificent 1983 foundational text on Relativity and Geometry. Torretti formulates
the basic assumption of GR as:

‘The phenomena of gravitation and inertia . . . are to be accounted for by a
symmetric (0, 2) tensor field g on the spacetime manifold, which is linked to the
distribution of matter by the Einstein field equations and defines a Minkowski inner
product on each tangent space’.

(Torretti 1983, p. 240)

It follows immediately from this hypothesis that the Minkowski inner product on
tangent spaces induces a local approximate Minkowski geometry on a small neigh-
bourhood of each event. Torretti claims that one can thereby ‘account for the Lorentz
invariance of the laws of nature referred to local Lorentz charts’. The successes of
special relativity follow, says Torretti, from this local Minkowski geometry (Torretti
1983, p. 240).

In our view, this claim is a non sequitur. It is mysterious to us how the existence of
a local approximate Minkowski geometry entails the Lorentz covariance of the laws
of the non-gravitational interactions. Theories postulating a Lorentzian metric but
which violate minimal coupling would involve non-Lorentz covariant laws. Equally,
the primordial Euclidean geometry in the Newtonian theory of mass points discussed
at the start of this section does not entail that the corresponding ‘laws of nature’ (if
there are any non-gravitational interactions in the theory!) satisfy the Euclidean
symmetries. There is something missing in Torretti’s account, and this problem
reminds one to some degree of the plea in some of Grünbaum’s writings for an
account of why the g field has the operational significance that it does. (A critical
analysis of Grünbaum’s arguments, with detailed references, is given by Torretti
(1983, pp. 242–7).)

It seems to us that the local validity of special relativity in GR cannot be derived
from what Torretti takes to be the central hypothesis of GR above, but must be inde-
pendently assumed. Indeed, it often appears in texts as part of the strong equivalence
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principle, taken as a postulate of GR (for example, Misner et al. 1973, p. 386). The
assumption, which is intimately related to the postulate of minimal coupling in GR,
is that relative to the local Lorentz frames, insofar as the effects of curvature (tidal
forces) can be ignored, the laws for the non-gravitational interactions take their
familiar special relativistic form; in particular, the laws are Lorentz covariant. It is
here of course that the full Lorentzian pedagogy can in principle be used to infer the
possibility of the existence of material devices which more or less accurately survey
the local Minkowski geometry. In particular, it explains why ideal clocks, which are
chosen initially on dynamical grounds, act as hodometers, or ‘way-wisers’ of local
Minkowski spacetime, and hence measure the lengths of time-like curves over the
extended regions in curved spacetime that they define. (A very clear account of how
the ‘hence’ in this statement was probably first understood by Einstein is given by
Torretti (1983, pp. 149–51). Elsewhere, Torretti (1983, p. 312, footnote 13) notes that
as early as 1913 Einstein recognized that the operational significance of the g field,
and in particular the significance of the null cones in the tangent spaces, required
the ‘separate postulate’ of the local validity of special relativity. It seems from the
above that Torretti did not wish to follow Einstein in this respect.)

To conclude, the fact that general relativistic spacetimes are locally Minkowskian
only acquires its usual ‘chronometric’ operational significance because of the inde-
pendent assumption concerning the local validity of special relativity. Our main
claim in this section is that this point can only be understood correctly by an appeal
to the Lorentzian pedagogy. Despite the fact that in GR one is led to attribute an
independent real existence to the metric field, the general relativistic explanation of
length contraction and time dilation is simply the dynamical one we have urged in
the context of special relativity.
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1. For a recent account of the origins of length contraction, see Brown (1999).
2. We are grateful to P. Holland for emphasizing this point (private communication).
3. Details of this episode can be found in Miller (1981, Chapter 1).
4. Nor were the two principles together strictly sufficient. The isotropy of space was also a

crucial, if less prominent, principle in the derivation. Detailed examinations of the logic of
Einstein’s derivation can be found in Brown and Maia (1993) and Brown (1993). For an
investigation of the far-reaching implications of abandoning the principle of spatial isotropy
in the derivation, see Budden (1997).

5. In further elucidating the principle theory versus constructive theory distinction, one might
consider the Casimir effect (attraction between conducting plates in the vacuum). This effect
is normally explained on the basis of vacuum fluctuations in QED – the plates merely serving
as boundary conditions for the q-number photon field. But it can also be explained in terms of
Schwinger’s source theory, which uses a c-number electromagnetic field generated by the
sources in the plates so that the effect is ultimately due to interactions between the

271



[11:36 2000/10/16 g:/tex/key-tex/callendr/3663-011.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 11 Page: 272 256–272

Harvey R. Brown and Oliver Pooley

microscopic constituents of the plates. (For a recent analysis of the Casimir effect, see Rugh
et al. (1999).) It might appear that the relationship between the first approach and the second
is similar to that between Einstein’s formulation of SR and the ‘Maxwell–Lorentz theory’: the
QED approach is simpler than Schwinger’s and makes no claims as to the microscopic
constitution of the plates (other than the claim that they conduct). But this appearance is
misleading. Both approaches are equally ‘constructive’ in Einstein’s sense; it is just that one
appeals to the quantum structure of the vacuum and the other to fluctuating dipole moments
associated with atoms or molecules in the plates.

6. The entangling of kinematics and dynamics is not peculiar to the relativistic context: details of
a similar dynamical derivation of the Galilean transformations due to the fictional Albert
Keinstein in 1705 are given in Brown (1993).

7. It is worth noting at this point that Weyl could, and perhaps should have gone further! As the
keen-eyed Einstein was to point out, it is in the spirit of Weyl’s original geometric intuition to
allow for the relation between tangent spaces to be a weaker affine mapping: why insist that it
be a similarity mapping? Einstein made this point in a letter to Weyl in 1918. For details see
Vizgin (1994, p. 102).

8. Yang (1984). Yang recounts this incident in Yang (1986, p. 18).
9. It is worth noting that in 1923, Lorentz himself wrote, in relation to the rod analogue of

the second clock effect in the Weyl theory, that this ‘would amount to an action of an
electromagnetic field widely different from anything that could reasonably be expected’
(Lorentz 1937, p. 375). But whether Lorentz was concerned with the dynamical problem of
accounting for how Maxwell’s electrodynamics could in principle have such an effect on
physical bodies like rods – a consideration which one would not expect to be foreign to
Lorentz’s thinking! – or simply with the empirical fact that such an effect is non-existent, is
not entirely clear from Lorentz’s comments.

10. See Misner et al. (1973, p. 313), Ehlers (1973, pp. 16–20) and Stewart (1991, p. 57).
11. See, for example, Barbour (1994, Sections 3, 4, and 12).
12. A similar position is defended by DiSalle (1995, p. 326). Our analysis of Euclidean geometry,

and of the role of spacetime geometry in general relativity (see below) differs, however, from
that of DiSalle.

13. A more recent example in physics of an absolute geometrical structure with clear dynamical
underpinnings is that of the projective Hilbert space (ray space) in quantum mechanics. A
(curved) connection in this space can be defined for which the anholonomy associated with
closed curves is the geometric phase of Aharonov and Anandan. This geometric phase encodes
a universal (Hamiltonian-independent) feature of Schrödinger evolution around each closed
path in ray space, in a manner analogous to that in which the Minkowski geometry in SR
encodes the universal behaviour of ideal rods and clocks arising out of the Lorentz covariant
nature of the laws of physics. For a review of geometric phase, see Anandan (1992); further
comparisons with Minkowski geometry are spelt out in Anandan (1991).

14. Actually, Einstein says that what remains behind is ‘inertial-space or, more accurately this
space together with the associated time’, but subsequent remarks seem to indicate that he
meant the ‘rigid four-dimensional space of special relativity’ (1982, p. 171).

15. Although connection rather than metric variables are fundamental in what is now the main
approach to canonical quantum gravity (Ashtekar 1986), the existence of a metric in this
approach is still independent of the existence of matter.
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12 Quantum spacetime without observers:
Ontological clarity and the conceptual
foundations of quantum gravity

Sheldon Goldstein and Stefan Teufel

12.1 Introduction

‘The term “3-geometry” makes sense as well in quantum geometrodynamics as in
classical theory. So does superspace. But space-time does not. Give a 3-geometry,
and give its time rate of change. That is enough, under typical circumstances to fix
the whole time-evolution of the geometry; enough in other words, to determine the
entire four-dimensional space-time geometry, provided one is considering the
problem in the context of classical physics. In the real world of quantum physics,
however, one cannot give both a dynamic variable and its time-rate of change. The
principle of complementarity forbids. Given the precise 3-geometry at one instant,
one cannot also know at that instant the time-rate of change of the 3-geometry. . . .
The uncertainty principle thus deprives one of any way whatsoever to predict, or
even to give meaning to, “the deterministic classical history of space evolving in
time”. No prediction of spacetime, therefore no meaning for spacetime, is the verdict of
the quantum principle’.

(Misner, Thorne, and Wheeler 1973)

One of the few propositions about quantum gravity that most physicists in the
field would agree upon, that our notion of spacetime must, at best, be altered
considerably in any theory conjoining the basic principles of quantum mechanics
with those of general relativity, will be questioned in this chapter. We will argue, in
fact, that most, if not all, of the conceptual problems in quantum gravity arise from
the sort of thinking on display in the preceding quotation.

It is also widely agreed, almost forty years after the first attempts to quantize
general relativity, that there is still no single set of ideas on how to proceed, and
certainly no physical theory successfully concluding this program. Rather, there are
a great variety of approaches to quantum gravity; for a detailed overview, see, for
example Rovelli (1998). While the different approaches to quantum gravity often
have little in common, they all are intended ultimately to provide us with a consistent
quantum theory agreeing in its predictions with general relativity in the appropriate
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physical domain. Although we will focus here on the conceptual problems faced
by those approaches which amount to a canonical quantization of classical general
relativity, the main lessons will apply to most of the other approaches as well.

This is because – as we shall argue – many of these difficulties arise from the sub-
jectivity and the ontological vagueness inherent in the very framework of orthodox
quantum theory – a framework taken for granted by almost all approaches to quan-
tum gravity. We shall sketch how most, and perhaps all, of the conceptual problems
of canonical quantum gravity vanish if we insist upon formulating our cosmological
theories in such a manner that it is reasonably clear what they are about – if we insist,
that is, upon ontological clarity – and, at the same time, avoid any reference to such
vague notions as measurement, observers, and observables.

The earliest approach, canonical quantum gravity, amounts to quantizing general
relativity according to the usual rules of canonical quantization. However, to apply
canonical quantization to general relativity, the latter must first be cast into canon-
ical form. Since the quantization of the standard canonical formulation of general
relativity, the Arnowitt, Deser, Misner formulation (Arnowitt, Deser, and Misner
1962) has led to severe conceptual and technical difficulties, non-standard choices
of canonical variables, such as in the Ashtekar formulation (Ashtekar 1987) and in
loop quantum gravity (Rovelli and Smolin 1990), have been used as starting points
for quantization. While some of the technical problems have been resolved by these
new ideas, the basic conceptual problems have not been addressed.

After the great empirical success of the standard model in particle physics, the
hope arose that the gravitational interaction could also be incorporated in a similar
model. The search for such a unified theory led to string theory, which apparently
reproduces not only the standard model but also general relativity in a suitable low
energy limit. However, since string theory is, after all, a quantum theory, it retains
all the conceptual difficulties of quantum theory, and our criticisms and conclusions
pertaining to quantum theory in general, in Sections 12.3 and 12.4 of this chapter,
will apply to it as well. Nonetheless, our focus, again, will be on the canonical
approaches, restricted for simplicity to pure gravity, ignoring matter.

This chapter is organized as follows: In Section 12.2 we will sketch the fundamental
conceptual problems faced by most approaches to quantum gravity. The seemingly
unrelated problems in the foundations of orthodox quantum theory will be touched
upon in Section 12.3. Approaches to the resolution of these problems based upon
the demand for ontological clarity will be discussed in Section 12.4, where we will
focus on the simplest such approach, the de Broglie–Bohm theory or Bohmian
mechanics. Our central point will be made in Section 12.5, where we indicate how
the conceptual problems of canonical quantum gravity disappear when the main
insights of the Bohmian approach to quantum theory are applied.

Finally, in Section 12.6, we will discuss how the status and significance of the
wave function, in Bohmian mechanics as well as in orthodox quantum theory, is
radically altered when we adopt a universal perspective. This altered status of the
wave function, together with the very stringent symmetry demands so central to
general relativity, suggests the possibility – though by no means the inevitability – of
finding an answer to the question, Why should the universe be governed by laws so
apparently peculiar as those of quantum mechanics?
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12.2 The conceptual problems of quantum gravity

In the canonical approach to quantum gravity one must first reformulate general rel-
ativity as a Hamiltonian dynamical system. This was done by Arnowitt et al. (1962),
using the 3-metric gij (xa) on a space-like hypersurface Σ as the configurational vari-
able and the extrinsic curvature of the hypersurface as its conjugate momentum
πij (xa).1 The real time parameter of usual Hamiltonian systems is replaced by a
‘multi-fingered time’ corresponding to arbitrary deformations dΣ of the hypersur-
face. These deformations are split into two groups: those changing only the three
dimensional co-ordinate system xa on the hypersurface (with which, as part of what
is meant by the hypersurface, it is assumed to be equipped); and deformations of the
hypersurface along its normal vector field. While the changes of the canonical vari-
ables under both kind of deformations are generated by Hamiltonian functions on
phase space, Hi(g ,π) for spatial diffeomorphisms and H (g ,π) for normal deforma-
tions, their changes under pure co-ordinate transformations on the hypersurfaces
are dictated by their geometrical meaning. The dynamics of the theory is therefore
determined by the Hamiltonian functions H (g ,π) generating changes under normal
deformations of the hypersurface.

Denote by N (xa) the freely specifiable lapse function that determines how far, in
terms of proper length, one moves the space-like hypersurface at the point x = (xa)
along its normal vector: This distance is N (xa) dτ , where τ is a parameter labelling
the successive hypersurfaces arrived at under the deformation (and defined by this
equation). The infinitesimal changes of the canonical variables are then generated
by the Hamiltonian HN associated with N (an integral over Σ of the product of N
with a Hamiltonian density H (g ,π; xa)):

dgij (xa) =
δHN (g ,π)

δπij (xa)
dτ

dπij (xa) = −δHN (g ,π)

δgij (xa)
dτ . (12.1)

In what follows we shall denote by H (g ,π) the collection {HN (g ,π)} of all
such Hamiltonians (or, what comes pretty much to the same thing, the collection
{H (g ,π; x)} for all points x ∈ Σ) and similarly for Hi .

It is important to stress that the theory can be formulated completely in terms of
geometrical objects on a three-dimensional manifold, with no a priori need to refer
to its embedding into a spacetime. A solution of eqn. 12.1 is a family of 3-metrics g (τ )
that can be glued together to build up a 4-metric using the lapse function N (to deter-
mine the transverse geometry). In this way the spacetime metric emerges dynami-
cally when one evolves the canonical variables with respect to multi-fingered time.

However, the initial canonical data cannot be chosen arbitrarily, but must obey
certain constraints: Only for initial conditions that lie in the submanifold of phase
space on which Hi(g ,π) and H (g ,π) vanish do the solutions (spacetime metrics
gµν(xµ)) also satisfy Einstein’s equations. In fact, away from this so-called constraint
manifold the theory is not even well defined, at least not as a theory involving
a multi-fingered time, since the solutions would depend on the special way we
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choose to evolve the space-like hypersurface, i.e. on the choice of N (xa), to build
up spacetime. Of course, a theory based on a single choice, for example N (xa) = 1,
would be well defined, at least formally.

By the same token, the invariance of the theory under spacetime diffeomorphisms
is no longer so obvious as in the formulation in terms of Einstein’s equations: In the
ADM formulation 4-diffeomorphism invariance amounts to the requirement that
one ends up with the same spacetime, up to co-ordinate transformations, regard-
less of which path in multi-fingered time is followed, i.e. which lapse function N ,
or τ -dependent sequence of lapse functions N (τ ), is used. This says that for the
spacetime built up from any particular choice of multi-fingered time, the dynami-
cal equations 12.1 will be satisfied for any foliation of the resulting spacetime into
space-like hypersurfaces – using in eqn. 12.1 the lapse function N (τ ) associated with
that foliation – and not just for the foliation associated with that particular choice.

Formally, it is now straightforward to quantize this constrained Hamiltonian
theory using Dirac’s rules for the quantization of constrained systems (Dirac 1964).
First, one must replace the canonical variables gij and πij by operators ĝ ij and
π̂ij = −i δ/δgij satisfying the canonical commutation relations.2 One then formally
inserts these into the Hamiltonian functions H (g ,π) and Hi(g ,π) of the classical
theory to obtain operators Ĥ (ĝ , π̂) and Ĥ i(ĝ , π̂) acting on functionals Ψ(g ) on
the configuration space of 3-metrics. Since the Hamiltonians were constrained in
the classical theory one demands that the corresponding operators annihilate the
physical states in the corresponding quantum theory:

ĤΨ = 0 (12.2)

Ĥ iΨ = 0. (12.3)

Equation 12.3 has a simple meaning, namely that Ψ(g ) be invariant under
3-diffeomorphisms (co-ordinate changes on the 3-manifold), so that it depends
on the 3-metric g only through the 3-geometry. However, the interpretation of the
Wheeler–DeWitt equation (eqn. 12.2) is not at all clear.

Before discussing the several problems which arise in attempts to give a physical
meaning to the approach just described, a few remarks are in order: While we have
omitted many technical details and problems from our schematic description of the
‘Dirac constraint quantization’ of gravity, these problems either do not concern, or
are consequences of, the main conceptual problems of canonical quantum gravity.
Other approaches, such as the canonical quantization of the Ashtekar formulation
of classical general relativity and its further development into loop quantum gravity,
resolve some of the technical problems faced by canonical quantization in the metric
representation, but leave the main conceptual problems untouched.

Suppose now that we have found a solution Ψ(g ) to eqns. 12.2 and 12.3. What
physical predictions would be implied? In orthodox quantum theory a solution Ψt

of the time-dependent Schrödinger equation provides us with a time-dependent
probability distribution |Ψt |2, as well as with the absolute square of other time-
dependent probability amplitudes. The measurement problem and the like aside,
the physical meaning of these is reasonably clear: they are probabilities for the results
of the measurement of the configuration or of other observables. But any attempt
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to interpret canonical quantum gravity along orthodox lines immediately faces the
following problems:

12.2.1 The problem of time

In canonical quantum gravity there is no time-dependent Schrödinger equa-
tion; it was replaced by the time-independent Wheeler–DeWitt equation. The
Hamiltonians – the generators of multi-fingered-time evolution in the classical case –
annihilate the state vector and therefore cease to generate any evolution at all. The
theory provides us with only a timeless wave function on the configuration space of
3-metrics, i.e. on the possible configurations of space, not of spacetime. But how
can a theory that provides us (at best) with a single fixed probability distribution for
configurations of space ever be able to describe the always changing world in which
we live? This, in a nutshell, is the problem of time in canonical quantum gravity.

12.2.2 The problem of 4-diffeomorphism invariance

The fundamental symmetry at the heart of general relativity is its invariance under
general co-ordinate transformations of spacetime. It is important to stress that
almost any theory can be formulated in such a 4-diffeomorphism invariant manner
by adding further structure to the theory (e.g. a preferred foliation of spacetime
as a dynamical object). General relativity has what is sometimes called serious
diffeomorphism-invariance, meaning that it involves no spacetime structure beyond
the 4-metric and, in particular, singles out no special foliation of spacetime. In
canonical quantum gravity, while the invariance under co-ordinate transformations
of space is retained, it is not at all clear what 4-diffeomorphism invariance could
possibly mean. Therefore the basic symmetry, and arguably the essence, of general
relativity seems to be lost in quantization.

12.2.3 The problem of ‘no outside observer’

One of the most fascinating applications of quantum gravity is to quantum cosmol-
ogy. Orthodox quantum theory attains physical meaning only via its predictions
about the statistics of outcomes of measurements of observables, performed by
observers that are not part of the system under consideration, and seems to make no
clear physical statements about the behaviour of a closed system, not under observa-
tion. The quantum formalism concerns the interplay between – and requires for its
very meaning – two kinds of objects: a quantum system, and a more or less classical
apparatus. It is hardly imaginable how one could make any sense out of this formal-
ism for quantum cosmology, for which the system of interest is the whole universe,
a closed system if there ever was one.

12.2.4 The problem of diffeomorphism-invariant observables

Even if we pretend for the moment that we are able to give meaning to the quan-
tum formalism without referring to an observer located outside of the universe,
we encounter a more subtle difficulty. Classical general relativity is fundamentally
diffeomorphism invariant. It is only the spacetime geometry, not the 4-metric
nor the identity of the individual points in the spacetime manifold, that has
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physical significance. Therefore the physical observables in general relativity should
be independent of special co-ordinate systems; they must be invariant under
4-diffeomorphisms, which are in effect generated by the Hamiltonians H and Hi .
Since the quantum observables are constructed, via quantization, from the classical
ones, it would seem that they must commute with the Hamiltonians Ĥ and Ĥ i . But
such diffeomorphism-invariant quantum observables are extremely hard to come
by, and there are certainly far too few of them to even begin to account for the
bewildering variety of our experience which it is the purpose of quantum theory to
explain. (For a discussion of the question of existence of diffeomorphism-invariant
observables, see Kuchař 1992.)

These conceptual problems, and the attempts to solve them, have led to a variety
of technical problems that are discussed in much detail in, for example Kuchař (1992,
1993), and Isham (1994). However, since we are not aware of any orthodox proposals
successfully resolving the conceptual problems, we shall not discuss such details here.
Rather, we shall proceed in the opposite direction, toward their common cause, and
argue that they originate in a deficiency shared with, and inherited from, orthodox
quantum mechanics: the lack of a coherent ontology.

Regarding the first two problems of canonical quantum gravity, it is not hard
to discern their origin: the theory is concerned only with configurations of and on
space, the notion of a spacetime having entirely disappeared. It is true that even
with classical general relativity, Newton’s external absolute time is abandoned. But
a notion of time, for an observer located somewhere in spacetime and employing a
co-ordinate system of his or her convenience, is retained, emerging from spacetime.
The problem of time in canonical quantum gravity is a direct consequence of the
fact that in an orthodox quantum theory for spacetime itself we must insist on its
non-existence (compare the quote at the beginning of this article). Similarly, the
problem of diffeomorphism invariance or, better, the problem of not even being
able to address this question properly, is an immediate consequence of having no
notion of spacetime in orthodox quantum gravity.

12.3 The basic problem of orthodox quantum theory:
the lack of a coherent ontology

Despite its extraordinary predictive successes, quantum theory has, since its incep-
tion some seventy-five years ago, been plagued by severe conceptual difficulties. The
most widely cited of these is the measurement problem, best known as the paradox
of Schrödinger’s cat. For many physicists the measurement problem is, in fact, not a
but the conceptual difficulty of quantum theory.

In orthodox quantum theory the wave function of a physical system is regarded
as providing its complete description. But when we analyse the process of measure-
ment itself in quantum mechanical terms, we find that the after-measurement wave
function for system and apparatus arising from Schrödinger’s equation for the com-
posite system typically involves a superposition over terms corresponding to what
we would like to regard as the various possible results of the measurement – e.g. dif-
ferent pointer orientations. Since it seems rather important that the actual result of
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the measurement be a part of the description of the after-measurement situation, it
is difficult to believe that the wave function alone provides the complete description
of that situation.

The usual collapse postulate for quantum measurement solves this problem for
all practical purposes, but only at the very steep price of the introduction of an
observer or classical measurement apparatus as an irreducible, unanalysable element
of the theory. This leads to a variety of further problems. The unobserved physical
reality becomes drastically different from the observed, even on the macroscopic
level of daily life. Even worse, with the introduction at a fundamental level of such
vague notions as classical measurement apparatus, the physical theory itself becomes
unprofessionally vague and ill-defined. The notions of observation and measure-
ment can hardly be captured in a manner appropriate to the standards of rigour and
clarity that should be demanded of a fundamental physical theory. And in quantum
cosmology the notion of an external observer is of course entirely obscure.

The collapse postulate is, in effect, an unsuccessful attempt to evade the mea-
surement problem without taking seriously its obvious implication: that the wave
function does not provide a complete description of physical reality. If we do accept
this conclusion, we must naturally enquire about the nature of the more complete
description with which a less problematical formulation of quantum theory should
be concerned. We must ask, which theoretical entities, in addition to the wave func-
tion, might the theory describe? What mathematical objects and structures represent
entities that, according to the theory, simply are, regardless of whether or not they
are observed? We must ask, in other words, about the primitive ontology of the the-
ory, what the theory is fundamentally about (see Goldstein 1998, 1998a). And when
we know what the theory is really about, measurement and observation become
secondary phenomenological concepts that, like anything else in a world governed
by the theory, can be analysed in terms of the behaviour of its primitive ontology.

By far the simplest possibility for the primitive ontology is that of particles
described by their positions. The corresponding theory, for non-relativistic particles,
is Bohmian mechanics.

12.4 Bohmian mechanics

According to Bohmian mechanics the complete description of an n-particle system is
provided by its wave function Ψ together with its configuration Q = (Q1, . . . , Qn),
where the Qk are the positions of its particles. The wave function, which evolves
according to Schrödinger’s equation, choreographs the motion of the particles:
these evolve – in the simplest manner possible – according to a first-order ordinary
differential equation

dQ

dt
= vΨ(Q)

whose right-hand side, a velocity vector field on configuration space, is generated by
the wave function. Considerations of simplicity and spacetime symmetry – Galilean
and time-reversal invariance – then determine the form of vΨ, yielding the defining
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(evolution) equations of Bohmian mechanics (for spinless particles):

dQk

dt
= vΨ

k (Q1, . . . , Qn) =
h̄

mk
Im
∇qk

Ψ
Ψ

(Q1, . . . , Qn) (12.4)

and

ih̄
∂Ψ
∂t

= ĤΨ, (12.5)

where Ĥ is the usual Schrödinger Hamiltonian, containing as parameters the masses
m1, . . . , mn of the particles as well as the potential energy function V of the system.
For an n-particle universe, these two equations form a complete specification of the
theory. There is no need, and indeed no room, for any further axioms, describing
either the behaviour of other ‘observables’ or the effects of ‘measurement’.

Bohmian mechanics is the most naively obvious embedding imaginable of
Schrödinger’s equation into a completely coherent physical theory! If one did not
already know better, one would naturally conclude that it cannot ‘work,’ i.e. that it
cannot account for quantum phenomena. After all, if something so obvious and,
indeed, so trivial works, great physicists – so it would seem – would never have
insisted, as they have and as they continue to do, that quantum theory demands
radical epistemological and metaphysical innovations.

Moreover, it is hard to avoid wondering how Bohmian mechanics could have much
to do with quantum theory? Where is quantum randomness in this deterministic
theory? Where is quantum uncertainty? Where are operators as observables and all
the rest?

Be that as it may, Bohmian mechanics is certainly a theory. It describes a world in
which particles participate in a highly non-Newtonian motion, and it would do so
even if this motion had absolutely nothing to do with quantum mechanics.

It turns out, however, as a surprising consequence of the eqns. 12.4 and 12.5,
that when a system has wave function Ψ, its configuration is typically random,
with probability density ρ given by ρ = |Ψ|2, the quantum equilibrium distribu-
tion. In other words, it turns out that systems are somehow typically in quantum
equilibrium. Moreover, this conclusion comes together with the clarification of what
precisely this means, and also implies that a Bohmian universe embodies an absolute
uncertainty which can itself be regarded as the origin of the uncertainty principle.
We shall not go into these matters here, since we have discussed them at length else-
where (Dürr, Goldstein, and Zanghı̀ 1992). We note, however, that nowadays, with
chaos theory and non-linear dynamics so fashionable, it is not generally regarded as
terribly astonishing for an appearance of randomness to emerge from a deterministic
dynamical system.

It also turns out that the entire quantum formalism, operators as observables and
all the rest, is a consequence of Bohmian mechanics, emerging from an analysis of
idealized measurement-like situations (for details, see Daumer et al. 1997, 1999; see
also Bohm 1952). There is no measurement problem in Bohmian mechanics because
the complete description of the after-measurement situation includes, in addition to
the wave function, the definite configuration of the system and apparatus. While the
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wave function may still be a superposition of states corresponding to macroscopically
different possible outcomes, the actual configuration singles out the outcome that
has occurred.

Why have we elaborated in such detail on non-relativistic quantum mechanics
and Bohmian mechanics if our main concern here is with quantum gravity? Because
there are two important lessons to be learned from a Bohmian perspective on quan-
tum theory. First of all, the existence of Bohmian mechanics demonstrates that the
characteristic features of quantum theory, usually viewed as fundamental – intrin-
sic randomness, operators as observables, non-commutativity, and uncertainty –
need play no role whatsoever in the formulation of a quantum theory, naturally
emerging instead, as a consequence of the theory, in special measurement-like sit-
uations. Therefore we should perhaps not be too surprised when approaches to
quantum gravity that regard these features as fundamental encounter fundamental
conceptual difficulties. Second, the main point of our chapter is made transparent
in the simple example of Bohmian mechanics. If we base our theory on a coherent
ontology, the conceptual problems may disappear, and, what may be even more
important, a genuine understanding of the features that have seemed most puzzling
might be achieved.

We shall now turn to what one might call a Bohmian approach to quantum gravity.

12.5 Bohmian quantum gravity

The transition from quantum mechanics to Bohmian mechanics is very simple, if not
trivial: one simply incorporates the actual configuration into the theory as the basic
variable, and stipulates that this evolve in a natural way, suggested by symmetry and
by Schrödinger’s equation. The velocity field vΨt is, in fact, related to the quantum
probability current jΨt by

vΨt =
jΨt

|Ψt |2 ,

suggesting, since ρΨ = |Ψ|2 satisfies the continuity equation with jΨt = ρΨt vΨt ,
that the empirical predictions of Bohmian mechanics, for positions and ultimately,
in fact, for other ‘observables’ as well, agree with those of quantum mechanics (as in
fact they do; see Dürr et al. 1992).

Formally, one can follow exactly the same procedure in canonical quantum grav-
ity, where the configuration space is the space of (positive-definite) 3-metrics (on
an appropriate fixed manifold). The basic variable in Bohmian quantum gravity
is therefore the 3-metric g (representing the geometry on a space-like hypersur-
face of the spacetime to be generated by the dynamics) and its change under
(what will become) normal deformations is given by a vector field on configura-
tion space generated by the wave function Ψ(g ). Considerations analogous to those
for non-relativistic particles lead to the following form for the Bohmian equation of
motion:

dgij (xa) = Gijab(xa) Im

(
Ψ(g )−1 δΨ(g )

δgab(xa)

)
N (xa) dτ . (12.6)

283



[19:48 2000/10/3 g:/tex/key-tex/callendr/3663-012.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 12 Page: 284 275–289

Sheldon Goldstein and Stefan Teufel

The wave function Ψ(g ) is a solution of the timeless Wheeler–DeWitt equation
(eqn. 12.2) and therefore does not evolve. But the vector field on the right-hand side
of eqn. 12.6 that it generates is typically non-vanishing if Ψ(g ) is complex, leading to
a non-trivial evolution g (τ ) of the 3-metric. Suitably gluing together the 3-metrics
g (τ ), we obtain a spacetime (see the paragraph following eqn. 12.1). Interpretations
of canonical quantum gravity along these lines have been proposed by, for example
Holland (1993) and discussed, for example by Shtanov (1996). Minisuperspace
Bohmian cosmologies have been considered by Kowalski-Glikman and Vink (1990),
Squires (1992), and Callender and Weingard (1994).

However, there is a crucial point which is often overlooked or, at least, not made
sufficiently clear in the literature. A spacetime generated by a solution of eqn. 12.2
via eqn. 12.6 will in general depend on the choice of lapse function N (or N (τ )).
Thus, the theory is not well defined as so far formulated. There are essentially two
ways to complete the theory. Either one chooses a special lapse function N , e.g.
N = 1, or one employs only special solutions Ψ of eqn. 12.2, those yielding a vector
field that generates an N -independent spacetime. In the first case, with special N but
general solution Ψ of eqn. 12.2, the general covariance of the theory will typically
be broken, the theory incorporating a special foliation (see the paragraph before
that containing eqn. 12.2). The possible existence of special solutions giving rise to a
covariant dynamics will be discussed in more detail elsewhere (Goldstein and Teufel
1999), and will be touched upon towards the end of Section 12.6. However, most of
the following discussion, especially in the first part of Section 12.6, does not depend
upon whether or not the theory incorporates a special foliation.

Let us now examine the impact of the Bohmian formulation of canonical quantum
gravity on the basic conceptual problems of orthodox canonical quantum gravity.
Since a solution to the equations of Bohmian quantum gravity defines a spacetime,
the problem of time is resolved in the most satisfactory way. Time plays exactly the
same role as in classical general relativity; there is no need whatsoever for an exter-
nal absolute time, which has seemed so essential to orthodox quantum theory. The
problem of diffeomorphism invariance is ameliorated, in that in this formulation
it is at least clear what diffeomorphism invariance means. But, as explained above,
general covariance can be expected at most for special solutions of eqn. 12.2. If it
should turn out, however, that we must abandon general covariance on the funda-
mental level by introducing a special foliation of spacetime, it may still be possible
to retain it on the observational level (see, e.g. Münch-Berndl et al. 1999, where it is
also argued, however, that a special, dynamical, foliation of spacetime need not be
regarded as incompatible with serious covariance).

A short answer to the problems connected with the role of observers and observ-
ables is this: There can be no such problems in the Bohmian formulation of canonical
quantum gravity since observers and observables play no role in this formulation.
But this is perhaps too short. What, after all, is wrong with the observation that, since
individual spacetime points have no physical meaning, physically significant quan-
tities must correspond to diffeomorphism-invariant observables, of which there are
far too few to describe very much of what we most care about?

The basic answer, we believe, is this: We ourselves are not – or, at least, need not
be – diffeomorphism invariant.3 Most physical questions of relevance to us are not
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formulated in a diffeomorphism-invariant manner because, naturally enough, they
refer to our own special location in spacetime. Nonetheless, we know very well what
they mean – we know for example what it means to ask where and when something
happens with respect to our own point of view. Such questions can be addressed,
in fact because of diffeomorphism invariance, by taking into account the details of
our environment and asking about the local predictions of the theory conditioned
on such an environment, past and present.

The observer who sets the frame of reference for his or her physical predictions is
part of and located inside the system – the universe. In classical general relativity this
is not at all problematical, since that theory provides us with a coherent ontology, a
potentially complete description of spacetime and, if we wish, a description taking
into account our special point of view in the universe. But once the step to quan-
tum theory is taken, the coherent spacetime ontology is replaced by an incoherent
‘ontology’ of quantum observables. In orthodox quantum theory this problem can
be talked away by introducing an outside observer actually serving two purposes:
the observer sets the frame of reference with respect to which the predictions are
to be understood, a totally legitimate and sensible purpose. But of course the main
reason for the focus on observers in quantum theory is that it is only with respect
to them that the intrinsically incoherent quantum description of the system under
observation can be given any meaning. In quantum cosmology, however, no outside
observer is at hand, neither for setting a frame of reference nor for transforming the
incoherent quantum picture into a coherent one.

In Bohmian quantum gravity, again, both problems disappear. Since we have a
coherent description of the system itself, in this case the universe, there is no need
for an outside observer in order to give meaning to the theory. Nor do we have to
worry about the diffeomorphism invariance of observables, since we are free to refer
to observers who are themselves part of the system.

There is, however, an important aspect of the problem of time that we have not
yet addressed. From a Bohmian perspective, as we have seen, a time-dependent wave
function, satisfying Schrödinger’s equation, is by no means necessary to understand
the possibility of what we call change. Nonetheless, a great deal of physics is, in fact,
described by such time-dependent wave functions. We shall see in the next section
how these also naturally emerge from the structure of Bohmian quantum gravity,
which fundamentally has only a timeless universal wave function.

12.6 A universal Bohmian theory

When Bohmian mechanics is viewed from a universal perspective, the status of the
wave function is altered dramatically. To appreciate what we have in mind here, it
might help to consider two very common objections to Bohmian mechanics.

Bohmian mechanics violates the action–reaction principle that is central to all of
modern physics, both classical and (non-Bohmian) quantum. In Bohmian mechan-
ics there is no back-action of the configuration upon the wave function, which
evolves, autonomously, according to Schrödinger’s equation. And the wave function,
which is part of the state description of – and hence presumably part of the reality
comprising – a Bohmian universe, is not the usual sort of physical field on physical
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space (like the electromagnetic field) to which we are accustomed, but rather a field
on the abstract space of all possible configurations, a space of enormous dimension,
a space constructed, it would seem, by physicists as a matter of convenience.

It should be clear by now what, from a universal viewpoint, the answer to these
objections must be. As first suggested by Dürr, Goldstein, and Zanghı̀ (1997), the
wave function Ψ of the universe should be regarded as a representation, not of sub-
stantial physical reality, but of physical law. In a universal Bohmian theory Ψ should
be a functional of the configurations of all elements of physical reality: geometry,
particle positions, field or string configurations, or whatever primitive ontology
turns out to describe nature best. As in the case of pure quantum gravity, Ψ should
be a (special) solution of some fundamental equation (such as the Wheeler–DeWitt
equation (eqn. 12.2) with additional terms for particles, fields, etc.). Such a univer-
sal wave function would be static – a wave function whose timelessness constitutes
the problem of time in canonical quantum gravity – and, insofar as our universe is
concerned, unique. But this does not mean, as we have already seen, that the world
it describes would be static and timeless. No longer part of the state description, the
universal wave function Ψ provides a representation of dynamical law, via the vector
field on configuration space that it defines. As such, the wave function plays a role
analogous to that of the Hamiltonian function H = H (Q, P) ≡ H (ξ) in classical
mechanics – a function on phase space, a space even more abstract than config-
uration space. In fact, the wave function and the Hamiltonian function generate
motions in pretty much the same way

dξ

dt
= Der H ←→ dQ

dt
= Der(log Ψ),

with Der a derivation. And few would be tempted to regard the Hamiltonian function
H as a real physical field, or expect any back-action of particle configurations on this
Hamiltonian function.

Once we recognize that the role of the wave function is thus nomological, two
important questions naturally arise: Why and how should a formalism involving
time-dependent wave functions obeying Schrödinger’s equation emerge from a the-
ory involving a fixed timeless universal wave function? And which principle singles
out the special unique wave function Ψ that governs the motion in our universe? Our
answers to these questions are somewhat speculative, but they do provide further
insight into the role of the wave function in quantum mechanics and might even
explain why, in fact, our world is quantum mechanical.

In order to understand the emergence of a time-dependent wave function, we
must ask the right question, which is this: Is it ever possible to find a simple effective
theory governing the behaviour of suitable subsystems of a Bohmian universe? Sup-
pose, then, that the configuration of the universe has a decomposition of the form
q = (x , y), where x describes the degrees of freedom with which we are somehow
most directly concerned (defining the subsystem, the ‘x-system’) and y describes
the remaining degrees of freedom (the subsystem’s environment , the ‘y-system’).
For example, x might be the configuration of all the degrees of freedom governed
by standard quantum field theory, describing the fermionic matter fields as well
as the bosonic force fields, while y refers to the gravitational degrees of freedom.
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Suppose further that we have, corresponding to this decomposition, a solution
Q(τ ) = (X(τ ), Y (τ )) of the appropriate (yet to be defined) extension of eqn. 12.6,
where the real continuous parameter τ labels the slices in a suitable foliation of
spacetime.

Focus now on the conditional wave function

ψτ (x) = Ψ(x , Y (τ )) (12.7)

of the subsystem, governing its motion, and ask whetherψτ (x) could be – and might
under suitable conditions be expected to be – governed by a simple law that does not
refer directly to its environment. (The conditional wave function of the x-system
should be regarded as defined only up to a factor that does not depend upon x .)

Suppose that Ψ satisfies an equation of the form of eqn. 12.2, with Ĥ = {Ĥ N}.
Suppose further that for y in some ‘y-region’ of configuration space and for some

choice of lapse function N we have that Ĥ N � Ĥ
(x)
N + Ĥ

(y)
N and can write

Ψ(x , y) = e−iτĤ N Ψ(x , y) � e−iτĤ N
∑
α

ψα0 (x)φα0 (y)

�
∑
α

(
e−iτĤ (x)

N ψα0 (x)
)(

e−iτĤ (y)
N φα0 (y)

)

=:
∑
α

ψατ (x)φατ (y), (12.8)

where the φα0 are ‘narrow disjoint wave packets’ and remain approximately so as
long as τ is not too large. Suppose (as would be the case for Bohmian mechanics)
that the motion is such that if the configuration Y (0) lies in the support of one φα

′
0 ,

then Y (τ ) will keep up with φα
′
τ as long as the above conditions are satisfied. It

then follows from eqn. 12.8 that for the conditional wave function of the subsystem
we have

ψτ (x) ≈ ψα
′

τ ,

and it thus approximately satisfies the time-dependent Schrödinger equation

i
∂ψ

∂τ
= Ĥ (x)

N ψ. (12.9)

(In the case of (an extension of) Bohmian quantum gravity with preferred foliation,
this foliation must correspond to the lapse function N in eqn. 12.8.)

We may allow here for an interaction Ŵ N (x , y) between the subsystem and its
environment in the Hamiltonian in eqn. 12.8, provided that the influence of the
x-system on the y-system is negligible. In this case we can replace Ĥ (x)

N in eqn. 12.8

and eqn. 12.9 by Ĥ (x)
N (Y (τ )) ≡ Ĥ (x)

N + Ŵ N (x , Y (τ )), since the wave packets φα(y)
are assumed to be narrow. Think, for the simplest example, of the case in which the
y-system is the gravitational field and the x-system consists of very light particles.

Now one physical situation (which can be regarded as corresponding to a region
of configuration space) in which eqn. 12.8, and hence the Schrödinger evolution
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(eqn. 12.9), should obtain is when the y-system behaves semiclassically. In the
semiclassical regime, one expects an initial collection of narrow and approximately
disjoint wave packets φα0 (y) to remain so under their (approximately classical)
evolution.

As a matter of fact, the emergence of Schrödinger’s equation in the semiclassical
regime for gravity can be justified in a more systematic way, using perturbation
theory, by expanding Ψ in powers of the gravitational constant κ. Then for a ‘semi-
classical wave function’ Ψ, the phase S of Ψ, to leading order, κ−1, depends only
on the 3-metric and obeys the classical Einstein–Hamilton–Jacobi equation, so that
the metric evolves approximately classically, with the conditional wave function for
the matter degrees of freedom satisfying, to leading (zeroth) order, Schrödinger’s
equation for, say, quantum field theory on a given evolving background. The rel-
evant analysis was done by Banks (1985) for canonical quantum gravity, but the
significance of that analysis is rather obscure from an orthodox perspective.

The semiclassical limit has been proposed as a solution to the problem of time
in quantum gravity, and as such has been severely criticized by Kuchař (1992), who
concludes his critique by observing that ‘the semiclassical interpretation does not
solve the standard problems of time. It merely obscures them by the approximation
procedure and, along the way, creates more problems’. Perhaps the main difficulty is
that, within the orthodox framework, the classical evolution of the metric is not really
an approximation at all. Rather, it is put in by hand, and can in no way be justified on
the basis of an entirely quantum mechanical treatment, even as an approximation.
This is in stark contrast with the status of the semiclassical approximation within
a Bohmian framework, for which there is no problem of time. In this approach,
the classical evolution of the metric is indeed merely an approximation to its exact
evolution, corresponding to the exact phase of the wave function (i.e. to eqn. 12.6).
To the extent that this approximation is valid, the appropriate conclusions can be
drawn, but the theory makes sense, and suffers from no conceptual problems, even
when the approximation is not valid.

Now to our second question. Suppose that we demand of a universal dynamics
that it be first-order for the variables describing the primitive ontology (the simplest
possibility for a dynamics) and covariant – involving no preferred foliation, no
special choice of lapse function N , in its formulation. This places a very strong
constraint on the vector field defining the law of motion – and on the universal
wave function, should this motion be generated by a wave function. The set of wave
functions satisfying this constraint should be very small, far smaller than the set of
wave functions we normally consider as possible initial states for a quantum system.
However, according to our conception of the wave function as nomological, this
very fact might well be a distinct virtue.

We have begun to investigate the possibility of a first-order covariant geometro-
dynamics in connection with Bohmian quantum gravity, and have found that the
constraint for general covariance is captured by the Dirac algebra (see also Hojman,
Kuchař, and Teitelboim 1976), which expresses the relation between successive
infinitesimal deformations of hypersurfaces, taken in different orders: We have
shown (see Goldstein and Teufel 1999) that defining a representation of the Dirac
algebra is more or less the necessary and sufficient condition for a vector field on the
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space of 3-metrics to yield a generally covariant dynamics, generating a 4-geometry
involving no dynamically distinguished hypersurfaces.

This work is very much in its infancy. In addition to the problem of finding
a mathematically rigorous proof of the result just mentioned, there remains the
difficult question of the possible representations of the Dirac algebra, both for pure
gravity and for gravity plus matter. For pure gravity it seems that a first-order
generally covariant geometrodynamics is achievable, but only with vector fields that
generate classical 4-geometries – solutions of the Einstein equations with a possible
cosmological constant. How this situation might be affected by the inclusion of
matter is not easy to say.

Even a negative result – to the effect that a generally covariant Bohmian theory
must involve additional spacetime structure – would be illuminating. A positive
result – to the effect that a first-order dynamics, for geometry plus matter, that
does not invoke additional spacetime structure can be generally covariant more or
less only when the vector field defining this dynamics arises from an essentially
unique wave function of the universe that happens to satisfy an equation like the
Wheeler–DeWitt equation (and from which a time-dependent Schrödinger equation
emerges, in the manner we have described, as part of a phenomenological description
governing the behavior of appropriate subsystems) – would be profound. For then
we would know, not just what quantum mechanics is, but why it is.

Notes

1. Actually, the extrinsic curvature is given by Kij = Gijabπ
ab where Gijab is the so-called

supermetric, which is itself a function of gij . This distinction is, however, not relevant to our
discussion.

2. We choose units in which h̄ and c are 1.
3. In some models of quantum cosmology, e.g. those permitting the definition of a global time

function, it may well be possible to pick ourselves out in a diffeomorphism-invariant manner.
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13.1 The problem of quantum state reduction

The fundamental problem of quantum mechanics, as that theory is presently under-
stood, is to make sense of the reduction of the state vector (i.e. collapse of the wave
function), denoted here by R. This issue is usually addressed in terms of the ‘quantum
measurement problem’, which is to comprehend how, upon measurement of a quan-
tum system, this (seemingly) discontinuous R-process can come about. A measure-
ment, after all, merely consists of the quantum state under consideration becoming
entangled with a more extended part of the physical universe, e.g. with a measuring
apparatus. This measuring apparatus – together with the observing physicist and
their common environment – should, according to conventional understanding,
all also have some quantum description. Accordingly, there should be a quantum
description of this entire quantum state, involving not only the original system under
consideration but also the apparatus, physicist, and remaining environment – and
this entire state would be expected to evolve continuously, solely according to the
Schrödinger equation (unitary evolution), here denoted by the symbol U .

Numerous different attitudes to R have been expressed over many years, ever since
quantum mechanics was first clearly formulated. The most influential viewpoint has
been the ‘Copenhagen interpretation’ of Niels Bohr, according to which the state
vector |ψ〉 is not to be taken seriously as describing a quantum-level physical reality,
but is to be regarded as merely referring to our (maximal) ‘knowledge’ of a physical
system, and whose ultimate role is simply to provide us with a means to calculate
probabilities when a measurement is performed on the system. That ‘measurement’
would be taken to come about when that system interacts with a classical measuring
apparatus. Since ‘our knowledge’ of a physical system can undergo discontinuous
jumps, there is no reason to be surprised – so it would be argued – when |ψ〉
undergoes discontinuous jumps also!
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Closely related is the environment–entanglement ‘FAPP’ (‘for all practical pur-
poses’) point of view (e.g. Zurek 1991; cf. Bell 1990), according to which the
R-process is taken to be some kind of approximation to the U -evolution of the system
together with its environment, and R is viewed as having taken place in the system
itself ‘for all practical purposes’ (Bell 1990). The essential idea is that the environ-
ment involves enormously numerous random degrees of freedom, and these become
entangled with the limited number of degrees of freedom in the system itself. Accord-
ingly, the delicate phase relations between the system’s degrees of freedom become
irretrievably lost in these entanglements with the environment. It is argued that
this effective loss of phase coherence in the system itself gives rise to R, FAPP,
although certain additional assumptions are needed in order for this conclusion to
be entertained.

There are also viewpoints – referred to as the ‘many worlds’, or ‘many minds’, or
the Everett interpretation (Everett 1957; cf. DeWitt and Graham 1973) – whereby
it is accepted that all the different macroscopic alternatives which (according to U )
must remain superposed, actually coexist in reality. It can be convincingly argued
that if |ψ〉 is indeed taken to represent an actual reality at all levels, and if |ψ〉 evolves
precisely according to U , then something of this nature must hold. However, by
itself, and without further assumptions, this would offer no explanation as to why
the ‘illusion’ of merely one world presents itself to our consciousnesses, nor why the
correct quantum-mechanical probabilities come about (Squires 1990, 1992a; cf. also
Penrose 1994a, Sections 6.2, 6.7).

Other alternative interpretations have been put forward, such as those of de
Broglie (1956), Bohm (1952), Bohm and Hiley (1994), Haag (1992), Griffiths (1984),
Omnès (1992), and Gell-Mann and Hartle (1993), in which the standard quantum
procedures are reformulated in a different mathematical framework. The authors
of these proposals do not normally take the view that any experimentally testable
deviations from standard quantum mechanics can arise within these schemes.

Set against all these are proposals of a different nature, according to which it
is argued that present-day quantum mechanics is a limiting case of some more
unified scheme, whereby the U and R procedures are both to be approximations
to some new theory of physical reality. Such a theory would have to provide, as
an appropriate limit, something equivalent to a unitarily evolving state vector |ψ〉.
Indeed, many of these schemes, such as that of Pearle (1986, 1989), Bialynicki-Biruta
and Mycielski (1976), Ghirardi, Rimini, and Weber (1986), and Weinberg (1989), use
a quantum-state description |ψ〉, just as in standard quantum mechanics, but where
the evolution of the state deviates by a tiny amount from the precise Schrödinger
(or Heisenberg) evolution U . Related to these are proposals which posit that it
is in the behaviour of conscious beings that deviations from precise U -evolution
are to be found (cf. Wigner 1961). But in the more ‘physical’ such schemes, the
suggested deviations from standard U -evolution become noticeable merely when
the system becomes ‘large’, in some appropriate sense. This ‘largeness’ need not refer
to physical dimension, but it might, for example, be the number of particles in the
system that is relevant (such as in the specific scheme put forward in Ghirardi et al.
1986). In other proposals, it is considered that it is the mass, or mass distribution,
that is all important. In schemes of the latter nature, it is normally taken that it
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is gravity that provides the influence that introduces deviations from the standard
quantum rules. (See Károlyházy 1966, 1974, Károlyházy, Frenkel, and Lukács 1986,
Kibble 1981, Komar 1969, Diósi 1989, Ghirardi, Grassi, and Rimini 1990, Pearle and
Squires 1996, Percival 1995, Penrose 1981, 1986, 1987, 1989, 1993, 1994, 1994a, for
proposals of this nature.)

In this chapter, a new argument is given that explicitly supports a gravitational
role in state-vector reduction. Most particularly, it is consistent with a particular
criterion, explicitly put forward in (Penrose 1994, 1994a), according to which a
macroscopic quantum superposition of two differing mass distributions is unstable
(analogous to an unstable particle). Accordingly, such a state would decay, after a
characteristic lifetime T , into one or the other of the two states. To compute T ,
we take the difference between the two mass distributions under consideration (so
that one counts positively and the other negatively) and compute its gravitational
self-energy E∆. The idea is that we then have

T � h̄

E∆
.

This criterion is also very close to one put forward earlier by Diósi (1989), and
as modified by Ghirardi et al. (1990), but their point of view is different from the
one used here, proposed by Penrose (1993, 1994, 1994a). In particular, in their type
of scheme, there are violations of energy conservation which could – in principle or
in practice – be experimentally detected. With the type of proposal in mind here,
the idea would be that such violations of energy conservation ought to be absent,
owing to the fundamental involvement of some of the basic principles of general
relativity. (There is a brief discussion of this point in Penrose 1994a, p. 345.) In
this chapter it is indicated that there is a basic conflict between Einstein’s general
covariance principle and the basic principles of quantum theory, as they relate to
stationary states of superposed gravitational fields. It is argued that this conflict can
be resolved within the framework of the specific state-reduction proposal of Penrose
(1994, 1994a), according to which such superposed gravitational fields are essentially
unstable.

It should be made clear, however, that this proposal does not provide a theory
of quantum state reduction. It merely indicates the level at which deviations from
standard linear Schrödinger (unitary) evolution are to be expected owing to grav-
itational effects. Indeed, it is this author’s personal opinion that the correct theory
uniting general relativity with quantum mechanics will involve a major change in
our physical world-view – of a magnitude at least comparable with that involved in
the shift from Newtonian to Einsteinian gravitational physics. The present chapter
makes no pretensions about even aiming us in the right direction in this regard. Its
purpose is a different one, namely to show that even within the framework of com-
pletely conventional quantum theory, there is a fundamental issue to be faced, when
gravitational effects begin to become important. Standard theory does not provide
a clear answer; moreover, it allows room for the type of instability in superposed
states that would be consistent with the proposals of Diósi (1989), Ghirardi et al.
(1990) and Penrose (1993, 1994, 1994a).
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13.2 Stationary states

Let us consider the following situation. We suppose that a quantum superposition of
two states has been set up, where each individual state has a well-defined static mass
distribution, but where the mass distributions differ from one state to the other. For
example, we could have a rigid lump of material which we contrive to place in a
quantum superposition of two different locations. Such a superposed state could be
achieved by having a photon simultaneously transmitted through and reflected off a
half-silvered mirror placed at a distance from the lump, where the transmitted part
of the photon’s state then triggers a device which slowly moves the lump from its
initial location to somewhere nearby, but the reflected part leaves the lump alone.
(This is an inanimate version of ‘Schrödinger’s cat’.)

If we ignore any gravitational effects, the two alternative locations of the lump
will each be stationary states, and will therefore have wave functions, say |ψ〉 and
|χ〉, that are eigenfunctions of the energy operator H :

H |ψ〉 = υ|ψ〉, H |χ〉 = υ|χ〉.
Here, the energy eigenvalue υ is the same in each case, because the mass is simply

displaced from one location to the other. (We ignore the energy of the photon in
this, the lump itself being supposed to have enormously greater mass-energy, and
also any energy involvement in the device that moves the lump.) It is clear from this
that there is a complete degeneracy for linear superpositions of |ψ〉 and |χ〉, and any
linear combination

λ|ψ〉 + µ|χ〉
(with λ and µ complex constants) will also be an eigenstate of H with the same
eigenvalue υ. Each such linear combination will also be a stationary state, with the
same energy eigenvalue υ. Thus, any one of these combinations would be just as
stable as the original two, and must therefore persist unchanged for all time. We
shall shortly consider the delicate theoretical issues that arise when one considers
the (superposed) gravitational fields of each of the two instances of the lump also to
be involved in the superposition. In accordance with this, it will be appropriate to be
rather careful about the kinds of issues that become relevant when quantum theory
and general relativity are considered together.

13.3 Preliminary considerations

In particular, there is a point of subtlety which needs to be addressed, even before we
consider the details of any gravitational effects. We take note of the fact that, in the
absence of any spatial inhomogeneity in the background potentials (gravitational or
otherwise), there is nothing in the intrinsic nature of one lump location that allows
us to distinguish it from any other lump location. Thus, we might choose to adopt
the standpoint that there is really no physical difference at all between the various
states of location of the lump and, accordingly, take the view that all these seemingly
different states of the lump are actually all the same state! Indeed, this would be
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the normal standpoint of (quantum) general relativity. Each spacetime geometry
arising from each separate lump location would be identical. The principle of general
covariance forbids us to assign a meaningful (co-ordinate) label to each individual
point, and there is no co-ordinate-independent way of saying that the lump occupies
a different location in each of the two configurations under consideration.

However, this is not the standard attitude in ordinary quantum mechanics. If the
various position states of a single quantum particle were considered to be all the
same, then we would not be able to construct all the many different wave functions
for that particle which are, after all, simply superpositions of states in which the par-
ticle occupies different locations. In standard quantum mechanics, all the different
particle locations correspond to different quantum states whose superpositions can
be independently involved.

It is worth while, in this context, to consider how standard quantum mechanics
treats composite particles. Here one may choose to factor out by this translational
freedom. For example, the wave function of a hydrogen atom, in an eigenstate of
the energy and angular momentum operators, is still completely degenerate with
respect to the spatial location of its centre of mass. In considering the quantum
mechanics of a hydrogen atom, the normal procedure is (implicitly or otherwise) to
factor out by the degrees of freedom that specify the location of the mass centre (or,
as a simplifying approximation, merely the location of its proton), and consider the
quantum mechanics only of what remains: essentially the location of the orbiting
electron, this being what is fixed by the energy and angular momentum.

In the present context, with the two superposed lump locations, we are trying
to examine precisely the translational degrees of freedom that had been ‘factored
out’ in the case of the hydrogen atom. In fact, there is something of a physical
inconsistency in simply considering our lump to be displaced from one location to
another in the two states under superposition. There is a conservation law which
requires that the mass centre remain fixed in space (or move uniformly in a straight
line). This would have been violated unless the lump displacement is compensated
by the displacement of some other massive object in the opposite direction. We shall
consider that there is such another object, and that it is enormously more massive
than is the lump itself. Let us call this other object ‘the Earth’. To move the lump
from one location to the other, we simply allow the Earth to move by a very tiny
amount, so as to allow the mass centre to remain fixed; and since the Earth is so very
much more massive than the lump, we can consider that in practice the Earth does
not move at all.

The presence of the Earth in these considerations allows us to circumvent the
problem that we had previously considered. For the Earth (assumed to have some
large but static finite irregular shape) serves to establish a ‘frame of reference’ against
which the motion of the lump can be considered to be taking place. The spacetime
geometries corresponding to all the various lump locations are now all different
from one another, and ‘general covariance’ does not prevent us from considering
these various states to be all distinct.

At this point, another complication appears to arise because the Earth’s gravita-
tional field has to be taken into account. In fact, we shall not be much concerned
with the Earth’s field. It will be the differences in the gravitational fields in the
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various lump locations that will have essential relevance. In fact, there is no prob-
lem, in the considerations which follow, in allowing the Earth’s gravitational field to
be involved also. But we may prefer to avoid the complication of the Earth’s field,
if we choose, by supposing that our ‘experiment’ is to be set up within a spheri-
cal cavity situated at the centre of the Earth. Then, the Earth’s actual field could
be eliminated completely. Yet the Earth could still serve to establish a ‘frame of
reference’ against which the motion of the lump could be considered to be taking
place.

On the other hand, we shall prefer to consider that the lumps are actually sitting
on the surface of the Earth. The Earth’s (effectively) constant gravitational field does
not have any significant influence on the considerations of relevance here. There is
no problem about having the lump in a stationary state on the surface of the Earth,
provided that some appropriate upward forces are introduced on the lump, to allow
it to remain at rest with respect to the Earth.

If we were to consider a situation in which the two superposed lump positions are
at different heights from the ground, then we would have to consider the effects of
the energy expended in raising the lump in the Earth’s field. This would introduce an
additional factor, but would not seriously affect the situation that we are concerned
with here. If desired, all these considerations can be evaded if we regard our lump
movements to be taking place entirely within our spherical cavity at the centre of the
Earth. However, it will not be necessary to pass to this extreme idealization for the
considerations of this chapter.

13.4 Superposed gravitational fields

Let us now try to consider how the gravitational field of the lump itself affects our
superposed state. Each lump location is accompanied by the static gravitational field
produced by the lump in that location. We must envisage that the superposed state
is now an entangled one,

λ|ψ〉|Gψ〉 + µ|χ〉|Gχ〉,
where |Gψ〉 and |Gχ〉 are the quantum states of the gravitational fields of the lump
locations corresponding to |ψ〉 and |χ〉, respectively. We might choose to think of
|Gψ〉 and |Gχ〉 as coherent states, if that is the appropriate description. In any case,
whatever is to be meant by the quantum state of a stationary gravitational field –
including all the internal degrees of freedom of the field – would be supposed to
be incorporated into |Gψ〉 or |Gχ〉. But it does not greatly matter, for our present
purposes, what the ‘correct’ quantum mechanical descriptions of macroscopic gravi-
tational fields actually are. We must suppose, however, that whatever this description
is, it closely accords in its physical interpretation, for a single unsuperposed lump,
with the classical gravitational field of that lump according to the description of
Einstein’s general relativity.

In fact, the ‘entangled’ nature of the superposed state will not be of importance
for us here. We simply take the two states under superposition to be

|Ψ〉 = |ψ〉|Gψ〉 and |X〉 = |χ〉|Gχ〉.
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The essential point is that each of the two states concerned must involve a rea-
sonably well-defined (stationary) spacetime geometry, where these two spacetime
geometries differ significantly from each other. We must now raise the question: is
this superposed state still a stationary state?

We have to consider carefully what a ‘stationary state’ means in a context such
as this. In a stationary spacetime, we have a well-defined concept of ‘stationary’
for a quantum state in that background, because there is a Killing vector T in
the spacetime that generates the time-translations. Regarding T as a differential
operator (the ‘∂/∂t ’ for the spacetime), we simply ask for the quantum states that
are eigenstates of T , and these will be the stationary states, i.e. states with well-
defined energy values. In each case the energy value of the state in question, |Ψ〉,
would be (essentially) the eigenvalue EΨ of T corresponding to that state:

T |Ψ〉 = −ih̄EΨ|Ψ〉.

However, for the superposed state we are considering here we have a serious
problem. For we do not now have a specific spacetime, but a superposition of
two slightly differing spacetimes. How are we to regard such a ‘superposition of
spacetimes’? Is there an operator that we can use to describe ‘time-translation’ in
such a superposed spacetime? Such an operator would be needed so that we can
identify the ‘stationary states’ as its eigenvectors, these being the states with definite
energy. It will be shown that there is a fundamental difficulty with these concepts,
and that the notion of time-translation operator is essentially ill-defined. Moreover,
it will be possible to define a clear-cut measure of the degree of this ill-definedness for
such a superposed state. Accordingly, there is, in particular, an essential uncertainty
or ‘fuzziness’ in the very concept of energy for such a state, and the degree of this
uncertainty can be estimated in a clear-cut way. This is consistent with the view that
such a superposed state is ‘unstable’, and the lifetime of the state will be given by h̄
divided by this measure of energy uncertainty, in accordance with the way in which
Heisenberg’s uncertainty principle is employed in the theory of unstable particles,
where the particle’s lifetime is related to its mass-energy uncertainty.

How are we to regard a quantum superposition of two spacetimes? It is not
sufficient to take a completely formal attitude to such matters, as is common in
discussions of quantum gravity. According to the sorts of procedure that are often
adopted in quantum gravity, the superposition of different spacetimes is indeed
treated in a very formal way, in terms of complex functions on the space of
3-geometries (or 4-geometries), for example, where there is no pretence at a point-
wise identification of the different geometries under superposition. A difficulty with
such formal procedures arises, however, if we attempt to discuss the physics that
takes place within such a formal superposition of spaces, as is the case with the type
of situation under consideration here (cf. also Anandan 1994).

Indeed, in the case of the two minutely differing spacetimes that occur in our
situation with the two superposed lump locations, there would be no obvious way
to register the fact that the lump is actually in a different place, in each of the
two configurations under superposition, unless there is some sort of (approximate)
identification. (Of course, in this identification, since the lump itself is supposed to be
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‘moved’, corresponding points of the lump are not identified, but the corresponding
points of the Earth are, since the Earth is not considered to have significantly moved.)

Nevertheless, it is clear from the principles of general relativity that it is not
appropriate, in general, to make a precise identification between points of one
spacetime and corresponding points of the other. The gauge freedom of general
relativity – as reflected in ‘the principle of general covariance’ (or, equivalently,
‘diffeomorphism invariance’) – is precisely the freedom that forbids a meaningful
precise labelling of individual points in a spacetime. Accordingly, there is generally no
precise meaningful pointwise identification between different spacetimes. (In special
cases, it may be possible to circumvent this problem; see Anandan 1994, 1996, where
issues of this nature are examined, and interesting effects are anticipated, in relation,
in particular, to the quantization of a cosmic string.) In the general case, all that we
can expect will be some kind of approximate pointwise identification.

13.5 The semiclassical approach

One possible way to address this difficulty might be to adopt a ‘semiclassical approx-
imation’ to quantum gravity, according to which it would be the expectation value of
the (quantum) energy–momentum tensor that serves to specify the right-hand side
of Einstein’s equations

Rab − R

2
gab = −8πGTab .

In such an approximation the superposition of our pair of states in which one
lump is in two spatially displaced locations would have a gravitational field which is
merely the average field of the fields of each lump individually.

In fact, the semiclassical approximation is not really physically consistent. In
particular, it allows superluminary communication (see Pearle and Squires 1996);
and, in a certain interpretation, it is grossly inconsistent with observation (Page
and Geilker 1981). These difficulties might be avoided if the semiclassical interpre-
tation can be combined with some scheme of gravitationally induced state-vector
reduction, as is argued by Pearle and Squires (1996; see also Kibble 1981).

From the point of view of the present chapter, there is an additional difficulty
with the semiclassical approximation. The semiclassical description would provide
a spacetime containing the mass distributions of two spatially displaced lumps with
vacuum (Rab = 0) between them. This gravitational field – of a pair of spatially dis-
placed lumps – is not really the same as a linear superposition of the two fields, each
describing one of the two lump locations individually. The gravitational interaction
effects between the pair of lumps would have to be taken into account, according to
the non-linear effects of general relativity. Assume that the actual lump, in its two
displaced locations, sits on a smooth horizontal table (‘the Earth’). The ‘semiclas-
sical’ state would represent a pair of spatially separated massive lumps, and would
not actually possess an exact Killing vector which could play the role of T (= ∂/∂t )
because the ‘semiclassical’ lumps would fall towards each other along the table in
accordance with their gravitational attractions, leading to a non-static spacetime
geometry.
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For reasons such as these, it is proposed not to follow a semiclassical description
here. Instead, we shall follow the route of supposing that there is some kind of
approximate sense in which the two superposed spacetimes can be pointwise iden-
tified. Without some kind of (approximate) identification between the spacetimes,
we do not seem even to be able to express the fact that the quantum state of the lump
is a superposition of two distinct locations, in which the degree of displacement
between the two lump locations is reasonably well defined.

13.6 Approximate spacetime point identification

The basic principles of general relativity – as encompassed in the term ‘the principle
of general covariance’ (and also ‘principle of equivalence’) – tell us that there is
no natural way to identify the points of one spacetime with corresponding points
of another. Consider our quantum superposition between two different spacetimes
(here, the fields of two alternative lump locations). If we are to attempt to make a
pointwise identification between these two spacetimes, we can do this in a way that
would be only approximately meaningful. Let us try to obtain some measure of this
degree of approximation.

In order to proceed to a reasonably explicit expression of this measure, it will be
helpful to make the assumption that a Newtonian approximation to the gravitational
fields of each lump location is adequate. Indeed, in any plausible practical situation
in which a quantum superposition of lump locations might have to be considered,
this would certainly be the case. Thus, there will be spatial sections of the two
spacetimes in question which are Euclidean 3-spaces, and each spacetime will possess
a well-defined time co-ordinate whose constant values define these Euclidean spatial
sections. We shall suppose that the time co-ordinates for each spacetime can be
naturally identified with each other, so we have a single time parameter t common
to the two spacetimes. This would seem reasonable for the Newtonian situation
under consideration, although there would be essential subtleties arising when the
two gravitational fields are treated according to full general relativity.

It should be made clear, however, that passing to the Newtonian limit does not
remove the difficulties that the principle of general covariance – or the principle
of equivalence – presents in relation to the quantum superposition of gravitational
fields. As may be recalled, there is a spacetime formulation of Newtonian grav-
itational theory originally provided by Cartan (1923, 1924), and further studied
independently by Friedrichs (1927) and Trautman (1965), in which the Newtonian
version of the equivalence principle is directly incorporated into the geometrical
description. (See Ehlers 1991 for an up-to-date account.) The Cartan geometric for-
mulation of Newtonian gravitational theory is indeed the appropriate one for taking
into account the subtleties of (what remains of) the principle of general covari-
ance and the principle of equivalence. (For example, the Newton–Cartan spacetime
of a constant non-zero Newtonian gravitational field has an identical geometry to
that of the zero gravitational field, but it differs from a non-uniform Newtonian
field which produces tidal effects.) It has been pointed out by Christian (1995) that
the Newton–Cartan framework provides a valuable setting for exploring some of
the fundamental problems of unifying quantum theory with gravitational theory
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without, at this stage, the more severe difficulties of general relativity having to be
faced. Christian argues that this framework indeed sheds important light on the role
of gravity in the measurement problem.

As it turns out, the criterion for quantum state reduction that we shall be led to
here is independent of the value of the speed of light c . It will thus have a well-defined
non-trivial Newtonian limit, and it can be expressed within the Newton–Cartan
framework. However, although it will be valuable to bear this framework in mind
here, we shall not actually use its specific mathematical details.

The essential point about superposing a pair of Newton–Cartan spacetimes is
that whereas we are allowing that the time co-ordinate t can be identified in the two
spacetimes – and so there is a canonical correspondence between the various space
sections of one spacetime with those of the other – there is no canonical way of
identifying the individual points of a section of one spacetime with corresponding
points of the other. It is this lack of a definite pointwise identification between the
spatial sections of the two spacetimes which will lead us to an essential ill-definedness
of the notion of time-translation – and therefore of the notion of stationarity – for
the quantum-superposed state.

The reader might wonder why it is time-translation that should encounter prob-
lems, when, in our Newtonian context, there is no problem with the time co-ordinate
t . However, this is how it should be; for ‘time-translation’ is something which is rep-
resented by the operator ‘∂/∂t ’, and the meaning of this operator is really concerned
more with the choice of the remaining variables, x , y , z (those parameters to be held
fixed in the definition of∂/∂t ), than it is with t itself. An uncertainty in the pointwise
identification of the spatial sections of one spacetime with the spatial sections of the
other will indeed show up in an uncertainty in the definition of time-translation.
Suppose that we use the co-ordinates x , y , z , and t for the points of one spacetime,
and x ′, y ′, z ′, and t ′ for the points of the other (where, of course, t = t ′); then
we have

∂

∂t ′ =
∂

∂t
+
∂x

∂t ′
∂

∂x
+
∂y

∂t ′
∂

∂y
+
∂z

∂t ′
∂

∂z

=
∂

∂t
+ v · ∇,

where v is the spatial velocity, as described with respect to the unprimed co-ordinate
system, of a point fixed in the primed co-ordinate system. (In the (x ,y ,z ,t )-system,
the 3-vector v has components (∂x/∂t ′, ∂y/∂t ′, ∂z/∂t ′), i.e. (−∂x ′/∂t ,−∂y ′/∂t ,
−∂z ′/∂t ), and the operator ∇ has components (∂/∂x , ∂/∂y , ∂/∂z).) If we were
to attempt to identify the point with coordinates (x , y , z , t ) in one of the spacetimes
under consideration, with the point with co-ordinates (x ′, y ′, z ′, t ′) in the other, then
we should encounter an incompatibility between their notions of time-evolution
unless v vanishes everywhere.

Of course, in this Newtonian limit, it is possible to arrange that v = 0 everywhere,
simply by taking ordinary static, non-rotating Newtonian/Cartesian co-ordinates
for the two spacetimes, related by a constant spatial displacement between them.
But this would be to go against the spirit of what is entailed, in the present context,
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by Einstein’s principle of general covariance. It is the special nature of the Newtonian
limit that provides us with flat Euclidean spatial sections whose local motions
are determined directly by what happens at infinity. In this Newtonian limit, the
‘co-ordinate freedom’ can indeed be eliminated if we nail things down at infinity,
because in Newton–Cartan geometry, there is exact spatial rigidity. However, within
the more general context of curved (and not necessarily stationary) spacetimes, this
is not at all appropriate. Our physical expectations would be for the criteria charac-
terizing the nature of a localized quantum superposition to depend on reasonably
local criteria. The principles of general relativity are antagonistic towards the idea
of identifying individual local points in a precise way, in terms of the situation at
infinity.

Similar remarks also apply to certain proposals within the general programme of
quantizing general relativity proper, according to which the time translation operator
would not be taken to have local relevance, but to refer merely to the symmetries at
spatial infinity – it being supposed that only asymptotically flat spacetimes are to be
considered in quantum superposition. It seems, however, for situations such as those
under consideration here where we are concerned with a reasonably local problem,
that it is quite inappropriate to define the notion of time translation merely in terms
of what is going on at spatial infinity. We do not know, after all, what the geometry
of the actual universe is on a very large scale (spatially asymptotically spherical or
hyperbolic, for example, either of which would lead to different notions of ‘time-
translation’ from that which is normally considered). It is most unlikely that, for a
reasonably local quantum problem such as this, Nature should really ‘care’ what is
going on at infinity.

We shall suppose instead that, in the particular Newtonian quantum superpo-
sition under consideration, it is appropriate to demand an approximate spatial
identification between the two spacetimes, where the degree of approximation is
governed by local (or quasi-local) considerations in the vicinity of the region where
the identification occurs. In accordance with the principle of equivalence, it is the
notion of free fall which is locally defined, so the most natural local identification
between a local region of one spacetime and a corresponding local region of the
other would be that in which the free falls (i.e. spacetime geodesics) agree. However,
in the superposition under consideration, there is no way to make the spatial identi-
fications so that the free falls agree everywhere throughout the spacetimes. The best
that one can do is to try to minimize the amount of the difference between free fall
motions.

How are we to express this difference mathematically? (Let us assume that the
two quantum amplitudes assigned to the two superposed states are about the same
size. Then we may take it that neither spacetime’s geometry dominates the other.)
Let f and f ′ be the acceleration 3-vectors of the free-fall motions in the respective
spacetimes, at some identified point (where the accelerations can be taken with
respect to the appropriate local identified co-ordinates). In fact, f and f ′ will be the
Newtonian gravitational force-per-unit-test-mass, at that point, in each spacetime.
Let us take the scalar quantity

(f − f ′)2 = (f − f ′) · (f − f ′)
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as the measure of incompatibility of the identification – and, accordingly, of the
‘uncertainty’ involved in this identification. It may be noted that if we apply an
acceleration to the common co-ordinates to the two spacetimes, while keeping the
actual point identification unaltered, then the difference f − f ′ does not change. In
fact, the expression (f − f ′)2 is co-ordinate-independent (assuming that the ‘dot’ ·
refers to the actual three-dimensional spatial metric).

For the total measure of incompatibility (or ‘uncertainty’) ∆ at a particular
instant, given by a particular t -value, it is proposed to integrate this quantity (with
respect to the spatial 3-volume element d3x) over the t = constant 3-space:

∆ =

∫
(f − f ′)2 d3x

=

∫
(∇Φ−∇Φ′)2 d3x

=

∫
(∇Φ−∇Φ′) · (∇Φ−∇Φ′) d3x

= −
∫

(Φ− Φ′)(∇2Φ−∇2Φ′) d3x ,

where f = −∇Φ and f ′ = −∇Φ′, Φ and Φ′ being the respective gravitational
potentials for the two spacetimes. By Poisson’s formula

∇2Φ = −4πGρ,

we obtain

∆ = 4πG

∫
(Φ− Φ′) (ρ− ρ′) d3x ,

where ρ and ρ′ are the respective mass densities. Using the integral formula

Φ(x) = −
∫

ρ(y)

|x − y| d3y ,

we get

∆ = −4πG

∫∫
(ρ(x)− ρ′(x)) (ρ(y)− ρ′(y))

|x − y| d3x d3y ,

which is basically just the gravitational self-energy of the difference between the mass
distributions of each of the two lump locations.

How does this relate to the uncertainty in the time-translation Killing vector
referred to at the beginning of this section? That there should be some relationship
follows from general considerations, but the exact form that this relationship should
take seems to depend upon the specific model that is used to describe the uncer-
tainty of spacetime identification. (As long ago as 1966, Károlyházy provided some
fairly closely related considerations, cf. Károlyházy, 1966, and also Károlyházy 1974,
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Károlyházy et al. 1986.) To understand what is involved in the present context, we
consider three successive time slices, given by t = τ , t = τ + ∆t , and t = τ + 2∆t .
We imagine that there is some uncertainty in the identification between the two
spacetimes under superposition at each of these three times. The measure of relative
‘acceleration uncertainty’ that we have just been considering, and which seems to
be forced upon us from consideration of the principles of equivalence and general
covariance, has to do with the difference between the error in spatial identifications
at t = τ + ∆t and the average of those at t = τ and at t = τ + 2∆t . The overall
uncertainty in the quantity v · ∇, which appears as the uncertainty in the time-
translation Killing vector for the superposed spacetimes is a ‘velocity uncertainty’,
and it has to do with the difference between the error in spatial identification at
t = τ + ∆t and that at t = τ (or else between the error at t = τ + 2∆t and that
at t = τ + ∆t ). The precise relationship between the ‘acceleration uncertainty’ and
‘velocity uncertainty’ seems to depend upon the way that this uncertainty is actually
modelled. The direct ‘position uncertainty’ does not feature in these considerations;
it is the time-evolution of the error in spatial identification that has importance for
us here.

A further ingredient of possible importance is an error in the identification in the
actual time co-ordinate t for the two spacetimes. We have ignored this complication
here, but it clearly has relevance in full general relativity. Perhaps it should also be
taken into account in the Newtonian limit.

In view of these various complicating issues, no attempt will be made to formulate
a definitive statement of the precise measure of uncertainty that is to be assigned
to the ‘superposed Killing vector’ and to the corresponding notion of ‘stationarity’
for the superposed spacetime. However, it is strongly indicated by the above con-
siderations that the quantity ∆, as defined above, gives a very plausible (though
provisional) estimate of this uncertainty. Hence, we can use ∆, or some simple mul-
tiple of this quantity, as a measure of the fundamental energy uncertainty ‘E∆’ of the
superposed state. Accordingly, the superposed state would not be exactly stationary,
but it is consistent with the above considerations that it should have a lifetime of the
general order of h̄/E∆.

It is reassuring that basically the same expression is seen to arise from certain
other considerations. For example, it was pointed out in Penrose (1994, 1994a)
that the gravitational self-energy involved in a quantum superposition of a pair
of differing spacetime geometries should involve an essential uncertainty, owing
to the fact that even in classical general relativity there is difficulty with the energy
concept for gravity. (There is no local expression for gravitational energy.) Moreover,
considerations of the symplectic structure of linearized gravity (Penrose 1993) lead to
something very similar, and so also does the earlier model of Diósi (1989), although
in these papers the suggestion is that the expression

G

∫∫
ρ(x)ρ′(y)

|x − y| d3x d3y ,

which is the gravitational interaction energy, should be the relevant measure of the
required ‘energy uncertainty’ E∆. In fact (apart from the factor 4π), it does not make
any difference which expression is used, provided that – as is the case here – the two
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individual states under superposition each have the same gravitational self-energy.
(A situation for which the difference in the expressions might be important would
be in a cloud chamber, where the two states in superposition might be ‘droplet
forming’ and ‘droplet not forming’. In this case the gravitational self-energy of the
droplet would contribute a difference between the two expressions.)

13.7 Further considerations

It is clear that the above arguments provide only a very preliminary analysis of the
difficulties involved in the notion of ‘stationarity’ for a quantum superposition of
differing stationary spacetimes. However, even just these preliminary considerations
seem to suggest that such a superposition would be unstable, and that a very plau-
sible expression for the order of magnitude of the lifetime of such a superposed
state (where the two relevant amplitudes are roughly equal) is h̄/E∆, where E∆ is
the gravitational self-energy of the difference between the two mass distributions
involved.

In any case, it should be clear from what has been said above that conventional
quantum theory provides no clear answer (in the absence of a satisfactory theory
of quantum gravity) to the problem of the stability of a quantum superposition
of two different gravitating states. We do not need to appeal to the contentious
conceptual issues inherent in the measurement problem of quantum mechanics for
some motivation for believing that such superpositions should be unstable.

In the above considerations, we have restricted attention to cases where the
superposition involves just two different states, each of which individually has a
well-defined spacetime geometry, and where the two amplitudes assigned to each
of these two constituent states are of about the same size. This does not tell us, for
example, what to do about the wave function of a single isolated proton, as it spreads
throughout space in accordance with the Schrödinger equation. In the GRW scheme
(Ghirardi et al. 1986) there would be a small probability for this state to reduce
spontaneously to a more localized state. The present considerations, however, are
not adequate to provide us with an expectation as to whether (or how frequently)
such a spontaneous state reduction should occur, nor do they tell us what kind of
state should be the result of such a spontaneous state reduction. We might think
that the ‘natural’ states for the proton, having ‘well-defined spacetime geometries’,
are those for which the proton is reasonably localized, say to a region of roughly its
Compton wavelength. But if we adopt such a view, we are driven to consider that
most wave functions are superpositions of a great many of these natural states, and
with widely differing amplitudes. A more detailed theory is clearly needed if such
questions are to be addressed adequately.

Despite these uncertainties, it is still possible, in many different circumstances,
to estimate the expected order of magnitude of the rate of gravitationally induced
state-vector reduction according to this scheme. For a single proton, we may expect
that a superposed state of two separated spatial locations will decay to one or the
other location in something of the order of a few million years. For a water speck
10−5 cm in radius, the timescale would be about an hour or so; for a speck 10−3 cm in
radius, something like a millionth of a second. These results indeed seem reasonable,
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and if confirmed would supply a very plausible solution to the quantum measure-
ment problem, but for the moment they appear to be rather beyond what can be
experimentally tested.

It should be emphasized that none of the considerations of the present paper
gives any clear indication of the mathematical nature of the theory that would be
required to incorporate a plausible gravitationally induced spontaneous state-vector
reduction. In all probability, such mathematical considerations would have to come
from quite other directions. Indeed, this author’s own expectations are that no fully
satisfactory theory will be forthcoming until there is a revolution in the description
of quantum phenomena that is of as great a magnitude as that which Einstein
introduced (in the description of gravitational phenomena) with his general theory
of relativity.

Notes

I am grateful to Abhay Ashtekar, Jeeva Anandan, Joy Christian, Ted Newman, and Lee Smolin
and others for some very helpful discussions. I am also grateful to NSF for support under
research contract PHY 93-96246.

This chapter is printed with permission from Penrose, R., ‘On Gravity’s Role in Quantum
State Reduction’, General Relativity and Gravitation, 28(5), 1996, pp. 581–600. Copyright
1996, Plenum Publishing Corporation.
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14.1 Introduction: From Schrödinger’s cat to Penrose’s ‘OR’

Quantum mechanics – one of our two most fundamental and successful theories –
is infested with a range of deep philosophical difficulties collectively known as the
measurement problem (Shimony 1963, Bell 1990). In a nutshell, the problem may
be stated as follows: If the orthodox formulation of quantum theory – which in
general allows attributions of only objectively indefinite properties or potentiali-
ties (Heisenberg 1958) to physical objects – is interpreted in compliance with what
is usually referred to as scientific realism, then one is faced with an irreconcil-
able incompatibility between the linearity of quantum dynamics – which governs
evolution of the network of potentialities – and the apparent definite or actual
properties of the physical objects of our ‘macroscopic’ world. Moreover, to date
no epistemic explanation of these potentialities (e.g. in terms of ‘hidden vari-
ables’) has been completely successful (Shimony 1989). Thus, on the one hand
there is overwhelming experimental evidence in favour of the quantum mechan-
ical potentialities, supporting the view that they comprise a novel (i.e. classically
uncharted) metaphysical modality of Nature situated between logical possibility
and actuality (Shimony 1978, 1993a, pp. 140–62 and pp. 310–22), and on the
other hand there is phenomenologically compelling proliferation of actualities in
our everyday world, including even in the microbiological domain. The problem
then is that a universally agreeable mechanism for transition between these two
ontologically very different modalities – i.e. transition from the multiplicity of
potentialities to various specific actualities – is completely missing. As delineated,
this is clearly a very serious physical problem. What is more, as exemplified by
Shimony (1993, p. 56), the lack of a clear understanding of this apparent transition
in the world is also quite a ‘dark cloud’ for any reasonable programme of scientific
realism.

305



[10:53 2000/10/5 g:/tex/key-tex/callendr/3663-014.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Chapter 14 Page: 306 305–338

Joy Christian

Not surprisingly, there exists a vast number of proposed solutions to the measure-
ment problem in the literature (Christian 1996), some of which – the Copenhagen
interpretation for example – being almost congenital to quantum mechanics. Among
these proposed solutions there exists a somewhat dissident yet respectable tradition
of ideas – going all the way back to Feynman’s pioneering thoughts on the subject as
early as in mid-1950s (Feynman 1957) – on a possible gravitational resolution of the
problem. The basic tenet of these proposals can hardly be better motivated than in
Feynman’s own words. In his Lectures on Gravitation (Feynman 1995, pp. 12–13),
he devotes a whole section to the issue, entitled ‘On the philosophical problems
in quantizing macroscopic objects’, and contemplates on a possible breakdown of
quantum mechanics:

‘. . . I would like to suggest that it is possible that quantum mechanics fails at large
distances and for large objects. Now, mind you, I do not say that I think that
quantum mechanics does fail at large distances, I only say that it is not inconsistent
with what we do know. If this failure of quantum mechanics is connected with
gravity, we might speculatively expect this to happen for masses such that
GM 2/h̄c = 1, of M near 10−5 grams, which corresponds to some 1018 particles’.

Indeed, if quantum mechanics does fail near the Planck mass, as that is the mass
scale Feynman is referring to here, then – at last – we can put the annoying problem
of measurement to its final rest (see Fig. 14.1 for the meanings of the constants G, h̄,
and c). The judiciously employed tool in practice, the infamous Projection Postulate
often referred to as the reduction of quantum state – which in orthodox formulations
of the theory is taken as one of the unexplained basic postulates to resolve the tension
between the linearity of quantum dynamics and the plethora of physical objects
with apparent definite properties – may then be understood as an objective physical
phenomenon. From the physical viewpoint such a resolution of the measurement
problem would be quite satisfactory, since it would render the proliferation of diverse
philosophical opinions on the matter to nothing more than a curious episode in the
history of physics. For those who are not lured by pseudo-solutions such as the
‘decohering histories’ approaches (Kent 1997) and/or ‘many worlds’ approaches
(Kent 1990), a resolution of the issue by ‘objective reduction’ (‘OR’, to use Penrose’s
ingenious pun) comes across as a very attractive option, provided of course that that
is indeed the path Nature has chosen to follow (cf. Christian 1999).

Motivated by Feynman’s inspiring words quoted above, there have been sev-
eral concrete theoretical proposals of varied sophistication and predilections on
how the breakdown of quantum mechanics might come about such that quantum
superpositions are maintained only for ‘small enough’ objects, whereas reduction
of the quantum state is objectively induced by gravity for ‘sufficiently large’ objects
(Károlyházy 1966, Komar 1969, Kibble 1981, Diósi 1984, 1987, 1989, Károlyházy
et al. 1986, Ellis et al. 1989, Ghirardi et al. 1990, Christian 1994, Percival 1995, Jones
1995, Pearle and Squires 1996, Frenkel 1997, Fivel 1997). Unfortunately, most of
these proposals employ dubious or ad hoc notions such as ‘quantum fluctuations of
spacetime’ (e.g. Percival 1995) and/or ‘spontaneous localization of the wave function’
(e.g. Ghirardi et al. 1990). Since the final ‘theory of everything’ or ‘quantum gravity’
is quite far from enjoying any concrete realization (Rovelli 1998), such crude notions
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Fig. 14.1. The great dimensional monolith of physics indicating the fundamental
role played by the three universal constants G (the Newton’s gravitational constant),
h̄ (the Planck’s constant of quanta divided by 2π), and λ ≡ 1/c (the ‘causality
constant’ (Ehlers 1981), where c is the absolute upper bound on the speed of causal
influences) in various basic theories. These theories, appearing at the eight vertices
of the cube, are: CTM = Classical Theory of Mechanics, STR = Special Theory of
Relativity, GTR = General Theory of Relativity, NCT = Newton–Cartan Theory,
NQG = Newton–Cartan Quantum Gravity (constructed in Christian 1997),
GQM = Galilean–relativistic Quantum Mechanics, QTF = Quantum Theory of
(relativistic) Fields, and FQG = the elusive Full-blown Quantum Gravity. Note that
FQG must reduce to QTF, GTR, and NQG in the respective limits G → 0, h̄ → 0,
and λ → 0 (Kuchař 1980, Christian 1997, Penrose 1997, pp. 90–2).

cannot be relied upon when discussing issues as fundamental as the measurement
problem. In fact, these notions are not just unreliable, but, without the context of
a consistent ‘quantum theory of gravity’, they are also quite meaningless. For this
reason, in this chapter I shall concentrate exclusively on Penrose’s proposal of quan-
tum state reduction (1979, 1981, 1984, 1986, 1987, 1989, pp. 367–71, 1993, 1994,
1994a, pp. 339–46, 1996, 1997, 1998), since his is a minimalist approach in which he
refrains from employing any ill-understood (or oxymoronic) notions such as ‘quan-
tum fluctuations of spacetime’. Rather, he argues from the first principles, exploiting
the profound and fundamental conflict (sometimes manifested in the guise of the
so-called ‘problem of time’) between the principle of general covariance of gen-
eral relativity and the principle of superposition of quantum mechanics, to deduce
a heuristic mechanism of gravity-induced quantum state reduction. Stated differ-
ently, instead of prematurely proposing a crude theory of quantum state reduction,
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he merely provides a rationale for the mass scale at which quantum mechanics must
give way to gravitational effects, and hence to a superior theory.

Let me emphasize further that the motivations based on rather contentious
conceptual issues inwrought in the measurement problem are not an essential pre-
requisite to Penrose’s proposal for the breakdown of quantum superpositions at a
‘macroscopic’ scale. Instead, his proposal can be viewed as a strategy not only to
tackle the profound tension between the foundational principles of our two most
fundamental physical theories, general relativity and quantum mechanics, but also to
provide simultaneously a possible window of opportunity to go beyond the confin-
ing principles of these two great theories in order to arrive at even greater enveloping
‘final’ theory (Penrose 1984, Christian 1999a). Such a final theory, which presumably
would neither be purely quantal nor purely gravitational but fundamentally differ-
ent and superior, would then have to reduce to quantum mechanics and general
relativity, respectively, in some appropriate approximations, as depicted in Fig. 14.1.
Clearly, unlike the lopsided orthodox approaches towards a putative ‘quantum the-
ory of gravity’ (Rovelli 1998), this is a fairly ‘evenhanded’ approach – as Penrose
himself often puts it. For, in the orthodox approaches, quantum superpositions are
indeed presumed to be sacrosanct at all physical scales, but only at a very high price
of some radical compromises with Einstein’s theory of gravity: for example, at a
price of having to fix both the topological and differential structures of spacetime
a priori, as in the ‘loop quantum gravity’ program (Rovelli 1998). Or – even worse –
at a price of having to assume some non-dynamical causal structure as a fixed arena
for dynamical processes, as in the currently voguish ‘M-theory’ program (Banks
1998, 1998a, Polchinski 1998). Either of the compromises are, of course, out-and-
out anathema to the very essence of general relativity (Einstein 1994, p. 155, Stachel
1994, Isham 1994, Sorkin 1997).

In passing, let me also point out another significant feature of Penrose’s proposal
which, from a certain philosophical perspective (namely the ‘process’ perspective,
Whitehead 1929), puts it in a class of very attractive proposals. Unlike some other
approaches to the philosophical problems of quantum theory, his approach (and for
that matter almost all approaches appealing to the ‘objective reduction’) implicitly
takes temporal transience in the world – the incessant fading away of the specious
present into the indubitable past – not as a merely phenomenological appearance, but
as a bona fide ontological attribute of the world, in a manner, for example, espoused
by Shimony (1998). For, clearly, any gravity-induced or other intrinsic mechanism,
which purports to actualize – as a real physical process – a genuine multiplicity
of quantum mechanical potentialities to a specific choice among them, evidently
captures transiency, and thereby not only goes beyond the symmetric temporality of
quantum theory, but also acknowledges the temporal transience as a fundamental
and objective attribute of the physical world (Shimony 1998). (For anticipatory views
on ‘becoming’ along this line, see also Eddington 1929, Bondi 1952, Reichenbach
1956, Whitrow 1961.) A possibility of an empirical test confirming the objectivity
of this facet of the world via Penrose’s approach is by itself sufficient for me to
endorse his efforts wholeheartedly. But his approach has even more to offer. It
is generally believed that the classical general relativistic notion of spacetime is
meaningful only at scales well above the Planck regime, and that near the Planck scale
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the usual classical structure of spacetime emerges purely phenomenologically via a
phase transition or symmetry breaking phenomenon (Isham 1994). Accordingly,
one may incline to think that ‘the concept of “spacetime” is not a fundamental
one at all, but only something that applies in a “phenomenological” sense when
the universe is not probed too closely’ (Isham 1997). However, if the emergence
of spacetime near the Planck scale is a byproduct of the actualization of quantum
mechanical potentialities – via Penrose’s or any related mechanism – then the general
relativistic spacetime, along with its distinctively dynamical causal structure, comes
into being not as a coarse-grained phenomenological construct, but as a genuine
ontological attribute of the world, in close analogy with the special case of temporal
transience. In other words, such an ontological coming into being of spacetime near
the Planck scale would capture the ‘becoming’ not merely as temporal transience,
which is a rather ‘Newtonian’ notion, but as a much wider, dynamical, spatio-
temporal sense parallelling general relativity. (This will become clearer in Section
14.3 where I discuss Penrose’s mechanism, which is tailor-made to actualize specific
spacetime geometries out of ‘superpositions’ of such geometries.) This gratifying
possibility leaves no shred of doubt that the idea of ‘objective reduction’ in general,
and its variant proposed by Penrose in particular, is worth investigating seriously,
both theoretically and experimentally.1

Since the principle of general covariance is at the heart of Penrose’s proposal, I
begin in the next section with a closer look at the physical meaning of this funda-
mental principle, drawing lessons from Einstein’s struggle to come to terms with it
by finding a resolution of his famous ‘hole argument’. Even the reader familiar with
this episode in the history of general relativity is urged to go through the discussion
offered here, since the subtleties of the principle of general covariance provides the
basis for both Penrose’s central thesis as well as my own partial criticism of it. Next,
after alluding to the inadequacies of the orthodox quantum measurement theory, I
review Penrose’s proposal in greater detail in Section 14.3, with a special attention
to the experiment he has proposed to corroborate his quantitative prediction of
the breakdown of quantum mechanics near a specific mass scale (Section 14.3.5).
(As an aside, I also propose a new geometrical measure of gravity-induced deviation
from quantum mechanics in Section 14.3.4.) Since Penrose’s proposed experiment is
entirely within the non-relativistic domain, in the subsequent section, 14.4.1, I pro-
vide an orthodox analysis of it strictly within this domain, thereby setting the venue
for my partial criticism of his proposal in Section 14.4.2. The main conclusion here
is that, since there remains no residue of the conflict between the principles of super-
position and general covariance in the strictly Newtonian limit (and this happens to
be a rather subtle limit), Penrose’s formula for the ‘decay-time’ of quantum super-
positions produces triviality in this limit, retaining the standard quantum coherence
intact. Finally, in Section 14.4.3, before making some concluding remarks in Section
14.5, I suggest that an appropriate experiment which could in principle corrobo-
rate Penrose’s predicted effect is not the one he has proposed, but a Leggett-type
SQUID (Superconducting QUantum Interference Device) or BEC (Bose–Einstein
Condensate) experiment involving superpositions of mass distributions in relative
rotation. As a bonus, this latter analysis brings out one of the distinctive features of
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Penrose’s scheme, rendering it empirically distinguishable from all of the other (ad
hoc) quantum state reduction theories involving gravity (e.g. Ghirardi et al. 1990).

14.2 How spatio-temporal events lost their individuality

Between 1913 and 1915 Einstein (1914) put forward several versions of an argument,
later termed by him the ‘hole argument’ (‘Lochbetrachtung’), to reject what is known
as the principle of general covariance, which he himself had elevated earlier as a
criterion for selecting the field equations of any reasonable theory of gravitation.
It is only after two years of struggle to arrive at the correct field equations with no
avail that he was led to reconsider general covariance, despite the hole argument,
and realized the full significance and potency of the principle it enjoys today. In
particular – and this is also of utmost significance for our purposes here – he realized
that the hole argument and the principle of general covariance can peacefully coexist
if, and only if, the mathematical individuation of the points of a spacetime manifold
is physically meaningless. In other words, he realized that a bare spacetime manifold
without some ‘individuating field’ (Stachel 1993) such as a specific metric tensor field
defined on it is a highly fictitious mathematical entity without any direct physical
content.

Although the physical meaninglessness of a mathematical individuation of space-
time points – as a result of general covariance – is central to Penrose’s proposal
of quantum state reduction, he does not invoke the historical episode of the hole
argument to motivate this non-trivial aspect of the principle. And justifiably so.
After all, the non-triviality of the principle of general covariance (i.e. the freedom
under active diffeomorphisms of spacetime) is one of the first things one learns
about while learning general relativity. For example, Hawking and Ellis (1973) begin
their seminal treatise on the large-scale structure of spacetime by simply taking a
mathematical model of spacetime to be the entire equivalence class of copies of a
4-manifold, equipped, respectively, with Lorentzian metric fields related by active
diffeomorphisms of the manifold, without even mentioning the hole argument.
However, as we shall see, it is the hole argument – an argument capable of mislead-
ing even Einstein for two years – that demands such an identification in the first
place. Therefore, and especially considering the great deal of persistent confusion
surrounding the physical meaning of the principle of general covariance in the lit-
erature (as surveyed in Norton, 1993), for our purposes it would be worthwhile to
take a closer look at the hole argument, and thereby appreciate what is at the heart
of Penrose’s proposal of quantum state reduction. For more details on the physi-
cal meaning of general covariance the reader is referred to Stachel’s incisive analysis
(1993) of it in the modern differential geometric language; it is the general viewpoint
espoused in this reference that I shall be mostly following here (but see also Rovelli,
1991, and section 6 of Anandan, 1997, for analogous viewpoints).

Without further ado, here is Einstein’s hole argument. As depicted in Fig. 14.2,
suppose that the matter distribution encoded in a stress–energy tensor Tµν is
precisely known everywhere on a spacetime M outside of some hole H ⊂M –
i.e. outside of an open subspace of the manifoldM. (Throughout this essay I shall
be using Penrose’s abstract index notation; see Wald 1984.) Further, let there be
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Fig. 14.2. Einstein’s hole argument. If the field equations of a gravitational theory
are generally covariant, then, inside a matter-free region of some known matter
distribution, they appear to generate an infinite number of inequivalent solutions
related by active diffeomorphisms of the underlying spacetime manifold.

no physical structure defined withinH except a gravitational field represented by a
Lorentzian metric tensor field gµν ; i.e. let the stress–energy vanish identically inside
the hole: Tµν

in ≡ 0. Now suppose that the field equations of the gravitational theory
under consideration are generally covariant. By definition, this means that if a ten-
sor field X on the manifold M is a solution of the set of field equations, then the
pushed-forward tensor field φ∗X of X is also a solution of the same set of equa-
tions for any active diffeomorphism φ : M→M of the manifold M onto itself.
The set of such diffeomorphisms ofM forms a group, which is usually denoted by
Diff (M). It is crucially important here to distinguish between this genuine group
Diff (M) of global diffeomorphisms of M and the pseudo-group of transforma-
tions between overlapping pairs of local co-ordinate charts. The elements of the
latter group are sometimes referred to as passive diffeomorphisms because they can
only produce trivial transformations by merely relabelling or renaming the points
of a manifold. Admittance of only tensorial objects onM in any spacetime theory is
sufficient to guarantee compatibility with this pseudo-group of passive diffeomor-
phisms. On the other hand, the elements of the genuine group Diff (M) of active
diffeomorphisms are smooth homeomorphismsφ : M→M that can literally take
each point p ofM into some other point q := φ(p) ofM and thereby deform, for
example, a doughnut-shaped manifold into its coffee-mug-shaped copy (Nakahara
1990, p. 54). Returning to the definition of general covariance, if a metric tensor field
gµν(x) is a solution of the generally covariant field equations at any point x ofM in
an adapted local co-ordinate system, then so is the corresponding pushed-forward
tensor field (φ∗ g )µν(x) at the same point x in the same co-ordinate system. Note
that, in general, gµν and (φ∗ g )µν will be functionally different from each other
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in a given co-ordinate system; i.e. the components of (φ∗ g )µν will involve differ-
ent functions of the co-ordinates compared to those of gµν . Now, since a choice of
φ ∈ Diff (M) is by definition arbitrary, nothing prevents us from choosing a smooth
φH – a ‘hole diffeomorphism’ – which reduces to φH = id (i.e. identity) everywhere
outside and on the boundary of the hole H, but remains φH �= id within H. Such
a choice, owing to the fact Tµν ≡ 0 within the hole, implies that the action of
φH will not affect the stress–energy tensor anywhere: (φH

∗ T )µν = Tµν everywhere,
both inside and outside ofH. On the other hand, applied to the metric tensor gµν ,
φH will of course produce a new solution of the field equations according to the
above definition of general covariance, although outside of H this new solution
will remain identical to the old solution. The apparent difficulty, then, is that, even
though Tµν remains unchanged, our choice of the hole diffeomorphism φH allows
us to change the solution gµν inside the hole as non-trivially as we do not like, in
a blatant violation of the physically natural uniqueness requirement, which states
that the distribution of stress–energy specified by the tensor Tµν should uniquely
determine the metric tensor gµν representing the gravitational field. Indeed, under
the diffeomorphism φH, identical matter fields Tµν seem to lead to non-trivially
different gravitational fields inside the hole, such as gµν and (φH

∗ g )µν , since φH

is not an identity there. What is worse, even though nothing has been allowed to
change outside or on the boundary of the holeH, nothing seems to prevent the grav-
itational field (φH

∗ g )µν from being completely different for each one of the infinitely
many inequivalent diffeomorphisms φH ∈ Diff (M) that can be carried out
insideH.

As mentioned above, Einstein’s initial reaction to this dilemma was to abandon
general covariance for the sake of uniqueness requirement, and he maintained this
position for over two years. Of course, to a modern general relativist a resolution of
the apparent problem is quite obvious: The tacit assumption in the hole argument
that the mathematically different tensor fields gµν and (φH

∗ g )µν are also physically
different – i.e. correspond to different physical realities – is clearly not justified. The
two expressions gµν and (φH

∗ g )µν , no matter how non-trivially they differ mathe-
matically, must represent one and the same gravitational field physically. Thus, as
Wald puts it (1984), ‘diffeomorphisms comprise [nothing but a] gauge freedom of
any theory formulated in terms of tensor fields on a spacetime manifold’. Accord-
ingly, in formal analogy with the familiar gauge freedom of the gauge field theories,
modern general relativists take a gravitational field to physically correspond to an
entire equivalence class of metric tensor fields, related by arbitrary diffeomorphisms
of the spacetime manifold, and not just to one of the members of this class.

The analogy with the gauge freedom of the gauge field theories, however, has
only a limited appeal when it comes to general relativity. To see the difference,
recall, for example, that electromagnetic gauge transformations – the prototype of
all gauge transformations – occur at a fixed spacetime point: The vector potential
Aµ(x) defined at a point x of M is physically equivalent to the vector potential
Aµ(x) + ∂µf (x) defined at the same point x of M, for all scalar functions f (x).
Although mathematically different, both Aµ(x) and Aµ(x) + ∂µf (x) correspond to
one and the same physical electromagnetic field configuration Fµν(x), which again
depends locally on the same point x of M. On the other hand, as stressed above,
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in general relativity diffeomorphisms φ ∈ Diff (M) map one spacetime point, say
p, to another spacetime point, say q := φ(p). Therefore, if the tensor fields gµν(p)
and (φ∗ g )µν(q) are to be identified as representing one and the same gravitational
field configuration, implying that they cannot be physically distinguishable by any
means, then the two points p and q must also be physically indistinguishable, and,
consequently, they must renounce their individuality. For, if the points of M did
possess any ontologically significant individual identity of their own, then a point
p of M could be set apart from a point q of M, and that would be sufficient to
distinguish the quantity gµν(p) from the quantity (φ∗ g )µν(q), contradicting the
initial assertion.

As Einstein eventually realized, the conclusion is inescapable: The points of a
spacetime manifold M have no direct ontological significance. A point in a bare
spacetime manifold is not distinguishable from any other point – and, indeed, does
not even become a point (i.e. an event) with physical meaning – unless and until a
specific metric tensor field is dynamically determined on the manifold. In fact, in
general relativity a bare manifold not only lacks this local property, but the entire
global topological structure of spacetime is also determined only a posteriori via a
metric tensor field (Einstein 1994, Stachel 1994, Isham 1994, Sorkin 1997). Since
a dynamical metric tensor field on a manifold dynamizes the underlying topology
of the manifold, in general relativity the topology of spacetime is also not an abso-
lute element that ‘affects without being affected’. Thus, strictly speaking, the bare
manifold does not even become ‘spacetime’ with physical meaning until both the
global and local spatio-temporal structures are dynamically determined along with
a metric. Further, since spacetime points aquire their individuality in no other way
but as a byproduct of a solution of Einstein’s field equations, in general relativity
‘here’ and ‘now’ cannot be part of a physical question, but can only be part of the
answer to a question, as Stachel so aptly puts it (1994). The concepts ‘here’ and
‘now’ – and hence the entire notion of local causality – acquire ontological meaning
only a posteriori, as a part of the answer to a physical question. Anticipating the issue
discussed in the next section, this state of affairs is in sharp contrast to what one
can ask in quantum theory, which – due to its axiomatically non-dynamical causal
structure – allows ‘here’ and ‘now’ to be part of a question. Indeed, in quantum
mechanics, as we shall see, a priori individuation of spatio-temporal events is an
essential prerequisite to any meaningful notion of time-evolution.

At a risk of repetition, let me recapitulate the central point of this section in a
single sentence:

In Einstein’s theory of gravity, general covariance – i.e. invariance of physical laws
under the action of the group Diff (M) of active diffeomorphisms – expressly
forbids a priori individuation of the points of a spacetime manifold as spatio-
temporal events.

Although unfairly under-appreciated (especially within approaches towards
‘quantum gravity’ through ‘string’ or ‘M’ type theories, practically all of which being
guilty of presupposing one form or another of blatantly unjustified non-dynamical
background structure (Rovelli 1997, Banks 1998, 1998a, Polchinski 1998, Smolin
1999)), this is one of the most fundamental metaphysical tenets of general relativity.
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In this respect, contrary to what is often asserted following Kretschmann (1917), the
principle of general covariance is far from being physically vacuous. For instance, the
potency of general covariance is strikingly manifest in the following circumstance:
if Aµ is a vector field on a general relativistic manifoldM, then, unlike the situation
in electromagnetism discussed above, the value Aµ(x) at a particular point x ∈M
has no invariant physical meaning. This is because the point x can be actively trans-
posed around by the action of the diffeomorphism group Diff (M), robbing it of
any individuality of its own.

Of course, individuation of spacetime points can be achieved by a fixed ‘gauge
choice’ – that is to say, by specification of a particular metric tensor field gµν out of
the entire equivalence class of fields gµν related by gauge transformations, but that
would be at odds with general covariance. In fact, if there are any non-dynamical
structures present, such as the globally specified Minkowski metric tensor field ηµν

of special relativity, then the impact of general covariance is severely mitigated.
This is because the non-dynamical Minkowski metric tensor field, for example, can
be used to introduce a family of global inertial co-ordinate systems (or ‘inertial
individuating fields’ (Stachel 1993)) that can be transformed into each other by
the (extended) Poincaré group of isometries of the metric: £xη

µν = 0, where £x

denotes the Lie derivative, with the Killing vector field xα being a generator of the
Poincaré group of transformations (Wald 1984). These inertial co-ordinates in turn
can be used to set apart a point q from a point p of a manifold, bestowing a priori
spatio-temporal individuality to the points of the manifold (Wald 1984). For this
reason, Stachel (1993) and Wald (1984), among others, strengthen the statement
of general covariance by a condition – explicitly added to the usual requirement
of tensorial form for the law-like equations of physics – that there should not be
any preferred individuating fields in spacetime other than, or independent of, the
dynamically determined metric tensor field gµν . Here, preferred or background fields
are understood to be the ones which affect the dynamical objects of a theory, but
without being affected by them in return. They thereby provide non-dynamical
backdrops for the dynamical processes. I shall return below to this issue of the
background structure in spacetime.

In the light of this discussion, and in response to the lack of consensus on the
meaning of general covariance in the literature (Norton 1993), let me end this section
by proposing a litmus test for general covariance – formulated at the level of theory
as a whole – which captures its true physical and metaphysical essence.

A litmus test for general covariance: A given theory may qualify to be called
generally covariant if and only if the points of the spacetime 4-manifold, or a more
general N-manifold, belonging to any model of the theory do not possess physically
meaningful a priori individuality of their own.

(A model of a theory is a set of dynamical variables constituting a particular solu-
tion to the dynamical equations of the theory, and may, in general, also contain
non-dynamical structures.) Admittedly, this is not a very practical elucidation of the
principle, but it does exclude theories which are not truly generally covariant in the
sense discussed above. In particular, it excludes all of the ‘string’ or ‘M’ type theo-
ries known to date, since they all presuppose individuation-condoning background
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structure of one form or another. (For a recent attempt to overcome this potentially
detrimental deficiency of M-theory see Smolin 1999.)

14.3 Penrose’s mechanism for the objective state reduction

Even if we tentatively ignore the issue of individuation of spatio-temporal events,
there exists a further concern regarding the notion of definite events in the quantum
domain. In quantum theories (barring a few approaches to ‘quantum gravity’) one
usually takes spacetime to be a fixed continuum whose constituents are the ‘events’
at points of space at instants of time. What is implicit in this assumption is the
classicality or definiteness of the events. However, according to quantum mechanics,
in general the notions such as ‘here’ and ‘now’ could have only indefinite or potential
meaning. Further, if the conventional quantum framework is interpreted as univer-
sally applicable, objective (i.e. non-anthropocentric), and complete (Einstein et al.
1935), then, as pointed out above in the Introduction (Section 14.1), the linear nature
of quantum dynamics gives rise to some serious conceptual difficulties collectively
known as ‘the measurement problem’. These difficulties make the notion of definite
or actual events in the quantum world quite problematic, if not entirely meaning-
less (Jauch 1968, Haag 1990, 1992, Shimony 1993a). In particular, they render the
orthodox quantum theory of measurement inadequate to explain the prolific occur-
rences of actual events in the ‘macroscopic’ domain, such as a formation of a droplet
in a cloud chamber, or a blackening of a silver grain on a photographic plate. This
absurdity, occurring as a direct consequence of the linearity of quantum dynamics,
is well dramatized by Schrödinger in his notorious gedanken-experiment involv-
ing a poor cat, which ends up in a limbo between definite states of being alive
and dead.

In conventional quantum mechanics this blatant contradiction with the apparent
phenomenological facts about the occurrence of actual events is evaded by invoking
an ad hoc postulate – the Projection Postulate, which in its simplest form is usually
attributed to von Neumann. However, von Neumann’s Projection Postulate is only
a necessary but not sufficient condition for an unequivocal understanding of the
occurrence of definite events. Further, even if we accept this ad hoc postulate unre-
servedly, the process of specific actualization out of the compendium of quantum
mechanical potentialities remains completely obscure. Consequently, what is desper-
ately needed is an unequivocal physical understanding underlying the non-unitary
transition (in the standard notation; cf. Christian 1998)

|Ψ〉 ≡
N∑

j=1

λj |ψj〉 ⊗ |ϕj〉 −→ |ψk〉 ⊗ |ϕk〉. (14.1)

As discussed in Section 14.1, despite a multitude of attempts with varied sophistica-
tion and predilections, no universally acceptable explanation – physical or otherwise
– of this mysterious transition is as yet in sight. In what follows we shall see that
Penrose’s scheme provides precisely the much desired physical explanation for the
transition, and compellingly so.
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14.3.1 Motivation via a concrete example

To illustrate Penrose’s proposal within a concrete scenario, let us apply the usual
measurement procedure to a model interaction, within the non-relativistic domain,
in a specific representation – the co-ordinate representation. Let us begin by assum-
ing a global inertial co-ordinate system whose origin is affixed at the centre of
the Earth, and let ΣS and ΣA be two quantum mechanical systems constituting
a closed composite system Σ = ΣS + ΣA with their physical states represented by
the rays corresponding to normalized vectors in the Hilbert spaces HS , HA , and
HΣ = HS ⊗HA , respectively. Suppose now one wants to obtain the value of a
dynamical variable corresponding to some property of the system ΣS by means
of the system ΣA , which serves as a measuring apparatus. To this end, using the
global co-ordinate system, let a non-degenerate indicator variable QA defined by
QA|ϕj〉 = qj |ϕj〉 represent the location q of the system ΣA , which, say, has mass
M , and let a non-degenerate dynamical variable ΩS defined by ΩS|ψj〉 = ωj |ψj〉
be a time-independent function of co-ordinate x and its conjugate momentum
−ih̄ ∂/∂x of the system ΣS exclusively. Further, let the mass M (i.e. the apparatus
system ΣA) be localized initially (t < ta) at q1, and let the measurement, which is
to be achieved by moving the mass from q1 to some other location, consist in the
fact that if the value of ΩS(x ,−ih̄ ∂/∂x) is ω1 then the location of the mass remains
unchanged at q1 whereas if it is ωj 
=1 the mass is displaced from q1 to a new location
qj 
=1 ≡ q1 + ωj 
=1. An interaction Hamiltonian which precisely accounts for such a
process according to the conventional Schrödinger equation

ih̄
∂

∂t
|Ψ(t )〉 = H(t ) |Ψ(t )〉 (14.2)

exists (cf. Christian 1998), and leads to the following set of evolutions

Ψ(t < ta) = ψ1 δ(q − q1)
Hint−−→ψ1 δ(q − q1) (location unchanged)

(14.3)

but

ψj 
=1 δ(q − q1)
Hint−−→ψj 
=1 δ(q − qj 
=1) (location shifted), (14.4)

with 〈q|ϕj〉 = δ(q − qj ). More generally, if the initial state of the quantum system
ΣS is a superposition state represented by

N∑
j=1

λj ψj ,
N∑

j=1

|λj |2 = 1, (14.5)

then we have the Schrödinger’s cat-type entanglement exhibiting superposition of
the location-states of the mass at various positions:

 N∑
j=1

λjψj


 δ(q − q1)

Hint−−→
N∑

j=1

λjψj δ(q − qj ) ≡
N∑

j=1

λjψjϕj . (14.6)
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In particular, if initially we have

Ψ(t < ta) = (λ2ψ2 + λ3ψ3) δ(q − q1), |λ2|2 + |λ3|2 = 1, (14.7)

then, after the interaction (t > tb),

Ψ(t > tb) = λ2ψ2 δ(q − q2) + λ3ψ3 δ(q − q3), (14.8)

and the location of the mass will be indefinite between the two positions q2 and q3.
This of course is a perfectly respectable quantum mechanical state for the mass M
to be in, unless it is a ‘macroscopic’ object and the two locations are macroscopically
distinct. In that case the indefiniteness in the location of the mass dictated by the
linearity of quantum dynamics stands in a blatant contradiction with the evident
phenomenology of such objects.

14.3.2 The raison d’être of state reduction

Recognizing this contradiction, Penrose, among others, has tirelessly argued that
gravitation must be directly responsible for an objective resolution of this funda-
mental anomaly of quantum theory. He contends that, since the self-gravity of the
mass must also participate in such superpositions, what is actually involved here,
in accordance with the principles of Einstein’s theory of gravity, is a superposition
of two entirely different spacetime geometries; and, when the two geometries are
sufficiently different from each other, the unitary quantum mechanical description
of the situation – i.e. the linear superposition of a ‘macroscopic’ mass prescribed
by eqn. 14.8 – must break down2 (or, rather, ‘decay’), allowing nature to choose
between one or the other of the two geometries.

To understand this claim, let me bring to the surface some of the assumptions
regarding spacetime structure underlying the time-evolution dictated by eqn. 14.2,
which brought us to the state 14.8 in question. Recall that I began this section with
an assumption of a globally specified inertial frame of reference affixed at the centre
of the Earth. Actually, this is a bit too strong an assumption. Since the Schrödinger
equation (eqn. 14.2) is invariant under Galilean transformations, all one needs is a
family of such global inertial frames, each member of which is related to another by
a Galilean transformation

t −→ t ′ = t + constant (14.9)

xa −→ x′a
= Oa

b xb + vat + constant (a, b = 1, 2, 3), (14.10)

where Oa
b ∈ SO(3) is a time-independent orthonormal rotation matrix (with

Einstein’s summation convention for like indices), and v ∈ �3 is a time-independent
spatial velocity. Now, as discussed at the end of Section 14.2 above, existence of a
global inertial frame grants a priori individuality to spacetime points – a point
p1 of a spacetime manifold can be set apart from a point p2 using such inertial
co-ordinates (Wald 1984, p. 6). Consequently, in the present scenario the concepts
‘here’ and ‘now’ have a priori meaning, and they can be taken as a part of any phys-
ical question (cf. Section 14.2). In particular, it is meaningful to take location q1

of the mass M to be a part of the initial state (eqn. 14.7), since it can be set apart
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from any other location, such as the location q2 or q3 in the final state (eqn. 14.8).
If individuation of spatio-temporal events was not possible, then of course all of
the locations, q1, q2, q3, etc., would have been identified with each other as one
and the same location, and it would not have been meaningful to take q1 as a
distinct initial location of the mass (as elaborated in Section 14.2 above, such an
identification of all spacetime points is indeed what general covariance demands
in full general relativity). Now, continuing to ignore gravity for the moment, but
anticipating Penrose’s reasoning when gravity is included, let us pretend, for the
sake of argument, that the two components of the superposition in eqn. 14.8 cor-
respond to two different (flat) spacetime geometries. Accordingly, let us take two
separate inertial co-ordinate systems, one for each spacetime but related by the
transformation 14.10, for separately describing the evolution of each of the two
components of the superposition, with the initial location of the mass M being q1

as prescribed in eqn. 14.7 – i.e. assume for the moment that each component of
the superposition is evolving on its own, as it were, under the Schrödinger equation
(eqn. 14.2). Then, for the final superposed state 14.8 to be meaningful, a cru-
cially important question would be: are these two time-evolutions corresponding
to the two different spacetimes compatible with each other? In particular: is the
time-translation operator ‘∂/∂t ’ in eqn. 14.2 the same for the two superposed evo-
lutions – one displacing the mass M from q1 to q2 and the other displacing it from
q1 to q3? Unless the two time-translation operators in the two co-ordinate systems
are equivalent in some sense, we do not have a meaningful quantum gestation of
the superposition 14.8. Now, since we are in the Galilean-relativistic domain, the
two inertial frames assigned to the two spacetimes must be related by the transfor-
mation 14.10, which, upon using the chain rule (and setting O ≡ 11 for simplicity),
yields

∂

∂x′ =
∂

∂xa
, but

∂

∂t ′ =
∂

∂t
− va ∂

∂xa
. (14.11)

Thus, the time-translation operators are not the same for the two spacetimes
(cf. Penrose 1996, pp. 592–3). As a result, in general, unless v identically van-
ishes everywhere, the two superposed time-evolutions are not compatible with each
other (see Section 14.4.2, however, for a more careful analysis). The difficulty arises
for the following reason. Although in this Galilean-relativistic domain the individ-
uality of spacetime points in a given spacetime is rather easy to achieve, when it
comes to two entirely different spacetimes there still remains an ambiguity in reg-
istering the fact that the location, say q2, of the mass in one spacetime is ‘distinct’
from its location, say q3, in the other spacetime. On the other hand, the location
q2 must be unequivocally distinguishable from the location q3 for the notion of
superposition of the kind 14.8 to have any unambiguous physical meaning. Now, in
order to meaningfully set apart a location q2 in one spacetime from a location q3 in
another, a point-by-point identification of the two spacetimes is clearly necessary.
But such a pointwise identification is quite ambiguous for the two spacetimes under
consideration, as can be readily seen from eqn. 14.10, unless the arbitrarily chosen
relative spatial velocity v is set to identically vanish everywhere (i.e. not just locally).
Of course, in the present scenario, since we have ignored gravity, nothing prevents
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us from setting v ≡ 0 everywhere – i.e. by simply taking non-rotating co-ordinate
systems with constant spatial distance between them – and the apparent difficulty
completely disappears, yielding

∂

∂t ′ ≡
∂

∂t
. (14.12)

Therefore, as long as gravity is ignored, there is nothing wrong with the quan-
tum mechanical time-evolution leading to the superposed state 14.8 from the
initial state 14.7, since all of the hidden assumptions exposed in this paragraph are
justified.

The situation becomes dramatically obscure, however, when one attempts to
incorporate gravity in the above scenario in full accordance with the principles of
general relativity.3 To appreciate the central difficulty, let us try to parallel considera-
tions of the previous paragraph with due respect to the ubiquitous general-relativistic
features of spacetime.4 To begin with, once gravity is included, even the initial
state 14.7 becomes meaningless because any location such as q1 loses its a priori
meaning. Recall from Section 14.2 that in general relativity, since neither global
topological structure of spacetime nor local individuality of spatio-temporal events
has any meaning until a specific metric tensor field is dynamically determined, the
concepts ‘here’ and ‘now’ can only be part of the answer to a physical question. On
the other hand, the initial state 14.7 specifying the initial location q1 of the mass
M is part of the question itself regarding the evolution of the mass. Thus, from the
general-relativistic viewpoint – which clearly is the correct viewpoint for a ‘large
enough’ mass – the statement 14.7 is entirely meaningless. In practice, however, for
the non-relativistic situation under consideration, the much more massive Earth
comes to rescue, since it can be used to serve as an external frame of reference pro-
viding prior – albeit approximate – individuation of spacetime points (Rovelli 1991).
For the sake of argument, let us be content with such an approximate specification
of the initial location q1 of the mass, and ask: what role would the general-relativistic
features of spacetime play in the evolution of this mass either from q1 to q2 or from
q1 to q3, when these two evolutions are viewed separately – i.e. purely ‘classically’?
Now, since the self-gravity of the mass must also be taken into account here, and
since each of the two evolutions would incorporate the self-gravitational effects in
its own distinct manner to determine its own overall a posteriori spacetime geome-
try, to a good degree of classical approximation there will be essentially two distinct
spacetime geometries associated with these two evolutions. Actually, as in the case
of initial location q1, the two final locations, q2 and q3, would also acquire physical
meaning only a posteriori via the two resulting metric tensor fields – say gµν2 and gµν3 ,
respectively, since the individuation of the points of each of these two spacetimes
becomes meaningful only a posteriori by means of these metric tensor fields. It is
of paramount importance here to note that, in general, the metric tensor fields gµν2

and gµν3 would represent two strictly separate spacetimes with their own distinct
global topological and local causal structures. To dramatize this fact by means of a
rather extreme example, note that one of the two components of the superposition
leading to eqn. 14.8 might, in principle, end up having evolved into something like
a highly singular Kerr–Newman spacetime, whereas the other one might end up
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having evolved into something like a non-singular Robertson–Walker spacetime.
This observation is crucial to Penrose’s argument because, as we did in the previous
paragraph for the non-gravitational case, we must now ask whether it is meaningful
to set apart one location of the mass, say q2, from another, say q3, in order for
a superposition such as 14.8 to have any unambiguous physical meaning. And as
before, we immediately see that in order to be able to distinguish the two locations
of the mass – i.e. to register the fact that the mass has actually been displaced from
the initial location q1 to a final location, say q2, and not to any other location, say q3

– a point-by-point identification of the two spacetimes is essential. However, in the
present general-relativistic picture such a pointwise identification is utterly mean-
ingless, especially when the two geometries under consideration are ‘significantly’
different from each other. As a direct consequence of the principle of general covari-
ance, there is simply no meaningful way to make a pointwise identification between
two such distinct spacetimes in general relativity. Since the theory makes no a priori
assumption as to what the spacetime manifold is and allows the Lorentzian metric
tensor field to be any solution of Einstein’s field equations, the entire causal structure
associated with a general-relativistic spacetime is dynamical and not predetermined
(cf. Section 14.2). In other words, unlike in special relativity and the case considered
in the previous paragraph, there is simply no isometry group underlying the struc-
ture of general relativity which could allow existence of a preferred family of inertial
reference frames that may be used, first, to individuate the points of each space-
time, and then to identify one spacetime with another point-by-point. Furthermore,
the lack of an isometry group means that, in general, there are simply no Killing
vector fields of any kind in a general-relativistic spacetime, let alone a time-like
Killing vector field analogous to the time-translation operator ‘∂/∂t ’ of the non-
gravitational case considered above (cf. eqn. 14.11). Therefore, in order to continue
our argument, we have to make a further assumption: We have to assume, at least,
that the spacetimes under consideration are actually two reasonably well-defined
‘stationary’ spacetimes with two time-like Killing vector fields corresponding to the
time-symmetries of the two metric tensor fields gµν2 and gµν3 , respectively. These
Killing vector fields, we hope, would generate time-translations needed to describe
the time-evolution analogous to the one provided by the operator ‘∂/∂t ’ in the
non-gravitational case. However, even this drastic assumption hardly puts an end
to the difficulties involved in the notion of time-evolution leading to a superposi-
tion such as 14.8. One immediate difficulty is that these two Killing vector fields
generating the time-evolution are completely different for the two components of the
superposition under consideration. Since they correspond to the time-symmetries
of two essentially distinct spacetimes, they could hardly be the same. As a result,
the two Killing vector fields represent two completely different causal structures,
and hence, if we insist on implementing them, the final state corresponding to
eqn. 14.8 would involve some oxymoronic notion such as ‘superposition of two dis-
tinct causalities’. Incidentally, this problem notoriously reappears in different guises
in various approaches to ‘quantum gravity’, and it is sometimes referred to as the
‘problem of time’ (Kuchař 1991, 1992, Isham 1993). In summary, for a ‘large enough’
mass M , the final superposed state such as 14.8 is fundamentally and hopelessly
meaningless.
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14.3.3 Phenomenology of the objective state reduction

In the previous two paragraphs we saw two extreme cases. In the first of the two we
saw that, as long as gravity is ignored, the notion of quantum superposition is quite
unambiguous, thanks to the availability of a priori and exact pointwise identification
between the two ‘spacetimes’ into which a mass M could evolve. However, since
the ubiquitous gravitational effects cannot be ignored for a ‘large enough’ mass,
in the last paragraph we saw that a notion of superposition within two general-
relativistic spacetimes is completely meaningless. Thus, a priori and exact pointwise
identification of distinct spacetimes – although expressly forbidden by the principle
of general covariance – turns out to be an essential prerequisite for the notion of
superposition. In other words, the superposition principle is not as fundamental a
principle as the adherents of orthodox quantum mechanics would have us believe; it
makes sense only when the other most important principle – the principle of general
covariance – is severely mitigated. By contrast, of course, as a result of formidable
difficulties encountered in attempts to construct a Diff (M)-invariant quantum field
theory (Rovelli 1998), it is not so unpopular to assert that active general covariance
may be truly meaningful only at the classical general-relativistic level – i.e. when the
superposition principle is practically neutralized.

To bridge this gulf between our two most basic principles at least phenomeno-
logically, Penrose invites us to contemplate an intermediate physical situation for
which the notion of quantum superposition is at best approximately meaningful. In
a nutshell, his strategy is to consider first a ‘superposition’ such as 14.8 with gravity
included, but retaining at least some approximate meaning to an a priori pointwise
identification of the two spacetimes (corresponding to the two components of the
superposition). Then, after putting a practical measure on this approximation, he
uses this measure to obtain a heuristic formula for the collapse time of this superposi-
tion. Here is how this works: Consider two well-defined quantum states represented
by |Ψ2〉 and |Ψ3〉 (analogous to the states in 14.4), each stationary on its own and
possessing the same energy E :

ih̄
∂

∂t
|Ψ2〉 = E|Ψ2〉, ih̄

∂

∂t
|Ψ3〉 = E|Ψ3〉. (14.13)

In standard quantum mechanics, when gravitational effects are ignored, linearity
dictates that any superposition of these two stationary states such as

|X 〉 = λ2|Ψ2〉 + λ3|Ψ3〉 (14.14)

(cf. eqn. 14.8) must also be stationary, with the same energy E :

ih̄
∂

∂t
|X 〉 = E |X 〉. (14.15)

Thus, quantum linearity necessitates a complete degeneracy of energy for super-
positions of the two original states. However, when the gravitational fields of two
different mass distributions are incorporated in the representations |Ψ2〉 and |Ψ3〉
of these states, a crucial question arises: will the state |X 〉 still remain station-
ary with energy E? Of course, when gravity is taken into account, each of the
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two component states would correspond to two entirely different spacetimes with
a good degree of classical approximation, whether or not we assume that they are
reasonably well-defined stationary spacetimes. Consequently, as discussed above,
the time-translation operators such as ‘∂/∂t ’ corresponding to the action of the
time-like Killing vector fields of these two spacetimes would be completely different
from each other in general. They could only be the same if there were an unequivocal
pointwise correspondence between the two spacetimes. Let us assume, however, that
these two Killing vector fields are not too different from each other for the physical
situation under consideration. In that case, there would be a slight – but essential –
ill-definedness in the action of the operator ‘∂/∂t ’ when it is employed to generate
a superposed state such as 14.14, and this ill-definedness would be without doubt
reflected in the energy E of this state. One can use this ill-definedness in energy, ∆E ,
as a measure of instability of the state 14.14, and postulate the life-time of such a
‘stationary’ superposition – analogous to the half-life of an unstable particle – to be

τ =
h̄

∆E
, (14.16)

with two decay modes being the individual states |Ψ2〉 and |Ψ3〉 with relative
probabilities |λ2|2 and |λ3|2, respectively. Clearly, when there is an exact point-
wise identification between the two spacetimes, ∆E → 0, and the collapse of the
superposition never happens. On the other hand, when such an identification is
ambiguous or impossible, inducing much larger ill-definedness in the energy, the
collapse is almost instantaneous.

A noteworthy feature of the above formula is that it is independent of the
speed of light c , implying that it remains valid even in the non-relativistic domain
(cf. Fig. 14.1 and Penrose 1994, p. 339, 1996, p. 592). Further, in such a Newtonian
approximation, the ill-definedness ∆E (for an essentially static situation) turns out
to be proportional to the gravitational self-energy of the difference between the mass
distributions belonging to the two components of the superposition (Penrose 1996).
Remarkably, numerical estimates (Penrose 1994, 1996) based on such Newtonian
models for life-times of superpositions turn out to be strikingly realistic. For instance,
the life-time of superposition for a proton works out to be of the order of a few mil-
lion years, whereas a water droplet – depending on its size – is expected to be able
to maintain superposition only for a fraction of a second. Thus, the boundary near
which the reduction time is of the order of seconds is precisely the phenomenological
quantum-classical boundary of our corroborative experience.5

An important issue in any quantum measurement theory is the ‘preferred basis
problem’ (cf. section 3 of Christian 1998). The difficulty is that, without some
further criterion, one does not know which states from the general compendium of
possibilities are to be regarded as the ‘basic’ (or ‘stable’ or ‘stationary’) states and
which are to be regarded as essentially unstable ‘superpositions of basic states’ – the
states which are to reduce into the basic ones. Penrose’s suggestion is to regard –
within Newtonian approximation – the stationary solutions of what he calls the
Schrödinger–Newton equation as the basic states (Penrose 1998, Moroz et al. 1998,
Tod and Moroz 1999). (I shall elaborate on this equation, which I have independently
studied in Christian (1997), in the next section.)
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14.3.4 A different measure of deviation from quantum mechanics

As an aside, let me propose in this subsection a slightly different measure for the lack
of exact pointwise identification between the two spacetimes under consideration.
In close analogy with the above assumption of stationarity, let us assume that there
exists a displacement isometry in each of the two spacetimes, embodied in the
Killing vector fields x2 and x3 respectively – i.e. let £x2 gµν2 = 0 = £x3 gµν3 , where £x

denotes the Lie derivative with Killing vector fields xα2 and xα3 as the generators of
the displacement symmetry. Further, as before, let us assume that at least some
approximate pointwise identification between these two spacetimes is meaningful.
As a visual aid, one may think of two nearly congruent co-ordinate grids, one
assigned to each spacetime. Then, à la Penrose, I propose a measure of incongruence
between these two spacetimes to be the dimensionless parameter dσdσ, taking values
between zero and unity, 0 ≤ dσdσ ≤ 1, with

dσ := xα2∇αxσ3 − xα3∇αxσ2 . (14.17)

As it stands, this quantity is mathematically ill-defined since the Killing vectors xα2
and xα3 describe the same displacement symmetry in two quite distinct spacetimes.
However, if we reinterpret these two vectors as describing two slightly different
symmetries in one and the same spacetime, then the vector field dσ is geometrically
well-defined, and it is nothing but the commutator Killing vector field (Misner
et al. 1973, p. 654) corresponding to the two linearly independent vectors xα2 and
xα3 . In other words, dσ then is simply a measure of incongruence between the two
co-ordinates adapted to simultaneously describe symmetries corresponding to both
xα2 and xα3 within this single spacetime. This measure can now be used to postulate
a gravity-induced deviation from the orthodox quantum commutation relation for
the position and momentum of the mass M :

[Q, P] = ih̄ {1− dσdσ} . (14.18)

Clearly, when there is an exact pointwise correspondence between the two space-
times – i.e. when the Killing vector fields xα2 and xα3 are strictly identified and
dσdσ ≡ 0, we recover the standard quantum mechanical commutation relation
between the position and momentum of the mass. On the other hand, when –
for a ‘large enough’ mass – the quantity dσdσ reaches order unity, the mass
exhibits essentially classical behaviour. Thus, the parameter dσdσ provides a good
measure of ill-definedness in the canonical commutation relation due to a Penrose-
type incongruence, but now between the displacement symmetries of the two
spacetimes.

14.3.5 Penrose’s proposed experiment

Finally, let me end this section by describing a variant of a realizable experiment
proposed by Penrose to corroborate the contended ‘macroscopic’ breakdown of
quantum mechanics (1998). The present version of the experiment due to Hardy
(1998) is – arguably – somewhat simpler to perform. There are many practical
problems in both Penrose’s original proposal and Hardy’s more clever version
of it (contamination due to the ubiquitous decoherence effects being the most
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Fig. 14.3. Hardy’s version of Penrose’s proposed experiment. In an interferometric
arrangement, a beam-splitter, B, is placed in the ‘path’ of an incident photon
emanating form a source S. A horizontally movable mass M is attached to the wall
opposite to S by means of a restoring device with a spring constant k. There are two
reflecting mirrors – one of them affixed on the mass, and the other one at the end of
the vertical arm of the interferometer, both being at an exactly equal distance from
the beam-splitter. The Earth provides a frame of reference, and the final destination
of interest for the photon is the detector D.

intractable of all problems), but such practical problems will not concern us here
(cf. Penrose 1998, Hardy 1998). Further, the use of a photon in the described exper-
iment is for convenience only; in practice it may be replaced by any neutral particle,
such as an ultracold atom of a suitable kind.

The basic experimental set-up is described in Fig. 14.3. The system consists of
two objects: a ‘photon’ and a ‘macroscopic’ object of mass M , which in Penrose’s
version is a small Mössbauer crystal with about 1015 nuclei. The objective of the
arrangement is to render the ‘macroscopic’ mass in a superposition of two macro-
scopically distinct positions, as in the state 14.8 above. The ‘+’ or ‘−’ sign in the
photon states (such as |a+〉 or |c−〉), respectively, indicates a forward or back-
ward motion along a given ‘path’. For now, we simply look at the arrangement in
a purely orthodox, quantum mechanical fashion. Then, the following transforma-
tions of the photon states due to a beam-splitter may be adopted from quantum
optics:

|a±〉 ←→ 1√
2
{|b±〉 + |c±〉} (14.19)

|d±〉 ←→ 1√
2
{|c±〉 − |b±〉} , (14.20)
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with inverse relations being

|c±〉 ←→ 1√
2
{|a±〉 + |d±〉} (14.21)

|b±〉 ←→ 1√
2
{|a±〉 − |d±〉} . (14.22)

If the initial state of the incident photon is taken to be |a+〉, and the initial (or
unmoved) state of the mass M is denoted by |M0〉, then the initial state of the closed
composite system is the product state

|a+〉 ⊗ |M0〉. (14.23)

As the photon passes through the beam-splitter, this composite initial state
evolves into

1√
2
{|b+〉 + |c+〉} ⊗ |M0〉. (14.24)

Now, in the absence of the beam-splitter, if the photon happens to be in the
horizontal ‘path’, then it would reflect off the mirror affixed on the mass, giving it a
minute momentum in the ‘+’ direction. On the other hand, if the photon is arranged
to be in the vertical ‘path’, then it would simply reflect off the second mirror at the
end of that path, without affecting the mass. The net result of these two alternatives
in the presence of the beam-splitter, viewed quantum mechanically, is encoded in
the state

1√
2
{|b−〉 ⊗ |M+〉 + |c−〉 ⊗ |M0〉} . (14.25)

Since each of the two options in this superposition would lead the photon back
towards the beam-splitter, the composite state 14.25 – as the photon passes again
through the beam-splitter – will evolve into

1
2

[ {|a−〉 − |d−〉} ⊗ |M+〉 + {|a−〉 + |d−〉} ⊗ |M0〉]. (14.26)

Now, our goal here is to generate a Penrose-type superposition of the mass M .
Therefore, at this stage we isolate only those substates for which the photon could
be detected by the detector D. Thus selected from 14.26, we obtain

1√
2
{|M0〉 − |M+〉} (14.27)

for the state of the mass, isolating it in the desired, spatially distinct, ‘macroscopic’
superposition. After some minute lapse of time, say ∆t , the spring will bring the mass
back to its original position with its momentum reversed, and thereby transform
the above state into

1√
2
{|M0〉 − |M−〉} , (14.28)
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where |M−〉 is the new state of M with its momentum in the ‘−’ direction (not
shown in the figure).

At this precise moment, in order to bring about decisive statistics, we send another
photon from S into the interferometer which, upon passing through the beam-
splitter, will produce the product state

1
2 {|b+〉 + |c+〉} ⊗ {|M0〉 − |M−〉} . (14.29)

Just as before, the four terms of this state will now evolve on their own, and, after
a recoil of the photon from the two mirrors, the composite state will become

1
2

[|b−〉 ⊗ |M+〉 + |c−〉 ⊗ |M0〉 − |b−〉 ⊗ |M0〉 − |c−〉 ⊗ |M−〉].
(14.30)

It is crucial to note here that, in the third term, the momentum of the mass has
been reduced to zero by the interaction so that both the second and third terms have
the same state |M0〉 for the mass. Finally, the evolution of the photon back through
the beam-splitter will render the composite system to be in the state

1

2
√

2
{|a−〉 − |d−〉} ⊗ |M+〉 +

1√
2
|d−〉 ⊗ |M0〉

− 1

2
√

2
{|a−〉 + |d−〉} ⊗ |M−〉. (14.31)

Thus, quantum mechanics predicts that the probability of detecting a photon in
the detector D is 75%.

On the other hand, if the ‘macroscopic’ superposition of the mass such as 14.27
has undergone a Penrose-type process of state reduction, then the state of the mass
just before the second photon is sent in would not be 14.28 but a proper mixture
of |M0〉 and |M−〉. As a result, instead of 14.29, the overall disjoint state after the
photon has passed through the beam-splitter would simply be

1√
2
{|b+〉 + |c+〉} ⊗ |M0〉 or

1√
2
{|b+〉 + |c+〉} ⊗ |M−〉,

(14.32)

without any quantum coherence between the two alternatives. As the photon is
reflected off the two mirrors and passed again through the beam-splitter, these two
‘classical’ alternatives – instead of 14.31 – would evolve independently into the final
disjoint state

1
2

[ {|a−〉 − |d−〉} ⊗ |M+〉 + {|a−〉 + |d−〉} ⊗ |M0〉] (14.33)

or

1
2

[ {|a−〉 − |d−〉} ⊗ |M0〉 + {|a−〉 + |d−〉} ⊗ |M−〉]. (14.34)

Consequently, if Penrose’s proposal is on the right track, then, after the photon
passes through the beam-splitter second time around, it would go to the detector only
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50% of the time and not 75% of the time as quantum mechanics predicts. Practical
difficulties aside (Penrose 1998, Hardy 1998), this is certainly a refutable proposi-
tion (especially because the commonly held belief concerning decoherence, cf. Kay
1998 – i.e. a belief that a strong coupling to the environment inevitably destroys the
observability of quantum effects between macroscopically distinct states – is quite
misplaced, as emphasised by Leggett 1998).

14.4 A closer look at Penrose’s proposal within
Newton–Cartan framework

My main goal in this section is, first, to put forward a delicate argument that demon-
strates why Penrose’s experiment – as it stands – is not adequate to corroborate the
signatures of his proposed scheme of gravity-induced quantum state reduction,
and then to discuss briefly a couple of decisive experiments which would be able
to corroborate the putative breakdown of quantum mechanics along his line of
reasoning.

14.4.1 An orthodox analysis within strictly Newtonian domain

In order to set the stage for my argument, let us first ask whether one can pro-
vide an orthodox quantum mechanical analysis of the physics underlying Penrose’s
proposed experiment. As it turns out, one can indeed provide such an orthodox
treatment. Here, I shall outline one such treatment, which will not only direct us
towards pinpointing where and for what reasons Penrose’s approach differs from
the orthodox approach, but will also allow us to explore more decisive experiments
compared to the one he has proposed.

Clearly, to respond to Penrose’s overall conceptual scheme in orthodox man-
ner one would require a full-blown and consistent quantum theory of gravity,
which, as we know, is not yet in sight (Rovelli 1998). If we concentrate, how-
ever, not on his overall conceptual scheme but simply on his proposed experiment,
then we only require a non-relativistic quantum theory of gravity (recall from
the last section that the formula 14.16 does not depend on the speed of light).
And, fortunately, such a theory does exist. Recently, I have been able to demon-
strate (Christian 1997) that the covariantly described Newtonian gravity – the
so-called Newton–Cartan gravity which duly respects Einstein’s principle of equiv-
alence – interacting with Galilean-relativistic matter (Schrödinger fields) exists as
an exactly soluble system, both classically and quantum mechanically (cf. Fig. 14.1).
The significance of the resulting manifestly covariant unitary quantum field the-
ory of gravity lies in the fact that it is the Newton–Cartan theory of gravity, and
not the original Newtonian theory of gravity, that is the true Galilean-relativistic
limit form of Einstein’s theory of gravity. In fact, an alternative, historically
counterfactual but logically more appropriate, formulation of general relativity is
simply Newton–Cartan theory of gravity ‘plus’ the light-cone structure of the spe-
cial theory of relativity. Newton’s original theory in such a ‘generally-covariant’
Newton–Cartan framework emerges in an adscititiously chosen local inertial frame
(modulo a crucially important additional restriction on the curvature tensor, as we
shall see).
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To begin the analysis, let us first look at the classical Newton–Cartan theory.
(For further details and extensive references, consult section II of Christian 1997.)
Cartan’s spacetime reformulation of the classical Newtonian theory of gravity can
be motivated in exact analogy with Einstein’s theory of gravity. The analogy works
because the universal equality of the inertial and the passive gravitational masses is
independent of the relativization of time, and hence is equally valid at the Galilean-
relativistic level. As a result, it is possible to parallel Einstein’s theory and reconstrue
the trajectories of (only) gravitationally affected particles as geodesics of a unique,
‘non-flat ’ connection Γ satisfying

d2xi

dt 2
+ Γi

jk

dxj

dt

dxk

dt
= 0 (14.35)

in a co-ordinate basis, such that

Γµ
νλ ≡

v

Γµ
νλ +

v

Θµ
νλ :=

v

Γµ
νλ + hµα

v
∇α

v
Φtνλ, (14.36)

with
v
Φ representing the Newtonian gravitational potential relative to the freely falling

observer field v ,
v

Γµ
νλ representing the coefficients of the corresponding ‘flat’ connec-

tion (i.e. one whose coefficients can be made to vanish in a suitably chosen linear

co-ordinate system), and
v

Θµ
νλ := hµα

v
∇α

v
Φtνλ representing the traceless gravitational

field tensor associated with the Newtonian potential. Here hµν and tµν , respectively,
are the degenerate and mutually orthogonal spatial and temporal metrics with sig-
natures (0 + + +) and (+ 0 0 0), representing the immutable chronogeometrical
structure of the Newton–Cartan spacetime. They may be viewed as the ‘c → ∞’
limits of the Lorentzian metric: hµν = limc→∞(g µν/c2) and tµν = limc→∞ gµν . The
conceptual superiority of this geometrization of Newtonian gravity is reflected in

the trading of the two ‘gauge-dependent’ quantities
v
Γ and

v
Θ in favour of their gauge-

independent sum Γ. Physically, it is the ‘curved’ connection Γ rather than any ‘flat’

connection
v
Γ that can be determined by local experiments. Neither the potential

v
Φ

nor the ‘flat’ connection
v
Γ has an independent existence; they exist only relative to

an arbitrary choice of a local inertial frame. It is worth noting that, unlike in both
special and general theories of relativity, where the chronogeometrical structure
of spacetime uniquely determines its inertio-gravitational structure, in Newton–
Cartan theory these two structures are independently specified, subject only to the
compatibility conditions ∇αhβγ = 0 and ∇αtβγ = 0. In fact, the connection Γ, as
a solution of these compatibility conditions, is not unique unless a symmetry such
as Rα γ

β · δ = Rγ α
δ · β of the curvature tensor – capturing the ‘curl-freeness’ of the

Newtonian gravitational filed – is assumed (here the indices are raised by the degen-
erate spatial metric hµν). Further, although the two metric fields are immutable or
non-dynamical in the sense that their Lie derivatives vanish identically,

£xtµν ≡ 0 and £xhµν ≡ 0, (14.37)

the connection field remains dynamical, £xΓ
γ
αβ �= 0, since it is determined by the

evolving distributions of matter. The generators x = (t , xa) of the ‘isometry’ group
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defined by the conditions 14.37, represented in an arbitrary reference frame, take
the form (cf. eqn. 14.10)

t ′ = t + constant (14.38)

x′a
= Oa

b (t )xb + ca(t ) (a, b = 1, 2, 3), (14.39)

where Oa
b (t ) ∈ SO(3) forms an orthonormal rotation matrix for each value of t

(with Einstein’s summation convention for like indices), and c(t ) ∈ �3 is an arbi-
trary time-dependent vector function. Physically, these transformations connect
different observers in arbitrary (accelerating and rotating) relative motion.

With these physical motivations, the complete geometric set of gravitational field
equations of the classical Newton–Cartan theory can be written as:

hαβtβγ = 0, ∇αhβγ = 0, ∇αtβγ = 0, ∂[αtβ]γ = 0, (14.40)

Rα γ
β · δ = Rγ α

δ · β , (14.41)

and

Rµν + Λtµν = 4πGMµν , (14.42)

where the first four equations specify the degenerate ‘metric’ structure and a set of
torsion-free connections on the spacetime manifold M, the fifth one picks out the
Newton–Cartan connection from this set of generic possibilities, and the last one,
with mass-momentum tensor Mµν := limc→∞ Tµν , relates spacetime geometry to
matter in analogy with Einstein’s field equations. Alternatively, one can recover this
entire set of field equations from Einstein’s theory in the ‘c → ∞’ limit (Künzle
1976, Ehlers 1981, 1986, 1991).

The only other field equation that is compatible with the structure 14.42 (Dixon
1975), but which cannot be recovered in the ‘c → ∞’ limit of Einstein’s field
equations, is

Rαλ
· γ δ = 0 (14.43)

(where, again, the index is raised by the degenerate spatial metric hλσ). It asserts the
existence of absolute rotation in accordance with Newton’s famous ‘bucket experi-
ment’, and turns out to be of central importance for my argument against Penrose’s
experiment (cf. Section 14.4.2). Without this extra field equation, however, there
does not even exist a classical Lagrangian density for the Newton–Cartan system, let
alone a Hamiltonian density or an unambiguous phase space. Despite many diligent
attempts to construct a consistent Lagrangian density, the goal remains largely elu-
sive, thanks to the intractable geometrical obstruction resulting from the degenerate
‘metric’ structure of the Newton–Cartan spacetime.

If, however, we take the condition 14.43 as an extraneously imposed but necessary
field equation on the Newton–Cartan structure, then, after some tedious manipula-
tions (cf. Christian 1997), we can obtain an unequivocal constraint-free phase space
for the classical Newton–Cartan system coupled with Galilean-relativistic matter
(Schrödinger fields). What is more, the restriction 14.43 also permits the existence of
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a family of local inertial frames in the Newton–Cartan structure (cf. Section 14.4.2).
Given such a local frame the inertial and gravitational parts of the Newton–Cartan
connection-field can be unambiguously separated, as in the eqn. 14.36 above, and a
non-rotating linear co-ordinate system may be introduced. Then, with some gauge
choices appropriate for the Earth-nucleus system of Penrose’s experiment (recall
that Penrose’s experiment involves displacements of some 1015 nuclei), the relevant
action functional (i.e. eqn. 4.3 of Christian 1997) takes the simplified form

I =

∫
dt

∫
dx

[
1

8πG
Φ∇2Φ +

h̄2

2m
δab ∂aψ ∂bψ̄

+ i
h̄

2
(ψ ∂t ψ̄ − ψ̄ ∂tψ) + mψ̄ψΦ

]
, (14.44)

where ψ = ψ(xCM , x) is a complex Schrödinger field representing the composite
Earth-nucleus system, m is the reduced mass for the system, all spatial derivatives
are with respect to the relative co-ordinate x, and from now on the explicit reference
to observer v on the top of the scalar Newtonian potential Φ(x) is omitted. Evidently,
the convenient inertial frame I have chosen here is the CM -frame in which kinetic
energy of the centre-of-mass vanishes identically. In addition, one may also choose
xCM ≡ 0 without loss of generality so that ψ = ψ(x). Since the dynamics of the
Earth-nucleus system is entirely encapsulated in the function ψ(x), it is sufficient
to focus only on this x-dependence of ψ and ignore the free motion of the centre-
of-mass. Needless to say that, since mEarth � mnucleus , to an excellent approximation
m = mnucleus , and effectively the CM -frame is the laboratory-frame located at the
centre of the Earth.

Extremization of the functional 14.44 with respect to variations of Φ(x)
immediately yields the Newton–Poisson equation

∇2Φ(x) = −4πGmψ̄(x)ψ(x), (14.45)

which describes the manner in which a quantum mechanically treated particle bear-
ing mass m gives rise to a ‘quantized’ gravitational potential Φ(x), thereby capturing
the essence of Newtonian quantum gravity. On the other hand, extremization of
the action with respect to variations of the matter field ψ̄(x) leads to the familiar
Schrödinger equation for a quantum particle of mass m in the presence of an external
field Φ(x):

ih̄
∂

∂t
ψ(x, t ) =

[
− h̄2

2m
∇2 −mΦ(x)

]
ψ(x, t ). (14.46)

The last two equations may be reinterpreted as describing the evolution of a single
particle of mass m interacting with its own Newtonian gravitational field. Then these
coupled equations constitute a non-linear system, which can be easily seen as such
by first solving eqn. 14.45 for the potential Φ(x), giving

Φ(x) = Gm

∫
dx′ ψ̄(x′)ψ(x′)

|x − x′| , (14.47)
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and then – by substituting this solution into eqn. 14.46 – obtaining the integro-
differential equation (cf. eqn. 5.18 of Christian 1997)

ih̄
∂

∂t
ψ(x, t ) = − h̄2

2m
∇2ψ(x, t )− Gm2

∫
dx′ ψ̄(x′, t )ψ(x′, t )

|x − x′| ψ(x, t ).

(14.48)

As alluded to at the end of Section 14.3.3, Penrose has christened this equation
the ‘Schrödinger–Newton equation’, and regards the stationary solutions of it as
the ‘basic states’ into which the quantum superpositions must reduce, within this
Newtonian approximation of the full ‘quantum gravity’.

As it stands, this equation is evidently a non-linear equation describing a self-
interacting quantum particle. However, if we promote ψ to a ‘second-quantized’
field operator ψ̂ satisfying (Christian 1997)[

ψ̂(x), ψ̂
†
(x′)
]

= 1̂1δ(x − x′) (14.49)

at equal times, then this equation corresponds to a linear system of many identical
(bosonic) particles bearing mass m in the Heisenberg picture, with ψ̂ acting as an
annihilation operator in the corresponding Fock space. In particular, the properly
normal-ordered Hamiltonian operator for the system now reads

Ĥ = ĤO + ĤI, (14.50)

with

ĤO :=

∫
dx ψ̂

†
(x)

[
− h̄2

2m
∇2

]
ψ̂(x) (14.51)

and

ĤI := −1

2
Gm2

∫
dx

∫
dx′ ψ̂

†
(x′) ψ̂

†
(x) ψ̂(x) ψ̂(x′)
|x − x′| , (14.52)

which upon substitution into the Heisenberg equation of motion

ih̄
∂

∂t
ψ̂(x, t ) =

[
ψ̂(x, t ), Ĥ

]
(14.53)

yields an operator equation corresponding to eqn. 14.48. It is easy to show (Schweber
1961, p. 144) that the action of the Hamiltonian operator Ĥ on a multi-particle state
|Ψ〉 is given by 〈x1x2 · · · xn|Ĥ|Ψ〉 =

− h̄2

2m

n∑
i=1

∇2
i −

1

2
Gm2

n∑
i,j=1
i 
=j

1

|xi − xj |


 〈x1x2 · · · xn|Ψ〉, (14.54)
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which is indeed the correct action of the multi-particle Hamiltonian with gravita-
tional pair-interactions. Put differently, since the Hamiltonian equation (eqn. 14.52)
annihilates any single-particle state, the particles no longer gravitationally self-
interact. Thus, in a local inertial frame, the Newton–Cartan–Schrödinger system
(Christian 1997) reduces, formally, to the very first quantum field theory constructed
by Jordan and Klein (1927).

14.4.2 The inadequacy of Penrose’s proposed experiment

As noted above, the orthodox analysis carried out in the previous subsection is
contingent upon the extraneously imposed field equation

Rαλ
· γδ = 0, (14.55)

(eqn. 14.43), without which the existence of even a classical Lagrangian density for
the Newton–Cartan system seems impossible (cf. Christian 1997: subsection II C,
subsection IV A, footnote 6). More significantly for our purposes, unless this extra
condition prohibiting rotational holonomy is imposed on the curvature tensor, it is
not possible to recover the Newton–Poisson equation (eqn. 14.45),

∇2Φ(x) = −4πGρ(x), (14.56)

from the usual set of Newton–Cartan field equations (eqns. 14.40–14.42) (which are
obtained in the ‘c → ∞’ limit of Einstein’s theory) without any unphysical global
assumption. Thus, eqn. 14.55 embodies an essential discontinuity in the ‘c → ∞’
limit between the gravitational theories of Einstein and Newton, and without it the
Schrödinger–Newton equation (eqn. 14.46) is not meaningful.

Let us look at this state of affairs more closely (cf. Misner et al. 1973, pp.
294–5, Ehlers 1981, 1986, 1991, 1997). The only non-zero components of the
connection-field corresponding to the set of field equations (eqns. 14.40–14.42)
(and the co-ordinate transformations 14.39) are

Γa
00 =: −ga and Γb

0a = Ob
c Ȯ

c
a := hbcεacdΩd . (14.57)

With respect to a co-ordinate system, the spatial vector fields g(x, t ) and Ω(x, t )
play the part of gravitational acceleration and Coriolis angular velocity, respectively,
and the field equations (eqns. 14.40–14.42) reduce to the set

∇ · Ω = 0, ∇ × g + 2Ω̇ = 0, (14.58)

∇ × Ω = 0, ∇ · g − 2Ω2 = 4πGρ, (14.59)

where g andΩ in general depend on both x and t (and I have setΛ = 0 for simplicity).
It is clear from this set that the recovery of the Newton–Poisson equation – and
hence the reduction to the strictly Newtonian theory – is possible if and only if a co-
ordinate system exists with respect to which Ω = 0 holds. This can be achieved if Ω
is spatially constant – i.e. depends on time only. And this is precisely what is ensured
by the extra field equation (eqn. 14.55), which asserts that the parallel-transport of
spacelike vectors is path-independent. Given this condition, the co-ordinate system
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can be further specialized to a non-rotating one, with Γb
0a = 0, and the connection

coefficients can be decomposed as in eqn. 14.36, with g := −∇Φ.
This entire procedure, of course, may be sidestepped if we admit only asymptot-

ically flat spacetimes. With such a global boundary condition, the restriction 14.55
on the curvature tensor becomes redundant (Künzle 1972, Dixon 1975). How-
ever, physical evidence clearly suggests that we are not living in an ‘island universe’
(cf. Penrose 1996, pp. 593–4) – i.e. universe is not ‘an island of matter surrounded by
emptiness’ (Misner et al. 1973, p. 295). Therefore, a better procedure of recovering
the Newtonian theory from Einstein’s theory is not to impose such a strong and
unphysical global boundary condition, but, instead, to require that only the weaker
condition on the curvature tensor, 14.55, is satisfied. For, this weaker condition is
quite sufficient to recover the usual version of Newton’s theory with gravitation as
a force field on a flat, non-dynamical, a priori spacetime structure, and guarantees
existence of a class of inertial co-ordinate systems not rotating with respect to each
other; i.e. the condition suppresses time-dependence of the rotation matrix Oa

b (t )
(as a result of the restriction Γb

0a = 0), and reduces the transformation law 14.39 to

t −→ t ′ = t + constant (14.60)

xa −→ x′a
= Oa

b xb + ca(t ) (a, b = 1, 2, 3). (14.61)

Note that, unlike the asymptotic-flatness condition lim|x|→∞ Φ(x) = 0, the
weaker condition 14.55 does not suppress the arbitrary time-dependence of the
function ca(t ) – i.e. 14.55 does not reduce ca(t ) to va × t as in the Galilean trans-
formation 14.10 above. Consequently, the gravitational potential Φ in the resultant
Newtonian theory remains non-unique (Misner et al. 1973, p. 295), and, under the
diffeomorphism corresponding to the transformation 14.61, transforms (actively) as

Φ(x) −→ Φ′(x) = Φ(x)− c̈ · x. (14.62)

Let us now go back to Penrose’s hypothesis on the mechanism underlying quan-
tum state reduction discussed in Section 14.3.2 above, and retrace the steps of that
subsection within the present strictly Newtonian scenario. As before, although here
hµν and tµν would serve as ‘individuating fields’ (cf. Section 14.2) allowing pointwise
identification between two different spacetimes, due to the transformation law 14.61
there would appear to be an ambiguity in the notion of time-translation operator
analogous to eqn. 14.11,

∂

∂x′a =
∂

∂xa
but

∂

∂t
−→ ∂

∂t ′ =
∂

∂t
− ċa(t )

∂

∂xa
, (14.63)

when superpositions involving two such different spacetimes are considered. How-
ever, I submit that this ‘ambiguity’ in the present – essentially Newtonian – case is
entirely innocuous. For, in the strictly Newtonian theory being discussed here, where
a ‘spacetime’ now is simply a flat structure ‘plus’ a gravitational potential Φ(x) as
in eqn. 14.36, one must consider 14.63 together with the transformation 14.62. But
the Schrödinger–Newton equation (eqn. 14.46) – which is the appropriate equation
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here – happens to be covariant under such a concurrent transformation,6 and retains
the original form

ih̄
∂

∂t ′ψ
′(x, t ) =

[
− h̄2

2m
∇′2 −mΦ′(x)

]
ψ′(x, t ) (14.64)

(Rosen 1972, cf. also Christian 1997) with the following (active) transformation of
its solution (if it exists):

ψ(x, t ) −→ ψ′(x, t ) = eif (x,t ) ψ(x, t ). (14.65)

What is more (cf. Kuchař 1980, 1991), due to the inverse relation between transfor-
mations on the function space and transformations 14.61 on co-ordinates, eqn. 14.65
implies

ψ′(x′, t ′) = ψ(x, t ). (14.66)

That is to say, the new solution of the Schrödinger–Newton equation expressed in
the new co-ordinate system is exactly equal to the old solution expressed in the old
co-ordinate system. The new value of the ψ-field, as measured at the transformed
spacetime point, is numerically the same as its old value measured at the origi-
nal spacetime point. Now consider a superposition involving two entirely different
strictly-Newtonian ‘spacetimes’ in the co-ordinate representation analogous to the
‘superposition’ 14.14 discussed in Section 14.3,

〈x|X (t )〉 = λ2Ψ2(x, t ) + λ3Ψ′
3(x′, t ′), (14.67)

where unprimed co-ordinates correspond to one spacetime and the primed
co-ordinates to another.7 Prima facie, in accordance with the reasonings of
Section 14.3, such a superposition should be as unstable as eqn. 14.14. However,
in the present strictly Newtonian case, thanks to the relationship 14.66, the physical
state represented by 14.67 is equivalent to the superposed state

〈x|X (t )〉 = λ2Ψ2(x, t ) + λ3Ψ3(x, t ). (14.68)

And there is, of course, nothing unstable about such a superposition in this strictly
Newtonian domain. Consequently, for such a superposition, ∆E ≡ 0, and hence its
life-time τ ∼ ∞ (cf. eqn. 14.16).

Thus, as long as restriction 14.55 on the curvature tensor is satisfied – i.e. as
long as it is possible to choose a co-ordinate system with respect to which Γb

0a = 0
holds for each spacetime, the Penrose-type instability in quantum superpositions is
non-existent, a conclusion not inconsistent with the results of Christian (1997). Put
differently, given Γb

0a = 0, the Penrose-type obstruction to stability of superpositions
is sufficiently mitigated to sustain stable quantum superpositions. In physical terms,
since 14.55 postulates the existence of ‘absolute rotation’, the superposition 14.67 is
perfectly Penrose-stable as long as there is no relative rotation involved between its
two components. On the other hand, if there is a relative rotation between the two
components of 14.67 so that Γb

0a = 0 does not hold for both spacetimes, then it is
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not possible to analyse the physical system in terms of the strictly Newtonian limit
of Einstein’s theory, and, as a result, the ‘superposition’ 14.67 would be Penrose-
unstable. Unfortunately, neither in Penrose’s original experiment (1998), nor in
the version discussed in Section 14.3.5, is there any relative rotation between two
components of the superposed mass distributions. In other words, in both cases
Γb

0a = 0 holds everywhere, and hence no Penrose-type instability should be expected
in the outcome of these experiments. (Incidentally, among the known solutions of
Einstein’s field equations, the only known solution which has a genuinely Newton–
Cartan limit – i.e. in which Ω is not spatially constant, entailing that it cannot be
reduced to the strictly Newtonian case with Γb

0a = 0 – is the NUT spacetime (Ehlers
1997).)

14.4.3 More adequate experiments involving relative rotations

It is clear from the discussion above that, in order to detect Penrose-type instability in
superpositions, what we must look for is a physical system for which the components
Γb

0a of the connection field, in addition to the components Γa
00, are meaningfully non-

zero. Most conveniently, there exists extensive theoretical and experimental work on
just the kind of physical systems we require.

The first among these systems involves ‘macroscopic’ superpositions of two
screening currents in r.f.-SQUID rings, first proposed by Leggett almost two decades
ago (Leggett 1980, 1984, 1998, Leggett and Garg 1985). An r.f.-SQUID ring consists
of a loop of superconducting material interrupted by a thin Josephson tunnel junc-
tion. A persistent screening current may be generated around the loop in response
to an externally applied magnetic flux, which obeys an equation of motion simi-
lar to that of a particle moving in a one dimensional double-well potential. The
thus-generated current in the ring would be equal in magnitude in both wells,
but opposite in direction. If dissipation in the junction and decoherence due to
environment are negligible, then the orthodox quantum analysis predicts coherent
oscillations between the two distinct flux states, and, as a result, a coherent super-
position between a large number of electrons flowing around the ring in opposite
directions – clockwise or counterclockwise – is expected to exist, generating a physi-
cal situation analogous to the one in eqns. 14.14 or 14.67 above. Most importantly for
our purposes, since there would be relative rotation involved between the currents
in the two possible states, owing to the Lense–Thirring fields (Lense and Thirring
1918, Ciufolini et al. 1998) of these currents, the connection components Γb

0a , in
addition to the components Γa

00, will be non-zero. And this will unambiguously give
rise to a Penrose-type instability at an appropriate mass scale – say roughly around
1021 electrons. The number of electrons in the SQUID ring in an actual experiment
currently under scrutiny in Italy (Castellano et al. 1996) is only of the order of 1015,
but there is no reason for a theoretical upperbound on this number.

It should be noted that Penrose himself has briefly considered the possibility of
a Leggett-type experiment to test his proposal (1994a, p. 343). Recently, Anandan
(1998) has generalized Penrose’s expression for ∆E to arbitrary connection fields
(cf. footnote 5), which allows him to consider connection components other than
Γa

00, in particular the components Γb
0a , and suggest a quantitative test of Penrose’s
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ansatz via Leggett’s experiment. What is novel in my own endorsement of this
suggestion is the realization that Leggett-type experiments belong to a class of exper-
iments – namely, the class involving Γb

0a �= 0 – which is the only class available within
the non-relativistic domain to unequivocally test Penrose’s proposal.

A second more exotic physical system belonging to this class of experiments is a
superposition of two vortex states of an ultracold Bose–Einstein Condensate (BEC),
currently being studied by Cirac’s group in Austria among others (Cirac et al. 1998,
Dum et al. 1998, Butts and Rokhsar 1999). Again, owing to the Lense–Thirring
fields of such a slowly whirling BEC (clockwise or counterclockwise), a Penrose-type
instability can in principle be detected at an appropriate mass scale.

Finally, let me point out that the analysis of this section has opened up an exciting
new possibility of empirically distinguishing Penrose’s scheme from other ad hoc
theories of gravity-induced state reduction (e.g. Ghirardi et al. 1990), with the locus
of differentiation being the connection components Γb

0a . There is nothing intrinsic
in such ad hoc theories that could stop a state from reducing when these connection
components are zero – e.g. for the experiment described in Section 14.3.5 these
theories predict reduction at an appropriate scale, whereas Penrose’s scheme, for the
reasons explicated above, does not.

14.5 Concluding remarks

It should be clear that my (partial) reservations against Penrose’s proposed experi-
ment has significance only in the strictly Newtonian domain. The classical world, of
course, is not governed by Galilean-relativistic geometries, but by general-relativistic
geometries. Accordingly, the true domain of the discussion under consideration
must be the domain of full ‘quantum gravity’. And, reflecting on this domain, I
completely share Penrose’s sentiments that ‘our present picture of physical reality,
particularly in relation to the nature of time, is due for a grand shake up’ (1989,
p. 371). (Similar sentiments, arrived at from quite a different direction, are also
expressed by Shimony 1998.) The incompatibility between the fundamental princi-
ples of our two most basic theories – general relativity and quantum mechanics – is
so severe that the unflinching orthodox view maintaining a status quo for quantum
superpositions – including at such a special scale as the Planck scale – is truly baf-
fling. As brought out in several of the chapters in this book, and elaborated on
by myself in Section 14.3, the conflict between the two foundational theories has
primarily to do with the axiomatically presupposed fixed causal structure underly-
ing quantum dynamics, and the meaninglessness of such a fixed, non-dynamical,
background causal structure in the general-relativistic picture of the world. The
orthodox response to the conflict is to hold the fundamental principles of quantum
mechanics absolutely sacrosanct at the price of severe compromises with those of
Einstein’s theory of gravity. For example, Banks, one of the pioneers of the currently
popular M-theory program, has proclaimed (1998a): ‘. . . it seems quite clear that
the fundamental rules of [M-theory] will seem outlandish to anyone with a back-
ground in . . . general relativity. . . . At the moment it appears that the only things
which may remain unscathed are the fundamental principles of quantum mechan-
ics’. In contrast, representing the view of a growing minority, Penrose has argued for
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a physically more meaningful evenhanded approach in which even the superposition
principle is not held beyond reproach at all scales. It certainly requires an extraor-
dinary leap of faith in quantum mechanics (a leap, to be precise, of some seventeen
orders of magnitude in the mass scale!) to maintain that the Gordian knot – the con-
flict between our two most basic theories – can be cut without compromising the
superposition principle in some manner. My own feeling, heightened by Penrose’s
tenacious line of reasoning, is that such a faith in quantum mechanics could turn
out to be fundamentally misplaced, as so tellingly made plain by Leggett (1998):

‘Imagine going back to the year 1895 and telling one’s colleagues that classical
mechanics would break down when the product of energy and time reached a value
of order 10−34 joule seconds. They would no doubt respond gently but firmly that
any such idea must be complete nonsense, since it is totally obvious that the
structure of classical mechanics cannot tolerate any such characteristic scale!’

Indeed, one often comes across similar sentiments with regard to the beautiful
internal coherence of quantum formalism. However, considering the extraordinary
specialness of the Planck scale, I sincerely hope that our ‘quantum’ colleagues are far
less complacent than their ‘classical’ counterparts while harbouring the ‘dreams of a
final theory’.

Notes

I am truly grateful to my mentor Abner Shimony for his kind and generous financial support
without which this work would not have been possible. I am also grateful to Roger Penrose for
discussions on his ideas about gravity-induced state reduction, Lucien Hardy for kindly letting
me use his own version of Penrose’s proposed experiment before publication, Ashwin
Srinivasan for his expert help in casting figures in TeX, and Jeeva Anandan, Julian Barbour,
Harvey Brown, Roger Penrose, and Paul Tod for their comments on parts of the manuscript.

1. It should be noted that Penrose’s views on ‘becoming’ are rather different from the stance I
have taken here (1979, 1989, 1994a). In the rest of this essay I have tried to remain as faithful to
his writings as possible. For recent discussions on ‘becoming’, other than the paper by Shimony
cited above, see, for example, Zeilicovici (1986), Saunders (1996), and Magnon (1997).

2. It is worth emphasizing here that, as far as I can infer from his writings, Penrose is not
committed to any of the existing proposals of nonlinear (e.g. Weinberg 1989a) and/or
stochastic (e.g. Pearle 1993) modifications of quantum dynamics (neither am I for that
matter). Such proposals have their own technical and/or interpretational problems, and are far
from being completely satisfactory. As discussed in Section 14.1, Penrose’s proposal, by
contrast, is truly minimalist. Rather than prematurely proposing a theory of quantum state
reduction, he simply puts forward a rationale why his heuristic scheme for the actualization
potentialities must inevitably be a built-in feature of the sought-for ‘final theory’.

3. It is worth noting here that the conventional ‘quantum gravity’ treatments are of no help in
the conceptual issues under consideration. Indeed, as Penrose points out (1996, p. 589), the
conventional attitude is to treat superpositions of different spacetimes in merely formal
fashion, in terms of complex functions on the space of 3- or 4-geometries, with no pretence at
conceptual investigation of the physics that takes place within such a formal superposition.

4. Within our non-relativistic domain, a more appropriate spacetime framework is of course that
of Newton–Cartan theory (Christian 1997). This framework will be taken up in a later more
specialized discussion, but for now, for conceptual clarity, I rather not deviate from the
subtleties of the full general-relativistic picture of spacetime.

5. It should be noted that, independently of Penrose, Diósi has also proposed the same
formula 14.16 for the collapse time (1989), but he arrives at it from a rather different
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direction. Penrose’s scheme should also be contrasted (Penrose 1996) with the ‘semi-classical
approaches’ to ‘quantum gravity’ (e.g. Kibble 1981), which are well-known to be inconsistent
(Eppley and Hannah 1977, Wald 1984, pp. 382–3, Anandan 1994). Recently, Anandan (1998)
has generalized Penrose’s Newtonian expression for ∆E to a similar expression for an
arbitrary superposition of relativistic, but weak, gravitational fields, obtained in the
gravitational analogue of the Coulomb gauge in a linearized approximation applied to the
Lorentzian metric tensor field (cf. Section 14.4.3 for further comments).

6. Better still: under simultaneous gauge transformations 14.62, 14.63, and 14.65, the Lagrangian
density of the action 14.44 remains invariant except for a change in the spatial boundary term,
which of course does not contribute to the Euler–Lagrange equations 14.45 and 14.46. Thus,
the entire Schrödinger–Newton theory is unaffected by these transformations, implying that it
is independent of a particular choice of reference frame represented by ∂/∂t out of the whole
family given in 14.63. It should be noted, however, that here, as in any such demonstration of
covariance, all variations δΦ of the Newtonian potential are assumed to vanish identically at
the spatial boundary (and this is perhaps a contentious requirement in the present context).

7. Of course, since the Schrödinger–Newton equation is a non-linear equation, its more
adequate (orthodox) quantum mechanical treatment is the one given by eqns. 14.49–14.54 of
Section 14.4.1. My purpose here, however, is simply to parallel Penrose’s argument of
instability in quantum superpositions near the Planck mass.
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Lange, L. (1884), ‘Über die wissenschaftlische Fassung des Galilei’schen Beharrungsgesetz’,
Philosophische Studien 2: 266–97.

Laue, M. von (1951), Die Relativitätstheorie, Band 1, Chapter 1. Braunschweig: Vieweg.
Lawrence, R. (1993), ‘Triangulation, Categories and Extended Field Theories’, in Quantum

Topology, R. Baadhio and L. Kauffman (eds.). Singapore: World Scientific Press,
191–208.

Leggett, A. J. (1980), ‘Macroscopic Quantum Systems and the Quantum Theory of
Measurement’, Supplement of the Progress of Theoretical Physics 69: 80–100.

Leggett, A. J. (1984), ‘Schrödinger’s Cat and her Laboratory Cousins’, Contemporary Physics 25:
583–98.

349



[11:05 2000/10/5 g:/tex/key-tex/callendr/3663-REF.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy References Page: 350 339–356

References

Leggett, A. J. (1998), ‘Macroscopic Realism: What Is It, and What Do We Know About It From
Experiment?’, in Minnesota Studies in the Philosophy of Science, Vol. XVII, Quantum
Measurement: Beyond Paradox, R. A. Healey and G. Hellman (eds.). Minneapolis:
University of Minnesota Press, 1–22.

Leggett, A. J. and Garg, A. (1985), ‘Quantum Mechanics versus Macroscopic Realism: Is the Flux
There When Nobody Looks?’, Physical Review Letters 54: 857–60.
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Professor de Physique in the Université de la Méditerranée in Marseille, France.
He received the Xanthopoulos award in 1995. His main research interests are in
quantum gravity and fundamental spacetime physics.

Stefan Teufel: Mathematisches Insitut der Universität München.

William G. Unruh, a Professor of Physics at the University of British
Columbia and the Founding Director and current Fellow if the Cosmology and
Gravity Program of the Canadian Institute for Advanced Research, is interested in
the wide range of research touching on the interaction between gravity and quan-
tum theory. This has taken him as far afield as quantum computers, analysis of
counterfactual arguments in quantum mechanics, and the initial conditions of the
universe.

Robert Weingard was Professor of Philosophy at Rutgers University until
his untimely death in 1996. His work on such topics as quantum mechanics, quan-
tum field theory, Bohm’s theory, relativity, the physics of the mind–body problem,
cosmology, and string theory continues to inspire many of the contributors to this
volume.

358



[09:34 2000/10/4 g:/tex/key-tex/callendr/3663-CNT.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Contributors Page: 359 357–360

Contributors

Steven Weinstein received his Ph.D. in Philosophy at Northwestern Uni-
versity in 1998. He was a Killam Postdoctoral Fellow in physics and philosophy at the
University of British Columbia during 1998–1999, and is presently Visiting Assistant
Professor in the Philosophy Department at Princeton University.

Edward Witten is a Professor in the School of Natural Sciences at the
Institute for Advanced Study, Princeton.

359



[09:34 2000/10/4 g:/tex/key-tex/callendr/3663-CNT.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Contributors Page: 360 357–360



[18:15 2000/10/16 g:/tex/key-tex/callendr/3663-IND.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Index Page: 361 361–366

Index

absolute acceleration, 93–94, 106, 107
absolute motion, 106, 200
absolute position, 106
absolute space, 20, 51–52, 200
absolute time, 106
acceleration, 264–265

absolute, 93–94, 106, 107
radiation, 156–157
relative, 94–96

angular momentum, vanishing intrinsic, 204
‘anomaly cancellation’, 130
Archimedes, 157
Aristotle, 20, 106
Ashtekar variables, 19, 67, 75–76, 276
Atiyah’s axioms, 186

background fields, 314
background-free theory, 181–183, 189
background time, 62–63
beables, 26
best-matching, 204–205, 206, 209, 210, 211
Bianchi identity, 172
black body radiation, 259
black holes, 152–160

area, 152–153
entropy, 27, 28, 152, 153, 154–156, 157, 164–168,

169
evaporation, 12, 13, 26, 157–160
memory, 166–168, 170–172
singularities, 170
string theory models, 168–170
supersymmetric, 168
thermodynamics, 152–153, 154–157, 164

Bohmian cosmologies, 284
Bohmian mechanics, 26–27, 281–283, 285–289
Bohmian quantum gravity, 9, 27, 283–285, 288
Bose–Einstein Condensate, 336
bosons, 140, 146, 147
BRST charge, 144

canonical commutation relations, 74
canonical co-ordinates, 249–250
canonical quantum gravity, 16–20, 65, 67, 73–77, 98,

276, 277–280, 284–285
and spacetime, 21, 76–77

category theory, 21, 178–179, 189–193
functors, 191, 192
Hilb category, 190
identity, 190
isomorphism, 190
morphisms, 178, 190, 193
n-categories, 179, 192, 193
nCob, 192

causality, 21–22, 50, 64, 96–97, 98, 194, 313
change, 24, 230–236
charges, 90–91
circle radius, minimum, 134–136
clock hypothesis, 265
cobordism, 184–186

hypothesis of Baez and Dolan, 193
identity, 185–186

Codazzi constraint, 224
collapse, 9–11, 27, 281, 290
commutation relations, 92, 96–97
complex numbers, 84–85
Compton wavelength, 179

361



[18:15 2000/10/16 g:/tex/key-tex/callendr/3663-IND.tex] Ref: 3663 CALLENDER: Physics Meets Philosophy Index Page: 362 361–366

Index

conceptual problems, 102
general relativity, 45, 51–54
quantum gravity, 34, 37, 277–280
quantum theory, 45, 46–51

concreteness, misplaced, 42, 43, 53
configuration space, 216
conformal anomaly, 171
consistent histories, 49
constant mean curvature, 239–240, 247
constraints, 17, 73–74, 211, 224–225, 237, 243–244
constructive theory, 26, 259, 261
continuum concepts, 84–85
Copenhagen interpretation, 47, 290
cosmic time, 22
cotangent bundle, 216
cotangent symplectic structure, 250
coupling constant, 128
covariant approach, 66–67

D-Branes, 168–170
decoherence, 48–49, 306
degrees of freedom, 103, 181, 219
Descartes, René, 20, 105
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