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GENERAL PREFACE

Dov Gabbay, Paul Thagard, and John Woods

Whenever science operates at the cutting edge of what is known, it invariably
runs into philosophical issues about the nature of knowledge and reality. Scientific
controversies raise such questions as the relation of theory and experiment, the
nature of explanation, and the extent to which science can approximate to the
truth. Within particular sciences, special concerns arise about what exists and
how it can be known, for example in physics about the nature of space and time,
and in psychology about the nature of consciousness. Hence the philosophy of
science is an essential part of the scientific investigation of the world.

In recent decades, philosophy of science has become an increasingly central
part of philosophy in general. Although there are still philosophers who think
that theories of knowledge and reality can be developed by pure reflection, much
current philosophical work finds it necessary and valuable to take into account
relevant scientific findings. For example, the philosophy of mind is now closely
tied to empirical psychology, and political theory often intersects with economics.
Thus philosophy of science provides a valuable bridge between philosophical and
scientific inquiry.

More and more, the philosophy of science concerns itself not just with general
issues about the nature and validity of science, but especially with particular issues
that arise in specific sciences. Accordingly, we have organized this Handbook into
many volumes reflecting the full range of current research in the philosophy of
science. We invited volume editors who are fully involved in the specific sciences,
and are delighted that they have solicited contributions by scientifically-informed
philosophers and (in a few cases) philosophically-informed scientists. The result
is the most comprehensive review ever provided of the philosophy of science.

Here are the volumes in the Handbook:

Philosophy of Science: Focal Issues, edited by Theo Kuipers.

Philosophy of Physics, edited by Jeremy Butterfield and John Earman.

Philosophy of Biology, edited by Mohan Matthen and Christopher Stephens.

Philosophy of Mathematics, edited by Andrew Irvine.

Philosophy of Logic, edited by Dale Jacquette.

Philosophy of Chemistry and Pharmacology, edited by Andrea Woody and
Robin Hendry.



Dov Gabbay, Paul Thagard, and John Woods

Philosophy of Statistics, edited by Prasanta S. Bandyopadhyay and Malcolm
Forster.

Philosophy of Information, edited by Pieter Adriaans and Johan van Ben-
them.

Philosophy of Technological Sciences, edited by Anthonie Meijers.

Philosophy of Complex Systems, edited by Cliff Hooker and John Collier.

Philosophy of Earth Systems Science, edited by Bryson Brown and Kent
Peacock.

Philosophy of Psychology and Cognitive Science, edited by Paul Thagard.

Philosophy of Economics, edited by Uskali

Philosophy of Linguistics, edited by Martin Stokhof and Jeroen Groenendijk.

Mark Risjord.

Philosophy of Medicine, edited by Fred Gifford.

Details about the contents and publishing schedule of the volumes can be found
at http://www.johnwoods.ca/HPS/.

As general editors, we are extremely grateful to the volume editors for arranging
such a distinguished array of contributors and for managing their contributions.
Production of these volumes has been a huge enterprise, and our warmest thanks
go to Jane Spurr and Carol Woods for putting them together. Thanks also to
Andy Deelen and Arjen Sevenster at Elsevier for their support and direction.
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Philosophy of Anthropology and Sociology, edited by Stephen Turner and
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INTRODUCTION

Jeremy Butterfield and John Earman

1 THE PHILOSOPHY OF PHYSICS TODAY

In the last forty years, philosophy of physics has become a large and vigorous
branch of philosophy, and so has amply won its place in a series of Handbooks in
the philosophy of science. The reasons for its vigour are not far to seek. As we
see matters, there are two main reasons; the first relates to the formative years of
analytic philosophy of science, and the second to the last forty years.

First, physics had an enormous influence on the early phase of the analytic
movement in philosophy. This influence does not just reflect the fact that for the
logical positivists and logical empiricists, and for others such as Russell, physics
represented a paradigm of empirical knowledge. There are also much more specific
influences. Each of the three main pillars of modern physics — thermal physics,
quantum theory and relativity — contributed specific ideas and arguments to
philosophical debate. Among the more obvious influences are the following.

Thermal physics and the scientific controversy about the existence of atoms
bore upon the philosophical debate between realism and instrumentalism; and the
rise of statistical mechanics fuelled the philosophy of probability. As to quantum
theory, its most pervasive influence in philosophy has undoubtedly been to make
philosophers accept that a fundamental physical theory could be indeterministic.
But this influence is questionable since, as every philosopher of science knows
(or should know!), indeterminism only enters at the most controversial point of
quantum theory: viz., the alleged “collapse of the wave packet”. In any case, the
obscurity of the interpretation of quantum theory threw not only philosophers, but
also the giants of physics, such as Einstein and Bohr, into vigorous debate: and
not only about determinism, but also about other philosophical fundamentals, such
as the nature of objectivity. Finally, relativity theory, both special and general,
revolutionized the philosophy of space and time, in particular by threatening neo-
Kantian doctrines about the nature of geometry.

These influences meant that when the analytic movement became dominant in
anglophone philosophy, the interpretation of modern physics was established as
a prominent theme in its sub-discipline, philosophy of science. Accordingly, as
philosophy has grown, so has the philosophy of physics.

But from the 1960s onwards, philosophy of physics has also grown for a reason
external to philosophy. Namely, within physics itself there has been considerable

c
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Jeremy Butterfield and John Earman

interest in foundational issues, with results that have many suggestive repercus-
sions for philosophy. Again, there have been various developments within physics,
and thereby various influences on philosophy. The result, we believe, is that nowa-
days foundational issues in the fundamental physical theories provide the most
interesting and important problems in the philosophy of physics. We have chosen
the topics for this volume in accord with this conviction. In the next Subsection,
we will articulate some of these foundational issues, and thereby introduce the
Chapters of the volume.

2 CURRENT FOUNDATIONAL ISSUES IN PHYSICS

We will first discuss these issues under five headings. The first three correspond to
the three pillars of modern physics mentioned in Section 2.1; i.e. thermal physics,
quantum theory and relativity theory. The fourth and fifth concern combinations
of these pillars; and lead to speculations about the future of physics. These five
headings will provide a way of introducing most of this volume’s Chapters, albeit
not in the order in which they occur. Then, after these five headings, we will
introduce the volume’s remaining two Chapters.

2.1 Thermal physics

Controversies about the foundations of thermal physics, especially the characteri-
zation of the approach to equilibrium, have continued unabated since the days of
the field’s founding fathers, such as Maxwell and Boltzmann. Some aspects of the
original controversies can be seen again in modern discussions. But the contro-
versies have also been transformed by the development of several scientific fields;
especially the following three, which have grown enormously since the 1960s:

(i) classical mechanics, and its offspring such as ergodic theory and chaos theory;

(ii) quantum thermal physics; and

(iii) cosmology, which nowadays provides a very detailed and so fruitful context
for developing and evaluating Boltzmann’s bold idea that the ultimate origin
of the “arrow of time” is cosmological.

In this volume, the foundations of thermal physics is represented by the Chap-
ters by Uffink and by Emch, who cover classical and quantum aspects, respectively.
Among the topics Uffink discusses, two receive special attention: the evolution
of Boltzmann’s views, and the mathematical framework of stochastic dynamics.
Emch adopts the formalism of algebraic quantum statistical mechanics, and re-
views many results about that formalism’s notion of equilibrium, i.e. KMS states.
Two other Chapters also provide a little stage-setting for Uffink and Emch, though
without pursuing the relation to thermal physics: viz. the Chapters by Butterfield
on classical mechanics, and by Ellis on cosmology.

xiv
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2.2 Quantum theory

Since the 1960s, the physics community has witnessed a revival of the debates
about the interpretation of quantum theory that raged among the theory’s found-
ing fathers. In the general physics community, the single most influential author
has no doubt been John Bell, not only through his non-locality theorem and the
many experiments it engendered, but also through his critique of the “Copenhagen
orthodoxy” and his sympathy towards the pilot-wave and dynamical collapse het-
erodoxies. But in more specialist communities, there have been other crucial
factors that have animated the debate. Mathematical physicists have developed
a deep understanding of the various relations between quantum and classical the-
ories. Since the 1970s, there has been progress in understanding decoherence, so
that nowadays, almost all would accept that it plays a crucial role in the emergence
of the classical world from quantum theory. And since the 1990s, the burgeoning
fields of quantum information and computation have grown out of the interpreta-
tive debates, especially the analysis of quantum non-locality.

In this volume, these topics are taken up by Dickson, Landsman and Bub.
Dickson surveys the formalism of non-relativistic quantum theory, and some of
the main interpretative issues, including empirical content, quantum uncertainty,
the measurement problem, and non-locality. For the most part, Landsman reviews
from the perspective of mathematical physics the relations between quantum and
classical theories. In particular, he discusses various approaches to quantization
and the rigorous treatments of the classical limits h̄→ 0 and N →∞. But Lands-
man also includes discussions of the Copenhagen interpretation and decoherence.
Finally, Bub presents some central ideas and results about quantum information
and quantum computation. As a backdrop to this, he also briefly reviews classical
information and computation; and he ends by proposing some provocative morals
about the interpretation of quantum theory.

2.3 Relativity theory

The decades since the 1960s have seen spectacular developments, for both theory
and experiment, in general relativity and cosmology. But this Renaissance has
also been very fruitful as regards foundational and philosophical issues. Mathe-
matical relativists have continued to deepen our understanding of the foundations
of general relativity: foundations which, as mentioned in Section 1, were recog-
nized already in the 1920s as crucial for the philosophy of space and time. And
the recent transformation of cosmology from a largely speculative enterprise into
a genuine science has both brought various philosophical questions closer to sci-
entific resolution, and made other philosophical questions, e.g. about method and
explanation in cosmology, much more pressing.

In this volume, these topics are represented by the Chapters by Malament, Be-
lot and Ellis. Malament first expounds classical relativity. Then he discusses three
special topics: the definition of simultaneity in special relativity, the geometriza-
tion of Newtonian gravity, and the extent to which causal structure determines
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spacetime geometry. Belot’s main aim is to give a clear statement of the “problem
of time” as it occurs in classical general relativity; and to do that, he first reviews
the way time is represented in simpler classical theories, including mechanics. (Be-
lot’s Chapter thereby complements Butterfield’s: both expound aspects of classical
Hamiltonian theories, and stress how some of these aspects reappear in quantum
theories.) Ellis first reviews the present state of relativistic cosmological theory and
its observational basis; and then investigates nine philosophical themes, including
the anthropic principle and the possible existence of multiverses.

So much by way of introducing some foundational issues, and this volume’s cor-
responding Chapters, arising within one of the three pillars: thermal physics,
quantum theory and relativity. We turn to issues arising from combining the pil-
lars — or rather, parts of them! We have already adumbrated the combination of
the first and second: viz., in quantum thermal physics, reviewed here by Emch. It
is the combination of the second and third — quantum theory and relativity —
which we must now address. We shall do so under two headings, corresponding
to the distinction between special and general relativity. The first corresponds,
of course, to quantum field theory, which forms such a deep and well-established
framework for particle physics. The second corresponds to the quantum theory of
gravity — which unfortunately still remains only a hope and a goal.1

2.4 Quantum field theory

Although there are relativistic quantum mechanical theories of a fixed number of
particles, by far the most important framework combining quantum theory and
special relativity is quantum field theory. Broadly speaking, the foundational
issues raised by quantum field theory differ from quantum theory’s traditional
interpretative issues, about measurement and non-locality (cf. Quantum theory,
§2.2 above). There are two points here.

(i) Although quantum field theory of course illustrates the latter issues just
as much as elementary quantum theory does, it apparently cannot offer a
resolution of them. The measurement problem and the puzzles about non-
locality arise so directly from the unitarity and tensor-product features of
quantum theories, as to be unaffected by the extra mathematical structures

1Our image of three pillars prompts the question: what about the combination of thermal
physics and relativity? When Einstein’s special theory of relativity won acceptance, the rush
was on to revise the various branches of classical physics to make them properly relativistic. In
the case of thermodynamics, this program produced disputes about the Lorentz transformation
properties of the thermodynamic quantities of heat, temperature and entropy that persisted well
into the 1970s; (see [Liu, 1994] for an overview of this debate). As for classical general relativity
theory, there does not currently exist a statistical mechanics that incorporates the “gravitational
entropy of the universe”, and it seems unlikely that there can be such a theory. But for all anyone
knows, the ideas of thermal physics may play a crucial role in the hoped-for quantum theory of
gravity. There are hints to that effect from, for example, black hole thermodynamics, the Unruh
effect, and Hawking radiation. These topics are discussed briefly in Rovelli’s chapter.

xvi
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and physical ideas supplied by quantum field theory.2 And accordingly, it
has seemed to most workers to be wisest to pursue the traditional interpreta-
tive issues within non-relativistic quantum theory: if you identify a problem
in a simple context, but are confident that it is not an artefact of the con-
text’s simplicity, it is surely wisest to attack it there. (And as shown in this
volume by Dickson’s and Landsman’s Chapters, that context is by no means
“really simple”: non-relativistic quantum theory, and its relation to classical
theories, provides an abundance of intricate structure to investigate.)

(ii) On the other hand, there are several foundational issues that are distinctive
of quantum field theory. Perhaps the most obvious ones are: the nature of
particles (including the topic of localization), the interpretation of renormal-
ization, the interpretation of gauge structure, and the existence of unitarily
equivalent representations of the canonical commutation relations.

In this volume, these topics are taken up by ’t Hooft and by Halvorson and Müger.
First, ’t Hooft provides an authoritative survey of quantum field theory, from
the perspective of particle physics. Among the main topics he expounds are:
the quantization of scalar and spinor fields, Feynman path integrals, the ideas of
gauge fields and the Higgs mechanism, renormalization, asymptotic freedom and
confinement.

Halvorson and Müger discuss a smaller and distinctively foundational set of
issues, using the apparatus of algebraic quantum field theory. (So their use of
the algebraic approach complements the uses made by Emch and Landsman.)
They discuss the nature of particles and localization, non-locality, the assignment
of values to quantities (i.e. the measurement problem) and the definability of
quantum fields at individual spacetime points. But they devote most of their
effort to the Doplicher-Haag-Roberts theory of superselection. This theory yields
deep insights into crucial structures of quantum field theory: in particular, the
set of representations, the relation between the field and observable algebras, and
gauge groups.

2.5 Quantum gravity

Finally, we turn to the combination of quantum theory with general relativity: i.e.,
the search for a quantum theory of gravity. Here there is of course no established
theory, nor even a consensus about the best approach for constructing one. Rather
there are various research programmes that often differ in their technical aims, as
well as their motivations and conceptual frameworks. In this situation, various

2In some respects relativistic QFT makes the measurement problem worse. In non-relativistic
quantum mechanics, the collapse of the state vector is supposed to happen instantaneously;
so in the relativistic setting, one would have to develop some appropriate analogue. On the
other hand, the modal interpretation of ordinary QM — which arguably provides the best hope
for a no-collapse account of quantum measurement — faces formidable obstacles in relativistic
quantum field theory; (see [Clifton, 2000] and Halvorson and Müger, this volume, Section 5).
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foundational issues about the “ingredient” theories are cast in a new light. For
example, might quantum gravity revoke orthodox quantum theory’s unitarity, and
thereby en passant solve the measurement problem? And does the general covari-
ance (diffeomorphism invariance) of general relativity represent an important clue
about the ultimate quantum nature of space and time?

In this volume, these and related questions are taken up by Rovelli. He also
presents details about other topics: for example, the subject’s history, the two
main current programmes (string theory and loop quantum gravity), and quantum
cosmology. Ellis’ Chapter also discusses quantum cosmology. In this way, and
indeed by addressing other fundamental questions about the idea of an “ultimate”
physical theory, Ellis’s Chapter provides a natural complement to Rovelli’s.

So much by way of introducing Chapters that correspond to our initial three
pillars of modern physics, or to combinations of them. We turn to introducing
the volume’s remaining two Chapters. Here our intention has been to provide
Chapters whose discussions bridge the divisions between physical theories, and
even those between our three pillars. In this connection, it seemed to us that
of the various possible themes for such a cross-cutting discussion, the two most
appropriate ones were determinism and symmetry.3

Accordingly, Earman discusses how determinism fares in a wide class of the-
ories: his examples range from classical mechanics to proposals for quantum
gravity. He also addresses the relations between determinism and other issues:
in particular, predictability, the nature of spacetime, and symmetry. Symme-
try in classical physics is given a wide-ranging survey by Brading and Castellani.
Among other topics, they discuss: Curie’s principle, the advent of group theory
into physics, canonical transformation theory, general covariance in general rela-
tivity, and Noether’s theorems. Various aspects of symmetry and invariance in
quantum physics are discussed in the Chapters by Dickson, Emch, Halvorson, and
Landsman. But a synoptic overview of this complex topic remains to be written
— which we hope will be taken as a challenge by some of our readers.

Let us sum up this introduction to the Chapters that follow, with two comments
that are intended to give the prospective reader — perhaps daunted by the many
pages ahead! — some courage.

First, it is obvious that by our lights, there is no sharp line between philosophy
of physics and physics itself. So it is no surprise that some of the best work in
philosophy of physics is being done by physicists (as witnessed by several contri-
butions to this volume). No surprise: but certainly, to be welcomed. Conversely,
to the traditionally trained philosopher, work by philosophers of physics is liable
to look more like physics than philosophy. But for us, this blurring of disciplinary
boundaries is no cause for concern. On the contrary, it represents an opportunity
for philosophy to enrich itself. And in the other direction, philosophers can hope

3Other good candidates include the “direction of time”, or irreversibility, and the constitution
of matter. But adding chapters on these or other cross-cutting themes would have made the
volume altogether too long.
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that the foundations, and even philosophy, of physics can be a source of heuristic
ideas for physics. Or at least, physicists’ interest in foundational questions now
offers philosophers of physics the opportunity of fruitful discussion with physicists.

But agreed: this enrichment of philosophy does not come for free. And the need
to master technical material which is often difficult can be a barrier to entering
the philosophy of physics. In designing this volume, our response to this problem
has of course been, not to try to lower the barrier, at the cost of scholarship and
of fostering illusory hopes: rather our strategy has been to commission Chapters
that cover their chosen topics as expertly and completely as possible. So to the
reader, our message is simple: take heart! Once you are over the barrier, new
vistas open for the philosophy of science.

3 OUTLOOK: HALFWAY THROUGH THE WOODS

Finally, we would like to set the stage for this volume, by making two connected
comments about the present state of fundamental physics. Though it may seem
naive or hubristic for philosophers to make such comments, we believe it is worth
the risk. For we think that at the present juncture fundamental physics is unusually
open to contributions from philosophical reflection; and it will be clear from our
comments that together they represent an invitation to the reader to make such
contributions! The first comment concerns the amazing successes of present-day
physics; the second, the fact that so much remains to be understood.

3.1 Successes

First, we want to celebrate the extraordinary achievements of modern physics;
specifically of quantum theory and relativity theory. We propose to do this by
emphasising how contingent, indeed surprising, it is that the basic postulates of
relativity and quantum theory have proved to be so successful in domains of ap-
plication far beyond their originally intended ones.

Examples are legion. We pick out two examples, almost at random. Why should
the new chronogeometry introduced by Einstein’s special relativity in 1905 for
electromagnetism, be extendible to mechanics, thermodynamics and other fields
of physics? And why should the quantum theory, devised for systems of atomic
dimensions (10−8 cm) be good both for scales much smaller (cf. the nuclear
radius of ca. 10−12 cm) and vastly larger (cf. superconductivity and superfluidity,
involving scales up to 10−1 cm)? Indeed, much of the history of twentieth century
physics is the story of the consolidation of the relativity and quantum revolutions:
the story of their basic postulates being successfully applied ever more widely.

The point applies equally well when we look beyond terrestrial physics. We
have in mind, first, general relativity. It makes a wonderful story: the theory
was created principally by one person, motivated by conceptual, in part genuinely
philosophical, considerations — yet it has proved experimentally accurate in all
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kinds of astronomical situations. They range from weak gravitational fields such
as occur in the solar system — here it famously explains the minuscule portion
of the precession of the perihelion of Mercury (43” of arc per century) that was
unaccounted for by Newtonian theory; to fields 10,000 times stronger in a distant
binary pulsar — which in the last twenty years has given us compelling (albeit
indirect) evidence for a phenomenon (gravitational radiation) that was predicted
by general relativity and long searched for; and to exotic objects such as black
holes. But general relativity is not the only case. Quantum theory has also been
extraordinarily successful in application to astronomy: the obvious example is
the use of nuclear physics to develop a very accurate and detailed theories of
nucleosynthesis in the very early universe, and of stellar structure and evolution.

Indeed, there is a more general point here, going beyond the successes of rela-
tivity and quantum theory. Namely, we tend to get used to the various unities in
nature that science reveals — and thereby to forget how contingent and surprising
they are. Of course, this is not just a tendency of our own era. For example,
nineteenth century physics confirmed Newton’s law of gravitation to apply out-
side the solar system, and discovered terrestrial elements to exist in the stars (by
spectroscopy): discoveries that were briefly surprising, but soon taken for granted,
incorporated into the educated person’s ‘common sense’. Similarly nowadays: the
many and varied successes of physics in the last few decades, in modelling very ac-
curately phenomena that are (i) vastly distant in space and time, and-or (ii) very
different from our usual laboratory scales (in their characteristic values of such
quantities as energy, temperature, or pressure etc.), reveal an amazing unity in
nature. General theoretical examples of such unity, examples that span some 200
years, are: the ubiquitous fruitfulness of the field concept; and more specifically, of
least action principles. For a modern, specific (and literally spectacular) example,
consider the precision and detail of our models of supernovae; as confirmed by the
wonderful capacity of modern telescope technology to see and analyse individual
supernovae, even in other galaxies.

3.2 Clouds on the horizon

And yet: complacency, let alone triumphalism, is not in order! Current physics is
full of unfinished business — that is always true in human enquiry. But more to
the point, there are clouds on the horizon that may prove as great a threat to the
continued success of twentieth century physics, as were the anomalies confronting
classical physics at the end of the nineteenth century.

Of course, people differ about what problems they find worrisome; and among
the worrisome ones, about which problems are now ripe for being solved, or at least
worth addressing. As philosophers, we are generalists: so we naturally find all the
various foundational issues mentioned above worrisome. But being generalists, we
will of course duck out of trying to say which are the closest to solution, or which
are most likely to repay being addressed! In any case, such judgments are hard
to adjudicate, since intellectual temperament, and the happenstance of what one
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knows about or is interested in, play a large part in forming them.
But we would like to end by returning to one of Section 2’s “clouds”: a cloud

which clearly invites philosophical reflection, and perhaps contributions. Namely,
the problem of quantum gravity; in other words, the fact that general relativity
and quantum theory are yet to be reconciled. As mentioned in Section 2.5, Rovelli
(this volume) discusses how the contrasting conceptual structures of the “ingre-
dient” theories and the ongoing controversies about interpreting them, make for
conflicting basic approaches to quantum gravity.

But we want here to emphasise another reason why we still lack a successful
theory, despite great effort and ingenuity. In short, it is that the successes of
relativity and quantum theory, celebrated in Comment 3.1 above, conspire to
deprive us of the relevant experimental data.

Thus there are general reasons to expect data characteristic of quantum gravity
to arise only in a regime of energies so high (correspondingly, distances and times
so short) as to be completely inaccessible to us. To put the point in terms of
length: the value of the Planck length which we expect to be characteristic of
quantum gravity is around 10−33 cm. This is truly minuscule: the diameters of an
atom, nucleus, proton and quark are, respectively, about 10−8, 10−12, 10−13, and
10−16 cm. So the Planck length is as many orders of magnitude from the (upper
limit for) the diameter of a quark, as that diameter is from our familiar scale of a
centimetre!

We can now see how quantum gravity research is in a sense the victim of the
successes of relativity and quantum theory. For those successes suggest that we will
not see any “new physics” intimating quantum gravity even at the highest energies
accessible to us. The obvious example is quasars: these are typically a few light-
days in diameter, and yet have a luminosity 1000 times that of our galaxy (itself
100,000 light-years across, containing a hundred billion stars). They are the most
energetic, distant (and hence past!) celestial objects that we observe: they are now
believed to be fuelled by massive black holes in their cores. Yet suggestions, current
thirty years ago, that their stupendous energies and other properties that we can
observe, could only be explained by fundamentally new physics, have nowadays
given way to acceptance that “conventional physics” describing events outside the
black hole’s event-horizon can do so. (Agreed, we expect the physics deep inside
the black hole, in the vicinity of its singularity, to exhibit quantum gravity effects:
but if ever a region deserved the name “inaccessible”, this is surely one!) So the
situation is ironic, and even frustrating: quantum gravity research is a victim of
its ingredient theories’ success.

In any case, the search for quantum gravity is wide open. In closing, we would
like to endorse an analogy of Rovelli’s [1997]. He suggests that our present search
is like that of the mechanical philosophers such as Galileo and Kepler of the early
seventeenth century. Just as they struggled with the clues given by Copernicus and
Brahe, en route to the synthesis given by Newton, so also we are “halfway through
the woods”. Of course we should be wary of too grossly simplifying and periodiz-
ing the scientific revolution, and a fortiori of facile analogies between different
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historical situations. Nevertheless, it is striking what a “mixed bag” the doctrines
of figures such as Galileo and Kepler turn out to have been, from the perspec-
tive of the later synthesis. For all their genius, they appear to us (endowed with
the anachronistic benefits of hindsight), to have been “transitional figures”. One
cannot help speculating that to some future reader of twentieth century physics,
enlightened by some future synthesis of general relativity and quantum theory,
our current and recent efforts in quantum gravity will seem strange: worthy and
sensible from the authors’ perspective (one hopes), but a hodge-podge of insight
and error from the reader’s!
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ON SYMPLECTIC REDUCTION IN
CLASSICAL MECHANICS

J. Butterfield

Mottoes

The current vitality of mechanics, including the investigation of fun-
damental questions, is quite remarkable, given its long history and
development. This vitality comes about through rich interactions with
pure mathematics (from topology and geometry to group representa-
tion theory), and through new and exciting applications to areas like
control theory. It is perhaps even more remarkable that absolutely
fundamental points, such as a clear and unambiguous linking of Lie’s
work on the Lie-Poisson bracket on the dual of a Lie algebra ... with
the most basic of examples in mechanics, such as the rigid body and
the motion of ideal fluids, took nearly a century to complete.

Marsden and Ratiu [1999, pp. 431–432]

In the ordinary theory of the rigid body, six different three-dimensional
spaces IR3, IR3∗, g, g∗, TGg, T

∗Gg are identified.
Arnold [1989, p. 324]

1 INTRODUCTION

1.1 Why classical mechanics?

All hail the rise of modern physics! Between 1890 and 1930, the quantum and rela-
tivity revolutions and the consolidation of statistical physics through the discovery
of atoms, utterly transformed our understanding of nature; and had an enormous
influence on philosophy; (e.g. [Kragh, 1999; Ryckman, 2005]). Accordingly, this
Handbook concentrates on those three pillars of modern physics — quantum the-
ories, spacetime theories and thermal physics. So some initial explanation of the
inclusion of a Chapter on classical mechanics, indeed the classical mechanics of
finite-dimensional systems, is in order.

The first point to make is that the various fields of classical physics, such as
mechanics and optics, are wonderfully rich and deep, not only in their technicali-
ties, but also in their implications for the philosophy and foundations of physics.
From Newton’s time onwards, classical mechanics and optics have engendered an
enormous amount of philosophical reflection. As regards mechanics, the central

c
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2 J. Butterfield

philosophical topics are usually taken (and have traditionally been taken) to be
space, time, determinism and the action-at-a-distance nature of Newtonian gravity.
Despite their importance, I will not discuss these topics; but some other Chapters
will do so (at least in part, and sometimes in connection with theories other than
classical mechanics). I will instead focus on the theory of symplectic reduction,
which develops the well-known connection between continuous symmetries and
conserved quantities, summed up in Noether’s “first theorem”. I choose this focus
partly by way of preparation for parts of some other Chapters; and partly because,
as we will see in a moment, symplectic reduction plays a central role in the current
renaissance of classical mechanics, and in its relation to quantum physics.

I said that classical physics engendered a lot of philosophical reflection. It is
worth stressing two, mutually related, reasons for this: reasons which today’s
philosophical emphasis on the quantum and relativity revolutions tends to make
us forget.

First: in the two centuries following Newton, these fields of classical physics
were transformed out of all recognition, so that the framework for philosophi-
cal reflection about them also changed. Think of how in the nineteenth century,
classical mechanics and optics gave rise to classical field theories, especially elec-
tromagnetism. And within this Chapter’s specific field, the classical mechanics
of finite-dimensional systems, think of how even its central theoretical principles
were successively recast, in fundamental ways, by figures such Euler, Lagrange,
Hamilton and Jacobi.

Second, various difficult problems beset the attempt to rigorously formulate
classical mechanics and optics; some of which have considerable philosophical as-
pects. It is not true that once we set aside the familiar war-horse topics — space,
time, determinism and action-at-a-distance — the world-picture of classical me-
chanics is straightforward: just “matter in motion”. On the contrary. Even if we
consider only finite-dimensional systems, we can ask, for example:

(i) For point-particles (material points): can they have different masses, and
if so how? What happens when they collide? Indeed, for point-particles
interacting only by Newtonian gravity, a collision involves infinite kinetic
energy.

(ii) For extended bodies treated as finite-dimensional because rigid: what hap-
pens when they collide? Rigidity implies that forces, and displacements, are
transmitted “infinitely fast” through the body. Surely that should not be
taken literally? But if so, what justifies this idealization; and what are its
scope and limits?

As to infinite-dimensional systems (elastic solids, fluids and fields), many parts
of their theories remain active research areas, especially as regards rigorous for-
mulations and results. For contemporary work on elastic solids, for example, cf.
Marsden and Hughes [1982]. As to fluids, the existence and uniqueness of rigorous
solutions of the main governing equations, the Navier-Stokes equations, is still an
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open problem. This problem not only has an obvious bearing on determinism;
it is regarded as scientifically significant enough that its solution would secure a
million-dollar Clay Millennium prize.

These two reasons — the successive reformulations of classical mechanics, and
its philosophical problems — are of course related. The monumental figures of
classical mechanics recognized and debated the problems, and much of their tech-
nical work was aimed at solving them. As a result, there was a rich debate about
the foundations of classical physics, in particular mechanics, for the two centuries
after Newton’s Principia [1687]. A well-known example is Duhem’s instrumental-
ist philosophy of science, which arose in large measure from his realization how
hard it was to secure rigorous foundations at the microscopic level for classical
mechanics. A similar example is Hilbert’s being prompted by his contemporaries’
continuing controversies about the foundations of mechanics, to choose as the sixth
of his famous list of outstanding mathematical problems, the axiomatization of me-
chanics and probability; (but for some history of this list, cf. [Grattan-Guinness,
2000]). A third example, spanning both centuries, concerns variational principles:
the various principles of least action formulated first by Maupertuis, then by Euler
and later figures — first for finite classical mechanical systems, then for infinite
ones — prompted much discussion of teleology. Indeed, this discussion ensnared
the logical empiricists [Stöltzner, 2003]; it also bears on contemporary philosophy
of modality [Butterfield, 2004].

In the first half of the twentieth century, the quantum and relativity revolutions
tended to distract physicists, and thereby philosophers, from these and similar
problems. The excitement of developing the new theories, and of debating their
implications for natural philosophy, made it understandable, even inevitable, that
the foundational problems of classical mechanics were ignored.

Besides, this tendency was strengthened by the demands of pedagogy: the ne-
cessity of including the new theories in physics undergraduate degrees. By mid-
century, the constraints of time on the physics curriculum had led many physics
undergraduates’ education in classical mechanics to finish with the elementary
parts of analytical mechanics, especially of finite-dimensional systems: for exam-
ple, with the material in Goldstein’s well-known textbook [1950]. Such a restric-
tion is understandable, not least because: (i) the elementary theory of Lagrange’s
and Hamilton’s equations requires knowledge of ordinary differential equations,
and (ii) elementary Hamiltonian mechanics forms a springboard to learning el-
ementary canonical quantization (as does Hamilton-Jacobi theory, from another
perspective). Besides, as I mentioned: even this restricted body of theory provides
plenty of material for philosophical analysis — witness my examples above, and
the discussions of the great figures such Euler, Lagrange, Hamilton and Jacobi.

However, the second half of the twentieth century saw a renaissance in research
in classical mechanics: hence my first motto. There are four obvious reasons for
this: the first two “academic”, and the second two “practical”.

(i) Thanks partly to developments in mathematics in the decades after Hilbert’s
list of problems, the foundational questions were addressed afresh, as much
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by mathematicians and mathematically-minded engineers as by physicists.
The most relevant developments lay in such fields as topology, differential
geometry, measure theory and functional analysis. In this revival, the con-
tributions of the Soviet school, always strong in mechanics and probability,
were second to none. And relatedly: —

(ii) The quest to deepen the formulation of quantum theory, especially quantum
field theory, prompted investigation of (a) the structure of classical mechanics
and (b) quantization. For both (a) and (b), special interest attaches to the
generally much harder case of infinite systems.

(iii) The coming of spaceflight, which spurred the development of celestial me-
chanics. And relatedly: —

(iv) The study of non-linear dynamics (“chaos theory”), which was spurred by
the invention of computers.

With these diverse causes and aspects, this renaissance continues to flourish —
and accordingly, I shall duck out of trying to further adumbrate it! I shall even
duck out of trying to survey the philosophical questions that arise from the various
formulations of mechanics from Newton to Jacobi and Poincaré. Suffice it to say
here that to the various topics mentioned above, one could add, for example, the
following two: the first broadly ontological, the second broadly epistemological.

(a) The analysis of notions such as mass and force (including how they change
over time). For this topic, older books include Jammer [1957; 1961] and
McMullin [1978]; recent books include [Boudri, 2002; Jammer, 2000; Lutzen,
2005] and [Slovik, 2002]; Grattan-Guinness [2006] is a fine recent synopsis of
the history, with many references.

(b) The analysis of what it is to have an explicit solution of a mechanical problem
(including how the notion of explicit solution was gradually generalized).
This topic is multi-faceted. It not only relates to the gradual generalization
of the notion of function (a grand theme in the history of mathematics —
well surveyed by Lutzen [2003]), and to modern non-linear dynamics (cf.
(iv) above). It also relates to the simplification of problems by exploiting a
symmetry so as to reduce the number of variables one needs — and this is
the core idea of symplectic reduction. I turn to introducing it.

1.2 Prospectus

The strategy of simplifying a mechanical problem by exploiting a symmetry so
as to reduce the number of variables is one of classical mechanics’ grand themes.
It is theoretically deep, practically important, and recurrent in the history of
the subject. The best-known general theorem about the strategy is undoubtedly
Noether’s theorem, which describes a correspondence between continuous symme-
tries and conserved quantities. There is both a Lagrangian and a Hamiltonian
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version of this theorem, though for historical reasons the name ‘Noether’s theo-
rem’ is more strongly attached to the Lagrangian version. However, we shall only
need the Hamiltonian version of the theorem: it will be the “springboard” for our
exposition of symplectic reduction.1

So I shall begin by briefly reviewing the Hamiltonian version in Section 2.1. For
the moment, suffice it to make four comments (in ascending order of importance
for what follows):

(i) Both versions are underpinned by the theorems in elementary Lagrangian
and Hamiltonian mechanics about cyclic (ignorable) coordinates and their
corresponding conserved momenta.2

(ii) In fact, the Hamiltonian version of the theorem is stronger. This reflects the
fact that the canonical transformations form a “larger” group than the point
transformations. A bit more precisely: though the point transformations
q → q′ on the configuration space Q induce canonical transformations on the
phase space Γ of the qs and ps, q → q′, p→ p′ , there are yet other canonical
transformations which “mix” the qs and ps in ways that transformations
induced by point transformations do not.

(iii) I shall limit our discussion to (a) time-independent Hamiltonians and (b)
time-independent transformations. Agreed, analytical mechanics can be
developed, in both Lagrangian and Hamiltonian frameworks, while allow-
ing time-dependent dynamics and transformations. For example, in the
Lagrangian framework, allowing velocity-dependent potentials and-or time-
dependent constraints would prompt one to use what is often called the ‘ex-
tended configuration space’ Q×IR. And in the Hamiltonian framework, time-
dependence prompts one to use an ‘extended phase space’ Γ × IR. Besides,
from a philosophical viewpoint, it is important to consider time-dependent
transformations: for they include boosts, which are central to the philosoph-
ical discussion of spacetime symmetry groups, and especially of relativity

1For discussion of the Lagrangian version, cf. e.g. Brading and Castellani (this vol., ch. 13)
or (restricted to finite-dimensional systems) Butterfield [2004a, Section 4.7]. For an exposition of
both versions that is complementary to this paper (and restricted to finite-dimensional systems),
cf. Butterfield [2006]. Brading and Castellani also bring out that, even apart from Noether’s
theorems in other branches of mathematics, there are other ‘Noether’s theorems’ about symme-
tries in classical dynamics; so the present theorem is sometimes called Noether’s “first theorem”.
Note also (though I shall not develop this point) that symplectic structure can be seen in the
classical solution space of Lagrange’s equations, so that symplectic reduction can be developed
in the Lagrangian framework; cf. e.g. Marsden and Ratiu [1999, p. 10, Sections 7.2–7.5, and
13.5].

2Here we glimpse the long history of our subject: these theorems were of course clear to
these subjects’ founders. Indeed the strategy of exploiting a symmetry to reduce the number of
variables occurs already in 1687, in Newton’s solution of the Kepler problem; (or more generally,
the problem of two bodies exerting equal and opposite forces along the line between them). The
symmetries are translations and rotations, and the corresponding conserved quantities are the
linear and angular momenta. In what follows, these symmetries and quantities will provide us
with several examples.
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principles. But beware: rough-and-ready statements about symmetry, e.g.
that the Hamiltonian must be invariant under a symmetry transformation,
are liable to stumble on these transformations. To give the simplest exam-
ple: the Hamiltonian of a free particle is just its kinetic energy, which can be
made zero by transforming to the particle’s rest frame; i.e. it is not invariant
under boosts.
So a full treatment of symmetry in Hamiltonian mechanics, and thereby of
symplectic reduction, needs to treat time-dependent transformations — and
to beware! But I will set aside all these complications. Here it must suffice to
assert, without any details, that the modern theory of symplectic reduction
does cope with boosts; and more generally, with time-dependent dynamics
and transformations.

(iv) As we shall see in detail, there are three main ways in which the theory of
symplectic reduction generalizes Noether’s theorem. As one might expect,
these three ways are intimately related to one another.

(a) Noether’s theorem is “one-dimensional” in the sense that for each sym-
metry (a vector field of a special kind on the phase space), it provides
a conserved quantity, i.e. a real-valued function on the phase space,
whose value stays constant over time. So in particular, different com-
ponents of a conserved vector quantity, such as total linear momentum,
are treated separately; (in this example, the corresponding vector fields
generate translations in three different spatial directions). But in sym-
plectic reduction, the notion of a momentum map provides a “unified”
description of these different components.

(b) Given a symmetry, Noether’s theorem enables us to confine our atten-
tion to the level surface of the conserved quantity, i.e. the sub-manifold
of phase space on which the quantity takes its initial value: for the
system’s time-evolution is confined to that surface. In that sense, the
number of variables we need to consider is reduced. But in symplectic
reduction, we go further and form a quotient space from the phase space.
That is, in the jargon of logic: we define on phase space an equivalence
relation (not in general so simple as having a common value for a con-
served quantity) and form the set of equivalence classes. In the jargon
of group actions: we form the set of orbits. Passage to this quotient
space can have various good technical, and even philosophical, moti-
vations. And under good conditions, this set is itself a manifold with
lower dimension.

(c) Hamiltonian mechanics, and so Noether’s theorem, is usually formu-
lated in terms of symplectic manifolds, in particular the cotangent bun-
dle T ∗Q of the configuration space Q. (Section 2.1 will give details.)
But in symplectic reduction, we often need a (mild) generalization of
the idea of a symplectic manifold, called a Poisson manifold, in which a
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bracket, with some of the properties of the Poisson bracket, is taken as
the primitive notion. Besides, this is related to (b) in that we are often
led to a Poisson manifold, and dynamics on it, by taking the quotient
of a symplectic manifold (i.e. a phase space of the usual kind) by the
action of a symmetry group.

As comment (iv) hints, symplectic reduction is a large subject. So there are
several motivations for expounding it. As regards physics, many of the ideas and
results can be developed for finite-dimensional classical systems (to which I will
confine myself), but then generalized to infinite-dimensional systems. And in ei-
ther the original or the generalized form, they underpin developments in quantum
theories. So these ideas and results have formed part of the contemporary renais-
sance in classical mechanics; cf. (i) and (ii) at the end of Section 1.1.

As regards philosophy, symmetry is both a long-established focus for philosoph-
ical discussion, and a currently active one: cf. [Brading and Castellani, 2003].
But philosophical discussion of symplectic reduction seems to have begun only
recently, especially in some papers of Belot and Earman. This delay is presum-
ably because the technical material is more sophisticated: indeed, the theory of
symplectic reduction was cast in its current general form only in the 1970s. But
as Belot and Earman emphasise, the philosophical benefits are worth the price
of learning the technicalities. The most obvious issue is that symplectic reduc-
tion’s device of quotienting a state space casts light on philosophical issues about
whether two apparently distinct but utterly indiscernible possibilities should be
ruled to be one and the same. In Section 2, I will follow Belot in illustrating
this issue with “relationist” mechanics. Indeed, I have selected the topics for my
exposition with an eye to giving philosophical readers the background needed for
some of Belot’s discussions. His papers (which I will cite in Section 2) make many
judicious philosophical points, without burdening the reader with an exposition of
technicalities: excellent stuff — but to fully appreciate the issues, one of course
has to slog through the details.

Finally, in the context of this volume, symplectic reduction provides some back-
ground for the Chapters on the representation of time in mechanics [Belot, this
vol., ch. 2], and on the relations between classical and quantum physics [Lands-
man, this vol., ch. 5, especially Sections 4.3–4.5 and 6.5; Dickson, this vol., ch. 4].

The plan of the Chapter is as follows. I first review Noether’s theorem in
Hamiltonian mechanics as usually formulated, in Section 2.1. Then I introduce
the themes mentioned in (b) and (c) above, of quotienting a phase space, and
Poisson manifolds (Section 2.2); and illustrate these themes with “relationist”
mechanics (Section 2.3).

Thereafter, I expound the basics of symplectic reduction: (confining myself to
finite-dimensional Hamiltonian mechanics). Section by Section, the plan will be
as follows. Sections 3 and 4 review the modern geometry that will be needed. Sec-
tion 3 is mostly about Frobenius’ theorem, Lie algebras and Lie groups.3 Section

3Its first two Subsections also provide some pre-requisites for Malament (this vol.).
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4 expounds Lie group actions. It ends with the central idea of the co-adjoint rep-
resentation of a Lie group G on the dual g∗ of its Lie algebra. This review enables
us to better understand the motivations for Poisson manifolds (5.1); and then to
exhibit examples, and prove some main properties (Section 5.2 onwards). Sec-
tion 6 applies this material to symmetry and conservation in mechanical systems.
In particular, it expresses conserved quantities as momentum maps, and proves
Noether’s theorem for Hamiltonian mechanics on Poisson manifolds. Finally, in
Section 7, we prove one of the several main theorems about symplectic reduction.
It concerns the case where the natural configuration space for a system is itself a
Lie group G: this occurs both for the rigid body and ideal fluids. In this case,
quotienting the natural phase space (the cotangent bundle on G) gives a Poisson
manifold that “is” the dual g∗ of G’s Lie algebra.4

To sum up: — The overall effect of this exposition is, I hope, to illustrate this
Chapter’s mottoes: that classical mechanics is alive and kicking, not least through
deepening our understanding of time-honoured systems such as the rigid body —
whose analysis in traditional textbooks can be all too confusing!

2 SYMPLECTIC REDUCTION: AN OVERVIEW

We begin by briefly reviewing Hamiltonian mechanics and Noether’s theorem, in
Section 2.1.5 This prepares us for the idea of symplectic reduction, Section 2.2:
which we then illustrate using “relationist” mechanics, Section 2.3.

2.1 Hamiltonian mechanics and Noether’s theorem: a review

2.1.1 Symplectic manifolds; the cotangent bundle as a symplectic manifold

A symplectic structure or symplectic form on a manifold M is defined to be a
differential 2-form ω on M that is closed (i.e. its exterior derivative dω vanishes)
and is non-degenerate. That is: for any x ∈M , and any two tangent vectors at x,
σ, τ ∈ Tx:

(1) dω = 0 and ∀ τ �= 0, ∃σ : ω(τ, σ) �= 0 .

Such a pair (M,ω) is called a symplectic manifold. There is a rich theory of
symplectic manifolds; but we shall only need a small fragment of it. (In particular,
the fact that we mostly avoid the theory of canonical transformations means we
will not need the theory of Lagrangian sub-manifolds.)

4In this endeavour, my sources are four books by masters of the subject: [Abraham and
Marsden, 1978; Arnold, 1989; Marsden and Ratiu, 1999; Olver, 2000]. But again, be warned:
my selection is severe, as anyone acquainted with these or similar books will recognize.

5For more details about differential geometry, cf. Sections 3.1 and 3.2. For more details
about the geometric formulation of mechanics, cf. [Arnold, 1989; Marsden and Ratiu, 1999]; or
[Singer, 2001] (more elementary than this exposition) or [Abraham and Marsden, 1978] (more
advanced); or [Butterfield, 2006] (at the same level). Of many good textbooks of mechanics, I
admire especially [Desloge, 1982; Johns, 2005].
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First, it follows from the non-degeneracy of ω that M is even-dimensional. The
reason lies in a theorem of linear algebra, which one then applies to the tangent
space at each point of M . Namely, for any bilinear form ω : V × V → IR: if ω
is antisymmetric of rank r ≤ m ≡ dim(V ), then r is even. That is: r = 2n for
some integer n, and there is a basis e1, ..., ei, ..., em of V for which ω has a simple
expansion as wedge-products

(2) ω = Σni=1 ei ∧ ei+n ;

equivalently, ω has the m×m matrix

(3) ω =


 0 1 0
−1 0 0
0 0 0


 .

where 1 is the n×n identity matrix, and similarly for the zero matrices of various
sizes. This normal form of antisymmetric bilinear forms is an analogue of the
Gram-Schmidt theorem that an inner product space has an orthonormal basis,
and is proved by an analogous argument.

So if an antisymmetric bilinear form is non-degenerate, then r ≡ 2n = m. That
is: eq. 3 loses its bottom row and right column consisting of zero matrices, and
reduces to the 2n× 2n symplectic matrix ω given by

(4) ω :=
(

0 1
−1 0

)
.

Second, the non-degeneracy of ω implies that at any x ∈ M , there is a basis-
independent isomorphism ω� from the tangent space Tx to its dual T ∗

x . Namely:
for any x ∈M and τ ∈ Tx, the value of the 1-form ω�(τ) ∈ T ∗

x is defined by

(5) ω�(τ)(σ) := ω(σ, τ) ∀σ ∈ Tx .

This also means that a symplectic structure enables a covector field, i.e. a differ-
ential one-form, to determine a vector field. Thus for any function H : M → IR, so
that dH is a differential 1-form on M , the inverse of ω� (which we might write as
ω�), carries dH to a vector field on M , written XH . This is the key idea whereby
in Hamiltonian mechanics, a scalar function H determines a dynamics; cf. Section
2.1.2.

So far, we have noted some implications of ω being non-degenerate. The other
part of the definition of a symplectic form (for a manifold), viz. ω being closed,
dω = 0, is also important. We shall see in Section 2.1.3 that it implies that
a vector field X on a symplectic manifold M preserves the symplectic form ω
(i.e. in more physical jargon: generates (a one-parameter family of) canonical
transformations) iff X is Hamiltonian in the sense that there is a scalar function f
such that X = Xf ≡ ω�(df). Or in terms of the Poisson bracket, with · representing
the argument place for a scalar function: X(·) = Xf (·) ≡ {·, f}.

So much by way of introducing symplectic manifolds. I turn to showing that
any cotangent bundle T ∗Q is such a manifold. That is: it has, independently of a
choice of coordinates or bases, a symplectic structure.
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Given a manifold Q (dim(Q)=n) which we think of as the system’s configuration
space, choose any local coordinate system q on Q , and the natural local coordinates
q, p thereby induced on T ∗Q. We define the 2-form

(6) dp ∧ dq := dpi ∧ dqi := Σni=1dpi ∧ dqi .

In fact, eq. 6 defines the same 2-form, whatever choice we make of the chart q
on Q. For dp ∧ dq is the exterior derivative of a 1-form on T ∗Q which is defined
naturally (i.e. independently of coordinates or bases) from the derivative (also
known as: tangent) map of the projection

(7) π : (q, p) ∈ T ∗Q 	→ q ∈ Q.

Thus consider a tangent vector τ (not to Q, but) to the cotangent bundle T ∗Q
at a point η = (q, p) ∈ T ∗Q, i.e. q ∈ Q and p ∈ T ∗

q . Let us write this as:
τ ∈ Tη(T ∗Q) ≡ T(q,p)(T ∗Q). The derivative map, Dπ say, of the natural projection
π applies to τ :

(8) Dπ : τ ∈ T(q,p)(T ∗Q) 	→ (Dπ(τ)) ∈ Tq .

Now define a 1-form θH on T ∗Q by

(9) θH : τ ∈ T(q,p)(T ∗Q) 	→ p(Dπ(τ)) ∈ IR ;

where in this definition of θH , p is defined to be the second component of τ ’s
base-point (q, p) ∈ T ∗Q; i.e. τ ∈ T(q,p)(T ∗Q) and p ∈ T ∗

q .
This 1-form is called the canonical 1-form on T ∗Q. One now checks that in any

natural local coordinates q, p, θH is given by

(10) θH = pidqi.

Finally, we define a 2-form by taking the exterior derivative of θH :

(11) d(θH) := d(pidqi) ≡ dpi ∧ dqi .

One checks that this 2-form is closed (since d2 = 0) and non-degenerate. So
(T ∗Q,d(θH)) is a symplectic manifold. Accordingly, d(θH), or its negative−d(θH),
is called the canonical symplectic form, or canonical 2-form.

There is a theorem (Darboux’s theorem) to the effect that locally, any symplectic
manifold “looks like” a cotangent bundle: or in other words, a cotangent bundle is
locally a “universal” example of symplectic structure. We will not go into details;
but in Section 5.3.4, we will discuss the generalization of this theorem for Poisson
manifolds. But first we review, in the next two Subsections, Hamilton’s equations,
and Noether’s theorem.



On Symplectic Reduction in Classical Mechanics 11

2.1.2 Geometric formulations of Hamilton’s equations

As we already emphasised, the main geometric idea behind Hamilton’s equations
is that a gradient, i.e. covector, field dH determines a vector field XH . So to give a
geometric formulation of Hamilton’s equations at a point x = (q, p) in a cotangent
bundle T ∗Q, let us write ω� for the (basis-independent) isomorphism from the
cotangent space to the tangent space, T ∗

x → Tx, induced by ω := −d(θH) =
dqi ∧ dpi (cf. eq. 5). Then Hamilton’s equations may be written as:

(12) ẋ = XH(x) = ω�(dH(x)) = ω�(dH(x)) .

There are various other formulations. Applying ω�, the inverse isomorphism Tx →
T ∗
x , to both sides, we get

(13) ω�XH(x) = dH(x) .

In terms of the symplectic form ω at x, this is: for all vectors τ ∈ Tx

(14) ω(XH(x), τ) = dH(x) · τ ;

or in terms of the contraction (also known as: interior product) iXα of a differential
form α with a vector field X, with · marking the argument place of τ ∈ Tx:

(15) iXH
ω := ω(XH(x), ·) = dH(x)(·) .

More briefly, and now written for any function f , it is:

(16) iXf
ω = df .

Finally, recall the relation between the Poisson bracket and the directional deriva-
tive (or the Lie derivative L) of a function: viz.

(17) LXf
g = dg(Xf ) = Xf (g) = {g, f} .

Combining this with eq. 16, we can state the relation between the symplectic form
and Poisson bracket in the form:

(18) {g, f} = dg(Xf ) = iXf
dg = iXf

(iXg
ω) = ω(Xg,Xf ) .

2.1.3 Noether’s theorem

The core idea of Noether’s theorem, in both the Lagrangian and Hamiltonian
frameworks, is that to every continuous symmetry of the system there corresponds
a conserved quantity (a first integral, a constant of the motion). The idea of a
continuous symmetry is made precise along the following lines: a symmetry is
a vector field on the state-space that (i) preserves the Lagrangian (respectively,
Hamiltonian) and (ii) “respects” the structure of the state-space.

In the Hamiltonian framework, the heart of the proof is a “one-liner” based on
the fact that the Poisson bracket is antisymmetric. Thus for any scalar functions
f and H on a symplectic manifold (M,ω) (and so with a Poisson bracket given by
eq. 18), we have that at any point x ∈M
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(19) Xf (H)(x) ≡ {H, f}(x) = 0 iff 0 = {f,H}(x) ≡ XH(f)(x) .

In words: around x, H is constant under the flow of the vector field Xf (i.e. under
what the evolution would be if f was the Hamiltonian) iff f is constant under the
flow XH . Thinking of H as the physical Hamiltonian, so that XH represents the
real time-evolution (sometimes called: the dynamical flow), this means: around
x, Xf preserves the Hamiltonian iff f is constant under time-evolution, i.e. f is a
conserved quantity (a constant of the motion).

But we need to be careful about clause (ii) above: the idea that a vector field
“respects” the structure of the state-space. In the Hamiltonian framework, this is
made precise as preserving the symplectic form. Thus we define a vector field X
on a symplectic manifold (M,ω) to be symplectic (also known as: canonical) iff
the Lie-derivative along X of the symplectic form vanishes, i.e. LXω = 0. (This
definition is equivalent to X’s generating (active) canonical transformations, and
to its preserving the Poisson bracket. But I will not go into details about these
equivalences: for they belong to the theory of canonical transformations, which,
as mentioned, I will not need to develop.)

We also define a Hamilton system to be a triple (M,ω,H) where (M,ω) is a
symplectic manifold and H : M → IR, i.e. M ∈ F(M). And then we define a
(continuous) symmetry of a Hamiltonian system to be a vector field X on M that:

(i) preserves the Hamiltonian function, LXH = 0; and

(ii) preserves the symplectic form, LXω = 0.

These definitions mean that to prove Noether’s theorem from eq. 19, it will
suffice to prove that a vector field X is symplectic iff it is locally of the form
Xf . Such a vector field is called locally Hamiltonian. (And a vector field is called
Hamiltonian if there is a global scalar f : M → IR such that X = Xf .) In fact, two
results from the theory of differential forms, the Poincaré Lemma and Cartan’s
magic formula, make it easy to prove this; (for a vector field on any symplectic
manifold (M,ω), i.e. (M,ω) does not need to be a cotangent bundle).

Again writing d for the exterior derivative, we recall that a k-form α is called:

(i) exact if there is a (k − 1)-form β such that α = dβ; (cf. the elementary
definition of an exact differential);

(ii) closed if dα = 0.

The Poincaré Lemma states that every closed form is locally exact. To be precise:
for any open set U of M , we define the vector space Ωk(U) of k-form fields on
U . Then the Poincaré Lemma states that if α ∈ Ωk(M) is closed, then at every
x ∈M there is a neighbourhood U such that α |U ∈ Ωk(U) is exact.

Cartan’s magic formula is a useful formula (proved by straightforward calcula-
tion) relating the Lie derivative, contraction and the exterior derivative. It says
that if X is a vector field and α a k-form on a manifold M , then the Lie derivative
of α with respect to X (i.e. along the flow of X) is
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(20) LXα = diXα + iXdα .

We now argue as follows. Since ω is closed, i.e. dω = 0, Cartan’s magic formula,
eq. 20, applied to ω becomes

(21) LXω ≡ diXω + iXdω = diXω .

So for X to be symplectic is for iXω to be closed. But by the Poincaré Lemma,
if iXω closed, it is locally exact. That is: there locally exists a scalar function
f : M → IR such that

(22) iXω = df i.e. X = Xf .

So for X to be symplectic is equivalent to X being locally Hamiltonian.
Thus we have

Noether’s theorem for a Hamilton system If X is a symmetry
of a Hamiltonian system (M,ω,H), then locally X = Xf ; so by the
anti-symmetry of the Poisson bracket, eq. 19, f is a constant of the
motion. And conversely: if f : M → IR is a constant of the motion,
then Xf is a symmetry.

We will see in Section 6.2 that most of this approach to Noether’s theorem,
in particular the “one-liner” appeal to the anti-symmetry of the Poisson bracket,
eq. 19, carries over to the more general framework of Poisson manifolds. For the
moment, we mention an example (which we will also return to).

For most Hamiltonian systems in euclidean space IR3, spatial translations and
rotations are (continuous) symmetries. Let us consider in particular a system we
will discuss in more detail in Section 2.3: N point-particles interacting by Newto-
nian gravity. The Hamiltonian is a sum of two terms, which are each individually
invariant under translations and rotations:

(i) a kinetic energy term K; though I will not go into details, it is in fact defined
by the euclidean metric of IR3, and is thereby invariant; and

(ii) a potential energy term V ; it depends only on the particles’ relative distances,
and is thereby invariant.

The corresponding conserved quantities are the total linear and angular momen-
tum.6

2.2 The road ahead

In this Subsection, four comments will expand on the introductory comment (iv)
of Section 1.2, and also give some information about the history of symplectic
reduction and about some crucial examples.

6By the way, this Hamiltonian is not invariant under boosts. But as I said in (iii) of Section
1.2, I restrict myself to time-independent transformations; the treatment of symmetries that
“represent the relativity of motion” needs separate discussion.
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(1): Generalizing from Noether’s theorem; Poisson manifolds:
Noether’s theorem tells us that a continuous symmetry, i.e. a one-parameter group
of symmetries, determines a first integral (i.e. a constant of the motion). So a
larger group of symmetries, i.e. a group with several parameters, implies several
first integrals. The phase flow is therefore confined to the intersection of the level
surfaces of these integrals: an intersection which is in general a manifold. In other
words: the simultaneous level manifold of these integrals is an invariant manifold
of the phase flow.

It turns out that, in many useful cases, this manifold is also invariant under an
appropriately chosen subgroup of the group of symmetries; and that the quotient
space, i.e. the set of orbits under the action of this subgroup, is a manifold with
a natural structure induced by the original Hamiltonian system that is sufficient
to do mechanics in Hamiltonian style. The quotient space is therefore called the
‘reduced phase space’.

But in some cases, this natural structure is not a symplectic form, but a (mild)
generalization in which the the form is allowed to be degenerate; i.e. like eq. 3
rather than eq. 4. A manifold equipped with such a structure need not be a
quotient manifold. It can instead be defined in terms of a generalization of the
usual Poisson bracket, as defined in terms of the symplectic form by eq. 18.

The key idea is to postulate a bracket, acting on the scalar functions F : M → IR
on any manifold M , and possessing four properties enjoyed by the usual Poisson
bracket. One of the properties is anti-symmetry, emphasised in Section 2.1.3’s
proof of Noether’s theorem. The other three are that the postulated bracket,
again written {, }, is: to be bilinear; to obey the Jacobi identity for any real
functions F,G,H on M , i.e.

(23) {{F,H}, G}+ {{G,F},H}+ {{H,G}, F} = 0 ;

and to obey Leibniz’ rule for products, i.e.

(24) {F,H ·G} = {F,H} ·G + H · {F,G} .

We will see in Section 5 that such a bracket, again called ‘Poisson bracket’, provides
a sufficient framework for mechanics in Hamiltonian style. In particular, it induces
an anti-symmetric bilinear form that may be degenerate, as in eq. 3. A manifold
M equipped with such a bracket is called a Poisson manifold.

The allowance of degeneracy means that a Poisson manifold can have odd di-
mension; while we saw in Section 2.1.1 that any symplectic manifold is even-
dimensional. On the other hand, this generalized Hamiltonian mechanics will
have clear connections with the usual formulation of Section 2.1. The main con-
nection will be the result that any Poisson manifold M is a disjoint union of
even-dimensional manifolds, on which M ’s degenerate antisymmetric bilinear form
restricts to be non-degenerate.7

7Because of these clear connections, it is natural to still call the more general framework
‘Hamiltonian’; as is usually done. But of course this is just a verbal matter.
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(2): Historical roots:
The theory of symplectic reduction has deep historical roots in the work of classical
mechanics’ monumental figures. In part, this is no surprise. As mentioned in (i)
of Section 1.2, cyclic coordinates underpin the role of symmetry in mechanics, and
in particular Noether’s theorem. And Newton’s solution of the Kepler problem
provides an example: witness textbooks’ expositions of the transition to centre-of-
mass coordinates, and of polar coordinates with the angle being cyclic (yielding
angular momentum as the conserved quantity). So it is unsurprising that various
results and ideas of symplectic reduction can be seen in the work of such masters
as Euler, Lagrange, Hamilton, Jacobi, Lie and Poincaré; for example (as we will
see), in Euler’s theory of the rigid body.

But the history also holds a surprise. It turns out that Lie’s epoch-making work
on Lie groups already contained a detailed development of much of the general,
modern theory.8 The sad irony is that most of Lie’s insights were not taken up —
and were then repeatedly re-discovered. So this is yet another example (of which
the history of mathematics has so many!) of the saying that he who does not learn
from history is doomed to repeat it. The consolation is of course that it is often
easier, and more fun, to re-discover something than to learn it from another...

Thus it was only from the mid-1960s that the theory, in essentially the form
Lie had, was recovered and cast in the geometric language adopted by modern
mechanics; namely, by contemporary masters such as Arnold, Kostant, Marsden,
Meyer, Smale, Souriau and Weinstein; (cf. this Chapter’s first motto). Happily,
several of these modern authors are scholars of the history, and even their text-
books give some historical details: cf. [Marsden and Ratiu, 1999, pp. 336–8;
369–370; 430–432], and the notes to each Chapter of Olver [2000, especially p.
427–428]. (Hawkins [2000] is a full history of Lie groups from 1869 to 1926; for
Lie, cf. especially its Sections 1.3, 2.5 and Chapter 3, especially 3.2.)

In any case, setting history aside: symplectic reduction has continued since the
1970s to be an active research area in contemporary mechanics, and allied fields
such as symplectic geometry. So it has now taken its rightful place as a major part
of the contemporary renaissance of classical mechanics: as shown by ...

(3): Two examples: the rigid body and the ideal fluid:
Two examples illustrate vividly how symplectic reduction can give new physical
understanding, even of time-honoured examples: the rigid body and the ideal fluid
— as attested by this Chapter’s mottoes. (Section 2.3 will develop a third example,
more closely related to philosophy.)

As to the rigid body: we will see (especially in Section 5) that symplectic
reduction considerably clarifies the elementary theory of the rigid body (Euler’s
equations, Euler angles etc.): which, notoriously, can be all too confusing! For
simplicity, I shall take the rigid body to be pivoted, so as to set aside translational

8The main source is his [1890]. Besides, Arnold [1989, 456] reports that the prototype example
of a Poisson manifold, viz. the dual of a finite-dimensional Lie algebra, was already understood
by Jacobi.
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motion. This will mean that the group of symmetries defining the quotienting
procedure will be the rotation group. It will also mean that the rigid body’s
configuration space is given by the rotation group, since any configuration can be
labelled by the rotation that obtains it from some reference-configuration. So in
this application of symplectic reduction, the symmetry group (viz. the rotation
group) will act on itself as the configuration space. This example will also give us
our prototype example of a Poisson manifold.

As to the ideal fluid, i.e. a fluid that is incompressible and inviscid (with zero
viscosity): this is of course an infinite-dimensional system, and so (as I announced
in Section 1.2) outside the scope of this Chapter. So I will not go into any details,
but just report the main idea.

The equations of motion of an ideal fluid, Euler’s equations, are usually derived
either by applying Newton’s second law F = ma to a small fluid element; or by a
heuristic use of the Lagrangian or Hamiltonian approach (as in heuristic classical
field theories). But in the mid-1960s, Arnold showed how the latter derivations
could be understood in terms of a striking, even beautiful, analogy with the above
treatment of the rigid body. Namely, the analogy shows that the configuration
space of the fluid is an infinite-dimensional group; as follows. The configuration
of an ideal fluid confined to some container occupying a volume V ⊂ IR3 is an
assignment to each spatial position x ∈ V of an infinitesimal fluid element. Given
such an assignment as a reference-configuration, any other configuration can be
labelled by the volume-preserving diffeomorphism d from V to V that carries the
reference-configuration to the given one, by dragging each fluid element along by
d. So given a choice of reference-configuration, the fluid’s configuration space is
given by the infinite-dimensional group D of diffeomorphisms d : V → V : just as
the rotation group is the configuration space of a (pivoted) rigid body. D then
forms the basis for rigorous Lagrangian and Hamiltonian theories of an ideal fluid.

These theories turn out to have considerable analogies with the Lagrangian and
Hamiltonian theories of the rigid body, thanks to the fact that in both cases the
symmetry group forms the configuration space. In particular, Euler’s equations
for ideal fluids are the analogues of Euler’s equations for a rigid body. Besides,
these rigorous theories of fluids (and symplectic reduction applied to them) are
scientifically important: they have yielded various general theorems, and solved
previously intractable problems. (For more details, cf. Abraham and Marsden
(1978: Sections 4.4 and 4.6 for the rigid body, and 5.5.8 for the ideal fluid), Arnold
(1989: Appendix 2:C to 2:F for the rigid body, and 2:G to 2:L for the ideal fluid),
and Marsden and Ratiu (1999: Chapters 1.4 and 15 for the rigid body, and 1.5,
p. 266, for the ideal fluid).)

(4): Philosophical importance:
Symplectic reduction is also, I submit, philosophically important; in at least two
ways. The first way is specific: it illustrates some methodological morals about
how classical mechanics analyses problems. I develop this theme in (Butterfield
2005). The second way is more general: the theory, or rather various applications
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of it, is directly relevant to disputes in the philosophy of space and time, and of
mechanics. This relevance is recognized in contemporary philosophy of physics.
So far as I know, the authors who develop these connections in most detail are
Belot and Earman. They discuss symplectic reduction in connection with such
topics as:

(i) the treatment of symmetries, including gauge symmetries;

(ii) the dispute between absolute and relationist conceptions of space and time;
and

(iii) the interpretation of classical general relativity (a topic which connects (i)
and (ii), and bears on heuristics for quantum gravity).

Thus Belot [1999; 2000; 2001; 2003; 2003a] and Earman [2003] discuss mainly
(i) and-or (ii); Belot and Earman (2001) discusses (iii). For (i) and (ii), I also
recommend Wallace [2003].

But these papers have a demanding pre-requisite: they invoke, but do not ex-
pound, the theory of symplectic reduction. They also discuss infinite-dimensional
systems (especially classical electromagnetism and general relativity), without de-
veloping finite-dimensional examples like the rigid body. Indeed, there is, so far as
I know, no article-length exposition of the theory which is not unduly forbidding
for philosophers. So I aim to give such an exposition, to help readers of papers
such as those cited.9

As an appetizer for this exposition, I will first (in Section 2.3) follow Belot in
presenting the general features of a finite-dimensional symplectic reduction which
has vivid philosophical connections, viz. to the absolute vs. relationist debate.
This example concerns a system of point-particles in Euclidean space, either mov-
ing freely or interacting by a force such as Newtonian gravity. (The symmetries
defining the quotienting procedure are given by the Euclidean group of transla-
tions and rotations.) For philosophers, this will be a good appetizer for symplectic
reduction, since it sheds considerable light on relationism about space of the sort
advocated by Leibniz and Mach.

2.3 Appetizer: Belot on relationist mechanics

2.3.1 Comparing two quotienting procedures

In several papers, Belot discusses how symplectic reduction bears on the absolute-
vs.-relational debate about space. I shall pick out one main theme of his discus-
sions: the comparison of a relational classical mechanical theory with what one

9As I said in Section 1.2, my material is drawn from the books by Abraham and Marsden,
Arnold, Marsden and Ratiu, and Olver. More precisely, I will mostly draw on: Abraham and
Marsden [1978, Sections 3.1–3.3, 4.1–4.3], Arnold [1989: Appendices 2, 5 and 14], Marsden and
Ratiu [1999, Chapters 9–13] and Olver [2000, Chapter 6]. And much of what follows — in spirit,
and even in letter — is already in Lie [1890]! As a (non-philosophical) introduction to symplectic
reduction, I also recommend Singer (2001). It is at a yet more elementary level than what follows;
e.g. it omits Poisson manifolds and co-adjoint representations.
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gets by quotienting the orthodox absolutist (also called a ‘substantivalist’) classi-
cal mechanics, by an appropriate symmetry group. His main contention — which
I endorse — is that this comparison sheds considerable light on relationism: on
both its motivation, and its advantages and disadvantages.10

Belot’s overall idea is as follows. Where the relationist admits one possible con-
figuration, as (roughly) a specification of all the distances (and thereby angles)
between all the parts of matter, the absolutist (or substantivalist) sees an infinity
of possibilities: one for each way the relationist’s configuration (a relative configu-
ration) can be embedded in the absolute space. This makes it natural to take the
relationist to be envisaging a mechanics which is some sort of “quotient” of the
absolutist’s mechanics.

In particular, on the traditional conception of space as Euclidean (modelled
by IR3), each of the relationist’s relative configurations corresponds to an equiva-
lence class of absolutist configurations (i.e. embeddings of arrangements of matter
into IR3), with the members of the class related by spatial translations and ro-
tations, i.e. elements of the Euclidean group. In the jargon of group actions, to
be developed in Section 4: the Euclidean group acts on the set of all absolutist
configurations, and a relative configuration corresponds to an orbit of this action.
So it is natural to take the relationist to be envisaging a mechanics which quo-
tients this action of the Euclidean group, to get a relative configuration space. A
relationist mechanics, of Lagrangian or Hamiltonian type, is then to be built up
on this space of relative configurations.

But as Belot emphasises, one can instead consider quotienting the absolutist’s
state-space — i.e. in a Hamiltonian framework, the phase space — rather than
their configuration space. Indeed, this is exactly what one does in symplectic
reduction. In particular, the Euclidean group’s action on the absolutist’s configu-
ration space, Q say, can be lifted to give an action on the cotangent bundle T ∗Q;
which is accordingly called the ‘cotangent lift’. One can then take the quotient,
i.e. consider the orbits into which T ∗Q is partitioned by the cotangent lift.

We thus have two kinds of theories to compare: (i) the relationist theories, built
up from the relative configuration space; which for the sake of comparison with
symplectic reduction we take to be Hamiltonian, rather than Lagrangian; (ii) the-
ories obtained by quotienting “later”, i.e. quotienting the absolutist’s cotangent
bundle.

I will now spell out this comparison. But I will not try to summarize Belot’s
more detailed conclusions, about what such a comparison reveals about the advan-
tages and disadvantages of relationism. They are admirably subtle, and so defy
summary: they can mainly be found at his [2000, p. 573–574, 582; 2001, Sections
VIII to X]. (Rovelli (this volume) also discusses relationism.)

As befits an appetizer, I will also (like Belot) concentrate on as simple a case
as possible: a mechanics of N point-particles, which is to assume a Euclidean

10The main references are Belot [1999; 2001; 2003, Sections 3.5, 5]. Cf. also his [2000, Sections
4 to 5.3; 2003a, Section 6]. Though I recommend all these papers, the closest template for what
follows is [2001, Section VI et seq.].
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spatial geometry. Of course, the absolutist make this assumption by postulating a
Euclidean space; but for the relationist, the assumption is encoded in constraints
relating the various inter-particle distances. The main current example of a rela-
tionist mechanics of such a system is due to Barbour and Bertotti (1982), though
they develop it in the Lagrangian framework; (to be precise, in terms of Jacobi’s
principle). Belot also discusses other relational theories, including field theories,
i.e. theories of infinite systems; some of them also due to Barbour, and in a La-
grangian framework. But in this Section I only consider N point-particles.

Also, I will also not discuss boosts, though of course the relationist tradition-
ally proposes to identify any two absolutist states of motion related by a boost. In
terms of group actions, this means I will consider quotienting by an action of the
euclidean group, but not the Galilei group. (Cf. how I set aside time-dependent
transformations already in (iii) of Section 1.2.) I will also postpone to later Sec-
tions technical details, even when our previous discussion makes them accessible.

Finally, a warning to avoid later disappointment! The later Sections will not
include a full analysis of the euclidean group’s actions on configuration space and
phase space, and their quotients. That would involve technicalities going beyond
an appetizer. Instead (as mentioned at the end of Section 1.2), the material in
later Sections is chosen so as to lead up to Section 7’s theorem, the Lie-Poisson
reduction theorem, about quotienting the phase space of a system whose config-
uration space is a Lie group. Further reasons for presenting the material for this
theorem will be given in Section 5.1.

2.3.2 The spaces and group actions introduced

Let us begin by formulating the orthodox absolutist mechanics of N point-particles
interacting by Newtonian gravity, together with the action of the Euclidean group.

Each point-particle occupies a point of IR3, so that the configuration space Q
is IR3N : dim(Q) = 3N . So the phase space for Hamiltonian mechanics will be the
cotangent bundle T ∗Q � (q, p): dim(T ∗Q) = 6N .

The Hamiltonian is a sum of kinetic and potential terms, K and V . K depends
only on the ps, and V only on the qs. In cartesian coordinates, with i now la-
belling particles i = 1, ..., N rather than degrees of freedom, we have the familiar
expressions:

(25) H(q, p) = K(p) + V (q) with K = Σi
p2
i

2mi
, V (q) = G Σi<j

mimj

‖ qi − qj ‖
where mi are the masses and G is the gravitational constant.11,12

11From the broader philosophical perspective, the most significant feature of eq. 25 is no doubt
the fact that the potential is a sum of all the two-body potential energies for the configuration
q ∈ Q: there are no many-body interactions.

12Incidental remark. In fact, the kinetic energy can be represented by a metric g on the
configuration space. For Hamiltonian mechanics, this means that the kinetic energy scalar K
on the cotangent bundle T ∗Q can be defined by applying Q’s metric g to the projections of
the momenta p, where at each point (q, p) ∈ T ∗Q the projection is made with the preferred
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The euclidean group E (aka: E(3)) is the group (under composition) of transla-
tions, rotations and reflections on IR3. But since we will be interested in continuous
symmetries, we will ignore reflections, and so consider the subgroup of orientation-
preserving translations and rotations; i.e. the component of the group connected
to the identity transformation (which I will also write as E). This is a Lie group,
i.e. a group which is also a manifold, with the group operations smooth with
respect to the manifold structure. Section 3 will give formal details. Here we just
note that we need three real numbers to specify a translation (x = (x, y, z)), and
three to specify a rotation (two for an axis, and one for the angle through which
to rotate); and accordingly, it is unsurprising that as a manifold, the dimension of
E is 6: dim(E) = 6.

E acts in the obvious sense on IR3. For example, if g ∈ E is translation by
x ∈ IR3, g induces the map q ∈ IR3 	→ q + x. Similarly for a rotation induces:
again, Section 3 will give a formal definition.

Now let E act in this way on each of the N factor spaces IR3 of our system’s
configuration manifold Q = IR3N . This defines an action Φ on Q: i.e. for all
g ∈ E, there is a map Φg : Q→ Q. For example, for g = a translation by x ∈ IR3,
we have

(27) Φg : (qj) = (q1, ...,qN ) ∈ Q 	→ (q1 + x, ...,qN + x) ∈ Q ;

and similarly for rotations. Since the potential function V : Q → IR of eq. 25
depends only on inter-particle distances, each map Φg : Q → Q is a symmetry of
the potential; i.e. we have V (Φg(q)) = V (q).

The action Φ (i.e. the assignment g ∈ E 	→ Φg) induces an action of E on
T ∗Q = T ∗IR3N , called the cotangent lift of Φ to T ∗Q, and usually written as
Φ∗; so that we have for each g ∈ E a lifted map Φ∗

g : T ∗Q → T ∗Q. Again, the
details can wait till later (Section 4). But the idea is that each map Φg on Q is
smooth, and so maps curves to curves, and so vectors to vectors, and so covectors
to covectors, and so on.

Unsurprisingly, each of the lifted maps Φ∗
g : T ∗Q → T ∗Q leaves the potential

V , now considered as a scalar on T ∗Q, invariant: i.e. we have V (Φ∗
g(q, p)) =

V (q, p) ≡ V (q). But furthermore, each of the lifted maps Φ∗
g is a symmetry of

the Hamilton system, in our previous sense (Section 2.1.3). That is: Φ∗
g preserves

the Hamiltonian (indeed the kinetic and potential terms are separately invariant);
and it preserves the symplectic structure. This means the dynamics is invariant
under the action of all g ∈ G: the dynamical histories of the system through
(q, p) and through Φ∗

g(q, p) match exactly at each time. They are qualitatively
indistinguishable: in contemporary metaphysical jargon, they are duplicates.

At this point, of course, we meet the absolute-vs.-relational debate about space.
The absolutist asserts, and the relationist denies, that there being two such in-

isomorphism ω� : T ∗
q → Tq ; (cf. eq. 12). That is: —

(26) K : (q, p) ∈ T ∗Q �→ gq(ω
�(p), ω�(p)) .
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distinguishable possibilities makes sense.13 So the relationist, presented with the
theory above, says we should cut down the space of possibilities. As I said in
Section 2.3.1, it is natural to make this precise in terms of quotienting the action
of the euclidean group: a set of absolutist possibilities related one to another by
elements of the euclidean group form an equivalence class (an orbit) which is to
represent one relationist possibility.

But here we need to distinguish two different quotienting procedures. I will call
them Relationism and Reductionism (with capital R’s), since the former is close
to both traditional and contemporary relationist proposals, and the latter is an
example of the orthodox idea of symplectic reduction. As I said in Section 2.3.1,
the main difference will be that:

(i) Relationism performs the quotient on E’s action on the configuration space
Q; the set of orbits form a relative configuration space, on which the rela-
tionist proposes to build a dynamics, whether Lagrangian or Hamiltonian —
yielding in the latter case, a relative phase space; whereas

(ii) Reductionism performs the quotient on E’s action on the usual phase space
T ∗Q, the set of orbits forming a reduced phase space.

Since our discussion adopts the Hamiltonian framework, it will not matter for what
follows, that Relationism, as defined, can adopt the Lagrangian framework, while
Reductionism is committed to the Hamiltonian one. What will matter is that (i)
and (ii) make for phase spaces of different dimensions; the reduced phase space
has six more dimensions than the relative phase space. The “dimension gap” is
six.

We will see that four of the six variables that describe these dimensions are
constants of the motion; the other two vary with time. And for certain choices of
values of the constants of the motion (roughly: no rotation), the time-varying vari-
ables drop out, and the dynamics according to the Reductionist theory simplifies
so as to coincide with that of the Relationist theory. In other words: if we impose
no rotation, then the heterodox Relationist dynamics matches the conventional
Reduced dynamics.

2.3.3 The Relationist procedure

The Relationist seeks a mechanics based on the relative configuration space (RCS).
An element of the RCS is to be a pattern of inter-particle distances and angles that
is geometrically possible, i.e. compatible with the N particles being embedded in

13The locus classicus for this debate is of course the Leibniz-Clarke correspondence, though the
protagonists’ argumentation is of course sometimes theological. Clarke the absolutist maintains
that there are many possible arrangements of bits of matter in space consistent with a specifi-
cation of all relative distances, saying ‘if [the mere will of God] could in no case act without a
pre-determining cause ... this would tend to take away all power of choosing, and to introduce
fatality.’ Leibniz claims there is only one such arrangement: ‘those two states ... would not
at all differ from one another. Their difference therefore is only to be found in our chimerical
supposition of the reality of space in itself.’
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IR3. So, roughly speaking, an element of the RCS is a euclidean configuration,
modulo isometries; and the RCS will be the set of orbits IR3N/E.

Even before giving a more precise statement, we can state the “punchline”
about dimensions, as follows. Since dim(E) = 6, quotienting by E subtracts six
dimensions: that is, the dimension of the RCS will be 3N -6.

But we need to be more precise about the RCS. For the orbits and quotient
spaces to be manifolds, and for dimensions to add or subtract in this simple way,
we need to excise two classes of “special” points from IR3N , before we quotient.
(But I postpone till Section 4 the technical rationale for these excisions.)

Let δQ ⊂ IR3N be the set of configurations which are symmetric: i.e. each is
fixed by some element of E (other than the identity element!). Any configuration in
which all the point-particles are collinear provides an example: the configuration
is fixed by any rotation about the line as axis. Let ∆Q be the set of collision
configurations; i.e. configurations in which two or more particles are coincident in
the usual configuration space IR3N . (The Q subscripts will later serve as a reminder
that these sets are sets of configurations.) δQ and ∆Q are both of measure zero
in IR3N . Excise both of them, and call the resulting space, which is again of
dimension 3N : Q := IR3N − (δQ ∪∆Q).

δQ and ∆Q are each closed under the action of E. That is, each is a union
of orbits: a euclidean transformation of a symmetric (collision) configuration is
also symmetric (collision). So E acts on Q. Now quotient Q by E. Q/E is the
Relationist’s RCS. Since dim(E) = 6, we have: dim(Q/E) = 3N -6.

These 3N − 6 variables encode all of a (relative) configuration’s particle-pair
relative distances, rij ∈ IR (with i, j labelling particles). Note that there are
N(N − 1)/2 such relative distances; and for N > 4, this is greater than 3N − 6:
(for N >> 4, it is much greater). So the relative distances, though physically
intuitive, give an over-complete set of coordinates on Q/E. (So they cannot be
freely chosen: there are constraints between them.)

So the Relationist seeks a mechanics that uses this RCS. Newton’s second law
being second-order in time means that she will also need quantities like velocities
(in a Lagrangian framework) or like momenta (in a Hamiltonian framework). For
the former, she will naturally consider the N(N − 1)/2 relative velocities ṙij :=
d
dtrij ; and for the latter, the corresponding momenta pij := ∂L

∂ṙij
. Again, she must

beware of constraints. The tangent and cotangent bundles built on her RCS Q/E
will each have dimension 2(3N − 6) = 6N − 12. So again, for N > 4, the number
N(N − 1)/2 of relative velocities ṙij , or of relative momenta pij , is greater than
the number of degrees of freedom concerned; and for N >> 4, it is much greater.
So again, the relative velocities or relative momenta are over-complete: there are
constraints.

On the other hand, if the Relationist uses only these relative quantities, rij and
either ṙij or pij (or “equivalent” coordinates on T (Q/E) or T ∗(Q/E) that are not
over-complete), she faces a traditional problem — whatever the other details of her
theory. At least, she faces a problem if she hopes for a deterministic theory which
is empirically equivalent to the orthodox absolutist theory. I will follow tradition
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and state the problem in terms of relative velocities rather than momenta.
The problem concerns rotation; (and herein lies the strength of Newton’s and

Clarke’s position in the debate against Leibniz). For according to the absolutist
theory two systems of point-particles could match with respect to all relative dis-
tances and relative velocities, and yet have different future evolutions; so that a
theory allowing the same possibilities as the absolutist one, yet using only these
relative quantities (or “equivalent” variables) would have to be indeterministic.

The simplest example is an analogue for point-particles of Newton’s two globes
thought-experiment. Thus the systems could each consist of just two point-
particles with zero relative velocity. One system could be non-rotating, so that the
point-particles fall towards each other under gravity; while the other system could
be rotating about an axis normal to the line between the particles, and rotating
at just such a rate as to balance the attractive force of gravity.

The Relationist has traditionally replied that they do not hope for a theory
empirically equivalent to the absolutist one. Rather, they envisage a mechanics
in which, of the two systems mentioned, only the non-rotating evolution is pos-
sible: more generally, a mechanics in which the universe as a whole must have
zero angular momentum. Originally, in authors like Leibniz and Mach, this re-
ply was a promissory note. But modern Relationist theories such as Barbour
and Bertotti’s [1982] have made good the promise; and they have been extended
well beyond point-particles interacting by Newtonian gravity. Besides, since the
universe seems in fact to be non-rotating, these theories can even claim to be
empirically adequate, at least as regards this principal difference from absolutist
theories.14

But it is not my brief to go into these theories’ details, except by way of com-
parison with a quotiented version of the absolutist theory: cf. Section 2.3.4.

2.3.4 The Reductionist procedure

The Reductionist’s main idea is to quotient only after passing to the orthodox
phase space for N point-particles, i.e. the cotangent bundle T ∗IR3N of IR3N . So
the idea is to consider (T ∗IR3N )/E, i.e. the quotient of T ∗IR3N by the cotangent-
lifted action Φ∗ of the euclidean group E.

More precisely, we again proceed by first excising special points that would
give technical trouble. But now the points to be excised are in the cotangent
bundle T ∗IR3N , not in IR3N . So let δ ⊂ T ∗IR3N be the set of phase space states
whose configurations are symmetric (in the sense of Section 2.3.3’s δQ). Let ∆ ⊂
T ∗IR3N be the set of collision points; i.e. states in which two or more particles
are coincident in the configuration space IR3N . Both δ and ∆ are of measure
zero. Excise both of them, and call the resulting phase space, which is again of
dimension 6N : M := T ∗IR3N − (δ ∪∆).

14An advocate of the absolutist theory might say that it is odd to make what seems a contingent
feature of the universe, non-rotation, a principle of mechanics; and the Relationist might reply
that their view has the merit of predicting that the universe does not rotate! I fear there are no
clear criteria for settling this methodological dispute; anyway, I will not pursue it.
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δ and ∆ are each closed under the cotangent-lifted action of E on T ∗IR3N .
That is, each is a union of orbits: the cotangent lift of a euclidean transformation
acting on a phase space state with a symmetric (collision) configuration yields a
state which also has a symmetric (collision) configuration. So E acts on M . Now
quotient M by E, getting M̄ := M/E. This is called reduced phase space. We
have: dim(M̄) = dim(M) - dim(E) = 6N − 6.

As emphasised at the end of Section 2.3.2, M̄ has six more dimensions than the
corresponding Relationist phase space (whether the velocity phase space (tangent
bundle) or the momentum phase space (cotangent bundle)). The dimension of
those phase spaces is 2(3N − 6) = 6N − 12. Indeed, we can better understand
both the reduced phase space M̄ and Relationist phase spaces by considering this
“dimension gap”. There are two extended comments to make.

(1): Obtaining the Relationist phase space:
We can obtain the Relationist momentum phase space from our original phase
space M . Thus let M0 be the subspace of M in which the system has total linear
momentum and total angular momentum both equal to zero. Since these are
constants of the motion, M0 is dynamically closed and so supports a Hamiltonian
dynamics given just by restriction of the original dynamics. With linear and
angular momentum each contributing three real numbers, dim(M0) = dim(M) -
6 = 6N − 6. Furthermore, M0 is closed under (is a union of orbits under) the
cotangent-lifted action of E. So let us quotient M0 by this action of E, and write
M̄0 := M0/E. Then dim(M̄0) = 6N − 6− 6 = 6N − 12.

Now recall that this is the dimension of the phase space of the envisaged Re-
lationist theory built on the RCS Q/E. And indeed, as one would hope: M̄0 is
the Hamiltonian version of Barbour and Bertotti’s 1982 Relational theory; (recall
that they work in a Lagrangian framework).

That is: M̄0 is a symplectic manifold, and points in M̄0 are parametrized by all
the particle-to-particle relative distances and relative velocities. There is a deter-
ministic dynamics which matches that of the original absolutist theory, once the
original dynamics is projected down to Section 2.3.3’s relative configuration space
Q/E.

In short: the vanishing total linear and angular momenta mean that an ini-
tial state comprising only relative quantities is sufficient to determine all future
relative quantities.

(2): Decomposing the Reductionist reduced phase space:
Let us return to the reduced phase space M̄ . The first point to make is that since
the Hamiltonian H on M , or indeed on T ∗IR3N , is invariant under the cotangent-
lifted action of E, the usual dynamics on M projects down to M̄ = M/E. That
is: the reduced phase space dynamics captures all the E-invariant features of the
usual dynamics.

In fact, M̄ is a Poisson manifold. So it is our first example of the more general
framework for Hamiltonian mechanics announced in (1) of Section 2.2. Again, I
postpone technical detail till later (especially Sections 5.1 and 5.2.4). But the idea
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is that a Poisson manifold has a degenerate antisymmetric bilinear map, which
implies that the manifold is a disjoint union of symplectic manifolds. Each sym-
plectic manifold is called a leaf of the Poisson manifold. The leaves’ symplectic
structures “mesh” with one another; and within each leaf there is a conventional
Hamiltonian dynamics.

Even without a precise definition of a Poisson manifold, we can describe how
M is decomposed into symplectic manifolds, each with a Hamiltonian dynamics.
Recall that we have: dim(M̄) = dim(M) - dim(E) = 6N − 6. This breaks down
as:

(28) 6N − 6 = (6N − 12) + 3 + 3 = 2(3N − 6) + 3 + 3 =: α + β + γ

where the right hand side defines α, β, γ respectively as 2(3N − 6), 3 and 3. In
terms of M̄ , this means the following.

(i) α corresponds to (1)’s M̄0, i.e. to T ∗(Q/E). As discussed, 3N − 6 variables
encode all the particle-pair relative distances; and the other 3N−6 variables
encode all the particle-pair relative momenta.

The six extra variables additional to these 6N -12 relative quantities consist
of: four constants of the motion, and two other variables which are dynami-
cal, i.e. change in time.

(ii) β stands for three of the four constants of the motion: viz. the three variables
that encode the total linear momentum of the system, i.e. the momentum of
the centre of mass. These constants of the motion are “just parameters” in
the sense that: (a) not only does specifying a value for all three of them fix
a surface, i.e. a (6N − 9)-dimensional hypersurface in M̄ , on which there is
a Hamiltonian dynamics; also (b) this Hamiltonian and symplectic structure
is independent of the values we specify.15

(iii) γ stands for the three variables that encode the total angular momentum
of the system. One of these is a fourth constant of the motion, viz. the
magnitude L of the total angular momentum. The other two time-varying
quantities fix a point on a sphere (2-sphere) of radius L, encoding the di-
rection of the angular momentum of the system in a frame rotating with it.
The situation is as in the elementary theory of the rigid body: though the
total angular momentum relative to coordinates fixed in space is a constant
of the motion (three constant real numbers), the total angular momentum
relative to the body is constant only in magnitude (one real number L), not
in direction. This will be clearer in Section 5 onwards, when we describe the
Poisson manifold structure in the theory of the rigid body. For the moment,

15As mentioned at the end of Section 2.3.1, the relationist traditionally proposes to identify
absolutist states of motion that differ just by the value of the total momentum. And indeed, the
proposal can be implemented by considering an action of the Galilean group on the absolutist
phase space M , and identifying points related by Galilean boosts. For discussion and references,
cf. Belot [2000, Section 5.3].
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there are two main comments, (a) and (b), to make about the N particle
system:

(a) If we specify L, in addition to the momentum of the centre of mass of
the system, we get a (6N−10)-dimensional hypersurface in M̄ , on which
(as in (ii)) there is a Hamiltonian dynamics. So we can think of M̄ as
consisting of the four real-parameter family of these hypersurfaces, with
each point of each hypersurface being equipped with a sphere of radius
L; (subject to a qualification in (b) below).
Note that here ‘each point being equipped’ does not mean that the
sphere gives the extra dimensions that would constitute M̄ as a fibre
bundle; (there would be two dimensions lacking). Rather: in the point’s
representation by 6N − 10 real numbers, two of the numbers can be
taken to represent a point on a sphere.

(b) But unlike the situation for β in (ii) above, the Hamiltonian dynamics
on such a hypersurface depends on the value of L. In particular, if L = 0
the sphere representing the body angular momentum is degenerate: it
is of radius zero, and the other two time-varying quantities drop out. A
point in the hypersurface is represented by 6N − 12 real numbers; i.e.
the hypersurface is 6N − 12-dimensional.
Now recall from Section 2.3.3 or (1) above that 6N−12 is the dimension
of the phase space of the envisaged Relationist theory built on the RCS
Q/E. And indeed, just as one would hope: the hypersurface with
L = 0 and also with vanishing linear momentum, with its dynamics, is
the symplectic manifold and dynamics that is the Hamiltonian version
of Barbour and Bertotti’s 1982 Relational theory of N point-particles.
In terms of (1)’s notation, this hypersurface is M̄0.

We can sum up this comparison as follows. On this hypersurface M̄0, the
dynamics in the reduced phase space coincides with the dynamics one obtains for
the relative variables, if one arbitrarily embeds their initial values in the usual
absolutist phase space T ∗IR3N , subject to the constraint that the total angular
and linear momenta vanish, and then reads off (just by projection) their evolution
from the usual evolution in T ∗IR3N .

2.3.5 Comparing the Relationist and Reductionist procedures

In comparing the Relationist and Reductionist procedures, I shall just make just
two extended comments, and refer to Belot for further discussion. The gist of both
comments is that Reductionism suffices: Relationism is not needed. The first is a
commonplace point; the second is due to Belot.

2.3.5.1 Reductionism allows for rotation The first comment reiterates the
Reductionist’s ability, and the Relationist’s inability, to endorse Newton’s globes
(or bucket) thought-experiment. The Reductionist can work in either
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(i) the (6N − 6)-dimensional phase space M̄ = M/E; or

(ii) the (6N − 9)-dimensional hypersurface got from (i) by specifying the centre
of mass’ linear momentum; or

(iii) the (6N − 10)-dimensional hypersurface got from (ii) by also specifying a
non-zero value of L.

In all three cases, the Reductionist can describe rotation in a way that the Rela-
tionist with their (6N − 12)-dimensional space cannot. For she has to hand the
three extra non-relative variables (L and two others) that describe the rotation of
the system as a whole. (Incidentally: that they describe the system as a whole is
suggested by there being just three of them, whatever the value of N .) In par-
ticular, she can distinguish states of rotation and non-rotation (L = 0), in the
sense of endorsing the distinctions advocated by the globes and bucket thought-
experiments.

The Reductionist can also satisfy a traditional motivation for relationism, which
concerns general philosophy, rather than the theory of motion. It is especially
associated with Leibniz: namely, our theory (or our metaphysics) should not admit
distinct but utterly indiscernible possibilities. One might well ask why we should
endorse this “principle of the identity of indiscernibles” for possibilities rather than
objects. For Leibniz himself, the answer lies (as Belot’s [2001] brings out) in his
principle of sufficient reason, and ultimately in theology.

But in any case the Reductionist can satisfy the requirement. Agreed, the
usual absolutist theory, cast in T ∗IR3N (or if you prefer, M = T ∗IR3N − (δ ∪∆))
has nine variables that describe (i) the position of the centre of mass, (ii) the
orientation of the system about its centre of mass, and (iii) the system’s total
linear momentum: i.e. three variables, a vector in IR3, for each of (i)-(iii). So
the usual absolutist theory has a nine-dimensional “profligacy” of distinct but
indiscernible possibilities. But as we have seen, the Reductionist quotients by the
action of the euclidean group E, and so works in M̄ = M/E: which removes the
profligacy about (i) and (ii).

As to (iii), I agree that for all I have said, a job remains to be done. The foliation
of M̄ by a three real-parameter family of (6N − 9)-dimensional hypersurfaces,
labelled by the system’s total linear momentum, codifies the profligacy — but does
not eliminate it. But as I mentioned above (cf. footnote 15), the Reductionist can
in fact quotient further, by considering the action of Galilean boosts and identifying
phase space points that differ by a boost; i.e. defining orbits transverse to these
hypersurfaces.

2.3.5.2 Analogous reductions in other theories I close my philosophers’
appetizer for symplectic reduction by summarizing some general remarks of Belot’s
[2001, Sections VIII–IX]; cf. also his [2003a, Sections 12, 13]. They are about how
our discussion of relational mechanics is typical of many cases; and how symplectic
reduction can be physically important. I label them (1)–(3).
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(1): A general contrast: when to quotient:
The example of N point-particles interacting by Newtonian gravity is typical of
a large class of cases (infinite-dimensional, as well as finite-dimensional). There
is a configuration space Q, acted on by a continuous group G of symmetries,
which lifts to the cotangent bundle T ∗Q, with the cotangent lift leaving invariant
the Hamiltonian, and so the dynamics. So we can quotient T ∗Q by G to give a
reduced theory. (There is a Lagrangian analogue; but as above, we set it aside.)
But there is also some motivation for quotienting G’s action on Q, irrespective
of how we then go on the construct dynamics. Let us adopt ‘relationism’ as a
mnemonic label for whatever motivates quotienting the configuration space. Then
with suitable technical conditions assumed (recall our excision of δ and ∆), we
will have:

(i) for the reduced Hamiltonian theory: dim((T ∗Q)/G) = 2 dimQ - dimG;

(ii) for the relationist theory, in a Lagrangian or Hamiltonian framework:
dim(T (Q/G)) = dim(T ∗(Q/G)) = 2(dimQ - dimG)

So we have in the reduced theory, dim G variables that do not occur in the rela-
tionist theory: let us call them ‘non-relational variables’.

(2): The non-relational variables:
Typically, these non-relational variables represent global, i.e. collective, properties
of the system. That is unsurprising since the number, dim G, of these variables is
independent of the number of degrees of freedom of the system (dim Q, or 2dim
Q if you count rate of change degrees of freedom separately).

Some of these variables are conserved quantities, which arise (by Noether’s
theorem) from the symmetries. Furthermore, there can be specific values of the
conserved quantities, like the vanishing angular momentum of Section 2.3.4, for
which the reduced theory collapses into the relationist theory. That is, not only
are the relevant state spaces of equal dimension; but also their dynamics agree.

(3): The reduced theory:
Typically, the topology and geometry of the reduced phase space (T ∗Q)/G, and
the Hamiltonian function on it, H̄ : (T ∗Q)/G→ IR say, are more complex than the
corresponding features of the unreduced theory on T ∗Q. In particular, the reduced
Hamiltonian H̄ typically has potential energy terms corresponding to forces that
are absent from the unreduced theory. But this should not be taken as necessarily
a defect, for two reasons.

First, there are famous cases in which the reduced theory has a distinctive mo-
tivation. One example is Hertz’ programme in mechanics, viz. to “explain away”
the apparent forces of our macroscopic experience (e.g. gravity) as arising from
reduction of a theory that has suitable symmetries. (The programme envisaged
cyclic variables for microscopic degrees of freedom that were unknown to us; cf.
Lutzen [1995; 2005].) Another famous example is the Kaluza-Klein treatment of
the force exerted on a charged particle by the electromagnetic field. That is: the
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familiar Lorentz force-law describing a charged particle’s motion in four space-
time dimensions can be shown to arise by symplectic reduction from a theory
postulating a spacetime with a fifth (tiny and closed) spatial dimension, in which
the particle undergoes straight-line motion. Remarkably, the relevant conserved
quantity, viz. momentum along the fifth dimension, can be identified with electric
charge; so that the theory can claim to explain the conservation of electric charge.
(This example generalizes to other fields: for details and references, cf. Marsden
and Ratiu [1999, Section 7.6].)

Second, the reduced theory need not be so complicated as to be impossible to
work with. Indeed, these two examples prove this point, since in them the re-
duced theory is entirely tractable: for it is the familiar theory — that one might
resist abandoning for the sake of the postulated unreduced theory.16 Besides, Be-
lot describes how, even when the reduced theory seems complicated (and not just
because it is unfamiliar!), the general theory of symplectic reduction, as developed
over the last forty years, has shown that one can often “do physics” in the reduced
phase space: and that, as in the Kaluza-Klein example, the physics in the reduced
phase space can be heuristically, as well as interpretatively, valuable.

3 SOME GEOMETRIC TOOLS

So much by way of an appetizer. The rest of the Chapter, comprising this Section
and the next four, is the five-course banquet! This Section expounds some modern
differential geometry, especially about Lie algebras and Lie groups. Section 4
takes up actions by Lie groups. Then Section 5 describes Poisson manifolds as
a generalized framework for Hamiltonian mechanics. As I mentioned in (2) of
Section 2.2, Lie himself developed this framework; so in effect, he knew everything
in these two Sections —so it is a true (though painful!) pun to say that these
three Sections give us the “Lie of the land”. In any case, these two Sections will
prepare us for Section 6’s description of symmetry and conservation in terms of
momentum maps. Finally, Section 7 will present one of the main theorems about
symplectic reduction. It concerns the case where the natural configuration space
for a system is itself a Lie group G; (cf. (3) of Section 2.2). Quotienting the
natural phase space (the cotangent bundle on G) will give a Poisson manifold that
“is” the dual of G’s Lie algebra.

In this Section, I first sketch some notions of differential geometry, and fix
notation (Section 3.1). Then I introduce Lie algebras and Lie brackets of vector
fields (Section 3.2). Though most of this Section (indeed this Chapter!) is about
differential rather than integral notions, I will later need Frobenius’ theorem, which
I present in Section 3.3. Then I give some basic information about Lie groups and
their Lie algebras (Section 3.4).

16And here one should resist being prejudiced because of familiarity. Why not have Newtonian
gravity arise from a microscopic cyclic degree of freedom? Why not have the Lorentz force law
arise from geodesic motion in a five-dimensional spacetime with the fifth dimension wrapped up,
so that conservation of charge is explained, in Noether’s theorem fashion, by a symmetry?
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3.1 Vector fields on manifolds

3.1.1 Manifolds, vectors, curves and derivatives

By way of fixing ideas and notation, I begin by giving details about some ideas
in differential geometry (some already used in Section 2.1), and introducing some
new notation for them.

A manifold M will be finite-dimensional, except for obvious and explicit ex-
ceptions such as the infinite-dimensional group of diffeomorphisms of a (as usual:
finite-dimensional!) manifold. I will not be concerned about the degree of differ-
entiability in the definition of a manifold, or of any associated geometric objects:
‘smooth’ can be taken throughout what follows to mean C∞. I will often not be
concerned with global, as against local, structures and results; (though the reduc-
tion results we are driving towards are global in nature). For example, I will not
be concerned about whether curves are inextendible, or flows are complete.

I shall in general write a vector at a point x ∈ M as X; or in terms of local
coordinates xi, as X = Xi ∂

∂xi (summation convention). From now on, I shall
write the tangent space at a point x ∈ M as TxM (rather than just Tx), thus
explicitly indicating the manifold M to which it is tangent. As before, I write the
tangent bundle, consisting of the “meshing collection” of these tangent spaces, as
TM . Similarly, I write a 1-form (covector) at a point x ∈ M as α; and so the
cotangent space at x ∈M as T ∗

xM ; and as before, the cotangent bundle as T ∗M .
A smooth map f : M → N between manifolds M and N (maybe N = M)

maps smooth curves to smooth curves, and so tangent vectors to tangent vectors;
and so on for 1-forms and higher tensors. It is convenient to write Tf , called the
derivative or tangent of f (also written as f∗ or df or Df), for the induced map
on the tangent bundle.

In more detail: let us take a curve c in M to be a smooth map from an interval
I ⊂ IR to M , and a tangent vector at x ∈M , X ∈ TxM , to be an equivalence class
[c]x of curves through x. (The equivalence relation is that the curves be tangent
at x, with respect to every local chart at x; but I omit the details of this.) Then
we define Tf : TM → TN (also written f∗ : TM → TN) by

(29) f∗([c]x) ≡ Tf([c]x) := [f ◦ c]f(x), for all x ∈M.

We sometimes write Txf for the restriction of Tf to just the tangent space TxM
at x; i.e.

(30) Txf : [c]x ∈ TxM 	→ [f ◦ c]f(x) ∈ Tf(x)N.

In Section 3.1.2.2, we will discuss how one can instead define tangent vectors to be
differential operators on the set of all scalar functions defined in some neighbour-
hood of the point in question, rather than equivalence classes of curves. One can
then define the tangent map f∗ ≡ Tf in a way provably equivalent to that above.
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3.1.2 Vector fields, integral curves and flows

We will be especially concerned with vector fields defined on M , i.e. X : x ∈M 	→
X(x) ∈ TxM , or on a subset U ⊂ M . So suppose that X is a vector field on M
and f : M → N is a smooth map, so that Txf : TxM → Tf(x)N .

3.1.2.1 Push-forwards and pullbacks It is important to note (Txf)(X(x))
does not in general define a vector field on N . For f(M) may not be all of
N , so that for y ∈ (N − ran(f)) (Txf)(X(x)) assigns no element of TyN . And
f may not be injective, so that we could have x, x′ ∈ M and f(x) = f(x′) with
(Txf)(X(x)) �= (Tx′f)(X(x′)). Thus we say that vector fields do not push forward.

On the other hand, suppose that f : M → N is a diffeomorphism onto N : that
is, the smooth map f is a bijection, and its inverse f−1 is also smooth. Then for
any vector field X on M , Tf(X) is a vector field on N . So in this case, the vector
field does push forward. Accordingly, Tf(X) is called the push-forward of X; it is
often written as f∗(X). So for any x ∈M , the pushed forward vector field at the
image point f(x) is given by

(31) (f∗(X))(f(x)) := Txf ·X(x) .

(Note the previous use of the asterisk-subscript for the derivative of f , in eq. 29.)
This prompts three more general comments.

1. More generally: we say that two vector fields, X on M and Y on N , are
f -related on M (respectively: on S ⊂ M) if (Tf)(X) = Y at all x ∈ M
(respectively: x ∈ S).

2. We can generalize the idea that a diffeomorphism implies that a vector field
can be pushed forward, in two ways. First, the diffeomorphism need only
be defined locally, on some neighbourhood of the point x ∈ M of interest.
Second, a diffeomorphism establishes a one-one correspondence, not just
between vector fields defined on its domain and codomain, but also between
all differential geometric objects defined on its domain and codomain: in
particular, 1-form fields, and higher rank tensors.

3. (This continues comment (2).) Though vector fields do not in general push
forward, 1-form fields do in general pull back. This is written with an asterisk-
superscript. That is: for any smooth f : M → N , not necessarily a diffeo-
morphism (even locally), and any 1-form field (differential 1-form) α on N ,
we define the pullback f∗(α) to be the 1-form on M whose action, for each
x ∈M , and each X ∈ TxM , is given by:

(32) (f∗(α))(X) := α |f(x) (Tf(X)) .

Similarly, of course if the map f is defined only locally on a subset of M : a
1-form defined on the range of f pulls back to a 1-form on the domain of f .
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3.1.2.2 The correspondence between vector fields and flows The lead-
ing idea about vector fields is that, for any manifold, the theorems on the local
existence, uniqueness and differentiability of solutions of systems of ordinary dif-
ferential equations (e.g. [Arnold, 1973, 48–49, 77–78, 249–250; Olver, 2000, Prop
1.29]) secure a one-one correspondence between four notions:

(i) Vector fields X on a subset U ⊂ M , on which they are non-zero; X : x ∈
U 	→ X(x) ∈ TxM,X(x) �= 0;

(ii) Non-zero directional derivatives at each point x ∈ U , in the direction of the
vector X(x). In terms of coordinates x = x1, ..., xn, these are first-order
linear differential operators X1(x) ∂

∂x1 + . . . + Xn(x) ∂
∂xn , with Xi(x) the i-

component in this coordinate system of the vector X(x). Such an operator
is often introduced abstractly as a derivation: a map on the set of smooth
real-valued functions defined on a neighbourhood of x, that is linear and
obeys the Leibniz rule.

(iii) Integral curves (aka: solution curves) of the fields X in U ; i.e. smooth maps
φ : I →M from a real open interval I ⊂ IR to U , with 0 ∈ I, φ(0) = x ∈ U ,
and whose tangent vector at each φ(τ), τ ∈ I is X(φ(τ)).

(iv) Flows Xτ mapping, for each field X and each x ∈ U , some appropriate
subset of U to another: Xτ : U →M . This flow is guaranteed to exist only
in some neighbourhood of a given point x, and for τ in some neighbourhood
of 0 ∈ IR; but this will be enough for us. Such a flow is a one-parameter
subgroup of the “infinite-dimensional group” of all local diffeomorphisms.

I spell out this correspondence in a bit more detail: In local coordinates x1, ..., xn,
any smooth curve φ : I →M is given by n smooth functions φ(τ) = (φ1(τ), ..., φn(τ)),
and the tangent vector to φ at φ(τ) ∈M is

(33) φ̇(τ) = φ̇1(τ)
∂

∂x1
+ . . . + φ̇n(τ)

∂

∂xn
.

So for φ to be an integral curve of X requires that for all i = 1, ..., n and all τ ∈ I

(34) φ̇i(τ) = Xi(τ).

The local existence and uniqueness, for a given vector field X and x ∈ M , of the
integral curve φX,x through x (with φ(0) = x) then ensures that the flow, written
either as Xτ or as φX(τ)

(35) Xτ : x ∈M 	→ Xτ (x) ≡ φX,x(τ) ∈M ,

is (at least locally) well-defined. The flow is a one-parameter group of transforma-
tions of M , and X is called its infinitesimal generator.

The exponential notation

(36) exp(τX)(x) := Xτ (x) ≡ φX,x(τ)
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is suggestive. For example, the group operation in the flow, i.e.

(37) Xτ+σ(x) = Xτ (Xσ(x)) ,

is written in the suggestive notation

(38) exp((τ + σ)X)(x) = exp(τX)(exp(σX)(x)) .

So computing the flow for a given X (i.e. solving a system of n first-order differ-
ential equations!) is called exponentiation of the vector field X.

Remark: The above correspondence can be related to our discussion of diffeo-
morphisms and pushing forward vector fields. In particular: if two vector fields, X
on M and Y on N , are f -related by f : M → N , so that (Tf)(X(x)) = Y (f(x)),
then f induces a map from integral curves of X to integral curves of Y . We can
express this in terms of exponentiation of X and Y = (Tf)(X):

(39) f(exp(τX)x) = exp(τ(Tf)(X))(f(x)).

Remark: I emphasise that the above correspondence between (i), (ii), (iii) and
(iv) is not true at a single point. More precisely:

(a) On the one hand: the correspondence between (i) and (ii) holds at a point;
and also holds for zero vectors. That is: a single vector X ∈ TxM corre-
sponds to a directional derivative operator (derivation) at x; and X = 0 cor-
responds to the zero derivative operator mapping all local scalars to 0. (In-
deed, as I mentioned: vectors are often defined as such operators/derivations).
But:

(b) On the other hand: the correspondence between (i) and (iii), or between
(i) and (iv), requires a neighbourhood. For a single vector X ∈ TxM cor-
responds to a whole class of curves (and so: of flows) through x, not to a
single curve. Namely, it corresponds to all the curves (flows) with X as their
tangent vector.

However, we shall see (starting in Section 3.4) that for a manifold with suitable
extra structure, a single vector does determine a curve. (And we will again talk of
exponentiation.)

We need to generalize one aspect of the above correspondence (i)–(iv), namely
the (i)–(ii) correspondence between vectors and directional derivatives. This gen-
eralization is the Lie derivative.

3.1.3 The Lie derivative

Some previous Sections have briefly used the Lie derivative. Since we will use it a
lot in the sequel, we now introduce it more thoroughly.

We have seen that given a vector field X on a manifold M , a point x ∈M , and
any scalar function f defined on a neighbourhood of x, there is a naturally defined
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rate of change of f along X at x: the directional derivative X(x)(f).
Now we will define the Lie derivative along X as an operator LX that defines

a rate of change along X: not only for locally defined functions (for which the
definition will agree with our previous notion, i.e. we will have LX(f) = X(f));
but also for vector fields and differential 1-forms.17 We proceed in three stages.

(1) We first define the Lie derivative as an operator on scalar functions, in terms
of the vector field X on M . We define the Lie derivative along the field X
(aka: the derivative in the direction of X), LX , as the operator on scalar
functions f : M → IR defined by:

(40) LX : f 	→ LXf : M → IR with ∀x ∈ M : (LXf)(x) :=
d

dτ
|τ=0

f(Xτ (x)) ≡ X(x)(f).

Though this definition assumes that both X and f are defined globally, i.e.
on all of M , it can of course be restricted to a neighbourhood. Thus defined,
LX is linear and obeys the Leibniz rule, i.e.

(41) LX(fg) = fLX(g) + gLX(f) ;

In coordinates x = x1, ..., xn, LXf is given by

(42) LXf = X1(x)
∂f

∂x1
+ . . . + Xn(x)

∂f

∂xn
,

with Xi(x) the i-component of the vector X(x). Eq. 42 means that despite
eq. 40’s mention of the flow Xτ , the Lie derivative of a scalar agrees with our
previous notion of directional derivative: that is, for all f , LX(f) = X(f).

(2) In (1), the vector field X determined the operator LX : in terms of Section
3.1.2.2’s correspondence, we moved from (i) to (ii). But we can conversely
define a vector field in terms of its Lie derivative; and in Section 3.2.2’s
discussion of the Lie bracket, we shall do exactly this.
In a bit more detail: — We note that the set F(M) of all scalar fields on
M , f : M → IR forms an (infinite-dimensional) real vector space under
pointwise addition. So also does the set X (M) of all vector fields on M ,
X : x ∈ M 	→ X(x) ∈ TxM . Furthermore, X (M) is isomorphic as a real
vector space, and as an module over the scalar fields, to the collection of
operators LX . The isomorphism is given by the map θ : X 	→ LX defined in
(1).

(3) We now extend the definition of LX so as to define it on vector fields Y and
1-forms α. We can temporarily use θ as notation for either a vector field
Y or a differential 1-form α. Given a vector field X and flow Xτ ≡ φX(τ),

17Indeed, the definition can be extended to all higher rank tensors. But I will not develop
those details, since —apart from Section 2.1.3’s mention of the Lie derivative of the symplectic
form LXω (viz. the requirement that if X is a symmetry, LXω = 0) —we shall not need them.
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we need to compare θ at the point x ∈ M with θ at the nearby point
Xτ (x) ≡ φX,x(τ), in the limit as τ tends to zero. But the value of θ at
Xτ (x) is in the tangent space, or cotangent space, at Xτ (x): TXτ (x)M or
T ∗
Xτ (x)M . So to make the comparison, we need to somehow transport back

this value to TxM or T ∗
xM .

Fortunately, the vector field X provides a natural way to define such a transport.
For the vector field Y , we use the differential (i.e. push-forward) of the inverse
flow, to “get back” from Xτ (x) to x. Using φ∗(τ) for this “pullback” of φX,x(τ),
we define

(43) φ∗(τ) := T (exp(−τX)) ≡ d exp(−τX) : TXτ (x)M ≡ Texp(τX)(x)M → TxM .

For the 1-form α, we define the transport by the pullback, already defined by
eq. 32:

(44) φ∗(τ) := (exp(−τX))∗ : T ∗
Xτ (x)M ≡ T ∗

exp(τX)(x)M → T ∗
xM .

With these definitions of φ∗(τ), we now define the Lie derivative LXθ, where θ is
a vector field Y or a differential 1-form α, as the vector field or differential 1-form
respectively, with value at x given by

(45) lim
τ→0

φ∗(τ)(θ |Xτ (x))− θ |x
τ

=
d

dτ
|τ=0 φ∗(τ)(θ |Xτ (x)) .

Finally, an incidental result to illustrate this Chapter’s “story so far”. It con-
nects Noether’s theorem, from Section 2.1.3, to this Section’s details about the
Lie derivative, and to the theorem stating the local existence and uniqueness of
solutions of ordinary differential equations (cf. the start of Section 3.1.2.2). This
latter theorem implies that on any manifold any vector field X can be “straight-
ened out”, in the sense that around any point at which X is non-zero, there is
a local coordinate system in which X has all but one component vanish and the
last component equal to 1. Using this theorem, it is straightforward to show that
on any even-dimensional manifold any vector field X is locally Hamiltonian, with
respect to some symplectic form, around a point where X is non-zero. One just de-
fines the symplectic form by Lie-dragging from a surface transverse to X’s integral
curves.

3.2 Lie algebras and brackets

I now introduce Lie algebras and the Lie bracket of two vector fields.

3.2.1 Lie algebras

A Lie algebra is a vector space V equipped with a bilinear anti-symmetric oper-
ation, usually denoted by square brackets (and called ‘bracket’ or ‘commutator’),
[, ] : V × V → V , that satisfies the Jacobi identity, i.e.

(46) [[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0 .
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3.2.1.1 Examples; rotations introduced Here are three examples.

(i) n×n matrices equipped with the usual commutator, i.e. [X,Y ] := XY −Y X.
(So the matrix multiplication “contributes” to the bracket, but not to the
underlying vector space structure.)

(ii) 3× 3 anti-symmetric matrices, equipped with the usual commutator.

(iii) IR3 equipped with vector multiplication.

In fact, example (iii) is essentially the same as example (ii); and this example will
recur in what follows, in connection with rotations and the rigid body. (We will
also see that example (ii) is in a sense more fundamental.)

To explain this, we first recall that every anti-symmetric operator A on a three-
dimensional oriented euclidean space is the operator of vector multiplication by
a fixed vector, ω say. That is: for all q, Aq = [ω,q] ≡ ω ∧ q. (Proof: the
anti-symmetric operators on IR3 for a 3-dimensional vector space, since an anti-
symmetric 3× 3 matrix has three independent components. Vector multiplication
by a vector ω is a linear and anti-symmetric operator; varying ω we get a subspace
of the space of all anti-symmetric operators on IR3; but this subspace has dimension
3; so it coincides with the space of all anti-symmetric operators.)

With this result in hand, the following three points are all readily verified.

(1) The matrix representation of A in cartesian coordinates is then

(47) A =


 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .

We can write

(48) A↔ ω or Aij = −εijkωk or ωi = −1
2
εijkAjk.

(2) The plane Π of vectors perpendicular to ω is an invariant subspace for A, i.e.
A(Π) = Π. And ω is an eigenvector for A with eigenvalue 0. This suggest
a familiar elementary interpretation, which will be confirmed later (Section
3.4): viz. that any 3× 3 anti-symmetric matrix A represents a infinitesimal
rotation, and ω represents instantaneous angular velocity. That is, we will
have, for all q ∈ IR3: q̇ = Aq = [ω,q].

(3) The commutator of any two 3×3 anti-symmetric matrices A,B, i.e. [A,B] :=
AB − BA, corresponds by eq. 48 to vector multiplication of the axes of
rotation. That is: writing eq. 48’s bijection from vectors to matrices as
Θ : ω 	→ A =: Θ(ω), we have for vectors q, r, s

(Θ(q)Θ(r)−Θ(r)Θ(q))s = Θ(q)[r, s]−Θ(r)[q, s](49)
= [q, [r, s]]− [r, [q, s]](50)

= [[q, r], s] = Θ([q, r]) · s.(51)
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where the [,] represents vector multiplication, i.e. [q, r] ≡ q ∧ r.

Eq. 51 means that Θ gives a Lie algebra isomorphism; and so our example (iii)
is essentially the same as example (ii).

Besides, we can already glimpse why example (ii) is in a sense more fundamen-
tal. For this correspondence between anti-symmetric operators (or matrices) and
vectors, eq. 48, is specific to three dimensions. In n dimensions, the number of
independent components of an anti-symmetric matrix is n(n−1)/2: only for n = 3
is this equal to n. Yet we will see later (Section 3.4.4) that rotations on euclidean
space IRn of any dimension n are generated, in a precise sense, by the Lie algebra
of n × n anti-symmetric matrices. So only for n = 3 is there a corresponding
representation of rotations by vectors in IRn.

In the next two Subsections, we shall see other examples of Lie algebras: whose
vectors are vector fields (Section 3.2.2), or tangent vectors at the identity element of
a Lie group (Section 3.4). The first example will be an infinite-dimensional Lie al-
gebra; the second finite-dimensional (since we will only consider finite-dimensional
Lie groups). Besides, the above examples (i) and (ii) (equivalently: (i) and (iii))
will recur: each will be the vector space of tangent vectors at the identity element
of a Lie group.

3.2.1.2 Structure constants A finite-dimensional Lie algebra is character-
ized, relative to a basis, by a set of numbers, called structure constants that specify
the bracket operation. Thus if {v1, ..., vn} is a basis of a Lie algebra V , we define
the structure constants ckij , (i, j, k = 1, ..., n) by expanding, in terms of this basis,
the bracket of any two basis elements

(52) [vi, vj ] = Σkckijvk .

The bilinearity of the bracket implies that eq. 52 determines the bracket of all
pairs of vectors v, w ∈ V . And the bracket’s obeying anti-symmetry and the Jacobi
identity implies that, for any basis, the structure constants obey

(53) ckij = −ckji ; Σk(ckijc
m
kl + cklic

m
kj + ckjlc

m
ki) = 0.

Conversely, any set of constants ckij obeying eq. 53 are the structure constants of
an n-dimensional Lie algebra.

3.2.2 The Lie bracket of two vector fields

Given two vector fields X,Y on a manifold M , the corresponding flows do not
in general commute: XtY s �= Y sXt. The non-commutativity is measured by the
commutator of the Lie derivatives of X and of Y , i.e. LXLY − LY LX . (Cf. eq.
40 and 45 for a definition of the Lie derivative.) Here, ‘measured’ can be made
precise by considering Taylor expansions; but I shall not go into detail about this.

What matters for us is that this commutator, which is at first glance seems to
be a second-order operator, is in fact a first-order operator. This is verified by
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calculating in a coordinate system, and seeing that the second derivatives occur
twice with opposite signs:

(LXLY − LY LX)f = Σi Xi ∂

∂xi

(
ΣjY j ∂f

∂xj

)
− Σj Y j ∂

∂xj

(
ΣiXi ∂f

∂xi

)
(54)

= ... = Σi,j

(
Xi ∂Y j

∂xi
− Y i ∂Xj

∂xi

)
∂f

∂xj
.(55)

So LXLY −LY LX corresponds to a vector field: (recall (2) of Section 3.1.3, about
defining a vector field from its Lie derivative). We call this field Z the Lie bracket
(also known as: Poisson bracket, commutator, and Jacobi-Lie bracket!) of the
fields X and Y , and write it as [X,Y ]. It is also written as LXY and called the
Lie derivative of Y with respect to X. (Beware: some books use an opposite sign
convention.)

Thus Z ≡ [X,Y ] ≡ LXY is defined to be the vector field such that

(56) LZ ≡ L[X,Y ] = LXLY − LY LX .

It follows that Z ≡ [X,Y ]’s components in a coordinate system are given by eq.
55. This formula can be remembered by writing it (with summation convention,
i.e. omitting the Σ) as

(57)
[
Xi ∂

∂xi
, Y j ∂

∂xJ

]
= Xi ∂Y j

∂xi
∂

∂xj
− Y j ∂Xi

∂xj
∂

∂xi

Another way to write eq. 55 is as:

(58) [X,Y ]j = (X · ∇)Y j − (Y · ∇)Xj ;

or without coordinates, writing D for the derivative map given by the Jacobian
matrix, as

(59) [X,Y ] = DY ·X −DX · Y.

Again, the vector field Z ≡ [X,Y ] measures the non-commutation of the flows Xt

and Y s: in particular, these flows commute iff [X,Y ] = 0.
We will need three results about the Lie bracket. They concern, respectively,

the relation to Lie algebras, to Poisson brackets, and to Frobenius’ theorem.

(1) The Lie bracket is obviously a bilinear and anti-symmetric operation on the
(infinite-dimensional) vector space X (M) of all vector fields on M : [, ] :
X (M) × X (M) → X (M). One readily checks that it satisfied the Jacobi
identity. (Expand L[[X,Y ],Z] = L[X,Y ]LZ − LZL[X,Y ] etc.) So: X (M) is an
(infinite-dimensional) Lie algebra.

(2) Returning to Hamiltonian mechanics (Section 2.1): there is a simple and
fundamental relation between the Lie bracket and the Poisson bracket, via
the notion of Hamiltonian vector fields (Section 2.1.3). Namely: the Hamil-
tonian vector field of the Poisson bracket of two scalar functions f, g on the
symplectic manifold M is, upto a sign, the Lie bracket of the Hamiltonian
vector fields, Xf and Xg, of f and g:
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(60) X{f,g} = −[Xf ,Xg] = [Xg,Xf ].

Proof: apply the rhs to an arbitrary scalar h : M → IR. One easily obtains
X{f,g}(h), by using:
(i) the definition of a Hamiltonian vector field;
(ii) the Lie derivative of a function equals its elementary directional derivative
eq. 40; and
(iii) the Poisson bracket is antisymmetric and obeys the Jacobi identity.

This result means that the Hamiltonian vector fields on a symplectic man-
ifold M , equipped with the Poisson bracket, form an (infinite-dimensional)
Lie subalgebra of the Lie algebra X (M) of all vector fields on the symplec-
tic manifold M . Later, it will be important that this result extends from
symplectic manifolds to Poisson manifolds; (details in Section 5.2.2).

(3) For Frobenius’ theorem (Section 3.3), we need to relate the Lie bracket to
Section 3.1.2’s idea of vector fields being f -related by a map f : M → N
between manifolds M and N . In short: if two pairs of vector fields are f -
related, so is their Lie bracket. More explicitly: if X,Y are vector fields on
M , and f : M → N is a map such that (Tf)(X), (Tf)(Y ) are well-defined
vector fields on N , then Tf commutes with the Lie bracket:

(61) (Tf)[X,Y ] = [(Tf)X, (Tf)Y ] .

3.3 Submanifolds and Frobenius’ theorem

This Subsection differs from the preceding ones in three ways. First, it emphasises
integral, rather than differential, notions.

Second: Section 3.1.2.2 have emphasised that the integral curves of a vector
field correspond to integrating a system of ordinary differential equations. Since
such curves are one-dimensional submanifolds of the given manifold, our present
topic, viz. higher-dimensional submanifolds, naturally suggests partial differential
equations. For their integration involves finding, given an assignment to each
point x of a manifold M of a subspace Sx (with dimension greater than one) of
the tangent space TxM , an integral surface, i.e. a submanifold S of M whose
tangent space at each of its points is Sx.18

However, we will not be concerned with partial differential equations. For us,
submanifolds of dimension higher than one arise when the span Sx of the tangent
vectors at x to a set of vector fields fit together to form a submanifold. Thus
Frobenius’ theorem states, roughly speaking, that a finite set of vector fields is
integrable in this sense iff the vector fields are in involution. That is: iff their

18Beware: there is no analogue for partial differential equations of the local existence and
uniqueness theorem for ordinary differential equations. Even a field of two-dimensional planes
in three-dimensional space is in general not integrable, e.g. the field of planes given by the
equation dz = ydx. So integrable fields of planes, or other tangent subspaces on a manifold,
are an exception; and accordingly, the integration theory for partial differential equations is less
unified, and more complicated, than that for ordinary differential equations.



40 J. Butterfield

pairwise Lie brackets are expandable in terms of the fields; i.e. the vector fields
form a Lie subalgebra of the entire Lie algebra of vector fields. We will not need
to prove this theorem. But we need to state it and use it —in particular, for the
foliation of Poisson manifolds.

Third: a warning is in order. The intuitive idea of a subset S ⊂ M that is
a smooth manifold “in its own right” can be made precise in different ways. So
there are subtleties about the definition of ‘submanifold’, and terminology varies
between expositions —in a way it does not for the material in previous Sections.
I will adopt what seems to be a widespread, if not majority, terminology.19

3.3.1 Submanifolds

The fundamental definition is:
Given a manifold M (dim(M)=n), a submanifold of M of dimension k is a

subset N ⊂M such that for every y ∈ N there is an admissible local chart (i.e. a
chart in M ’s maximal atlas) (U, φ) with y ∈ U and with the submanifold property,
viz.

(62) (SM). φ : U → IRk × IRn−k and φ(U ∩N) = φ(U) ∩ (IRk × {0}).

The set N becomes a manifold, generated by the atlas of all charts of the form
(U∩N,φ | (U∩N)), where (U, φ) is a chart of M having the submanifold property.
(This makes the topology of N the relative topology.)

We need to take note of two ways in which submanifolds can be specified in
terms of smooth functions between manifolds.

(1) A submanifold can be specified as the set on which a smooth function f :
M → P between manifolds takes a certain value. In effect, this will be a
generalization of eq. 62’s requirement that n− k coordinate-components of
a chart φ take the value zero. This will involve the idea that the tangent
map Tf is surjective, in which case f will be called a submersion. We will
need this approach for quotients of actions of Lie groups.

(2) A submanifold can be specified parametrically, as the set of values of a
local parametrization: i.e. as the range of a smooth function f with M as
codomain. This will involve the idea that the tangent map Tf is injective,
in which case f will be called an immersion. We will need this approach for
Frobenius’ theorem.

19My treatment is based on [Marsden and Ratiu, 1999, p. 124–127, 140]for Section 3.3.1, and
[Olver, 2000, p. 38–40] for Section 3.3.2. As to varying terminology: Olver [2000, p. 9] defines
‘submanifold’ to be what we will call an immersed submanifold; (which latter, for us, does not
have to be a submanifold, since the immersion need not be an embedding). Bishop and Goldberg
[1980, p. 40–41] provide a similar example. For a detailed introduction to the different notions
of submanifold, cf. Darling [1994, Chapters 3 and 5]. Note that I will also omit some details, in
particular about Frobenius’ theorem providing regular immersions.
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(1): Submersions:
If f : M → P is a smooth map between manifolds, a point x ∈ M is called a
regular point if the tangent map Txf is surjective; otherwise x is a critical point
of f . If C ⊂M is the set of critical points of M , we say f(C) is the set of critical
values of f , and P − f(C) is the set of regular values of f . So if p ∈ P is a regular
value of f , then at every x ∈M with f(x) = p, Txf is surjective.

The submersion theorem states that if p ∈ P is a regular value of f , then:

(i) f−1(p) is a submanifold of M of dimension dim(M) - dim(P ); and

(ii) the tangent space of this submanifold at any point x ∈ f−1(p) is the kernel
of f ’s tangent map:

(63) Tx(f−1(p)) = kerTxf .

If Txf is surjective for every x ∈M , f is called a submersion.

(2): Immersions:
A smooth map between manifolds f : M → P is called an immersion if Txf is
injective at every x ∈ M . The immersion theorem states that Txf is injective iff
there is a neighbourhood U of x in M such that f(U) is a submanifold of P and
f |U : U → f(U) is a diffeomorphism.

NB: This does not say that f(M) is a submanifold of P . For f may not be
injective (so that f(M) has self-intersections). And even if f is injective, f can
fail to be a homeomorphism between M and f(M), equipped with the relative
topology induced from P . A standard simple example is an injection of an open
interval of IR into an “almost-closed” figure-of-eight in IR2.

Nevertheless, when f : M → P is an immersion, and is also injective, we call
f(M) an injectively immersed submanifold (or shorter: an immersed submanifold):
though f(M) might not be a submanifold.

We also define an embedding to be an immersion that is also a homeomorphism
(and so injective) between M and f(M) (where the latter has the relative topology
induced from P ). If f is an embedding, f(M) is a submanifold of N and f is a
diffeomorphism f : M → f(M).

In fact, Frobenius’ theorem will provide injectively immersed submanifolds that
need not be embedded, and so need not be submanifolds. (They must also obey
another condition, called ‘regularity’, that I will not go into.)

3.3.2 The theorem

We saw at the end of Section 3.2.2 that if two pairs of vector fields are f -related,
so is their Lie bracket: cf. eq. 61. This result immediately yields a necessary
condition for two vector fields to be tangent to an embedded submanifold: namely

If X1,X2 are vector fields on M that are tangent to an embedded submanifold
S (i.e. at each x ∈ S, Xi(x) ∈ TxS < TxM), then their Lie bracket [X1,X2] is
also tangent to S.
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This follows by considering the diffeomorphism f : S̃ → S that gives an embed-
ding of S in M . One then uses the fact that Tf commutes with the Lie bracket,
eq. 61. That is: the Lie bracket of the f -related vector fields X̃1, X̃2 on S̃, which
is of course tangent to S̃, is carried by Tf to the Lie bracket [X1,X2] of X1 and
X2. So [X1,X2] is tangent to S.

The idea of Frobenius’ theorem will be that this necessary condition of two
vector fields being tangent to a submanifold is also sufficient. To be more precise,
we need the following definitions.

A distribution D on a manifold M is a subset of the tangent bundle TM such
that at each x ∈ M , Dx := D ∩ TxM is a vector space. The dimension of Dx is
the rank of D at x. If the rank of D is constant on M , we say the distribution is
regular.

A distribution is smooth if for every x ∈ M , and every X0 ∈ Dx, there is a
neighbourhood U ⊂ M of x, and a smooth vector field X on U such that (i)
X(x) = X0, (ii) for all y ∈ U , X(y) ∈ Dy. Such a vector field X is called a local
section of D. Example: a set of r vector fields, X1, ...,Xr each defined on M ,
together define a smooth distribution of rank at most r.

A distribution is involutive if for any pair X1,X2 of local sections, the Lie
bracket [X1,X2](y) ∈ Dy in the two sections’ common domain of definition.

We similarly say that a set of r smooth vector fields, X1, ...,Xr, on a manifold
M is in involution if everywhere in M they span their Lie brackets. That is: there
are smooth real functions hkij : M → R, i, j, k = 1, ..., r such that at each x ∈M

(64) [Xi,Xj ](x) = Σk hkij(x)Xk(x).

(Beware: involution is used in a different sense in connection with Liouville’s
theorem, viz. a set of real functions on phase space is said to be in involution
when all their pairwise Poisson brackets vanish.)

A distribution D on M is integrable if for each x ∈M there is a local submanifold
N(x) of M whose tangent bundle equals the restriction of D to N(x). If D is
integrable, the various N(x) can be extended to get, through each x ∈ M , a
unique maximal connected set whose tangent space at each of its elements y is
Dy. Such a set is called a (maximal) integral manifold.

NB: In general, each integral manifold is injectively immersed in M , but not
embedded in it; and so, by the discussion in (2) of Section 3.3.1, an integral
manifold might not be a submanifold of M . But (like most treatments), I shall
ignore this point, and talk of them as submanifolds, integral submanifolds.

If the rank of D is constant on M , all the integral submanifolds have a common
dimension: the rank of D. But in general the rank of D varies across M , and so
does the dimension of the integral submanifolds.

We similarly say that a set of r vector fields, X1, ...,Xr, is integrable; viz. if
through every x ∈M there passes a local submanifold N(x) of M whose tangent
space at each of its points is spanned by X1, ...,Xr. (Again: we allow that at
some x, X1(x), ...,Xr(x) may be linearly dependent, so that the dimension of the
submanifolds varies.)
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We say (both for distributions and sets of vector fields) that the collection of
integral manifolds is a foliation of M , and its elements are leaves. Again: if the
dimension of the leaves is constant on M , we say the foliation is regular.

With these definitions in hand, we can now state Frobenius’ theorem: both in
its usual form, which concerns the case of constant rank, i.e. regular distributions
and vector fields that are everywhere linearly independent; and in a generalized
form. The usual form is:

Frobenius’ theorem (usual form) A smooth regular distribution is
integrable iff it is involutive.
Or in terms of vector fields: a set of r smooth vector fields, X1, ...,Xr,
on a manifold M , that are everywhere linearly independent, is inte-
grable iff it is in involution.

The generalization comes in two stages. The first stage concerns varying rank,
but assumes a finite set of vector fields. It is straightforward: this very same
statement holds. That is: a set of r smooth vector fields, X1, ...,Xr, on a manifold
M (perhaps not everywhere linearly independent) is integrable iff it is in involution.

But for the foliation of Poisson manifolds (Section 5.3.3), we need to consider
an infinite set of vector fields, perhaps with varying rank; and for such a set, this
statement fails. Fortunately, there is a useful generalization; as follows.

Let X be a set of vector fields on a manifold M , that forms a vector space. So
in the above discussion of r vector fields, X can be taken as all the linear com-
binations Σri=1 fi(x)Xi(x), x ∈ M , where the fi are arbitrary smooth functions
f : M → IR. Such an X is called finitely generated.

For any X forming a vector space, we say (as before) that X is in involution
if [X,Y ] ∈ X whenever X,Y ∈ X . Let Xx be the subspace of TxM spanned by
the X(x) for all X ∈ X . As before, we define: an integral manifold of X is a
submanifold N ⊂M such that for all y ∈ N , TyN = Xy; and X is called integrable
iff through each x ∈M there passes an integral manifold.

As before: if X is integrable, it is in involution. But the converse fails. A further
condition is needed, as follows.

We say that X is rank-invariant if for any vector field X ∈ X , the dimension of
the subspace Xexp(τX)(x) along the flow generated by X is a constant, independent
of τ . (But it can depend on the point x.)

Since the integral curve exp(τX)(x) through x should be contained in any inte-
gral submanifold, rank-invariance is certainly a necessary condition of integrability.
(It also follows from X being finitely generated.) In fact we have:

Frobenius’ theorem (generalized form) A system X of vector
fields on M is integrable iff it is rank-invariant and in involution.

The idea of the proof is to directly construct the integral submanifolds. The
submanifold through x is obtained as

(65) N = {exp(X1) exp(X2).... exp(Xp)(x) : p ≥ 1,Xi ∈ X}.
The rank-invariance secures that for any y ∈ N , Xy has dimension dim(N).
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3.4 Lie groups, and their Lie algebras

I introduce Lie groups and their Lie algebras. By the last two Subsections (Sections
3.4.3 and 3.4.4), we will have enough theory to compute efficiently the Lie algebra
of a fundamentally important Lie group, the rotation group.

3.4.1 Lie groups and matrix Lie groups

A Lie group is a group G which is also a manifold, and for which the product and
inverse operations G×G→ G and G→ G are smooth.

Examples:

(i) IRn under addition.

(ii) The group of linear isomorphisms of IRn to IRn, denoted GL(n, IR) and called
the general linear group; represented by the real invertible n × n matrices.
This is an open subset of IRn

2
, and so a manifold of dimension n2; and the

formulas for the product and inverse of matrices are smooth in the matrix
components.

(iii) The group of rotations about the origin of IR3, represented by 3×3 orthogonal
matrices of determinant 1; denoted SO(3), where S stands for ‘special’ (i.e.
determinant 1), and O for ‘orthogonal’.

In fact, all three examples can be regarded as Lie groups of matrices, with matrix
multiplication as the operation. In example (i), consider the isomorphism θ be-
tween IRn under addition and (n + 1)× (n + 1) matrices with diagonal entries all
equal to 1, other rightmost column entries equal to the given vector in IRn, and
all other entries zero. Thus consider, for the case n = 3:

(66) θ :


 x

y
z


 	→




1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1


 .

This suggests that we define a matrix Lie group to be any set of invertible real
matrices, under matrix multiplication, that is closed under multiplication, inver-
sion and taking of limits. That a matrix Lie group is a Lie group will then follow
from GL(n, IR) being a Lie group, and the theorem below (in Section 3.4.3) that
any closed subgroup of a Lie group is itself a Lie group.

For matrix Lie groups, some of the theory below simplifies. For example, the
definition of exponentiation of an element of the group’s Lie algebra reduces to
exponentiation of a matrix. But we will develop some of the general theory, since
(as always!) it is enlightening and powerful.
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3.4.2 The Lie algebra of a Lie group

The main result in this Subsection is that for any Lie group G, the tangent space
TeG at the identity e ∈ G has a natural Lie algebra structure that is induced by
certain natural vector fields on G; as follows.

3.4.2.1 Left-invariant vector fields define the Lie algebra :
Let G be a Lie group. Each g ∈ G defines a diffeomorphism of G onto itself by
left translation, and similarly by right translation:

(67) Lg : h ∈ G 	→ gh ∈ G ; Rg : h ∈ G 	→ hg ∈ G.

Remark: In Section 4 we will describe this in the language of group actions, saying
that in eq. 67 G acts on itself by left and right translation.

Now consider the induced maps on the tangent spaces, i.e. the tangent (aka:
derivative) maps; cf. eq.s 29, 30. They are (Lg)∗ =: Lg∗, (Rg)∗ =: Rg∗ where for
each h ∈ G:

(68) Lg∗ : ThG→ TghG and Rg∗ : ThG→ ThgG.

In particular: the derivative (Rg)∗ at e ∈ G maps TeG to TgG. This implies that
every vector ξ ∈ TeG defines a vector field on G: its value at any g ∈ G is the
image (Rg)∗ξ of ξ under (Rg)∗. Such a vector field is called a right-invariant vector
field: it is uniquely defined by (applying the derivative of right translation to) its
value at the identity e ∈ G.

In more detail, and now defining left-invariant vector fields: —
A vector field X on G is called left-invariant if for every g ∈ G, (Lg)∗X = X.
More explicitly, let us write ThLg for the tangent or derivative of Lg at h, i.e. for
Lg∗ : ThG→ TghG. Then left-invariance requires that

(69) (ThLg)X(h) = X(gh) for every g and h ∈ G.

Thus every vector ξ ∈ TeG defines a left-invariant vector field, written Xξ, on G:
Xξ’s value at any g ∈ G is the image (Lg)∗ξ of ξ under (Lg)∗. In other words:
Xξ(g) := (TeLg)ξ.

Not only is a left-invariant vector field uniquely defined by its value at the
identity e ∈ G. Also, the set XL(G) of left-invariant vector fields on G is isomorphic
as a vector space to the tangent space TeG at the identity e. For the linear maps
α, β defined by

(70) α : X ∈ XL(G) 	→ X(e) ∈ TeG ; and β : ξ ∈ TeG 	→ {g 	→ Xξ(g) :=
(TeLg)ξ} ∈ XL(G)

compose to give the identity maps:

(71) β ◦ α = idXL(G) ; α ◦ β = idTeG.
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XL(G) is a Lie subalgebra of the Lie algebra of all vector fields on G, because
it is closed under the Lie bracket. That is: the Lie bracket of left-invariant vector
fields X and Y is itself left-invariant, since one can check that for every g ∈ G we
have (with L meaning ‘left’ not ‘Lie’ !)

(72) Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ].

If we now define a bracket on TeG by

(73) [ξ, η] := [Xξ,Xη](e)

then TeG becomes a Lie algebra. It is called the Lie algebra of G, written g (or,
to avoid ambiguity about which Lie group is in question: g(G)). It follows from
eq. 72 that

(74) [Xξ,Xη] = X[ξ,η] ;

that is to say, the maps α, β are Lie algebra isomorphisms.
This result, that TeG has a natural Lie algebra structure, is very important. For,

as we shall see in the rest of Section 3.4: the structure of a Lie group is very largely
determined by the structure of this Lie algebra. Accordingly, as we shall see in
Sections 4 and 5 et seq.: this Lie algebra underpins most of the constructions made
with the Lie group, e.g. in Lie group actions. Thus Olver writes that this result
‘is the cornerstone of Lie group theory ... almost the entire range of applications
of Lie groups to differential equations ultimately rests on this one construction!’
[Olver, 2000, 42].

Before turning in the next Subsection to examples, and the topic of subgroups
and subalgebars, I end with four results, (1)-(4), which will be needed later; and
a remark.

3.4.2.2 Four results

(1) Lie group structure determines Lie algebra structure in the following sense.
If G,H are Lie groups, and f : G → H is a smooth homomorphism, then
the derivative of f at the identity Tef : g(G)→ g(H) is a Lie algebra homo-
morphism. In particular, for all ξ, η ∈ g(G), (Tef)[ξ, η] = [Tef(ξ), Tef(η)].
(Cf. eq. 61.)

(2) Exponentiation again; a correspondence between left-invariant vector fields
and one-dimensional subgroups:
Recall from Section 3.1, especially eq. 36, that each vector field X on the
manifold G determines an integral curve φX in G passing through the identity
e (with φX(0) = e). We now write the points in (the image of) this curve as
gτ (X and e being understood):

(75) exp(τX)(e) ≡ Xτ (e) ≡ φX,e(τ) =: gτ .
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It is straightforward to show that if X is left-invariant, this (image of a)
curve is a one-parameter subgroup of G: i.e. not just as eq. 35 et seq., a
one-parameter subgroup of the group of diffeomorphisms of the manifold G.
In fact:

(76) gτ+σ = gτgσ g0 = e g−1
τ = g−τ .

Besides, the group is defined for all τ ∈ IR; and is isomorphic to either IR or
the circle group SO(2). Conversely, any connected one-parameter subgroup
of G is generated by a left-invariant vector field in this way.

Accordingly, we define exponentiation of elements ξ of g by reference to
the isomorphisms eq. 70 and 71. It is also convenient to define this as a
map taking values in G. Thus for ξ ∈ g and its corresponding left-invariant
vector field Xξ that takes as value at g ∈ G, Xξ(g) := (TeLg)(ξ), we write
the integral curve of Xξ that passes through e (with value e for argument
τ = 0) as

(77) φξ : τ ∈ IR 	→ exp(τXξ)(e) ∈ G .

Then we define the exponential map of g into G to be the map

(78) exp : ξ ∈ g 	→ φξ(1) ∈ G .

Using the linearity of β as defined by eq. 70, these two equations, eq. 77
and 78, are related very simply:

(79) exp(τξ) := φτξ(1) := exp(1.Xτξ)(e) = exp(τXξ) .

We write expG rather than exp when the context could suggest a Lie group
other than G.

The map exp is a local diffeomorphism of a neighbourhood of 0 ∈ g to a
neighbourhood of e ∈ G; but not in general a global diffeomorphism onto
G. In modern terms, this result follows by applying the inverse function
theorem to the discussion above. (It also represents an interesting example
of the history of subject; cf. [Hawkins, 2000, 82–83] for Lie’s version of this
result, without explicit mention of its local nature.)

The map exp also has the basic property, adding to result (1) above, that ...

(3) Homomorphisms respect exponentiation:
If f : G→ H is a smooth homomorphism of Lie groups, then for all ξ ∈ g,

(80) f(expG ξ) = expH((Tef)(ξ)).

(4) Right-invariant vector fields as an alternative approach:
We have followed the usual practice of defining g in terms of left-invariant
vector fields. One can instead use right-invariant vector fields. This produces
some changes in signs, and in whether certain defined operations respect or
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reverse the order of two elements used in their definition. I will not go into
many details about this. But some will be needed when we consider:

(i) Lie group actions, and especially their infinitesimal generators (Section
4.4 and 4.5);

(ii) reduction on the cotangent bundle of a Lie group —as occurs in the
theory of the rigid body (Section 6.5 and 7.3.3).

For the moment we just note two basic results, (A) and (B); postponing
others to Section 4.4 et seq.

(A) Corresponding to the vector space isomorphism between g and the left-
invariant vector fields, as in eq. 70. viz.

(81) ξ ∈ TeG 	→ Xξ ∈ XL(G) with Xξ(g) := (TeLg)ξ ,

there is a vector space isomorphism to the set of right-invariant vector fields

(82) ξ ∈ TeG 	→ Yξ ∈ XR(G) with Yξ(g) := (TeRg)ξ .

Besides, the Lie bracket of right-invariant vector fields is itself right-invariant.
So corresponding to our previous definition, eq. 73, of a Lie bracket on TeG,
and its corollary eq. 74, i.e. [Xξ,Xη] = X[ξ,η], that makes TeG ∼= XL(G) a
Lie algebra isomorphism: we can also define a Lie bracket on TeG by

(83) [ξ, η]R := [Yξ, Yη](e) ,

and get a Lie algebra isomorphism TeG ∼= XR(G).

(B) But the two Lie brackets, eq. 73 and 83, on TeG are different. In fact one
can show that:
(i): Xξ and Yξ are related by

(84) I∗Xξ = −Yξ

where I : G→ G is the inversion map I(g) := g−1, and I∗ is the push-forward
on vector fields induced by I, cf. eq. 31, i.e.

(85) (I∗Xξ)(g) := (TI ◦Xξ ◦ I−1)(g) .

Besides, since I is a diffeomorphism, eq. 84 makes I∗ a vector space isomor-
phism.
(ii): It follows from eq. 84 that

(86) [Xξ,Xη](e) = −[Yξ, Yη](e) ; so [ξ, η] = −[ξ, η]R .
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Finally, a remark about physics. In applications to physics, G is usually the
group of symmetries of a physical system, and so a vector field on G is the in-
finitesimal generator of a one-parameter group of symmetries. For mechanics, we
saw this repeatedly in Section 2, especially as regards the group of translations and
rotations about the origin, in physical space IR3. This Subsection’s isomorphism
between the Lie algebra g and left-invariant vector fields on G means that we can
think of g also as consisting of infinitesimal symmetries of the system. (The ξ ∈ g
are also called generators of the group G.)

3.4.3 Examples, subgroups and subalgebras

I begin with the first two of Section 3.4.1’s three examples. That will prompt a
little more theory, which will enable us to deal efficiently in the next Subsection
with the third example, viz. the rotation group.

(1): Examples

(i) G := IRn under addition. G is abelian so that left and right translation
coincide. The invariant vector fields are just the constant vector fields, so
that XL(G) ≡ XR(G) ∼= IRn. So the tangent space at the identity TeG, i.e.
the Lie algebra g, is itself IRn. The bracket structure is wholly degenerate:
for all invariant vector fields X,Y , [X,Y ] = 0; and for all ξ, η ∈ g, [ξ, η] = 0.

(ii) G := GL(n, IR), the general linear group. Since G is open in End(IRn, IRn),
the vector space of all linear maps on IRn (‘End’ for ‘endomorphism’), G’s Lie
algebra, as a vector space, is End(IRn, IRn); (cf. example (i)). To compute
what the Lie bracket is, we first note that any ξ ∈ End(IRn, IRn) defines a
corresponding vector field on GL(n, IR) by

(87) Xξ : A ∈ GL(n, IR) 	→ Aξ ∈ End(IRn, IRn) .

Besides, Xξ is left-invariant, since for every B ∈ GL(n, IR), the left transla-
tion

(88) LB : A ∈ GL(n, IR) 	→ BA ∈ GL(n, IR)

is linear, and so

(89) Xξ(LBA) = BAξ = TALBXξ(A) .

Applying now eq. 59 at the identity I ∈ GL(n, IR) to the definition of the
bracket in the Lie algebra, eq. 73, we have:

(90) [ξ, η] := [Xξ,Xη](I) = DXη(I) ·Xξ(I)−DXξ(I) ·Xη(I).

But XηA = Aη is linear in A, so DXη(I) ·B = Bη. This means that

(91) DXη(I) ·Xξ(I) = ξη ;
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and similarly

(92) DXξ(I) ·Xη(I) = ηξ.

So the Lie algebra End(IRn, IRn) has the usual matrix commutator as its
bracket: [ξ, η] = ξη − ηξ. This Lie algebra is often written gl(n, IR).

Let us apply to this example, result (2) from Section 3.4.2.2. In short, the result
said that left-invariant vector fields correspond (by exponentiation through e ∈ G)
to connected one-parameter subgroups of G. To find the one-parameter subgroup
exp(τXξ)(e) of GL(n, IR), we take the matrix entries xij , (i, j = 1, ..., n) as the n2

coordinates on GL(n, IR), so that the tangent space at the identity matrix I is the
set of vectors

(93) Σij ξij
∂

∂xij
|I

with ξ = (ξij) an arbitrary matrix. For given ξ, exp(τXξ)e is found by integrating
the n2 ordinary differential equations

(94)
dxij
dτ

= Σkξikxkj ; xij(0) = δij .

The solution is just the matrix exponential:

(95) X(τ) = exp(τξ).

More generally, let us return to Section 3.4.1’s idea of a matrix Lie group. For
a matrix Lie group G, the definition of its Lie algebra can be given as:

(96) g = { the set of matrices ξ = φ′(0) : φ a differentiable map : IR→ G,φ(0) =
eG}.

The deduction of the structure of the Lie algebra then proceeds straightforwardly.
In particular, we get the result that the one-parameter subgroup generated by ξ ∈ g
is given by matrix exponentials, as in eq. 95: the group is {exp(τξ) : τ ∈ IR}.

This result will help us compute our third example: finding the Lie algebra
of the rotation group. But for that example, it is worth first developing a little
the result (2) from Section 3.4.2.2: i.e. the correspondence between left-invariant
vector fields and connected one-parameter subgroups of G.

(2): More theory:
First, a warning remark. We will later need to take notice of the fact that a sub-
group, even a one-parameter subgroup, of a Lie group G need not be a submanifold
of G. Here we recall Section 3.3.1’s definitions of immersion and embedding. Ac-
cordingly, we now define a subgroup H of a Lie group G to be a Lie subgroup of
G if the inclusion map i : H → G is an injective immersion.

Just as we saw in Section 3.3.1 that not every injective immersion is an em-
bedding, so also there are examples of Lie subgroups that are not submanifolds.
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Example: the torus T2 can be made into a Lie group in a natural way (exercise:
do this!); the one-parameter subgroups on the torus T2 that wind densely on the
torus are Lie subgroups that are not submanifolds. (For more details about this
example, cf. [Arnold, 1973, 160–167] or Arnold [1989, 72–74] or Butterfield [2004a,
Section 2.1.3.B].)

But it turns out that being closed is a sufficient, and necessary, further condi-
tion. That is:

If H is a closed subgroup of a Lie group G, then H is a submanifold
of G and in particular a Lie subgroup. And conversely, if H is a Lie
subgroup that is also a submanifold, then H is closed.

Result (2) from Section 3.4.2.2, i.e. the correspondence between one-dimensional
subgroups of G and one-dimensional subspaces (and so subalgebras) of g, gener-
alizes to higher-dimensional subgroups and subalgebras. That is to say:

If H ⊂ G is a Lie subgroup of G, then its Lie algebra h := g(H) is a
subalgebra of g ≡ g(G). In fact

(97) h = {ξ ∈ g : exp(τXξ)(e) ∈ H , for all τ ∈ IR}.
And conversely, if h is any m-dimensional subalgebra of g, then there
is a unique connected m-dimensional Lie subgroup H of G with Lie
algebra h.

The proof of the first two statements uses result (1) of Section 3.4.2.2. For the
third, i.e. converse, statement, the main idea is that h defines m vector fields on G
that are linearly independent and in involution, so that one can apply Frobenius’
theorem to infer an integral submanifold. One then has to prove that H is a Lie
subgroup: Olver [2000, Theorem 1.51] and Marsden and Ratiu [1999, 279–280]
give details and references. (Historical note: to see that this result, sometimes
called Lie’s ‘third fundamental theorem’, is close to what Lie himself called the
main theorem of his theory of groups, cf. [Hawkins, 2000, 83].)

This general correspondence between Lie subgroups and Lie subalgebras prompts
the question whether every finite-dimensional Lie algebra g is the Lie algebra of
a Lie group. The answer is Yes. Besides, the question reduces to the case of
a matrix Lie group (i.e. a Lie subgroup of GL(n, IR)), in the sense that: every
finite-dimensional Lie algebra g is isomorphic to a subalgebra of gl(n, IR), for some
n. But be warned: this does not imply (and it is not true) that every Lie group is
realizable as a matrix Lie group, i.e. that every Lie group is isomorphic to a Lie
subgroup of GL(n, IR).

This general correspondence also simplifies greatly the computation of the Lie al-
gebras of Lie groups, for example H := SO(3), that are Lie subgroups of GL(n, IR).
We only need to combine it with example (ii) above, that gl(n, IR) is End(IRn, IRn)
with the usual matrix commutator as its bracket: [ξ, η] = ξη − ηξ.

Thus we infer that the Lie algebra of SO(3), written so(3), is a subalgebra
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of End(IRn, IRn) with the matrix commutator as bracket. Besides, we can iden-
tify so(3) by looking at all the one-dimensional subgroups of G contained in it.
Combining eq. 95 and 97, we have

(98) so(3) = {ξ ∈ gl(n, IR) : the matrix exponential exp(τξ) ∈ SO(3), ∀τ ∈ IR}.
With this result in hand, we can now compute so(3).

3.4.4 The Lie algebra of the rotation group

Our first aim is to calculate the Lie algebra so(3) (also written: so(3)) of H :=
SO(3), the rotation group. This will lead us back to Section 3.2.1.1 correspondence
between anti-symmetric matrices and vectors in IR3.

SO(3) is represented by 3 × 3 orthogonal matrices of determinant 1. So the
requirement in eq. 98 becomes, now writing e, not exp:

(99) (eτξ)(eτξ)T = I and det(eτξ) = 1.

Differentiating the first equation with respect to τ and setting τ = 0 yields

(100) ξ + ξT = 0.

So ξ must be anti-symmetric, i.e. represented by an anti-symmetric matrix. Con-
versely, for any such anti-symmetric matrix ξ, we can show that det(eτξ) = 1. So,
indeed:

(101) so(3) = {3× 3 antisymmetric matrices}.
Notice that the argument is independent of choosing n = 3. It similarly com-

putes so(n) for any integer n:

(102) so(n) = {n× n antisymmetric matrices}.
Thus the rotations on euclidean space IRn of any dimension n are generated by
the Lie algebra of n× n anti-symmetric matrices.

This justifies our assertion at the end of Section 3.2.1.1 that the rotation group
in three dimensions is special in being representable by vectors in the space on
which it acts, i.e. IR3. For as we have just seen, in general the infinitesimal
generators of rotations are anti-symmetric matrices, which in n dimensions have
n(n− 1)/2 independent components. But only for n = 3 does this equal n.

Remark: An informal computation of so(3), based on the idea that higher-
order terms in eτξ can be neglected (cf. the physical idea that ξ represents an
infinitesimal rotation), goes as follows.

For (I + τξ) to be a rotation requires that

(103) (I + τξ)(I + τξ)T = I and det(I + ξτ) = 1.

Dropping higher-order terms, the first equation yields

(104) I + τ(ξ + ξT ) = I i.e. ξ + ξT = 0.
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Besides, the second equation in eq. 103 yields no further constraint, since for any
anti-symmetric matrix ξ written as (cf. eq. 47)

(105) ξ =


 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


 ,

we immediately compute that det(I + ξτ) = 1 + τ2(ξ2
1 + ξ2

2 + ξ2
3). So, dropping

higher-order terms, det(I + ξτ) = 1. In short, we again conclude that

(106) so(3) = {3× 3 antisymmetric matrices}.
For later use (e.g. Sections 4.4 and 4.5.1), we note that the three matrices

(107) Ax =


 0 0 0

0 0 −1
0 1 0


 , Ay =


 0 0 1

0 0 0
−1 0 0


 , Az =


 0 −1 0

1 0 0
0 0 0




span so(3), and generate the one-parameter subgroups

(108) Rx
θ =


 1 0 0

0 cos θ − sin θ
0 sin θ cos θ


 , Ry

θ =


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 ,

Rz
θ =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1




representing anticlockwise rotation around the respective coordinate axes in the
physical space IR3.

Having computed so(3) to consist of antisymmetric matrices, we can use Section
3.2.1.1’s correspondence between these and vectors in IR3 so as to realize so(3) as
vectors with the Lie bracket as vector multiplication. With these realizations in
hand, we can readily obtain several further results about rotations. We will not
need any. But a good example, which uses eq. 48’s isomorphism Θ from vectors
ω ∈ IR3 to matrices A ∈ so(3), is as follows: —

exp(τ Θ(ω)) is a rotation about the axis ω by the angle τ ‖ ω ‖.
We can now begin to see the point of this Chapter’s second motto (from Arnold),

that the elementary theory of the rigid body confuses six conceptually different
three-dimensional spaces. For our discussion has already distinguished three of
the six spaces which Arnold lists (in a different notation). Namely, we have just
distinguished:

(i) IR3, especially when taken as physical space; from (ii) so(3) ≡ Te(SO(3)),
the generators of rotations; though they are isomorphic as Lie algebras, by
eq. 48’s bijection Θ from vectors ω ∈ IR3 to matrices A ∈ so(3);
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(ii) so(3) ≡ Te(SO(3)) from its isomorphic copy under the derivative of left
translation by g (i.e. under (Lg)∗), viz. Tg(SO(3)): cf. eq. 69. (In the
motto, Arnold writes g for so(3) and G for SO(3).)

In Section 5.2.4 we will grasp (even without developing the theory of the rigid
body!) the rest of the motto. That is, we will see why Arnold also mentions the
three corresponding dual spaces, IR3∗, so(3)∗ and T ∗

g (SO(3)). But we can already
say more about the two tangent spaces so(3) ≡ Te(SO(3)) and Tg(SO(3)), in
connection with the idea that for a pivoted rigid body, the configuration space
can be taken as SO(3); (cf. (3) of Section 2.2). We will show that there are
two isomorphisms from Tg(SO(3)) to Te(SO(3)) that are natural, not only in the
mathematical sense of being basis-independent but also in the sense of having a
physical interpretation. Namely, they represent the computation of the angular
velocity from the Lagrangian generalized velocity, i.e. q̇. In effect, one isomorphism
computes the angular velocity’s components with respect to an orthonormal frame
fixed in space (called spatial coordinates); and the other computes it with respect
to a frame fixed in the rigid body (body coordinates). In fact, these isomorphisms
are the derivatives of right and left translation, respectively; (cf. eq. 67 and 68).

So suppose a pivoted rigid body has a right-handed orthonormal frame {a, b, c}
fixed in it. We can think of the three unit vectors a, b, c as column vectors in
IR3. Arranging them in a 3 × 3 matrix g := (a b c) ∈ GL(3, IR), we get a
matrix that maps the unit x-vector e1 to a, the unit y-vector e2 to b, etc. That
is: g maps the standard frame e1, e2, e3 to a, b, c, and g is an orthogonal matrix:
g ∈ S0(3) = {g ∈ GL(3, IR) | g̃g = I }. Thus g represents the configuration of the
body, and the configuration space is SO(3).

By differentiating the condition g̃g = I, we deduce that the tangent space at
a specific g, Tg(SO(3)), i.e. the space of velocities ġ, is the 3-dimensional vector
subspace of GL(3, IR):

(109) Tg(SO(3)) = {ġ ∈ GL(3, IR) | ˙̃gg + g̃ġ = 0 }
Now recall examples (ii) and (iii) of Section 3.2.1.1. We saw there that though the
angular velocity of the body is usually taken to be the vector ω such that, with
our “body-vectors” a, b, c,

(110) ȧ = ω ∧ a, ḃ = ω ∧ b, ċ = ω ∧ c :

we can instead encode the angular velocity by the antisymmetric matrix A :=
Θ(ω) ∈ g ≡ Te(SO(3)). As we saw, eq. 110 then becomes

(111) ȧ = Θ(ω)a, ḃ = Θ(ω)b, ċ = Θ(ω)c :

or equivalently the matrix equation for the configuration g = (a b c),

(112) ġ ≡ (ȧ ḃ ċ) = Θ(ω)g ; i.e. Θ(ω) = ġg−1 .

Thus we see that the map from Tg(SO(3)) to g = Te(SO(3))
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(113) ġ ∈ Tg(SO(3)) 	→ ġg−1 ≡ ġg̃ ∈ g

maps the generalized velocity ġ to the angular velocity Θ(ω). This is the angular
velocity represented in the usual elementary way, with respect to coordinates fixed
in space. One immediately checks that it is an isomorphism (exercise!).

On the other hand, let us consider Θ(ω) as a linear transformation Θ(ω) : IR3 →
IR3, and express it in the body coordinates a, b, c. This gives g−1Θ(ω)g ≡ g−1ġ.
Thus the map

(114) ġ ∈ Tg(SO(3)) 	→ g−1ġ ≡ g̃ġ ∈ g

maps the generalized velocity ġ to the angular velocity expressed in body coordi-
nates. It also is clearly an isomorphism.

Summing up: we have two natural isomorphisms that compute the angular ve-
locity, in spatial and body coordinates respectively, from the generalized velocity ġ.

Incidentally, one can verify directly that the images ġg̃ and g̃ġ of the isomor-
phisms eq. 113 and 114 lie in g, i.e. are antisymmetric matrices. Thus with · for
the elementary dot-product, we have:

(115) g−1ġ ≡ g̃ġ =


 ã

b̃
c̃


 (ȧ ḃ ċ) =


 0 a · ḃ a · ċ

b · ȧ 0 b · ċ
c · ȧ c · ḃ 0


 .

This is an antisymmetric matrix, since differentiating a · b = b · c = a · c = 0 with
respect to time gives a· ḃ+ȧ·b = 0 etc. Finally, we deduce that ġg̃ is antisymmetric
from the facts that ġg̃ = g(g−1ġ)g−1 and antisymmetry is preserved by conjugation
by g.

We end this Subsection with two incidental remarks; (they will not be used in
what follows).

(1) In Section 2.1.1, we could have specialized the discussion from a symplectic
manifold to a symplectic vector space, i.e. a (real, finite-dimensional) vector
space equipped with a non-degenerate anti-symmetric bilinear form ω : Z ×
Z → IR. It follows that Z is of even dimension. The question then arises
which linear maps A : Z → Z preserve the normal form of ω given by eq.
4. It is straightforward to show that this is equivalent to A preserving the
form of Hamilton’s equations (for any Hamiltonian); so that these maps A
are called symplectic (or canonical, or Poisson). The set of all such maps
form a Lie group, the symplectic group, written Sp(Z, ω). But since this
Chapter will not need the theory of canonical transformations, I leave the
study of Sp(Z, ω)’s structure as an exercise! (For details, cf. e.g. Abraham
and Marsden [1978, 167–174], Marsden and Ratiu [1999,: 69–72, 293–299].)

(2) Finally, a glimpse of the infinite-dimensional manifolds that this Chapter
has foresworn. Consider the infinite-dimensional Lie group Diff(M) of all
diffeomorphisms on M . An element of its Lie algebra, i.e. a vector A ∈
Te(Diff(M)), is a vector field, or equivalently a flow, on M . Besides, the
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Lie bracket in this Lie algebra Te(Diff(M)), as defined by eq. 73 turns out
to be the usual Lie bracket of the vector fields on M , as defined in Section
3.2.2.

4 ACTIONS OF LIE GROUPS

We turn to actions of Lie groups on manifolds. The notions, results and examples
in this Section will be crucial from Section 5.4 onwards. Fortunately, the foregoing
provides several examples of the notions and results we need. Section 4.1 will give
basic material, including the crucial notion of cotangent lifts. Sections 4.2 and
4.3 describe conditions for orbits and quotient spaces to be manifolds. Section
4.4 describes actions infinitesimally, i.e. in terms of their infinitesimal generators.
Section 4.5 presents two important representations of a Lie group, its adjoint and
co-adjoint representations, on its Lie algebra g and on the dual g∗ respectively. Fi-
nally, Section 4.6 gathers some threads concerning our central, recurring example,
viz. the rotation group.

4.1 Basic definitions and examples

A left action of a Lie group G on a manifold M is a smooth map Φ : G×M →M
such that:

(i) Φ(e, x) = x for all x ∈M

(ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and all x ∈M .

We sometimes write g · x for Φ(g, x).
Similarly, a right action of a Lie group G on a manifold M is a smooth map

Ψ : M ×G → M satisfying (i) Ψ(x, e) = x and (ii) Ψ(Ψ(x, g), h) = Ψ(x, gh). We
sometimes write x · g for Ψ(x, g).

It is convenient to also have a subscript notation. For every g ∈ G, we define

(116) Φg : M →M : x 	→ Φ(g, x).

In this notation, (i) becomes Φe = idM and (ii) becomes Φgh = Φg ◦Φh. For right
actions, (ii) becomes Ψgh = Ψh ◦Ψg.

One immediately verifies that any left action Φ of G on a manifold M , g 	→ Φg :
M →M , defines a right action Ψ by

(117) g 	→ Ψg := Φg−1 : M →M ; i.e. Ψ : (x, g) ∈M ×G 	→ Φ(g−1, x) ∈M .

(Use the fact that in G, (gh)−1 = h−1g−1.) Similarly, a right action defines a left
action, by taking the inverse in G. We will occasionally make use of this left-right
“flip”.

The definition of left action is equivalent to saying that the map g 	→ Φg is
a homomorphism of G into Diff(M), the group of diffeomorphisms of M . In the
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special case where M is a Banach space V and each Φg : V → V is a continuous
linear transformation, the action of G on V is called a representation of G on V .

The orbit of x ∈M (under the action Φ) is the set

(118) Orb(x) = {Φg(x) : g ∈ G} ⊂M.

The action is called transitive if there is just one orbit, i.e. for all x, y ∈M , there
is a g ∈ G such that g ·x = y. It is called effective (or faithful) if Φg = idM implies
g = e, i.e. if g 	→ Φg is one-to-one. It is called free if it has no fixed points for
any g �= e: that is, Φg(x) = x implies g = e. In other words, it is free if for each
x ∈M , g 	→ Φg(x) is one-to-one. (So: every free action is faithful.)

4.1.0.1 Examples; cotangent lifts We begin with geometric examples; and
then return to mechanics, giving first some general theory, followed by some ex-
amples.

(2): Geometric examples:

(i) SO(3) acts on IR3 by (A, x) 	→ Ax. The action is faithful. But it is neither
free (each rotation fixes the points on its axis) nor transitive (the orbits are
the spheres centred at the origin).

(ii) GL(n, IR) acts on IRn by (A, x) 	→ Ax. The action is faithful, not free, and
“almost transitive”: the zero subspace {0} is an orbit, and so is IRn − {0}.

(iii) Suppose X is a vector field on M which is complete in the sense that the flow
φX(τ) of eq. 35 is defined for all τ ∈ IR. Then this flow defines an action of
IR on M .

We turn to two examples which will be central, and recurring, in our discussion of
symplectic reduction.

(iv) Left translation by each g ∈ G, Lg : h ∈ G 	→ gh ∈ G (cf. eq. 67), defines
a left action of G on itself. Since G is a group, it is transitive and free (and
so faithful). Similarly, right translation, g 	→ Rg with Rg : h ∈ G 	→ hg ∈ G,
defines a right action. And g 	→ Rg−1 defines a left action; cf. eq. 117.
One readily proves that left translation lifts to the tangent bundle TG as a
left action. That is: one verifies by the chain rule that

(119) Φg : TG→ TG : v ≡ vh ∈ ThG 	→ (ThLg)(v) ∈ TghG

defines a left action on TG. Similarly, right translation lifts to a right action
on TG. But our interest in Hamiltonian mechanics of course makes us more
interested in cotangent lifts. See (2) below for the general definitions, and
example (viii) in (3) below for the cotangent lift of left translation.

(v) G acts on itself by conjugation (inner automorphism): g 	→ Kg := Rg−1 ◦Lg.
That is: Kg : h ∈ G 	→ ghg−1 ∈ G. Each Kg is an isomorphism of G. The
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orbits are conjugacy classes. Section 4.5 will introduce two “differentiated
versions” of action by conjugation, viz. the adjoint and co-adjoint actions,
which will be important in symplectic reduction.

(2): Hamiltonian symmetries and cotangent lifts:
We turn to Hamiltonian mechanics. Following the discussion in Section 2.1.3, we
say: given a Hamilton system (M,ω,H) with (M,ω) a symplectic manifold and
H : M → IR, a Hamiltonian group of symmetries is a Lie group G acting on M
such that each Φg : M →M preserves both ω and H. Then the simplest possible
examples are spatial translations and-or rotations acting on the free particle. The
details of these examples, (vi) and (vii) below, will be clearer if we first develop
some general theory.

This theory will illustrate the interaction between the left-right contrast for ac-
tions, and the tangent-cotangent contrast for bundles. Besides, both the general
theory and the examples’ details will carry over straightforwardly, i.e. component
by component, to the case of N particles interacting by Newtonian gravity, dis-
cussed in Section 2.3.2: the action defined on a single particle is just repeated for
each of the N particles.

So we will take M := (IR3) × (IR3)∗, ω := dqi ∧ dpi,H := p2/2m. In the first
place, both translations (by x ∈ IR3) and rotations (by A ∈ SO(3)) act on the
configuration space Q = IR3. We have actions of IR3 and SO(3) on IR3 by

(120) Φx(q) = q + x ; ΦA(q) = Aq .

But these actions lift to the cotangent bundle T ∗Q = (IR3)× (IR3)∗ ∼= IR6; (as
mentioned in Section 2.3.2). The lift of these actions is defined using a result that
does not use the notion of an action. Namely:

Any diffeomorphism f : Q1 → Q2 induces a cotangent lift T ∗f :
T ∗Q2 → T ∗Q1 (i.e. in the opposite direction) which is symplectic,
i.e. maps the canonical one-form, and so symplectic form, on T ∗Q2 to
that of T ∗Q1.

To define the lift of an action, it is worth going into detail about the definition
of T ∗f . (But I will not prove the result just stated; for details, cf. [Marsden and
Ratiu, 1999, Section 6.3].)

The idea is that T ∗f is to be the “pointwise adjoint” of the tangent map
Tf : TQ1 → TQ2 (eq. 29). That is: we define T ∗f in terms of the contrac-
tion of its value, for an arbitrary argument α ∈ T ∗

q2Q2, with an arbitrary tangent
vector v ∈ Tf−1(q2)Q1. (Here it will be harmless to (follow many presentations and)
conflate a point in T ∗Q2, i.e. strictly speaking a pair (q2, α), q2 ∈ Q2, α ∈ T ∗

q2Q2,
with its form α. And similarly it will be harmless to conflate a point (q1, v) in
TQ1 with its vector v ∈ Tq1Q1.)

We recall that any finite-dimensional vector space is naturally, i.e. basis-
independently, isomorphic to its double dual: (V ∗)∗ ∼= V ; and we will use an-
gle brackets < ; > for the natural pairing between V and V ∗. So we define
T ∗f : T ∗Q2 → T ∗Q1 by requiring:



On Symplectic Reduction in Classical Mechanics 59

(121) < (T ∗f)(α); v > := < α; (Tf)(v) > , ∀ α ∈ T ∗
q2Q2, v ∈ Tf−1(q2)Q1 .

NB: Because T ∗f “goes in the opposite direction”, the composition of lift with
function-composition involves a reversal of the order. That is: if Q1 = Q2 ≡ Q
and f, g are two diffeomorphisms of Q, then

(122) T ∗(f ◦ g) = T ∗g ◦ T ∗f.

With this definition of T ∗f , a left action Φ of G on the manifold Q induces for
each g ∈ G the cotangent lift of Φg : Q→ Q. That is: we have the map

(123) T ∗Φg ≡ T ∗(Φg) : T ∗Q→ T ∗Q, with α ∈ T ∗
q Q 	→ (T ∗Φg)(α) ∈ T ∗

g−1 · qQ .

Now consider the map assigning to each g ∈ G, T ∗Φg:

(124) g ∈ G 	→ T ∗Φg : T ∗Q→ T ∗Q .

To check that this is indeed an action of G on T ∗Q, we first check that since
Φe = idQ, TΦe : TQ → TQ is idTQ and T ∗(Φe) is idT∗Q. But beware: eq. 122
yields

(125) T ∗Φgh = T ∗(Φg ◦ Φh) = T ∗Φh ◦ T ∗Φg ,

so that eq. 124 defines a right action.
But here we recall that any left action defines a right action by using the inverse;

cf. eq. 117. Combining this with the idea of the cotangent lift of an action on Q,
we get:

The left action Φ on Q defines, not only the right action eq. 124 on T ∗Q, but
also a left action on T ∗Q, viz. by

(126) g ∈ G 	→ Ψg := T ∗(Φg−1) : T ∗Q→ T ∗Q .

For since (gh)−1 = h−1g−1,

(127) Ψgh ≡ T ∗(Φ(gh)−1) = T ∗(Φh−1g−1) = T ∗(Φh−1◦Φg−1) = T ∗Φg−1◦T ∗Φh−1 ≡
Ψg ◦Ψh .

In short, the two reversals of order cancel out. This sort of left-right flip will recur
in some important contexts in the following, in particular in Sections 6.5 and 7.

(3): Mechanical examples:
So much by way of generalities. Now we apply them to translations and rotations
of a free particle, to rotations of a pivoted rigid body, and to N point-particles.

(vi): Let the translation group G = (IR3,+) act on the free particle’s configuration
space Q = IR3 by

(128) Φx(q) = q + x .
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Since G is abelian, the distinction between left and right actions of G col-
lapses. (And if we identify G with Q, this is left=right translation by IR3 on
itself, i.e. example (iv) again: and so transitive and free.) But of course the
lifted actions we have defined, “with g” and “with g−1”, eq. 124 and 126
respectively, remain distinct actions.
Then, writing α = (q,p) ∈ T ∗

qQ, and using the fact that TΦx(q − x, q̇) =
(q, q̇), we see that eq. 121 implies that: first,

(129) T ∗(Φx)(q,p) ∈ T ∗
q−xQ ;

and second, that for all q̇ ∈ Tq−xQ,

(130) < T ∗(Φx)(q,p); (q− x, q̇) > = < (q,p); (q, q̇) > ≡ p(q̇) .

For eq. 130 to hold for all q̇ ∈ Tq−xQ requires that T ∗(Φx)(q,p) does not
affect p, i.e.

(131) T ∗(Φx)(q,p) = (q− x,p) .

So this is the lifted action “with g”, corresponding to eq. 124. Similarly,
the lifted action “with g−1”, corresponding to eq. 126, is: Ψx(q,p) :=
T ∗(Φ−x)(q,p) = (q + x,p).

One readily checks that these lifted actions preserve both ω = dqi ∧ dpi

(an exercise in manipulating the exterior derivative) and H := p2/2m. So
we have a Hamiltonian symmetry group. The action is not transitive: the
orbits are labelled by their values of p ∈ (IR3)∗. But it is free.

(vii): Let SO(3) act on the left on Q = IR3 by

(132) ΦA(q) = Aq .

(This is example (i) again.) Let us lift this action “with g”, i.e. eq. 124, so
as to get a right action on T ∗Q.
As in example (vi), we write α = (q,p) ∈ T ∗

qQ. Using the fact that
TΦA(q, q̇) = (Aq, Aq̇), eq. 121 then implies that: first,

(133) T ∗(ΦA)(q,p) ∈ T ∗
A−1qQ ;

and second, that for all q̇ ∈ TA−1qQ,

(134) < T ∗(ΦA)(q,p); (A−1q, q̇) > = < (q,p); (q, Aq̇) > ≡ p(Aq̇) ≡
piA

i
j q̇
j .

For eq. 134 to hold for all q̇ ∈ TA−1qQ requires that

(135) T ∗(ΦA)(q,p) = (A−1q,pA) ,

where pA is a row-vector. Or if one thinks of the p components as a column
vector, it requires:
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(136) T ∗(ΦA)(q,p) = (A−1q, Ãp) = (A−1q, A−1p) ,

where ˜ represents the transpose of a matrix, and the last equation holds
because A is an orthogonal matrix.
So this is the lifted action “with g”, corresponding to eq. 124. Similarly,
the lifted action “with g−1”, corresponding to eq. 126, is: ΨA(q,p) :=
T ∗(ΦA−1)(q,p) = (Aq, Ap).

Again, one readily checks that these lifted actions preserve both ω = dqi∧dpi

(another exercise in manipulating the exterior derivative!) and H := p2/2m.
So SO(3) is a Hamiltonian symmetry group.
Like the original action of SO(3) on Q, these actions are faithful. But they
are not transitive: the orbits are labelled by the radii of two spheres centred
at the origins of IR3 and (IR3)∗. And they are not free: suppose q and p are
parallel and on the axis of rotation of A.

(viii): Now we consider the pivoted rigid body. But unlike examples (vi) and (vii),
we will consider only kinematics, not dynamics: even for a free body. That
is, we will say nothing about the definitions of, and invariance of, ω and
H; for details of these, cf. e.g. [Abraham and Marsden, 1978, Sections 4.4
and 4.6] and the other references given in (3) of Section 2.2. We will in any
case consider the dynamics of this example in more general terms (using
momentum maps) in Sections 6.5.3 and 7.

We recall from the discussion at the end of Section 3.4.4 that the configura-
tion space of the pivoted rigid body is SO(3) =: G. We also saw there that
the space and body representations of the angular velocity v = ġ ∈ TgG are
given by right and left translation. Thus eq. 113 and 114 give:

(137) vS ≡ ġS := TgRg−1(ġ) and vB ≡ ġB := TgLg−1(ġ) .

But we are now concerned with the cotangent lift of left (or right) translation.
So let SO(3) act on itself by left translation: Φgh ≡ Lgh = gh. Let us lift
this action “with g”, i.e. eq. 124, to get a right action on T ∗G. So let
α ∈ T ∗

hG and (TLg)(h, ḣ) = (gh, gḣ). Then eq. 121 implies that: first

(138) (T ∗Lg)(α) ∈ T ∗
g−1hG ,

and second that for all v ∈ Tg−1hG

(139) < T ∗(Lg)(α); v > = < α; gv > .

In other words, on analogy with eq. 131 and 135: for eq. 139 to hold for all
v ∈ Tg−1hG requires that with gv ∈ ThG:

(140) T ∗(Lg)(α) : v ∈ Tg−1hG 	→ α(gv) .

Similarly, the lifted action “with g−1” corresponding to eq. 126, i.e. the left
action on T ∗G, is
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(141) < T ∗(Lg−1)(α); v > = < α; g−1v > ,∀α ∈ T ∗
hG, v ∈ TghG

We will continue this example in Section 4.6, after developing more of the
theory of Lie group actions.

Finally, let us sketch another mechanical example: the case of N particles
with configuration space Q := IR3N interacting by Newtonian gravity —
discussed in Section 2.3.2. This will combine and generalize examples (vi)
and (vii); and lead on to the next Sections’ discussions of orbits and quo-
tients.

(ix): As I mentioned above (before eq. 120), the cotangent-lifted actions of trans-
lations and rotations on a single particle carry over straightforwardly to the
case of N particles: the action defined on a single particle is just repeated,
component by component, for each of the N particles to give an action on
T ∗Q ∼= IR3N × (IR3N )∗.

Furthermore, the groups of translations and rotations are subgroups of a
single group, the Euclidean group E. I shall not define E exactly. Here, let
it suffice to say that:

(a) E’s component-wise action on the configuration space Q := IR3N has a
cotangent lift, which is of course also component by component.

(b) E’s cotangent-lifted action is not transitive, nor free; but it is faithful.

(c) If we take as the Hamiltonian function the H of eq. 25, describing the
particles as interacting by Newtonian gravity, then E is a Hamiltonian
symmetry group. In fact, the kinetic and potential energies are sepa-
rately invariant, essentially because the particles’ interaction depends
only on the inter-particle distances, not on their positions or orienta-
tions; cf. the discussion in Section 2.3.2.

A final comment about example (ix), which points towards the following Sec-
tions:

Recall that in Sections 2.3.3 and 2.3.4, we used this example as a springboard to
discussing Relationist and Reductionist procedures, which quotiented the configu-
ration space or phase space. But in order for the quotient spaces (and orbits) to be
manifolds, and in particular for dimensions to add or subtract in a simple way, we
needed to excise two classes of “special” points, before quotienting. These were:
the class of symmetric configurations or states (i.e. those fixed by some element
of E), and the class of collision configurations or states. For the quotienting of
phase space advocated by Reductionism, the classes of states were δ ⊂ T ∗IR3N

and ∆ ⊂ T ∗IR3N ; (cf. Section 2.3.4 for definitions.)
With examples (vi) to (ix) in hand, we can now see that:

(a) δ and ∆ are each closed under the cotangent-lifted action of E on T ∗IR3N ;
i.e., each is a union of orbits. So E acts on M := T ∗IR3N − (δ ∪∆).
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(b) E acts freely on M .
We will see in the sequel (especially in Sections 4.3.B and 5.5) that an action
being free is one half (one conjunct) of an important sufficient condition for
orbits and quotient spaces to be manifolds. The other conjunct will be the
notion of an action being proper: which we will define in Section 4.3.

4.2 Quotient structures from group actions

In finite dimensions, any orbit Orb(x) is an immersed submanifold of M . This can
be proved directly (Abraham and Marsden [1978,: Ex. 1.6F(b), p. 51, and 4.1.22
p. 265]). But for our purposes, this is best seen as a corollary of some conditions
under which quotient structures are manifolds; as follows.

The relation, x ∼= y if there is a g ∈ G such that g · x = y, is an equivalence
relation, with the orbits as equivalence classes. We denote the quotient space,
i.e. the set of orbits, by M/G (sometimes called the orbit space). We write the
canonical projection as

(142) π : M →M/G, x 	→ Orb(x) ;

and we give M/G the quotient topology by defining U ⊂ M/G to be open iff
π−1(U) is open in M .

Simple examples (e.g. (ii) of Section 4.1.0.1) show that this quotient topology
need not be Hausdorff. However, it is easy to show that if the set

(143) R := {(x,Φgx) ∈M ×M : (g, x) ∈ G×M}
is a closed subset of M ×M , then the quotient topology on M/G is Hausdorff.

But to ensure that M/G has a manifold structure, further conditions are re-
quired. The main one (and a much harder theorem) is:

R is a closed submanifold of M ×M iff M/G is a manifold with π :
M →M/G a submersion.

This theorem has two Corollaries which are important for us.

(1) A map h : M/G→ N , from the manifold M/G, for which π : M →M/G is
a submersion, to the manifold N , is smooth iff h ◦ π : M → N is smooth.

This corollary has a useful implication, called passage to the quotients, about
the notion of equivariance —which will be important in symplectic reduction.

A smooth map f : M → N is called equivariant if it respects the action of a Lie
group G on the manifolds. That is: Let G act on M and N by Φg : M →M and
Ψg : N → N respectively. f : M → N is called equivariant with respect to these
actions if for all g ∈ G

(144) f ◦ Φg = Ψg ◦ f.
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That is, f is equivariant iff for all g, the following diagram commutes:

(145) M�Φg

M

f−→
f−→

N�Ψg

N

Equivariance immediately implies that f naturally induces a map, f̂ say, on the
quotients. That is: the map

(146) f̂ : Orb(x) ∈M/G 	→ Orb(f(x)) ∈ N/G

is well-defined, i.e. independent of the chosen representative x for the orbit.
Applying the corollary we have: If f : M → N is equivariant, and the quotients

M/G and M/N are manifolds with the canonical projections both submersions,
then f being smooth implies that f̂ is smooth. This is called passage to the
quotients.

(2) Let H be a closed subgroup of the Lie group G. (By (2) of Section 3.4.3,
this is equivalent to H being a subgroup that is a submanifold of G.) Let H
act on G by left translation: (h, g) ∈ H × G 	→ hg ∈ G, so that the orbits
are the right cosets Hg. Then G/H is a manifold and π : G → G/H is a
submersion.

4.3 Proper actions

By adding to Section 4.2’s main theorem (i.e., R is a closed submanifold of M×M
iff M/G is a manifold with π : M → M/G a submersion), the notion of a proper
action we can give useful sufficient conditions for:

(A): orbits to be submanifolds;
(B): M/G to be a manifold.

An action Φ : G×M →M is called proper if the map

(147) Φ̃ : (g, x) ∈ G×M 	→ (x,Φ(g, x)) ∈M ×M

is proper. By this we mean that if {xn} is a convergent sequence in M , and
{Φgn

(xn)} is a convergent sequence in M , then {gn} has a convergent subsequence
in G. In finite dimensions, this means that compact sets have compact inverse
images; i.e. if K ⊂M ×M is compact, then Φ̃−1(K) is compact.

If G is compact, this condition is automatically satisfied. Also, the action of a
group on itself by left (or by right) translation (Example (iv) of Section 4.1.0.1)
is always proper. Furthermore, the cotangent lift of left (or right) translation ((2)
and Example (viii) of Section 4.1.0.1) is always proper. We shall not prove this,
but it will be important in the sequel.
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4.3.0.1 Isotropy groups; orbits as manifolds For x ∈ M the isotropy (or
stabilizer or symmetry) group of Φ at x is

(148) Gx := {g ∈ G : Φg(x) ≡ Φ(g, x) = x} ⊂ G.

(So an action is free iff for all x ∈M , Gx = {e}.)
So if we define

(149) Φx : G→M : Φx(g) := Φ(g, x)

we have: Gx = (Φx)−1(x). (The notation Φx is a “cousin” of the notation Φg
defined in eq. 116.)

So since Φx is continuous, Gx is a closed subgroup of G. So, by the result in
(2) of Section 3.4.3 (i.e. the result before eq. 97), Gx is a submanifold (as well as
Lie subgroup) of G. And if the action is proper, Gx is compact.

Furthermore, the fact that for all h ∈ Gx we have Φx(gh) = Φg ◦Φh(x) = Φg(x),
implies that Φx naturally induces a map

(150) Φ̃x : [g] = gGx ∈ G/Gx 	→ Φgx ∈ Orb(x) ⊂M .

That is, this map is well-defined. Φ̃x is injective because if Φgx = Φhx then
g−1h ∈ Gx, so that gGx = hGx.

It follows from Section 4.2’s main theorem (i.e., R is a closed submanifold of
M ×M iff M/G is a manifold with π : M →M/G a submersion) that:

(a) If Φ : G ×M → M is an action and x ∈ M , then Φ̃x defined by eq. 150 is
an injective immersion.
Here we recall from Section 3.3.1 that injective immersions need not be
embeddings. But:

(b) If also Φ is proper, the orbit Orb(x) is a closed submanifold of M and Φ̃x is
a diffeomorphism. In other words: the manifold structure of Orb(x) is given
by the bijective map [g] ∈ G/Gx 	→ g · x ∈ Orb(x) being a diffeomorphism.

Examples:
(We use the numbering of corresponding examples in Section 4.1.0.1):

(i) G = SO(3) acts on M = IR3 by (A, x) 	→ Ax. Since Orb(x) is a sphere
centred at the origin of radius ‖ x ‖, M/G ∼= IR+: which is not a manifold.
But results (a) and (b) are illustrated: the isotropy group Gx at x is the
group of rotations with x on the axis; the action is proper (for G is compact);
the orbit Orb(x) is a closed manifold of M ; and the isotropy group’s cosets
[g] ∈ G/Gx are mapped diffeomorphically by Φ̃x to points on the sphere
Orb(x).

(iii) Let X be the constant vector field ∂x on M = IR3. X is complete. The
action of IR on M has as orbit through the point x = (x, y, z) ∈ IR3, the line
y = constant, z = constant. The action is free, and therefore faithful and
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the isotropy groups are trivial. So G/Gx ≡ G. The action is proper. Again
results (a) and (b) are illustrated: the orbits Orb(x) are closed submanifolds
of M , viz. copies of the real line IR = G ≡ G/Gx that are diffeomorphic to
IR by Φ̃x.

4.3.0.2 A sufficient condition for the orbit space M/G to be a manifold
With result (b) from the end of Section 4.3.0.1, we can prove that:

If Φ : G×M → M is a proper free action, then the orbit space M/G
is a manifold with π : M →M/G a submersion.

Examples: (again using the numbering in Section 4.1.0.1):

(i) G = SO(3) acts on M = IR3 by (A, x) 	→ Ax. Since Orb(x) is a sphere
centred at the origin of radius ‖ x ‖, M/G ∼= IR+: which is not a manifold,
and indeed the action is not free.

(iii) Let X be the constant vector field ∂x on M = IR3. X is complete, and the
action of IR on M has as orbits the lines y = constant, z = constant. The
action is faithful, free and proper, so that the orbit space M/G is a manifold:
M/G ∼= IR2.

(iv) Left (or right) translation is obviously a free action of a group G on itself,
and we noted above that it is proper. But since it is transitive, the orbit
space G/G is the trivial 0-dimensional manifold (the singleton set of G).

(viii) The cotangent lift of left (or right) translation by SO(3), or more generally,
by a Lie group G. This action is proper (noted after eq. 147), and obviously
free.

(ix) The Euclidean group E acts freely on M := T ∗IR3N − (δ ∪∆). This action
is also proper: a (harder!) exercise for the reader.

4.4 Infinitesimal generators of actions

We now connect this Subsection’s topic, group actions, with the Lie algebra of the
Lie group concerned, i.e. with the topic of Section 3.4, especially 3.4.2.

Let Φ : G × M → M be a (left) action by the Lie group G on a manifold
M . Then each ξ ∈ g defines an action of IR on M , which we write as Φξ, in the
following way.

We can think either in terms of exponentiation of ξ’s corresponding left-invariant
vector field Xξ (cf. eq. 36 and 75); or in terms of of exponentiating ξ itself (cf.
eq. 78 and 79):

(151) Φξ : IR×M →M : Φξ(τ, x) := Φ(exp(τXξ), x) ≡ Φ(exp(τξ), x).



On Symplectic Reduction in Classical Mechanics 67

That is, in terms of our subscript notation for the original action Φ (cf. eq. 116):
Φexp(τXξ) ≡ Φexp(τξ) : M →M is a flow on M .

That the flow is complete, i.e. that an action of all of IR is defined, follows from
(2) Exponentiation again of Section 3.4.2, especially after eq. 76. Cf. also example
(iii) of Section 4.1.

We say that the corresponding vector field on M , written ξM , i.e. the vector
field defined at x ∈M by

(152) ξM (x) :=
d

dτ
|τ=0 Φexp(τXξ)(x) ≡ d

dτ
|τ=0 Φexp(τξ)(x)

is the infinitesimal generator of the action corresponding to ξ.
In terms of the map Φx defined in eq. 149, we have that for all ξ ∈ g

(153) ξM (x) = (TeΦx)(ξ) .

So NB: the words ‘infinitesimal generator’ are used in different, though related,
ways. In Remark (2) at the end of Section 3.4.2, a vector field on the group G,
or an element ξ ∈ g, was called an ‘infinitesimal generator’. Here the infinitesimal
generator is a vector field on the action-space M . Similarly, beware the notation:
ξM is a vector field on M , while Xξ is a vector field on G.

As an example, we again take the rotation group SO(3) acting on IR3: (A,x) ∈
SO(3) × IR 	→ Ax. One readily checks that with ω ∈ IR3, so that Θ(ω) ∈ so(3),
the infinitesimal generator of the action corresponding to ξ ≡ Θ(ω) is the vector
field on IR3

(154) ξIR3(x) ≡ (Θ(ω))IR3(x) = ω ∧ x .

In particular, the vector field on IR3 representing infinitesimal anti-clockwise rota-
tion about the x-axis is e1 := y∂z − z∂y (cf. eq. 107). Similarly, the infinitesimal
generators of the action of rotating about the y axis and about the z-axis are,
respectively: e2 := z∂x − x∂z and e3 := x∂y − y∂x. The Lie brackets are given by:

(155) [e1, e2] = −e3 [e3, e1] = −e2 [e2, e3] = −e1.

The minus signs here are a general feature of the transition ξ ∈ g 	→ ξM ∈ X (M);
cf. result (4) below.

As another example, we take the infinitesimal generator of left and right transla-
tion on the group G. (We will need this example for our theorems about symplectic
reduction; cf. Sections 6.5.3, 7.2 and 7.3.3.) NB: There will be a “left-right flip”
here, which continues the discussion in (4) of Section 3.4.2.2, comparing using left-
invariant vs. right-invariant vector fields to define the Lie algebra of a Lie group.

For left translation Φ(g, h) ≡ Lgh := gh, we have for all ξ ∈ g:

(156) Φξ(τ, h) = (exp τξ)h = Rh(exp τξ) ;

so that the infinitesimal generator is

(157) ξG(g) = (TeRg)ξ .



68 J. Butterfield

So ξG is a right-invariant vector field; and unless G is abelian, it is not equal to
the left-invariant vector field g 	→ Xξ(g) := (TeLg)ξ; cf. eq. 68 and 70.

Similarly, for right translation (which is a right action, cf. (1) (iv) in Section
4.1.0.1), the infinitesimal generator is the left-invariant vector field

(158) g 	→ Xξ(g) := (TeLg)ξ .

Three straightforward results connect the notion of an infinitesimal generator
with previous ideas. I will not give proofs, but will present them in the order of
the previous ideas.

(1) Recall the correspondence between Lie subgroups and Lie subalgebras, at
the end of Section 3.4.3; eq. 97. This implies that the Lie algebra of the
isotropy group Gx, x ∈M (called the isotropy algebra), is

(159) gx = {ξ ∈ g : ξM (x) = 0} .

(2) Infinitesimal generators ξM give a differential version of the notion of equiv-
ariance, discussed in (1) of Section 4.2: a version called infinitesimal equiv-
ariance.
In eq. 144, we set g = exp(τξ) and differentiate with respect to τ at τ = 0.
This gives Tf ◦ ξM = ξN ◦ f . That is: ξM and ξN are f -related. In terms of
the pullback f∗ of f , we have: f∗ξN = ξM .

(3) Suppose the action Φ is proper, so that by result (b) at the end of Section
4.3.0.1: the orbit Orb(x) of any point x ∈ M is a (closed) submanifold of
M . Then the tangent space to Orb(x) at a point y in Orb(x) is

(160) TOrb(x)y = {ξM (y) : ξ ∈ g} .

Finally, there is a fourth result relating infinitesimal generators ξM to previous
ideas; as follows. (But it is less straightforward than the previous (1)–(3): its proof
requires the notion of the adjoint representation, described in the next Section.)

(4) The infinitesimal generator map ξ 	→ ξM establishes a Lie algebra anti-
homomorphism between g and the Lie algebra XM of all vector fields on
M . (Contrast the Lie algebra isomorphism between g and the set XL(G) of
left-invariant vector fields on the group G; Section 3.4.2 especially eq. 70.)
That is:

(161) (aξ +bη)M = aξM +bηM ; [ξM , ηM ] = −[ξ, η]M ∀ξ, η ∈ g, and a, b ∈
IR.

Incidentally, returning to (4) of Section 3.4.2.2, which considered defining the Lie
algebra of a Lie group in terms of right-invariant vector fields, instead of left-
invariant vector fields: had we done so, the corresponding map ξ 	→ ξM would
have been a Lie algebra homomorphism.



On Symplectic Reduction in Classical Mechanics 69

4.5 The adjoint and co-adjoint representations

A leading idea of later Sections (especially Sections 5.4, 6.4 and 7) will be that
there is a natural symplectic structure in the orbits of a certain natural repre-
sentation of any Lie group: namely a representation of the group on the dual of
its own Lie algebra, called the co-adjoint representation. Here we introduce this
representation. But we lead up to it by first describing the adjoint representation
of a Lie group on its own Lie algebra. Even apart from symplectic structure (and
so applications in mechanics), both representations illustrate the ideas of previous
Subsections. I will again use SO(3) and so(3) as examples.

4.5.1 The adjoint representation

We proceed in four stages. We first define the representation, then discuss infinites-
imal generators, then discuss matrix Lie groups, and finally discuss the rotation
group.

(1): The representation defined:
Let G be a Lie group and g its Lie algebra, i.e. the tangent space to the group at
the identity e ∈ G, equipped with the commutator bracket operation [, ].

Recall (e.g. from the beginning of Section 3.4.2) that G acts on itself by left
and right translation: each g ∈ G defines diffeomorphisms of G onto itself by

(162) Lg : h ∈ G 	→ gh ∈ G ; Rg : h ∈ G 	→ hg ∈ G.

The induced maps of the tangent spaces are, for each h ∈ G:

(163) Lg∗ : TGh → TGgh and Rg∗ : TGh → TGhg.

The diffeomorphism Kg := Rg−1 ◦ Lg (i.e. conjugation by g,Kg : h 	→ ghg−1) is
an inner automorphism of G. (Cf. example (v) at the end of Section 4.1.) Its
derivative at the identity e ∈ G is a linear map from the Lie algebra g to itself,
which is denoted:

(164) Adg := (Rg−1 ◦ Lg)∗e : g→ g.

So letting g vary through G, the map Ad : g 	→ Adg assigns to each g a member of
End(g), the space of linear maps on (endomorphisms of) g. The chain rule implies
that Adgh = AdgAdh. So

(165) Ad : g 	→ Adg

is a left action, a representation, of G on g: G × g → g. It is called the adjoint
representation.

Three useful results about Ad follow from our results (1) and (3) in Section
3.4.2.2 (cf. eq. 80: Homomorphisms respect exponentiation):

[1] If ξ ∈ g generates the one-parameter subgroup H = {exp(τXξ) : τ ∈ IR},
then Adg(ξ) generates the conjugate subgroup Kg(H) = gHg−1.
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(166) exp(Adg(ξ)) = Kg(exp ξ) := g(exp ξ)g−1.

Incidentally, eq. 166 has a many-parameter generalization. Let H and H ′

be two connected r-dimensional Lie subgroups of the Lie group G, with
corresponding Lie subalgebras h and h′ of the Lie algebra g = g(G). Then H
and H ′ are conjugate subgroups, H ′ = gHg−1, iff h and h′ are corresponding
conjugate subalgebras, i.e. h′ = Adg(h).

[2] Eq. 166 also implies another result which will be needed for a crucial result
about symplectic reduction, in Section 6.5.2. (The many-parameter gener-
alization just mentioned will not be needed.) It relates Ad to the pullback
of an arbitrary action Φ.
Thus let Φ be a left action of G on M . Then for every g ∈ G and ξ ∈ g

(167) (Adgξ)M = Φ∗
g−1ξM ,

where Φ∗ indicates pullback of the vector field. For we have:

(Adgξ)M (x) :=
d

dτ
|τ=0 Φ(exp(τAdgξ), x)(168)

=
d

dτ
|τ=0 Φ(g(exp τξ)g−1, x) by eq. 166(169)

=
d

dτ
|τ=0 (Φg ◦ Φexp τξ ◦ Φg−1(x))(170)

= TΦg−1 (x)Φg(ξM (Φg−1(x))) by the chain rule and eq. 152(171)

=
(
Φ∗
g−1ξM

)
(x) by the definition of pullback.(172)

Not only is this result needed later. Also, incidentally: it is the main part of
the proof of result (4) at the end of Section 4.4, that ξ 	→ ξM is a Lie algebra
anti-homomorphism.

[3] Adg is an algebra homomorphism, i.e.

(173) Adg[ξ, η] = [Adgξ,Adgη] , ξ, η ∈ g.

(2): Infinitesimal generators: the map ad:
The map Ad is differentiable. Its derivative at e ∈ G is a linear map from the Lie
algebra g to the space of linear maps on g. This map is called ad, and its value
for argument ξ ∈ g is written adξ. That is:

(174) ad := Ad∗e : g→ Endg ; adξ =
d

dτ
|τ=0 Adexp(τξ)

where exp(τξ) is the one-parameter subgroup with tangent vector ξ at the identity.
But if we apply the definition eq. 152 of the infinitesimal generator of an action,
to the adjoint action Ad, we get that for each ξ ∈ g, the generator ξg, i.e. a vector
field on g, is
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(175) ξg : η ∈ g 	→ ξg(η) ∈ g with ξg(η) :=
d

dτ
|τ=0 Adexp(τξ)(η).

Comparing eq. 174, we see that adξ is just the infinitesimal generator ξg of the
adjoint action corresponding to ξ:

(176) adξ = ξg .

We now compute the infinitesimal generators of the adjoint action. It will be
crucial to later developments (especially Section 5.4) that these are given by the
Lie bracket in g.

We begin by considering the function Adexp(τξ)(η) to be differentiated. By eq.
164, we have

Adexp(τξ)(η) = Te(Rexp(−τξ) ◦ Lexp(τξ))(η)(177)
= (Texp(τξ)(Rexp(−τξ)) ◦ TeLexp(τξ))(η)

= (Texp(τξ)(Rexp(−τξ)) ·Xη(exp(τξ))

where the second line follows by the chain rule, and the third by definition of
left-invariant vector field. Writing the flow of Xξ as φτ (g) = g exp τξ = Rexp(τξ)g,
and applying the definition of the Lie derivative (eq. 45), we then have

ξg(η) :=
d

dτ
|τ=0 Adexp(τξ)(η) =

d

dτ

[
Tφτ (e)φ

−1
τ ·Xη(φτ (e))

] |τ=0(178)

= [Xξ,Xη](e) = [ξ, η].

where the final equation is the definition eq. 73 of the Lie bracket in the Lie
algebra.

So for the adjoint action, the infinitesimal generator corresponding to ξ is taking
the Lie bracket: η 	→ [ξ, η]. To sum up: eq. 174 and 175 now become

(179) ad = Ad∗e : g → Endg ; adξ =
d

dτ
|τ=0 Adexp(τξ) = ξg : η ∈ g 	→ [ξ, η] ∈

g.

(3): Example: matrix Lie groups:
In the case where G ⊂ GL(n, IR) is a matrix Lie group with Lie algebra g ⊂ gl(n),
these results are easy to verify. Writing n× n matrices as A,B ∈ G, conjugation
is KA(B) = ABA−1, and the adjoint map Ad is also given by conjugation

(180) AdA(X) = AXA−1, A ∈ G,X ∈ g.

So with A(τ) = exp(τX), so that A(0) = I and A′(0) = X, we have with Y ∈ g

d

dτ
|τ=0 Adexp τXY =

d

dτ
|τ=0

[
A(τ)Y A(τ)−1

]
(181)

= A′(0)Y A−1(0) + A(0)Y A−1′
(0).

But differentiating A(τ)A−1(τ) = I yields
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(182)
d

dτ
(A−1(τ)) = −A−1(τ)A′(τ)A−1(τ), and so A−1′

(0) = −A′(0) = −X

so that indeed we have

(183)
d

dτ
|τ=0 Adexp τXY = XY − Y X = [X,Y ].

(4): Example: the rotation group:
It is worth giving details for the case of G = SO(3), g = so(3). We saw in Section
3.4.4 (eq. 107) that the three matrices

(184) Ax =


 0 0 0

0 0 −1
0 1 0


 , Ay =


 0 0 1

0 0 0
−1 0 0


 , Az =


 0 −1 0

1 0 0
0 0 0




span so(3), and generate the one-parameter subgroups

(185) Rx
θ =


 1 0 0

0 cos θ − sin θ
0 sin θ cos θ


 , Ry

θ =


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 ,

Rz
θ =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1




representing anticlockwise rotation around the respective coordinate axes in the
physical space IR3. To calculate the adjoint action of Rx

θ on the generator Ay, we
differentiate the product Rx

θR
y
τR

x
−θ with respect to τ and set τ = 0. That is, we

find

(186) AdRx
θ
(Ay) = Rx

θ (A
y)Rx

θ =

(
0 − sin θ cos θ

sin θ 0 0
− cos θ 0 0

)
= cos θ·Ay+sin θ·Az.

We similarly find

(187) AdRx
θ
(Ax) = Ax, AdRx

θ
(Az) = − sin θ ·Ay + cos θ ·Az.

So the adjoint action of the subgroup Rx
θ representing rotations around the x-axis

of physical space is given by rotations around the Ax-axis in the Lie algebra space
so(3). Similarly for the other subgroups representing rotations around the y or
z-axis. And so for any rotation matrix R ∈ SO(3), relative to given axes x, y, z for
IR3, its adjoint map AdR acting on so(3) ∼= IR3 has the same matrix representation
relative to the induced basis {Ax, Ay, Az} of so(3). (NB: This agreement between
SO(3)’s adjoint representation and its natural physical interpretation is special to
SO(3): it does not hold for other matrix Lie groups.)

Finally, the infinitesimal generators of the adjoint action are given by differen-
tiation. For example, using eq. 108, we find that

(188) adAx(Ay) :=
d

dθ
|θ=0 AdRx

θ
Ay = Az ;

which agrees with the commutator: Az = [Ax, Ay].
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4.5.2 The co-adjoint representation

Again we proceed in stages. We first define the representation, then discuss in-
finitesimal generators, and then take the rotation group as an example.

(1): The representation defined:
We recall that a linear map A : V →W induces (basis-independently) a transpose
(dual) map, written A∗ (or Ã or AT ), A∗ : W ∗ → V ∗ on the dual spaces, V ∗ :=
{α : V → IR | α linear } and similarly for W ∗; by

(189) ∀α ∈W ∗,∀v ∈ V : A∗(α)(v) ≡ < A∗(α) ; v > := α(A(v)) ≡ (α◦A)(v) .

So any representation, R say, of a group G on a vector space V , R : G→ End(V ),
induces a representation R∗ of G on the dual space V ∗, by taking the transpose.
We shall call R∗ the dual or transpose of R; it is also sometimes called a ‘contra-
gredient representation’. That is: for R(g) : V → V , we define R∗(g) : V ∗ → V ∗

by

(190) R∗(g) : α ∈ V ∗ 	→ R∗(g)(α) := α(R(g)) ∈ V ∗ .

Thus the adjoint representation of G on g induces a co-adjoint representation
of G on the dual g∗ of its Lie algebra g, i.e. on the cotangent space to the group
G at the identity, g∗ = T ∗

e G. The co-adjoint representation will play a central role
in symplectic reduction (starting in Section 5.4).

So let Ad∗
g : g∗ → g∗ be the dual (aka: transpose) of Adg, defined by

(191) ∀α ∈ g∗, ξ ∈ g : < Ad∗
gα; ξ > := < α;Adgξ > .

Since Ad : g 	→ Adg is a left action (Adgh = AdgAdh), the assignment g 	→ Ad∗
g is

a right action. So to define a left action, we use the inverse g−1; cf. eq. 117 and
126. Namely, we define the left action

(192) (g, α) ∈ G× g∗ 	→ Ad∗g−1α ∈ g∗ ;

called the co-adjoint action of G on g∗. And the corresponding co-adjoint repre-
sentation of G on g∗ is denoted by

(193) Ad∗ : G→ End(g∗), Ad∗g−1 = (Te(Rg ◦ Lg−1))∗ .

(2): The map ad∗; infinitesimal generators:
The map Ad∗ is differentiable. Its derivative at e ∈ G is a linear map from the
Lie algebra g to the space of linear maps on g∗. This map is called ad∗, and its
value for argument ξ ∈ g is written ad∗ξ . Thus ad∗ξ is an endomorphism of g∗, and
we have

(194) ad∗ = Ad∗∗e : ξ ∈ g→ ad∗ξ ∈ Endg∗ .

Now recall our deduction from eq. 174 and 175 that adξ = ξg, i.e. eq. 176. In
the same way we here deduce an equality to the infinitesimal generator of the
co-adjoint action:
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(195) ad∗ξ = ξg∗ .

In fact, ad∗
ξ is, modulo a minus sign, the adjoint of adξ, in the usual sense of the

natural pairing of a vector space with its dual: as we now show. (So the notation
ad∗ is justified, modulo a minus sign.)

Let us compute for this action, the value of the infinitesimal generator ξg∗ (a
vector field on g∗, induced by ξ ∈ g) at the point α ∈ g∗. That is, we will compute
the value ξg∗(α). As usual, we identify the tangent space (Tg∗)α in which this
value lives, with g∗ itself; and similarly for g. So, with ξg∗ acting on η ∈ g, we
compute:

< ad∗ξ(α); η > ≡ < ξg∗(α); η > =
〈

d

dτ
|τ=0 Ad∗exp−τξ(α); η

〉
(196)

=
d

dτ
|τ=0

〈
Ad∗exp−τξ(α); η

〉
=

d

dτ
|τ=0 〈α;Adexp−τξη〉(197)

=
〈

α;
d

dτ
|τ=0 Adexp−τξη

〉
= < α;−[ξ, η] > = − < α; adξ(η) > .(198)

So ad∗ξ , defined as the derivative of Ad∗ is, up to a sign, the adjoint of adξ.

(3): Example: the rotation group:
Let us now write the elementary vector product in IR3 as ∧, and identify so(3) ∼=
(IR3,∧) and so(3)∗ ∼= IR3∗

. And let us have the natural pairing given by the
elementary euclidean inner product ·. Then the result just obtained (now with •
marking the argument-place)

(199) < ξg∗(α); • >= − < α; [ξ, •] >

becomes for α ∈ so(3)∗ and ξ ∈ so(3)

(200) ξso(3)∗(α) · • = −α · (ξ ∧ •) .

So for η ∈ so(3), we have

(201) < ξso(3)∗(α); η > = ξso(3)∗(α)·η = −α·(ξ∧η) = −(α∧ξ)·η = − < α∧ξ; η > .

In short:

(202) ξso(3)∗(α) = −α ∧ ξ = ξ ∧ α.

Now since SO(3) is compact, we know that the co-adjoint action is proper; so
Orb(α) is a closed submanifold of so(3)∗, and eq. 160 of Section 4.4 applies. So
if we fix α, and let ξ vary through so(3) ∼= IR3, we get all of the tangent space
TαOrb(α) to the orbit passing through α. Then eq. 202 implies that the tangent
space is the plane normal to α, and passing through α’s end-point. Letting α vary
through so(3)∗, we conclude that the co-adjoint orbits are the spheres centred on
the origin.

In the following Sections, we will see that the orbits of the co-adjoint represen-
tation of any Lie group G have a natural symplectic structure. So the orbits are
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always even-dimensional; and by considering all Lie groups and all possible orbits,
we can get a series of examples of symplectic manifolds.

Besides, this fact will play a central role in our generalized formulation of Hamil-
tonian mechanics, and in symplectic reduction. And we will (mercifully!) get a
good understanding of that role, already in Section 5.1. To prepare for that, it is
worth gathering some threads about our recurrent example, SO(3); and general-
izing them to other Lie groups ...

4.6 Kinematics on Lie groups

To summarize some aspects of this Section, and to make our later discussion of
reduction clearer, it is worth collecting and generalizing some of our results about
SO(3) and the description it provides of the rigid body. More precisely, we will
now combine:

(i) the description of space and body coordinates in terms of left and right
translation, at the end of Section 3.4.4;

(ii) the cotangent lift of translation (example (viii) of Section 4.1.0.1);

(iii) the adjoint and co-adjoint representations of SO(3) (as in (4) of Section
4.5.1, and (3) of Section 4.5.2.

We will also generalize: namely, we will consider (i) to (iii) for an arbitrary Lie
group G, not just for SO(3). (The point of doing so will become clear in (3) of
Section 5.1.) This will occur already in Section 4.6.1. Then in Section 4.6.2, we
will show how this material yields natural diffeomorphisms

(203) TG→ G× g and T ∗G→ G× g∗ ;

(so if dimG = n, then all four manifolds are 2n-dimensional). We will also see that
by applying Section 4.2’s notion of equivariance, we can “pass to the quotients”,
and get from eq. 203, the natural diffeomorphisms

(204) TG/G→ g and T ∗G/G→ g∗ ;

where the quotients on the left hand sides (the domains) is by the action of left
translation; (to be precise: by the action of its derivative for TG, and its cotangent
lift for T ∗G).

4.6.1 Space and body coordinates generalized to G

So let a (finite-dimensional) Lie group G act on itself by left and right translation,
Lg and Rg. For any g ∈ G, we define

(205) λg : TgG→ g by v ∈ TgG 	→ (TeLg)−1(v) ≡ (TgLg−1)(v) ∈ g .

We similarly define
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(206) ρg : v ∈ TgG 	→ (TeRg)−1(v) ≡ (TgRg−1)(v) ∈ g .

On analogy with the case of the pivoted rigid body (cf. eq. 113 and 114, or eq.
137), we say that λg represents v ∈ TgG in body coordinates, and ρg represents
v in space coordinates. We also speak of body and space representations. The
transition from body to space coordinates is then an isomorphism of g; viz. by eq.
164

(207) ∀ξ ∈ g, (ρg ◦ λ−1
g )(ξ) = ρg(TeLg(ξ)) ≡ Adgξ .

So we can combine the S and B superscript notation of eq. 137 with Section
4.5.1’s notion of the adjoint representation, and write

(208) vS = Adgv
B .

In a similar way, the cotangent lifts of left and right translation provide iso-
morphisms between the dual spaces T ∗

gG, g ∈ G and g∗. Thus for any g ∈ G, we
define

(209) λ̄g : T ∗
gG→ g∗ by α ∈ T ∗

gG 	→ α ◦ TeLg ≡ (TeLg)∗(α) ≡ (T ∗
e Lg)(α) ∈ g∗ ;

and similarly

(210) ρ̄g : α ∈ T ∗
gG 	→ α ◦ TeRg ≡ (T ∗

e Rg)(α) ∈ g∗ .

And we again use the S and B superscript notation of eq. 137, and define for
α ∈ T ∗

gG

(211) αS := (T ∗
e Rg)(α) ≡ ρ̄g(α) and αB := (T ∗

e Lg)(α) ≡ λ̄g(α) ,

which are called the space (or ‘spatial’) and body representations, respectively, of
α. The transition from body to space representations is now an isomorphism of
g∗; viz.

(212) ∀α ∈ g∗, (ρ̄g ◦ λ̄−1
g )(α) = Ad∗g−1(α) , i.e. αS = Ad∗g−1(αB) .

4.6.2 Passage to the quotients

For later purposes, we need to develop the details of how the element g ∈ G “carries
along throughout” in eq. 205 to 212. More precisely, we have two isomorphisms:

(213) TG ∼= G× g and T ∗G ∼= G× g∗ .

These are isomorphisms of vector bundles; but we shall not develop the language
of fibre bundles. What matters for us is that once we exhibit these isomorphisms,
we will see that we have equivariant maps relating two group actions, in the sense
of eq. 144 and 145. And this will mean that we can pass to the quotients to infer
that TG/G is diffeomorphic to g, and correspondingly that T ∗G/G is diffeomorphic
to g∗.
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This last diffeomorphism will form the first part of Section 7’s main theorem,
the Lie-Poisson reduction theorem, which says that T ∗G/G and g∗ are isomorphic
as Poisson manifolds. In Section 5 onwards, we will develop the notion of a Poisson
manifold, and the significance of this isomorphism for the reduction of mechanical
problems.

I should note here that there is a parallel story about the first diffeomorphism,
i.e. about TG/G being diffeomorphic to g. It forms the first part of another
reduction theorem, which is the Lagrangian analogue of Section 7’s Lie-Poisson
theorem. But since this Chapter has adopted the Hamiltonian approach, I will
not go into details. They can be found in Marsden and Ratiu [1999, Sections 1.2,
13.5, 13.6], under the title ‘Euler-Poincaré reduction’.

Thus corresponding to eq. 205, we define the isomorphism

(214) λ : TG→ G× g by λ(v) := (g, (TeLg)−1(v)) ≡ (g, (TgLg−1)(v))

with v ∈ TgG, i.e. g = πG(v) and πG : TG → G the canonical projection. (As
mentioned concerning eq. 121, it is harmless to (follow many presentations and)
conflate a point in TG, i.e. strictly speaking a pair (g, v), g ∈ G, v ∈ TgG, with its
vector v.) And corresponding to eq. 206, we define the isomorphism

(215) ρ : TG→ G× g by ρ(v) := (g, (TeRg)−1(v)) ≡ (g, (TgRg−1)(v)) .

The transition from body to space representations given by eq. 207 now implies

(216) (ρ ◦ λ−1)(g, ξ) = ρ(g, TeLg(ξ)) = (g, (TeRg)−1 ◦ TeLg(ξ)) = (g,Adgξ).

In a similar way, the cotangent bundle T ∗G is isomorphic in two ways to G×g∗:
namely by

(217) λ̄(α) := (g, α ◦ TeLg) ≡ (g, (T ∗
e Lg)α) ∈ G× g∗ ,

and by

(218) ρ̄(α) := (g, α ◦ TeRg) ≡ (g, (T ∗
e Rg)α) ∈ G× g∗

where α ∈ T ∗
gG, i.e. g = π∗

G(α) with π∗
G : T ∗G → G the canonical projection.

(Again, we harmlessly conflate a point (g, α) in T ∗G with its form α ∈ T ∗
gG.)

Let us now compute in the body representation, the actions of: (i) the (deriva-
tive of the) left translation map, TLg, and (ii) the corresponding cotangent lift
T ∗Lg. This will show that λ and λ̄ are equivariant maps for certain group actions.

(i) We compute:

(λ ◦ TLg ◦ λ−1)(h, ξ) = (λ ◦ TLg)(h, TLh(ξ)) =(219)
= λ(gh, (TLg ◦ TLh)(ξ)) =

= (gh, ((TLgh)−1 ◦ TLgh)(ξ)) = (gh, ξ).

So in the body representation, left translation does not act on the vector
component. (That is intuitive, in that the vector ξ is “attached to the
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body” and so should not vary relative to coordinates fixed in it.) Eq. 219
means that λ is an equivariant map relating left translation TLg on TG to
the G-action on G× g given just by left translation on the first component:

(220) Φg((h, ξ)) ≡ g · (h, ξ) := (gh, ξ) .

Equivariance means that λ induces a map λ̂ on the quotients. That is: as in
eq. 146, the map

(221) λ̂ : TG/G→ (G× g)/G

defined as mapping, for any g, the orbit of any v ∈ TgG to the orbit of λ(v),
i.e.

λ̂ : Orb(v) ≡ {u ∈ TG | TgLh(v) = u, some h ∈ G} 	→ Orb(λ(v))(222)
≡ {(hg, (TeLg)−1(v)) | some h ∈ G}

is well-defined, i.e. independent of the chosen representative v of the orbit.

Besides, since the canonical projections, v ∈ TG 	→ Orb(v) ∈ TG/G and
(g, ξ) 	→ Orb((g, ξ)) ∈ (G × g)/G, are submersions, we can apply result (1)
of Section 4.2 and conclude that λ̂ is smooth.
Finally, we notice that since the action of left translation is transitive, we
can identify each orbit of the Φ of eq. 220 with its right component ξ ∈ g;
and so we can identify the set of orbits (G× g)/G with g.

To sum up: we have shown that TG/G and (G × g)/G, i.e. in effect g, are
diffeomorphic:

(223) λ̂ : TG/G → (G× g)/G ≡ g .

(ii) The results for the cotangent bundle are similar to those in (i). On analogy
with eq. 219, the action of the cotangent lift of left translation T ∗Lg is given
in body representation by applying eq. 217 to get

(224) (λ̄ ◦ (T ∗Lg) ◦ λ̄−1)(h, α) = (g−1h, α) ;

or equivalently, now taking the cotangent lift of left translation to define a
left action (cf. eq. 126),

(225) (λ̄ ◦ (T ∗Lg−1) ◦ λ̄−1)(h, α) = (gh, α) .

So in body representation, left translation does not act on the covector component;
(again, an intuitive result in so far as α is “attached to the body”). So eq. 225
means that λ̄ is an equivariant map relating the cotangent lifted left action of left
translation on T ∗G to the G-action on G× g∗ given just by left translation on the
first component:

(226) Φg((h, α)) ≡ g · (h, α) := (gh, α) .
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So, on analogy with eq. 221 and 222, we can pass to the quotients, defining a map

(227) ˆ̄λ : T ∗G/G→ (G× g∗)/G

by requiring that for α ∈ T ∗
gG, so that T ∗Lh−1α ∈ T ∗

hgG:

ˆ̄λ : Orb(α) ≡ {β ∈ T ∗G | β = T ∗Lh−1(α),(228)
some h ∈ G} 	→ Orb(λ̄(α)) ≡ {(hg, (T ∗

e Lg)(α)) | some h ∈ G} ≡
{(h, (T ∗

e Lg)α) | some h ∈ G} .

And finally, we identify the set of orbits (G× g∗)/G with g∗, so that we conclude
that T ∗G/G and g∗ are diffeomorphic. That is, we think of the diffeomorphism ˆ̄λ
as mapping T ∗G/G to g∗:

(229) ˆ̄λ : Orb(α) ≡ {β ∈ T ∗G | β = T ∗Lh−1(α), some h ∈ G} ∈ T ∗G/G 	→
(T ∗
e Lg)(α) ∈ g∗.

As I said above, this diffeomorphism is the crucial first part of Section 7’s main
reduction theorem. But we will see its role there, already in (3) of Section 5.1.

Finally, a result which will not be needed later. To calculate the derivatives and
cotangent lifts of left translation in space representation, we replace λ and λ̄ by ρ
and ρ̄ as defined by eq. 215 and 218. We get as the analogues of eq. 219 and 224
respectively:

(230) (ρ ◦ TLg ◦ ρ−1)(h, ξ) = (gh,Adg(ξ)) ,

and

(231) (ρ̄ ◦ T ∗Lg ◦ ρ̄−1)(h, α) = (g−1h,Ad∗g(α)) .

Though these results are not needed later, they are also analogues of some later
results, eq. 399 and 400, which we will need. (Note that, in accordance with the
discussion between eq. 191 and 192, eq. 231 involves right actions.)

5 POISSON MANIFOLDS

5.1 Preamble: three reasons for Poisson manifolds

Now that we are equipped with Sections 3 and 4’s toolbox of modern geometry,
we can develop, in this Section and the two to follow, the theory of symplectic
reduction. This Section develops the general theory of Poisson manifolds, as a
framework for a generalized Hamiltonian mechanics. Its main results concern
the foliation, and quotienting, of Poisson manifolds. Then Section 6 returns us to
symmetries and conserved quantities: topics which are familiar from Section 2.1.3,
but which Section 6 will discuss in the generalized framework using the notion of
a momentum map. Finally, in Section 7 all the pieces of our jigsaw puzzle will
come together, in our symplectic reduction theorem.
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We already glimpsed in (1) of Section 2.2 the idea of a Poisson manifold as a
generalization of a symplectic manifold, that provides the appropriate framework
for a generalized Hamiltonian mechanics. It is a manifold equipped with a bracket,
called a ‘Poisson bracket’, that has essentially the same formal defining properties
as in symplectic geometry except that it can be “degenerate”. In particular, the
dimension m of a Poisson manifold M can be even or odd. As we will see, Hamil-
tonian mechanics can be set up on Poisson manifolds, in a natural generalization
of the usual formalism: there are m first-order ordinary differential equations for
the time evolution of local coordinates x1, ..., xm, and the time-derivative of any
dynamical variable (scalar function on the Poisson manifold M) is given by its
Poisson bracket with the Hamiltonian. Besides, this generalization reduces to
the usual formalism in the following sense. Any Poisson manifold M is foliated
into symplectic manifolds, and any Hamiltonian mechanics of our generalized kind
defined on M restricts on each symplectic leaf to a conventional Hamiltonian me-
chanics using the induced symplectic form.

This last point, the invariance of the symplectic leaves under the dynamics,
prompts the question ‘why bother with the Poisson manifold, since the dynamics
can be written down on each leaf?’. There are three reasons. I will just mention
the first; the rest of Section 5 will develop the second; and the two subsequent
Sections will develop the third.

(1): Parameters and stability:
The first two reasons concern the fact that for many problems in Hamiltonian
mechanics, it is natural to consider an odd-dimensional state-space. One principal
way this happens is if the system is characterized by some odd number, say s
(maybe s = 1), of parameters that are constant in time. Then even though for a
fixed value of the parameter(s), there is a Hamiltonian mechanics on a symplectic
manifold, of dimension 2n say, it is useful to envisage the 2n + s dimensional
space in order to keep track of how the behaviour of systems depends on the
parameters. For example, this is very useful for analysing stability, especially if
one can somehow control the value of the parameters. Stability theory (and related
fields such as bifurcation theory) are crucially important, and vast, topics — which
I will not go into.20

(2): Odd-dimensional spaces: the rigid body again:
Secondly, even in the absence of such controllable parameters, there are mechan-
ical systems whose description leads naturally to an odd-dimensional state-space.
The paradigm elementary example is the rigid body pivoted at a point (mentioned
in (3) of Section 2.2). An elementary analysis, repeated in every textbook, leads
to a description of the body by the three components of the angular momentum
(relative to body coordinates, i.e. coordinates fixed in the body): these compo-

20Except to note a broad philosophical point. These parameters illustrate the modal or coun-
terfactual involvements of mechanics. The s dimensions of the state-space, and the mathematical
constructions built on them, show how rich and structured these involvement are. For a detailed
discussion of the modal involvements of mechanics, cf. [Butterfield, 2004].
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nents evolve according to the three first-order Euler equations.
This situation prompts two foundational questions; (which of course most text-

books ignore!). First, we note that a configuration of the body is given by three
real numbers: viz. to specify the rotation required to rotate the body into the
given configuration, from a fiducial configuration. So a conventional Hamiltonian
description of the rigid body would use six first-order equations. (Indeed, simi-
larly for a Lagrangian description, if we treat the three q̇s as variables.) So how is
the description by Euler’s equations related to a six-dimensional Hamiltonian (or
indeed Lagrangian) description?

Second, can the description by the Euler equations be somehow regarded as
itself Hamiltonian, or Lagrangian?

This Chapter will not pursue these questions about the rigid body; for details,
cf. the references at the end of (3) of Section 2.2. For us, the important point
is that the theory of symplectic reduction shows that the answer to the second
question is Yes. Indeed, a “resounding Yes”. For we will see very soon (in Section
5.2.4.1) that the three-dimensional space of the components, in body coordinates,
of the angular momentum is our prototype example of a Poisson manifold; and the
evolution by Euler’s equations is the Hamiltonian mechanics on each symplectic
leaf of this manifold. In short: in our generalized framework, Euler’s equations
are already in Hamiltonian form.

Furthermore, this Poisson manifold is already familiar: it is so(3)∗, the dual
of the Lie algebra of the rotation group. Here we connect with several previous
discussions (and this Chapter’s second motto).

First: we connect with the discussion of rotation in Relationist and Reductionist
mechanics (Sections 2.3.3 to 2.3.5). In particular, cf. comment (iii) about γ, the
three variables encoding the total angular momentum of the system, at the end
of Section 2.3.4. (So as regards (1)’s idea of labelling the symplectic leaves by
parameters constant in time: in this example, it is the magnitude L of the total
body angular momentum which is the parameter.)

Second: we connect with Section 3.4.4’s discussion of so(3), with Section 4.5.2’s
discussion of the co-adjoint representation on so(3)∗, and with Section 4.6’s discus-
sion of kinematics on an arbitrary Lie group. As regards the rigid body, the main
physical idea is that the action of SO(3) on itself by left translation is interpreted
in terms of the coordinate transformation, i.e. rotation, between the space and
body coordinate systems.

But setting aside the rigid body: recall that in Section 4.5.2 we saw that for
so(3)∗, the co-adjoint orbits are the spheres centred on the origin. I also announced
that they have a natural symplectic structure — and that this was true for the
orbits of the co-adjoint representation of any Lie group. Now that we have the
notion of a Poisson manifold, we can say a bit more, though of course the proofs
are yet to come: —

For any Lie group G, the dual of its Lie algebra g∗ is a Poisson manifold;
and G has on g∗ a co-adjoint representation, whose orbits are the
symplectic leaves of g∗ as a Poisson manifold.
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In particular, we remark that the theory of the rigid body just sketched is
independent of the dimension of physical space being three: it carries over to
so(n)∗ for any n. So we can readily do the Hamiltonian mechanics of the rigid
body in arbitrary dimensions. That sounds somewhat academic! But it leads to a
more general point, which is obviously of vast practical importance.

In engineering we often need to analyse or design bodies consisting of two or
more rigid bodies jointed together, e.g. at a universal joint. Often the configuration
space of such a jointed body can be given by a sequence of rotations (in particular
about the joints) and-or translations from a fiducial configuration; so that we can
take an appropriate Lie group G as the body’s configuration space. If so, we can
try to mimic our strategy for the rigid body, i.e. to apply the result just announced.
And indeed, for such bodies, the action of left translation, and so the adjoint and
co-adjoint representations of G on g and g∗, can often be physically significant.

But leaving engineering aside, let us sum up this second reason for Poisson
manifolds as follows. For some mechanical systems the natural state-space for a
Hamiltonian mechanics is a Poisson manifold. And in the paradigm case of the
rigid body, there is a striking interpretation of the Poisson manifold’s leaves as the
orbits of the co-adjoint representation of the rotation group SO(3).

(3): Reduction:
My first two reasons have not mentioned reduction. But unsurprisingly, they have
several connections with the notion. Here I shall state just one main connection,
which links Section 4.6’s kinematics on Lie groups to our main reduction theorem:
this will be my third motivation for studying Poisson manifolds.

In short, the connection is that:

(i) For various systems, the configuration space is naturally taken to be a Lie
group G; (as we have just illustrated with the rigid body).

(ii) So it is natural to set up an orthodox Hamiltonian mechanics of the system on
the cotangent bundle T ∗G. But (as in the Reductionist procedure of Section
2.3.4) it is also natural to quotient by the lift to the cotangent bundle of G’s
action on itself by left translation.

(iii) When we do this, the resulting reduced phase space T ∗G/G is a Poisson
manifold. Indeed it is an isomorphic copy of g∗. That is, we have an isomor-
phism of Poisson manifolds: g∗ ∼= T ∗G/G. This is the Lie-Poisson reduction
theorem.

I shall give a bit more detail about each of (i)–(iii).

(i) For various systems, any configuration can be obtained by acting with an
element of the Lie group G on some reference configuration which can itself
be labelled by an element of G, say the identity e ∈ G. So we take the Lie
group G to be the configuration space. As mentioned in (3) of Section 2.2,
there is even an infinite-dimensional example of this: the ideal fluid.
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(ii) So T ∗G is the conventional Hamiltonian phase space of the system. But G
acts on itself by left translation. We can then consider the quotient of T ∗G by
the cotangent lift of left translation. Intuitively, this is a matter of “rubbing
out” the way that T ∗G encodes (i)’s choice of reference configuration. By
passing to the quotients as in Section 4.6, we infer that T ∗G/G is a manifold.
But of course it is in general not even-dimensional. For its dimension is
1
2dim(T ∗G) ≡ dim(G). So consider any odd-dimensional G: for example,
our old friend, the three-dimensional rotation group SO(3).

(iii) But T ∗G/G is always a Poisson manifold. And it is always isomorphic as a
Poisson manifold to g∗, with its symplectic leaves being the co-adjoint orbits
of g∗: g∗ ∼= T ∗G/G.

I end this third reason for studying Poisson manifolds with two remarks about
examples.

The first remark echoes the end of Section 4.5.2, where I said that by considering
all possible Lie groups and all the orbits of their co-adjoint representations, we get
a series of examples of symplectic manifolds. We can now put this together with
the notion of a Poisson manifold, and with the comment at the end of Section 3.4.3,
that every (finite-dimensional) Lie algebra is the Lie algebra of a Lie group. In
short: we get a series of examples of Poisson manifolds, in either of two equivalent
ways: from the dual g∗ of any (finite-dimensional) Lie algebra g; or from the
quotient T ∗G/G of the cotangent lift of left translation. In either case, the example
is the co-adjoint representation.

The second remark is that there are yet other examples of Poisson manifolds
and reductions. Indeed, we noted one in Section 2.3.4: viz. the Reductionist’s
reduced phase space M̄ := M/E, obtained by quotienting the phase space M :=
T ∗IR3N − (δ ∪ ∆) by the (cotangent lift) of the action of the euclidean group E
on IR3N . But I shall not go into further details about this example; (for which cf.
the Belot papers listed in Section 2.3.1, and references therein). Here it suffices to
note that this example is not of the above form: IR3N is not E, and the action of
E on IR3N is not left translation. This of course echoes my remarks at the end of
Section 1.2 that the theory of symplectic reduction is too large and intricate for
this Chapter to be more than an “appetizer”.

So much by way of motivating Poisson manifolds. The rest of this Section will
cover reasons (1) and (2); but reason (3), about reduction, is postponed to Sections
6 and 7. We give some basics about Poisson manifolds, largely in coordinate-
dependent language, in Section 5.2. In Section 5.3, we move to a more coordinate-
independent language and show that Poisson manifolds are foliated into symplectic
manifolds. In Section 5.4, we show that the leaves of the foliation of a finite-
dimensional Lie algebra g∗ are the orbits of the co-adjoint representation of G on
g∗. Finally in Section 5.5, we prove a general theorem about quotienting a Poisson
manifold by the action of Lie group, which will be important for Section 7’s main
theorem.
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5.2 Basics

In Sections 5.2.1 to 5.2.3, we develop some basic definitions and results about
Poisson manifolds. This leads up to Section 5.2.4, where we see that the dual of
any finite-dimensional Lie algebra has a natural (i.e. basis-independent) Poisson
manifold structure. Throughout, there will be some obvious echoes of previous
discussions of anti-symmetric forms, Poisson brackets, Hamiltonian vector fields
and Lie brackets (Sections 2.1 and 3.2). But I will for the most part not articulate
these echoes.

5.2.1 Poisson brackets

A manifold M is called a Poisson manifold if it is equipped with a Poisson bracket
(also known as: Poisson structure). A Poisson bracket is an assignment to each
pair of smooth real-valued functions F,H : M → IR, of another such function,
denoted by {F,H}, subject to the following four conditions:

(a) Bilinearity:

(232) {aF+bG,H} = a{F,H}+b{G,H} ; {F, aG+bH} = a{F,G}+b{F,H} ∀a, b ∈
IR.

(b) Anti-symmetry:

(233) {F,H} = −{H,F} .

(c) Jacobi identity:

(234) {{F,H}, G}+ {{G,F},H}+ {{H,G}, F} = 0 .

(d) Leibniz’ rule:

(235) {F,H ·G} = {F,H} ·G + H · {F,G} .

In other words: M is a Poisson manifold iff both: (i) the set F(M) of smooth
scalar functions on M , equipped with the bracket {, }, is a Lie algebra; and (ii)
the bracket {, } is a derivation in each factor.

Any symplectic manifold is a Poisson manifold. The Poisson bracket is defined
by the manifold’s symplectic form; cf. eq. 18.

“Canonical” Example:
Let M = IRm,m = 2n + l, with standard coordinates (q, p, z) = (q1, ..., qn,
p1, ..., pn, z1, ..., zl). Define the Poisson bracket of any two functions F (q, p, z),
H(q, p, z) by

(236) {F,H} := Σni

(
∂F

∂qi
∂H

∂pi
− ∂F

∂pi
∂H

∂qi

)
.
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Thus this bracket ignores the z coordinates; and if l were equal to zero, it would
be the standard Poisson bracket for IR2n as a symplectic manifold. We can imme-
diately deduce the Poisson brackets for the coordinate functions. Those for the qs
and ps are as for the usual symplectic case:

(237) {qi, qj} = 0 {pi, pj} = 0 {qi, pj} = δij .

On the other hand, all those involving the zs vanish:

(238) {qi, zj} = {pi, zj} = {zi, zj} ≡ 0.

Besides, any function F depending only on the z’s, F ≡ F (z) will have vanishing
Poisson brackets with all functions H : {F,H} = 0.

This example seems special in that M is foliated into 2n-dimensional symplectic
manifolds, each labelled by l constant values of the zs. But Section 5.3.4 will give a
generalization for Poisson manifolds of Darboux’s theorem (mentioned at the end
of Section 2.1.1): a generalization saying, roughly speaking, that every Poisson
manifold “looks locally like this”.

For any Poisson manifold, we say that a function F : M → IR is distinguished
or Casimir if its Poisson bracket with all smooth functions H : M → IR vanishes
identically: {F,H} = 0.

5.2.2 Hamiltonian vector fields

Given a smooth function H : M → IR, consider the map on smooth functions:
F 	→ {F,H}. The fact that the Poisson bracket is bilinear and obeys Leibniz’s
rule implies that this map F 	→ {F,H} is a derivation on the space of smooth
functions, and so determines a vector field on M ; (cf. (ii) of Section 3.1.2.2). We
call this vector field the Hamiltonian vector field associated with (also known as:
generated by) H, and denote it by XH .

But independently of the Poisson structure, the action of any vector field XH

on a smooth function F , XH(F ), also equals LXH
(F ) ≡ dF (XH); (cf. eq. 40). So

we have for all smooth F

(239) LXH
(F ) ≡ dF (XH) ≡ XH(F ) = {F,H} .

The equations describing the flow of XH are called Hamilton’s equations, for the
choice of H as “Hamiltonian”.

In the previous example with M = IR2n+l, we have

(240) XH = Σni

(
∂H

∂pi
∂

∂qi
− ∂H

∂qi
∂

∂pi

)
,

and the flow is given by the ordinary differential equations

(241)
dqi

dt
=

∂H

∂pi
dpi

dt
= −∂H

∂qi
dzj

dt
= 0. i = 1, ..., n; j = 1, ..., l.
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Again, the zs, and any function F (z) solely of them, are distinguished and have a
vanishing Hamiltonian vector field. On the other hand, the coordinate functions
qi and pi generate the Hamiltonian vector fields − ∂

∂pi and ∂
∂qi respectively.

Two further remarks about eq. 239:

(1) It follows that a function H is distinguished (i.e. has vanishing Poisson
brackets with all functions) iff its Hamiltonian vector field XH vanishes ev-
erywhere. And since the Poisson bracket is antisymmetric, this is so iff H is
constant along the flow of all Hamiltonian vector fields.

(2) This equation is the beginning of the theory of constants of the motion
(first integrals), and of Noether’s theorem, for Poisson manifolds; just as the
corresponding equation was the beginning for the symplectic case. This will
be developed in Section 6.

Poisson brackets and Lie brackets:
With the definition eq. 239 in hand, we can readily establish our first important
connection between Poisson manifolds and Section 3’s Lie structures. Namely:
result (2) at the end of Section 3.2.2, eq. 60, is also valid for Poisson manifolds.

That is: the Hamiltonian vector field of the Poisson bracket of scalars F,H on
a Poisson manifold M is, upto a sign, the Lie bracket of the Hamiltonian vector
fields, XF and XH , of F and H:

(242) X{F,H} = −[XF ,XH ] = [XH ,XF ] .

The proof is exactly as for eq. 60.
So the Hamiltonian vector fields, with the Poisson bracket, form a Lie subalgebra

of the Lie algebra XM of all vector fields on the Poisson manifold M . This result
will be important in Section 5.3.3’s proof that every Poisson manifold is a disjoint
union of symplectic manifolds.

5.2.3 Structure functions

We show that to compute the Poisson bracket of any two functions given in some
local coordinates x = x1, ..., xm, it suffices to know the Poisson brackets of the
coordinates. For any function H : M → IR, let the components of its Hamiltonian
vector field in the coordinate system x be written as hi(x). So XH = Σmi hi(x) ∂

∂xi .
Then for any other function F , we have

(243) {F,H} = XH(F ) = Σmi hi(x)
∂F

∂xi
.

Taking xi as the function F , we get: {xi,H} = XH(xi) = hi(x). So eq. 243
becomes

(244) {F,H} = Σmi {xi,H}
∂F

∂xi
.
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If we now put xi for H and H for F in eq. 244, we get

(245) {xi,H} = −{H,xi} = −Xxi(H) = −Σmj {xj , xi}
∂H

∂xj
.

Combining eq.s 244 and 245, we get the basic formula for the Poisson bracket of
any two functions in terms of the Poisson bracket of local coordinates:

(246) {F,H} = Σmi Σmj {xi, xj}
∂F

∂xi
∂H

∂xj
.

We assemble these basic brackets, which we call the structure functions of the
Poisson manifold,

(247) J ij(x) := {xi, xj} i, j = 1, ...,m

into a m×m anti-symmetric matrix of functions, J(x), called the structure matrix
of M . More precisely, it is the structure matrix for M relative to our coordinate
system x. Of course, the transformation of J under a coordinate change x′i :=
x′i(x1, ..., xm) is determined by setting F := x′i,H := x′j in the basic formula eq.
246.

Then, writing ∇H for the (column) gradient vector of H, eq. 246 becomes

(248) {F,H} = ∇F · J∇H.

For example, the canonical bracket on IR2n+l, eq.236, written in the (q, p, z) coor-
dinates, has the simple form

(249) J =


 0 I 0
−I 0 0
0 0 0


 .

where I is the n× n identity matrix.
We can write the Hamiltonian vector field, and the Hamilton’s equations, asso-

ciated with the function H in terms of J . Since

(250) {xi,H} = Σmj {xi, xj}
∂H

∂xj

we get:

(251) XH = Σmi

(
Σmj J ij(x)

∂H

∂xj
∂

∂xi

)
,

or in matrix notation: XH = (J∇H) · ∂x. Similarly, Hamilton’s equations

(252)
dxi

dt
= {xi,H}

get the matrix form

(253)
dx

dt
= J(x)∇H(x) ; i.e.

dxi

dt
= Σmj J ij(x)

∂H

∂xj
.
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To summarize how we have generalized from the usual form of Hamilton’s equa-
tions: compare eq. 253, 248 and 249 respectively with eq. 12, 18 and 3.

Note that not every m × m anti-symmetric matrix of functions on an m-
dimensional manifold (or even: on an open subset of IRm) is the structure matrix
of a Poisson manifold: for the Jacobi identity constrains the functions. In fact it is
readily shown that the Jacobi identity corresponds to the following m3 partial dif-
ferential equations governing the J ij(x), which are in general non-linear. Writing
as usual ∂l for ∂/∂xl:

(254) Σml=1

(
J il∂lJ

jk + Jkl∂lJ
ij + Jjl∂lJ

ki
)

= 0 i, j, k,= 1, ...,m;∀x ∈M.

In particular, any constant anti-symmetric matrix J defines a Poisson structure.

5.2.4 The Poisson structure on g∗

We can now show that any m-dimensional Lie algebra g defines a Poisson structure,
often called the Lie-Poisson bracket, on any m-dimensional vector space V . We
proceed in two stages.

(1) We first present the definition in a way that seems to depend on a choice of
bases, both in g (where the definition makes a choice of structure constants)
and in the space V .

(2) Then we will see that choosing V to be g∗, the definition is in fact basis-
independent.

This Poisson structure on g∗ will be of central importance from now on. As
Marsden and Ratiu write: ‘Besides the Poisson structure on a symplectic manifold,
the Lie-Poisson bracket on g∗, the dual of a Lie algebra, is perhaps the most
fundamental example of a Poisson structure’ (1999: 415). Here we return to
our motivating discussion of Poisson manifolds, especially reasons (2) and (3) of
Section 5.1: which concerned the rigid body and reduction, respectively. Indeed,
we will see already in the Example at the end of this Subsection (Section 5.2.4.1)
how the Lie-Poisson bracket on the special case g∗ := so(3)∗ clarifies the theory
of the rigid body. And we will see in Sections 7.2 and 7.3.3 how for any g, the
Lie-Poisson bracket on g∗ is induced by reduction, from the canonical Poisson (viz.
symplectic) structure on the cotangent bundle T ∗G. This will be our reduction
theorem, that T ∗G/G ∼= g∗.

After (2), we will see that the Lie-Poisson bracket on g∗ implies that Hamilton’s
equations on g∗ can be expressed using ad∗: a form that will be needed later. This
will be (3) below. Then we will turn in Section 5.2.4.1 to the example g∗ := so(3)∗.

(1): A Poisson bracket on any vector space V :
Take a basis, say e1, ..., em, in g, and so structure constants ckij (cf. eq. 52).
Consider the space V as a manifold, and coordinatize it by taking a basis, ε1, ..., εm
say, determining coordinates x1, ..., xm. We now define the Poisson bracket (in
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this case, often called the Lie-Poisson bracket) between two smooth functions
F,H : V → IR to be

(255) {F,H} := Σmi,j,k=1 ckijx
k ∂F

∂xi
∂H

∂xj
.

This takes the form of eq. 246, with linear structure functions J ij(x) = Σmk ckijx
k.

One easily checks that anti-symmetry, and the Jacobi identity, for the structure
constants, eq. 53, implies that these J ij are anti-symmetric and obey their Jacobi
identity eq. 254. So eq. 255 defines a Poisson bracket on V .

In particular, the associated Hamiltonian equations, eq.s 252 and 253, take the
form

(256)
dxi

dt
= Σmj,k=1 ckijx

k ∂H

∂xj
.

(2): The Lie-Poisson bracket on g∗:
To give a basis-independent characterization of the Lie-Poisson bracket, we first
recall that:

(i) the gradient ∇F (x) of F : V → IR at any point x ∈ V is in the dual space
V ∗ of (continuous) linear functionals on V ;:

(ii) any finite-dimensional vector space is canonically, i.e. basis-independently,
isomorphic to its double dual: (V ∗)∗ ∼= V .

Then writing < ; > for the natural pairing between V and V ∗, we have, for any
y ∈ V

(257) < ∇F (x); y >:= limτ→0
F (x + τy)− F (x)

τ
.

Now let us take V in our definition of the Lie-Poisson bracket to be g∗. So
we will show that g makes g∗ a Poisson manifold, in a basis-independent way.
And let the basis ε1, ..., εm be dual to the basis e1, ..., em of g. If F : g∗ → IR
is any smooth function, its gradient ∇F (x) at any point x ∈ g∗ is an element of
(g∗)∗ ∼= g. One now checks that the Lie-Poisson bracket defined by eq. 255 has
the basis-independent expression

(258) {F,H}(x) = < x; [∇F (x),∇H(x)] > , x ∈ g∗

where [, ] is the ordinary Lie bracket on the Lie algebra g itself.

(3): Hamilton’s equations on g∗:
We can also give a basis-independent expression of the Hamilton’s equations eq.
256: viz. by expressing the Lie bracket in eq. 258 in terms of ad, as indicated by
eq. 179.

Thus let F ∈ F(g∗) be an arbitrary smooth scalar function on g∗. By the chain
rule
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(259)
dF

dt
= DF (x) · ẋ =< ẋ;∇F (x) > .

But applying eq.s 179 and 198 to eq. 258 implies:

{F,H}(x) =< x; [∇F (x),∇H(x)] >=(260)
− < x; ad∇H(x)(∇F (x)) >=< ad∗∇H(x)(x);∇F (x) > .

Since F is arbitrary and the pairing is non-degenerate, we deduce that Hamilton’s
equations take the form

(261)
dx

dt
= ad∗∇H(x)(x) .

5.2.4.1 Example: so(3) and so(3)∗ As an example of the dual of a Lie algebra
as a Poisson manifold, let us consider again our standard example so(3)∗. We will
thereby make good our promise in (2) of Section 5.1, to show that Euler’s equations
for a rigid body are already in Hamiltonian form — in our generalized sense. We
will also see why in the Chapter’s second motto, Arnold mentions the three dual
spaces, IR3∗, so(3)∗ and T ∗(SO(3))g; (cf. the discussion at the end of Section
3.4.4).

The Lie algebra so(3) of SO(3) has a basis e1, e2, e3 representing infinitesimal
rotations around the x-, y- and z-axes of IR3. As we have seen, we can think of these
basis elements: as vectors in IR3 with [, ] as elementary vector multiplication; or
as anti-symmetric matrices with [, ] as the matrix commutator; or as left-invariant
vector fields on SO(3) with [, ] as the vector field commutator (i.e. Lie bracket).

Let ε1, ε2, ε3 be a dual basis for so(3)∗, with x = x1ε1 + x2ε2 + x3ε3 a typical
point therein. If F : so(3)∗ → IR, its gradient at x is the vector

(262) ∇F =
∂F

∂x1
e1 +

∂F

∂x2
e2 +

∂F

∂x3
e3 ∈ so(3).

Then eq. 258 tells us that, if we write so(3) as IR3 with × for elementary vector
multiplication, the Lie-Poisson bracket on so(3)∗ is

{F,H}(x) = x1

(
∂F

∂x3

∂H

∂x2
− ∂F

∂x2

∂H

∂x3

)
+ ... + x3

(
∂F

∂x2

∂H

∂x1
− ∂F

∂x1

∂H

∂x2

)
(263)

= −x · (∇F ×∇H).(264)

So the structure matrix J(x) is

(265) J(x) =


 0 −x3 x2

x3 0 −x1

−x2 x1 0


 , x ∈ so(3)∗.

Hamilton’s equations corresponding to the Hamiltonian function H(x) are there-
fore

(266)
dx

dt
= x×∇H(x) .
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Now consider the Hamiltonian representing the kinetic energy of a free pivoted
rigid body

(267) H(x) =
1
2

(
(x1)2

I1
+

(x2)2

I2
+

(x3)2

I2

)
,

in which the Ii are the moments of inertia about the three coordinate axes, and
the xi are the corresponding components of the body angular momentum. For this
Hamiltonian, Hamilton’s equations eq. 266 become

(268)
dx1

dt
=

I2 − I3

I2I3
x2x3 ,

dx2

dt
=

I3 − I1

I3I1
x3x1 ,

dx3

dt
=

I1 − I2

I1I2
x1x2 ,

Indeed, these are the Euler equations for a free pivoted rigid body. I shall not go
into details about the rigid body. I only note that:

(i) In the elementary theory of such a body, the magnitude L of the angular
momentum is conserved, and eq. 268 describes the motion of the xi on a
sphere of radius L centred at the origin.

(ii) In Section 5.4, we will return to seeing these spheres as the orbits of the
co-adjoint representation of SO(3) on so(3)∗ (cf. Section 4.5.2).

(iii) Let us sum up this theme by saying, with Marsden and Ratiu (1999, p.11)
that here we see: ‘a simple and beautiful Hamiltonian structure for the rigid
body equations’.

5.3 The symplectic foliation of Poisson manifolds

We first reformulate some ideas of Section 5.2 in more coordinate-independent
language, starting with Section 5.2.3’s idea of the structure matrix J(x) (Section
5.3.1). Then we discuss canonical transformations on a Poisson manifold (Section
5.3.2). This will lead up to showing that any Poisson manifold is foliated by
symplectic leaves (Section 5.3.3). Finally, we state a generalization of Darboux’s
theorem; and again take so(3) as an example (Section 5.3.4).

5.3.1 The Poisson structure and its rank

We now pass from the structure matrix J , eq. 247, to a coordinate-independent
object, the Poisson structure (also known as: co-symplectic structure), written B.
Whereas J multiplied naive gradient vectors, as in eq. 248 and 253, B is to map
the 1-form dH into its Hamiltonian vector field; as follows.

At each point x in a Poisson manifold M , there is a unique linear map Bx,
which we will also write as B

(269) B ≡ Bx : T ∗
xM → TxM

such that
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(270) Bx(dH(x)) = XH(x).

For the requirement eq. 270 implies, by eq. 251, that for each j = 1, ...,m

(271) Bx(dxj) = ΣiJ ij(x)
∂

∂xi
|x

Since the differentials dxi span T ∗
xM , this fixes Bx, by linearity. Bx’s action on

any one-form α = Σajdxj is:

(272) Bx(α) = Σi,jJ ij(x)aj
∂

∂xi
|x

so that Bx is essentially matrix multiplication by J(x). Here, compare again eq.
252 and 253.

Here we recall that any linear map between (real finite-dimensional) vector
spaces, B : V → W ∗, has an associated bilinear form B� on V ×W ∗∗ ∼= V ×W
given by

(273) B�(v, w) := < B(v) ; w > .

Accordingly, some authors introduce the Poisson structure as a bilinear form B�x :
T ∗
xM × T ∗

xM → IR, often called the Poisson tensor. Thus eq. 273 gives, for
α, β ∈ T ∗

xM

(274) B�x(α, β) := < B(α), β > .

B�x is antisymmetric, since the matrix J(x) is. So, if we now let x vary over
M , we can sum up in the traditional terminology of tensor analysis: B� is an
antisymmetric contravariant two-tensor field.

Example: Consider our first example, M = IR2n+l with the “usual bracket” eq.
236, from the start of Section 5.2.1. For any one-form

(275) α = Σni=1(aidqi + bidpi) + Σlj=1cjdzj

we have

(276) B(α) = Σni=1

(
bi

∂

∂qi
− ai

∂

∂pi

)
.

In this example the form of B is the same from point to point. In particular, the
kernel of B has everywhere the same dimension, viz. l, the number of distinguished
coordinates.

We now define the rank at x of a Poisson manifold M to be the rank of its
Poisson structure B at x, i.e. the dimension of the range of Bx. This range is also
the span of all the Hamiltonian vector fields on M at x:

(277) ran(Bx) := {X ∈ TxM : X = Bx(α), some α ∈ T ∗
xM} = {XH(x) : H :

M → IR smooth } .
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So the rank of M at x is also equal to the dimension of Bx’s domain, i.e. dim(T ∗
xM) =

dim(M), minus the dimension of the kernel, dim(Bx).
Since in local coordinates, Bx is given by multiplication by the structure matrix

J(x), the rank of M at x is the rank (the same in any coordinates) of the matrix
J(x). That J(x) is anti-symmetric implies that the rank of M is even: cf. again
the normal form of antisymmetric bilinear forms, eq. 2 and 3.

The manifold M being symplectic corresponds, of course, to the rank of B being
everywhere maximal, i.e. equal to dim(M).

In this case, the kernel of B is trivial, and any distinguished function H is
constant on M . For H is distinguished iff XH = 0; and if the rank is maximal,
then dH = 0, so that H is constant.

Besides, each of the Poisson structure and symplectic form on M determine
the other. In particular, the Poisson tensor B� of eq. 274 is, up to a sign, the
“contravariant cousin” of M ’s symplectic form ω. For recall: (i) the relation
between a symplectic manifold’s Poisson bracket and its form, eq. 18, viz.

(278) {F,H} = dF (XH) = ω(XF ,XH) ;

and (ii) eq. 239 for Hamiltonian vector fields on a Poisson manifold, viz.

(279) XH(F ) = {F,H} .

Applying these equations yields, if we start from eq. 274 and eq. 270:

(280) B�(dH, dF ) := < B(dH), dF >= dF (XH) = XH(F ) = {F,H} = ω(XF ,XH) .

We have also seen examples where the Poisson structure B is of non-maximal
rank:

(i) In our opening “canonical” example, the Poisson bracket eq. 236 on M =
IR2n+l has rank 2n everywhere.

(ii) In the Lie-Poisson structure on so(3)∗, the rank varies across the manifold:
it is 2 everywhere, except at the origin x = 0 where it is 0. (Cf. the rank of
the matrix J in eq. 265.)

5.3.2 Poisson maps

Already at the beginning of our development of Poisson manifolds, we saw that a
scalar function H : M → IR defines equations of motion, with H as “Hamiltonian”,
for all other functions F : M → IR, of the familiar Poisson bracket type:

(281) Ḟ = {F,H}.
(Cf. Section 5.2.2, especially the remarks around eq. 239.) We now develop the
generalization for Poisson manifolds of some related notions and results.

We say that a smooth map f : M1 →M2 between Poisson manifolds (M1, {, }1)
and (M2, {, }2) is Poisson or canonical iff it preserves the Poisson bracket. To be
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precise: we first need the idea of the pullback of a function; cf. Section 3.1.2.1. In
this context, the pullback f∗ of a function F : M2 → IR is given by

(282) f∗F := F ◦ f ; i.e. f∗F : x ∈M1 	→ F (f(x)) ∈ IR.

Then we say that f : M1 →M2 is Poisson iff for all smooth functions F,G : M2 →
IR (F,G ∈ F(M2))

(283) f∗{F,G}2 = {f∗F, f∗G}1 ;

where by the definition eq. 282, the lhs ≡ {F,G}2◦f , and the rhs ≡ {F ◦f,G◦g}1.
We note the special case where M1 = M2 =: M and M is symplectic; i.e. the

Poisson bracket is of maximal rank, and so defines a symplectic form on M , as
in eq. 280. In this case, we return to the equivalence in Section 2.1.3’s usual
formulation of Hamiltonian mechanics, between preserving the Poisson bracket
and preserving the symplectic form. That is: a map f : M → M on a symplectic
manifold M is Poisson iff it is symplectic.

Besides, we already have for symplectic manifolds an infinitesimal version of
the idea of a Poisson or symplectic map: viz. the idea of a locally Hamiltonian
vector field; cf. Section 2.1.3. Similarly for Poisson manifolds, we will need the
corresponding infinitesimal version of a Poisson map; but not till Section 6.1.1.

One can show (using in particular the Jacobi identity) that the flows of a Hamil-
tonian vector field are Poisson. (Here of course, (M1, {, }1) = (M2, {, }2).) That
is: if φτ is the flow of XH (i.e. φτ = exp(τXH)), then

(284) φ∗
τ{F,G} = {φ∗

τF, φ∗
τG} i.e. {F,G} ◦ φτ = {F ◦ φτ , G ◦ φτ} .

Similarly, one can readily show the equivalent proposition, that along the flow of
a Hamiltonian vector field the Lie derivative of the Poisson tensor B� vanishes.
That is: for any smooth function H : M → IR, we have:

(285) LXH
B� = 0 .

Since preserving the Poisson bracket implies in particular preserving its rank,
it follows from eq. 284 (or from eq. 285) that:

If XH is a Hamiltonian vector field on a Poisson manifold M , then for any
τ ∈ IR and x ∈ M , the rank of M at exp(τXH)(x) is the same as the rank at x.
In other words: Hamiltonian vector fields are rank-invariant in the sense used in
the general form of Frobenius’ theorem (Section 3.3.2).

This result will be important for the foliation theorem for Poisson manifolds.
We will also need the result (also readily shown) that Poisson maps push Hamil-

tonian flows forward to Hamiltonian flows. More precisely: let f : M1 →M2 be a
Poisson map; so that at each x ∈M1, we have the derivative map on the tangent
space, Tf : (TM1)x → (TM2)f(x). And let H : M2 → IR be a smooth function. If
φτ is the flow of XH and ψτ is the flow (on M1) of XH◦f , then:

(286) φτ ◦ f = f ◦ ψτ and Tf ◦XH◦f = XH ◦ f .
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In particular, this square commutes:

(287) M1�ψτ

M1

f−→
f−→

M2�φτ

M2

5.3.3 Poisson submanifolds: the foliation theorem

To state the foliation theorem for Poisson manifolds, we need the idea of a Poisson
immersion, which leads to the closely related idea of a Poisson submanifold. In
effect, these ideas combine the idea of a Poisson map with the ideas about injec-
tive immersions in (2) of Section 3.3.1. We recall from that discussion that for an
injective immersion, f : N →M , the range f(N) is not necessarily a submanifold
of M : but f(N) is nevertheless called an ‘injectively immersed submanifold’ of
M . (But as mentioned in Section 3.3.2, many treatments ignore this point: they
in effect assume that an injective immersion f is also an embedding, i.e. a home-
omorphism between N and f(N), so that f(N) is indeed a submanifold of M and
f is a diffeomorphism.)

An injective immersion f : N → M , with M a Poisson manifold, is called a
Poisson immersion if any Hamiltonian vector field defined on an open subset of M
containing f(N) is in the range of the derivative map of f at y ∈ N , i.e. ran(Tyf),
at all points f(y) for y ∈ N .

Being a Poisson immersion is equivalent to the following rather technical con-
dition.

Characterization of Poisson immersions An injective immersion
f : N →M , with M a Poisson manifold, is a Poisson immersion iff:
if F,G : V ⊂ N → IR, where V is open in N , and if F̄ , Ḡ : U → IR are
extensions of F ◦ f−1, G ◦ f−1 : f(V )→ IR to an open neighbourhood
U of f(V ) in M , then {F̄ , Ḡ} |f(V ) is well-defined and independent of
the extensions.

The main point of this equivalence is that it ensures that if f : N →M is a Poisson
immersion, then N has a Poisson structure, and f : N →M is a Poisson map. It
is worth seeing how this comes about — by proving the equivalence.

Proof. Let f : N→M be a Poisson immersion, and let F,G : V ⊂ N→IR and let
F̄ , Ḡ : U ⊃ f(V ) → IR be extensions of F ◦ f−1, G ◦ f−1 : f(V ) → IR. Then for
y ∈ V , there is a unique vector v ∈ TNy such that

(288) XḠ(f(y)) = (Tyf)(v) .

So evaluating the Poisson bracket of F̄ and Ḡ at f(y) yields, by eq. 239,

(289) {F̄ , Ḡ}(f(y)) = dF̄ (f(y))·XḠ(f(y)) = dF̄ (f(y))·(Tyf)(v) = d(F̄ ◦f)(y)·v ≡
dF (y) · v .
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So {F̄ , Ḡ}(f(y)) is independent of the extension F̄ of F ◦ f−1. Since the Poisson
bracket is antisymmetric, it is also independent of the extension Ḡ of G ◦ f−1. So
we can define a Poisson structure on N by defining for any y in an open V ⊂ N

(290) {F,G}N (y) := {F̄ , Ḡ}M (f(y)) .

This makes f : N→M a Poisson map, since for any F̄ , Ḡ on M and any y ∈ N ,
we have that

(291) [f∗{F̄ , Ḡ}M ](y) ≡ [{F̄ , Ḡ}M ◦ f ](y) = {F,G}N (y) ≡ {f∗F̄ , f∗Ḡ}N (y) ;

where the middle equality uses eq. 290.
For the converse implication, assume that eq. 289 holds, and let H : U→IR be a

Hamiltonian defined on an open subset U of M that intersects f(N). Then as we
have just seen, N is a Poisson manifold and f : N→M is a Poisson map. Because
f is Poisson, it pushes XH◦f to XH . That is: eq. 286 implies that if y ∈ N is such
that f(y) ∈ U , then

(292) XH(f(y)) = (Tyf)(XH◦f (y)) .

So XH(f(y)) is in the range of Tyf ; so f : N→M is a Poisson immersion. �

Now suppose that the inclusion id : N → M is a Poisson immersion. Then we
call N a Poisson submanifold of M . We emphasise, in line with the warning we
recalled from (2) of Section 3.3.1, that N need not be a submanifold of M ; but it
is nevertheless called an ‘injectively immersed submanifold’ of M .

From the definition of a Poisson immersion, it follows that any Hamiltonian
vector field must be tangent to a Poisson submanifold. In other words: writing
X for the system of Hamiltonian vector fields on M , and X |x for their values at
x ∈M , we have: if N is a Poisson submanifold of M , and x ∈ N , X |x⊂ TNx.

For the special case where M is a symplectic manifold, we have X |x= TxM ,
and the only Poisson submanifolds of M are its open sets.

Finally, we define the following equivalence relation on a Poisson manifold M .
Two points x1, x2 ∈ M are on the same symplectic leaf if there is a piecewise
smooth curve in M joining them, each segment of which is an integral curve of a
locally defined Hamiltonian vector field. An equivalence class of this equivalence
relation is a symplectic leaf.

We can now state and prove that Poisson manifolds are foliated.

5.3.3.1 Foliation theorem for Poisson manifolds The result is:

A Poisson manifold M is the disjoint union of its symplectic leaves.
Each symplectic leaf is an injectively immersed Poisson submanifold,
and the induced Poisson structure on the leaf is symplectic. The leaf
through the point x, Nx say, has dimension equal to the rank of the
Poisson structure at x; and the tangent space to the leaf at x equals
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TNx = ran(Bx) := {X ∈ TxM : X = Bx(α), some α ∈ T ∗
xM}(293)

= {XH(x) : H ∈ F(U), U open in M }

Proof. We apply the general form of Frobenius’ theorem (Section 3.3.2) to the
system X of Hamiltonian vector fields on M . We know from eq. 242 (Section
5.2.2) that X is involutive, and from eq. 284 above that it is rank-invariant. So by
Frobenius’ theorem, X is integrable. The integral submanifolds are by definition
given by the rhs of eq. 293. �

One also readily shows that:

(i) One can evaluate the Poisson bracket of F,G : M → IR at x ∈ M by
restricting F and G to the symplectic leaf Nx through x, and evaluating the
Poisson bracket that is defined by the symplectic form on the leaf Nx; (i.e.
the Poisson bracket defined in eq. 18).

(ii) A distinguished function is constant on any symplectic leaf Nx of M .

We end with two remarks. The first is a mathematical warning; the second
concerns physical interpretation.

(1) Recall our warning that symplectic leaves need not be submanifolds. This
also means that all the distinguished functions being constants does not im-
ply that the Poisson structure is non-degenerate. Indeed, one can readily
construct an example in which the symplectic leaves are not manifolds, all
distinguished functions are constants, and the Poisson structure is degener-
ate. Namely, one adapts an example mentioned before, in Section 3.4.3: the
flows on the torus T2 that wind densely around it. (For more details about
this example, cf. [Arnold, 1973, 160-167; 1989, 72-74] or [Butterfield, 2004a,
Section 2.1.3.B]; for how to adapt it, cf. [Marsden and Ratiu, 1999, 347].

(2) As we have seen, any integral curve of any Hamiltonian vector field XH is
confined to one of the symplectic leaves. So if we are interested only in the
behaviour of a single solution through a point x ∈ M , we can restrict our
attention to the symplectic leaf Nx through x: for the solution will always
remain in Nx. But as stressed in Section 5.1, there are at least three good
reasons not to ignore the more general Poisson structure!

5.3.4 Darboux’s theorem

At the end of Section 2.1.1, we mentioned Darboux’s theorem: it said that any
symplectic manifold “looks locally like” a cotangent bundle. The generalization for
Poisson manifolds says that any Poisson manifold “looks locally like” our canonical
example on IRm,m = 2n + l, given at the start of Section 5.2.1. More precisely,
we have:
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Let M be an m-dimensional Poisson manifold, and let x ∈M be a point
with an open neighbourhood U ⊂ M throughout which the rank is a
constant 2n ≤ m. Then defining l := m−2n, there is a possibly smaller
neighbourhood U ′ ⊂ U of x, on which there exist local coordinates
(q, p, z) = (q1, ..., qn, p1, ..., pn, z1, ..., zl), for which the Poisson bracket
takes the form

(294) {F,H} := Σni

(
∂F

∂qi
∂H

∂pi
− ∂F

∂pi
∂H

∂qi

)
.

(So the Poisson brackets for the coordinate functions take the now-
familiar form given by eq. 237 and 238.) The symplectic leaves of M
intersect the coordinate chart in the slices {z1 = c1, . . . , z

l = cl} given
by constant values of the distinguished coordinates z.

We shall not give the proof. Suffice it to say that:

(i) Like Darboux’s theorem for symplectic manifolds: it proceeds by induction
on the “half-rank” n; and it begins by taking any function F as the “mo-
mentum” p1 and constructing the canonically conjugate coordinate q1 such
that {q1, p1} = 1.

(ii) The induction step invokes a version of Frobenius’ theorem in which the fact
that the rank 2n is constant throughout U secures a coordinate system in
which the 2n-dimensional integral manifolds are given by slices defined by
constant values of the remaining l coordinates. The Poisson structure then
secures that these remaining coordinates are distinguished.

5.3.4.1 Example: so(3)∗ yet again We illustrate (1) the foliation theorem
and (2) Darboux’s theorem, with so(3)∗; whose Lie-Poisson structure we described
in Section 5.2.4.1.

(1) At x ∈ so(3)∗, the subspace X |x:= {XH(x) : H ∈ F(U), U open in1 M }
of values of locally Hamiltonian vector fields is spanned by e1 := y∂z − z∂y
representing infinitesimal rotation about the x-axis (cf. eqns. 48, 107 and
154); e2 := z∂x − x∂z for rotation about the y-axis; and e3 := x∂y − y∂x for
rotation about the z-axis. If x �= 0, these vectors span a two-dimensional
subspace of T so(3)∗x: viz. the tangent plane to the sphere S|x| of radius
| x | centred at the origin. So the foliation theorem implies that so(3)∗’s
symplectic leaves are these spheres; and the origin.
We can compute the Poisson bracket of F,G : S|x|→IR by extending F and
G to a neighbourhood of S|x|; cf. eq. 290. That is: we can consider exten-
sions F̄ , Ḡ : U ⊃ S|x|→IR, and calculate the Poisson bracket in so(3)∗, whose
Poisson structure we already computed in eq. 264.
Adopting spherical polar coordinates with r =| x |, i.e. x1 = r cos θ sin φ, x2 =
r sin θ sin φ, x3 = r cos φ, we can define F̄ , Ḡ merely by F̄ (r, θ, φ) := F (θ, φ),
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Ḡ(r, θ, φ) := G(θ, φ); so that the partial derivatives with respect to the spher-
ical angles θ, φ are equal, i.e. F̄θ = Fθ, F̄φ = Fφ, Ḡθ = Gθ, Ḡφ = Gφ.
Besides, eq. 246 implies that we need only calculate the Poisson bracket in
so(3)∗ of the spherical angles θ and φ. So eq. 264 gives

(295) {θ, φ} = −x · (∇θ ×∇φ) =
−1

r sin φ
;

and eq. 290 and 246 give

(296) {F,G} = {F̄ , Ḡ} =
−1

r sin φ
(FθGφ − FφGθ) .

(2) z := x3 defines the Hamiltonian vector field Xz = x2∂x1 − x1∂x2 that gen-
erates clockwise rotation about the z ≡ x3-axis. So away from the ori-
gin the polar angle θ := arctan(x2/x1) has a Poisson bracket with z equal
to: {θ, z} = Xz(θ) = −1. Expressing F,H : so(3)∗→IR in terms of the
coordinates z, θ and r :=| x |, we find that the Lie-Poisson bracket is:
{F,H} = FzHθ − FθHz. So (z, θ, r) are canonical coordinates.

5.4 The symplectic structure of the co-adjoint representation

Section 5.2.4 described how the dual g∗ of a finite-dimensional Lie algebra of a Lie
group G has the structure of a Poisson manifold. In this case, the foliation estab-
lished in the previous Subsection has an especially neat interpretation. Namely:
the leaves are the orbits of the co-adjoint representation of G on g∗.

This symplectic structure in the co-adjoint representation sums up themes from
Sections 4.5 (especially 4.5.2), and 5.2.4 and 5.3. In particular, it connects two
properties of the Lie bracket in g, which we have already seen: viz.

(i) The Lie bracket in g gives the infinitesimal generators of the adjoint action;
cf. eq. 179.

(ii) The Lie bracket in g defines (in a basis-independent way) a Lie-Poisson
bracket on g∗, thus making g∗ a Poisson manifold. (Cf. the definition in eq.
255, shown to be basis-independent by eq. 258.)

In fact, there is a wealth of instructive results and examples about the structure
of the co-adjoint representation: we will only scratch the surface — as in other
Sections! We will give a proof, under a simplifying assumption, of one main result;
and then make a few remarks about other results.

The result is:

The orbits of the co-adjoint representation are g∗’s leaves
Let G be a Lie group, with its co-adjoint representation Ad∗ on g∗.
That is, recalling eq. 193, we have:

(297) Ad∗ : G→ End(g∗), Ad∗g−1 = (Te(Rg ◦ Lg−1))∗ .
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The orbits of this representation are the symplectic leaves of g∗, taken
as equipped with its natural Poisson structure, i.e. the Lie-Poisson
bracket eq. 258.

Proof. We shall prove this under the simplifying assumption that the co-adjoint
action of G on g∗ is proper. (We recall from the definition of proper actions, eq.
147, that for any compact Lie group, such as SO(3), this condition is automatically
satisfied.) Then we know from result (3) and eq. 160, at the end of Section 4.4, that
this implies that the co-adjoint orbit Orb(α) of any α ∈ g∗ is a closed submanifold
of g∗, and that the tangent space to Orb(α) at a point β ∈ Orb(α) is

(298) TOrb(α)β = { ξg∗(β) : ξ ∈ g } .

We will see shortly how this assumption implies that g∗’s symplectic leaves are
submanifolds.21

We now argue as follows. For ξ ∈ g, consider the scalar function on g∗, Kξ :
α ∈ g∗ 	→ Kξ(α) := < α; ξ > ∈ IR; and its Hamiltonian vector field XKξ

. At each
α ∈ g∗, the gradient ∇Kξ(α) ≡ dKξ(α), considered as an element of (T ∗g∗)α ∼= g,
is just ξ itself. Now we will compute XKξ

(F )(α) for any F : g∗ → IR and any
α ∈ g∗, using in order:

(i) the intrinsic definition of the Lie-Poisson bracket on g∗, eq. 258;

(ii) the fact that the infinitesimal generator of the adjoint action is the Lie
bracket in g, eq. 179;

(iii) the fact that the derivative ad∗ of the co-adjoint action Ad∗ is, up to a sign,
the adjoint of adξ; eq. 198.

Thus we get, for all F : g∗→IR and α ∈ g∗:

XKξ
(F )(α) ≡ {F,Kξ}(α) = < α ; [∇F (α),∇Kξ(α)] >(299)

= < α ; [∇F (α), ξ] > = − < α ; [ξ,∇F (α)] >(300)
= − < α ; adξ(∇F (α)) >(301)

= < ad∗ξ(α) ; ∇F (α) > .(302)

But on the other hand, the vector field XKξ
is uniquely determined by its action

on all such functions F at all α ∈ g∗:

(303) XKξ
(F )(α) ≡ < XKξ

(α) ;∇F (α) > .

So we conclude that at each α ∈ g∗:

(304) XKξ
= ad∗ξ .

21To verify that our condition is indeed simplifying — i.e. that in general the co-adjoint orbits
in g∗ are not submanifolds — consider the example in Marsden and Ratiu (1999: 14.1.(f), p.
449); taken from Kirillov (1976: 293).
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But the subspace X |α of values at α of Hamiltonian vector fields is spanned by
the XKξ

(α), with ξ varying through g. And as ξ varies through g, ad∗ξ(α) is the
tangent space TOrb(α)α to the co-adjoint orbit Orb(α) of G through α. So

(305) X |α= TOrb(α)α .

So the integral submanifolds of the system X of Hamiltonian vector fields, which
are the symplectic leaves of g∗ by Section 5.3.3.1’s foliation theorem, are the co-
adjoint orbits. �

For the illustration of this theorem by our standard example, so(3)∗, cf. our
previous discussions of it: in Section 4.5.2 for its co-adjoint structure; in Section
5.2.4.1 for its Lie-Poisson structure; and in Section 5.3.4.1 for its symplectic leaf
structure.

We end this Subsection by stating two other results. They are not needed later,
but they are enticing hints of how rich is the theory of co-adjoint orbits.

(1) For each g ∈ G, the co-adjoint map Ad∗g : g∗→g∗ is a Poisson map that
preserves the symplectic leaves of g∗.

(2) A close cousin of the theorem just proven is that the Lie bracket on g defines
(via its definition of the Lie-Poisson bracket on g∗, eq. 258) a symplectic
form, i.e. a non-degenerate closed two-form, on each co-adjoint orbit, by:

(306) ω(α)(ad∗ξ(α), ad∗η(α)) := < α ; [ξ, η]g > , ∀α ∈ g∗, ∀ξ, η ∈ g .

This theorem is proven in detail (without our simplifying assumption that G’s
action is proper) by Marsden and Ratiu [1999, Thm 14.3.1, pp. 453–456]; and
much more briefly by Arnold [1989, 321, 376–377, 457]; and rather differently
(even without using the notion of a Poisson manifold!) in [Abraham and Marsden,
1978, 302–303].

5.5 Quotients of Poisson manifolds

We now end Section 5 with the simplest general theorem about quotienting a
Lie group action on a Poisson manifold, so as to get a quotient space (set of
orbits) that is itself a Poisson manifold. So this theorem combines themes from
Sections 4 — in particular, the idea from Section 4.3.0.2 that for a free and proper
group action, the orbits and quotient space are manifolds — with material about
Poisson manifolds from Section 5.2. (The material in Sections 5.3 and 5.4 will not
be needed.) This theorem will be important in Section 7. We call this result the

Poisson reduction theorem: Suppose the Lie group G acts on Pois-
son manifold M is such a way that each Φg : M → M is a Poisson
map. Suppose also that the quotient space M/G is a manifold and the
projection π : M → M/G is a smooth submersion (say because G’s
action on M is free and proper, cf. Section 4.3.0.3). Then there is a
unique Poisson structure on M/G such that π is a Poisson map. The
Poisson bracket on M/G is called the reduced Poisson bracket.
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Proof. Let us first assume that M/G is a Poisson manifold and that π is a Poisson
map; and show uniqueness. We first note that for any f : M/G→ IR, the function
f̄ := f ◦ π : M → IR is obviously the unique G-invariant function on M that
projects by π to f . That is: if [x] ≡ Orb(x) ≡ G · x is the orbit of x ∈M , then f̄
assigns the same value f([x]) to all elements of the orbit [x]. Besides, in terms of
pullbacks (eq. 282), f̄ = π∗f .

Then the condition that π be Poisson, eq. 283, is that for any two smooth
scalars f, h : M/G→ IR, we have an equation of smooth scalars on M :

(307) {f, h}M/G ◦ π = {f ◦ π, h ◦ π}M = {f̄ , h̄}M
where the subscripts indicate on which space the Poisson bracket is defined. Since
π is surjective, eq. 307 determines the value {f, h}M/G uniquely.

But eq. 307 also defines {f, h}M/G as a Poisson bracket; in two stages. (1):
The facts that Φg is Poisson, and f̄ and h̄ are constant on orbits imply that

(308) {f̄ , h̄}(g · x) = ({f̄ , h̄} ◦ Φg)(x) = {f̄ ◦ Φg, h̄ ◦ Φg}(x) = {f̄ , h̄}(x).

That is: {f̄ , h̄} is also constant on orbits, and so defines {f, h} uniquely.
(2): We show that {f, h}, as thus defined, is a Poisson structure on M/G, by

checking that the required properties, such as the Jacobi identity, follow from the
Poisson structure { , }M on M . �

This theorem is a “prototype” for material to come. We spell this out in two
brief remarks, which look forward to the following two Sections.

(1): Other theorems:
This theorem is one of many that yield new Poisson manifolds and symplectic
manifolds from old ones by quotienting. In particular, as we will see in detail in
Section 7, this theorem is exemplified by the case where M = T ∗G (so here M is
symplectic, since it is a cotangent bundle), and G acts on itself by left translations,
and so acts on T ∗G by a cotangent lift. In this case, we will have M/G ∼= g∗;
and the reduced Poisson bracket just defined, by eq. 307, will be the Lie-Poisson
bracket we have already met in Section 5.2.4.

(2): Reduction of dynamics:
Using this theorem, we can already fill out a little what is involved in reduced
dynamics; which we only glimpsed in our introductory discussions, in Section 2.3
and 5.1. We can make two basic points, as follows.

(A) If H is a G-invariant Hamiltonian function on M , it defines a correspond-
ing function h on M/G by H = h ◦ π. The fact that Poisson maps push
Hamiltonian flows forward to Hamiltonian flows (eq. 286) implies, since π is
Poisson, that π transforms XH on M to Xh on M/G. That is:

(309) Tπ ◦XH = Xh ◦ π ;



On Symplectic Reduction in Classical Mechanics 103

i.e. XH and Xh are π-related. Accordingly, we say that the Hamiltonian
system XH on M reduces to that on M/G.

(B) We shall see in Section 6.2 that G-invariance of H is associated with a
family of conserved quantities (constants of the motion, first integrals), viz.
a constant of the motion J(ξ) : M → IR for each ξ ∈ g. Here, J being
conserved means {J,H} = 0; just as in our discussion of Noether’s theorem
in ordinary Hamiltonian mechanics (Section 2.1.3). Besides, if J is also G-
invariant, then the corresponding function j on M/G is conserved by Xh

since

(310) {j, h} ◦ π = {J,H} = 0 implies {j, h} = 0 .

6 SYMMETRY AND CONSERVATION REVISITED: MOMENTUM MAPS

We now develop the topics of symmetry and conserved quantities (and so Noether’s
theorem) in the context of Poisson manifolds. At the centre of these topics lies
the idea of a momentum map of a Lie group action on a Poisson manifold; which
we introduce in Section 6.1. This is the modern geometric generalization of a
conserved quantity, such as linear or angular momentum for the Euclidean group
— hence the name. Formally, it will be a map J from the Poisson manifold M to
the dual g∗ of the Lie algebra of the symmetry group G. Since its values lie in a
vector space, it has components. So our description of conserved quantities will
no longer be “one-dimensional”, i.e. focussed on a single vector field in the state
space, as it was in Section 2.1.3. The map J will be associated with a linear map
J from g to F(M), the scalar functions on the manifold M . That is: for each
ξ ∈ g, J(ξ) will be a conserved quantity if the Hamiltonian H is invariant under
the infinitesimal generator ξM , i.e. if ξM (H) = 0.

The conservation of momentum maps will be expressed by the Poisson manifold
version of Noether’s theorem (Section 6.2), and illustrated by the familiar examples
of linear and angular momentum (Section 6.3). Then we discuss the equivariance of
momentum maps, with respect to the co-adjoint representation of G on g∗; Section
6.4. Finally in Section 6.5, we discuss the crucial special case of momentum maps
on cotangent bundles, again with examples.

6.1 Canonical actions and momentum maps

We first apply the definition of Poisson maps (from Section 5.3.2) to group actions
(Section 6.1.1). This will lead to the idea of the momentum map (Section 6.1.2).

6.1.1 Canonical actions and infinitesimal generators

Let G be a Lie group acting on a Poisson manifold M by a smooth left action
Φ : G×M →M ; so that as usual we write Φg : x ∈M 	→ Φg(x) := g · x ∈M . As
in the definition of a Poisson map (eq. 283), we say the action is canonical if
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(311) Φ∗
g{F1, F2} = {Φ∗

gF1,Φ∗
gF2}

for any F1, F2 ∈ F(M) and any g ∈ G. If M is symplectic with symplectic form
ω, then the action is canonical iff it is symplectic, i.e. Φ∗

gω = ω for all g ∈ G.
We will be especially interested in the infinitesimal version of this notion; and

so with infinitesimal generators of actions. We recall from eq. 152 that the in-
finitesimal generator of the action corresponding to a Lie algebra element ξ ∈ g is
the vector field ξM on M obtained by differentiating the action with respect to g
at the identity in the direction ξ:

(312) ξM (x) =
d

dτ
[exp(τξ) · x] |τ=0 .

So we differentiate eq. 311 with respect to g in the direction ξ, to give:

(313) ξM ({F1, F2}) = {ξM (F1), F2}+ {F1, ξM (F2)} .

Such a vector field ξM is called an infinitesimal Poisson automorphism.

Side-remark: We will shortly see that it is the universal quantification over g ∈
G in eq. 311, and correspondingly in eq. 313 and 315 below, that means our
description of conserved quantities is no longer focussed on a single vector field;
and in particular, that a momentum map representing a conserved quantity has
components.

In the symplectic case, differentiating Φ∗
gω = ω implies that the Lie derivative

LξM
ω of ω with respect to ξ vanishes: LξM

ω = 0. We saw in Section 2.1.3 that
this is equivalent to ξM being locally Hamiltonian, i.e. there being a local scalar
J : U ⊂ M → IR such that ξM = XJ . This was how Section 2.1.3 vindicated
eq. 19’s “one-liner” approach to Noether’s theorem: because the vector field Xf

is locally Hamiltonian, it preserves the symplectic structure, i.e. Lie-derives the
symplectic form LXf

ω = 0 — as a symmetry should.
We also saw in result (2) at the end of Section 3.2.2 that the “meshing”, up

to a sign, of the Poisson bracket on scalars with the Lie bracket on vector fields
implied that the locally Hamiltonian vector fields form a Lie subalgebra of the Lie
algebra X (M) of all vector fields.

Turning to the context of Poisson manifolds, we need to note two points. The
first is a similarity with the symplectic case; the second is a contrast.

(1) One readily checks, just by applying eq. 313, that the infinitesimal Poisson
automorphisms are closed under the Lie bracket. So we write the Lie algebra
of these vector fields as P(M): P(M) ⊂ X (M).

(2) On the other hand, Section 2.1.3’s equivalence between a vector field being
locally Hamiltonian and preserving the geometric structure of the state-space
breaks down.

Agreed, the first implies the second: a locally Hamiltonian vector field preserves
the Poisson bracket. We noted this already in Section 5.3.2. The differential
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statement was that such a field XH Lie-derives the Poisson tensor: LXH
B� = 0

(eq. 285). The finite statement was that the flows of such a field are Poisson maps:
φ∗
τ{F,G} = {φ∗

τF, φ∗
τG} (eq. 284).

But the converse implication fails: an infinitesimal Poisson automorphism on
a Poisson manifold need not be locally Hamiltonian. For example, make IR2 a
Poisson manifold by defining the Poisson structure

(314) {F,H} = x

(
∂F

∂x

∂H

∂y
− ∂H

∂x

∂F

∂y

)
;

then the vector field X = ∂/∂y in a neighbourhood of a point on the y-axis is a
non-Hamiltonian infinitesimal Poisson automorphism.

This point will affect the formulation of Noether’s theorem for Poisson mani-
folds, in Section 6.2.

Nevertheless, we shall from now on be interested in cases where for all ξ, ξM is
globally Hamiltonian. This means there is a map J : g→F(M) such that

(315) XJ(ξ) = ξM

for all ξ ∈ g. There are three points we need to note about this condition.

(1) Since the right hand side of eq. 315 is linear in ξ, we can require such a
J to be a linear map. For given any J obeying eq. 315, we can take a
basis e1, . . . , em of g and define a new linear J̄ by setting, for any ξ = ξiei,
J̄(ξ) := ξiJ(ei).

(2) Eq. 315 does not determine J(ξ). For by the linearity of the map B :
dJ(ξ) 	→ XJ(ξ), we can add to such a J(ξ) any distinguished function, i.e.
an F : M → IR such that XF = 0. That is: XJ(ξ)+F ≡ XJ(ξ). (Of course,
in the symplectic case, the only distinguished functions are constants.)

(3) It is worth expressing eq. 315 in terms of Poisson brackets. Recalling that
for any F,H ∈ F(M), we have XH(F ) = {F,H}, this equation becomes

(316) {F, J(ξ)} = ξM (F ) , ∀F ∈ F(M), ∀ξ ∈ g .

We will also need the following result:

(317) XJ([ξ,η]) = X{J(ξ),J(η)}M
.

To prove this, we just apply two previous results, each giving a Lie algebra anti-
homomorphism.

(i) Result (4) at the end of Section 4.4: for any left action of Lie group G on any
manifold M , the map ξ 	→ ξM is a Lie algebra anti-homomorphism between
g and the Lie algebra XM of all vector fields on M :

(318) (aξ +bη)M = aξM +bηM ; [ξM , ηM ] = −[ξ, η]M ∀ξ, η ∈ g, and a, b ∈
IR.
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(ii) The “meshing” up to a sign, just as in the symplectic case, of the Poisson
bracket on scalars with the Lie bracket on vector fields, as in eq. 242 at the
end of Section 5.2.2:

(319) X{F,H} = −[XF ,XH ] = [XH ,XF ] .

So for a Poisson manifold M , the map F ∈ F(M) 	→ XF ∈ X (M) is a Lie
algebra anti-homomorphism.

Applying (i) and (ii), we deduce eq. 317 by:

(320) XJ([ξ,η]) = [ξ, η]M = −[ξM , ηM ] = −[XJ(ξ),XJ(η)] = X{J(ξ),J(η)}M
.

6.1.2 Momentum maps introduced

So suppose that there is a canonical left action of G on a Poisson manifold M .
And suppose there is a linear map J : g→ F(M) such that

(321) XJ(ξ) = ξM

for all ξ ∈ g.
The two requirements — that the action be infinitesimally canonical (i.e. each

ξM ∈ P(M)) and that each ξM be globally Hamiltonian — can be expressed as
requiring that there be a J : g→ F(M) such that there is a commutative diagram.
Namely, the map ξ ∈ g 	→ ξM ∈ P(M) is to equal the composed map:

(322) g
J−→ F(M) F �→XF−→ P(M) .

Then the map J : M → g∗ defined by

(323) < J(x) ; ξ > := J(ξ)(x)

for all ξ ∈ g and x ∈M , is called the momentum map of the action.
Another way to state this definition is as follows. Any smooth function J :

M → g∗ defines at each ξ ∈ g a scalar J(ξ) : x ∈ M 	→ (J(x))(ξ) ∈ IR. By taking
J(ξ) as a Hamiltonian function, one defines a Hamiltonian vector field XJ(ξ). But
since G acts on M , each ξ ∈ g defines a vector field on M , viz. ξM . So we say
that J is a momentum map for the action if for each ξ ∈ g, these two vector fields
are identical: XJ(ξ) = ξM .

Three further remarks by way of illustrating this definition:

(1): An isomorphism:
One readily checks that eq. 323 defines an isomorphism between the space of
smooth maps J from M to g∗, and the space of linear maps J from g to scalar
functions F(M). We can take J to define J by saying that at each x ∈ M ,
J(x) : ξ ∈ g 	→ J(x)(ξ) ∈ IR is to be given by the composed map

(324) g
J−→ F(M)

|x−→ IR ,
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where |x means evaluation at x ∈M . Or we can take J to define J by saying that
at each ξ ∈ g, J(ξ) : x ∈M 	→ J(ξ)(x) ∈ IR is to be given by the composed map

(325) M
J−→ g∗

|ξ−→ IR ,

where |ξ means evaluation at ξ ∈ g.

(2): Differential equations for the momentum map:
Using Hamilton’s equations, we can readily express the definition of momentum
map as a set of differential equations. Recall that on a Poisson manifold, Hamil-
ton’s equations are determined by eq. 270, which was that at each x ∈M

(326) Bx(dH(x)) = XH(x) ;

or in local coordinates xi, i = 1, . . . , m ≡ dim(M), with J ij(x) ≡ {xi, xj} the
structure matrix,

(327) Bx(
∂H

∂xj
dxj) = Σi,jJ ij(x)

∂H

∂xj
∂

∂xi
|x ;

(cf. eq. 272). So in local coordinates, Hamilton’s equations are given by eq. 253,
which was:

(328)
dxi

dt
= Σmj J ij(x)

∂H

∂xj
.

So the condition for a momentum map XJ(ξ) = ξM is that for all ξ ∈ g and all
x ∈M

(329) Bx(d(J(ξ))(x)) = ξM (x) .

In coordinates, this is the requirement that for all i = 1, . . . , m

(330) Σmj J ij(x)
∂J(ξ)
∂xj

= (ξM )i(x) ,

where — apologies! — the two Js on the left hand side have very different mean-
ings.

In the symplectic case, dim(M) ≡ m = 2n and we have Hamilton’s equations
as eq. 15, viz.

(331) iXH
ω := ω(XH , ·) = dH(·) .

So the condition for a momentum map is that for all ξ

(332) ω(ξM , ·) = d(J(ξ))(·) .

In Hamiltonian mechanics, it is common to write the 2n local coordinates q, p as
ξ, i.e. to write

(333) ξα := qα, α = 1, ..., n ; ξα := pα−n, α = n + 1, ..., 2n .
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So in order to express eq. 332 in local coordinates, let us temporarily write η for
the arbitrary element of g. Then writing ηM = (ηM )α ∂

∂ξα and ωαβ := ω( ∂
∂ξα , ∂

∂ξβ ),
eq. 332 becomes

(334) ωαβ(ηM )α =
∂J(η)
∂ξβ

.

(3): Components: an example:
As discussed after eq. 313, we think of the collection of functions J(ξ), as ξ varies
through g, as the components of J.

To take our standard example: the angular momentum of a particle in Euclidean
space, in a state x = (q,p) is J(x) := q∧p. Identifying so(3)∗ with IR3 so that the
natural pairing is given by the dot product (cf. (3) at the end of Section 4.5.2),
we get that the component of J(x) around the axis ξ ∈ IR3 is < J(x) ; ξ >=
ξ · (q∧p). The Hamiltonian vector field determined by this Hamiltonian function
x = (q,p) 	→ ξ · (q ∧ p) is of course the infinitesimal generator of rotations about
the ξ-axis. In Section 6.3, we will see more examples of momentum maps.

6.2 Conservation of momentum maps: Noether’s theorem

In ordinary Hamiltonian mechanics, we saw that Noether’s theorem had a simple
expression as a “one-liner” based on the antisymmetry of the Poisson bracket:
namely, in eq. 19, which was that for any scalar functions F,H

(335) XF (H) = {H,F} = 0 iff 0 = {F,H} = XH(F ) .

In words: the Hamiltonian H is constant under the flow induced by F iff F is a
constant of the motion under the dynamical flow XH .

More precisely, Section 2.1.3 vindicated this one-liner as expressing Noether’s
theorem. For the one-liner respected the requirement that a symmetry should
preserve the symplectic form (equivalently, the Poisson bracket), and not just (as
in the left hand side of eq. 335) the Hamiltonian function H; for, by Cartan’s
magic formula, a vector field’s preserving the symplectic form was equivalent to
its being locally Hamiltonian.

For Poisson manifolds, the equivalence corresponding to this last statement fails.
That is, as we noted in (2) of Section 6.1.1: an infinitesimal Poisson automorphism
need not be locally Hamiltonian.

Nevertheless, most of the “one-liner” approach to Noether’s theorem carries
over to the framework of Poisson manifolds. In effect, we just restrict discussion
to cases where the relevant Hamiltonian vector fields exist: recall our saying after
(2) of Section 6.1.1 that we would concentrate on cases where all the ξM are
globally Hamiltonian.

Thus, it is straightforward to show that for a Poisson manifold M , just as for
symplectic manifolds: if F,H ∈ F(M), H is constant along the integral curves of
XF iff {H,F} = 0 iff F is constant along the integral curves of XH . (We could
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have proved this already in Section 5.2.2; but postponed it till now, when it will
be used.)

With this result as a lemma, one immediately gets

Noether’s theorem for Poisson manifolds Suppose that G acts
canonically on a Poisson manifold M and has a momentum map J :
M → g∗; and that H is invariant under ξM for all ξ ∈ g, i.e. {H,J(ξ)} =
ξM (H) = 0, ∀ξ ∈ g; (cf. eq. 316). Then J is a constant of the motion
determined by H. That is:

(336) J ◦ φτ = J

where φτ is the flow of XH .

Proof. By the lemma, the fact that {H,J(ξ)} = ξM (H) = 0 implies that J(ξ) is
constant along the flow of XH . So by the definition of momentum map, eq. 323,
the corresponding g∗-valued map J is also a constant of the motion. �

It follows immediately that H itself, and any distinguished function, is a con-
stant of the motion. Besides, as remarked in (2) at the end of Section 6.1.1: a
constant of the motion J(ξ) is determined only up to an arbitrary choice of a
distinguished function. Indeed, though this Chapter has set aside (ever since (iii)
of Section 1.2) time-dependent functions: if one considers them, then there is here
an arbitrary choice of a time-dependent distinguished function.

6.3 Examples

We give two familiar examples; and then, as a glimpse of the general power of the
theory, two abstract examples (which will not be needed later on).

(1): Total linear momentum of N particles:
In (3) at the end of Section 4.1.0.1, we showed that the left cotangent lift of the
action of the translation group IR3 on Q = IR3N to M = T ∗IR3N , i.e. the left
action corresponding to eq. 126, is

(337) Ψx(qi,pi) := T ∗(Φ−x)(qi,pi) = (qi + x,pi) , i = 1, ..., N .

(Here we combine the discussions of examples (vi) and (ix) in Section 4.1.0.1)
To find the momentum map, we: (a) compute the infinitesimal generator ξM

for an arbitrary element ξ of g = IR3; and then (b) solve eq. 332, or in coordinates
eq. 334.

(a) We differentiate eq. 337 with respect to x in the direction ξ, getting

(338) ξM (qi,pi) = (ξ, ..., ξ,0, ...,0) .

(b) Any function J(ξ) has Hamiltonian vector field
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(339) XJ(ξ)(qi,pi) =
(

∂J(ξ)
∂pi

,−∂J(ξ)
∂qi

)
;

so that the desired J(ξ) with XJ(ξ) = ξM solves

(340)
∂J(ξ)
∂pi

= ξ and
∂J(ξ)
∂qi

= 0 , 1 ≤ i ≤ N .

Choosing constants so that J is linear, the solution is

(341) J(ξ)(qi,pi) =
(
ΣNi=1p

i
) · ξ , i.e. J(qi,pi) = ΣNi=1p

i ;

i.e. the familiar total linear momentum.

(2): Angular momentum of a single particle:
SO(3) acts on Q = IR3 by ΦA(q) = Aq. So the tangent (derivative) map is

(342) TqΦA : (q,v) ∈ T IR3
q 	→ (Aq, Av) ∈ T IR3

Aq .

As we saw in example (vii) of Section 4.1.0.1, the left cotangent lift of the action
to M = T ∗IR3 (the lifted action “with g−1”, corresponding to eq. 126) is:

(343) T ∗
Aq(ΦA−1)(q,p) = (Aq, Ap) .

To find the momentum map, we proceed in two stages, (a) and (b), as in example
(1).

(a) We differentiate eq. 343 with respect to A in the direction ξ = Θ(ω) ∈ so(3),
where ω ∈ IR3 and Θ is as in eq. 48 and 51. We get

(344) ξM (q,p) = (ξq, ξp) = (ω ∧ q, ω ∧ v) .

(b) So the desired J(ξ) is the solution linear in ξ to the Hamilton’s equations

(345)
∂J(ξ)
∂p

= ξq and
∂J(ξ)
∂q

= −ξp .

So a solution is given by

(346) J(ξ)(q,p) = (ξq) · p = (ω ∧ q) · p = (q ∧ p) · ω ,

so that

(347) J(q,p) = q ∧ p ,

i.e. the familiar angular momentum.
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(3): Dual of a Lie algebra homomorphism:
We begin by stating a Lemma, which we will not prove; for details cf. Marsden
and Ratiu [1999, 10.7.2, 372]. Namely: let G,H be Lie groups and let α : g→ h be
a linear map between their Lie algebras. Then α is a Lie algebra homomorphism
iff its dual α∗ : h∗ → g∗ is a (linear) Poisson map (where h∗, g∗ are equipped with
their natural Lie-Poisson brackets as in Section 5.2.4).

Now let G,H be Lie groups, let A : H → G be a Lie group homomorphism, and
let α : h → g be the induced Lie algebra homomorphism; so that by the Lemma,
α∗ : g∗ → h∗ is a Poisson map. We will prove that α∗ is also a momentum map
for the action of H on g∗ given by, with h ∈ H,x ∈ g∗:

(348) Φ(h, x) ≡ h · x := Ad∗
A(h)−1x .

Proof. We first recall the adjoint and co-adjoint actions Adg : g → g and Ad∗
g :

g∗ → g∗; in particular, eq. 191. So the action in eq. 348 is:

(349) ∀x ∈ g∗,∀ξ ∈ g : < h · x; ξ > = < x;AdA(h)−1ξ > .

As usual, we compute for η ∈ h, the infinitesimal generator ηg∗ at x ∈ g∗ by
differentiating eq. 349 with respect to h at e in the direction η ∈ h. We get (cf.
eq. 198):

(350) < ηg∗(x); ξ > = − < x; adα(η)ξ > = < ad∗α(η)(x); ξ > .

We define J(x) := α∗(x): that is,

(351) J(η)(x) ≡ < J(x); η > := < α∗(x); η > ≡ < x;α(η) > ;

which implies

(352) ∇xJ(η) = α(η) .

Now we recall that Hamilton’s equations for J(η) as the Hamiltonian are (cf. eq.
261)

(353) ẋ ≡ XJ(η)(x) = ad∗∇xJ(η)(x) .

Combining eq. 350 to eq. 353, we get:

(354) XJ(η)(x) = ad∗α(η)(x) = ηg∗(x) ;

proving that J(x) := α∗(x) is a momentum map. �
(4): Momentum maps for subgroups:
Assume that J : M → g∗ is a momentum map for a canonical left action of G on
M ; and let H < G be a subgroup of G. Then H also acts canonically on M , and
this action has as a momentum map the restriction of J’s values to h ⊂ g. That
is: the map

(355) JH : M → h∗ given by JH(x) := J(x) |h .

For the canonical action of G ensures that if η ∈ h ⊂ g, then ηM = XJ(η). Then
JH(η) := J(η)∀η ∈ h defines a momentum map for H’s action. That is

(356) ∀x ∈M, ∀η ∈ h : < JH(x); η > = < J(x); η > .
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6.4 Equivariance of momentum maps

In (1) of Section 4.2, we defined the general notion of an equivariant map f :
M → N between manifolds as one that respects the actions of a group G on M
and on N : eq. 144. We now develop an especially important case of this notion:
the equivariance of momentum maps J : M → g∗, where the action on g∗ is the
co-adjoint action, eq. 192.

For us, this notion will have two main significances:

(i) many momentum maps that occur in examples are equivariant in this sense;

(ii) equivariance has various theoretical consequences: in particular, momentum
maps for cotangent lifted actions are always equivariant (Section 6.5), and
equivariance is crucial in theorems about reduction (Section 7).

In this Section, we will glimpse these points by:

(i) defining the notion, and remarking on a weakened differential version of the
notion (Section 6.4.1);

(ii) proving that equivariant momentum maps are Poisson (Section 6.4.2).

6.4.1 Equivariance and infinitesimal equivariance

Let Φ be a canonical left action of G on M , and let J : M → g∗ be a momentum
map for it. We say J is equivariant if for all g ∈ G

(357) J ◦ Φg = Ad∗g−1 ◦ J ;

cf. eq. 144 and the definition of co-adjoint action, eq. 193:

(358) M�Φg

M

J−→
J−→

g∗�Ad∗
g−1

g∗

An equivalent formulation arises by considering that we can add to the commu-
tative square in eq. 358 the two commutative triangles:

(359) M
J(ξ)−→ IR is M

J−→ g∗
|ξ−→ IR ;

representing the fact that J(ξ)(x) = J(x)(ξ); and

(360) g∗
|ξ−→ IR is g∗

Ad∗
g−1−→ g∗

|Adgξ−→ IR ;

representing the fact that for all η ∈ g∗

(361) < Ad∗g−1(η);Adg(ξ) > = < η;Adg−1Adg(ξ) > ≡ < η; ξ > .

Eq.s 359 and 360 imply that an equivalent formulation of equivariance is that for
all x ∈M, g ∈ G and ξ ∈ g (and with g · x ≡ Φg(x))
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(362) J(g · x)(Adgξ) ≡ J(Adgξ)(g · x) = J(ξ)(x) ≡ J(x)(ξ) .

In (2) of Section 4.4, we differentiated the general notion of an equivariant map,
and got the weaker differential notion that the infinitesimal generators ξM and ξN
of the actions of G on M and on N are f -related.

Here also we can differentiate equivariance, and get the notion of infinitesimal
equivariance. But I will not go into details since:

(i) we will not need the notion, not least because (as mentioned above), many
momentum maps are equivariant;

(ii) under certain common conditions (e.g. the group G is compact, or is con-
nected) an infinitesimally equivariant momentum map can always be re-
placed by an equivariant one.

So let it suffice to say that infinitesimal equivariance is theoretically important.
In particular, the result eq. 317, viz.

(363) XJ([ξ,η]) = X{J(ξ),J(η)}M

implies that

(364) Σ(ξ, η) := J([ξ, η])− {J(ξ), J(η)}M
is a distinguished function on the Poisson manifold M , and so constant on every
symplectic leaf.

This makes it natural to ask when Σ ≡ 0. After all, cf. eq. 322. Both
ξ 	→ ξM and F 	→ XF are Lie algebra anti-homomorphisms. So it is natural to
ask whether J is a Lie algebra homomorphism, i.e. whether Σ = 0. And it turns
out that infinitesimal equivariance is equivalent to Σ = 0.

6.4.2 Equivariant momentum maps are Poisson

The following result is important, both as a general method of finding canonical
maps between Poisson manifolds, and for the Lie-Poisson reduction theorem of
Section 7.

Equivariant momentum maps are Poisson Let J : M → g∗ be
an equivariant momentum map for a canonical left action of G on a
Poisson manifold M . Then J is a Poisson map: for all F1, F2 ∈ F(g∗),

(365) J∗{F1, F2}g∗ = {J∗F1,J∗F2}M ; i.e. {F1, F2}g∗ ◦ J = {F1 ◦
J, F2 ◦ J}M .

Proof. We will relate (i) the left hand side, then (ii) the right hand side of eq.
365 to J ; and finally we will use the fact that the Poisson bracket on M depends
only on the values of the first derivatives.
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(i) Let x ∈M,α = J(x) ∈ g∗; and let ξ = ∇F1 and η = ∇F2 evaluated at α, so
that ξ, η ∈ g∗∗ = g. Then

(366) {F1, F2}g∗(J(x)) ≡< α; [∇F1,∇F2] >=< α; [ξ, η] >= J([ξ, η])(x) =
{J(ξ), J(η)}(x) ;

where the third equation just applies the definition of J, eq. 323, and the
fourth equation uses (infinitesimal) equivariance.

(ii) We show that (F1 ◦ J)(x) and J(ξ)(x) have equal x-derivatives. For any
x ∈M and vx ∈ TxM

(367) d(F1◦J)(x)·vx = dF1(α)·TxJ(vx) =< TxJ(vx);∇F1 >= dJ(ξ)(x)·vx ;

where the first equation uses the chain rule, and the last uses the definition
of J, eq. 323 and the fact that ξ = ∇F1.

Finally, since the Poisson bracket on M depends only on the values of the first
derivatives, we infer from eq. 367 that

(368) {F1 ◦ J, F2 ◦ J}(x) = {J(ξ), J(η)}(x) .

Combining this with (i), the result follows. �

6.5 Momentum maps on cotangent bundles

Let a Lie group G act on a manifold (“configuration space”) Q. We saw in Section
4.1.0.1 that this action can be lifted to the cotangent bundle T ∗Q; cf. eq.s 121,
124 and 126. In this Section, we focus on momentum maps for such cotangent lift
actions. We shall see that any such action has an equivariant momentum map,
for which there is an explicit general formula. The general theory (Sections 6.5.1,
6.5.2) will need just one main new notion, the momentum function. We end with
some examples (Section 6.5.3).

6.5.1 Momentum functions

Given a manifold Q and its vector fields X (Q), we define the map

(369) P : X (Q)→ F(T ∗Q) by : (P(X))(αq) := < αq;X(q) >

for q ∈ Q,X ∈ X (Q) and αq ∈ T ∗
q Q. Here, αq is, strictly speaking, a point in the

cotangent bundle above the base-point q ∈ Q: so αq can be written as (q, α) with α
a covector at q, i.e. α ∈ T ∗

q Q. But as we mentioned just before defining cotangent
lifts (eq. 121): it is harmless to (follow many presentations and) conflate a point
in T ∗Q, i.e. a pair (q, α), q ∈ Q,α ∈ T ∗

q Q, with its form α, provided we keep track
of the q by writing the form as αq.
P(X), as defined by eq. 369, is called the momentum function of X. In coordi-

nates, P(X) is given by
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(370) P(X)(qi, pi) = Xj(qi)pj

where we sum on j = 1, ..., n := dim Q. (So NB: This P is different from that in
P(M), the infinitesimal Poisson automorphisms of M , discussed in Section 6.1.1.)

We also denote by L(T ∗Q) the space of smooth functions F : T ∗Q → IR that
are linear on fibres of T ∗Q: i.e. writing the bundle points αq, βq ∈ T ∗

q Q as (q, α)
and (q, β), we have for λ, µ ∈ IR

(371) F (q, (λα + µβ)) = λF ((q, α)) + µF ((q, β)) .

So functions F,H that are in L(T ∗Q) can be written in coordinates as (summing
on i = 1, ..., n)

(372) F (q, p) = Xi(q)pi and H(q, p) = Y i(q)pi

for functions Xi and Y i; and so any momentum function P(X) is in L(T ∗Q).
One readily checks that the standard Poisson bracket (from T ∗Q’s symplectic

structure, Section 2.1.1) of such an F and H is also linear on the fibres of T ∗Q.
In fact, eq. 372 implies

(373) {F,H}(q, p) :=
∂F

∂qj
∂H

∂pj
− ∂H

∂qj
∂F

∂pj
=
(

∂Xi

∂qj
Y j − ∂Y i

∂qj
Xj

)
.

So L(T ∗Q) is a Lie subalgebra of F(T ∗Q).
The next result summarizes how momentum functions relate X (Q) and Hamil-

tonian vector fields on T ∗Q to L(T ∗Q).

Three (anti)-isomorphic Lie algebras The two Lie algebras

(i) (X (Q), [, ]) of vector fields on Q;

(ii) Hamiltonian vector fields XF on T ∗Q with F ∈ L(T ∗Q)

are isomorphic. And each is anti-isomorphic to

(iii) (L(T ∗Q), {, }).
In particular, the map P is an anti-isomorphism from (i) to (iii), so
that we have

(374) {P(X),P(Y )}T∗Q = −P([X,Y ]) .

Proof. Since P(X) : T ∗Q→ IR is linear on fibres, P maps X (Q) into L(T ∗Q). P
is also onto L(T ∗Q): given F ∈ L(T ∗Q), we can define X(F ) ∈ X (Q) by

(375) < αq;X(F )(q) > := F (αq) ∀αq ∈ T ∗
q Q

so that P(X(F )) = F . P is linear and P(X) = 0 implies that X = 0. Also, eq. 374
follows immediately by comparing eq. 373 with the Lie bracket of X,Y ∈ X (Q);
cf. eq. 55. So P is an anti-isomorphism from (XQ, [, ]) to (L(T ∗Q), {, }).

The map
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(376) F ∈ (L(T ∗Q), {, }) 	→ XF ∈ ({XF | F ∈ L(T ∗Q)}, [, ])

is surjective by definition. It is a Lie algebra anti-homomorphism, by eq. 60 (i.e.
result (2) in Section 3.2.2). And if XF = 0, then F is constant on T ∗Q; and hence
F ≡ 0 since F is linear on the fibres (cf. eq. 371). �

6.5.2 Momentum maps for cotangent lifted actions

We begin this Subsection with a result relating the Hamiltonian flow on T ∗Q
induced by the momentum function P(X) to the Hamiltonian flow on X induced by
X. From this result, our main result — the guarantee of an equivariant momentum
map for a cotangent lifted action, and an explicit formula for it — will follow
directly.

The Hamiltonian flow of a momentum function Let X ∈ X (Q)
have flow φτ on Q; cf. Section 3.1.2.2. Then the flow of XP(X) on
T ∗Q is T ∗φ−τ . That is: the flow of XP(X) is the cotangent lift (Sec-
tion 4.1.0.1) of φ−τ , as given by the diagram, with πQ the canonical
projection:

(377) Q�πQ

T ∗Q

φτ−→
T∗φ−τ−→

Q�πQ

T ∗Q

Proof. We differentiate the relation in eq. 377, i.e.

(378) πQ ◦ T ∗φ−τ = φτ ◦ πQ

at τ = 0 to get

(379) TπQ ◦ Y = X ◦ πQ with ∀αq ∈ T ∗
q Q, Y (αq) =

d

dτ
|τ=0 T ∗φ−τ (αq) ;

i.e. T ∗φ−τ is the flow of Y .
Now we will show that Y = XP(X), using eq. 379 and the geometrical formula-

tion of Hamiltonian mechanics of Section 2.1, especially Cartan’s magic formula,
eq. 20, applied to the canonical one-form θ ≡ θH (defined by eq. 8 and 9).

We reported (at the start of (2) of Section 4.1.0.1) that the cotangent lift T ∗φ−τ
preserves θ ≡ θH on T ∗Q. So LY θ = 0. Then the definition of ω as the negative
exterior derivative of θ, and Cartan’s magic formula, eq. 20, yields

(380) iY ω = −iY dθ = diY θ .

On the other hand, we also have

(381) iY θ(αq) ≡< θ(αq);Y (αq) >=< αq;TπQ(Y (αq)) >=< αq;X(q) >= P(X)(αq)
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where the second equation applies the definition of the canonical one-form (eq.
8), the third applies eq. 379, and the fourth applies the definition eq. 369 of
momentum functions.

Combining eq. 380 and 381, we have:

(382) iY ω = dP(X)

which is Hamilton’s equations (eq. 15) telling us that Y = XP(X). �
Accordingly the Hamiltonian vector field XP(X) on T ∗Q is called the cotangent

lift of X ∈ Q to T ∗Q. In local coordinates, we can write, by combining eq. 15 and
370

(383) XP(X) =
∂P(X)

∂pi

∂

∂qi
− ∂P(X)

∂qi
∂

∂pi
= Xi ∂

∂qi
− ∂Xi

∂qj
pi

∂

∂pj
.

Note in particular that, combining the usual sign-change between Lie algebras and
Poisson brackets (eq. 60) with the sign-change for momentum functions (eq. 374),
we have

(384) [XP(X),XP(Y )] = −X{P(X),P(Y )} = −X−P([X,Y ]) = XP([X,Y ]) .

We can now readily prove our main result guaranteeing, and giving a formula
for, equivariant momentum maps.

Equivariant momentum maps Let G act on the left on Q and so by
cotangent lift on T ∗Q. The cotangent lifted action has an equivariant
momentum map J : T ∗Q→ g∗ given by

(385) < J(αq); ξ > = < αq; ξQ(q) > ≡ P(ξQ)(αq) .

In coordinates qi, pi on T ∗Q and ξa on g, and with ξiQ = ξaAi
a the

components of ξQ, this reads

(386) Jaξ
a = piξ

i
Q = piA

i
aξ
a

so that Ja(q, p) = piA
i
a(q).

Proof. The preceding result tells us that for any ξ ∈ g, the infinitesimal generator
of the cotangent lifted action on T ∗Q is ξT∗Q ≡ XP(ξQ). So a momentum map for
this action is given by

(387) J(ξ) = P(ξQ) .

This gives eq. 385, just by applying the definitions of the momentum map J
(eq. 323) and of momentum function (eq. 369).

To prove equivariance, we argue as follows:

< J(g · αq); ξ > = < (g · αq); ξQ(g · q) >(388)
= < αq; (TΦg−1)ξQ(g · q) > ≡ < αq; (Tg·qΦg−1 ◦ ξQ ◦ Φg)(q).(389)

= < αq; (Φ∗
gξQ)(q) >(390)

= < αq; (Adg−1ξ)Q(q) >(391)
= < J(αq);Adg−1ξ > = < Ad∗g−1(J(αq)); ξ > .(392)
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Here we have applied in succession: (i) eq. 385; (ii) the fact that g · αq is short
for T ∗(Φg−1)(αq), cf. eq. 126 and 121; (iii) the definition of pullback, cf. eq. 172;
(iv) result [2], eq. 167, of Section 4.5.1; (v) eq. 385 again; and finally, (vi) the fact
that Ad∗ is the adjoint of Ad, cf. eq. 191. �

6.5.3 Examples

We discuss first our familiar examples, linear and angular momentum i.e. (1) and
(2) from Section 6.3; and then the cotangent lift of left and right translations on
G — an example motivated by Section 4.6’s description of kinematics on a Lie
group G.

(1): Total linear momentum of N particles:
Since the translation group IR3 acts on Q := IR3N by Φ(x, (qi)) = (qi + x), the
infinitesimal generator on Q is

(393) ξIR3N (qi) = (ξ, . . . , ξ) (ξ N times)

Applying eq. 385, the equivariant momentum map is given by

(394) J(ξ)(qi,pi) =
(
ΣNi=1p

i
) · ξ , i.e. J(qi,pi) = ΣNi=1p

i ;

agreeing with our previous solution, eq. 341, based on the differential equation eq.
334.

(2): Angular momentum of a single particle:
SO(3) acts on IR3 by Φ(A,q) = Aq. Writing ξ ∈ so(3) as ξ = Θω (cf. eq. 47, 51
and 105), the infinitesimal generator is

(395) ξIR3(q) = ξq = ω ∧ q .

So applying eq. 385, the equivariant momentum map J : T ∗IR3 → so(3) ∼= IR3 is
given by

(396) < J(q,p);ω >=< p;ω∧q >= p·(ω∧q) = ω·(q∧p) , i.e. J(q,p) = q∧p ;

agreeing with our previous solution, eq. 347, based on the differential equation eq.
334.

(3): The cotangent lift of left and right translations on G:
Recalling eq. 157, viz. that the infinitesimal generator of left translation is

(397) ξG(g) = (TeRg)ξ ,

a right-invariant vector field, and applying eq. 385, we see that the momentum
map JL : T ∗G→ g∗ for the cotangent lift of left translation is given by

(398) < JL(αg); ξ > = < αg; ξG(g) > = < αg; (TeRg)ξ > = < (T ∗
e Rg)(αg); ξ >

where the last equation applies the definition of the cotangent lift eq. 121. That
is: the equivariant momentum map is
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(399) JL(αg) = T ∗
e Rg(αg) .

In words: the momentum map JL of the cotangent lift of left translation is the
cotangent lift of right translation.

In a similar way, we could consider right translation: Rg : h 	→ hg. Right
translation defines a right action on G, has ξG(g) = (TeLg)ξ as its infinitesimal
generator, and so has

(400) JR : T ∗G→ g∗ ; JR(αg) := T ∗
e Lg(αg)

as the momentum map of its cotangent lift. Note that this momentum map is
equivariant with respect to Ad∗g: which, as discussed after eq. 191, is a right
action.

7 REDUCTION

7.1 Preamble

In this final Section, the themes of Section 2 onwards come together — at last! As
announced in Section 5.1, we will concentrate on proving what is nowadays called
the Lie-Poisson reduction theorem: that is, the isomorphism of Poisson manifolds

(401) T ∗G/G ∼= g∗ .

Here the quotient of T ∗G is by the cotangent lift of G’s action on itself by left
translation.

As it happens, this Chapter’s main sources (i.e. [Abraham and Marsden, 1978;
Arnold, 1989; Olver, 2000; Marsden and Ratiu, 1999]) do not contain what is
surely the most direct proof of this result. So we give it in Section 7.2. The result
will follow directly from four previous main results, one from Section 5 and three
from Section 6.

‘Directly’, but for one wrinkle! This relates to “flipping” between left and right
translation, and their various lifts. In short: the four previous results show that
T ∗G/G is isomorphic as a Poisson manifold, not to g∗ with the Lie-Poisson bracket
familiar since eq. 255 and 258, but instead to g∗ equipped with this bracket’s
negative, i.e. equipped with

(402) {F,H}−(x) := − < x; [∇F (x),∇H(x)] > , x ∈ g∗ .

But we shall (mercifully!) not reproduce, with minus signs appropriately added,
our entire discussion of the Lie-Poisson bracket that ensued after eq. 255; (exercise
for the reader!).

To avoid ambiguity, we shall sometimes write g∗+ for g∗ equipped with the
positive Lie-Poisson bracket of eq. 258; and g∗− for g∗ equipped with the negative
Lie-Poisson bracket of eq. 402.

In fact, it will be clearest from now on, to treat right actions on a par with left
actions; despite our previous emphasis on the latter. This will mean that we will
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also treat right-invariant vector fields (and another notion of right-invariance de-
fined in Section 7.3.1) on a par with left-invariant vector fields (and Section 7.3.1’s
corresponding new notion of left-invariance). Indeed, we have already glimpsed
this would be necessary in:

(i) Section 4.4’s result that the infinitesimal generator of left translation is a
right-invariant vector field, and vice versa (eq. 157, 158); and its corollaries
in Example (3) of Section 6.5.3, that

(ii) the momentum map JL of the cotangent lift of left translation is the cotan-
gent lift of right translation; (eq. 399); and

(iii) the momentum map JR of the cotangent lift of right translation is the cotan-
gent lift of left translation; (eq. 400).

So by the end of Section 7.2, we will have a short proof of the Lie-Poisson re-
duction theorem. But (as often happens), the most direct proof does not give very
much information about the situation. So in Section 7.3 we give more informa-
tion (following Marsden and Ratiu (1999)). Then in Section 7.4, we discuss the
reduction of dynamics (as against Poisson structure) from T ∗G to g∗.

Finally, in Section 7.5 we state another reduction theorem, which is cast in
terms of symplectic, not Poisson, manifolds — but which uses several notions
from Section 3, such as free and proper actions, and isotropy groups. But we do
not prove this theorem: we include it mostly in order to emphasize our previous
remark, that (despite its length!) this Chapter just scratches the surface of the
subject. We also discuss the relation between it and the Lie-Poisson reduction
theorem.

7.2 The Lie-Poisson Reduction Theorem

First we recall from the end of Section 4.6.2 (eq. 225) that λ̄ : T ∗G→ G×g∗ is an
equivariant map relating the cotangent lifted left action of left translation on T ∗G
to the G-action on G×g∗ given just by left translation on the first component. So
we passed to the quotients, and defined ˆ̄λ : T ∗G/G→ (G× g∗)/G by eq. 228, viz.

ˆ̄λ : Orb(α) ≡ {β ∈ T ∗G | β = T ∗Lh−1(α), some h ∈ G} 	→(403)
Orb(λ̄(α)) ≡ {(hg, (T ∗

e Lg)(α)) | some h ∈ G} ≡
{(h, (T ∗

e Lg)α) | some h ∈ G} .

where α ∈ T ∗
gG, so that T ∗Lh−1α ∈ T ∗

hgG. Finally, we identified (G× g∗)/G with

g∗, so that the diffeomorphism ˆ̄λ maps T ∗G/G to g∗, as in eq. 229:

(404) ˆ̄λ : Orb(α) ≡ {β ∈ T ∗G | β = T ∗Lh−1(α), some h ∈ G} ∈ T ∗G/G 	→
(T ∗
e Lg)(α) ∈ g∗.

So now, we are to show that the diffeomorphism ˆ̄λ : T ∗G/G → g∗ is a Poisson
map, in the sense of eq. 283 (Section 5.3.2). So we need to show:
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(i) T ∗G/G is a Poisson manifold;

(ii) ˆ̄λ maps (i)’s Poisson structure on T ∗G/G to that of g∗. In fact, as announced
in Section 7.1, ˆ̄λ maps on to the Poisson structure of g∗−, i.e. as given by
eq. 402.

Prima facie, there could be a judicious choice to be made about (i), i.e. about
how to define the Poisson structure on T ∗G/G, so as to secure (ii), i.e. so that ˆ̄λ
respects the Poisson structure. But in fact our previous work gives a pre-eminently
obvious choice — which works. Namely: we use the Poisson structure induced on
T ∗G/G by the Poisson reduction theorem of Section 5.5. The result follows directly
by combining with this theorem, three results from Section 6:

(i) that equivariant momentum maps are Poisson; eq. 365 in Section 6.4.2;

(ii) that a cotangent lifted left action has an equivariant momentum map; eq.
385 in Section 6.5.2;

(iii) that the momentum maps of the cotangent lifts of left and right translation
on G are JL = T ∗

e Rg and JR = T ∗
e Lg; eq. 399 and 400 in Section 6.5.3.

In particular, combining (i)-(iii): one deduces (exercise!) that JR = T ∗
e Lg

is equivariant with respect to Ad∗g, and so Poisson with respect to the negative
Lie-Poisson bracket (eq. 402’s bracket) on g∗. That is: it is Poisson with the
codomain g∗−.

Thus we have the

Lie-Poisson reduction theorem The diffeomorphism ˆ̄λ : T ∗G/G→
g∗:

(405) ˆ̄λ : Orb(α) ≡ {β ∈ T ∗G | β = T ∗Lh−1(α), some h ∈ G} ∈
T ∗G/G 	→ (T ∗

e Lg)(α) ∈ g∗

is Poisson.

Proof. First, eq. 405 means we have a commutative triangle. For with π : T ∗G→
T ∗G/G the canonical projection, the momentum map JR : T ∗G → g∗, αg 	→
(T ∗
e Lg)αg is equal to ˆ̄λ ◦ π:

(406) T ∗G π−→ T ∗G/G
ˆ̄λ−→ g∗ .

Since left translation is a diffeomorphism of G, and the cotangent lift of any
diffeomorphism of a manifold to its cotangent bundle is symplectic (cf. after eq.
120 in Section 4.1.0.1), the Poisson reduction theorem of Section 5.5 applies. That
is, there is a unique Poisson structure on T ∗G/G such that π is Poisson. We also
know from eq. 385, 365 and 400 that JR = T ∗

e Lg is Poisson with respect to eq.
402’s bracket on g∗.

We can now deduce that ˆ̄λ is Poisson, i.e. that for all x ∈ T ∗G/G and all
F,H ∈ F(g∗−)



122 J. Butterfield

(407) ({F,H}g∗
− ◦ ˆ̄λ) (x) = {F ◦ ˆ̄λ,H ◦ ˆ̄λ}T∗G/G (x) .

We just use (in order) the facts that:

(i) π is surjective, so that for all x ∈ T ∗G/G there is an αg ∈ T ∗G with
x = π(αg) ≡ Orb(αg);

(ii) JR = ˆ̄λ ◦ π;

(iii) JR is Poisson; and

(iv) π is Poisson:

({F,H}g∗
− ◦ ˆ̄λ) (x) = {F,H}g∗

− ◦ (ˆ̄λ ◦ π) (αg)(408)

= {F,H}g∗
− ◦ JR (αg) = {F ◦ JR,H ◦ JR}T∗G (αg)(409)

= {F ◦ ˆ̄λ,H ◦ ˆ̄λ}T∗G/G (π(αg)) ≡ {F ◦ ˆ̄λ,H ◦ ˆ̄λ}T∗G/G (x) . .(410)

�

7.3 Meshing with the symplectic structure on T ∗G: invariant func-
tions

We turn to giving more information about the situation described by the Lie-
Poisson reduction theorem. The general idea will be that the Lie-Poisson bracket
on g∗ meshes with the canonical symplectic structure on T ∗G. This will be made
precise in two ways: the first is discussed in the first two Subsections, the second
is discussed in the third Subsection.

The first discussion will have three stages:

(i) we show that scalars on g∗, F ∈ F(g∗), are in one-one correspondence with
scalars on T ∗G that are constant on the orbits of the cotangent lift of left
translation, which will be called left-invariant functions; and similarly, for
the cotangent lift of right translation (a correspondence with right-invariant
functions);

(ii) we take the usual canonical Poisson bracket in T ∗G of these left-invariant or
right-invariant scalars; and restrict this bracket to g∗ regarded as the cotan-
gent space T ∗

e G at the identity e ∈ G; and then

(iii) we show that this restriction is the Lie-Poisson bracket on g∗: the familiar
positive one for right-invariant functions, and the new negative one of eq.
402 for the left-invariant functions.
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We do stages (i) and (ii) in Section 7.3.1. These stages will not involve the choice
between the positive and negative Lie-Poisson brackets. But stage (iii), in Section
7.3.2, will involve this choice. It will be a one-liner corollary of Section 6.4.2’s result
that equivariant momentum maps are Poisson maps, eq. 365; (unsurprisingly, in
that we also used this result in Section 7.2’s proof of the reduction theorem).

In the third Subsection, we use invariant functions to show a different sense
in which the Lie-Poisson bracket on g∗ meshes with the symplectic structure on
T ∗G. Namely, we derive the Lie-Poisson bracket on g∗ from the Poisson reduction
theorem of Section 5.5, by using the ideas of invariant functions and momentum
functions.

7.3.1 Left-invariant and right-invariant functions on T ∗G

We say that a function F : T ∗G → IR is left-invariant if for all g ∈ G, and all
αg ∈ T ∗

gG

(411) (F ◦ T ∗Lg)(αg) = F (αg)

where T ∗Lg is the cotangent lift of Lg : G→ G. Similarly, F : T ∗G→ IR is called
right-invariant if for all g ∈ G

(412) (F ◦ T ∗Rg) = F .

So if F : T ∗G→ IR is left-invariant or right-invariant, it is determined by its values
for arguments in T ∗

e G = g∗.
Since any α ∈ g∗ is mapped by T ∗Lg−1 ≡ (T ∗Lg)−1 to an element of T ∗

gG,
a function is left-invariant iff it is constant on the orbits of the various T ∗Lg for
g ∈ G, i.e. constant on the orbits of the cotangent lift of left translation. Similarly,
a function is right-invariant iff it is constant on the orbits of the cotangent lift of
right translation.

So left-invariant functions induce well-defined functions on the quotient space
T ∗G/G; and so, by Section 7.2, on its diffeomorphic (indeed Poisson manifold)
copy g∗. Similarly for right-invariant functions.

But let us for the moment consider the smooth left-invariant (or right-invariant)
functions on T ∗G, rather than the induced maps on the quotient space. We will
denote the space of all smooth left-invariant functions on T ∗G by FL(T ∗G), and
similarly the space of smooth right-invariant functions by FR(T ∗G).

Recalling (from the discussion after eq. 120) that cotangent lifts are symplectic
maps, i.e. T ∗Lg and T ∗Rg are symplectic maps on T ∗G, it follows immmediately
that FL(T ∗G) and FR(T ∗G) are each closed under the canonical Poisson bracket
on T ∗G. So they are each a Lie algebra with this bracket.

Now we can use the momentum maps JL and JR of Example (3) of Section
6.5.3 to extend any scalar F : g∗ → IR, i.e. F ∈ F(g∗), to a left-invariant, or
right-invariant, scalar on T ∗G.

Thus, given F : g∗ → IR and αg ∈ T ∗
gG, we define FL ∈ FL(T ∗G) by

(413) FL(αg) := (F ◦ JR)(αg) ≡ (F ◦ T ∗
e Lg)(αg) .
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So FL is by construction left-invariant, and is called the left-invariant extension
of F from g∗ to T ∗G.

One similarly defines the right-invariant extension FR ∈ FR(T ∗G) of any F ∈
F(g∗) by

(414) FR(αg) := (F ◦ JL)(αg) ≡ (F ◦ T ∗
e Rg)(αg) .

Then the maps

(415) F ∈ F(g∗) 	→ FL ∈ FL(T ∗G) and F ∈ F(g∗) 	→ FR ∈ FR(T ∗G)

are vector space isomorphisms (exercise for the reader!) whose inverse is just
restriction to the fiber T ∗

e G = g∗.
This completes what we called ‘stages (i) and (ii)’: describing a correspondence

between scalars on g∗ and scalars on T ∗G that are constant on the orbits of the
cotangent lifts of left and right translation; and considering the canonical Poisson
bracket (on T ∗G) of these scalars, i.e. the Lie algebras FL(T ∗G) and FR(T ∗G).

7.3.2 Recovering the Lie-Poisson bracket

We now do stage (iii): we show that the restriction of the canonical Poisson bracket
on T ∗G of the right/left invariant functions, to g∗ regarded as the cotangent space
T ∗
e G at the identity e ∈ G, is the positive/negative Lie-Poisson bracket.
Since the inverses of the maps eq. 415 are just restriction to the fiber T ∗

e G = g∗,
it suffices to show that the maps eq. 415 are Lie algebra isomorphisms. More
precisely:

Recovery of the Lie-Poisson bracket Using the positive Lie-Poisson
bracket on g∗ (we write g∗+): F 	→ FR is a Lie algebra isomorphism.
Similarly: using the negative Lie-Poisson bracket on g∗ (we write g∗−):
F 	→ FL is a Lie algebra isomorphism.

That is: for all F,H ∈ F(g∗)

(416) {F,H}+ = {FR,HR}T∗G |g∗ ; {F,H}− = {FL,HL}T∗G |g∗

Proof. Consider JL : T ∗G → g∗ ≡ g∗+, JL = T ∗
e Rg. JL is an equivariant

momentum map. So, by the result eq. 365 of Section 6.4.2, it is Poisson. That is:

(417) {F,H}+ ◦ JL = {F ◦ JL,H ◦ JL}T∗G = {FR,HR}T∗G .

Restricting eq. 417 to g∗ gives the first equation of eq. 416.
Similarly, one proves the second equation by using the fact that JR : T ∗G →

g∗ ≡ g∗−,JR = T ∗
e Lg is an equivariant momentum map and so is Poisson. That is:

(418) {F,H}− ◦ JR = {F ◦ JR,H ◦ JR}T∗G = {FL,HL}T∗G .

We then restrict eq. 418 to g∗. �
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7.3.3 Deriving the Lie-Poisson bracket

Our discussion so far, in both Section 7.2 and the two previous Subsections, has
taken the Lie-Poisson bracket (whether positive or negative) as given. We now
show, using invariant functions and Section 6.5.1’s idea of momentum functions,
how to derive the Lie-Poisson bracket on g∗.

So this derivation will amount to another, more “constructive”, proof of the
Lie-Poisson reduction theorem. As in Section 7.2’s proof, two main ingredients
will be:

(a) the diffeomorphism ˆ̄λ between T ∗G/G and g∗ (eq. 229 or 404 or 405), and

(b) the Poisson reduction theorem of Section 5.5, applied to G’s action on T ∗G.

But instead of Section 7.2’s proof’s using the facts that (i) the momentum maps
JR ≡ T ∗

e Lg and JL ≡ T ∗
e Rg are equivariant and (ii) equivariant momentum maps

are Poisson, we will now use the ideas of invariant functions and momentum func-
tions.

We begin by recalling that (since left translation is a diffeomorphism of G, and
the cotangent lift of any diffeomorphism of a manifold to its cotangent bundle is
symplectic), the Poisson reduction theorem implies that there is a unique Poisson
structure on T ∗G/G such that π : T ∗G → T ∗G/G is Poisson. We now use the
diffeomorphism ˆ̄λ : T ∗G/G → g∗ to transfer this Poisson structure to g∗. Let
us call the result {, }−. Though this is not to be read (yet!) as the negative
Lie-Poisson bracket, our aim now is to calculate that it is in fact this bracket.

Notice first that since the momentum map JR : T ∗G → g∗, αg 	→ (T ∗
e Lg)αg is

equal to ˆ̄λ ◦ π (eq. 406), we know that JR is Poisson with respect to this induced
bracket on g∗. That is

(419) {F,H}− ◦ JR (αg) = {F ◦ JR,H ◦ JR}T∗G (αg) = {FL,HL}T∗G (αg) .

To calculate the right hand side, we will apply the ideas of invariant functions and
momentum functions to each argument of the bracket; in particular to the first:

(420) FL(αg) = F (T ∗
e Lg · αg) .

We observe that since a Poisson bracket depends only on the values of first
derivatives, we can replace F ∈ F(g∗) by its linearization. That is, we can assume
F is linear, so that at any point α ∈ g∗, F (α) =< α;∇F >, where ∇F is a
constant in g ≡ g∗∗. Applying this, and the definition of a momentum function
eq. 369, to eq. 420, we get:

(421) F (T ∗
e Lg ·αg) = < T ∗

e Lg ·αg;∇F > = < αg;TeLg · ∇F > = P(X∇F )(αg) ,

where the last equation applies the definition of a momentum function to the
left-invariant vector field on G, Xξ(g) ≡ TeLg(ξ), for the case ξ = ∇F .
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Now we apply to eq. 421, in order: eq. 374, the definition of the Lie algebra
bracket (cf. eq. 74), eq. 369 again, and the definition of left-invariant vector fields.
We get:

{FL,HL}T∗G (αg) = {P(X∇F ),P(X∇H)}T∗G (αg) =(422)
−P([X∇F ,X∇H ])(αg)

= −P(X[∇F,∇H])(αg) = − < αg;X[∇F,∇H] >(423)
= − < αg;TeLg([∇F ,∇H]) > = − < T ∗

e Lg(αg); [∇F ,∇H] > .(424)

Combining eq. 419 and eq. 424, and writing α ∈ g∗ for (T ∗
e Lg)αg ≡ JR(αg), we

have our result:

(425) {F,H}−(α) = − < α; [∇F ,∇H] > .

One similarly derives the positive Lie-Poisson bracket by considering right-invariant
extensions of linear functions. The minus sign coming from eq. 374 is cancelled
by the sign reversal in the Lie bracket of right-invariant vector fields. That is, it
is cancelled by a minus sign coming from eq. 86.

7.4 Reduction of dynamics

We end our account of the Lie-Poisson reduction theorem by discussing the reduc-
tion of dynamics from T ∗G to g∗.

We can be brief since we have already stated the main idea, when discussing the
Poisson reduction theorem; cf. (2)(A) in Section 5.5. Thus recall that (under the
conditions of the theorem) a G-invariant Hamiltonian function on a Poisson man-
ifold M , H : M → IR, defines a corresponding function h on M/G by H = h ◦ π,
where π is the projection π : M → M/G; and since π is Poisson, and so pushes
Hamiltonian flows forward to Hamiltonian flows, π pushes XH on M to Xh on
M/G:

(426) Tπ ◦XH = Xh ◦ π .

Applying this, in particular eq. 426, to the Lie-Poisson reduction theorem, we get

Reduction of dynamics Let H : T ∗G → IR be left-invariant. That
is: the function H− := H |g∗ on g∗ satisfies

(427) H(αg) = H−(JR(αg)) ≡ H−(T ∗
e Lg · αg) , αg ∈ T ∗

gG .

Then JR pushes XH forward to XH− . Or in terms of the flows φ(t)
and φ−(t) of XH and XH− respectively:

(428) JR(φ(t)(αg)) = φ−(t)(JR(αg)) .

Similar statements hold for a right-invariant function H : T ∗G → IR,
its restriction H+ := H |g∗ and JL ≡ T ∗

e Rg.
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Besides, we already know the vector field of H− on g∗. For eq. 261 in (3) of
Section 5.2.4 gave a basis-independent expression of Hamilton’s equations on g∗

in terms of ad∗. We just need to note that since we are now using the negative
Lie-Poisson bracket on g∗, all terms in the deduction (eq. 261) apart from the left
hand side, get a minus sign. So writing α ∈ g∗, eq. 261 for the vector field XH−

becomes:

(429)
dα

dt
= − ad∗

∇H−(α)(α) .

On the other hand, we can go in the other direction, reconstructing the dynamics
on T ∗G from eq. 429 on g∗. The statement of the main result, below, is intuitive,
in that the “reconstruction equation” for g(t) ∈ T ∗G is

(430) g−1ġ = ∇H− .

This is intuitive since it returns us to the basic idea of mechanics on g and g∗, viz.
that the map

(431) λg : ġ ∈ TgG 	→ λg(ġ) := (TgLg−1)ġ ∈ g

maps the generalized velocity to its body representation; cf. eq. 205. However,
the proof of this result is involved [Marsden and Ratiu, 1999, theorems 13.4.3,
13.4.4, p. 423–426]; so we only state the result. It is: —

Reconstruction of dynamics Suppose given a Lie group G, a left-
invariant H : T ∗G → IR, its restriction H− := H |g∗ , and an integral
curve α(t) of the Lie-Poisson Hamilton’s equations eq. 429 on g∗, with
the initial condition α(0) = T ∗

e Lg0(αg0). Then the integral curve in
T ∗G of XH is given by

(432) T ∗
g(t)Lg(t)−1(α(t)) ;

where g(t) is the solution of the reconstruction equation

(433) g−1ġ = ∇H−

with initial condition g(0) = g0.

7.5 Envoi: the Marsden-Weinstein-Meyer theorem

I emphasize that our discussion of reduction has only scratched the surface: after
all this Section has been relatively short! But now that the reader is armed with
the long and leisurely exposition from Section 3 onwards, they are well placed to
pursue the topic of reduction; e.g. through this Chapter’s main sources, [Abraham
and Marsden, 1978;; Arnold, 1989; Olver, 2000; Marsden and Ratiu, 1999].

In particular, the reader can now relate the Lie-Poisson reduction theorem to
another main theorem about symplectic reduction, usually called the Marsden–
Weinstein–Meyer or Marsden–Weinstein theorem (after these authors’ papers in
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1973 and 1974).
This theorem concerns a symplectic action of a Lie group G on a symplectic

manifold (M,ω). For the sake of completeness, and to orient the reader to Lands-
man’s discussion of this theorem (this vol., ch. 5, especially Section 4.5), it is
worth stating it (as usual, for the finite-dimensional case only), together with the
lemma used to prove it, and the ensuing reduction of dynamics. These statements
will also round off our discussion by illustrating how some notions expounded from
Section 3 onwards, but not used in this Section, are nevertheless useful — e.g. in
stating the hypotheses of this theorem.

So suppose the Lie group G acts symplectically (eq. 311) on the symplectic
manifold (M,ω); and that J : M → g∗ is an Ad∗-equivariant momentum map for
this action (eq. 357 and 362). Assume also that α ∈ g∗ is a regular value of J,
i.e. that at every point x ∈ J−1(α), TxJ is surjective. So the submersion theorem
of (1) of Section 3.3.1 applies; in particular, J−1(α) is a sub-manifold of M with
dimension dim(M) - dim(g∗) ≡ dim(M) - dim(G).

Let Gα be the isotropy group (eq. 148) of α under the co-adjoint action, i.e.

(434) Gα := {g ∈ G | Ad∗g−1α = α}.

So since J is Ad∗-equivariant under Gα, the quotient space Mα := J−1(α)/Gα is
well-defined.

Now assume that Gα acts freely and properly on J−1(α), so that (Section
4.3.0.2) the quotient space Mα = J−1(α)/Gα is a manifold. Mα is the reduced
phase space (corresponding to the momentum value α).

Now we assert:

Marsden-Weinstein-Meyer theorem Mα has a natural symplectic
form ωα induced from (M,ω) as follows. Let u, v be two vectors tangent
to Mα at some point p ∈Mα: so p is an orbit of Gα’s action on J−1(α),
and u, v ∈ TpMα. Then u and v are obtained, respectively, from some
vectors u′ and v′ tangent to J−1(α) at some point x ∈ J−1(α) of the
orbit p, by the projection πα : J−1(α)→Mα. That is:

(435) Tπα(u′) = u ; Tπα(v′) = v .

It turns out that the value assigned by M ’s symplectic form ω is the
same whatever choice of x, u′, v′ is made. So we define the symplectic
form ωα on Mα as assigning this value. In other words: writing πα for
the projection, iα : J−1(α)→M for the inclusion, and ∗ for pullback:

(436) π∗
αωα = i∗αω .

The proof of this theorem uses the following Lemma. Let us write G · x for the
orbit Orb(x) of x under the action of all of G, and similarly Gα · x for the orbit
under Gα, i.e. {Φ(g, x) | g ∈ Gα}. Then the Lemma states:
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For any x ∈ J−1(α):
(i): Tx(Gα · x) = Tx(G · x) ∩ Tx(J−1(α)); and
(ii): Tx(G · x) and Tx(J−1(α)) are ω-orthogonal complements of one
another in TM . That is: for all u′ ∈ TxM :
u′ ∈ Tx(J−1(α)) iff ω(u′, v′) = 0 for all v′ ∈ Tx(G · x).

Both the Lemma and the theorem are each proven in some dozen lines. For details,
cf. [Abraham and Marsden, 1978, Theorems 4.3.1–2, pp. 299–300; Arnold, 1989,
Appendix 5.B, pp. 374–376].

Two final remarks. (1): The reduction of dynamics secured by the Marsden-
Weinstein-Meyer theorem is similar to what we have seen before, for both the
Poisson reduction theorem ((2) of Section 5.5), and the Lie-Poisson reduction
theorem (Section 7.4). One proves, again in a few lines [Abraham and Marsden,
1978, Theorems 4.3.5, p. 304]:

Marsden-Weinstein-Meyer reduction of dynamics Let H : M →
IR be invariant under the action of G on M , so that by Noether’s
theorem for momentum maps (Section 6.2) J is conserved, i.e. J−1(α)
is invariant under the flow φ(t) of XH on M . Then φ(t) commutes
with the action of Gα on J−1(α) (i.e. φ(t)◦Φg = Φg ◦φ(t) for g ∈ Gα),
and so defines a flow φ̂(t) on Mα such that πα ◦ φ(t) = φ̂(t) ◦ πα, i.e.

(437) J−1(α)�φ(t)

J−1(α)

πα−→
πα−→

Mα�φ̂(t)

Mα

The flow φ̂(t) is Hamiltonian with the Hamiltonian Hα defined by
Hα ◦ πα = H ◦ iα.

(2): I said at the start of this Subsection that the reader can now relate the
Lie-Poisson reduction theorem to the Marsden-Weinstein-Meyer theorem. It is
not hard to show that the former is an example of the latter. As the symplec-
tic manifold M one takes T ∗G, acted on symplectically by the cotangent lift of
left translation. So we know (from (3) of Section 6.5.3) that JL := T ∗

e Rg is an
Ad∗-equivariant momentum map ... and so on: I leave this as an exercise for
the reader! The answer is supplied at Arnold [1989, 377, 321] and Abraham and
Marsden [1978, 302]. (Abraham and Marsden call it the ‘Kirillov-Kostant-Souriau
theorem’.)

Suffice it to say here that this exercise gives another illustration of one of our
central themes, that g∗’s symplectic leaves are the orbits of the co-adjoint rep-
resentation. For the reduced phase space Mα is naturally identifiable with the
co-adjoint orbit Orb(α) of α ∈ g∗, with the symplectic forms also naturally iden-
tified; (cf. also result (2) at the end of Section 5.4).
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THE REPRESENTATION OF TIME AND
CHANGE IN MECHANICS

Gordon Belot

If time is objective the physicist must have discovered that fact, if there is Be-
coming the physicist must know it; but if time is merely subjective and Being is
timeless, the physicist must have been able to ignore time in his construction of
reality and describe the world without the help of time. . . . If there is a solution
to the philosophical problem of time, it is written down in the equations of mathe-
matical physics.

Perhaps it would be better to say that the solution is to be read between the
lines of the physicist’s writings. Physical equations formulate specific laws . . .
but philosophical analysis is concerned with statements about the equations rather
than with the content of the equations themselves.

— Reichenbach.1

For many years I have been tormented by the certainty that the most extra-
ordinary discoveries await us in the sphere of Time. We know less about time
than about anything else.

— Tarkovsky.2

1 INTRODUCTION

This chapter is concerned with the representation of time and change in classical
(i.e., non-quantum) physical theories. One of the main goals of the chapter is to
attempt to clarify the nature and scope of the so-called problem of time: a knot of
technical and interpretative problems that appear to stand in the way of attempts
to quantize general relativity, and which have their roots in the general covariance
of that theory.

The most natural approach to these questions is via consideration of more clear
cases. So much of the chapter is given over to a discussion of the representation
of time and change in other, better understood theories, starting with the most
straightforward cases and proceeding through a consideration of cases that pre-
pare one, in one sense or another, for the features of general relativity that are
responsible for the problem of time.

1[Reichenbach, 1991, 16 f.].
2[Tarkovsky, 1991, 53].
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Let me begin by saying a bit about what sort of thing I have in mind in speak-
ing of the representation of time and change in physical theories, grounding the
discussion in the most tractable case of all, Newtonian physics.

As a perfectly general matter, many questions and claims about the content of a
physical theory admit of two construals — as questions about structural features of
solutions to the equations of motion of the theory, or as questions about structural
features of these equations. For instance, on the one hand time appears as an
aspect of the spacetimes in which physics unfolds — that is, as an aspect of the
background in which the solutions to the equations of the theory are set. On the
other, time is represented via its role in the laws of physics — in particular, in
its role in the differential equations encoding these laws. So questions and claims
about the nature of time in physical theories will admit of two sorts of reading.

Consider, for instance, the claim that time is homogeneous in Newtonian physics
(or, as Newton would put it, that time flows equably). There are two sorts of fact
that we might look to as grounding this claim.

1. There is a sense in which time is a separable aspect of the spacetime of
Newtonian physics and there is a sense in which time, so considered, is
homogenous.3

2. The laws of the fundamental-looking theories of classical mechanics (e.g.,
Newton’s theory of gravity) are time translation invariant — the differential
equations of these theories do not change their form when the origin of the
temporal coordinate is changed — so the laws of such theories are indifferent
to the identity of the instants of time.

In the Newtonian setting, these two sorts of considerations mesh nicely and
provide mutual support: there is a consilience between the symmetries of the laws
and the symmetries of spacetime. But in principle, the two sorts of considera-
tion need not lead to the same sort of answer: one might consider a system in
Newtonian spacetime that is subject to time-dependent forces; or one could set
the Newtonian n-body problem in a spacetime which featured a preferred instant,
but otherwise had the structure of Newtonian spacetime. And as one moves away
from the familiar setting of Newtonian physics, it becomes even more important to
distinguish the two approaches: in general relativity, the laws have an enormous
(indeed, infinite-dimensional) group of symmetries while generic solutions have no
symmetries whatsoever.

In discussing the representation of time and change, this chapter will focus
on structural features of the laws of physical theories rather than on features of
particular solutions. To emphasize this point, I will say that I am interested in
the structure of this or that theory as a dynamical theory.

3(Neo)Newtonian spacetime is partitioned in a natural way by instants of absolute simultane-
ity, and time can be identified with the structure that the set of these instants inherits from
the structure of spacetime: time then has the structure of an affine space modelled on the real
numbers — so for any two instants, there is a temporal symmetry which maps one to the other.
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I will approach my topics via the Lagrangian and Hamiltonian approaches to
classical theories, two great over-arching — and intimately related — frameworks
in which such topics are naturally addressed.4 Roughly speaking, in each of these
approaches the content of the equations of a theory is encoded in certain structures
on a space of possibilities associated with the theory.5 In the Lagrangian approach
the featured space is the space of solutions to the equations of the theory, which
for heuristic purposes we can identify with the space of possible worlds allowed by
the theory.6 On the Hamiltonian side, the featured space is the space of initial
data for the equations of the theory, which we can in the same spirit identify with
the space of possible instantaneous states allowed by the theory.

In Newtonian mechanics, the reflection within the Lagrangian framework of
the time translation invariance of the laws is that the space of solutions is itself
invariant under time translations: given a set of particle trajectories in spacetime
obeying Newton’s laws of motion, we can construct the set of particle trajectories
that result if all events are translated in time by amount t; the latter set is a
solution (i.e., is permitted by the laws of motion) if and only if the former set
is; furthermore, the map that carries us from a solution to its time translate
preserves the structure on the space of solutions that encodes the dynamics of
the theory. Within the Hamiltonian framework, on the other hand, the time
translation invariance of the laws is reflected by the existence of a map that sends
an initial data set to the state it will evolve into in t units of time; again, this
map leaves invariant the structure on the space that encodes the dynamics of the
theory. So the temporal symmetry of the dynamics of the theory is reflected on
the Lagrangian side by a notion of time translation and on the Hamiltonian side
by a notion of time evolution.

The representation of change in Newtonian physics also takes different (but
closely related) forms within the Lagrangian and Hamiltonian frameworks. Change
consists in a system having different and incompatible properties at different times.
We want to say, for instance, that there is a change in the observable properties
of a two-body system if and only if the relative distance between the particles is
different at different times.

4Why pursue our question within the realm of Lagrangian and Hamiltonian mechanics rather
than working directly with the differential equations of theories? Because the benefits are large:
these overarching approaches provide powerful mathematical frameworks in which to compare
theories. And because the costs are minimal: almost every theory of interest can be put into
Lagrangian or Hamiltonian form, without any obvious change of content. And because it leads
us where we want to go: current attempts to understand the content of classical physical theories
are necessarily shaped by efforts to construct or understand deeper, quantum theories; and it
appears that a classical theory must be placed in Lagrangian or Hamiltonian form in order to
be quantized.

5See remark 2 for the sense in which talk of possibilia is intended here.
6 In the context of ordinary classical mechanics, one often thinks of Lagrangian mechanics

as set in the velocity phase space — and thus as more closely associated with a space of initial
data rather than with a space of solutions. However, this familiar approach presupposes an
absolute notion of simultaneity, and for this reason it is usually dropped in favour of a spacetime
covariant Lagrangian approach (in which the space of initial data plays no role) when one turns
to relativistic theories. This is the point of view adopted below.
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Hamiltonian Approach. Specifying the instantaneous dynamical state of such
a system suffices to specify the instantaneous relative distance between the
particles. So there is a function on the space of initial data corresponding
to this quantity. A history of the system is a trajectory through the space
of initial data. In our simple example, observable change occurs during a
given history if and only if the function corresponding to the relative dis-
tance between the particles takes on different values at different points on
the trajectory in question. More generally, in any Newtonian system, any
quantity of physical interest (observable or not) is represented by a function
on the space of initial data, and a trajectory in this space represents such
quantities as changing if the corresponding functions take on different values
at different points on the trajectory.

Lagrangian Approach. Clearly, no function on the space of solutions can rep-
resent a changeable quantity in the same direct way that functions on the
space of initial data can. But for each t, there is a function on the space of
solutions of our two-body problem that assigns to each solution the relative
distance between the particles at time t according to that solution. Letting t
vary, we construct a one-parameter family of functions on the space of solu-
tions. A solution to the equations of motion represents the relative distance
between the particles as changing if and only if different members of this one-
parameter family of functions take on different values when evaluated on the
given solution. And so on more generally: any changeable physical quan-
tity corresponds to such a one-parameter family of functions on the space of
solutions, and change is understood as in the simple two-body example.

So much for the sort of thing I have in mind in speaking of the representation
of time and change in a physical theory. Before sketching the path that this
chapter takes in discussing these topics, it will perhaps be helpful to say a bit
about its ultimate goal — the clarification of the nature of the so-called problem
of time. Discussions of the problem of time typically focus on Hamiltonian versions
of general relativity, in which the focus is on the space of possible instantaneous
geometries (metrics and second fundamental forms on Cauchy surfaces). This is
somewhat unfortunate, since such approaches require from the start a division of
spacetime into a family of spacelike hypersurfaces — which appears to be against
the spirit of the usual understanding of the general covariance of the theory. In
light of this fact, there is room for worry that some aspects of the problem of time
as usually presented are consequences of this rather awkward way of proceeding. I
take a somewhat different path, always anchoring my discussion in the Lagrangian
approach, which takes as fundamental complete histories of systems rather than
instantaneous states.

The view developed below is that, roughly speaking, the core of the problem of
time is that in general relativity, when understood dynamically, there is no way to
view time evolution or time translation as symmetries of the theory and, relatedly,
there is no natural way to model change via functions on the spaces arising within
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the Lagrangian and Hamiltonian approaches.7 This marks a respect in which gen-
eral relativity, so conceived, is very different from preceding fundamental-looking
theories.

The problem of time may sound — not very pressing. To be sure, there are puz-
zles here. Why should general relativity differ in this way from its predecessors?
In predecessors to general relativity, the representation of time and the represen-
tation of change are tied together in a very neat package — what does the general
relativistic replacement for this package look like? These are interesting questions.
But then of course no one should expect time to be represented in general relativity
as in its predecessors — that it presents an utterly new picture of time and space
is one of the glories of the theory. And one might also think: since the structure
of spacetime varies from solution to solution in general relativity, it is surely more
appropriate to look at the representation of time in this or that physically realistic
solution, rather than in the equations of the theory, if we want to understand what
the theory is telling us about the nature of time in our world.

The problem of time assumes a more pressing aspect, however, when one consid-
ers the quantization of general relativity (or of any other theory that is generally
covariant in the relevant sense). The project of constructing successor theories
naturally focuses our attention on structural features of the theories at hand —
in constructing successors, one is in the business of laying bets as to which such
features of current theories will live on (perhaps in a new form), and which ones
will be left behind. And known techniques of quantization require as input not just
differential equations, but theories cast in Hamiltonian or Lagrangian form. So
for those interested in quantizing general relativity, questions about the structure
of the theory qua dynamical theory naturally loom large. And lacking solutions
to the puzzles mentioned above, one expects conceptual difficulties in formulating
(or extracting predictions from) any quantization of general relativity. So from
this perspective, the problem of time is in fact quite pressing.

This chapter takes long route to the problem of time. I begin in section 2 with
the briefest of introductions to Hamiltonian and Lagrangian mechanics, by way of
motivating some of what follows. In section 3, I sketch some important concepts
and results of symplectic geometry, the field of mathematics that underlies classical

7This formulation above only gives us a first approximation, for several reasons (each of which
will be discussed more fully in following sections). (i) The problem of time only arises in those
versions of general relativity most appropriate to the cosmological setting; in other applications
of the theory, time is represented in a fashion very similar to that in which it is represented
in special relativistic physics. (ii) In the treatment of ordinary time-dependent systems, time
evolution and time translation are not symmetries of the theory — but this does not lead to any
real problem in representing time and change in such theories, because one still has group actions
that implement time evolution and time translation, even though they are not symmetries of the
laws, and these suffice to erect an account of change very similar to that occurring in ordinary
time-independent theories. (iii) In theories in which solutions are not defined globally in time,
time evolution and time translation will not be implemented by group actions, but merely by
local flows (these can be thought of as infinitesimal surrogates for group actions); these suffice
for the construction of the familiar picture of change in such theories; but even these are absent
in general relativity.
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mechanics. The concepts introduced here are crucial for what follows: for well-
behaved theories, the space of solutions (on the Lagrangian side) and the space of
initial data (on the Hamiltonian side) both have symplectic structures. And we
will see that various symplectic (or nearly symplectic) spaces arise even when one
strays away from the ideal case. In section 4, I sketch the very powerful framework
of modern Lagrangian mechanics, with its apparatus of local conservation laws.

In section 5, I sketch the Lagrangian and Hamiltonian pictures for ideally well-
behaved theories satisfying the following conditions: (i) the background spacetime
geometry admits a group of time translations and the Lagrangian of the theory
is invariant (in a suitable sense) under the action of this group; (ii) specifying
initial data for the equations of the theory suffices to determine a single maximal
solution; (iii) this maximal solution is defined for all values of the time parameter.
When these conditions hold, we find that there is a group of time translation
symmetries operating on the space of solutions on the Lagrangian side, while on
the Hamiltonian side there is a group implementing time evolution on the space of
initial data. These two spaces are isomorphic, and the two group actions intertwine
in a satisfying fashion. One is able to give a straightforward and appealing account
of the way in which change is represented on either of these two fundamental
spaces.

In section 6, I turn to the complications that must be introduced into the picture
when one drops any one of the conditions (i)–(iii) of the preceding paragraph.
Finally in section 7, I address the representation of time and change in general
relativity. This leads directly to the problem of time.

As this outline makes clear, much of the chapter is given over to exposition of
technical material. In order to keep the length reasonable, I have had to presume
that the reader comes to this chapter with quite a bit of technical background. I
have tried to write for an ideal reader who has previously studied general relativity
or gauge theory, and hence feels comfortable with the basic concepts, results, and
constructions of differential geometry (although at a few strategic points I have
included discussion meant to jog the memory of such readers).

This chapter is founded upon the modern geometrical approach to Lagrangian
mechanics that is presented in the barest sketch in section 4. This approach, devel-
oped relatively recently by mathematicians, provides a highly abstract framework
for thinking about physical theories rather than a fully rigourous treatment of any
given theory. It exists at the formal, differential-geometric level: the focus is on
the geometric structure of various spaces and on the geometric content of equa-
tions and constructions; functional analytic details are held in abeyance. Much of
the material sketched in other sections functions at this same level.

In content, this chapter overlaps somewhat with [Malament, this volume], [Rov-
elli, this volume], and [Brading and Castellani, this volume]. But it is most closely
related to [Butterfield, this volume]. Butterfield’s chapter provides a philosophical
introduction to modern geometric approaches to mechanics; the present chapter is
meant as an example of the application of this approach to a philosophical prob-
lem. The present chapter is, however, meant to be self-contained. And there is in
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fact a considerable difference in emphasis between this chapter and Butterfield’s:
the latter is restricted to finite-dimensional systems, and focuses on the Hamilto-
nian side of things; the present chapter is primarily concerned with field theories,
and focuses to a much greater extent on the Lagrangian approach.

REMARK 1 (Notation and Terminology). Elements of and structures on the space
of solutions of a field theory are always indicated by capital letters (Greek or
Latin) while elements of and structures on the space initial data of a field theory
are always indicated by lower case letters (Greek or Latin). Boldface indicates
three-vectors or three-vector-valued functions. In this chapter, a curve is officially
a map from intervals of real numbers into a space that is a manifold or a mild
generalization of a manifold — sometimes for emphasis I redundantly call a curve
a parameterized curve. An affinely parameterized curve is a equivalence class of
such curves, where two curves count as equivalent if they have the same image and
their parameterization agrees up to a choice of origin.8 A unparameterized curve
is an equivalence class of curves, under the equivalence relation where curves count
as equivalent if they have the same image. I sometimes conflate a curve and its
image.

REMARK 2 (Possible Worlds Talk). Below, especially in section 7, I sometimes
speak of points of the space of solutions (initial data) as representing possible
worlds (possible instantaneous states) permitted by the theory, even though I do
not pretend to be involved in fine-grained matters of interpretation here. This sort
of thing is meant only in a rough and heuristic way. The idea is that in trying
to understand a theory, we are in part engaged in a search for a perspicuous
formulation of the theory; and it is reasonable to hope that if a formulation is
perspicuous, then there will exist a prima facie attractive interpretation of the
theory according to which there is a bijection between the space of solutions (initial
data) and the space of possible worlds (possible instantaneous states) admitted by
the theory under that interpretation. This is not to deny that there may be
reasons for ultimately rejecting such interpretations: a Leibnizean might settle on
a standard formulation of classical mechanics, even though that means viewing
the representation relation between solutions and possible worlds as many-to-one
in virtue of the fact that solutions related by a time translation must be seen as
corresponding to the same possible world.

2 HAMILTONIAN AND LAGRANGIAN MECHANICS

This section contains a very brief sketch of the Hamiltonian and Lagrangian ap-
proaches to the Newtonian n-body problem.9 The intended purpose is to motivate

8That is, an affinely parameterized curve is an equivalence class of curves under the equivalence
relation according to which curves γ1 : [a, b]→M and γ1 : [a, b]→M are equivalent if and only
if there exists s ∈ R such that γ1(t) = γ2(t + s) for all t ∈ [a, b].

9For textbooks approaching classical mechanics in a variety of styles, see, e.g., [Goldstein,
1953], [Lanczos, 1986], [Singer, 2001], [Marsden and Ratiu, 1994], [Arnold, 1989], [Arnold et al.,
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some of what follows in later sections.

2.1 The n-Body Problem

We consider n gravitating point-particles. Let the mass of the ith particle be
mi. Working relative to a fixed inertial frame we write: q := (q1, . . . ,qn) =
(q1, . . . , q3n) for the positions of the particles, q̇: = (q̇1, . . . , q̇n) = (q̇1, . . . , q̇3n)
for their velocities, and q̈: = (q̈1, . . . , q̈n) = (q̈1, . . . , q̈3n) for their accelerations
(in this chapter, boldface always indicates a three-vector). The gravitational force
exerted on the ith particle by the jth particle is

Fij =
mimj

r2
ij

uij , (1)

where rij is the distance between the ith and jth particles, uij is the unit vector
pointing from the ith to the jth particle, and units have been chosen so that
Newton’s constant is unity. Of course, equation 1 is not well-defined for rij = 0.
So from now on we assume that q ∈ Q := R

3n/∆, where ∆ is the collision set
{q ∈ R

3n : qi = qj for some i �= j}.
The net force acting on the ith particle is

Fi =
∑
j �=i

Fij .

So the equations of motion for our theory are: Fi = miq̈i.10 Resolving each force
and acceleration vector into its components, we have 3n second-order differential
equations. Roughly speaking, these equations have a well-posed initial value prob-
lem: specifying 3n values for the initial positions of our particles and 3n values
for their initial velocities (momenta) determines a unique analytic solution to the
equations of motion, which tells us what the positions and velocities (momenta)
of the particles are at all other times at which these quantities are defined.11

2.2 The Hamiltonian Approach

The basic variables of the Hamiltonian approach are the positions of the particles
and the corresponding momenta, p : = (m1q̇1, . . . ,mnq̇n) = (m1q1, . . . ,mnq3n). A
state of the system, (q, p), is specified by specifying the position and momentum
of each particle. To each state we can assign a kinetic energy

T (q, p) :=
n∑
i=1

1
2mi
|pi|2

1997], and [Abraham and Marsden, 1978].
10This should be read as a differential equation constraining the allowed trajectories q(t).

Similarly for the other differential equations appearing in this section.
11Note that some solutions fail to be defined for all values of t; see example 33 below for

discussion.
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and a potential energy,

V (q, p) :=
∑
i<j

mimj

rij
.

Note that Fi = −∇iV (q), where ∇i is the gradient operator ( ∂
∂q3i−2

, ∂
∂q3i−1

, ∂
∂q3i

)
corresponding to the configuration variables of the ith particle. So the potential
energy encodes information about gravitational forces, while the kinetic energy can
be thought of as encoding information about the inertial structure of Newtonian
spacetime. So one might hope that together these quantities encode all of the
physics of the n-body problem. This is indeed the case.

We introduce the space of initial data for the theory, I := {(q, p): q∈Q} and
the Hamiltonian H : I → R, H(q, p) := T (q, p) + V (q). The Hamiltonian is thus
just the total energy.

The original equation of motion miq̈i = Fi can be rewritten as ṗi = −∇iV (q);
or, since ∇iT = 0, as ṗi = −∇iH. In another notation, this becomes ṗi = −∂H∂qi

.

Furthermore, since the only term in H depending on pi is of the form 1
2mp2

i , we
find that ∂H

∂pi
= q̇i.

In this way, we move from the original Newtonian equations to Hamilton’s
equations:

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(i = 1, . . . , 3n).

In fact, the ordinary Newtonian equations are equivalent to Hamilton’s equations.
So we see that the function H = T + V encodes all of the dynamical content of
the n-body problem.

Our present interest is in the geometry implicit in Hamilton’s equations. Hamil-
ton’s equations gives us values for q̇i(q, p) and ṗi(q, p) at each point (q, p) ∈ I.
That is, Hamilton’s equations give us a component expression for a tangent vector
XH(q, p) at each point (q, p) ∈ I. The vector field XH on I encodes the dy-
namics of our theory: through each point (q0, p0) ∈ I there is exactly one curve
(q(t), p(t)) : R → I such that: (i) (q(0), p(0)) = (q0, p0); and (ii) for each s, the
tangent vector to the curve (q(t), p(t)) at t = s is given by XH(q(s), p(s)). This
curve tells us that if the system is in state (q0, p0) at time t = 0, then it is in state
(q(s), p(s)) at time t = s.

We can rewrite Hamilton’s equations as:

(q̇1, . . . , q̇3n, ṗ1, . . . , ṗ3n)
∣∣∣∣ 0 I
−I 0

∣∣∣∣ =
(

∂H

∂q1
, . . . ,

∂H

∂q3n
,
∂H

∂p1
, . . .

∂H

∂p3n

)
,

where I is the 3n × 3n identity matrix. On the left-hand side we have a vector
multiplied by a matrix; on the right-hand side another vector. Thinking of I as
a manifold, we can recognize the coordinate-independent objects standing behind
this equation: on the left we have the tangent vector field XH contracted with a
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two-form; on the right, the differential dH (i.e., the exterior derivative of H). So
we can re-write Hamilton’s equations in a coordinate-independent form as:

ω(XH , ·) = dH,

where ω is the two-form on I that assumes the form
∑
i dqi∧dpi in our coordinates.

ω is a symplectic form on I: a closed, nondegenerate two-form.12 ω can be
thought of as being somewhat like an anti-symmetric metric on I (e.g., both sorts
of object establish a preferred isomorphism between vector fields and one-forms).
But that analogy cannot be taken too seriously in light of the following striking
differences between the two sorts of objects:

1. The isometry group of a finite-dimensional Riemannian manifold is always
finite-dimensional. But our symplectic form is invariant under an infinite-
dimensional family of diffeomorphisms from I to itself. We can see this as
follows. Let us think of I as the cotangent bundle of Q; that is, we think
of a point (q, p) as consisting of a point q ∈ Q and a covector p ∈ T ∗

q Q.13 A
cotangent coordinate system on I = T ∗Q arises as follows: choose arbitrary
coordinates {qi} on Q and write p ∈ T ∗

q Q as p =
∑

pidqi, so that {qi, pj}
forms a set of coordinates on T ∗Q. In any cotangent coordinate system,

ω =
∣∣∣∣ 0 I
−I 0

∣∣∣∣ . (2)

So ω is invariant under the transformation that carries us from one set of
cotangent coordinates on I to another. And the set of such transformations
is infinite-dimensional, since any diffeomorphism d : Q → Q generates such
a transformation.

2. One does not expect any manifold or bundle to carry a natural Riemannian
metric. But if M is any finite-dimensional manifold, the cotangent bundle
T ∗M carries a canonical symplectic form, ω, that takes the form ω =

∑
i dqi∧

dpi relative to any set of local cotangent coordinates on M.14

3. If (M, g) and (M ′, g′) are n-dimensional Riemannian manifolds, then for any
x ∈ M and x′ ∈ M ′, we know that g and g′ endow the tangent spaces
TxM and Tx′M ′ with the same geometry; but in general we expect that no
diffeomorphism d : M →M ′ will give an isometry between a neighbourhood
of x and a neighbourhood of x′. But the Darboux theorem tells us that if
(M,ω) is a finite-dimensional manifold equipped with a symplectic form,

12See section 3.2 below for further discussion and for an unpacking of this definition.
13Why regard p as a covector rather than a tangent vector? Because in general the momentum

p of a system with Lagrangian L is defined as ∂L
∂q̇

, which transforms as a covariant quantity

under change of coordinates on Q.
14Where as above, a set of local coordinates on M induces a natural set of cotangent coordinates

on T ∗M. In example 7 below we will see a coordinate-free version of this construction that carries
over to the infinite-dimensional case.
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then (M,ω) is locally isomorphic to some T ∗
R
n equipped with its canonical

cotangent bundle symplectic form. An immediate corollary is that every
finite-dimensional symplectic manifold is even-dimensional.

Of course, for present purposes, the interest in identifying the symplectic struc-
ture lying behind the Hamiltonian version of the n-body problem lies in gener-
alization. (1) Note that if we are interested in n particles interacting via forces
that arise from a potential energy function V, as above, then we can construct
a Hamiltonian treatment equivalent to the usual Newtonian one by again taking
I as the space of initial data, equipping it with the symplectic form ω as above,
defining a Hamiltonian H : I → R as the sum of the kinetic and potential en-
ergies, and taking as our dynamical trajectories the integral curves of the vector
field XH on I that solves ω(XH , ·) = dH. (2) More generally, we can model a vast
number of classical mechanical systems as follows: let the space of initial states
be a symplectic manifold (M,ω) (not necessarily a cotangent bundle) and let a
Hamiltonian H : M → R be given; then let the dynamics be given by the vector
field XH solving ω(XH , ·) = dH.

2.3 The Lagrangian Approach

It is helpful to approach the Lagrangian version of the n-body problem somewhat
indirectly.15

Critical Points in Calculus

For f : R
n → R, the differential of f is given by df = ( ∂f∂x1

, . . . , ∂f
∂xn

). We say
that f has a critical point at x0 ∈ R

n if df(x0) = 0; i.e., f has a critical point at
x0 if df(x0) · e = 0 for each e ∈ R

n (since R
n is a linear space, we can identify

Tx0R
n with R

n itself and let e ∈ R
n here). There are a number of helpful ways of

thinking of df(x0) · e: (i) this quantity coincides with the directional derivative of
f at x0 in direction e,

df(x0) · e = lim
t→0

f(x0 + te)− f(x0)
t

;

(ii) if we have a curve γ : R→ R
n with γ(0) = x0 and γ̇(0) = e, then df(x0) · e =

d
dtf(γ(t)) |t=0 .

The Calculus of Variations and the Euler–Lagrange Equations

We now consider an infinite-dimensional analog: we look for critical points of a
function defined on a space of curves in Euclidean space. This is the foundation
of the Lagrangian approach to particle mechanics.

15For introductions to the Lagrangian approach via the calculus of variations, see [Dubrovin
et al., 1992, Chapter 6], [Lanczos, 1986, Chapters II and V], and [van Brunt, 2004]. For some of
the rigourous underpinnings of the calculus of variations see, e.g., [Choquet-Bruhat et al., 1977,
§§II.A and II.B] and [Choquet-Bruhat and DeWitt-Morrette, 1989, §II.3].



144 Gordon Belot

Let Q = R
n, let [a, b] ⊂ R be a closed interval, and let x, y ∈ Q. Let Γ(a, b;x, y)

be the set of C2 curves γ : [a, b] → Q with γ(a) = x and γ(b) = y. And
let Γ(a, b; 0, 0) be the space of C2 curves γ : [a, b] → Q = R

n with γ(a) =
(0, . . . , 0) and γ(b) = (0, . . . , 0). Both Γ(a, b;x, y) and Γ(a, b; 0, 0) are well-behaved
infinite-dimensional spaces.16 For γ ∈ Γ(a, b;x, y) we can think of Γ(a, b; 0, 0) as
TγΓ(a, b;x, y) (think of h ∈ Γ(a, b; 0, 0) as describing a vector field along γ).17

The tangent bundle of Q is TQ = R
2n. Let L : TQ → R be a smooth func-

tion. This allows us to define a function Ia,b : Γ(a, b;x, y) → R by Ia,b(γ) :=∫ b
a

L(γ(t), γ̇(t)) dt. We are interested in finding the critical points of Ia,b: these
will be points in Γ(a, b;x, y) (that is, curves γ : [a, b] → Q) of special interest.
Like any function on a well-behaved space, Ia,b has a differential, which we denote
δIa,b; this can be thought of as one-form on Γ(a, b;x, y).

DEFINITION 3 (Stationary Curves). We say that γ : [a, b]→ Q is stationary for
L over [a, b] if δIa,b(γ) = 0. We say that γ : R → Q is stationary for L if its
restriction to [a, b] is stationary over [a, b] for all closed intervals [a, b].

As in the case of an ordinary function on R
n, δIa,b(γ) = 0 if and only if δIa,b(γ) ·

h = 0 for all h ∈ TγΓ(a, b;x, y) = Γ(a, b; 0, 0). We can then calculate δIa,b(γ) ·h by
finding d

dεIa,b(γ[ε]) |ε=0 for a curve γ[·] : ε ∈ R �→ γ[ε] ∈ Γ(a, b; 0, 0) with γ[0] = γ

and h = d
dεγ[ε] |ε=0 .

Let us calculate. Fix L and [a, b]. Let γ ∈ Γ(a, b;x, y) and h ∈ Γ(a, b; 0, 0).
For each ε in some sufficiently small neighbourhood of zero, we define a curve
γ[ε] : R → Q by γ[ε](t) := γ(t) + εh(t). So γ[ε] is a curve in Γ(a, b;x, y) with
γ[0] = γ and with tangent h = d

dεγ[ε] |ε=0 . Then:

δIa,b(γ) · h =
d

dε
Ia,b(γ[ε])|ε=0

= lim
ε→0

1
ε

∫ b

a

[L(γ[ε](t), γ̇[ε](t))− L(γ(t), γ̇(t))] dt

= lim
ε→0

1
ε

(∫ b

a

ε

[
∂L

∂x
(γ(t), γ̇(t) · h(γ(t))

16Let Γ(a, b) be the space of C2 curves γ : [a, b] → Q. This is a linear space under pointwise
addition (i.e., (γ + γ′)(x) = γ(x) + γ′(x)) that can be made into a Banach space in a number of
ways. Γ(a, b; 0, 0) is a linear subspace of Γ(a, b) while Γ(a, b; x, y) is an affine subspace modelled
on Γ(a, b; 0, 0).

17We can think of TγΓ(a, b; x, y) as being built as follows: one considers one-parameter family
γ[ε] : ε ∈ R �→ γ[ε] ∈ Γ(a, b; x, y) of curves with γ[0] = γ, and declares such one-parameter
families, γ[ε] and γ′[ε], to be equivalent if d

dε
γ[ε] |ε=0= d

dε
γ′[ε] |ε=0; TγΓ(a, b; x, y) is the resulting

space of equivalence classes. We construct a bijection between Γ(a, b; 0, 0) and TγΓ(a, b; x, y)
thought of as the space of such equivalence classes by associating with h ∈ Γ(a, b; 0, 0) the
equivalence class containing γ[ε] : ε �→ γ + ε · h.
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+
∂L

∂ẋ
(γ(t), γ̇(t) · ḣ(γ(t))

]
+ O(ε2) dt

)

=
∫ b

a

∂L

∂x
· h dt−

∫ b

a

d

dt

(
∂L

∂ẋ

)
· h dt +

(
h

∂L

∂ẋ

)∣∣∣∣
b

a

.

The first equality follows from a basic fact about the differential of a function;
the second follows by definition; the third via Taylor’s theorem; the fourth via an
integration by parts. We now note that since h vanishes at γ(a) = x and γ(b) = y
the third term in the final line vanishes. So

δIa,b(γ0) · h =
∫ b

a

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
h dt.

To say that γ : [a, b] → Q is stationary over [a, b] is to say that this expression
vanishes for each h. So the condition that γ is stationary for L over [a, b] is that
the Euler–Lagrange equation

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 (3)

holds along γ(t) for t ∈ [a, b]. And the condition that γ : [a, b] → R is stationary
for L is just that the equation 3 is satisfied all along γ.

REMARK 4 (Parsing the Euler–Lagrange Equations). Here is how to unpack
equation 3.18 Rewrite the expression for L, replacing ẋ everywhere by ξ. Then
interpret equation 3 as a differential equation for admissible trajectories x(t), un-
derstanding ∂L

∂ẋ to mean ∂L(x,ξ)
∂ξi

|ξ=ẋ(t) and d
dt
∂L
∂ẋ to mean

(
∂2L

∂ξi∂ξj
ẍj +

∂2L

∂ξi∂xj
ẋj

)∣∣∣∣
ξ=ẋ(t)

.

Hamilton’s Principle

Consider a physical system with configuration space Q (i.e., consider a system
whose possible spatial positions are parameterized by Q). Let the kinetic energy
be a function T : TQ → R that arises from a Riemannian metric g on Q via
T (x, v) := gx(v, v) and let V : Q → R be a potential for a force depending on
the configuration degrees of freedom alone. Then the Lagrangian for the system is
L(x, v) := T (x, v)−V (x). Hamilton’s principle states that the stationary curves for
L are the physically possible trajectories. Many physically interesting systems can
be cast in this form — e.g., the n-body problem considered above. For such systems
that Euler–Lagrange equations derived from Hamilton’s principle are equivalent
to the usual Newtonian equations of motion.

18For this, see, e.g., [Dubrovin et al., 1992, 318 ].
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Symplectic Structure of the Space of Solutions of the Euler–Lagrange Equations

Let Q be a manifold and TQ its tangent bundle. Let L : TQ → R be a smooth
function. The space, S, of stationaries of L has a natural manifold structure: for
those γ ∈ S defined at t = 0, we can take the values of x = γ(0) and v = γ̇(0)
relative to coordinates {xi} on Q as coordinates on S; doing this for each value
of t gives us a differentiable atlas for S. It follows that dim S = dim TQ. We
can also endow S with a geometric structure: consider the boundary term, h∂L∂ẋ ,
discarded above in deriving the Euler–Lagrange equations; since h is to be thought
of as a tangent vector to the space Γ(a, b;x, y), we must view α = ∂L

∂ẋ as a one-
form on that space; taking its exterior derivative gives us a two-form, ω := δα,
on Γ(a, b;x, y); the restriction of this form to S is the structure we seek. In the
coordinates we have introduced on S, ω takes the form:

ω =
∂2L

∂xa∂vb
dxa ∧ dxb +

∂2L

∂va∂vb
dva ∧ dxb.

For any L, this is a closed two-form. It is nondegenerate, and hence symplectic,
so long as det

[
∂2L

∂va∂vb

]
�= 0.19 For Lagrangians of the form considered above this

always holds — and we then find that (S, ω) is (locally) symplectically isomorphic
to the corresponding space of initial data that arises from a Hamiltonian treatment
of the theory.20

3 SYMPLECTIC MATTERS

Throughout the chapter, we are going to be investigating the representation of time
and change in physical theories by asking about their representation in Lagrangian
and Hamiltonian formulations of these theories. On the Lagrangian side, the focus
is always on the space of solutions of the equations of our theory, while on the
Hamiltonian side the focus is always on the space of initial data for those equations.
It is a fact of primary importance that for well-behaved theories the space of initial
data and the space of solutions share a common geometric structure — these spaces
are isomorphic as symplectic manifolds. Thus the notion of a symplectic manifold
and its generalizations will play a central role in our investigations.

It will be helpful to begin with a general discussion of the nature of symplectic
manifolds: subsection 3.1 deals with some preliminary matters; subsection 3.2 of-
fers a sketch of some of the basic concepts, constructions, and results of symplectic
geometry as it figures in mechanics; subsection 3.3 offers the same sort of treat-
ment of presymplectic geometry (a generalization of symplectic geometry that will
play an important role in sections 6.2 and 7 below); subsection 3.4 discusses the
sense in which a symplectic structure is the sine non qua of quantization.

19The symplectic structure of the space of solutions for Lagrangian theories is discussed in
[Woodhouse, 1991, §§2.3 and 2.4].

20This follows from the fact that Lagrangians arising from kinetic and potential terms of the
sort considered above are always hyperregular; see, e.g., [Abraham and Marsden, 1978, 226].
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3.1 Preliminaries

The spaces that we will come across below will be generalizations of ordinary
n-dimensional manifolds in three respects. (i) They are allowed to be non-Haus-
dorff.21 (ii) They are allowed to be infinite-dimensional: a manifold is locally
modelled on a vector space; we allow ours to be modelled on R

n or on an infinite-
dimensional Banach space.22 (iii) They are allowed to have mild singularities —
roughly speaking, our spaces will be composed out of manifolds in the way that
an ordinary cone is composed out of its apex (a zero-dimensional manifold) and
mantle (a two-dimensional manifold) — but our spaces still have smooth structures
and support tensors in much the same way that manifolds do.23

In order to avoid becoming bogged down in technicalities, I will present my
sketch of the required notions and constructions of symplectic and presymplectic
geometry in the context of manifolds; but when in following sections I speak of
‘spaces’ rather than manifolds, it should be understood that I am allowing the
spaces in question to have mild singularities of the sort mentioned above.

Below we will often be interested in the actions of Lie groups on manifolds,
and in vector fields as the infinitesimal generators of such actions. Let me end
this discussion of preliminary matters by reviewing some pertinent definitions and
constructions.

Recall that a Lie group is a manifold which is also a group, with the operations
of group multiplication, (g, h) ∈ G × G �→ g · h ∈ G, and the taking of inverses,
g ∈ G �→ g−1 ∈ G, as smooth maps. An action of a Lie group G on a manifold
M is a smooth map Φ : G×M →M such that: (i) Φ(e, x) = x for e the identity
element of G and for all x ∈ M ; (ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and
x ∈M. One often writes g · x or Φg(x) for Φ(g, x).24 The orbit through x ∈M of

21Recall that a topological space X is Hausdorff if for any distinct x, y ∈ X, there exist
disjoint open sets U and V with x ∈ U and y ∈ V. While most textbooks require manifolds to
be Hausdorff, all of the basic constructions and results go through without this assumption —
see [Lang, 1999]. As we will see in examples 32 and 33 below, the solution spaces of even the
simplest physical systems can be non-Hausdorff.

22[Abraham et al., 1988] and [Lang, 1999] provide introductions to differential geometry that
cover the case of infinite-dimensional Banach manifolds. See [Milnor, 1984, §§2–4] for an in-
troduction to a more general approach, under which manifolds are modelled on locally convex
topological vector spaces. Note that the inverse function theorem and the existence and unique-
ness theorem for ordinary differential equations fail under this more general approach.

23The spaces under consideration are Whitney stratified spaces. As suggested in the text, each
such space admits a canonical decomposition into manifolds. This decomposition allows us to
treat each point in such a space as lying in a manifold, which allows us to construct a space of
tangent vectors and cotangent vectors at each point, and hence to construct tensors in the usual
way. The dimensions of the manifold pieces (and of the tangent and cotangent spaces) will in
general vary from point to point within the stratified space. See [Pflaum, 2001] or [Ortega and
Ratiu, 2004, §§1.5–1.7] for a treatment of such spaces in the finite-dimensional case. The picture
appears to be very similar in the infinite-dimensional examples that arise in physics: for general
relativity, see [Andersson, 1989] and [Marsden, 1981, Lecture 10]; for Yang–Mills theories, see
[Arms, 1981] and [Kondracki and Rogulski, 1986].

24Equivalently, an action of G on M is a group homomorphism g �→ φg from G to D(M) (the
group of diffeomorphisms from M to itself) such that the map (g, x) ∈ G×M �→ φg(x) ∈ M is
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the action is the set [x] := {g · x : g ∈ G}. The action of a Lie group partitions a
manifold into orbits.

While other Lie groups will figure below, we will most often be interested in
the simplest of all Lie groups: the additive group R. A flow on a manifold M is
a one-parameter group of diffeomorphisms from M to M. So if {Φt}t∈R is a flow
on M, then Φ0(x) = x and Φt ◦ Φs(x) = Φt+s(x) for all x ∈ M and s, t ∈ R.
A flow {Φt} on M and an action Φ : R ×M → M of R on M are more or less
the same thing: given an R-action Φ : R ×M → M, one defines a flow {Φt} via
Φt(x) = Φ(t, x) for all t ∈ R and x ∈M ; likewise if one is given a flow and wants
to define an R-action.

Any R-action on M induces a vector field X on M. Let x ∈M and consider the
curve γx(t) : R→M defined by γx : t �→ Φt(x). The image of γx in M is just the
orbit [x]. Now suppose that y ∈ [x] — i.e., there is t ∈ R such that y = Φt(x). Some
facts follow immediately from the group property of {Φt}. We find that the image
of γy is also [x] — so [x] = [y]. We find, in fact, that γy(s) = γx(s+ t) for all s ∈ R;
that is, each of the curves γy corresponding to points y ∈ [x] agree up to choice
of origin for their parameterization. So each orbit [x] of our R-action arises as the
shared image of a (maximal) family of curves agreeing in their parameterization
up to a choice of origin. As a convenient shorthand, we will speak of such a family
of curves as an affinely parameterized curve, which we will think of as a curve with
its parameterization fixed only up to a choice of origin. We can now construct a
vector field X on M as follows: for x ∈ M we define X(x) = γ̇x(0) (the above
discussion shows that X is a smooth vector field on M).

Now suppose that we are given a vector field X on a manifold M, and let us see
whether we can think of X as generating an R-action on M. Given x ∈ M, there
is a unique curve γx passing through x at time t = 0 and such that for each value
of t at which the curve is defined, its tangent vector at the point γ(t) ∈M is given
by the value of X at that point.25 Call this curve the integral curve based at x.
We find that if y lies in the image of integral curve based at x, then the integral
curves based at x and y have the same image and agree up to a choice of origin
in their parameterization. So we might just as well replace these curves by the
corresponding affinely parameterized curve, which we will call the integral curve
through x (or y). So the vector field X allows us to define a family of integral
curves on M, with each point in M lying on exactly one such curve. For x ∈ M
and t ∈ R, let us agree that Φ(t, x) is the point that we reach by tracing t units
along the integral curve through x, when this instruction is well-defined (recall
that the integral curve based at x may only be defined on a subinterval of R).
This Φ will be an R-action if and only if the domain of definition of each integral
curve is all of R. In this case, we call X a complete vector field, and call Φ the
R-action generated by X.

smooth.
25This is just a statement of the existence and uniqueness theorem for first-order ordinary

differential equations.
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The picture is as follows: an R-action Φ induces a vector field X on M, and X
generates Φ. We think of the group {Φt} as consisting of the finite transformations
generated by the infinitesimal transformations X (here and below, “infinitesimal”
always means “living in the tangent space”). When X is incomplete, Φ(t, x) is
not defined for all pairs (t, x). In this case, Φ is known as a local flow. For many
purposes, local flows are nearly as nice as flows, and it is still helpful to think of
them as having vector fields as their infinitesimal generators.

3.2 Symplectic Manifolds

DEFINITION 5 (Symplectic Manifold). Let M be a manifold. A symplectic form
on M is a closed nondegenerate two-form, ω. Here nondegeneracy means that at
each x ∈ M the map ω�(x) : v ∈ TxM �→ ω(v, ·) ∈ T ∗

xM is injective.26 The pair
(M,ω) is called a symplectic manifold.27

DEFINITION 6 (Symplectic Symmetry). Let (M,ω) be a symplectic manifold. A
symplectic symmetry of (M,ω) is a diffeomorphism Φ : M → M that preserves ω
in the sense that Φ∗ω = ω (i.e., the pullback of ω by Φ is just ω).

EXAMPLE 7 (Cotangent Bundle Symplectic Structure). Let Q be a finite- or
infinite-dimensional manifold and let T ∗Q be its cotangent bundle. We define a
canonical symplectic form on T ∗Q as follows. Let π : T ∗Q→ Q be the canonical
projection (q, p) �→ q, and let Tπ be the corresponding tangent map. There is a
unique one-form θ on T ∗Q such that θ(q, p) ·w = p(Tπ ·w) for all (q, p) ∈ T ∗Q and
all w ∈ T(q,p)T

∗Q. We can then define the desired symplectic form as ω := −dθ,
where d is the exterior derivative on T ∗Q.28

Let (M,ω) be a symplectic manifold, and let C∞(M) be the set of smooth
functions on M. For present purposes, the fundamental role of ω is to allow us to
associate with each f ∈ C∞(M) a smooth vector field Xf on M : Xf is implicitly
defined by the equation ω(Xf , ·) = df, where df is the exterior derivative of f (the
nondegeneracy of ω guarantees that there is a unique solution to this equation).29

We say that f generates Xf or that Xf is generated by f.

This basic construction has two fruits of the first importance:

26Of course, for finite-dimensional M, ω�(x) is surjective if and only if injective.
27[Abraham and Marsden, 1978] and [Arnold, 1989] are the standard treatments of mechanics

from the symplectic point of view. [Schmid, 1987] covers some of the same ground for the case
of infinite-dimensional manifolds. [Ortega and Ratiu, 2004] is a comprehensive reference on the
geometry and symmetries of finite-dimensional symplectic spaces (including singular spaces).
[Cannas da Silva, 2006] is a helpful survey of symplectic geometry. [Weinstein, 1981] and [Gotay
and Isenberg, 1992] offer overviews of the role of symplectic geometry in mathematics and physics.

28In the finite-dimensional case and relative to a set of cotangent coordinates, ω is given by
equation 2 above.

29In the infinite-dimensional case, Xf may not be defined on all of M. For well-behaved f, we
can deal with this by replacing M by the subspace on which Xf is defined. Below I will suppose
that this has been done. For discussion, examples, and references see [Marsden, 1981, 11 ff.] and
[Marsden and Ratiu, 1994, 106].
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1. Via the map f �→ Xf , ω allows us to define a new algebraic operation on
C∞(M) : the Poisson bracket bracket between f, g ∈ C∞(M) is {f, g} :=
ω(Xf ,Xg).30 This plays a crucial role in the theory of quantization — see
section 3.4 below.

2. Via the map f �→ Xf , ω often allows us to associate smooth functions on
M with one-parameter groups of symmetries of (M,ω), and vice versa. (i)
Let f ∈ C∞(M) and let Xf be the vector field generated by f (via ω), and
suppose that Xf is complete so that we are able to construct a corresponding
flow, ξ = {Φt}t∈R. Then each Φt preserves ω, in the sense that Φ∗

tω = ω.31

Furthermore: f itself is invariant under each Φt.32 (ii) Let ξ = {Φt}t∈R be
a one-parameter group of symplectic symmetries of (M,ω) and let X be the
vector field on M that is the infinitesimal generator of ξ. It is natural to ask
whether we can find an f ∈ C∞(M) that generates X. There are cases in
which this is not possible.33 But in the examples that arise in physics, this
can typically be done. And by (i) above, when we can find such an f, we
find that it is preserved by the flow ξ.34

It is perhaps easier to grasp the function of a symplectic structure if one keeps in
mind the Hamiltonian application of this framework.

DEFINITION 8 (Hamiltonian System). A Hamiltonian system, (M,ω, h), consists
of a symplectic manifold, (M,ω), called the phase space, and a function h : M → R,
called the Hamiltonian.

30The Poisson bracket is a Lie bracket that obeys Leibniz’s rule, {fg, h} = f{g, h}+ g{f, h}.
31Indeed, we can further note that the Lie derivative of ω along Xf vanishes — and this holds

even when Xf is incomplete. This provides a sense in which the local flow generated by an
incomplete vector field preserves ω.

32Indeed, the Lie derivative of f along Xf vanishes. This also holds when Xf is incomplete —
so there is a sense in which the local flow generated by such an incomplete vector field preserves
f.

33See [Ortega and Ratiu, 2004, §4.5.16] for an example. See [Butterfield, this volume, §2.1.3]

for further discussion.
34 More ambitiously, let G be a Lie group acting on M via symplectic symmetries, with dim G >

1. Such a group will contain many one-parameter subgroups — as the group of isometries of
Euclidean space contains a one-parameter group of translations corresponding to each direction in
Euclidean space and a one-parameter group of rotations corresponding to each axis in Euclidean
space. In this case, we can hope that for each one-parameter subgroup of G it is possible to
find a function on M that generates that subgroup. If all goes very well — as it does in many
examples that arise in physics — we can hope that the algebra of Poisson brackets between these
generators will mirror the algebra of the group (i.e., there will be a Lie algebra isomorphism here).
In this case, we speak of the existence of a momentum map (warning: terminology varies —
many authors call these infinitesimally equivariant momentum maps). If f and g are functions
on M such that their Poisson bracket vanishes, then we find that f is invariant under each
symplectic symmetry in the one-parameter group generated by g. In particular, if G is a group of
symplectic symmetries of (M, ω) and f a function on M such that the Poisson bracket of f with
any function generating a one-parameter subgroup of G vanishes, then each of these generators
is invariant under the one-parameter group of symmetries generated by f. [Woodhouse, 1991,
§3.4] provides a useful guide to situations under which momentum maps are or are not available.
See [Butterfield, this volume, §6] for further discussion.
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We think of (M,ω) as the phase space of some physical system — such as the
space of particle positions and momenta — and of h as assigning to each state
of the system the total energy of that state. Together h and ω determine a flow
{Φt}t∈R on M : each Φt maps each state to the state that dynamically follows from
it after t units of time. h will be preserved under this group — this corresponds
to the conservation of energy.35

3.3 Presymplectic Manifolds

In sections 6.2 and 7 below we will be concerned with theories whose space of
solutions and space of initial data are not symplectic.

DEFINITION 9 (Presymplectic Manifold). Let M be a manifold. A presymplectic
structure on M is a closed degenerate two-form, ω; we call (M,ω) a presymplectic
manifold.36 Here degeneracy means: at each point x there is a nontrivial nullspace
Nx ⊂ TxM consisting of tangent vectors v such that ωx(v, ·) = 0.

A presymplectic structure ω on a manifold M induces a partition of M by sub-
manifolds, {Mα} as follows. We define an equivalence relation on M by declaring
x, y ∈ M to be equivalent if they can be joined by a curve γ : R → M each of
whose tangent vectors is null — i.e., γ̇(t) ∈ Nγ(t) for each t ∈ R. The equivalence
classes, Mα, of this relation are called gauge orbits. For x ∈M we also denote the
gauge orbit containing x by [x]. Each gauge orbit is a submanifold of M.37 We call
a function f ∈ C∞(M) gauge-invariant if f(x) = f(y) whenever x and y belong
to the same gauge orbit of M (i.e., a function is gauge-invariant if and only if it is
constant on gauge orbits).

We call a diffeomorphism from M to itself which preserves a presymplectic
form ω a presymplectic symmetry of (M,ω). We say that two presymplectic sym-
metries, Φ and Φ′, agree up to gauge if for each x ∈ M, [Φ(x)] = [Φ′(x)] (i.e., for
each x ∈M, Φ and Φ′ map x to the same gauge orbit); we call the set of presym-
plectic symmetries that agree with Φ up to gauge the gauge equivalence class of
Φ. Similarly, we will say that two one-parameter groups, ξ = {Φt} and ξ′ = {Φ′

t},
of presymplectic symmetries agree up to gauge if Φt and Φ′

t agree up to gauge for
each t; the gauge equivalence class of ξ = {Φt} comprises all ξ′ that agree with it
up to gauge in this sense.

35Often it will be possible to identify a larger group G of symplectic symmetries of (M, ω)
that leaves h invariant (such as the group of Euclidean symmetries acting in the obvious way in
Newtonian particle mechanics). Then a momentum map (see preceding footnote) would allow
one to construct dim G independent quantities, whose algebra would mirror that of G, and that
would be conserved under the dynamics generated by h.

36Terminology varies: often (but not here) symplectic forms count as special cases of presym-
plectic forms; sometimes (but not here) presymplectic forms are required to have constant rank
or to have well-behaved spaces of gauge orbits. On presymplectic geometry, see, e.g., [Gotay and
Nester, 1980].

37If X and Y are null vector fields on M (i.e., X(x), Y (x) ∈ Nx for each x ∈ M) then, [X, Y ]
is also a null vector field. It follows (by Frobenius’ theorem) that the Nx form an integrable
distribution, with the Mα as the integral manifolds.
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If a presymplectic symmetry Φ : M →M fixes each Mα (i.e., Φ maps points in
Mα to points in Mα), then we call Φ a gauge transformation. Note that a gauge
transformation agrees up to gauge with the identity map on M.

In the symplectic case: when all goes well, the equation ω(Xf , ·) = df allows
one to associate each smooth function on a symplectic manifold (M,ω) with a
one-parameter group of symplectic symmetries of (M,ω) — and vice versa.

In the presymplectic case: when all goes well, the equation ω(Xf , ·) = df allows
one to associate each smooth gauge-invariant function on a presymplectic manifold
(M,ω) with a gauge equivalence class of one-parameter groups of presymplectic
symmetries of (M,ω) — and vice versa. So in the presymplectic case: if f generates
the one-parameter group ξ = {Φt} of presymplectic symmetries via the equation
ω(Xf , ·) = df, then it also generates each ξ′ = {Φ′

t} in the gauge equivalence class
of ξ.

Note an interesting special case: any solution Xf of the equation ω(Xf , ·) = df
for f a constant function is a vector field on M consisting of null vectors; so
the corresponding one-dimensional group of presymplectic symmetries of (M,ω)
consists of gauge transformations. Conversely: if ξ = {Φt} is a one-parameter
group of gauge transformations of (M,ω), then any function that generates ξ (via
ω) is a constant function.

Given a presymplectic manifold (M,ω), we can construct M ′ the space of gauge
orbits of M. M ′ inherits a topological structure from M.38 We will call the process
of passing from M to M ′ reduction, and call M ′ the reduced space. In general, M ′

need not be a manifold, nor anything nearly so well-behaved as the spaces we want
to consider below.39 But when all goes well (as it usually does in the sort of cases
considered below) M ′ will inherit from M a smooth structure (so it will be a space
with at most mild singularities). And so long as some further technical conditions
on ω hold, M ′ inherits from (M,ω) a two-form ω′ that is nondegenerate as well
as closed.40 So, in this case, (M ′, ω′) is a symplectic space. Note that each gauge-
invariant f ∈ C∞(M) corresponds to a unique f ′ ∈ C∞(M ′). While f generates
an equivalence class of one-parameter groups of presymplectic transformations of
(M,ω), f ′ generates a single one-parameter group of symplectic transformations
of (M ′, ω′).41

38We equip M ′ with the quotient topology, according to which a set U ′ ⊂ M ′ is open if and
only if π−1(U ′) is open in M (here π is the projection x ∈M �→ [x] ∈M ′).

39If (M, ω, H) is a Hamiltonian system in the sense of definition 8 above, then the restriction
of ω to a surface, E, of constant energy is presymplectic — with the gauge orbits of (E, ω |E)
being the dynamical trajectories of the Hamiltonian system. If the dynamics is ergodic, then
generic trajectories come arbitrarily close to each x ∈ E. It follows that the quotient space E′
has the trivial topology, according to which the only open sets are the empty set and the space
itself.

40See [Marsden, 1981, 6] and [Ortega and Ratiu, 2004, §6.1.5].
41Each presymplectic symmetry of (M, ω) corresponds to a symplectic symmetry of (M ′, ω′),

with two presymplectic symmetries correspond to the same symplectic symmetry if and only if
they agree up to gauge. Thus each gauge equivalence class of presymplectic symmetries cor-
responds to a single symplectic symmetry. And each gauge equivalence class of one-parameter
groups of presymplectic symmetries corresponds to a single one-parameter group of symplectic
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3.4 Symplectic Structures and Quantization

Quantization is the process of constructing a quantum counterpart to a given
classical theory.42 As it is presently understood, it is a process which takes as
its starting point a theory in Hamiltonian or Lagrangian form (or the discrete-
time analog of such a theory). One does not know how to quantize a theory qua
differential equations directly, without passing first to a Hamiltonian or Lagrangian
recasting of the theory.43

The following observations lend some plausibility to the idea that a symplectic
structure is the sine qua non of quantization.

1. The core notion of quantization involves the following steps. One begins with
a symplectic space (the space of classical solutions or initial data) and selects
a set of functions on this space (classical physical quantities) that is closed
under addition and the Poisson bracket induced by the symplectic structure.
One then looks for a set of operators (quantum observables) acting on a
space of quantum states, such that the algebra of these operators mirrors (or
approximately mirrors, with increasingly better match as one approaches the
classical limit) the algebra (under addition and the Poisson bracket) of the
chosen classical quantities. One may then also need to take the further step
of adding a Hamiltonian operator that implements the quantum dynamics.

2. Some classical theories have the unfortunate feature that when cast in La-
grangian or Hamiltonian form, they come to us with a space of solutions or
initial data that is merely presymplectic. Typically, it is known that there
is a symplectic space in the offing via reduction, as outlined above in section
3.3. But it may be difficult to construct this space, or it may happen, for
one reason or another, that it seems easier to work with the presymplec-
tic version of the theory. So a number of strategies have been developed
for quantizing theories in presymplectic form: gauge fixing, Dirac constraint
quantization, BRST quantization, etc. But it is very natural to think of each
of these techniques as offering an indirect approach to the quantization of
the underlying symplectic space.44

However, there exist approaches to quantization that do not appear to employ the

symmetries of the reduced space.
42For overviews of the literature on quantization, see [Landsman, this volume] and [Ali and

Englǐs, 2005].
43For an attempt to show that in order for a theory to be quantizable, it must be derivable

from a Lagrangian, see [Hojman and Shepley, 1991].
44(i) Gauge fixing just amounts to finding a submanifold of the presymplectic space that is

symplectically isomorphic to the reduced space; see, e.g., [Henneaux and Teitelboim, 1992, §1.4].
(ii) For Dirac’s approach, see [Dirac, 2001] or [Henneaux and Teitelboim, 1992]. It is felt Dirac’s
algorithm should be amended when its output differs from the result of directly quantizing the
reduced theory; see, e.g., [Duval et al., 1990]. (iii) In the case of finite-dimensional systems, it can
be shown that application of the BRST algorithm leads to a quantization of the reduced theory;
see, e.g., [Loll, 1992] or [Tuynman, 1992]. (iv) On the relation between the BRST approach and
the suggested amendment of the Dirac approach, see [Guillemin and Sternberg, 1990, §12].
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symplectic structure of the classical spaces at all — for example Mackey quan-
tization (which has a somewhat limited range of application) and path integral
quantization (which has very wide application, but murky foundations in its ap-
plication to field theories). As emphasized in [Landsman, this volume], the relation
between the classical and the quantum is far from completely understood.

4 LAGRANGIAN FIELD THEORY

Differential equations are normally given to us in the following way. We are given a
set of independent variables and a set of dependent variables, and a space of func-
tions, K, consisting of functions, u, that map values of the independent variables
to values of the dependent variables. A differential equation ∆ can be thought
of as a condition on a function and its derivatives that is satisfied by only some
u ∈ K. We call the u that satisfy ∆ the solutions to ∆ and denote the space of
such solutions by S.

In physical applications, the independent variables typically parameterize space,
time, or spacetime while the dependent variables parameterize the possible values
of some quantity of interest. We can think of the functions u ∈ K as describing
situations that are in some sense possible and of solutions u ∈ S as describing
situations that are genuinely physically possible according to the theory whose
laws are encoded in ∆. Although the terminology is not wholly perspicuous, I
will speak of elements of K as corresponding to kinematical possibilities and of
elements of S as corresponding to dynamical possibilities.

EXAMPLE 10 (Mechanics of a Particle). Consider the theory of a particle a par-
ticle in Euclidean space subject to a position-dependent force. The independent
variable parameterizes time and the dependent variables parameterize the possi-
ble positions of the particle; an arbitrary continuous functions x(t) of the form
t ∈ R �→ x(t) ∈ R

3 describes a kinematically possible pattern of behaviour of the
particle; x(t) describes a dynamically possible behaviour if it satisfies the Newto-
nian equation ẍ(t) = F (x(t)).

EXAMPLE 11 (The Klein–Gordon Field). The usual theory of a scalar field has
the following ingredients: as independent variables we take inertial coordinates
{t, x, y, z} on Minkowski spacetime, V ; the theory has a single dependent variable,
parameterizing the real numbers; so the kinematically possible fields are given by
(suitably smooth) real-valued functions on Minkowski spacetime; the dynamically
possible fields are those Φ : V → R satisfying the Klein–Gordon equation,

∂2Φ
∂t2
− ∂2Φ

∂x2
− ∂2Φ

∂y2
− ∂2Φ

∂z2
−m2Φ = 0.

Our primary concern below is with field theories — those physical theories whose
laws are encoded in differential equations whose independent variables parameter-
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ize spacetime.45 We think of such a field theory as consisting of the following
components: a spacetime V ; a space W in which the fields take their values,
a space, K, of kinematically possible fields (i.e., of functions from V to W sat-
isfying suitable smoothness and boundary conditions); and a set of differential
equations ∆.

This section has the following structure. In the first subsection below I discuss
the Lagrangian approach, in which one singles out the set of dynamical possibil-
ities within the space of kinematical possibilities via a variational problem for a
Lagrangian rather than via the direct imposition of a differential equation. In
the second subsection, I discuss a very important advantage of the Lagrangian
approach over the direct approach: the former but not the latter allows one to
equip the space of dynamical possibilities with a (pre)symplectic form. In the
third subsection, I discuss the celebrated relation between conserved quantities
and symmetries in the Lagrangian approach, first discerned by Noether. The dis-
cussion of these subsections is based upon [Zuckerman, 1987] and [Deligne and
Freed, 1999, Chapters 1 and 2]; see also [Woodhouse, 1991, Chapters 2 and 7].

Before beginning it will be helpful to make some more specific assumptions
about the theories we will be discussing. These assumptions will be in force
throughout the remainder of the chapter.

Spacetime. Our spacetime V will always be an n-dimensional Hausdorff manifold
V, with the topology M × R for some (n − 1)-manifold M. We will always
think of time as having the topology of R, so we will say that a spacetime
with topology M ×R has spatial topology M. In particular, we will say that
V is spatially compact if M is compact.

In most theories, the geometry of spacetime is fixed from solution to solu-
tion. So we typically think of V as carrying a solution-independent geomet-
rical structure (I will be lazy, and sometimes use V to denote the manifold,
sometimes the manifold and the geometry together).46 Without worrying
about precision, I will stipulate now that we will only be interested in space-
times that are well-behaved. Examples: Newtonian spacetime, neoNewto-
nian spacetime, Minkowski spacetime, or other globally hyperbolic general
relativistic spacetimes.

The spacetime geometries that we consider single out a distinguished class of
hypersurfaces in V that correspond to instants of time.47 In prerelativistic

45Prima facie, the ontology of such a classical field theory satisfies Lewis’s Humean superve-
nience — “the doctrine that all there is to the world is a vast mosaic of local matters of particular
fact, just one little thing after another. . . . We have geometry: as system of external relations
of spatiotemporal distance between points. . . . And at those points we have local qualities:
perfectly natural intrinsic properties which need nothing bigger than a point at which to be
instantiated. . . . And that is all” [1986, ix f.]. Indeed, Lewis says that the picture was “inspired
by classical physics” [1999, 226]. See [Butterfield, Unpublished] for doubts about the fit between
Humean supervenience and classical physics.

46We could also allow V to carry non-geometrical solution-independent structures, correspond-
ing to external fields etc.

47 The crucial point is this: one needs to choose boundary conditions and a notion of instant
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spacetimes the instants are just the hypersurfaces of absolute simultaneity.
Typically, in relativistic spacetimes the instants are just the Cauchy sur-
faces. Occasionally in highly symmetric relativistic spacetimes, one requires
instants to be Cauchy surfaces with nice symmetries — thus one might in
some contexts require instants in Minkowski spacetime to arise as hyper-
surfaces of simultaneity relative to an inertial observer. Furthermore, in
spacetimes carrying geometrical structures, it often makes sense to speak of
certain curves in V as possible worldlines of point-particles. In prerelativistic
spacetime, a curve counts as a possible worldline of a point-particle if it is
transverse to the hypersurfaces of simultaneity; in relativistic spacetime such
possible worldlines are given by timelike curves.

In addition to considering field theories set in fixed general relativistic back-
ground spacetimes, we also want to consider general relativity itself as a
Lagrangian field theory. In that context the spacetime metric g is itself dy-
namical and varies from solution to solution. With this example in mind, we
will allow a bare manifold of topology M×R unequipped with any geometry
to count as a spacetime for present purposes, so that general relativity can
be developed alongside theories set in a fixed geometrical background. Note
that even in a theory like general relativity in which the spatiotemporal ge-
ometry is dynamical we can still speak of a hypersurface as being an instant
relative to a solution g.48

Field Values. We will take W, the space of field values, to be a finite-dimensional
vector space. However, we could afford to be more general, at the price of
complicating some of the notation below. Our K is a space of sections of
a trivial vector bundle over V ; it follows that for Φ ∈ K a tangent vector
δΦ ∈ TΦK is also a map from V to W. We could have allowed K to be a
space of sections of an arbitrary fibre bundle E → V. The chief complication
that this would introduce is that a tangent vector δΦ ∈ TΦK would then be
a section of the bundle Φ∗T (E/V ).

Kinematically Possible Fields. In setting up a rigourous classical field theory,
care must be taken in selecting differentiability and boundary conditions to
impose on the kinematically possible fields. We can here afford to neglect
such details, and just say that for each theory considered below, K is taken
to be a space of well-behaved functions Φ : V → W, required to satisfy
appropriate conditions of differentiability and behaviour at infinity, but oth-
erwise arbitrary. Note that while K will be a manifold (often even an affine

in such a way that for certain (n − 1)-forms, ω, for any instant Σ ⊂ V,
R
Σ ω converges, and is

independent of the instant chosen (cf. fnn. 61 and 73 below). In the standard cases, the obvious
notions of instant suffice.

48Of course, in a theory in which the spacetime geometry is a solution-independent matter,
Σ ⊂ V is an instant relative to a solution Φ if and only if it is an instant according to the
geometry of V.
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or linear space), in general S will be a nonlinear subspace of K with mild
singularities.

Differential Equations. The Lagrangian framework sketched below is very gen-
eral and does not require a restriction on the order of the differential equa-
tions. However, because in later sections we will often be interested in com-
paring Hamiltonian and Lagrangian versions of the same theory, and because
the Hamiltonian framework takes second-order equations as its point of de-
parture, we will restrict attention to such equations beginning in section 5
below.

REMARK 12 (Finite-Dimensional Theories as Field Theories). In a classical the-
ory of a system with finitely many degrees of freedom (finite systems of particles,
rigid bodies, etc.) the configuration space Q is a manifold parameterizing the
possible dispositions of the system in physical space. A history of the system is a
curve x : t ∈ R �→ x(t) ∈ Q. We can fit such theories into the present framework,
by taking W = Q and V = R (so the only independent variable is time). No
harm comes of treating such a theory as a degenerate case of a field theory, so
long as one does not forget that in this case the “spacetime” V parameterized by
the independent variables of the theory is distinct from the spacetime in which the
system is located.

REMARK 13 (Notation). Because a choice of V and W is implicit in a choice of
K, we can denote a field theory by (K,∆).

4.1 The Lagrangian Approach

The role of the differential equations ∆ of a theory is to cut down the space of
kinematical possibilities K to the space of dynamical possibilities S.49 The key
insight of the Lagrangian approach is that for the vast majority of equations that
arise in classical physics, there is an alternative way of singling out the subspace
of solutions.50

49The text of this section is informal. More precise statements are given in the footnotes. The
following terminology and results will be helpful.

The space V × K is a manifold, and so carries differential forms and an exterior derivative
operator. For 0 ≤ p ≤ n and q ≥ 0 let Ωp,q(V ×K) be the space of q-forms on K that take their
values in the space of p-forms on V : thus if K ∈ Ωp,q(V ×K), Φ ∈ K, and δΦ1, . . . , δΦq ∈ TΦK
then K(Φ, δΦ1, . . . , δΦq) is a p-form on our spacetime V. Each differential form on V ×K belongs
to some Ωp,q(V × K). Furthermore, we can write the exterior derivative, d, on V × K as d =
D + ∂, where D is the exterior derivative on V, mapping elements of Ωp,q(V × K) to elements
of Ωp+1,q(V × K) (for 0 ≤ p < n), and ∂ is the exterior derivative on K, mapping elements of
Ωp,q(V ×K) to elements of Ωp,q+1(V ×K). We have ∂D = −D∂.

Note that if Φ ∈ K then a tangent vector δΦ ∈ TΦK is itself a map from V to W. So for each
admissible p and q we can consider the subspace Ωp,qloc(V × K) ⊂ Ωp,q(V × K) of local forms
consisting of those K such that for any Φ ∈ K and δΦ1, . . . , δΦq ∈ TΦK, the value of the p-form
K(Φ, δΦ1, . . . , δΦq) at spacetime point x ∈ V depends only on the values at x of Φ, δΦ1, . . . , δΦq ,
and finitely many of their derivatives.

50For discussion of the scope of the Lagrangian approach, see [Bluman, 2005, §2.1].
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DEFINITION 14 (Lagrangian). Let K be a space of kinematically possible fields.
A Lagrangian, L, on K is a local map from K to the space of n-forms on V (to say
that L is local is to say that the value of L(Φ) at a point x ∈ V depends only on
the values at x of Φ and finitely many of its derivatives).51

Given a Lagrangian L, one can proceed, as in the treatment of the n-body
problem sketched in section 2.3 above, to look for those kinematically possible Φ
with the special property that infinitesimal perturbations at Φ make no difference
to the value of

∫
L(Φ).

DEFINITION 15 (Variational Problem). Note that for each compact U ⊂ V,
SU : Φ �→ ∫

U
L(Φ) is a real-valued function on K. Let us call the assignment

U �→ SU the variational problem of L.

DEFINITION 16 (Stationary Fields). We call Φ ∈ K stationary for L if for each
compact U ⊂ V the effect of infinitesimally perturbing Φ inside U has no effect
on the value of SU .52

DEFINITION 17 (Lagrangian Admitted by ∆). We call L a Lagrangian for (K,∆)
if the set of Φ stationary for L coincides with the space S of solutions of ∆. In this
case we also say that ∆ admits the Lagrangian L, and speak of S as the space of
solutions of (K, L).

REMARK 18 (Euler–Lagrange Equations). Given a Lagrangian, one can always
find a set of equations ∆ (the Euler–Lagrange equations for L) so that L is a
Lagrangian for ∆. That is: a kinematically possible field Φ : V →W is stationary
for a Lagrangian L if and only if the Euler–Lagrange equations for L are satisfied.
For Lagrangians depending only on the fields and their first-order derivatives, these
equations require that

∂L

∂Φα
(xa)−

n∑
a=1

∂

∂xa

(
∂L

∂Φαa

)
(xa) = 0 (4)

hold at each point x ∈ V (here a indexes coordinates on V, α indexes coordinates
on W, and Φαa stands for ∂

∂xa
Φα).53

51That is, L ∈ Ωn,0loc (V ×K).
52That is, Φ is stationary for L if for each compact U ⊂ V and for each δΦ ∈ TΦK whose

support is contained in U we find that ∂SU (δΦ) =
R
U ∂L(Φ, δΦ) vanishes. We can think of this

as follows: fixing Φ, U, and δΦ, we find a curve Φ[ε] : [−1, 1] → K such that Φ[0] = Φ and
d
dε

Φ[ε]) |ε=0= δΦ; the requirement that ∂SU (δΦ) = 0 amounts to d
dε

R
U L(Φ[ε]) |ε=0= 0.

53 Of course, there is a coordinate-independent description of this. It is possible to show that
∂L = E + DM, where E ∈ Ωn,1loc (V ×K) and M ∈ Ωn−1,1

loc (V ×K), with E determined uniquely

by L and M determined up to the addition of an exact form DN, with N ∈ Ωn−2,1
loc (V ×K). The

condition that ∂SU (δΦ) = 0 becomes
R
U E(Φ, δΦ) + DM(Φ, δΦ) = 0 for all δΦ whose support

is contained in U. Since δΦ vanishes along the boundary of U, Stokes’s theorem tells us that the
second integrand makes no contribution. So Φ is stationary if and only if

R
U E(Φ, δΦ) = 0 for

all such U and admissible δΦ — which is equivalent to saying that E(Φ, δΦ) = 0 for all such δΦ.
Relative to coordinates, this last equation is equivalent to equation 4 in the case of a Lagrangian
depending only on first derivatives.
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REMARK 19 (Trivially Differing Lagrangians). Let us say that Lagrangians L and
L′ differ trivially if L′ is of the form L′(Φ) = L(Φ) + αΦ for each Φ ∈ K with αΦ

an exact Φ-dependent n-form on V.54 Let us say that if L and L′ are Lagrangians,
their variational problems U �→ SU and U �→ S′

U are equivalent if for each compact
U ⊂ V and field Φ ∈ K, we have that any infinitesimal perturbation of Φ leaves
the value of SU unchanged if and only if it leaves the value of S′

U unchanged.55

Lagrangians that differ trivially have equivalent variational problems.56 It follows
that trivially differing Lagrangians have the same space of solutions — indeed,
they have the same Euler–Lagrange equations.57

REMARK 20 (Uniqueness of Lagrangians). The previous remark shows that if ∆
does admit a Lagrangian, it will admit infinitely many that differ trivially. Some
∆ also admit multiple Lagrangians that do not differ trivially — e.g., the Newto-
nian equations for a particle moving in a spherical potential in three-dimensional
Euclidean space.58

REMARK 21 (Existence of Lagrangians). Not every set of equations ∆ admits a
Lagrangian.59 A charged particle moving in the electromagnetic field of a magnetic
monopole is an example of a system that does not admit a Lagrangian treatment.60

54I.e., L′ = L + DK where K ∈ Ωn−1,0
loc (V ×K).

55That is: the variational problems U �→ SU and U �→ S′
U for Lagrangians L and L′ are

equivalent if for every compact U ⊂ V, every field Φ ∈ K, and every tangent vector δΦ ∈ TΦK
with support contained in U, we have that ∂SU (Φ)(δΦ) = 0 if and only if ∂S′

U (Φ)(δΦ) = 0.
56Let L′ = L + DK with K ∈ Ωn−1,0

loc (V × K). Then for any compact U ⊂ V, Φ ∈ K, and
δΦ ∈ TΦK with support contained in U, we have ∂SU (Φ)(δΦ)−∂S′

U (Φ)(δΦ) =
R
U ∂DK(Φ)(δΦ).

But ∂D = −D∂, so the right hand side is − R
U D∂K(Φ)(δΦ), which vanishes (by Stokes’s theorem

and the fact that δΦ vanishes on the boundary of U).
57That is, if Lagrangians L and L′ differ by a term of the form DK, then they share the same

Euler–Lagrange operator E.
58See [Crampin and Prince, 1988] and [Henneaux and Shepley, 1982] for this example. For

field-theoretic examples, see [Nutku and Pavlov, 2002]. For a topological condition on V ×W
sufficient to ensure that ∆ does not admit nontrivially differing Lagrangians, see [Anderson and
Duchamp, 1980, Theorem 4.3.ii].

59The problem of determining whether a given set of differential equations admits a Lagrangian
is known as the inverse problem of the calculus of variations among mathematicians and as
Helmholtz’s problem among physicists. [Prince, 2000] is a helpful survey of results concerning
finite-dimensional systems. [Anderson and Duchamp, 1980, §5] includes examples of field theories
that do not admit Lagrangian formulations.

60See [Anderson and Thompson, 1992, 4 f.]. For other examples, see [Prince, 2000].
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4.2 The Structure of the Space of Solutions

The choice of a Lagrangian L allows us to equip S with a closed two-form, Ω.61

So when Ω is nondegenerate, (S,Ω) is a symplectic space; otherwise, it is presym-
plectic.62 Roughly speaking, one expects that Ω is nondegenerate if and only
if the equations, ∆, of our theory have the property that specifying initial data
determines a unique inextendible solution.63

The choice of a Lagrangian brings into view the sort of structure required for
the construction of a quantum theory. A set of differential equations ∆ alone
does not appear to determine such structure, and it is not known how to quantize
a differential equation directly, without the introduction of a Lagrangian or a
Hamiltonian. If ∆ admits a Lagrangian L, then it also admits the whole class of
Lagrangians that differ trivially from L (see remark 20 above). Unsurprisingly,
trivially differing Lagrangians induces the same Ω on S.64 But when ∆ admits
Lagrangians L and L′ that differ nontrivially, these Lagrangians can induce distinct
geometric structures on S; and one expects that these distinct (pre)symplectic
structures will lead to distinct quantizations of the given classical theory.65 In the
case mentioned above of a particle moving in a spherical potential, each of these
elements is present: multiple nontrivially differing Lagrangians lead to distinct
symplectic structures on the space of solutions, which lead in turn to physically
distinct quantizations.66

61Recall from footnote 53 above that we have the decomposition ∂L = E + DM, with E
unique and M unique up to the addition of a D-exact form. We now define Z := ∂M. Z ∈
Ωn−1,2
loc (V × K) and is uniquely determined by L up to the addition of a term of the form DY,

with Y ∈ Ωn−2,2
loc (V ×K).

Let Φ ∈ S be a solution, let δΦ1, δΦ2 ∈ TΦS, and let Σ ⊂ V be an instant relative to Φ.
Then we define ΩΣ(Φ, δφ1, δΦ2) :=

R
Σ Z(Φ, δΦ1, δΦ2). We assume nice boundary conditions at

infinity, so that ΩΣ is well-defined, and so that replacing Z by Z + DY makes no difference to
ΩΣ. We find that the value of ΩΣ is independent of the instant chosen — because Z(Φ, δΦ1, δΦ2)
is closed as an (n − 1)-form on V and we have been careful in our choice of notion of instant
(see fn. 47). So we drop the subscript, and think of Ω as a two-form on S, closed because Z is
∂-exact.

62Lagrange appears to have been the first to equip the space of solutions to a dynamical
problem with this symplectic structure; see [Weinstein, 1981, §2], [Souriau, 1986], or [Iglesias,
1998].

63As we will see below in 6.2, if the equations of motion admit gauge symmetries (so that
uniqueness fails in a certain dramatic way), then Ω is presymplectic. I believe it is widely
thought that this is the only way that Ω can fail to be symplectic — at least for the sort of
examples that arise in physics.

64Replacing L by L + DK alters Z a term of the form DY, Y ∈ Ωn−2,2
loc (V ×K). But because

it is D-exact, this new term will not contribute to the integral over space that defines Ω (by
Stokes’s theorem and boundary conditions).

65When (as in the Newtonian case) the equations of motion are second-order and the space of
solutions is finite-dimensional, Lagrangians L and L′ induce the same two-form on the space of
solutions if and only if they differ trivially; see [Crampin and Prince, 1988, §II]. Presumably this
in fact holds for a much wider range of cases.

66See [Henneaux and Shepley, 1982].
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4.3 Symmetries and Conserved Quantities

Given a set of equations ∆ and a Lagrangian L admitted by ∆, there are three
distinct notions of symmetry we might consider.67 Roughly speaking, a symmetry
of ∆ is a map from K to itself that fixes S as a set and that is generated by an
object local in the fields and their derivatives.68 We can then consider the subset
of variational symmetries, which also leave the variational problem of L invariant,
or the subset of Lagrangian symmetries that leave L itself invariant. The three
notions are distinct: every Lagrangian symmetry is a variational symmetry, but
some theories have variational symmetries that are not Lagrangian symmetries;
similarly, every variational symmetry is a symmetry of the associated equations
of motion, but some equations that admit Lagrangians have symmetries that are
not variational symmetries of any Lagrangian for the theory.69

For present purposes, it is natural to focus on variational symmetries of phys-
ical theories. For, on the one hand, the class of Lagrangian symmetries excludes
some physically important symmetries — and in any case, within the Lagrangian
approach it is not clear that it is more natural to focus on symmetries of the
Lagrangian than on symmetries of the variational problem. On the other hand,
the class of symmetries of equations that are not variational symmetries does not
appear to include any symmetries of absolutely central physical interest — and it
is at the level of variational symmetries (rather than symmetries of equations) that
the powerful results of Noether, cementing a connection between certain special
types of one-parameter groups of variational symmetries and certain special types
of conserved quantities in classical field theories, are naturally situated.70

Here is a statement of the central result. Let us call a one-parameter group,
ξ = {gt}, of diffeomorphisms from K to itself a Noether group for L if its in-
finitesimal generator leaves invariant the variational problem of L and is local in
the appropriate sense.71 Given a Noether group ξ = {gt} for (K, L), there is

67See [Olver, 1993, Chapters 2, 4, and 5] for the relevant notions. Warning: terminology
varies — sometimes my Lagrangian symmetries are called variational symmetries, sometimes
my variational symmetries are called divergence symmetries, etc.

68See [Olver, 1993, §5.1] for details.
69The wave equation in (2+1) dimensions has a dilational symmetry that is not a variational

symmetry and inversion symmetries that are variational but not Lagrangian; see [Olver, 1993,
Examples 2.43, 4.15, 4.36, and 5.63]. Example 4.35 of the same work shows that Galilean
boosts are variational symmetries for the n-body problem but are not Lagrangian symmetries.
Indeed, no Lagrangian for Newtonian particles subject to forces derived from a potential can
be invariant under the full group of symmetries of neoNewtonian spacetime; see [Souriau, 1997,
Remark 12.136].

70Note, however, that there do exist results establishing links between symmetries of equa-
tions with conserved quantities, without detouring through the Lagrangian framework; see, e.g.,
[Bluman, 2005].

71 More precisely, let ξ be a one-parameter group of diffeomorphisms from K to itself and let X
be the corresponding vector field on K (i.e., X is the vector field whose flow is ξ). ξ is a Noether
group if the following two conditions hold. (i) X is an infinitesimal variational symmetry of L:

there exists an R ∈ Ωn−1,0
loc (V × K) such that ∂L(Φ, (X(Φ)) = DR(Φ) for all Φ ∈ S. (ii) X is

local : for any Φ ∈ K, X(Φ) ∈ TΦK is local on V, in the sense that at any point x ∈ V, we find
that X(Φ)(x) depends only on the value at x of Φ and finitely many of its derivatives (recall that
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a map Jξ, called the Noether current associated with ξ, that maps solutions to
(n − 1)-forms on V.72 Given an arbitrary solution, Φ ∈ S, and an instant Σ ⊂ V
we integrate Jξ(Φ) over Σ to give the Noether charge, Qξ,Σ(Φ) :=

∫
Σ

Jξ(Φ). We
note that Qξ,Σ(Φ) is independent of the Σ chosen (so long as the integral is well-
defined!).73 That is: Qξ,Σ(Φ) is a quantity that is constant in time within the
solution (V,Φ). Thus we might as well denote it simply Qξ(Φ), and think of the
Noether charge, Qξ, associated with ξ as a function on S.

REMARK 22 (Noether Charges Generate Symmetries). Since Ω is a closed two-
form, (S,Ω) is a symplectic or presymplectic space: so the results of sections
3.2 and 3.3 above apply. As one would expect, Qξ is in fact the symplectic/a
presymplectic generator of the one-parameter group ξ (thought of now as acting
on S). The beauty of Noether’s result is that it shows how to construct the
generator of ξ via the integration of local objects on spacetime.

REMARK 23 (Trivial Conservation Laws). So far, nothing we have said guaran-
tees that Qξ is an interesting function on S — it might, for instance be a the zero
function, if Jξ(Φ) is exact as an (n−1)-form on V. Such trivial Noether charges do
in fact occur when Ω is presymplectic and ξ is a group of gauge transformations.
We will see examples of this in section 6.2 below.

5 TIME AND CHANGE IN WELL-BEHAVED FIELD THEORIES

Turn we now to the representation of time and change in physical theories. In the
remaining sections Hamiltonian formulations of theories will play an important
role. So we henceforth restrict attention to theories with second-order equations
of motion.

In this section, we discuss ideally well-behaved theories. We impose three further
assumptions, which are in effect jointly for this section only: (a) global existence of
solutions; (b) uniqueness of solutions; (c) our spacetime admits a time translation
symmetry under which the variational problem of our Lagrangian is invariant.

We will see that in this context, we have three R-actions: a notion of time
translation on spacetime; a notion of time translation on the space of solutions of
the theory; and a notion of time evolution on the space of initial data of the theory.
We also find that the space of solutions and the space of initial data are isomorphic
as symplectic spaces, and that there is a natural intertwining of the notion of time

an element of TΦK is itself a map from V to W ).
72The Noether current associated to L and ξ is the element of Jξ ∈ Ωn−1,0

loc (V × K) given
by Jξ(Φ) := R(Φ) −M(Φ, X(Φ)), where X is the infinitesimal generator of ξ, R is the object
introduced in the preceding footnote, and M is the object introduced in footnote 53.

73 Because Jξ(Φ) is closed as an (n − 1)-form on V and because we have been careful in our
choice of notion of instant (see fn. 47). Note, in fact, that so long as Σ, Σ′ ⊂ V are compact
(n−1)-manifolds that determine the same homology class in V, we will have

R
Σ Jξ(Φ) =

R
Σ′ Jξ(Φ)

(see, e.g., [Lee, 2003, 431] and [Lee, 2000, 300 f.] for relevant notions and results). Hence we get
a sort of conservation law even if, e.g., Σ and Σ′ are not spacelike according to the geometry of
V. See [Torre, Unpublished] for an introduction to such conservation laws.
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translation on the space of solutions with the notion to time evolution on the space
of initial data. So in this domain one can say simply (if awkwardly) that time is
represented as a symmetry of the laws — and leave it open whether one means
time translation or time evolution, since in the end the two come to much the
same thing.

This section has five subsections. The first is devoted to the Lagrangian picture,
the second to the Hamiltonian, the third to the relation between these pictures,
the fourth to a discussion of the representation of time and change. The final
subsection offers an overview.

5.1 The Lagrangian Picture

Let us be more precise about the special assumptions in play in this section. We
impose the following conditions on our spacetime V, equations of motion ∆, and
Lagrangian L.

Global Existence of Solutions. We assume that each admissible set of initial
data for ∆ is consistent with a solution defined on all of V.74

Uniqueness of Solutions. If Φ and Φ′ are solutions that agree in the initial data
that they induce on an instant Σ ⊂ V , then they agree at any point x ∈ V
at which they are both defined.

Time Translation Invariance of the Lagrangian. We require our spacetime
V to have a nontrivial geometrical structure, strong enough to single out a
class of (n− 1)-dimensional submanifolds that count as instants and a class
of one-dimensional submanifolds that count as possible worldlines of point-
particles. Let ξ̄ = {ḡt} be a one-parameter group of spacetime symmetries
of V , and consider the orbits of ξ̄ in V (the orbit [x] of ξ̄ through x ∈ V is
the image of the curve x(t) := ḡt · x). We call ξ̄ a time translation group for
V if the orbits of ξ̄ are possible worldlines of point-particles according to the
geometry of V ; in this case, we call these orbits worldlines adapted to ξ̄. We
will typically denote time translation groups as τ̄ .

Let Ḡ be a group of spacetime symmetries of V. Given ḡ ∈ G we can define
a diffeomorphism g : K → K via g(Φ(x)) = Φ(ḡ−1 · x). In decent Lagrangian
theories, one expects that if ξ̄ = {ḡt} is a one-parameter group of spacetime
symmetries, then ξ = {gt} is a Noether group for L. In this situation, ξ will
map solutions to solutions; so that each gt ∈ ξ restricts to a map from S to
itself; these maps are symplectic automorphisms of (S,Ω) (I won’t bother
introducing notation to distinguish between the action of ξ on K and the
restriction of this action to S). In this section we assume that each time

74Since we are restricting attention to theories with second-order equations of motion, speci-
fying initial data involves specifying the field values and their time-rate of change at some initial
instant.
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translation group, τ̄ , of V gives rise in this way to a Noether group, τ, of L.
I will call such a τ a dynamical time translation group.

Within the class of theories that arise in physics, it appears to be an immediate
consequence of the uniqueness assumption that the form Ω induced by L on the
space of solutions in nondegenerate, and hence symplectic. We denote by H the
corresponding conserved quantity guaranteed by Noether’s theorem (in physically
realistic theories, H arises by integrating the stress-energy of the field over an
arbitrary instant).75 Of course, H generates, via Ω, the action of τ on S.

EXAMPLE 24 (Field Theory in Newtonian Spacetime). In Newtonian spacetime,
each symmetry can be written as the product of a time translation with an isometry
of absolute space. In coordinates adapted to the privileged absolute frame, we can
write points of spacetime as (t,x). Then the (orientation-preserving) symmetries
of V are of the form (t,x) �→ (t + s,R(x) + c), where s ∈ R implements a time
translation, R is a matrix implementing a rotation in absolute space, and c ∈ R3

implements a spatial translation. Up to a choice of temporal unit, there is a
unique time translation group, τ̄ : (t,x) �→ (t+s,x); the worldlines of the points of
absolute space are adapted to this group. We are supposing that the corresponding
group τ acting on the space of solutions is a dynamical time translation group.
The Noether charge associated with τ, H : S →R, assigns to each solution the total
energy of the system at any instant (since we are considering a theory invariant
under time translations, the value of the total energy along a slice is a constant).76

EXAMPLE 25 (Field Theory in Minkowski Spacetime). The symmetry group of
Minkowski spacetime is the Poincaré group. Each inertial frame picks out a notion
of simultaneity, and a time translation group, τ̄ ; the worldlines of observers at rest
in the chosen frame will be adapted to this group. (Equivalently, such group is
determined by the choice of a timelike vector in spacetime.) In Poincaré-invariant
field theories we can choose inertial coordinates (t, x1, x2, x3) such that our chosen
τ̄ acts via (t, x1, x2, x3) �→ (t + s, x1, x2, x3). In such coordinates, the Noether
current is just the component T 00 of the stress-energy tensor of the field — the
Noether charge being given, as always, by the integral of the Noether current over
any instant.77

75For the stress-energy tensor and its role in the examples below, see [Choquet-Bruhat and
DeWitt-Morrette, 1989, §II.7] and [Deligne and Freed, 1999, §2.9].

76The Noether charge generating spatial translation (rotation) in a given direction (about a
given axis) assigns to a solution the corresponding component of the linear (angular) momentum
of the system at an instant. In fact, we get a momentum map (see fn. 34) for the action of
the group of symmetries of Newtonian spacetime — the Poisson bracket algebra of the Noether
charges mirrors the Lie bracket relations between the infinitesimal generators of the corresponding
one-parameter groups. It is impossible, however, to construct a momentum map for the symmetry
group of neo-Newtonian spacetime; see [Woodhouse, 1991, §3.4] for this and other examples in
which the construction of a momentum map is impossible.

77One can again construct a momentum map (see fn. 34) — with spacelike translations gen-
erated by the components of linear momentum, etc., in the familiar way.
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EXAMPLE 26 (Field Theories in a Curved Spacetime). While a generic general
relativistic spacetime admits no non-trivial symmetries, a solution in which, intu-
itively, the geometry of space is constant in time admits a time translation group.
Let V be a globally hyperbolic and time-oriented general relativistic spacetime
that possess such a τ̄ . Let Xa be the vector field tangent to the orbits of τ̄ (so X is
a timelike Killing field). Let T ab(Φ) be the stress-energy tensor of the field Φ and
suppose that ∇aT ab = 0 (this typically holds in cases of physical interest). Let
Σ ⊂ V be an instant (i.e., a Cauchy surface) and let na be the field of unit future-
pointing normal vectors along Σ. We can define the energy-momentum vector of
T ab relative to Xa as P b := XaT

ab and define the energy along Σ as
∫
Σ

P anadx.
This last quantity is in fact the Noether charge, and is independent of Σ.

5.2 The Hamiltonian Picture

The basic idea behind the Hamiltonian approach is to work with the space of initial
data of the equations of the theory rather than with the space of solutions to the
equations — roughly and heuristically speaking, this means working with the space
of instantaneous states of the theory rather than with its space of possible worlds.

Deterministic equations of motion tell us what the state of the system must be
at earlier and later times if it is in a given initial state. So, at least for well-behaved
equations of motion, the dynamical content of the equations of motion ought to
be encodable in a flow on the space of initial data, with the integral curves of this
flow being the dynamically possible trajectories through the space of instantaneous
states.

The special assumptions in play in this section (global existence and uniqueness
of solutions and the presence of a dynamical time translation group) imply (at
least for the sort of the theories that arise in physics) that the space of initial data
carries a symplectic structure that generates the dynamics of the theory when
supplemented by the function that assigns to an initial data set the total energy of
a system in that state. The dynamics can be thought of as encoded in an R-action
on the space of initial data that implements time evolution. As we will see, these
structures on the space of initial data — symplectic structure, Hamiltonian, and
group action — are all closely related to the corresponding objects on the space
of solutions that arise on the Lagrangian side.

Intuitively speaking, an instantaneous state of the field is a specification at each
point of space of the value of the field and its time rate of change; and in giving a
sequence of such instantaneous states, we describe how the values of these variables
evolve through time at each point of space. So in order to construct a Hamiltonian
formulation of a theory in which the total history of a system is described via a
trajectory through the space of initial data, we need to effect some sort of notional
decomposition of spacetime into space and time.78

78Note that we did not require any such decomposition in setting up the Lagrangian formalism
in section 4 above. It is, of course, crucial to distinguish the symplectic space of solutions that
arises in this formalism from the symplectic velocity phase space that arises in some Lagrangian
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Informally, we can picture what is required as being a preferred family of ob-
servers together with a notion of simultaneity. Spacetime is partitioned by the
worldlines of these observers (these need not be at rest relative to one another,
but we do require that the worldlines involved be possible worldlines of point-
particles according to the geometry of V ). Each observer carries a clock; and we
suppose that the set of points at which these clocks read t = 0 forms an instant in
V. We call such a set of observers equipped with such a notion of simultaneity a
frame. We say that a frame is adapted to the time translation group τ̄ when the
following two conditions obtain. (i) The worldline of each observer is an orbit of
the group τ̄ acting on V. (ii) Up to a choice of origin and a choice of unit of mea-
surement, τ̄ gives us a parameterization of the set of instants of V, which allows
us to determine ratios of temporal intervals; we require that the clock readings
respect these determinations.

Still speaking informally, we can say that relative to a choice of frame, the
state of the field at time t is an assignment of field value and momentum to each
observer (i.e., the values of the field and its time rate of change at the spacetime
point the observer occupies at the given instant), and that a history of the field is
an assignment of these quantities along the worldline of each observer. So we can
take an initial data set to be a pair of functions (corresponding to the field value
and its time rate of change) defined on the space of observers of our frame — this
space acts as a sort of abstract instant, with the same topological and geometrical
structure as the concrete instants that arise as subsets of V.

We can make this more precise as follows.

DEFINITION 27 (Slicing). Let V be a spacetime with geometry and let S be an
(n−1) -dimensional manifold (possibly carrying a Riemannian metric). Then an S-
slicing of V is a diffeomorphism σ : R×S → V such that: (i) each Σt := σ({t}×S),
t ∈ R, is an instant in V (with σ providing an isomorphism between the geometry
of Σt and the geometry of S, if any); (ii) each Xx := σ(R × {x}), x ∈ S, is a
possible worldline of a point-particle according to the geometry of V. We call S
the abstract instant of σ and each Σt an instant in the slicing. When V admits
a time translation group τ̄ , we call a slicing σ of V adapted to τ̄ if the following
conditions are met: (a) each Xx is an orbit of τ̄ ; (b) any two instants of the slicing
are related by a time translation in τ̄ ; (c) up to a choice unit and origin, the
parameterizations of each Xx given by σ and by τ̄ agree.

EXAMPLE 28 (Newtonian Slicings). In Newtonian spacetime there is of course
a unique partition of spacetime by instants and (up to a choice of unit) a unique
time translation group τ̄ . Furthermore, in this setting it is possible to take S to
be the space of worldlines of the points of absolute space.79 So the only freedom
in constructing a slicing adapted to τ̄ is in choosing an origin and a unit for the

treatments — the latter does, while the former does not, presuppose a division of spacetime into
instants. Cf fn. 6 above.

79This space comes equipped with a natural Euclidean structure — since the distance between
points of absolute space is constant in time, we can define the distance between two worldlines
of such points to be the distance between the points.
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parameterization of the instants by the reals.

EXAMPLE 29 (Flat Minkowski Slicings). In the setting of Minkowski spacetime
it is sometimes natural to restrict attention to instants which arise as surfaces of
simultaneity for inertial observers. In this case, our abstract instant S will again
have the structure of Euclidean space. In order to construct a slicing, we must
choose an instant Σ0 ⊂ V corresponding to t = 0, an isometry from S to Σ0, a
unit of temporal measurement, and a notion of time translation associated to an
inertial observer.

EXAMPLE 30 (Generic Minkowski Slicings). More generally, in the Minkowski
spacetime setting it is possible to allow arbitrary Cauchy surfaces to count as
instants — in this case, one will choose S to have some non-trivial Riemannian
geometry. Now there is a truly vast — indeed, infinite-dimensional — family of
instants to choose from (as we allow the geometry of S to vary). On the bright
side, a generic instant admits no nontrivial isometries — so having chosen S and
Σ there will be no freedom in constructing an isometry from one to the other.

Let us consider a Lagrangian theory satisfying all of the present conditions, and
fix a slicing of V adapted to a notion of time translation, τ̄ , that gives rise to a
dynamical time translation group τ. We can then construct a Hamiltonian version
in the following steps.

1. Given an instant and a solution, construct the instantaneous field configura-
tion and momentum. Let Σ be an instant contained in the given slicing and
let Φ : V → W be a solution. We define φ : Σ → W, the field configuration
on Σ, by φ := Φ |Σ . And we define φ̇ : Σ → W, the field velocity on Σ, as
follows: at each x ∈ Σ, φ̇(x) is the rate of change at x of the field values
along the orbit of τ̄ through x.80 In order to construct the instantaneous
momentum of the field, we apply the usual recipe for constructing canonical
momentum variables, defining π := ∂L

∂φ̇
(π is a map from Σ to W ∗, the vector

space dual to W ).

2. Given the instantaneous field configuration and momentum, construct the
corresponding initial data. This is just a matter of using σ to pull back φ
and π, so that we can regard them as functions on S rather than Σ. Sloppily,
I will use the same names for initial data defined on S and the corresponding
functions defined on Σ ⊂ V.

3. Construct the space of initial data, I. Let Q be the space of all φ : S → W
that can arise via the previous two steps as we allow Φ to vary in S.81 The
set of all pairs (φ, π) that can arise via these steps is just cotangent bundle,
T ∗Q. This space is the space, I, of initial data for our theory. It carries a
canonical symplectic structure, ω (see example 7 above).

80That is, let x0 ∈ Σ and find y0 ∈ S, t0 ∈ R such that σ(t0, y0) = x0 and define the curve
x : R→ V by x(t) := σ(t, y0); then let φ̇(x) := limh→0

1
h

(φ(x(t0 + h))− φ(x0)) .
81Allowing Σ and the slicing to vary as well would make no difference in the present case, so

long as S and its geometry are held fixed.
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4. Construct a Hamiltonian. We define h : I → R, the Hamiltonian on the
space of initial data, as follows. Let (φ, π) ∈ I be initial data and let Σ ⊂ V
be an instant (not necessarily one in our slicing). Let Φ be the solution that
induces (φ, π) on Σ and define h(φ, π) :=

∫
Σ

π(x)φ̇(x) − L(Φ)(x)dx (in the
present context, the result does not depend on the instant Σ chosen).82

5. Construct the Dynamics. Together h and ω determine a vector field χ on I
that encodes the dynamics of our theory. The integral curves of χ are the
possible dynamical trajectories — if the state is (φ0, π0) at time t = 0, then
the state t units of time later can be found by tracing t units of time along
the integral curve passing through (φ0, π0). This gives us a flow on I, which
preserves both ω and h (the flow is global rather than local because we are
assuming that solutions are defined for all values of t).

5.3 Relation between the Lagrangian and Hamiltonian Pictures

For each instant Σt := σ({t}×S) in our slicing σ, we define TΣt
: S → I to be the

map that sends a solution Φ to the initial data set (φ, π) ∈ I that results when
the slicing σ is used to pullback to S the initial data induced by Φ on Σt. Because
we are assuming global existence and uniqueness for solutions given initial data,
TΣt

is in fact a bijection. Indeed, it is a diffeomorphism. Furthermore, T ∗
Σt

ω = Ω,
so each TΣt

is in fact a symplectic isomorphism between (S,Ω) and (I, ω).
Note that in typical theories distinct instants in the slicing lead to distinct

isomorphisms. If Σt and Σt′ are instants in our slicing and TΣt
= TΣt′ , then for

each solution Φ, Φ induces the same initial data on Σt and Σt′ — i.e., each solution
is periodic with period |t− t′| . So if TΣt

= TΣt′ for each Σt and Σt′ , then every
solution would have to be a constant function on V .

The maps TΣt
: S → I establish a simple relationship between our Hamiltonians

H : S → R and h : I → R : h = H ◦T−1
Σt

(we could have taken this as our definition
of h).

Together Ω and H determine the flow on S that implements time translation
at the level of solutions while together ω and h determine the flow on I that
implements time evolution of initial data. Since any TΣ relates Ω and ω on the
one hand, and H and h on the other, one would hope that it would also intertwine
the group actions corresponding to these flows. This is indeed the case. Let us
write t ·S Φ for the solution that results when we time-translate the solution Φ by
t units and let us write t ·I (φ, π) for the state that initial data set (φ, π) evolves
into after t units of time. Then we find that t ·I TΣ(Φ) = TΣ(t ·S Φ).83

Relative to a slicing, each solution Φ on V corresponds to a curve (φ(t), π(t))
in the space of initial data, with (φ(t), π(t)) := TΣt

(Φ). And a curve of this form

82Here we use the fact that π takes values in W ∗ while φ̇ takes values in W ; and we rely on
the natural measure induced by the geometry of V to allow us to treat L(Φ) as a function rather
than an n-form.

83That is, each TΣ is equivariant for the R-actions ·S and ·I .
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is always a dynamical trajectory in I (i.e., an integral curve of the flow gener-
ating time evolution on I). Conversely, a dynamical trajectory (φ(t), π(t)) in I
determines a unique solution Φ := T−1

Σ0
(φ(0), π(0)) — and this solution can be

viewed as the result of laying down the instantaneous field configurations φ(t) on
the instants Σt in the slicing.

5.4 Time and Change

Change consists in a single object having a given property at a given time and
a distinct and incompatible property at a different time. Within the Lagrangian
approach, it is easy enough to draw a distinction between those solutions that
represent change and those that do not: the changeless solutions are those which
are invariant under the action of a group of time translations. Correspondingly,
we will say that a dynamical trajectory in the space of initial data represents a
changeless reality when the corresponding solution on V is invariant under some
time translation group.84

This much is entirely straightforward. But it is worth pausing and thinking
about how change is represented at the level at which physical quantities are
represented by functions on S and I. In the case of quantities defined on the
space of initial data, the story is straightforward. Let f ∈ C∞(I) correspond
to some determinable physical property of instantaneous states. Then if (φ0, π0)
evolves into (φ1, π1) and f(φ0, π0) �= f(φ1, π1) then the solution including these
states manifests change with respect to the property represented by f.85 And we
can of course go on to ask, e.g., about the rate of change of f along a dynamical
trajectory.

But how should we phrase this in terms of functions defined on the space of
solutions?

Suppose that we are interested in the quantity that measures the volume of
the spatial region on which a given field takes on non-zero values. While such a
quantity is represented within the Hamiltonian framework by a function f : I → R,
there is no function on the space of solutions that can be identified with this
quantity — for such functions assign values to entire physically possible histories,
and thus cannot represent quantities that take on different values at different

84Naively, one might think that a dynamical trajectory in the space of initial data should count
as representing a changeless reality only if it is constant — that is, if the system is represented
as being in the same instantaneous state at each instant of time. But this would be a mistake.
Consider a well-behaved theory set in Minkowski spacetime, and let Φ be solution invariant
under the notion of time translation associated with inertial frame A but not invariant under
that corresponding to inertial frame B. Surely this counts as changeless — and ought to whether
we pass to the Hamiltonian picture via a slicing adapted to frame A (which leads to a dynamical
trajectory according to which the state of the system is constant) or via a slicing adapted to
frame B (which leads to a picture in which the state undergoes nontrivial evolution).

85Even if Φ represents a state of affairs in Minkowski spacetime, changeless in virtue of being
invariant under the notion of time translation associated with inertial frame A, it may still
represent some physical quantities as undergoing change — such as the location of the centre of
mass of a system relative to inertial frame B.
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instants within a history (or rather, they cannot do so in the same direct way that
functions on the space of initial data can).

However: intuitively, for each instant Σ ⊂ V there is a function fΣ : S → R

such that fΣ(Φ) is the volume of the support of our field on Σ in the solution
Φ. So it is tempting to say that our chosen quantity is represented as exhibiting
change in a solution Φ if fΣ(Φ) �= fΣ′(Φ) for instants Σ,Σ′ ⊂ V, and that in order
to speak of the rate of change of our quantity we need to consider a parameterized
family Σt of instants, and calculate d

dtfΣt
(Φ).86

Of course, in the present context, it makes sense to employ our preferred slicing
in setting up this framework.87 For each instant Σt in our slicing we have a
symplectic isomorphism TΣt

: S → I. If f : I → R is the function on the space
of initial data that represents the quantity of interest, then ft := f ◦ TΣt

is the
desired function on the space of solutions that assigns to a solution Φ the value
of f on the initial data that Φ induces on Σt. So each slicing σ determines a one-
parameter family of functions on S that encodes the instantaneous values of our
chosen physical quantity relative to the instants in σ. So relative to a choice of
slicing, it makes sense to ask whether this quantity undergoes change, what the
rate of change is, and so on.

REMARK 31 (An Alternative Approach to Constructing {ft}). In the present
setting, rather than relying on our entire one-parameter family of isomorphisms,
{TΣt

}, to set up our one-parameter family of functions {ft}, we could have used
Σ0 to construct f0 then used our dynamical time translation group to define

f−t(Φ) := f0(t ·S Φ).

5.5 Overview

We have seen that if we put in place a number of very strong assumptions, we
get in return a very clear picture of the representation of time and change. The
assumptions are: that our equations of motion, ∆, are second-order; that these
equations have ideal existence and uniqueness properties and they derive from a
Lagrangian, L, that has a dynamical symmetry group, τ, that arises from time
translation group, τ̄ , on our spacetime, V ; and that we have chosen a slicing σ of
V that is adapted to τ̄ .

Lagrangian Picture. The space of solutions, (S,Ω), is a symplectic space. The
function, H : S → R, that assigns to each solution the total instantaneous

86For this suggestion, see, e.g., [Rovelli, 1991].
87Otherwise we can run into trouble. Consider a Φ defined on Minkowski spacetime such that

for each inertial observer the spatial volume of the region in which the field is nonzero is constant
in time. Because of length contraction, relatively moving inertial observers will assign different
values to this volume. So if we choose Σ and Σ′ belonging to slicings corresponding to distinct
inertial frames, then we find that fΣ(Φ) �= fΣ′ (Φ) even though Φ is changeless according to each
inertial observer.
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energy relative to τ̄ is the symplectic generator of τ (and also the Noether
conserved quantity associated with it).

Hamiltonian Picture. We are able to construct a Hamiltonian version of our
theory: a symplectic space of initial data (I, ω) equipped with a Hamiltonian
h : I → R that generates the dynamics of the theory. The dynamics is
encoded in an R-action on I that implements time evolution.

Relation between the Pictures. To each instant Σ in our slicing corresponds
the symplectic isomorphism TΣ : S → I, that maps a solution Φ to the initial
data that it induces on Σ. Each such TΣ relates H and h on the one hand
and Ω and ω on the other — and intertwines the action of the group imple-
menting time translation on S with the action of the group implementing
time evolution on I.

Time. Time, in one of its facets, is represented in this scheme by three R-actions:
the action via symmetries on V that implements time translation, the sym-
plectic action implementing time translation on S, and the symplectic action
implementing time evolution on I. Note: in some spacetimes there will only
be one notion of time translation, in others there will be many.

Change. In the Lagrangian picture, changelessness is represented in a straight-
forward way — some solutions are invariant under a time translation group
of their underlying spacetime. So change can be characterized as the absence
of changelessness and the definition can then be translated into the language
of the Hamiltonian approach. When it comes to representing change of given
physical quantities via the behaviour of functions on the space of initial data
and the space of solutions, things become a bit more interesting. Here it is
the Hamiltonian picture that underwrites a straightforward approach: one
finds the function on the space of initial data corresponding to the quan-
tity of interest, and examines its behaviour as the state evolves. On the
Lagrangian side, things are more complicated. No function on the space of
solutions can directly represent a changeable quantity. But by employing
the slicing-dependent correspondence between the two pictures one can find
a one-parameter family of functions on the space of solutions, each of which
describes the value of the quantity along a distinct instant from the slicing.
One can use this one-parameter family to define the rate of change of the
quantity; and so on.

6 COMPLICATIONS

The account of the previous section was underwritten by several very strong as-
sumptions. I now want to consider the effect on the picture developed above if one
or another of these assumptions is dropped. My strategy is to leave untouched the
assumptions that we need to in order construct a Hamiltonian picture of the sort
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developed above — that the equations of motion be second-order and that space-
time have enough geometrical structure to support slicings — and to consider the
effect of dropping the assumptions: (i) that solutions are defined globally in time;
(ii) that there is a unique maximal solution consistent with any initial data set;
(iii) that the Lagrangian admits a dynamical time translation group that arises
from a time translation group on spacetime. I will in this section consider only
the effect of dropping one of (i)–(iii) at a time — in the next section I will turn to
general relativity, which is a theory in which (i)–(iii) fail, as does the assumption
that spacetime has enough solution-independent geometry to support slicings.

In briefest sketch, we find that:

1. If we drop the assumption that solutions exist globally in time, then time
evolution is no longer implemented by an R-action on I, and S and I are
no longer symplectically isomorphic. But time evolution is implemented by
a sort of local and infinitesimal counterpart of an R-action and S and I are
locally symplectically isomorphic. Overall, only small changes are required
in the picture of the representation of time and change developed above.

2. If we drop the assumption that specifying initial data suffices to determine a
unique solution, even locally in time, by considering the (broad and impor-
tant) class of theories whose Lagrangian and Hamiltonian versions exhibit
gauge freedom, then the space of solutions and the space of initial data are
presymplectic spaces that are not isomorphic (even locally). Furthermore,
time evolution will no longer be implemented by a one-parameter group,
but by a gauge equivalence class of such groups. Difficulties also appear
on the Lagrangian side. The problem appears to be that theories of this
type feature nonphysical variables. The remedy is reduction — the reduced
space of solutions and the reduced space of initial data are symplectic and
isomorphic. Much of the picture of the representation of time and change
reappears at the reduced level.

3. If we drop the assumption that our Lagrangian is time-translation invariant,
then we have to make do with time-dependent Lagrangian and Hamilto-
nian theories. Here the space of solutions and the space of initial data will
be symplectic spaces, and will be isomorphic. But we no longer have time
translation of solutions as a symmetry on the Lagrangian side, nor time evo-
lution as a symmetry on the Hamiltonian side. Still, we are able to construct
in the usual way a slicing-dependent one-parameter family of isomorphisms
between the space of solutions and the space of initial data, and this allows
us to reconstruct much of the familiar picture of the representation of time
and change.

6.1 Singular Dynamics

Let us suppose that the condition of global existence of solutions fails for our
equations of motion — there exist initial data sets that cannot be extended to
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solutions defined on all of V. But let us continue to suppose that our theory is
otherwise well-behaved: our spacetime V has enough structure to support slicings;
our equations ∆ are second-order and have unique solutions; and our Lagrangian,
L, admits a dynamical time translation group, τ, induced by a time translation
group τ̄ on V. Then, at least for the sorts of cases that arise in physics, we can
expect to find the following.

Lagrangian Picture. The space of solutions, (S, ω), is a symplectic manifold.
The dynamical time translation group, τ, acts on S in the usual way: each
element of the group time-translates each solution by some given amount.88

τ is generated, via Ω, by the Hamiltonian function, H : S → R that assigns
to a solution the instantaneous energy of that solution.

Hamiltonian Picture. We can construct a Hamiltonian picture as above: given
a time translation group τ̄ , an adapted slicing σ, a solution Φ, and an instant
Σ, we can construct the initial data that Φ induces on Σ relative to σ, and use
σ to pull this back to our abstract instant S. We can then construct the space
of initial data, I, with its canonical symplectic form ω, use our Lagrangian
to define a Hamiltonian, h : I → R, and study the resulting dynamics.
The essential novelty is that because some solutions have limited temporal
domains of definition, one finds that the vector field on (I, ω) generated by
the h is incomplete — it has integral curves that are defined only on a subset
of R. So time evolution is not represented by an R-action on I: in general
it does not make sense to ask of a given point in the space of initial data
what state it will evolve to at arbitrarily late times. However, the vector
field generated by the Hamiltonian, which as usual encodes the dynamics,
can be thought of as a sort infinitesimal generator of a locally defined action
of R on the space of initial data — in particular, if it makes sense to speak of
data set x evolving into data set y after t units of time, then we find that the
map that sends a state to the state t units of time later is a symplectic (and
Hamiltonian-preserving) map between sufficiently small neighbourhoods of
x and sufficiently small neighbourhoods of y.

Relation between the Pictures. As above, for each instant, Σ, in our slicing
we can define TΣ(Φ) to be the pullback to the abstract instant S of the
initial data that the solution Φ induces on Σ. But now each each TΣ is
only partially defined as a function from S to I (since the value of TΣ(Φ)
is undefined when Φ is not defined on Σ). Nonetheless, each such TΣ is a
symplectic isomorphism between its domain of definition in S and I. 89 As
usual, we get a distinct such map for each instant we choose.

88Of course, if a solution is not defined for all time, then its domain of definition will differ
from that of its time-translate in the obvious way.

89So, intuitively, the space of solutions is bigger than the space of initial data — we can find
natural isomorphisms between the space of initial data and subspaces of the space of solutions.



174 Gordon Belot

Time. The representation of time becomes a bit more complicated in the present
context: to each notion of time translation on spacetime corresponds a nice
symmetry on the space of solutions — and a merely infinitesimal symmetry
on the space of initial data.

Change. We can still represent changeable properties by functions on I, and
determine whether a given dynamical trajectory represents a change of such
properties by studying the behaviour of the corresponding function along
the trajectory. Despite the failure of global isomorphism between the space
of solutions and the space of initial data, we find that a choice of slicing
yields a one-parameter family of local isomorphisms, {TΣt

}, between I and
subspaces of S. Given a function f on the space of initial data corresponding
to a quantity of interest, the family {TΣt

} can be used to construct a one-
parameter family of partially-defined functions {ft} on S that correspond to
the given changeable physical quantity. So the representation of change in
this case is much the same as in the case in which we have global existence
of solutions.

The real novelty here is the lack of a global isomorphism between the space of
solutions and the space of initial data. The phenomenon can be is well-illustrated
by simple classical mechanical examples.

EXAMPLE 32 (The Kepler Problem). Consider a point-particle of mass m mov-
ing in the x-y plane subject to the gravitational influence of a point-particle of
unit mass fixed at the origin.90 Here our spacetime V will be R and the space
W of field values will be the space Q = {(x, y)} of possible positions of the mov-
ing particle. The Lagrangian is L = 1

2 (ẋ2 + ẏ2) + m
r , where r2 := x2 + y2; the

corresponding Hamiltonian is H = 1
2 (ẋ2 + ẏ2) − 1

r . In order for L and H to be
well-defined, we have to limit the location of the body to points in Q := R

2/(0, 0).
We restrict attention to the case where H < 0. This is the case of orbits bounded
in space — so, in particular, we rule out parabolic and hyperbolic motions.

We find that there are two types of solutions. (i) Regular solutions, in which the
particle has non-zero angular momentum, are periodic and defined for all values
of t; they represent the particle as moving along an ellipse that has the origin
as a focus. (ii) Singular solutions, in which the particle has vanishing angular
momentum, are defined only for t0 < t < t0 + 2ε; they represent the particle as
being ejected from the origin at time t0 (i.e., |r(t)| → 0 as t → t0 from above),
travelling outward along a ray from the origin with decreasing speed until reaching
to a stop at time t0 + ε, then falling back into the origin along the same ray, with
|r(t)| → 0 as t→ t0 + 2ε from below.

The space of solutions is topologically pathological. Let Φ(t) be a singular
solution defined for t ∈ (t0, t0 + 2ε). Let Λ ⊂ Q be the line segment along which
the particle moves according to Φ. It is possible to construct a sequence {Φk} of

90For the structure of the space of solutions of the Kepler problem, see [Woodhouse, 1991,
§2.3] and [Marco, 1990b].
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regular solutions with the following features: each Φk has the same energy as Φ
— it follows that each Φk represents the particle as moving periodically along an
ellipse Ek with period 2ε; for each k, Ek is oriented so that the segment joining its
foci is included in Λ; as k →∞, the eccentricity of Ek goes to infinity — so that
Ek → Λ as k → ∞. It follows that Φ is a limit of the sequence {Φk}.91 But now
consider the solution Φ′(t) := Φ(t + 2ε). This is a singular solution, defined for
t ∈ (t0−2ε, t0), that represents the particle as being emitted at time t0−2ε, moving
along Λ, and then being absorbed at time t0. Φ′ is equally a limit of {Φk}. Indeed,
we can generate an infinite number of limits of {Φk} by temporally translating Φ
by multiples of 2ε.

Since we can find a sequence in S that converges to more than one limit point, S
is not Hausdorff.92 But, of course, the space of initial data for the Kepler problem
is just T ∗Q — which is Hausdorff. So the spaces are certainly not isomorphic!

Non-Hausdorff manifolds can be quite wild. But there are also relatively tame
examples, such as the following. Let X be the result of excising the origin from
the real line and adding in its place two new objects, a and b; a subset of X is
an open ball if it coincides with an open interval in R that does not contain the
origin, or if it arises when one takes an open interval of real numbers containing 0
and replaces 0 by one of {a, b}. We endow X with a topology by declaring that any
union of open balls in X is an open set. X is a manifold according to our present
standards. But it is not Hausdorff, since every neighbourhood of a overlaps with
a neighbourhood of b — and, of course, a sequence like { 1

k} converges to both a
and b.

More generally, we can construct a non-Hausdorff manifold Xn,m
j by taking m

copies of R
n and identifying them everywhere except on a given j-dimensional

hyperplane through the origin (1 < m ≤ ∞, 1 ≤ n < ∞, and 0 ≤ j < n).93 The
space of solutions corresponding to any fixed negative value of energy in the planar
Kepler problem is assembled out of copies of X3,∞

1 .

EXAMPLE 33 (Singularities of the n-Body Problem). For n particles in R
3 the

space of possible particle configurations is R
3n. But this space includes collisions

— and the potential energy for the n-body problem is singular at such points. So,
as before, we let ∆ := {q ∈ R

3n : qi = qj for some i �= j} and let Q be R
3n/∆

then take as our space of initial data T ∗Q = {(q, p) ∈ T ∗
R

3n : q /∈ ∆}.
We pose the initial data (q, p) at time t = 0. We know that this determines a

maximal dynamical trajectory t �→ (q(t), p(t)), defined on an interval [0, t∗), with
0 < t∗ ≤ ∞ (the corresponding story for negative times is, of course, the same).

91The topology on the space of solutions can be constructed as follows. For each t ∈ R, take
the position and velocity of the particle at a given time as coordinates on the space of solutions,
and construct the set of open balls relative to these coordinates. Now take the union of these
sets as t varies. The result is a basis for the basis for the topology we seek.

92Recall that a topological space X is Hausdorff if for any x, y ∈ X it is possible to find
disjoint open U, V ⊂ X with x ∈ U and y ∈ V. A sequence in a Hausdorff space has at most one
limit.

93The example of the preceding paragraph is X1,2
0 .
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Clearly it is possible to choose (q, p) so that t∗ is finite — if we let p = 0 for n > 1,
for instance, the system is going to collapse and a collision will occur. Let us call
our dynamical trajectory singular if t∗ < ∞. It can be proved that if t∗ < ∞,
then as t→ t∗, q(t)→ ∆, in the sense that limt→t∗ min1≤i<j≤n rij = 0. Let us say
that a singular trajectory ends in a collision if there is a point q0 ∈ ∆ such that
limt→t∗ q(t) = q0; otherwise, we say that it ends in a pseudocollision.

Consider the following cases.94

n = 1. This is the case of a single free particle. The dynamics is non-singular.

n = 2. This is the Kepler problem.95 The only singularities are collision singu-
larities. These occur if and only if the angular momentum of the system
vanishes.

Famously, these singularities can be regularized.96

This is clear enough physically: one simply imposes the condition that any
collisions that occur are elastic. This allows one to sew together a solution
which ends with a collision at time t0 with one, that, intuitively begins at
time t0 with the particles having interchanged their velocities. Continuing in
this way, one constructs continuous and piecewise analytic solutions of eter-
nal temporal extent. Because collision solutions are now infinite in temporal
extent, the space of solutions, in this new sense, is isomorphic to the ex-
tended space of initial data that includes the collision states that lie in T ∗∆
(let us interpret such states as representing the velocity that the particles
will have when next emitted).

Mathematically, there are a number of underpinnings that can be given to
this procedure.97 An older one proceeds in terms of analytic continuation
— thinking of the original collision solution as a complex function, one asks
whether there is any analytic continuation of this function past the time of
collision. Under a more modern approach, one looks for a way of continuing
singular solutions that preserves the continuous dependence of evolution on
initial data.98 In the case of the two-body problem, either approach vindi-

94For surveys of the singularities of the n-body problem, see [Diacu, 1992] and [Diacu, 2002];
for a popular treatment, [Diacu and Holmes, 1996, Chapter 3].

95Begin with the two-body problem. Restrict attention to the plane of motion of the particles;
choose a frame in which the centre of mass of the two-body system is at rest at the origin and
denote the positions of the bodies as 
q1 and 
q2. Obviously if we know 
r = 
q2 − 
q1 then we know
the positions of both particles (since we know their masses and the location of their centre of
mass). Now note that the equation of motion for 
r is that for a single particle moving in an
gravitational potential around the origin, if we take the origin to have unit mass, and the moving
particle to have mass m = m1m2

m1+m2
.

96For various approaches to the regularization of two-body collisions, see [Souriau, 1982],
[Marco, 1990a] and [Cushman and Bates, 1997, §II.3].

97See [McGehee, 1975] for these.
98More precisely, one excises from T ∗

R
6n an open set with compact closure that contains a

collision; the boundary of this set falls into two pieces, corresponding to initial data of trajectories
entering the set and initial data of trajectories leaving the set; evolution gives a diffeomorphism
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cates extension of singular solutions by elastic collisions as the unique tenable
method of extension.

n = 3. Singular trajectories end in collisions. Collisions involving only two bodies
can be regularized as elastic collisions. But some three body collisions are
non-regularizable (according to any of several criteria).99 Such three-body
collisions are complex, and presumably make it difficult to determine the
topology of the space of solutions — so in this case, unlike the n = 2 case,
one does not have a clear picture of the relation between the global structure
of the space of solutions and the structure of the space of initial data.

n ≥ 4. For n ≥ 4, as usual, singular trajectories can end in collisions: two-body
collisions are regularizable; but at least some collisions involving larger num-
bers of particles are not. Furthermore, for n > 4 it is known that pseudocol-
lisions can also occur — so it would appear to be more difficult then ever to
determine the topology of the space of solutions.100

REMARK 34 (Quantization of Singular Systems). When the space of solutions
and the space of initial data are isomorphic, it is, of course, a matter of indifference
which space one takes as the starting point for quantization. When dynamics is
singular and these spaces are no longer isomorphic one faces a real choice. And
the choice is not entirely pleasant — one has to choose between the space of initial
data, on which the dynamics is implemented by an incomplete vector field, and
the space of solutions, which one expects to have a complicated and pathological
topology. Presumably there is no guarantee that the two approaches always lead
to the same quantizations in the domain of singular dynamics.101

6.2 Gauge Freedom

We next want to consider what happens when we drop the assumption that speci-
fying initial data suffices to determine a unique maximal solution to our equations
of motion. To this end, we are going to assume that our equations of motion
under-determine the behaviour of the field, in the radical sense that for given

from the subset of the former corresponding to non-singular solutions to the subset of the latter
corresponding to non-singular solutions; one asks whether this can be extended to a diffeomor-
phism of one whole piece to the other.

99See [McGehee, 1975].
100 See [Saari and Xia, 1995]. The question is open for n = 4; but see [Gerver, 2003] for a

possible example. Pseudocollisions require that the positions of at least some of the particles
become unbounded as t → t∗ — by exploiting arbitrarily great conversions of potential energy
into kinetic energy, these particles escape to infinity in a finite time. As emphasized by Earman
([1986, Chapter III] and [this volume]), this means that pseudocollisions involve a rather radical
and surprising failure of determinism — which is most dramatic when one considers the time
reverse of such a process, in which particles not originally present anywhere in space suddenly
swoop in from infinity.
101For approaches to the quantization of systems with singular dynamics see, e.g., [Gotay and

Demaret, 1983] and [Landsman, 1998].
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initial data the general solution consistent with that data contains at least one
arbitrary function of the full set of independent variables.102 There is a wide
class of physical theories whose equations exhibit this prima facie pathological
behaviour — including, most importantly, Maxwell’s theory of electromagnetism,
general relativity, and their generalizations.

In this subsection I will first sketch a little bit of the theory of Lagrangian treat-
ments of such theories without making any special assumptions about time trans-
lation invariance, the global existence of solutions, or the structure of spacetime.
These further assumptions will later be brought into play, and will underwrite
a consideration of the Hamiltonian form of a theory that is well-behaved except
in possessing under-determined dynamics, and of the representation of time and
change in such theories. This discussion will be followed by three examples.

Let us begin by introducing the notion of a family of gauge symmetries of a
Lagrangian theory. Recall that a group, G, acting on the space, K, of kinematically
possible fields is a group of variational symmetries of a Lagrangian, L, defined on
K if the action of G is appropriately local and leaves the variational problem of
L invariant.103 We call a group, G, of variational symmetries of (K, L) a group
of gauge symmetries if it can be parameterized in a natural way by a family of
arbitrary functions on spacetime.104 Roughly speaking, each function on spacetime
generates a Noether group of symmetries of (K, L) — a one-parameter group of
(suitably local) symmetries of the variational problem of L.105 Since the set of
functions on spacetime is infinite-dimensional, any group of local symmetries of a
theory is infinite-dimensional.

Most familiar groups of symmetries of physical theories — the group of isome-
tries of a spacetime with non-trivial geometry, the group that acts by changing
the phase of the one-particle wavefunction by the same factor at each spacetime
point, etc. — are finite-dimensional, and hence not do not count as groups of
gauge symmetries in the present sense.

It is easy to see that the equations of motion of a Lagrangian theory admitting
such a group of gauge symmetries under-determine solutions to the theory. Let

102On the relevant notion of under-determined equations of motion, see, e.g., [Olver, 1993,
170–172, 175, 342–346, and 377].
103For a more precise definition, see [Zuckerman, 1987, 274].
104Let us be more precise. First, let Y be a vector space, and let Γ be a space of functions

from V to Y (more generally, let Γ be a space of sections of some vector bundle E → V ). We
assume that Γ includes all smooth, compactly supported maps from V to W, but leave open the
precise boundary conditions, smoothness conditions, etc., required to characterize Γ. (Special care
regarding boundary conditions is required when Γ contains elements with noncompact support).

Now we define a group of gauge symmetries parameterized by Γ as a pair of linear and local
maps, ε �→ Xε and ε �→ Rε sending elements ε of Γ to local vector fields on S and to elements
of Ωn−1,0

loc (V × K), respectively, such that ∂L(Φ, Xε(Φ)) = DRε(Φ) for all Φ ∈ S and ε ∈ Γ. So
each ε ∈ Γ is associated with an infinitesimal generator of a Noether group for L (cf. fn. 71
above).
105A bit more precisely: the discussion of the previous footnote shows that the map ε �→

(Xε, Rε) is a map from Γ to the set of generators of Noether groups of (K, L); in fact, the image
of this map will be infinite-dimensional in nontrivial examples, although it may have a nontrivial
kernel (in example 38 below, constant functions all generate the same (trivial) Noether group).
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ε be a function on spacetime that vanishes everywhere but on some compact set
U ⊂ V ; if we allow the corresponding Noether group ξ = {gt} to act on a solution
Φ, then for t �= 0 the resulting solutions Φt = gt · Φ will agree with Φ outside of
U, but in general disagree with Φ inside U. Thus if we choose an instant Σ ⊂ V
which does not intersect U, we find that Φ and Φt induce the same initial data
on Σ, but differ globally — so uniqueness fails for the equations of motion of the
theory.

Recall from section 3.3 that a presymplectic form is a degenerate closed two-
form, and that the imposition of such a form on a space serves to partition the
space by submanifolds called gauge orbits. An argument very similar to that of
the previous paragraph shows that if L admits a group of gauge symmetries, then
the form Ω that L induces on the space of solutions is presymplectic, and that the
corresponding gauge orbits are such that two solutions belong to the same gauge
orbit if and only if they are related by an element of the group of gauge symmetries
of L.106 So gauge symmetries of L are gauge transformations of (S,Ω), in the sense
stipulated in section 3.3 above — they preserve the gauge orbits of the space of
solutions.

It follows from general facts about presymplectic forms that if a function on
S generates a one-parameter group of gauge symmetries, then that function is a
constant function. In particular: the Noether conserved quantity, Qξ : S → R,
associated with a one-parameter group of gauge symmetries, ξ, must be a constant
function.107 Such conserved quantities are trivial, in the sense that they do not
provide any means to distinguish between physically distinct solutions.

So much we can say about any Lagrangian theory admitting a group of gauge
symmetries. Let us now specialize to the case where our equations of motion, ∆,
are second-order, our spacetime, V, has enough geometrical structure to admit
slicings, solutions exist globally in time, and our Lagrangian, L, admits a dynam-
ical time translation group, τ. With these further assumptions in place, we can
investigate the implications that giving up on local uniqueness of solutions has for
the picture of time and change developed in section 5 above. We find the following.

Lagrangian Picture. We are assuming that we have a notion of time transla-
tion arising out of the structure of our background spacetime V. This notion
gives rise, in the usual way, to a dynamical time translation group, τ. The
corresponding conserved quantity is the usual Hamiltonian, H, which assigns
to each solution its instantaneous energy. So far so good. But now recall
from the discussion of section 3.3 above that in the setting of a presymplectic
space, if a function generates a given one-parameter family of transforma-
tions of the space, then it also generates all one-parameter families of trans-

106Recall that in fn. 61 above, Ω was defined as the integral of a certain object over an arbitrary
instant Σ ⊂ V. If we consider an infinitesimal local symmetry Xε which has no effect on solutions
along Σ, then Ω will not see Xε — i.e., Xε(Φ) will be a null vector at each Φ ∈ S. See [Deligne
and Freed, 1999, §2.5] and [Woodhouse, 1991, 145].
107In fact, it will be the zero function, because the Noether current Jξ will be exact as an

(n− 1)-form on V . See [Zuckerman, 1987, 274].



180 Gordon Belot

formation gauge equivalent to the given one. In the present case, this means
that in addition to the dynamical time translation group, τ, H generates
all one-parameter groups of transformation of (S,Ω) that agree up to gauge
with τ.

Hamiltonian Picture. Having fixed a notion of time translation in spacetime
and an associated slicing of spacetime into instants, we can proceed as usual
to construct the space of initial data that arise when the configuration and
momentum variables of the field are restricted to an arbitrary instant in our
slicing.108 As in the well-behaved case, given an instant Σ ⊂ V of our slicing
and a solution Φ, we can construct a corresponding initial data set (φ, π) on
our abstract instant S, by pulling back to S the initial data that Φ induces on
Σ. In the well-behaved case, we found that the space of initial data had the
structure T ∗Q, whereQ was the space of all φ that arise as instantaneous field
configurations by restricting solutions to instants. In the present case we find
that the (φ, π) that arise as initial data sets form a subspace of T ∗Q (whereQ
is again the space of all φ that arise as restrictions of solutions to instants).109

In addition, we may also find that in order to construct consistent dynamics,
we need to further restrict admissible initial data. The upshot is that we
take as our space of initial data a subspace I ⊂ T ∗Q. I comes equipped with
a natural geometric structure: the cotangent bundle T ∗Q comes equipped
with its canonical symplectic form (see example 7 above); the restriction of
this form to I yields a presymplectic form ω. When all goes well, the gauge
orbits determined by ω have the following structure: initial data sets (φ, π)
and (φ′, π′) arising as the initial data induced on a given instant Σ ⊂ V
by solutions Φ and Φ′ belong to the same gauge orbit in (I, ω) if and only
if Φ and Φ′ belong to the same gauge orbit in (S,Ω).110 One can go on to
define a Hamiltonian function, h, on (I, ω) in the usual way. Of course, since
(I, ω) is a merely presymplectic space, h generates a whole gauge equivalence
class of notions of dynamics (i.e., one-parameter groups of symmetries of
(I, ω)). Suppose that according to one such notion of dynamics, initial state
x0 evolves into state x(t) at time t. Then although other notions of time
evolution generated by h will in general disagree about what state x0 evolves
into at time t, they will all agree that the state at t lies in [x(t)] , the gauge
orbit of x(t).111

108On constructing the constrained Hamiltonian system corresponding to a given Lagrangian
theory admitting gauge symmetries, see [Dirac, 2001], [Gotay et al., 1978], and [Henneaux and
Teitelboim, 1992]. For philosophical discussion, see [Earman, 2003] and [Wallace, 2003].
109This is because so-called first-class constraints arise: it follows from the definition of the

momenta, pi := ∂L
∂q̇i

, that some components of the momenta are required to vanish identically.
110Warning: it is not difficult to construct (unphysical) examples in which this nice picture

fails — see example 36 below.
111In fact, for each point y ∈ [x(t)] , there is a notion of time evolution generated by h according

to which x0 evolves into y at time t.
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Relation between the Pictures. As usual, for each instant Σ in our slicing we
can define TΣ : S → I, the map that sends a solution to the (pullback to
S of the) initial data that it induces on Σ. In the setting of section 5, these
maps gave us isomorphisms between the space of solutions and the space
of initial data. But in the presence of gauge symmetries, these maps are
not isomorphisms — since the existence of gauge symmetries implies that
many solutions induce the same initial data on any given Σ. The situation
is most dramatic when we consider a theory with only finitely many degrees
of freedom which admits gauge symmetries: for then the space of solutions
will be infinite-dimensional while the space of initial data will be finite-
dimensional (see example 37 below).112 When all goes well, we get the
following picture of the relation between solutions and dynamical trajectories
in the space of initial data (holding fixed a notion of time translation and a
slicing adapted to it).

1. Let Φ be a solution and let x(t) = (φ(t), π(t)) be the curve in I that
arises by letting x(t) be the initial data set that Φ induces on the instant
Σt ⊂ V. Then x(t) is a dynamical trajectory of the Hamiltonian version
of the theory.

2. Given a dynamical trajectory, x(t), of the Hamiltonian version of the
theory we find that there is a unique solution Φ ∈ S such that the curve
in I that corresponds to Φ in the sense of the preceding clause is just
x(t).

3. If Φ,Φ′ ∈ S belong to the same gauge orbit in the space of solutions,
then the corresponding dynamical trajectories, x(t) and x′(t) in I agree
up to gauge (in the sense that for each t, x(t) and x′(t) belong to the
same gauge orbit in I).

4. If dynamical trajectories x(t) and x′(t) in I agree up to gauge, then the
solutions Φ,Φ′ ∈ S to which they correspond belong to the same gauge
orbit in S.

Time. Our notion of time translation lifts in a nice way from our spacetime
V to the space of solutions, S, where we get the usual representation of
time via an R-action. Even here there is an oddity: the Hamiltonian that
generates this action also generates each R-action gauge-equivalent to it.
The situation is messier still in the space of initial data: given a notion of
time translation on spacetime and a slicing adapted to that notion, we can
construct a Hamiltonian picture; but in the presence of gauge symmetries,
we find that there are many dynamical trajectories through each point in
the space of initial data. In effect, our single notion of time translation in
spacetime splits into a multitude of R-actions on the space of initial data,
each with equal claim to be implementing the dynamics of the theory.

112So in this case we see that no map from (S, Ω) to (I, ω) is an isomorphism; intuitively this
is true for any theory admitting local symmetries.
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Change. The evolution of arbitrary quantities under the dynamics defined on
the space of initial data is indeterministic: if x0 = (φ0, π0) is an initial
data set, there will be distinct dynamical trajectories x(t) and x′(t) passing
through x0 at time t = 0; for an arbitrary function f : I → R, we have
no reason to expect that f(x(t)) = f(x′(t)) for t �= 0; so fixing the state
at time t = 0 does not suffice to determine the past and future values of
the quantity represented by f. But since in this situation x(t) and x′(t) will
agree about which gauge orbit the state lies in at each time, we find that
the evolution of gauge-invariant quantities (those represented by functions
on the space of initial data that are constant along gauge orbits) is fully
deterministic — given the initial state, one can predict the value of such a
quantity at all times. Furthermore, our slicing allows us to associate with
each gauge-invariant function, f, on the space of initial data a one-parameter
family {ft} of gauge-invariant functions on the space of solutions: let ft(Φ)
be the value that f takes on the initial data set that Φ induces on Σt. In
this way we can represent change of gauge-invariant quantities via functions
on the space of initial data or the space of solutions in the usual way.

This last point, especially, ought to arouse the suspicion that our theory, in
the form currently under consideration, contains surplus structure. For while the
theory has some quite disappointing features — ill-posed initial value problem,
trivial conservation laws, a merely presymplectic geometric structure, failure of
even local isomorphism between the space of solutions and the space of initial
data — one finds that there is a large subset of physical quantities that behave
just as the quantities of a well-behaved theory do. One naturally wonders whether
there might be a well-behaved theory governing the behaviour of these quantities
lurking somewhere in the background.

This sort of suspicion motivates the application to (S,Ω) and (I, ω) of the re-
duction procedure discussed in section 3.3 above. When all goes well, the following
picture emerges: the reduced space of solutions (i.e., the space of gauge orbits of
the space of solutions) and the reduced space of initial data (i.e., the space of gauge
orbits of the space of initial data) are both symplectic spaces — and these reduced
spaces are isomorphic.113 The Hamiltonian functions corresponding to time trans-
lation on the original space of solutions and time evolution on the original space
of initial data project down to the reduced spaces. The resulting reduced Hamil-
tonians generates time translation and time evolution on their respective spaces.

In typical examples that arise in physics, one sees that the original theory’s
invariance under a group of gauge symmetries was in fact a sign that physically
otiose variables had been included in the theory. Indeed: the fact that the original
space of initial data is presymplectic with a symplectic reduced space indicates
that within the original Hamiltonian formulation of the theory one can partition
the set of variables parameterizing the original space of initial data into two classes,
that we will call the class of physically relevant variables and the class of physically

113Example 36 below is an (unphysical) case where this isomorphism fails.
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otiose variables; specifying the initial values of all variables suffices to determine
the values for all times of the physically relevant variables while leaving wholly
arbitrary the evolution of the physically otiose variables.114 At least locally the
physically relevant variables can be taken to parameterize the reduced space of
initial data. This provides a strong reason to think that the Hamiltonian theory
defined on the reduced space of initial data gives a perspicuous representation of
the physics under investigation, involving as it does exactly those quantities whose
evolution is determined by the original theory. And this in turn provides good
reason to think of the reduced space of solutions as representing possible histories
of the system whose possible instantaneous states are represented by points in the
space of initial data.115

REMARK 35 (Reduction and Determinism). Suppose that one is presented with
a prima facie indeterministic theory, in which many future sequences of states
are consistent with a given initial state. Then one could always construct a de-
terministic theory by simply identifying all of the futures consistent with a given
state. As noted by Maudlin, it would be foolish to apply this strategy whenever
one encountered an indeterministic theory: (i) general application of this strategy
would render determinism true by fiat; and (ii) one would often end up embracing
trivial or silly theories.116 For example: in Newtonian physics, the initial state
in which space is empty of particles is consistent with a future in which space re-
mains empty, and also with a future in which particles swoop in from infinity, then
interact gravitationally for all future time (see fn. 100 above); to identify these
futures — to view them as mere re-descriptions of a single physical possibility —
would be absurd.

Now, reduction is a special case of the general strategy that Maudlin objects
to. But since just about any wise course of action is a special case of a strategy
that is in general foolish, this is not in itself an objection to reduction. We ought
to check whether the complaints that Maudlin quite rightly registers against the
general strategy redound to the discredit of the special case. I claim that they do
not. (i) It is true that reducing theories with gauge symmetries converts prima
facie indeterministic theories into deterministic ones. But this is unobjectionable:
the sort of indeterminism that is a prima facie feature of a theory with gauge
symmetries (namely, the existence of quantities whose evolution is wholly uncon-
strained by the initial state of the system) appears to be unphysical. (ii) For the

114In a presymplectic manifold satisfying suitable technical conditions, every point has a neigh-
bourhood admitting a chart whose coordinates fall into two classes — those that parameterize
gauge orbits and those that parameterize the directions transverse to the gauge orbits; see [Abra-
ham and Marsden, 1978, Theorem 5.1.3]. In the space of initial data, it is natural to take the
variables of the first type to be physically otiose and those of the second type to be physically
relevant.
115Since this space arises by identifying solutions related by elements of the group of gauge

symmetries of the theory, while the reduced space of initial data arises by identifying initial
data that are induced on a given instant by solutions related by elements of the group of gauge
symmetries of the theory.
116See [Maudlin, 2002, 6–8].
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sort of theories that arise in physics, one does not have to fear that reduction
will lead to a trivial or absurd result — in known cases, reduction carries one to
a well-behaved symplectic space that is a suitable setting for a physical theory.
Indeed, in such cases, it is (almost unanimously) agreed that the resulting sym-
plectic space parameterizes the true degrees of freedom and provides the correct
setting for the dynamics of the original theory.117

EXAMPLE 36 (A Pathological example). Before proceeding, it is important to
emphasize that it is not hard to cook up simple (but unphysical) examples that
do not follow the pattern sketched above for theories with gauge symmetries.118

Consider a particle moving in the x-y plane with Lagrangian L = 1
2eyẋ2. The

corresponding Euler–Lagrange equations tell us that x is constant in time while
the evolution of y is wholly arbitrary. So the space of solutions consists of pairs
(x0, y(t)) where x0 ∈ R and y(t) : R → R an arbitrary smooth function; two
solutions (x0, y(t)) and (x′

0, y
′(t)) belong to the same gauge orbit if and only if

x0 = x′
0. So the reduced space of solutions is just R — which, having an odd

number of dimensions, cannot carry a symplectic structure. On the Hamiltonian
side one finds that the momentum conjugate to x and the momentum conjugate to
y both have to vanish — which means that the space of initial data is R

2 = {(x, y)},
with every point being gauge equivalent to every other.119 So the reduced space
of initial data is a single point — which is not isomorphic to the reduced space of
solutions.

EXAMPLE 37 (Particles on a Line). We consider two gravitating point-particles
moving on a line. For simplicity, we choose units so that Newton’s constant is unity,
assume that the particles have unit mass, and set aside worries about collisions
and their regularization. We consider three theories of this system.

The Newtonian Theory. We denote the positions of the particles as q1 and q2

with q2 > q1. We interpret these as giving the positions of the particles
relative to a frame at rest in absolute space. The Lagrangian for this system
is L = T − V where the kinetic energy is T := 1

2 (q̇2
1 + q̇2

2) and the potential
energy is V = − 1

q2−q1 . The usual Newtonian equations of motion follow. It
is helpful to consider a variant formulation of this theory. We define new
configuration variables, r0 := 1

2 (q1 + q2) and r1 := q2−r0 = 1
2 (q2− q1) (so r0

is the position of the centre of mass of the system, and r1 is half the relative
distance between the particles). In terms of these variables, our Lagrangian

117General relativity provides the sole instance in which there is any dissent from the consensus
view; see [Kuchař, 1986] and [Kuchař, 1993]. This is also the case that Maudlin is concerned with
— he, like Kuchař, worries that unreflective application of reduction to general relativity leads
to absurd conclusions about time and has hampered conceptual progress in quantum gravity.
Part of the burden of section 7 below is to show that no absurdities follow from the application
of reduction in that case.
118For the following example, see [Henneaux and Teitelboim, 1992, §1.2.2]. For further discus-

sion of such examples, see [Gotay, 1983].
119This is an example where one constraint arises directly from the definition of the momenta

while the other is required in order to formulate consistent dynamics.
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is L(r0, r1, ṙ0, ṙ1) = 1
2 (ṙ2

0 + ṙ2
1) + 1

2r1
. The equations of motion tell us that

r0 is a linear function of time (since the centre of mass of an isolated system
moves inertially) while r1(t) solves r̈1 = − 1

2r21
, and so describes the relative

motion between the particles as they interact gravitationally.

The Leibnizean Theory. In this theory, space and motion are relative, and so
the relative distance, r1, between the particles is the only configuration vari-
able (or rather, r1 is half the relative distance). The Lagrangian for the Leib-
nizean theory is L′(r1, ṙ1) := 1

2 ṙ2
1 + 1

2r1
. The equation of motion is r̈1 = − 1

2r21
.

So the Leibnizean theory gives the same dynamics for the relative distances
between the particles as the Newtonian theory.

The Semi-Leibnizean Theory. We take both r0 and r1 as configuration vari-
ables, and take as our Lagrangian L′′(r0, r1, ṙ0, ṙ1) := 1

2 ṙ2
1 + 1

2r1
(so L′′ is a

function of r0, r1, ṙ0, and ṙ1 which happens to depend only on r1 and ṙ1).
We apply the variational algorithm: as always, it leads to the conclusion that
a curve x(t) := (r0(t), r1(t)) is a solution to the equations of motion if and
only if ∂L′′

∂ri
− d

dt
∂L′′
∂ṙi

= 0 is satisfied at each point on the curve for i = 0, 1.

For i = 1, we again find that r̈1 = − 1
2r21

, so we get the same dynamics for
the evolution of the relative distances as in the Newtonian and Leibnizean
cases. But for i = 0, our condition on curves is empty, since L′′ does not
depend on either r0 or ṙ0. It follows that a curve x(t) := (r0(t), r1(t)) counts
as a solution to our equations of motion if r1(t) describes a motion permit-
ted by the Newtonian or Leibnizean theory and r0 is any (continuous and
appropriately differentiable) function whatsoever.

Let us contrast the structure of these three theories.

Symmetries. The group of variational symmetries of the Newtonian theory is
three-dimensional, consisting of Galilean boosts and spatial and temporal
translations. The group of variational symmetries of the Leibnizean the-
ory is one-dimensional, consisting of time translations. But the variational
symmetry group of the semi-Leibnizean theory is infinite-dimensional: in
addition to temporal translations, it includes time-dependent spatial trans-
lations of the centre of mass as a group of gauge symmetries. If r0(t)
and r1(t) are continuous functions, then x(t) = (r0(t), r1(t)) is a kinemat-
ical possibility. Let Λ(t) be any other continuous function from R to it-
self. Then x′(t) := (r0(t) + Λ(t), r1(t)) is also a kinematical possibility and
L′′(x(t)) = L′′(x′(t)) for all t (since L′′ doesn’t care at all about r0). That is,
the map ΦΛ : (r0(t), r1(t)) �→ (r0(t)+Λ(t), r1(t)) from the space of kinemat-
ical possibilities to itself preserves the Lagrangian, and hence is a variational
symmetry. Indeed, for each such Λ we get a distinct variational symmetry
of L′′. So the space of continuous Λ : R→ R parameterizes a group of gauge
symmetries of L′′.
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Gauge Symmetries and the Initial Value Problem. We can exploit these sym-
metries to show how drastically ill-posed the initial value problem for the
semi-Leibnizean theory is. Suppose that at t = 0 we fix values for r0, r1, ṙ0,
and ṙ1. Let x(t) = (r0(t), r1(t)) be a solution satisfying those initial data.
Now select Λ : R → R such that Λ(0) = 0 and Λ̇(0) = 0. Since ΦΛ is a
Lagrangian symmetry, ΦΛ(x(t)) = (r0(t) + Λ(t), r1(t)) is also a solution —
which, of course, satisfies the specified initial data at time t = 0. In this way,
we can construct an infinite-dimensional family of solutions for each specified
set of initial data.

Structure of the Space of Solutions. The spaces of solutions for the Newto-
nian and Leibnizean theories are symplectic spaces, of dimension four and
two, respectively. As we have seen the space of solutions of the semi-
Leibnizean theory is infinite-dimensional. And the form that L′′ induces
on this space is degenerate — the space is not symplectic. The associ-
ated gauge orbits have the following structure: x(t) = (r0(t), r1(t)) and
x′(t) = (r′0(t), r

′
1(t)) lie in the same gauge orbit if and only if r1(t) = r′1(t)

for all t (i.e., solutions lie in the same gauge orbit if and only if they agree
about the relative distances between the particles — what they say about
the motion of the centre of mass is irrelevant).

Hamiltonian Picture. Writing pi = ṙi, we find that the spaces of initial data
for our theories are as follows.

1. For the Newtonian theory, the space of initial data is T ∗
R

2 = {(r0, r1,
p0, p1) : ri, pi ∈ R} carrying its canonical symplectic structure ω =∑
i=0,1 dri ∧ dpi. The Hamiltonian is H(r0, r1, p0, p1) = 1

2 (p2
0 + p2

1) −
1

2r1
. The equations of motion are the usual deterministic Newtonian

equations.

2. For the Leibnizean theory, the space of initial data is T ∗
R = {(r1, p1) :

r1, p1 ∈ R} carrying its canonical symplectic structure ω = dr1 ∧ dp1.
The Hamiltonian is H ′(r1, p1) := 1

2p2
1 − 1

2r1
. The equations of motion

are the usual deterministic Leibnizean equations.

3. Recall that in constructing the Hamiltonian system corresponding to
a given Lagrangian system, we must first construct the momentum
variables corresponding to the position variables of the Lagrangian sys-
tem. The semi-Leibnizean theory has two position variables, r0 and
r1. Our recipe tells us that the corresponding momentum variables
are pi := ∂L′′

∂ṙi
, for L′′ the semi-Leibnizean Lagrangian. As usual,

p1 := ṙ1. But because L′′ is independent of ṙ0, we find that p0 ≡ 0.
It follows that the space of initial data for this theory is the space
Γ = {(r0, r1, p1) : r0, r1, p1 ∈ R} that arises when we restrict attention
to those states in the space of initial data for the Newtonian theory
in which p0 = 0; restricting the symplectic structure of the Newtonian
theory to Γ yields a presymplectic structure (the vectors pointing in
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the r0 direction are the null vectors). The gauge orbits have the fol-
lowing structure: x = (r0, r1, p1) and x′ = (r′0, r

′
1, p

′
1) lie in the same

gauge orbit if and only if r1 = r′1 and p1 = p′1. The Hamiltonian for
this theory is H ′′(r0, r1, p1) := 1

2p2
1 − 1

2r1
, which determines the usual

Newtonian/Leibnizean behaviour for r1 and p1 while leaving the evo-
lution of r0 wholly unconstrained. That is, if x(t) and x′(t) are curves
in the space of initial data corresponding to solutions of this Hamilto-
nian problem, then one finds that in general x(t) �= x′(t) for t �= 0, but
[x(t)] = [x′(t)] for all t. Note that each such curve x(t) corresponds to
a point in the space of solutions, and that the condition [x(t)] = [x′(t)]
for all t just says that for the points in the space of solutions that
correspond to the curves x and x′, themselves lie in the same gauge
orbit.

Reduction. As one would expect, the reduced space of initial data of the semi-
Leibnizean theory is isomorphic to the space of initial data of the Leibnizean
theory, and the reduced space of solutions of semi-Leibnizean theory is iso-
morphic to the space of solutions of the Leibnizean theory — in both cases,
this is because identifying points in the relevant gauge orbits amounts to
dropping r0 as a dynamical variable. So reduction implements our physi-
cal intuition that r0 is an extraneous variable that ought to be excised and
eliminates the pathologies of the semi-Leibnizean theory. Furthermore, the
reduced space of initial data (reduced space of solutions) inherits from the
original theory a Hamiltonian (Lagrangian) that is really that of the Leib-
nizean theory — so these reduced spaces carry dynamical theories with the
correct dynamics and symmetry groups.

Of course, this is a toy example — one of the simplest possible. And it has been
set up here so that it is clear from the beginning that the variables of the semi-
Leibnizean theory can be segregated into the physically relevant r1, which plays
a role in the Lagrangian and whose dynamics is deterministic, and the physically
otiose r0, which plays no role in the Lagrangian, and whose evolution is completely
unconstrained by the dynamics. So it has been clear from the beginning that r0

ought to be excised from the theory — there has been no temptation to keep it
on board and to conclude that we have an indeterministic theory on our hands.

But note that if we had stuck with our original Newtonian variables, q1 and q2

(with q1 < q2), and had written L′′ := 1
2 (q̇2 − q̇1)2 − 1

2(q2−q1) then things would
not have been quite so clear: the equations of evolution for q1 and q2 would have
mixed together physically relevant information and physically otiose information
and it would have taken a little bit of work to see what was going on.

When we are faced with Lagrangian theories admitting groups of local sym-
metries, we know (unless they exhibit the sort of pathological behaviour we saw
in example 36 above) that there is some way of separating the variables into the
physically relevant and the physically otiose (it is easiest to see this on the Hamil-
tonian side). But it is not always easy to find such a separation. This is one of
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several reasons why we end up working with such theories rather than with the
more attractive reduced theories that stand behind them.

EXAMPLE 38 (Maxwell’s Theory). We consider the electromagnetic field. Let
V be Minkowski spacetime, and fix an inertial frame and an associated set of
coordinates (x0, x1, x2, x3). We choose as the target space for our field W = R

4.
So the kinematically possible fields are of the form A : V → R

4 (subject to
some unspecified differentiability and boundary conditions). A is the usual four-
potential.

We define Fυν := ∂Aυ

∂xµ
− ∂Aµ

∂xυ
(υ, ν = 0, . . . , 3). So a kinematically possi-

ble field A(x) determines a matrix-valued function, F. We label the component
functions making up F according to the following scheme, thus identifying com-
ponents of the F with components of the electric and magnetic fields, E(x) =
(E1(x), E2(x), E3(x)) and B(x) = (B1(x), B2(x), B3(x)):

Fµν(x) =

∣∣∣∣∣∣∣∣
0 −E1(x) −E2(x) −E3(x)

E1(x) 0 B3(x) −B2(x)
E2(x) −B3(x) 0 B1(x)
E3(x) B2(x) −B1(x) 0

∣∣∣∣∣∣∣∣
We take as the Lagrangian for our theory L := −1

2

(
|B(x)|2 + |E(x)|2

)
. Writing

A(x) = (A0(x), A1(x), A2(x), A3(x)) and A(x) := (A1(x), A2(x), A3(x)), we find
that the equations of motion for our Lagrangian are:

∇2A0 +
∂

∂x0
(∇ ·A) = 0

∇2A−∂2A
∂x2

0

= 0

(here ∇ := ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) is the ordinary three-dimensional gradient operator).
These equations are equivalent to the usual vacuum Maxwell equations for the
electric and magnetic fields: Ḃ = −∇×E, ∇ ·B = 0, Ė = ∇×B, and ∇ ·E = 0.

Let Λ : V → R be a continuous function (appropriately differentiable and
satisfying appropriate boundary conditions). Then the map ΦΛ : A �→ A′ :=
A + dΛ is a map from the space of kinematically possible fields to itself. If one
calculates the matrices F ′ and F corresponding to A and A′, one finds F ′ = F.
So E and B are invariant under our gauge transformation A �→ A′. It follows that
L(ΦΛ(A)) − L(A) = 0, so ΦΛ is a Lagrangian symmetry — in particular, A′ is
a solution if and only if A is. Since Λ was arbitrary, and since Λ and Λ′ lead to
distinct symmetries so long as dΛ �= dΛ′, we have in fact found a huge family of
symmetries of our theory. Indeed, the ΦΛ form a group of gauge symmetries of
our theory in the official sense introduced above.

Of course, it follows that the initial value problem for A is ill-posed: let A(x) be
a solution for initial data posed on the instant x0 = 0 and let Λ be a nonconstant
function that vanishes on a neighbourhood of the hypersurface x0 = 0; then A and
A′ = A + dΛ are solutions that agree on x0 = 0 but do not agree globally.
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And, of course, the form that our Lagrangian induces on the space of solutions
is degenerate. The corresponding gauge orbits have the following form: solutions
A and A′ belong to the same gauge orbit if and only if there is a Λ : V → R such
that A′ = A + dΛ. An equivalent condition is that A and A′ lie in the same gauge
orbit if and only if they lead to the same E and B — which is just to say that
the reduced space of solutions is the space of solutions to the field equations for
E and B (remember, we are working in a fixed coordinate system, so these are
well-defined). This reduced space is a symplectic manifold.

We can construct the Hamiltonian theory corresponding to our Lagrangian the-
ory (our chosen inertial coordinates give us a slicing). For convenience, we take
the configuration variables for our Lagrangian theory to be A0(x) and A(x). Let
Q be the space of possible (A0,A) and T ∗Q be the corresponding cotangent bun-
dle, carrying its canonical symplectic structure. A point in T ∗Q consists of a
quadruple (A0(x),A(x), π0(x),π(x)) of fields on spacetime, with A0 and π0 tak-
ing values in R and A and π taking values in R

3. Our usual procedure tells us
that the momentum π0 corresponding to A0 is identically zero (our Lagrangian
does not depend on Ȧ0); the momentum π corresponding to A is π(x) = −E(x).
So the space Γ of initial data for our theory is the subspace T ∗Q of points of the
form (A0(x),A(x), 0,π(x)) — so we can take points in Γ to be triples of the form
(A0,A,π). The presymplectic form that Γ inherits from its embedding in T ∗Q
yields gauge orbits of the following form: (A0,A,π) and (A′

0,A
′,π′) belong to

the same gauge orbit if and only if π = π′ and ∇×A =∇×A′ . Since π = −E
and B = ∇×A, this tells us that two points in the space of initial data lie in the
same gauge orbit if and only if they correspond to the same electric and magnetic
fields. If follows that the reduced space of initial data is just the space of instan-
taneous states of the electric and magnetic fields. We again find that the space of
reduced space of initial data is symplectically isomorphic to the reduced space of
solutions.

In present case, as in the semi-Leibnizean example above, we can view the given
Lagrangian theory as containing surplus unphysical variables, whose evolution
is undetermined by the dynamics, alongside physically sensible variables whose
evolution is fully determined by the dynamics. In the present case, however, it is a
bit harder to make this division explicit: clearly the good variables are the electric
and magnetic fields and the bad ones are those that encode additional information
in A — all we care about is which gauge orbit A lies in, so a specification of A
gives us surplus information. Reduction allows us to avoid ever mentioning this
sort of surplus information.

We can formulate a Hamiltonian version of Maxwell’s theory in the setting of the
reduced space of initial data: points in this space specify the values of the electric
and magnetic fields at points of space at a given time; this space is symplectic;
and it is possible to find a Hamiltonian on this space that drives the dynamical
evolution encoded in Maxwell’s equations for E and B.120

It is natural to wonder whether the reduced space of solutions also supports a
120See, e.g., [Marsden and Weinstein, 1982].
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Lagrangian version of Maxwell’s theory. That is, is there a Lagrangian in terms of
E, B, and their derivatives whose variational problem has as its Euler–Lagrange
equations the Maxwell’s equations for E and B?

At first sight, it might seem that we could just employ our original Lagrangian,

L := −1
2

(
|B|2 + |E|2

)
,

for this purpose. But this leads to the wrong equations of motion. And there
is reason to worry that E and B are ill-suited to the variational approach, since
their six components are not independent — they can be derived from the three-
component vector potential — and so cannot be varied independently.121 So it is
not obvious that the reduced space of solutions does support a Lagrangian version
of Maxwell’s theory.

Whether or not this problem is insuperable in the case of Maxwell’s theory in
Minkowski spacetime, other problems lie ahead. Suppose that we construct our
spacetime, V , by rolling up one of the spatial dimensions of Minkowski spacetime:
V is locally Minkowskian but has the global structure of R

3 × S1. This makes a
surprising difference to our theory. It is still true that the gauge orbits in the
space of solutions are of the following form: [A] := {A + dΛ} for all appropriate
Λ. And it is still true that specifying a gauge orbit [A] determines the behaviour
of the electric and magnetic fields on spacetime. But it is no longer quite true
that we can go in the other direction: in order to specify a gauge orbit [A], one
has to specify in addition to E and B also a single complex number, which we
will call the holonomy. Intuitively, the holonomy measures the phase change that
results when an electron is transported along a given loop that wraps once around
the closed dimension of space. Thus a point in the reduced space of solutions can
be viewed as consisting of a specification of E and B plus the holonomy. This
extra number ruins everything: for while E and B are appropriately local objects,
assigning a property to each point of spacetime, the holonomy is a nonlocal item.
This becomes even more clear if we look for a way of describing the reduced
space of solutions that does not have the strange feature of including two very
different sorts of variable: the best way to proceed appears to be to describe a
point in the reduced space of solutions as an certain sort of (highly constrained)
assignment of a complex number to each closed curve in spacetime. So in such a
topologically nontrivial spacetime, in order to specify a gauge orbit [A] we need to
specify nonlocal information. The present framework requires that a Lagrangian
field theory involve an assignment of a property of each point of spacetime, and
so cannot accommodate this example.122

REMARK 39 (Lagrangians and the Reduced Space of Solutions). In the very sim-
ple particle theory considered in example 37 we saw a case in which the reduced
121See [Goldstein, 1953, 366] for this point. See [Sudbery, 1986] for a way around this worry —

which, however, requires a slight generalization of the present notion of a Lagrangian theory.
122That is, we seem to be talking about properties that require something bigger than a point

to be instantiated, in violation of Humean supervenience (see fn. 45 above).
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space of solutions of a theory admitting gauge symmetries inherited from the orig-
inal theory a Lagrangian that encoded the gauge-invariant aspects of the original
dynamics. But in the more interesting case of Maxwell’s theory, considered in
example 38, it seems less likely that there is any sense in which the reduced space
of solutions arises directly from a local Lagrangian, without passing through a
formulation admitting gauge symmetries. And this seems very unlikely indeed if
we choose our spacetime to be topologically nontrivial, because in this case the
Maxwell field appears to involve a non-local degrees of freedom.

Note that things become even worse in non-Abelian Yang–Mills theories. In
these theories, the space of fields is the space of connection one-forms on a suitable
principal bundle P → V over spacetime, the Lagrangian is a direct generalization
of the Lagrangian of Maxwell’s theory, and the group of gauge symmetries is the
group of vertical automorphisms of P. The reduced space of solutions is the space
of connections modulo vertical automorphisms of P. Even when V is Minkowski
spacetime, the best parameterization of the reduced space of solutions would ap-
pear to be one that deals with holonomies around closed curves in spacetime.123

So it would again appear difficult (perhaps impossible) to capture this reduced
space of solutions via the variational problem of a local Lagrangian.124 Indeed, it
seems plausible the prevalence of gauge freedom in physical theories is grounded
in the fact that by including nonphysical variables one is sometimes able to cast
an intrinsically nonlocal theory in to a local form.125

6.3 Time-Dependent Systems

Let us assume that our spacetime, V, admits a slicing, and that our equations of
motion, ∆, are second-order and exhibit good existence and uniqueness proper-
ties.126 But we now assume that our Lagrangian L is time-dependent, in the sense
that it does not admit a dynamical time translation group, τ, arising from a time
translation group, τ̄ , on V.

The time-dependent Lagrangian theories that arise in physics fall under the two
following cases.

123There is, however, considerable controversy among philosophers regarding the best inter-
pretation of classical non-Abelian Yang–Mills theories. See [Healey, Unpublished], [Maudlin,
Unpublished], and [Belot, 2003, §12].
124Under a usage distinct from the present one, any Hamiltonian theory on a velocity phase

space (i.e., a tangent bundle) counts as a Lagrangian theory; see, e.g., [Abraham et al., 1988,
Chapter 8]. Under this alternative use, Lagrangians are not required to be local and a variational
principle plays no necessary role. It may well be that there are treatments of theories that are
Lagrangian in this sense, but not in the sense that I am concerned with in the text.
125On this point, see, e.g., [Belot, 2003, §13]. For further speculation about the importance of

gauge freedom, see [Redhead, 2003].
126Recall from section 5.2 above that a slicing of a spacetime is a decomposition into space

and time; not every slicing satisfies the stronger condition that this decomposition meshes with
a time translation group on V. Only spacetimes with geometries strong enough to determine a
family of instants and a family of possible point-particle worldlines admit slicings.
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Case (A): V admits a time translation group τ̄ , but this group does not cor-
respond to a symmetry of the equations of motion. Example: A system
of particles in Newtonian spacetime, subject to forces arising from a time-
dependent potential.

Case (B): V does not admit a time translation group. For example, let (V, g) be a
curved general relativistic spacetime without temporal symmetries and take
the Klein–Gordon equation for a scalar field on (V, g), ∇a∇aΦ−m2Φ = 0, as
the equation of motion (note that the metric on V plays a role in defining the
derivative operators); the corresponding Lagrangian is L = 1

2

√−g∇a∇aΦ +
m2Φ2.

We will also need that notion of a time-dependent Hamiltonian system.

DEFINITION 40 (Time-Dependent Hamiltonian Systems). A time-dependent
Hamiltonian system (M,ω, h) consists of a symplectic manifold (M,ω), called
the phase space, together with a smooth function h : R × M → R, called the
Hamiltonian. We often write h(t) for h(t, ·) : M → R.

Ordinary Hamiltonian systems (see definition 8 above) are special cases of time-
dependent Hamiltonian systems in which h(t) is the same function on M for each
value of t; we will also call such systems time-independent Hamiltonian systems.
In a time-independent system, the dynamical trajectories could be thought of as
curves in the phase space, parameterized up to a choice of origin, with exactly one
such curve passing through each point of the space. In the time-dependent case, the
situation is more complicated. For each value of t, we can solve ω(Xh(t), ·) = dh(t)
for the vector field Xh(t) generated by h(t). We can then declare that a curve
γ : R→ I is a dynamical trajectory of (I, ω, h) if for each t ∈ R, γ̇(t) = Xh(t)(γ(t))
— that is, for each t, the tangent vector to γ at x = γ(t) is given by the value of
the vector field Xh(t) at x. Notice that while in the case of a time-independent
Hamiltonian system, there is a single dynamical trajectory through each point of
the phase space, in the present case there will in general be many such trajectories
through each point (since which states come immediately after x ∈ I depends
on the tangent to the dynamical trajectory through x; and in the time-dependent
case, this tangent will vary as we consider posing initial data x at different possible
instants).

Given the set of assumptions that we have in play, we expect to to find the
following when we investigate a time-dependent Lagrangian theory.

Lagrangian Picture. One can apply the usual variational procedure to pass
from a Lagrangian to a set of equations of motion. We can also follow the
usual procedure in order to equip the corresponding space of solutions, S,
with a two-form, Ω — and, as usual, one presumes that for the sort of exam-
ples that arise in physics, uniqueness of solutions to the equations of motion
implies that Ω is symplectic.127 Note, however, that in time-dependent the-

127For a discussion of the construction of (S, Ω) in the time-dependent case, see [Woodhouse,
1991, §2.4].
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ories of the types under consideration, S does not carry a one-parameter
group implementing time translations: in theories falling under Case (A)
above, such a group acts on the space of kinematically possible fields, but
(in general) maps solutions to non-solutions; in theories falling under Case
(B), there is no available notion of time translation. We can as usual use
the stress-energy tensor of the field to define the energy of the field along
any given instant — but the result is no longer independent of the instant
chosen.

Hamiltonian Picture. A choice of slicing for our spacetime V leads to a Hamil-
tonian picture which is in many ways similar to that which emerges in the
time-independent case. Let S be a manifold homeomorphic to an arbitrary
instant Σ ⊂ V (and with the geometry, if any, shared by such instants) and
let σ be a slicing of V employing S as an abstract instant: it is helpful
to think of the choice of σ as the choice of a preferred family of observers
equipped with a notion of simultaneity. Then we can set about constructing
a Hamiltonian version of our theory, following in so far as possible the recipe
from the time-independent case.

1. Given an instant Σ in our slicing and a solution Φ, we define: φ, the
restriction of the field to Σ; φ̇ the time rate of change of Φ along Σ
relative to the observers and clocks that define σ; and π := ∂L

∂φ̇
, the

field momentum along Σ relative to the slicing σ.

2. Given a solution Φ and instant Σ in our slicing, we use σ to pull back
to S the initial data (φ, π) induced by Φ on Σ, and henceforth think of
φ and π as functions defined on S, when convenient.

3. Let Q be the space of all φ : S →W that arise in this way; then T ∗Q is
the space of all pairs (φ, π) that arise in this way. This is our space of
initial data, I. It carries a canonical symplectic form, ω (see example
7 above).

4. The construction of the Hamiltonian is the first stage at which we run
into any novelty.128 Let Σt be an instant in our slicing, and define
h(t) : I → R (t fixed, for now) as h(t)(φ, π) :=

∫
Σt

πφ̇−L(Φ)dx, where Φ
is the solution that induces (φ, π) on Σt, and φ̇ is the field velocity that Φ
induces on Σt. In general, this construction yields a different real-valued
function on I for each value of t. One expects that h(t)(φ, π) gives the
total instantaneous energy when initial data (φ, π) are posed on instant
Σt. But imposing the same initial data at distinct times in general leads
to states with different total energies (since, roughly speaking, we are
dealing with systems subject to time-dependent potentials).

5. Now considering t as a variable, we see that we have defined a smooth
h : R × I → R. So (I, ω, h) is a time-dependent Hamiltonian system

128For this construction see, e.g., [Kay, 1980, §1].



194 Gordon Belot

in the sense of definition 40 above. The resulting dynamics can be
thought of as follows. Suppose that we are interested in the dynamics
that results when we pose our initial data on a fixed instant Σt0 in our
slicing. Then, for each s ∈ R we can ask what state x ∈ I, posed on Σt0 ,
evolves into after s units of time; we call the result gt0s (x). This gives us a
map gt0s : I → I for each s; and the set {gt0s }s∈R forms a one-parameter
group; each of gt0s is a symplectic automorphism of I but does not leave
h invariant. So here we have the dynamics implemented by symmetries
of (I, ω) that are not symmetries of (I, ω, h). Letting t0 vary gives us
a one-parameter family of such one-parameter dynamics-implementing
groups.

Relation between the Pictures. As in the time-independent setting, for each
Σ in our slicing, we can define the map TΣ : S → I that sends a solution to
the initial data it induces on Σ. Because we are assuming global existence
and uniqueness for solutions to our equations of motion, each such map is
a bijection. Furthermore, as in the time-independent case, each such TΣ is
in fact a symplectic isomorphism between S and I. We can use these maps
to show that the time-dependent Hamiltonian system constructed above en-
codes the correct dynamics for our equations of motion: let Φ be a solution
and let x0 be the initial data induced by Φ on the instant Σ0, and let x0(t)
be the corresponding dynamical trajectory in the space of initial data; then
for each t ∈ R, x0(t) is the initial data that Φ induces on Σt.

In the time-independent case, we also found that the maps TΣ intertwined the
actions of the group implementing time translation on the space of solutions
and time evolution on the space of initial data. In the present case, we have,
so far, nothing corresponding to time translation on the space of solutions,
while on the space of initial data, we have a whole family of notions of time
evolution (indexed by a choice of instant upon which initial data are to be
posed). Now note that for each instant Σt in our slicing and each s ∈ R we
can define ĝts := T−1

Σt
◦ gts ◦ TΣt

; the family {ĝts}s∈R is a one-parameter group
of symplectic automorphisms of (S,Ω) which is not a group of variational
symmetries of our Lagrangian. The result of applying ĝts to a solution Φ is
the solution that would result if the initial data induced by Φ on Σt had
been posed instead on the instant Σt−s.129

Time. In the present context, time translation may or may not be a symmetry
of our spacetime. But even if it is, there is no corresponding symmetry of
the dynamics. And so our picture is hobbled — we do not get nice actions
of the real numbers on the space of solutions and on the space of initial data
that implement time translation and time evolution. On the space of initial

129Of course, in the time-independent case, this reduces to time translation of solutions — so
we can regard the transformations ĝts as generalizing the ordinary notion of time translation of
solutions.
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data, for each instant at which we might choose to pose initial data, we
get a one-parameter group implementing time evolution — but this is not a
symmetry of the Hamiltonian. On the space of solutions, we have no natural
group action corresponding to time-translation. If we choose a slicing and
an instant, then we can get an R-action that gives us information not about
time translation of solutions, but about what solution results if we take the
initial data that a given solution induces on that given instant and re-pose
it on another instant.

Change. Some physical quantities will be represented by functions on the space
of initial data: for example, in a theory of two Newtonian particles subject to
time-dependent external forces, relative distance between the particles will
be encoded in a function on the space of initial data. But some quantities will
be represented by one-parameter families of functions on the space of initial
data: energy will be an example of such a quantity in any time-dependent
system.130 As we have done above with the Hamiltonian, let us use the
symbol f(t) to denote such a one-parameterone-parameter family — we can
think of an ordinary function as being a degenerate case, where f(t) is the
same function on I for each t ∈ R. Let x(t) be a dynamical trajectory in I.
Then x(t) represents the quantity modelled by f(t) as changing if and only
if ∃t1, t2 ∈ R such that f(t1)(x(t1)) �= f(t2)(x(t2)).
On the space of solutions, we expect that, once we have chosen a slicing,
each quantity of interest will be represented as usual by a one-parameter
family of functions — as usual, we denote such a family of functions on S
by {ft}. Suppose that a quantity of interest is represented by f(t) on the
space of initial data, and let Σt0 be an instant in our slicing. Then we define
ft0 := f(t0) ◦ TΣt0

: S →R. Carrying this out for each t ∈ R gives us our
desired {ft}. As usual, we view a solution Φ ∈ S as representing our quantity
as changing if ∃t1, t2 ∈ R such that ft1(Φ) �= ft2(Φ).

REMARK 41 (Artificially Time-Dependent Theories). If we have a time-inde-
pendent Lagrangian theory but perversely choose a slicing that is not adapted to
our notion of time translation, then we the result of following the above procedure
would be a time-dependent Hamiltonian system.

REMARK 42 (Quantization of Time-Dependent Systems). There is no special
difficulty in quantizing a time-dependent Hamiltonian treatment of a system with
finitely many degrees of freedom. But it is not in general possible to construct
a well-behaved quantum Hamiltonian for a time-dependent field theory.131 For
130It is not hard to find other examples. In a field theory set in a nonstationary spacetime, the

abstract instant will not carry a Riemannian metric (since the instants Σ ⊂ V do not share a
Riemannian geometry). In this case, we find that an initial data set that represents the field as
having two sharp peaks will correspond to instantaneous states in which the peaks are different
distances apart, depending on the instant Σt in the slicing upon which the initial data are posed.
So in this sort of example, even relative distance is represented by a family of functions on the
space of initial data.
131See, e.g., [Kay, 1980, §2.1].
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this reason, the standard construction of free quantum field theories on curved
spacetimes take as their starting point the space of solutions rather than the space
of initial data.132

7 THE PROBLEM OF TIME IN GENERAL RELATIVITY

General relativity differs from the theories considered above in being generally
covariant. It is widely accepted that this leads to certain characteristic technical
and conceptual problems, grouped together under the rubric the problem of time.
This section forms an extended commentary on the problem of time in general
relativity. The first subsection below is devoted to a discussion of the general
covariance of general relativity and some of its direct consequences. The following
subsection contains a discussion of the problem of time itself — essentially that
change cannot be represented in the theory in the way familiar from the discussion
of sections 5 and 6 above. The final subsection discusses a strategy for finding
time and change in general relativity (this discussion is intended by way of further
clarification of the problem of time, rather than as a suggested resolution).

It is important to emphasize that while the present discussion focuses on general
relativity, the problems under discussion arise whenever one has a theory that is
generally covariant in an appropriate sense.

7.1 The General Covariance of General Relativity

Let V be a spacetime manifold, with or without geometrical structure. Recall
that a Ck (0 < k ≤ ∞) diffeomorphism d : V → V is a Ck bijection with Ck

inverse.133 Leaving the degree of differentiability unspecified, we will denote by
D(V ) the group of diffeomorphisms from V to itself.134

132See [Wald, 1994, Chapter 4].
133A diffeomorphism d : V → V is called small if it is homotopic to the identity, otherwise it

is large. For ease of exposition, I implicitly restrict attention to small diffeomorphisms below. I
will often speak of the pullback of a tensor by a diffeomorphism. The most important case will
be the pullback d∗g of a spacetime metric g by a diffeomorphism d. Intuitively (V, d∗g) is the
spacetime geometry that results if we lift g off V, then use d to permute the identities of points of
V, then lay g back down. (V, g) and (V, d∗g) share a set of spacetime points and have isomorphic
geometries; they differ only as to which points in V play which geometric roles — unless d is a
symmetry of the metric, in which case they do not differ even about this.
134Special care is required in dealing with groups of diffeomorphisms: on the one hand, the group

of Ck diffeomorphisms from a compact manifold to itself has a nice differentiable structure — it is
a Banach manifold — but is not a Banach Lie group because the operation of group multiplication
is not smooth; on the other hand, the the group of C∞ diffeomorphisms from a compact manifold
to itself has a less desirable differentiable structure — it is a mere Fréchet manifold — but it is a
Fréchet Lie group; see [Adams et al., 1985] and [Milnor, 1984] for details. The situation is even
worse for groups of diffeomorphisms from a noncompact manifold V to itself: it appears that one
needs to presuppose some geometrical structure on V in order to give the group a differentiable
structure; see [Cantor, 1979] and [Eichhorn, 1993]. See [Isenberg and Marsden, 1982] for tactics
for circumventing these difficulties.
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Roughly speaking, we want to say that a theory is generally covariant when it
has D(V ) as a symmetry group.135 So for each of the several notions of symmetry
of a theory, we have a corresponding notion of general covariance. Following
[Earman, 2006], I will single out the following two as the most important for our
purposes:

Weak General Covariance: D(V ) is a group of symmetries of the equations ∆
of the theory.

Strong General Covariance: D(V ) is a group of gauge symmetries of the La-
grangian L of the theory.

Of course, Strong General Covariance implies Weak General Covariance (since
every gauge symmetry is a variational symmetry, and therefore a symmetry of
the equations of motion). But the converse is not true (a theory may be weakly
generally covariant even if it does not admit a Lagrangian, and hence is not eligible
to be strongly generally covariant).

We have been allowing V to carry a fixed geometrical background, encoded in
some tensors that do not vary from solution to solution. We could have allowed
V to carry further nongeometric solution-independent structure.136 On the other
hand, in any nontrivial theory the fields governed by the equations of motion will
of course vary from solution to solution. So we have have a distinction between
theories in which V is equipped with nontrivial solution-independent structure and
theories in which it is not.137

Intuitively, a theory is weakly generally covariant if and only if its solutions
carry no solution-independent tensors (or spinors, or . . . ) — for it is precisely
when we have some fixed background tensors painted on V that the equations of
motion can “care” about the distinction between a solution Φ and its pullback
d∗Φ by a diffeomorphism d : V → V.

Of course, general relativity is weakly generally covariant — indeed, in the
important vacuum sector of general relativity the spacetime metric is the only
basic quantity of the theory, and it is solution-dependent.138

The question whether general relativity satisfies Strong General Covariance is
a bit more subtle. Intuitively, it ought to: for at the formal level diffeomorphisms
of V are variational symmetries of the Lagrangian of the theory, and the group
135See [Norton, 1995] for the tangled history of the notion of general covariance.
136For example, in studying the motion of charged matter in a strong external electromagnetic

field, we might employ a theory in which the Maxwell field as well as the spacetime geometry
was solution-independent and only the motion of the matter varied from solution to solution.
137Note that the distinction made here between solution-independent and solution-dependent

structures does not coincide with the Anderson–Friedman distinction between absolute and dy-
namical objects (see [Friedman, 1983, §II.2]): solution-independent objects are required to be
the same from solution to solution while absolute objects are only required to be the same from
solution to solution up to diffeomorphism.
138In this regime, the Einstein Field equations just tell us that if metric g on V counts as a

solution if and only if the Ricci curvature tensor of g vanishes. And clearly g is Ricci-flat if and
only if d∗g is. So D(V ) maps solutions to solutions.
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of such diffeomorphisms is parameterized in a suitable sense by the set of vector
fields on V. But, as we will soon see, this is a point at which technicalities about
boundary conditions cannot be ignored.

But we can block out such technicalities by restricting attention to the subset
Dc(V ) ⊂ D(V ), consisting of compactly supported diffeomorphism from V to
itself.139 Dc(V ) turns out to be a group of gauge symmetries of the Lagrangian of
general relativity (Dc(V ) is parameterized by the family of compactly supported
vector fields on V ). So the counterpart of condition (2) above goes through when
D(V ) is replaced by Dc(V ).

In order to say more, and to approach the question of the significance of general
covariance for questions about time, we turn below to two special cases: (i) general
relativity in the spatially compact domain; (ii) general relativity in the domain in
which asymptotic flatness is imposed at spacelike infinity. The first case is central
to cosmology: by requiring space to be compact, one eliminates worries about
boundary conditions at spatial infinity; this permits one to investigate universes
packed with matter while maintaining control over technical issues. The second
case is of more strictly mathematical and conceptual interest (the asymptotic
boundary conditions of greatest physical interest impose asymptotic flatness at
null infinity rather than spatial infinity; these allow one to investigate gravitational
radiation). After discussing these cases, I briefly turn to the question whether every
theory can be given a generally covariant formulation.

General Relativity as a Cosmological Theory

We restrict attention to vacuum general relativity in which the spacetime metric,
g, is the only field. So we take as our space of kinematically possible fields the
space of Lorentz signature metrics on some fixed n-dimensional spacetime manifold
V.140 The equation of motion for this theory is Rab− 1

2Rgab = 0, where Rab is the
Ricci curvature of g and R is the scalar curvature of g; here and throughout we
require the cosmological constant to vanish.

Recall that a subset Σ ⊂ V is called a Cauchy surface of (V, g) if every inex-
tendible timelike curve in (V, g) intersects Σ exactly once; it follows that a Cauchy
surface is an (n− 1)-dimensional spacelike submanifold of V . We call (V, g) glob-
ally hyperbolic if it possesses a Cauchy surface. If (V, g) is globally hyperbolic,
then it can be foliated by Cauchy surfaces, and all of its Cauchy surfaces are
homeomorphic to one another. Indeed, if (V, g) is globally hyperbolic, then V
is homeomorphic to a manifold of the form S × R for some (n − 1)-dimensional
manifold S, with all the Cauchy surfaces of (V, g) homeomorphic to S. For the pur-
poses of this discussion of general relativity as a cosmological theory we restrict
attention to solutions with compact and orientable Cauchy surfaces.141

139That is, a diffeomorphism d : V → V is in Dc(V ) if and only if there exists a compact set
U ⊂ V such that d acts as the identity on V/U.
140So a kinematically possible field is a section of the bundle of symmetric bilinear forms of

Lorentz signature over V.
141The restriction to globally hyperbolic solutions is not required for construction of a La-
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We can proceed to construct Lagrangian and Hamiltonian versions of our theory.

Lagrangian Picture. The Lagrangian for general relativity is the Einstein–
Hilbert Lagrangian, L =

√−gR. The space of solutions is, of course, infinite-
dimensional. Let us call a solution well-behaved if it admits a foliation by
Cauchy surfaces with constant mean curvature.142 It is believed that the
set of well-behaved solutions forms a large open subset of the full space of
solutions; and it is known that within the space of well-behaved solutions
the only singularities that occur are mild ones at metrics that admit Killing
fields (these are vector fields that can be thought of as the infinitesimal gen-
erators of spacetime symmetries).143 The group D(V ) is a group of gauge
symmetries of the Einstein-Hilbert Lagrangian: each one-parameter group of
diffeomorphisms from V to itself is a group of variational symmetries of this
Lagrangian, and the group D(V ) can be parameterized by arbitrary vector
fields on V.144 So, in accord with the theory of gauge theories developed in
section 6.2 above, we find that the space, S, of well-behaved solutions carries
a presymplectic form, Ω (henceforth I drop the qualifier and speak of S as the
space of solutions).145 As usual, this presymplectic form induces a partition
of the space of solutions by gauge orbits. Two metrics, g and g′, belong to
the same gauge orbit if and only if there exists a diffeomorphism d : V → V
such that g′ = d∗g. Of course, the conserved quantities associated with one-
parameter groups of diffeomorphism are trivial — each is the zero function
on S. Indeed, in this context, general relativity has no nontrivial Noether
quantities — beyond diffeomorphisms, the only continuous, local symmetries
of the laws are metric rescalings, which are not variational symmetries.146

Reduced Space of Solutions. The space, S ′, of gauge orbits of the space of
solutions of general relativity is a symplectic space with mild singularities at
points corresponding to solutions with Killing fields.147 Let us call a point [g]
in the reduced space of solutions a geometry — since distinct representatives
of [g] represent V as having the same spacetime geometry, but differ as to
the distribution of geometrical roles to points of V. So far as I know, it makes
no sense to speak of this reduced space as the space of solutions arising from

grangian version of general relativity, but is required for the Hamiltonian treatment and plays a
role in some of the results cited below concerning the structure of the space of solutions. The
requirement that the spatial topology be orientable is required for the Hamiltonian treatment.
142Mean curvature will be defined below on p. 201, in the course of the discussion of the space

of initial data.
143For the structure of the space of well-behaved solutions, see [Isenberg and Marsden, 1982].
144See [Crnković and Witten, 1987] and [Woodhouse, 1991, 143–146]; the latter provides an ar-

gument that non-compactly supported diffeomorphisms belong in the group of gauge symmetries
of the Lagrangian.
145See also [Frauendiener and Sparling, 1992] for a construction of the presymplectic form on

the space of solutions which does not proceed via the Lagrangian formalism.
146See [Torre and Anderson, 1996, esp. p. 489].
147See [Isenberg and Marsden, 1982].
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the variational problem for a local Lagrangian. Indeed, a geometry [g] would
not appear to assign any particular local property to any point x ∈ V.

Hamiltonian Picture. The construction of the corresponding Hamiltonian pic-
ture requires a bit of care.148 We want to mimic as much of the procedure
of section 5 above as we can, given that we do not have available a slic-
ing (which requires that spacetime have a nontrivial solution-independent
geometry). We proceed as follows.149

1. Construct the space of initial data. Up until now, we have been able to
proceed as follows: (i) choose a slicing σ of V and an instant Σ ⊂ V in σ,
then construct the space of possible instantaneous field configurations,
Q, by looking at all the φ : Σ → W that arise by restricting solutions
Φ to Σ; (ii) construct the space of initial data I ⊆ T ∗Q by finding
all pairs (φ, π) that are induced as initial data on Σ (where π is the
instantaneous field momentum, defined via π := ∂L

∂φ̇
, with φ̇ is the time

rate of change of the field according to the observers associated with
the slicing σ). We found that I was a proper subset of T ∗Q whenever
the Lagrangian L of the theory admitted a group of gauge symmetries.
Without relying on a notion of slicing, we can construct a space of initial
data via a procedure surprisingly close to the usual one.
If Σ ⊂ V is a hypersurface and g is a solution to the Einstein field equa-
tions, then q := g |Σ is a symmetric covariant tensor of rank two. But in
the present setting, the restriction of a solution to an arbitrary hyper-
surface is not a good candidate for an instantaneous configuration of the
field: intuitively, since the gravitational field of general relativity is a
spacetime geometry, an instantaneous configuration of this field should
be a spatial geometry. But, of course, q := g |Σ is a Riemannian metric
on Σ if and only if Σ is spacelike according to g. So q = g |Σ represents
an instantaneous state of the field if and only if Σ is spacelike.150 So
it seems reasonable to take as the space of possible instantaneous field
configurations, Q, the space of Riemannian metrics q that arise by re-
stricting each solution to the hypersurfaces that it renders spacelike.151

148For the constructions that follow see [Wald, 1984, Appendix E.1] or [Beig, 1994].
149The construction sketched here does not rely on the lapse and shift fields. Fixing the be-

haviour of these nonphysical fields allows one to pass from initial data on an abstract instant S
to a solution on S×I for some (possibly small) interval I of real numbers. As such they allow one
to establish a bijection between the space of initial data and a set of solutions of limited temporal
extent. I avoid the lapse and shift here because I want to concentrate on global results and on
physical fields. For a very helpful introduction to the lapse and shift formalism, see [Marsden et
al., 1972, §III].
150In the spatially compact globally hyperbolic regime, a submanifold of (V, g) with the topology

of a Cauchy surface for (V, g) is a Cauchy surface if and only if it is spacelike according to g; see
[Budic et al., 1978, Theorem 1].
151The field q is taken to be defined on an abstract instant, S, diffeomorphic to the Cauchy

surfaces Σ ⊂ V. In order to construct Q we choose an instant Σ rlative to (V, g) and a diffeo-
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The definition of the instantaneous field momenta is more complicated.
In the familiar case, the slicing σ plays an important role. But nothing
like that is available in the present case: it is awkward to introduce
a solution-independent notion of slicing in the context of general rela-
tivity, considered as a dynamical theory.152 There is, however, a way
around this difficulty. Consider a solution g and a hypersurface Σ ⊂ V
that g represents as being spacelike. Relative to g we can choose a
slicing of V in the usual sense (since relative to g we can single out the
instants and possible worldlines of point-particles as submanifolds of
V ). We call such a slicing Gaussian for Σ if it corresponds to a set of
freely falling observers whose clocks all read zero as they pass through
Σ, and whose worldlines are all orthogonal to Σ. For sufficiently small
t the hypersurfaces of constant t according to the Gaussian observers
will be Cauchy surfaces carrying Riemannian metrics q(t) := g |Σt

. So
given a Gaussian slicing for Σ, we can define q̇ab := ∂qab(t)

∂t |t=0, which
is a symmetric covariant tensor of rank two on Σ. In fact, q̇ab is inde-
pendent of the Gaussian slicing chosen, and can be viewed as telling
us about the geometry of the embedding of Σ in (V, g). We can take a
similar view of the extrinsic curvature of Σ in (V, g), kab := 1

2 q̇ab, and
the mean curvature along Σ in (V, g), k := qabkab. Now: relative to our
Gaussian slicing, the tensor q̇ab(0) represents the velocity of the gravi-
tational field, in the sense that it encodes information about the time
rate of change of the field; as usual, we can define the corresponding
momentum as πab := ∂L

∂q̇ . For the Einstein-Hilbert Lagrangian we have
πab =

(√
qkab − kqab

)
(so the momentum is a symmetric contravariant

tensor of rank two).153 We take as our space of initial data the space
I ⊂ T ∗Q of pairs (q, π) that arise as the field configuration and mo-
mentum induced by solutions on hypersurfaces they render spacelike
(with q and π functions living on an abstract manifold S). As is to be
expected in a theory with gauge symmetries, I is a proper subspace
of T ∗Q and the restriction of the canonical symplectic form on T ∗Q
equips I with a presymplectic form, ω. The gauge orbits of ω have the

morphism d : S → Σ, and use d to pull back to S all of the q that arise as restrictions of Σ of
solutions that render Σ spacelike. Q is of course independent of the choice of Σ and d.
152Suppose that σ is a slicing relative to a metric g on V. Then the restriction of g to the

instants Σt in σ will be reasonable instantaneous field configurations, and so relative to σ the
solution g ought to correspond to a curve in the space of initial data of the theory. But what
happens if we look at another solution g′ relative to σ? In general, the result of restricting this
new solution to Σt in σ will not be an instantaneous state of the field — so σ will not give us
the means to associate with each spacetime solution g a trajectory in the space of initial data.
153If we calculate q̇ relative to a non-Gaussian slicing of (V, g), then we will in general get an

answer quite different from that generated by a Gaussian slicing. But if we use this new notion
of the field velocity in our definition of the field momentum, we find that our new observers agree
with our original Gaussian observers about the value of the field momentum at each point of Σ.
So, rather surprisingly, in general relativity the field momentum depends on the instant chosen,
but not on a slicing.
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following structure: initial data sets (q, π) and (q′, π′) belong to the
same gauge orbit if and only if they arise as initial data for the same
solution g.154

2. Construct a Hamiltonian. Application of the usual rule for constructing
a Hamiltonian given a Lagrangian leads to the Hamiltonian h ≡ 0.

3. Construct dynamics. Imposing the usual dynamical equation, according
to which the dynamical trajectories are generated by the vector field(s)
Xh solving ω(Xh, ·) = dh, leads to the conclusion that dynamical tra-
jectories are those curves generated by null vector fields. So a curve in
I is a dynamical trajectory if and only if it stays always in the same
gauge orbit. This is, of course, physically useless — since normally
we expect dynamical trajectories for a theory with gauge symmetries
to encode physical information by passing from gauge orbit to gauge
orbit. But in the present case, nothing else could have been hoped
for. A non-zero Hamiltonian would have led to dynamical trajectories
which passed from gauge orbit to gauge orbit — but this would have
been physical nonsense (and worse than useless). For such dynamics
would have carried us from an initial state that could be thought of
as an instantaneous state for solution g to a later instantaneous state
that could not be thought of as an instantaneous state for solution g.
In doing so, it would have turned out to encode dynamical information
very different from that encoded in Einstein’s field equations.

Reduced Space of Initial Data. We can pass to, I ′, the space of reduced initial
data: a point in this space consists of a gauge equivalence class of points in
the space of initial data. Like the reduced space of solutions, the reduced
space of initial data is a symplectic space with mild singularities.155 Indeed,
it is presumed that the two reduced spaces are canonically isomorphic as
symplectic spaces, under the map that takes a gauge orbit of initial data
to corresponding gauge orbit of solutions.156 I ′ inherits from I the trivial
Hamiltonian h ≡ 0; this induces the trivial dynamics on I ′ according to
which the dynamical trajectories are constant curves of the form x(t) = x0

for all values of t.

Relation between the Pictures. The space of solutions and the space of initial
data are not isomorphic — this is a general feature of theories with gauge
symmetries. On the other hand, as we just noted, the reduced space of

154More precisely: (q1, π1) and (q2, π2) belong to the same gauge orbit if and only if there is
a solution g, instants Σ1, Σ2 ⊂ (V, g), and diffeomorphisms d1 : S → Σ1 and d2 : S → Σ2 such
that for i = 1, 2 (qi, πi) is the pull back to S by di of the initial data that g induces on Σi. Note
that if Σ1 = Σ2 but d1 �= d2, then (q1, π1) and (q2, π2) will be distinct but gauge-equivalent
descriptions of the geometry of a single Cauchy surface in (V, g).
155See [Fischer and Moncrief, 1996].
156If (q, π) is the geometry of a Cauchy surface in g, then canonical isomorphism between I′

and S′ sends [q, π] to [g].
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solutions and the reduced space of initial data are believed to be isomorphic.
In the case of a theory on a fixed background spacetime, a slicing yields a one-
parameter family of symplectic isomorphism between the space of solutions
and the space of initial data that serves the dual purposes of intertwining the
temporal symmetries of their respective spaces and allowing us to construct
a representation of change on the space of solutions. In the present case we
have only a single canonical isomorphism between the two spaces.

Time. On neither the space of solutions nor reduced space of solutions do we find
an action of the real numbers implementing time translation. Nor do we
find a non-trivial action implementing time evolution on the reduced space
of initial data, since the Hamiltonian trajectories are all trivial there. On the
space of initial data, we do have non-trivial Hamiltonian trajectories. But a
dynamical trajectory on the space of initial data cannot in general be viewed
as encoding time evolution: there is nothing, for instance, to prevent such a
trajectory from being periodic, even when the solution corresponding to the
gauge orbit the trajectory lives in is not periodic in any sense.
There is, however, a class of dynamical trajectories on the space of initial
data that can be viewed as encoding dynamics — those trajectories that
correspond to sequences of initial data that could be stacked to form sensible
spacetime geometries (when this is possible, the result is always a solution
of the field equations). Through each point of the space of initial data there
are in fact many such trajectories. But, as is usual in theories with gauge
symmetry, there is no privileged way of cutting down this multitude to a
distinguished subset that encode time evolution via an R-action.

Change. Let us take some changeable physical quantity like the instantaneous
spatial volume of the universe. How would we represent such a quantity on
the various spaces in play? On both the space of solutions and the reduced
space of solutions, we face our usual problem: points in these spaces represent
history timelessly, so no function on such a space can represent in a direct way
a changeable physical quantity. In the past, we were able to get around this
problem using one of the following strategies. (i) We could find a function on
f on a space arising on the Hamiltonian side, then use a slicing-dependent
one-parameter family of isomorphisms between this space and the (reduced)
space of solutions to find a one-parameter family of functions on the latter
space encoding the behaviour of the given quantity. (ii) Or we could find
a function on the (reduced) space of solutions encoding the value of the
quantity of interest at a given instant, then use a dynamical time translation
group on the (reduced) space of solutions to generate a one-parameter family
of such functions. Neither of these strategies will work this time: we do not
have a one-parameter family of isomorphisms indexed by instants, nor a
notion of time translation on the (reduced) space of solutions.
We are in fact no better off on the reduced space of initial data: there too
points correspond to entire histories of the system, and individual functions
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are ill-suited to represent changeable quantities. And on the space of initial
data we face an unattractive dilemma: if we seek to represent changeable
quantities via non-gauge invariant functions, then we face indeterminism; if
we employ gauge-invariant functions, then we are faced with essentially the
same situation we met in the reduced space of initial data.

General Relativity in the Asymptotically Flat Regime

It is illuminating to consider a second sector of general relativity, in which one
requires solutions to be asymptotically flat at spatial infinity. This case is of
marginal physical interest, but it helps us to clarify the source of the problems we
ran into in the spatially compact case.

In this regime our spacetime is R
4 and kinematically possible fields are assign-

ments of Lorentz signature metrics to V that are required to be, in an appropriate
sense, asymptotically flat at spatial infinity.157 Instants are also required to satisfy
asymptotic conditions.

In this setting it is natural to consider D∞(V ), the group of diffeomorphisms
that leave the boundary conditions invariant, rather than the full group of dif-
feomorphisms. We find that the subgroup, D∞

0 (V ), of D∞(V ) consisting of dif-
feomorphisms asymptotic to the identity at infinity is the largest group of gauge
symmetries of the Lagrangian formulation of the theory and that D∞(V ) is the
semi-direct product of D∞

0 (V ) with the Poincaré group (every element of D∞(V )
can be thought of as a product of an element of D∞

0 (V ) and a Poincaré symmetry
acting at infinity).158 The space of solutions of this theory carries a presymplectic
form and breaks into gauge orbits, with two solutions in the same gauge orbit
if and only if they differ by a diffeomorphism in D∞

0 (V ).159 Diffeomorphisms in
D∞

0 (V ) fix the gauge orbits; those in D∞(V ) but not D∞
0 (V ) permute them. The

significance of this is most clear at the level of the reduced space of solutions: this
is a symplectic space carrying a representation of the Poincaré group — and in
particular, for each notion of time translation at spatial infinity, this space carries
a non-zero Hamiltonian generating this notion.160

One can also give a Hamiltonian treatment of this sector of general relativity.161

One constructs the space of initial data as in the spatially compact case, except
that conditions must be imposed on the asymptotic behaviour of the instantaneous

157There are several notions of asymptotic flatness at spatial infinity. In this section, results are
cited that are derived using three distinct but closely related approaches: (i) that of [Andersson,

1987]; (ii) that of [Ashtekar et al., 1991]; and that of [Beig and Ó Murchadha, 1987]. For ease
of exposition, I gloss over the differences in these approaches in the text — I do not believe
that the result is misleading. For the relations between approaches (i) and (iii), see [Andersson,
1987, Definitions 2.3 and 2.4] and [Andersson, 1989, 78]. Both of approaches (ii) and (iii) are
situated by their protagonists with respect to that of [Beig and Schmidt, 1982]; see [Ashtekar
and Romano, 1992, §7] and [Beig and Ó Murchadha, 1987, §§4 and 5].
158See [Andersson, 1987, Theorem 2.2] and [Ashtekar et al., 1991, §3.3].
159See [Ashtekar et al., 1991, §3].
160See[Andersson, 1987].
161See [Beig and Ó Murchadha, 1987].
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field configuration and momentum. The resulting space carries a presymplectic
form. Initial data sets (q, π) and (q′, π′) belong to the same gauge orbit if and
only if there is a solution g and instants Σ,Σ′ ⊂ V such that Σ and Σ′ are related
by an element of D∞

0 (V ) and g induces (q, π) on Σ and (q′, π′) on Σ′.162 Just
as on the space of solutions, we have a set of functions that can be viewed as
the infinitesimal generators of the Poincaré group at infinity. Corresponding to a
generator of time translations at infinity is a Hamiltonian on the space of initial
data that generates a gauge equivalence class of notions of dynamics, each of which
carries one from gauge orbit to gauge orbit (compare with the notion of dynamics
on the space of initial data of an ordinary theory with gauge symmetries). So a
generic dynamical trajectory, x(t), generated by such a Hamiltonian will represent
a nontrivial trajectory through the space of initial data; the same Hamiltonian
will generate many trajectories through each point in the space of initial data; but
each of these trajectories will agree for each value of t about the gauge orbit in
which the state of the system dwells at that time.

One expects that the reduced space of initial data should be a symplectic space
isomorphic to the reduced space of solutions and carrying a representation of the
Poincaré group. Choosing a notion of time translation at infinity should pick out
a Hamiltonian on the reduced space of initial data whose dynamical trajectories
encode the dynamics of the theory: fixing a notion of the time translation, the
corresponding Hamiltonian, and an arbitrary point in the reduced space of initial
data, we should find that the Hamiltonian trajectory through this point encodes
a sequence of equivalence class of instantaneous data, and that any way of picking
representatives of these classes that stack to form a sensible spacetime geometry
encodes a solution of the theory.

So the situation in this case is very different from that we saw above in the
spatially compact case. We have representations of the Poincaré group on the
reduced space of solutions and on the reduced space of initial data, and we have
these representations encoded in structures on the space of solutions and the space
of initial data.

And we can represent changeable physical quantities in a quite familiar way, via
smooth functions on the reduced space of initial data. Special cases aside, such
functions change their values as the state moves along the dynamical trajectories
in that space. And we can calculate the rate of change of such quantities, etc. The
situation is more complicated if we seek to represent change via functions on the
space of solutions — this requires some of the apparatus to be developed below in
section 7.3. But at least at the intuitive level, it is clear what needs to be done:
because for each point in the reduced space of solutions, there is, for each notion
of time translation at infinity, a one-parameter family of points in this space that
correspond to the time translates of the given point, it ought to be possible to
find, for any function on the reduced space of initial data that corresponds to a

162As in the spatially compact case, distinct points in the space of initial data can correspond
to the same field configuration and momentum induced by g on Σ ⊂ V, if we use distinct
diffeomorphisms to pull back these tensors to the abstract instant S.
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changeable quantity, a one-parameter family of functions on the reduced space of
solutions that encode the value of that quantity at different moments of time.

Is General Covariance Special?

Einstein believed that the general covariance of general relativity was a very special
feature with momentous physical consequences. Motivated by the observation
that in special relativity there is a tight connection between the fact that the laws
assume the same form in every inertial frame and the fact that all inertial observers
are equivalent (so that there is no notion of absolute velocity), Einstein hoped that
because the laws of his theory of gravity held in arbitrary coordinates the theory
would be one in which all observers were equivalent (so that there would no notion
of absolute motion whatsoever).

But, notoriously, the means were inadequate to the end: in general relativity
there is a perfectly cogent (and coordinate-independent) distinction between those
observers who are accelerated and those who are unaccelerated, between those who
are rotating and those who are not.163

Einstein’s requirement that the laws of his theory should hold in arbitrary co-
ordinate systems is just the translation into the language of coordinates of our
first, weak, sense of general covariance. The preceding paragraph points out that
this requirement does not have the powerful consequences that Einstein believed
it to. Even worse, it was pointed out already by Kretschmann in 1917 that this
weak sense of general covariance is not a very unusual feature: many pre-general
relativistic theories can be given a weakly generally covariant formulation.164 In-
deed, there is a recipe that takes as input a Lagrangian field theory on a fixed
background spacetime and gives as output a strongly generally covariant reformu-
lation/relative of the given theory.165

EXAMPLE 43 (Artificial General Covariance). Let T0 be the theory of a mass-
less Klein–Gordon scalar field, Ψ propagating on a fixed background spacetime,
(V0, g0). The Lagrangian for T0 is L0(Ψ) := 1

2gab0 ∇aΨ∇bΨ and the corresponding
equation of motion is �0Ψ = 0, where �0 is the d’Alembertian corresponding to
g0.

166 Given T0 we can construct a strongly generally covariant theory T as fol-
lows.167 Let V be a manifold diffeomorphic to V0. The spacetime of T is the bare

163Einstein’s line of thought founders on the following observation: in special relativity Lorentz
transformations are symmetries of the spacetime metric that is used to determine the state
of motion of an observer, in general relativity an arbitrary diffeomorphism is certainly not a
symmetry of the spacetime geometry of a given solution — but this geometry again plays a role
in determining the state of motion of an observer. See [Friedman, 1983, Chapters II and V].
164On Kretschmann, see [Rynasiewicz, 1999].
165It is not obvious how one should individuate theories in the present context. For discussion

and suggestions, see [Sorkin, 2002, 698] and [Earman, 2006, §4].
166The d’Alembertian corresponding to a Lorentz metric g is defined just as the Laplacian of

a Riemannian metric g : as divg ◦ gradg where divg is the divergence operator of g and gradg is
the gradient operator of g.
167 See [Lee and Wald, 1990, 734] or [Torre, 1992, §II]. The same procedure will work for any

scalar field with a first-order Lagrangian that features a non-derivative coupling of the field to
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manifold, V, unequipped with any geometry. T involves two fields, X and Φ : X
takes values in V0 while Φ takes values in R. A pair (X, Φ) counts as kinematically
possible only if X : V → V0 is a diffeomorphism.168 The Lagrangian L of T is
constructed as follows: for any kinematically possible (X, Φ), the n-form L(X, Φ)
on V is the pullback to V by X of the n-form L0(Ψ) on V0, where Ψ := Φ◦X−1. L
admits D(V ) as a group of gauge symmetries — so T is strongly generally covari-
ant. Note that a kinematically possible pair (X,Φ) is a solution of T if and only
if Ψ = Φ ◦X−1 is a solution of T0. This is equivalent to saying that a pair (X, Φ)
is a solution if and only if Φ is a solution of the massless Klein–Gordon equation
�Φ = 0, with � the d’Alembertian corresponding to the metric g := X∗g0 on V.

This shows that there are relatively ordinary theories, like the theory of Klein–
Gordon field, that can be given strongly generally covariant formulations. So
even strong general covariance fails to distinguish general relativity from perfectly
pedestrian theories.

Nonetheless, it is difficult to shake the feeling that the special nature of general
relativity among physical theories has something to do with its general covariance.
Indeed, it would appear that at the present time the best that can be said is that
what makes general relativity special is that its most natural and perspicuous
formulations are generally covariant. But that is just to say that we do not yet
understand the matter, I think.

In this connection, it is natural to ask whether the difficulties that we en-
counter in representing time and change in general relativity arise for the artifi-
cially strongly generally covariant theory of example 43.

EXAMPLE 44 (Artificial General Covariance and the Problem of Time). Let us
return to the theories T0 and T of example 43, and let us assume for convenience
that the spacetime, (V0, g0), of T0 does not admit any isometries. Suppose that we
were simply handed T . Would there be any way to represent changeable quantities
via functions on a symplectic space associated with T?

Let S be the space of solutions of T, and let S ′ be the corresponding reduced
space (i.e., the space of gauge orbits of S). As one would expect, two solutions
(X,Φ) and (X ′,Φ′) lie in the same gauge orbit of S if and only if there exists
d ∈ D(V ) such that X ′ = X ◦ d and Φ′ = Φ ◦ d. The space S is, of course,
presymplectic while the space S ′ is symplectic. But since solutions in the same
gauge orbit will not agree about the value of Φ or X at any point of V, it is difficult
to view a diffeomorphism equivalence class of solutions as assigning properties to
points of V, and so it would appear to be impossible to think of S ′ as the space of
solutions corresponding to some local Lagrangian. By following a procedure like
that used in the discussion of general relativity above, we can construct the space
of initial data, I, of T, and the corresponding reduced space, I ′. The latter will
be a symplectic space. But note that the Hamiltonians on I and I ′ vanish. So

the spacetime metric.
168Strictly speaking, this takes us outside of our official framework for Lagrangian field theories,

since the value that X takes at distinct points of V are not independent of one another.
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although we have been able to construct symplectic spaces, we do not have the
nontrivial flows associated with time translation or time evolution that we require
to set up our representation of change via functions on these spaces. So far, the
present case looks very much like the case of spatially compact general relativity.

But now note that from knowledge of T alone we can reconstruct T0. The field
X has as its target space the manifold V0. We take T0 to be the theory of a scalar
field Ψ on V0 with Lagrangian L0 given as follows: let Ψ be a kinematically possible
field of T0 and let X : V → V0 be an arbitrary diffeomorphism; then we define
L0(Ψ) to be the n-form on V0 that results when we use X−1 to pullback to V0

the n-form L(X, Ψ ◦X); the result is independent of the X chosen. The resulting
equations of motion is �0Ψ = 0. Noting that �0 arises as the d’Alembertian of
a unique metric g0 on V0 and that field propagates causally relative to g0, it is
natural for us to view g0 as the geometrical structure of V0, and go on to consider
slicings relative to g0, etc.

With T0 in hand, we can construct the space of solutions, S0. Relative to a
slicing of (V0, g0), we can represent any changeable quantity — e.g., the volume of
the support of the scalar field — via functions on S0 in the usual way.

Finally, note that S ′ is canonically symplectically isomorphic to S0.
169 So we

can transfer our representation of change from the latter space to the former. So
there is a way to avoid the problem of time in this case.170

There is, however, an obvious worry about this approach. Let g̃0 be a metric on
V distinct from g0. Then �0 is not the d’Alembertian of g̃0; but presumably this
operator is still definable in terms of g̃0. So according to g̃0 the Euler–Lagrange
equations of L0 on V0 are not the Klein–Gordon equations, but some less famous
equations. Now, the above strategy amounts to thinking of T as really the theory
of a Klein–Gordon field on a spacetime isomorphic to (V0, g0). But it was no part
of our data that T is a Klein–Gordon theory. So what is to stop us from thinking
of T as really a theory of a field obeying some less famous equations on a spacetime
isomorphic to (V0, g̃0)? In this case we would use slicings of (V0, g̃0) to set up our
representation of change, etc.

Here are two things one might say in response to this worry. (1) We sought and
found a natural way of representing change via functions on S ′. It is no problem if
there are others. (2) We normally demand that of a physically reasonable theory
that its field propagate along the nullcones of the spacetime metric. This will
be true of T0 only for metrics g̃0 conformally equivalent to g0.

171 Every slicing
of (V0, g0) is also a slicing of (V0, g̃0) for each g̃0 conformally related to g0 (since

169Via the map that sends an equivalence class, [X, Φ], of solutions T to the solution Ψ = Φ◦X−1

of T0. It is at this point that we require the assumption the g0 does not admit isometries: in
general, S′ is isomorphic to the quotient of S0 by the action of the isometry group of g0.
170Note that we must choose a slicing of (V0, g0) in order to get a family of functions on S′

corresponding to a changeable physical quantity. Such functions tell us things like how large the
volume of the support of the field is at the instant when the geometry of space assumes a given
form.
171Recall that metrics g0 and g1 on V are conformally related if there is a positive scalar

Ω : V → R such that g1 = Ωg0.
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conformally related methods agree about which lines are timelike and which hy-
persurfaces are spacelike). So relative to such a slicing we can consider a quantity
that is conformally invariant in the sense that for each Σ ⊂ V in our slicing, this
quantity has the same value on Σ in (V0, g̃0,Ψ) for each g̃0 conformally related to
g0. Such a quantity is represented by the same one-parameter family of functions
on the reduced space of solutions of T whether we view T as secretly a theory of
a Klein–Gordon field on a spacetime isomorphic to (V0, g0) or as secretly a theory
of some other sort of field on a spacetime isomorphic to to (V0, g̃0).

7.2 The Problem of Time

In each of the theories considered in sections 5 and 6 above, the dynamical con-
tent of the theory was encoded in a flow (possibly time-dependent, possible merely
local) on a symplectic space of states within the Lagrangian or Hamiltonian formu-
lation of the theory. That this fails in general relativity, conceived of as a theory
of the universe as a whole, is what sets that theory apart. And, of course, this
feature means that the standard strategies for representing change also fail for
this theory: since one does not have a flow corresponding to time evolution on the
reduced space of initial data, no function on that space can represent a change-
able physical quantity; it follows that one does not have the apparatus required
to represent changeable quantities via functions on the reduced space of solutions
either.

This nexus is the problem of time: time is not represented in general relativity
by a flow on a symplectic space and change is not represented by functions on a
space of instantaneous or global states.172

Before proceeding to discuss the significance of this problem it is important to
be clear about its nature and sources.

• If one approaches the problem of time via a focus on the transition from the
space of initial data to the reduced space of initial data, the problem can
appear especially urgent. For in passing from the space of initial data to the
reduced space of initial data, one identifies initial data sets that correspond to
distinct Cauchy surfaces within a single solution. Prima facie, this involves
treating the current state of the universe and its state just after the Big
Bang as the same state. Moral: according to general relativity, change is an
illusion.

But this is too hasty. For of course the reduced space of initial data is
canonically isomorphic to the reduced space of solutions.173 And in this
latter space, some points represent worlds in which there is change (e.g.,
worlds which begin with a Big Bang) and some represent changeless worlds

172The canonical presentations of the problem of time are [Kuchař, 1992] and [Isham, 1993].
For philosophical discussions, see [Belot and Earman, 2001], [Butterfield and Isham, 2000], and
[Earman, 2002]. For critical reactions to this literature, see [Maudlin, 2002] and [Healey, 2002].
173Under the map that sends [q, π] to [g] if (q, g) describes the instantaneous state on some

Cauchy surface of (V, g).
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(e.g., world modelled by Einstein’s static solution). So it is hard to see how
general relativity teaches us the moral announced.

So I would like to disavow formulations of the problem of time that rely on
this way of speaking. More constructively, I would like to suggest that it
is helpful to concentrate on the reduced space of solutions rather than on
the reduced space of initial data in setting up the problem of time. In the
well-behaved theories of section 5 the space of initial data and the space of so-
lutions are symplectically isomorphic, but we nonetheless think of these two
spaces as having distinct representational functions — roughly and heuristi-
cally speaking, one is suited to represent possible instantaneous states while
the other is suited to represent possible worlds. This distinction is grounded
by the fact that relative to a slicing one finds that for each t ∈ R, the map
TΣt

that sends a solution to the initial data that it induces on the instant
Σt ⊂ V defines a distinct isomorphism between the space of solutions and
the space of initial data. This makes it natural to think of points of the latter
space as representing states (universals) that can occur at distinct times and
to think of points in the space of solutions as representing possible worlds
composed out of such states. The elements of this story survived more or less
unscathed the introduction of various complicating factors in section 6. But
in the case of cosmological general relativity we have only a single canonical
isomorphism between the reduced space of initial data and the reduced space
of solutions. In this context, it is difficult to deny that the reduced space of
solutions and the reduced space of initial data are representationally equiv-
alent. And it seems straightforward that we should interpret points in the
reduced space of solutions as representing general relativistic worlds rather
than instantaneous states — so we should say that same thing about points
in the reduced space of initial data. Thus, we should resist any temptation
to think of the reduction procedure as telling us to think of an early state of
the universe and a late state of the universe as being the same instantaneous
state.

• Since we have been focussing on the Lagrangian rather then the Hamilto-
nian picture, but have nonetheless run straight into the problem of time, we
can conclude that this problem is not an artifact of the 3+1 decomposition
involved in the Hamiltonian approach. Likewise, the problem of time is a
feature of general relativity as a cosmological theory, but not of general rela-
tivity in the regime of asymptotic flatness at spatial infinity, nor of field the-
ories on fixed relativistic backgrounds, nor, I think, of the artificial strongly
generally covariant theory of examples 43 and 44 above. From this we can
conclude that the following are not sufficient conditions for the problem of
time: the lack of a preferred slicing; the jiggleability of admissible slicings;
the invariance of the theory under a group of spacetime diffeomorphisms. It
appears that the problem arises when we employ a diffeomorphism-invariant
theory to model a situation in which we take geometry to be fully dynamical
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(i.e., we do not smuggle in any background structure, at spatial infinity or
elsewhere).

For everything that I have said so far, the Problem of Time may sound like
no more than a diverting puzzle. Granted, time does not appear as a symmetry
in general relativity as it did in earlier theories (even in the infinitesimal sense
involved in a local flow). But, of course, part of the allure of the theory is that it
changes the nature of time in a fundamental way. And since successful applications
of the theory involve the representation of changeable physical quantities (e.g.,
the perihelion of Mercury), it would seem that there must be some way of way of
generalizing the picture of the previous sections to cover general relativity. And
while it will be granted that a search for this generalization might turn out to be
enlightening, it may well not seem a very pressing project.

This puzzle begins to look far more urgent when we turn our attention to quan-
tization. The good news is that upon reduction, one ends up with a symplectic
space representing the true degrees of freedom of general relativity. Without some-
thing along these lines, quantization would be impossible. But the vanishing of the
Hamiltonian for cosmological general relativity means that two looming difficulties
block the road to the successful quantization of general relativity.

1. What is one to do next? Normally a Hamiltonian or a Lagrangian plays
a crucial role in quantization. One defines quantum dynamics via these
objects. In the case of spatially compact general relativity the reduced space
of initial data inherits from the original space of initial data a Hamiltonian
— which vanishes, so that the corresponding dynamics is trivial. And it does
not appear to make any sense to speak of a local Lagrangian field theory of
the true degrees of freedom of the gravitational field. The way forward is
unclear.

2. Furthermore, it is not clear how one would make sense of a quantization
of general relativity. While in the classical theory one can find change in
solutions even without being able to find it at the dynamical level (in terms
of quantities on the space of solutions, etc.), it is not obvious how this could
be done at the quantum level. Perhaps the best that one can hope for is to
be able to speak of approximate time and change in a subset of quantum
states that approximate classical solutions. That seems perfectly acceptable
— what one should be aiming at, even, in a theory in which the geometry
of space and time are themselves quantized. But the usual techniques of
semi-classical approximation require a Hamiltonian.174

174Thus, the WKB method aims to construct approximate eigenstates for the quantum Hamil-
tonian. Analyses based upon decoherence, coherent states, etc., aim to show that the dynamics
driven by the quantum Hamiltonian approximates that of the corresponding classical system,
and so on. See [Landsman, this volume].
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7.3 Finding Time in General Relativity

This final section discusses what is probably the most obvious way around the
problem of time. In the cases discussed in sections 5 and 6, we were able to
represent change via functions on the (reduced) space of solutions of the theory
because we had a slicing, σ : S × R → V, that decomposed spacetime into space
and time, and thereby allowed us to identify functions on the (reduced) space of
solutions that corresponded to the values of a given quantity at different instants.
But the notion of a solution-independent decomposition of spacetime into space
and time makes no sense in general relativity, since solutions differ as to which
curves count as timelike and which hypersurfaces count as spacelike. Somewhat
surprisingly, it turns out to be possible to construct a Hamiltonian version of
general relativity without employing slicings. But — unsurprisingly — without
some sort of decomposition of spacetime into instants, it makes no sense to ask
which states follow a given state (so there is no real dynamics on the Hamiltonian
side) nor to try to construct a one-parameter family of functions on the reduced
space of solutions that corresponds to the instantaneous values of a quantity of
interest. So it is natural to look for a surrogate of the notion of a slicing that
applies to diffeomorphism equivalence classes of solutions, rather than to individual
solutions — and to hope that this will lead to familiar-looking accounts of the
representation of time and change.

Throughout this final subsection, unless otherwise noted, I restrict attention
to spatially compact vacuum general relativity in four spacetime dimensions with
vanishing cosmological constant.

Let me begin with some definitions.

DEFINITION 45 (Geometry). A point in the reduced space of solutions of general
relativity is called a geometry. A geometry is an orbit of the action on the space
of solutions of the group D(V ) of diffeomorphisms from V to itself. We write [g]
for the geometry corresponding to a solution g; we speak of a solution in [g] as a
solution with geometry [g].

DEFINITION 46 (Instantaneous Geometry). The group D(S) of diffeomorphisms
from the abstract instant S to itself acts on the space of initial data. We call
an orbit of this action an instantaneous geometry. We denote the instantaneous
geometry corresponding to an initial data point (q, π) by 〈q, π〉 . We speak of initial
data (q, π) as having the geometry 〈q, π〉 .175
DEFINITION 47 (Time for a Solution). Let (V, g) be a solution. A time for
(V, g) is a partition, {Σ}, of (V, g) by Cauchy surfaces, called the instants of the
time. A parameterized time is a time together with a preferred parameterization
of the set of instants. An affinely parameterized time is a time whose instants are

175Note that a instantaneous geometry is not a point in the reduced space of initial data: initial
data induced by a given solution on distinct Cauchy surfaces correspond to the same point in
the reduced space of initial data, but (in general) to distinct points in the space of instantaneous
geometries.
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parameterized up to the choice of origin.176

DEFINITION 48 (Absolute Time). Let g be a solution. A time {Σ} for (V, g) is
called absolute if every isometry of g maps instants in {Σ} to instants in {Σ}. An
affinely parameterized time for g is called absolute if each isometry of g satisfies
the preceding condition and preserves the parameter difference between each pair
of instants. A parameterized time for g is called absolute if each isometry of g
maps each instant of the time to itself.

Every globally hyperbolic solution admits a parameterized time (since each
globally hyperbolic solution can be foliated by Cauchy surfaces, which can be
given an arbitrary parameterization). But it is not always possible to find absolute
times for solutions with large isometry groups. Minkowski spacetime does not
admit an absolute time.177 If a spacetime admits time translation or inversion as
a symmetry, then it does not admit an absolute parameterized time.

DEFINITION 49 (Time for General Relativity). A (plain, affinely parameterized,
or parameterized) time for general relativity is a map defined on a subset of the
space of solutions that assigns to each solution in its domain a (plain, affine, or
parameterized) time for that solution, and does so in an appropriately smooth
manner.

DEFINITION 50 (Geometric Time for General Relativity). A (plain, affinely pa-
rameterized, or parameterized) time for general relativity is called geometric if it
satisfies the following conditions. (i) Its domain of definition is closed under the
action of D(V ) on the space of solutions. (ii) If g and g′ are in the domain of the
time and g′ = d∗g for some diffeomorphism d : V → V, then the foliation assigned
to g′ is the image under d−1 of the foliation assigned to g (if the time is affinely
parameterized, then we require that such a d preserve the time difference between
any two instants; if the time is parameterized, then we require that such a d map
the instant labelled by t to the instant labelled by t). I will often shorten geometric
time for general relativity to geometric time.

REMARK 51 (Geometric Times are Absolute). The (plain, affinely parameter-
ized, or parameterized) time that a geometric time for general relativity assigns
to a solution g is always absolute. For if d : V → V is an isometry of g, then con-
dition (ii) in the preceding definition tells us that d preserves the time assigned to
g, together with its parameterization properties, if any. It follows that Minkowski
spacetime is not in the domain of definition of any geometric time for general rel-
ativity, and that no solution invariant under time translation or inversion is in the
domain of definition of any parameterized geometric time for general relativity.

We can think of a (parameterized, affinely parameterized, or unparameterized)

176We can think of a time for (V, g) as an unparameterized curve in the space of Cauchy surfaces
of (V, g); a parameterized time is a parameterized curve of this type; an affinely parameterized
time is an affinely parameterized curve of this type.
177A time invariant under the notion of time translation associated with a given frame will fail

to be invariant under boosts relative to that frame. The same argument will work in de Sitter
spacetime, or in other spacetimes admitting boost symmetries; see [Moncrief, 1992] for examples.
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geometric time for general relativity as a means of associating a geometry [g] in
the reduced space of solutions with a (parameterized, affinely parameterized, or
unparameterized) curve 〈q(t), π(t)〉 in the space of instantaneous geometries; we
call such a curve a dynamical trajectory. The correspondence between geometries
and dynamical trajectories is set up in the obvious way: let g be a solution in
the domain of definition of a given geometric time, and let (q(t), π(t)) be the
(parameterized, affinely parameterized, or unparameterized) curve in the space
of initial data that results when we look at the initial data induced by g on the
instants in the time assigned to g; 〈q(t), π(t)〉 is the dynamical trajectory we
seek.178 If g1 and g2 are solutions with the same geometry, then they are related
by some diffeomorphism d : V → V. In this case d also relates the foliations
assigned to them by our geometric time, so g1 and g2 will correspond to the same
dynamical trajectory in the space of instantaneous geometries.

A number of interesting examples of geometric times are known. Most have
very small domains of definition: (i) within the class of nonrotating dust solu-
tions, a geometric time is given by foliating each solution by the unique family of
hypersurfaces everywhere orthogonal to the dust worldlines; (ii) within the class
of solutions whose isometry groups are three-dimensional with spacelike orbits,
a geometric time is given by foliating each solution by the orbits of its isometry
group.179 Examples of wider scope are harder to come by but do exist.

EXAMPLE 52 (CMC Time). Recall that if Σ ⊂ V is a Cauchy surface for
(V, g), then we can define tensors qab and kab on Σ with the following meaning:
qab := gab |Σ is the Riemannian metric that g induces on Σ and 2kab is the
rate of change of this metric according to freely falling observers whose worldlines
intersect Σ orthogonally. Out of these tensors we can construct the mean curvature,
k : Σ → R, defined by k := qabkab (so k(x) is just the trace of the matrix that
encodes information about kab at x). A Cauchy surface Σ ⊂ V for a solution g is
called a surface of constant mean curvature, or simply a CMC surface, if k is a
constant function on Σ. Recall that unless otherwise noted, we restrict attention
to (3+1) spatially compact globally hyperbolic vacuum solutions with vanishing
cosmological constant.

Applicability. It is widely believed that a large class of solutions to Einstein’s
field equations can be foliated by CMC surfaces.

1. It is known that the set of solutions containing a CMC slice is an open
set in the space of solutions.180

178Strictly speaking, in order to construct the curve (q(t), π(t)) in the space of initial data, we
need to introduce a slicing of (V, g) whose instants coincide with those of the given time, so that
we can pullback states on concrete instants to states on our abstract instant S; the arbitrariness
involved in a choice of slicing washes out when we quotient the space of initial data by the action
of D(S) to reach the space of instantaneous states.
179Scheme (i) generalizes Einstein’s simultaneity convention to the context of dust cosmology;

see [Sachs and Wu, 1977, §5.3]. Note that schemes (i) and (ii) need not coincide within their
shared domain of definition; see [King and Ellis, 1973].
180See, e.g., [Isenberg and Marsden, 1982, 195].
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2. It was once conjectured that all solutions contain at least one CMC
surface, but it is now known that this is not so.181

3. It is was once conjectured that all solutions admitting a CMC slice
can be foliated by such slices.182 This is now believed to hold only for
certain spatial topologies.183

4. It is believed that within the class of solutions foliated by CMC slices,
all solutions of a given spatial topology will exhibit the same range
of values of constant mean curvature, with the only exceptions being
stationary solutions (recall that a solution is stationary if it admits a
timelike Killing field — roughly speaking, the infinitesimal generator of
a time translation group).184

Invariance Properties. CMC foliations behave superbly well under isometries.185

Let (V, g) be a solution, {Σ} a set of CMC surfaces that foliates V, and
d : V → V an isometry of g. Then d leaves the foliation {Σ} invariant.186 If
(V, g) is non-stationary, then: (a) any symmetry d of g preserves each leaf
in {Σ}; and (b) for any real number κ, there is at most one Cauchy surface
with constant mean curvature κ. If (V, g) is stationary then: g is flat and
any CMC surface in (V, g) has vanishing mean curvature.187

CMC Time. Foliating each solution by its CMC slices, when possible, deter-
mines a geometric time within the class of solutions we are considering.
We can render this an affinely parameterized geometric time as follows: for
non-stationary solutions, the parameter difference between slices of mean

181See [Bartnik and Isenberg, 2004, 32] or [Chruściel et al., 2005, Corollary 1.3]. The corre-
sponding conjecture for spatially compact dust solutions is also false; see[Bartnik, 1988].
182For the original form of the conjecture, see, e.g., [Isenberg and Marsden, 1982, Conjecture

3.2]. This conjecture is known to be true for flat spacetimes ([Barbot, 2005, §12]) and the
corresponding conjecture is known to be true in the (2+1) case ([Andersson et al., 1997]). The
counterpart of this conjecture is known to be false for spatially compact dust solutions ([Isenberg
and Rendall, 1998]) and in the asymptotically flat vacuum case, where the Schwarzschild solution
provides a counterexample ([Eardley and Smarr, 1979, §III ]).
183For the current conjecture, see [Rendall, 1996, Conjectures 1 and 2]. It is now believed

that for some spatial topologies, behaviour analogous to that of the Schwarzschild solution can
occur; see [Rendall, 1996] and [Andersson, 2004, 81]. In the (3+1) case, the revised conjecture is
known to be true for some types of highly symmetric solutions, even when some forms of matter
are allowed; see [Rendall, 1996, Theorems 1 and 2], [Andersson, 2004, 81 f. and 95], and the
references therein.
184For this, see [Rendall, 1996, Conjectures 1 and 2]. For the situation in highly symmetric

cases and in (2+1) dimensions, see the references of the previous two footnotes.
185See [Isenberg and Marsden, 1982, §3].
186This would fail for spacetimes admitting boost symmetries, such as Minkowski spacetime

and de Sitter spacetime. (Note that since we require vanishing cosmological constant, de Sitter
spacetime does not count as a spatially compact vacuum solution for present purposes.) Note
that in the asymptotically flat case, the question of the invariance of CMC slices is much more
involved; see [Bartnik et al., 1990, §5].
187Of course, in general a timelike Killing vector does not guarantee flatness. But it does so

within the class solutions presently under consideration.
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curvature κ1 and κ2 is |κ2 − κ1| ; for stationary solutions, the parameter dif-
ference between two slices is the proper time elapsed between those slices.
If we restrict attention to non-stationary solutions, and assign to each slice
the parameter value given by its mean curvature, then we arrive at a param-
eterized geometric time.

EXAMPLE 53 (Cosmological Time). Given a solution (V, g), the cosmological
time function for g is the map τ : V → R ∪ {∞} that assigns to each x ∈ V the
supremum over the length of all past-directed causal curves starting at x. Obviously
there are many well-behaved spacetimes in which τ(x) is badly behaved — e.g.,
in Minkowski spacetime, τ(x) = ∞ for all events. We say that the cosmological
time function of a solution is regular if: (a) τ(x) < ∞ for all x and (b) τ → 0
along each past inextendible causal curve. If τ is a regular cosmological time
function on (V, g) then: (i) (V, g) is globally hyperbolic; (ii) τ is a time function
for the solution in the usual sense (i.e., it is continuous and strictly increasing along
future-directed causal curves); and (iii) the level surfaces of τ are future Cauchy
surfaces in (V, g) (i.e., these surfaces have empty future Cauchy horizons).188 In
spatially compact vacuum (2+1)-dimensional general relativity, it is known: (a)
that the cosmological time is regular for almost all spacetime topologies; and (b)
that in one important class of solutions the cosmological time coincides with the
CMC time.189 On the class of spacetimes with regular cosmological time functions
whose level surfaces are Cauchy surfaces, we construct a geometric time for general
relativity by foliating each solution by the surfaces of constant cosmological time;
parameterizing these foliations by the value the cosmological time function takes
on each leaf yields a parameterized geometric time for general relativity, so long
as we exclude solutions with a time reflection symmetry.

A geometric time for general relativity is, in effect, a means of separating out
from the infinite number of variables of the theory one relative to which the others
are to be seen as evolving, by allowing us to pass from a point in the reduced space
of solutions to a (possibly unparameterized) curve in the space instantaneous ge-
ometries. Instantaneous physical quantities such as the volume of the universe, or
the number of stars, or the size of the solar system can be represented by real-
valued functions on the space of instantaneous geometries. And so the choice of a
geometric time allows us to talk about change in the familiar way: we can check
to see whether a function on the space of instantaneous geometries that represents
a quantity of interest takes on different values at points corresponding to the dif-
ferent instantaneous geometries that occur in a given spacetime geometry. If our
geometric time for general relativity is affinely parameterized, we can calculate
the rate of change of quantities of interest (since we then have an affinely param-
eterized curve through the space of instantaneous geometries corresponding to a

188See [Andersson et al., 1998, Propositions 2.2 and 2.5 and Corollary 2.6].
189See [Benedetti and Guadagnini, 2001]. In general, however, surfaces of constant cosmological

time are less smooth than CMC surfaces, so the two notions of time do not coincide; see [Benedetti
and Guadagnini, 2001, 331] or [Barbot and Zeghib, 2004, §5.4.1].
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given spacetime geometry). If we have a parameterized geometric time for general
relativity, we can even mimic the construction we used in earlier sections to repre-
sent changeable quantities by one-parameter families of functions on the reduced
space of solutions of the theory: given the function f on the space of instantaneous
geometries that represents our quantity of interest, and a real number t, we define
a partially defined function ft on the reduced space of solutions by setting ft[g]
equal to the value that f takes on the instantaneous geometry corresponding to t
in [g].

As delineated above, the problem of time in general relativity had two major
aspects.

1. Time is not represented in spatially compact general relativity, as it was in
earlier theories, via a flow on a symplectic space of states;

2. Change is not represented, as it was in earlier theories, via functions on sym-
plectic spaces corresponding to the spaces of possible instantaneous states
and worlds.

We now see that if we go as far as introducing a parameterized geometric time,
we can address the second of these worries by representing a changeable quantity
by a one-parameter family of functions on the reduced space of solutions, in the
usual way.

Does the introduction of a geometric time suffice to address the first worry? Any
geometric time singles out a subspace of the space of instantaneous geometries,
consisting of those 〈q, π〉 that arise as instantaneous geometries of the Cauchy
surfaces picked out by that geometric time — e.g., only instantaneous geometries
portraying space as having constant mean curvature can arise according to the
CMC slicing scheme. If we introduce an affinely parameterized geometric time for
general relativity, then we do get a flow on the space of instantaneous geometries
that arise according to this geometric time (since this space is partitioned by the
affinely parameterized dynamical trajectories corresponding to geometries in the
domain of definition of the given geometric time). But one does not expect this
space to be symplectic nor to be isomorphic to the reduced space of solutions.190

So a flow on the space of instantaneous geometries associated with our geometric
time is not a flow on a symplectic space. And since each dynamical trajectory on
the space of instantaneous geometries corresponds to a singe point in the reduced
space of solutions, we have no means of carrying our flow on the former space over
to a nontrivial flow on the latter.

A natural strategy to set up a representation of time via a flow on a symplectic
manifold is to attempt to parlay a choice of geometric time for general relativity
190Intuitively, the space of instantaneous geometries that arise according to a given geometric

time can be thought of as the product of the reduced space of solutions with the real line (since
each geometry corresponds to a one-parameter family of instantaneous geometries relative to the
geometric time). So the space of instantaneous geometries of the given geometric time is not
isomorphic to the space of solutions — nor can it be symplectic, since it is the product of a
symplectic space with an odd-dimensional space.
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into a reformulation of of the theory as a nontrivial (but possibly time-dependent)
Hamiltonian system. In one important case, it is known that this can achieved.

EXAMPLE 54 (CMC dynamics). We consider the CMC time introduced in ex-
ample 52 above.191 We impose restrictions on the topology of our abstract instant
S.192 LetM be the space of Riemannian metrics on S with constant scalar curva-
ture -1.193 The cotangent bundle T ∗M is a symplectic space; an element of T ∗M
is of the form (γ, p) where γ ∈M and p is a symmetric contravariant tensor density
of rank two on S that is divergenceless and traceless according to γ. We consider
(γ, p), (γ′, p′) ∈ T ∗M to be equivalent if there is a diffeomorphism d : S → S such
that (γ′, p′) = (d∗γ, d∗p). The space I∗ := T ∗M/D(S) that results when we quo-
tient out by this equivalence relation inherits a symplectic structure from T ∗M.
We will call points in I∗ conformal initial data. For each t < 0 there is a geomet-
rically natural symplectic isomorphism between I∗ and the space of instantaneous
geometries with constant mean curvature t.194 And there is a natural symplectic
isomorphism between the latter set and the reduced space of solutions of general
relativity (under which an instantaneous state is sent to the unique geometry that
it occurs in). So for each t < 0 we have a symplectic isomorphism between the
space of conformal initial data and the reduced space of solutions.

Conversely, given a geometry [g] and a time t < 0 we can look for the point
in I∗ that corresponds to [g] according to the isomorphism labelled by t. Doing
this for each t < 0 gives us a curve in I∗ corresponding to [g]. A generic point in
I∗ will lie on many such trajectories: in general if x ∈ I∗ and t1 �= t2 then the
instantaneous geometry of constant mean curvature t1 corresponding to (x, t1) and
the instantaneous geometry of constant mean curvature t2 corresponding to (x, t2)
will reside in different spacetime geometries. If we look at the complete family of
trajectories in I∗ corresponding to all of the geometries in the reduced space of
solutions, then we find that these are generated by the symplectic structure of I∗
together with a time-dependent Hamiltonian h(t) that is a simple function of t

191For an overview of the (3+1) case, see [Fischer and Moncrief, Unpublished, §§2 and 3];
for details see [Fischer and Moncrief, 1996], [Fischer and Moncrief, 1997], and the references
therein. For the (2+1) case see [Moncrief, 1989] and [Andersson et al., 1997]. The construction
described below is an example of deparameterization. For this notion and for finite-dimensional
applications, see [Beig, 1994, §2].
192We impose two conditions. (i) S must be of Yamabe type -1, i.e., the only constant scalar

curvature Riemannian metrics that S admits have negative scalar curvature. This is essential for
the constructions employed in the papers cited. (ii) S must not admit any Riemannian metrics
with isometry groups of positive dimension. This saves us from having to worry about singular
quotient spaces.
193Because S is of Yamabe type -1, every Riemannian metric on S is conformally equivalent to

a metric in M.
194Let us ignore the D(S) symmetry for a moment. Given a pair (γ, p) and a time t < 0 there

is a unique positive scalar φ on S solving the the Lichernowicz equation for (γ, p, t),

∆γφ− 1

8
φ +

1

12
t2φ5 − 1

8
(p · p)µ−2φ−7 = 0

(here ∆γ is the Laplacian for γ and µ is the volume form for γ). Our desired (q, π) is given by
q := φ4γ and π := φ−4p + 2

3
tφ2γ−1.
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and of spatial volume.195

Taking this example as our model, we can introduce the notion of a Hamilto-
nianization of general relativity associated with a given parameterized geometric
time for the theory. Suppose that we are given such a parameterized geometric
time. Suppose further that we are able to construct a symplectic space I∗ whose
points are (D(S)-equivalence classes of) tensors on the abstract instant S, and that
for each value of t we are able to construct a geometrically natural isomorphism
between I∗ and the set of instantaneous geometries corresponding to t according
to our parameterized geometric time. Composing these isomorphisms with the
canonical map from the space of instantaneous geometries to the reduced space
of solutions gives us a one-parameter family of symplectic isomorphisms between
I∗ and S ′.196 This allows us to associate each geometry [g] with a curve x(t) in
I∗ : for each t, x(t) is the point in I∗ that gets mapped to [g] by the isomorphism
labelled by t. We call x(t) the dynamical trajectory associated with [g]. We now
consider the class of dynamical trajectories on I∗ that arise in this way, and ask
whether there is a (possibly time-dependent) Hamiltonian on I∗ that generates
them in concert with the symplectic structure of I∗. If there is, then the resulting
(possibly time-dependent) Hamiltonian system is a Hamiltonianization of general
relativity based upon the given parameterized geometric time.

As we have seen, given a parameterized geometric time for general relativity we
can represent changeable quantities in the familiar way via one-parameter families
of functions on the reduced space of solutions. And if we go further and introduce
an associated Hamiltonianization of the theory, then we can represent time in the
familiar way via a (possibly time-dependent) Hamiltonian flow on the symplectic
space I∗, whose points we can think of as initial data posable at different times.
So these notions allow us to circumvent the problem of time by playing the same
roles that a slicing played in sections 5 and 6 when we considered theories set in
fixed background spacetimes.

Does the introduction of a geometric time or of an associated Hamiltonianization
violate general covariance? In one sense there is no violation — for these notions
are situated at the level of the reduced space of solutions, and so cannot, e.g., treat
diffeomorphic solutions differently.

But it remains true that the introduction of a geometric time violates the spirit
of general relativity, as the theory is generally understood today — most would
like to think of special relativity as dissolving any privileged distinction between
time and space and of general relativity as generalizing special relativity in a way
that does nothing to reinstate such a distinction.197

195The spatial volume is itself a t-dependent function on I∗, since the same conformal data will
lead to instantaneous geometries with different volumes when supplemented by different values
of t.
196Strictly speaking, these isomorphisms will be merely local (as in section 6.1) if the range of

values taken on by the time parameter varies from geometry to geometry.
197On the other hand, many early relativistic cosmologists were happy to take the natural

foliation of nonrotating dust cosmologies by surfaces orthogonal to the dust worldlines as a sign
that the distinction between space and time, banished in Einstein’s account of electromagnetism,
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Note, however, that this is really an objection to the privileging of one geometric
time over others. It seems entirely in the spirit of general relativity to think of
the content of the theory as being elucidated by each of its Hamiltonianizations
and as being exhausted by the set of all Hamiltonianizations (that is, if we ignore
spacetimes with time translation or reflection symmetries).

Still, it is natural to ask what sort of considerations could lead us to recognize
a geometric time or associated Hamiltonianization as being the correct one.198

Classical Considerations. In the CMC Hamiltonianization sketched in example
54 above general relativity is recast as a time-dependent system. This is a bit
unsettling: we are used to thinking that time-dependent Hamiltonians only
arise when an open system is subject to external forces. So it is surprising to
encounter a time-dependent Hamiltonian system in a fundamental context.
Perhaps this is something we have to learn to live with: we are here in
effect singling out one of general relativity’s infinitely many variables and
treating it as time — and we expect there to be all sorts of complicated
nonlinear interactions between the variables of general relativity. However,
some interesting special cases are known of geometric times that lead to
time-independent Hamiltonianizations of general relativity.199

So we cannot rule out the possibility that there may be a geometric time of
wide scope that that allows us to reformulate general relativity as a time-
independent Hamiltonian theory with non-trivial dynamics.200 Clearly the
construction of such a geometric time would be of the first interest: it might
well seem that we had happened on the correct time, previously concealed
from us by the unperspicuous formulations of the theory that we had been
working with — much as it would have if classical mechanics had first been
given a time-reparameterization invariant formulation, and it had then been
discovered that a certain family of parameterizations allowed the equations
to be rewritten in a much simpler form.

Quantum Considerations. The question whether to privilege one geometric
time or to treat them all equally can be expected to have repercussions
for quantization (which project provides the main motivation for looking for

was reinstated at the astronomical level. See [Belot, 2005, §3.2] for discussion and references.
198Note that some approaches in the philosophy of time and some approaches to the inter-

pretation of quantum mechanics would appear to require something like a preferred foliation of
spacetime by instants of time.
199This happens with the CMC time in the case where space has the topology of a two-torus;

see [Moncrief, 1989, 2913]. It can also be achieved for general relativity coupled to a perfect
fluid — in this case the conserved quantity that drives the dynamics is total baryon number; see
[Moncrief, 1977] and [Moncrief and Demaret, 1980].
200Note that given a non-trivial time-independent Hamiltonian on I∗, we can use our t-

dependent isomorphisms between I∗ and S′ to construct a corresponding (possibly time-
dependent) Hamiltonian on S′. Unless the latter function were constant, it would generate a
nontrivial flow on the reduced space of solutions. Of course, this could not be interpreted as
time translation, although generated by the counterpart of the time-independent Hamiltonian
generating time evolution.
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a Hamiltonian formulation of general relativity with nontrivial dynamics in
the first place). For one certainly does not expect that distinct Hamilto-
nian formulations of general relativity corresponding to distinct choices of
geometric time should have equivalent quantizations — at least not if equiv-
alent quantizations are required to be unitarily equivalent.201

So what can we hope for? For long shots like the following. (1) Perhaps only
one geometric time will lead to an empirically adequate quantum theory of
gravity. (2) Perhaps there will be a natural class of geometric times (e.g.,
the ones that lead to time-independent Hamiltonians) that can be seen as
underwriting the equivalent quantum theories (perhaps in a liberalized sense
of “equivalent”).

Far more plausibly, the solution to the difficulties in quantizing general relativity
will come from some other direction entirely. But hopefully it will in any case be
worthwhile to be clear about the nature of the problem of time.
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[Barbot, 2005] T. Barbot. Flat globally hyperbolic spacetimes. Journal of Geometry and
Physics, 53:123–165, 2005.

[Bartnik and Isenberg, 2004] R. Bartnik and J. Isenberg. The constraint equations. In P.
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1992.

[Diacu, 2002] F. Diacu. Singularities of the N -body problem. In H. Cabral and F. Diacu (eds.),
Classical and Celestial Mechanics: The Recife Lectures, pages 35–62. Princeton University
Press, Princeton, 2002.

[Dirac, 2001] P. A. M. Dirac. Lectures on Quantum Mechanics. Dover, New York, 2001.
[Dubrovin et al., 1992] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov. Modern Geometry

— Methods and Applications. Part I. The Geometry of Surfaces, Transformation Groups,
and Fields. Springer-Verlag, Berlin, 2nd edition, 1992.

[Duval et al., 1990] C. Duval, J. Elhadad, M. Gotay, and G. Tuynman. Nonunimodularity and
the quantization of the pseudo-rigid body. In J. Harnad and J. Marsden (eds.), Hamilto-
nian Systems, Transformation Groups, and Spectral Transform Methods, pages 149–160. Les
Publications CRM, Montréal, 1990.
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CLASSICAL RELATIVITY THEORY

David B. Malament

1 INTRODUCTION

The essay that follows is divided into two parts. In the first, I give a brief account of the
structure of classical relativity theory.1 In the second, I discuss three special topics.

My account in the first part (section 2) is limited in several respects. I do not discuss
the historical development of classical relativity theory, nor the evidence we have for it. I
do not treat “special relativity” as a theory in its own right that is superseded by “general
relativity”. And I do not describe known exact solutions to Einstein’s equation. (This list
could be continued at great length.2)

Instead, I limit myself to a few fundamental ideas, and present them as clearly and
precisely as I can. The account presupposes a good understanding of basic differential
geometry, and at least passing acquaintance with relativity theory itself.3

In section 3, I first consider the status of the relative simultaneity relation in the context
of Minkowski spacetime. At issue is whether the standard relation, the one picked out by
Einstein’s “definition” of simultaneity, is conventional in character, or is rather in some
significant sense forced on us. Then I describe the “geometrized” version of Newtonian
gravitation theory (also known as Newton-Cartan theory). It is included here because it
helps to clarify what is and is not distinctive about classical relativity theory. Finally, I
consider to what extent the global geometric structure of spacetime can be recovered from
its “causal structure”.4

1I speak of “classical” relativity theory because considerations involving quantum mechanics will play no
role. In particular, there will be no discussion of quantum field theory in curved spacetime, or of attempts to
formulate a quantum theory of gravitation. (For the latter, see Rovelli (this volume, chapter 12).)

2Two important topics that I do not consider figure centrally in other contributions to this volume, namely the
initial value formulation of relativity theory (Earman, chapter 15), and the Hamiltonian formulation of relativity
theory (Belot, chapter 2).

3A review of the needed differential geometry (and “abstract-index notation” that I use) can be found, for
example, in Wald [1984] and Malament [unpublished]. (Some topics are also reviewed in sections 3.1 and 3.2 of
Butterfield (this volume, chapter 1).) In preparing part 1, I have drawn heavily on a number of sources. At the top
of the list are Geroch [unpublished], Hawking and Ellis [1972], O’Neill [1983], Sachs and Wu [1977a; 1977b],
and Wald [1984].

4Further discussion of the foundations of classical relativity theory, from a slightly different point of view,
can be found in Rovelli (this volume, chapter 12).

c
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2 THE STRUCTURE OF RELATIVITY THEORY

2.1 Relativistic Spacetimes

Relativity theory determines a class of geometric models for the spacetime structure of our
universe (and subregions thereof such as, for example, our solar system). Each represents
a possible world (or world-region) compatible with the constraints of the theory. It is
convenient to describe these models in stages. We start by characterizing a broad class of
“relativistic spacetimes”, and discussing their interpretation. Later we introduce further
restrictions involving global spacetime structure and Einstein’s equation.

We take a relativistic spacetime to be a pair (M, gab), where M is a smooth, con-
nected, four-dimensional manifold, and gab is a smooth, semi-Riemannian metric on M
of Lorentz signature (1, 3).5

We interpret M as the manifold of point “events” in the world.6 The interpretation
of gab is given by a network of interconnected physical principles. We list three in this
section that are relatively simple in character because they make reference only to point
particles and light rays. (These objects alone suffice to determine the metric, at least up
to a constant.) In the next section, we list a fourth that concerns the behavior of (ideal)
clocks. Still other principles involving generic matter fields will come up later.

We begin by reviewing a few definitions. In what follows, let (M, gab) be a fixed
relativistic spacetime, and let ∇a be the derivative operator on M determined by gab, i.e.
the unique (torsion-free) derivative operator on M satisfying the compatibility condition
∇a gbc = 0.

Given a point p in M , and a vector ηa in the tangent space Mp at p, we say ηa is:

timelike if ηaηa > 0
null (or lightlike) if ηaηa = 0
causal if ηaηa ≥ 0
spacelike if ηaηa < 0.

5The stated signature condition is equivalent to the requirement that, at every point p in M , the tangent space

Mp have a basis
1
ξa, ...,

4
ξa such that, for all i and j in {1, 2, 3, 4}, gab

i

ξa
j
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gab
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In what follows, we will often use the standard convention for lowering (abstract) indices with the metric gab,
and raising them with the inverse metric gab. So, for example, we will write ηaρa or ηaρa instead of
gab ηaρb.

6We use ‘event’ as a neutral term here and intend no special significance. Some might prefer to speak of
“equivalence classes of coincident point events”, or “point event locations”, or something along those lines.
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In this way, gab determines a “null-cone structure” in the tangent space at every point
of M . Null vectors form the boundary of the cone. Timelike vectors form its interior.
Spacelike vectors fall outside the cone. Causal vectors are those that are either timelike or
null. This classification extends naturally to curves. We take these to be smooth maps of
the form γ: I → M where I ⊆ R is a (possibly infinite, not necessarily open) interval.7

γ qualifies as timelike (respectively null, causal, spacelike) if its tangent vector field �γ is
of this character at every point.

A curve γ2 : I2 → M is called an (orientation preserving) reparametrization of the
curve γ1 : I1 → M if there is a smooth map τ : I2 → I1 of I2 onto I1, with positive
derivative everywhere, such that γ2 = (γ1 ◦ τ). The property of being timelike, null, etc.
is preserved under reparametrization.8 So there is a clear sense in which our classification
also extends to images of curves.9

A curve γ : I → M is said to be a geodesic (with respect to gab) if its tangent field
ξa satisfies the condition: ξn∇n ξa = 0. The property of being a geodesic is not, in
general, preserved under reparametrization. So it does not transfer to curve images. But,
of course, the related property of being a geodesic up to reparametrization does carry
over. (The latter holds of a curve if it can be reparametrized so as to be a geodesic.)

Now we can state the first three interpretive principles. For all curves γ : I →M ,

C1 γ is timelike iff its image γ[I] could be the worldline of a massive point particle
(i.e. a particle with positive mass);10

C2 γ can be reparametrized so as to be a null geodesic iff γ[I] could be the trajectory
of a light ray;11

P1 γ can be reparametrized so as to be a timelike geodesic iff γ[I] could be the world-
line of a free12 massive point particle.

In each case, a statement about geometric structure (on the left) is correlated with a state-
ment about the behavior of particles or light rays (on the right).

Several comments and qualifications are called for. First, we are here working within
the framework of relativity as traditionally understood, and ignoring speculations about

7If I is not an open set, we can understand smoothness to mean that there is an open interval I ⊆ R, with
I ⊂ I , and a smooth map γ: I →M , such that γ(s) = γ(s) for all s ∈ I .

8This follows from the fact that, in the case just described, �γ2 = dτ
ds

�γ1, with dτ
ds

> 0.
9The difference between curves and curve images, i.e. between maps γ: I →M and sets γ[I], matters. We

take worldlines to be instances of the latter, i.e. construe them as point sets rather than parametrized point sets.
10We will later discuss the concept of mass in relativity theory. For the moment, we take it to be just a

primitive attribute of particles.
11For certain purposes, even within classical relativity theory, it is useful to think of light as constituted by

streams of “photons”, and take the right side condition here to be “γ[I] could be the worldline of a photon”.
The latter formulation makes C2 look more like C1 and P1, and draws attention to the fact that the distinction
between massive particles and mass 0 particles (such as photons) has direct significance in terms of relativistic
spacetime structure.

12“Free particles” here must be understood as ones that do not experience any forces (except “gravity”).
It is one of the fundamental principles of relativity theory that gravity arises as a manifestation of spacetime
curvature, not as an external force that deflects particles from their natural, straight (geodesic) trajectories. We
will discuss this matter further in section 2.4.
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the possibility of particles (“tachyons”) that travel faster than light. (Their worldlines
would come out as images of spacelike curves.) Second, we have built in the requirement
that “curves” be smooth. So, depending on how one models collisions of point particles,
one might want to restrict attention here to particles that do not experience collisions.

Third, the assertions require qualification because the status of “point particles” in
relativity theory is a delicate matter. At issue is whether one treats a particle’s own mass-
energy as a source for the surrounding metric field gab — in addition to other sources that
may happen to be present. (Here we anticipate our discussion of Einstein’s equation.)
If one does, then the curvature associated with gab may blow up as one approaches the
particle’s worldline. And in this case one cannot represent the worldline as the image of
a curve in M , at least not without giving up the requirement that gab be a smooth field on
M . For this reason, a more careful formulation of the principles would restrict attention
to “test particles”, i.e. ones whose own mass-energy is negligible and may be ignored for
the purposes at hand.

Fourth, the modal character of the assertions (i.e. the reference to possibility) is es-
sential. It is simply not true, to take the case of C1, that all timelike curve images are,
in fact, the worldlines of massive particles. The claim is that, as least so far as the laws
of relativity theory are concerned, they could be. Of course, judgments concerning what
could be the case depend on what conditions are held fixed in the background. The claim
that a particular curve image could be the worldline of a massive point particle must be
understood to mean that it could so long as there are, for example, no barriers in the way.
Similarly, in C2 there is an implicit qualification. We are considering what trajectories are
available to light rays when no intervening material media are present, i.e. when we are
dealing with light rays in vacua.

Though these four concerns are important and raise interesting questions about the role
of idealization and modality in the formulation of physical theory, they have little to do
with relativity theory as such. Similar difficulties arise when one attempts to formulate
corresponding principles within the framework of Newtonian gravitation theory.

It follows from the cited interpretive principles that the metric gab is determined (up to
a constant) by the behavior of point particles and light rays. We make this claim precise
in a pair of propositions about “conformal structure” and “projective structure”.

Let ḡab be a second smooth metric of Lorentz signature on M . We say that ḡab is
conformally equivalent to gab if there is a smooth map Ω : M → R on M such that
ḡab = Ω2gab. (Ω is called a conformal factor. It certainly need not be constant.) Clearly,
if ḡab and gab are conformally equivalent, then they agree in their classification of vectors
and curves as timelike, null, etc.. The converse is true as well.13 Conformally equivalent
metrics on M do not agree, in general, as to which curves on M qualify as geodesics or
even just as geodesics up to reparametrization. But, it turns out, they do necessarily agree
as to which null curves are geodesics up to reparametrization.14 And the converse is true,

13If the two metrics agree as to which vectors and curves belong to any one of the three categories, then they
must agree on all. And in that case, they must be conformally equivalent. See Hawking and Ellis [1972, p. 61].

14This follows because the property of being the image of a null geodesic can be captured in terms of the
existence or non-existence of (local) timelike and null curves connecting points in M . The relevant technical
lemma can be formulated as follows.
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once again.15

Putting the pieces together, we have the following proposition. Clauses (1) and (2)
correspond to C1 and C2 respectively.

PROPOSITION 1. Let ḡab be a second smooth metric of Lorentz signature on M . Then
the following conditions are equivalent.

(1) ḡab and gab agree as to which curves on M are timelike.

(2) ḡab and gab agree as to which curves on M can be reparameterized so as to be null
geodesics.

(3) ḡab and gab are conformally equivalent.

In this sense, the spacetime metric gab is determined up to a conformal factor, inde-
pendently, by the set of possible worldlines of massive point particles, and by the set of
possible trajectories of light rays.

Next we turn to projective structure. Let ∇a be a second derivative operator on M .
We say that ∇a and ∇a are projectively equivalent if they agree as to which curves are
geodesics up to reparametrization (i.e. if, for all curves γ, γ can be reparametrized so as
to be a geodesic with respect to ∇a iff it can be so reparametrized with respect to ∇a).
And if ḡab is a second metric on M of Lorentz signature, we say that it is projectively
equivalent to gab if its associated derivative operator∇a is projectively equivalent to∇a.

It is a basic result, due to Hermann Weyl [1921], that if ḡab and gab are conformally
and projectively equivalent, then the conformal factor that relates them must be constant.
It is convenient for our purposes, with interpretive principle P1 in mind, to cast it in a
slightly altered form that makes reference only to timelike geodesics (rather than arbitrary
geodesics).

PROPOSITION 2. Let ḡab be a second smooth metric on M with ḡab = Ω2gab. If ḡab
and gab agree as to which timelike curves can be reparametrized so as to be geodesics,
then Ω is constant.

The spacetime metric gab, we saw, is determined up to a conformal factor, indepen-
dently, by the set of possible worldlines of massive point particles, and by the set of
possible trajectories of light rays. The proposition now makes clear the sense in which
it is fully determined (up to a constant) by those sets together with the set of possible
worldlines of free massive particles.16

A curve γ : I → M can be reparametrized so as to be a null geodesic iff γ is null and for
all s ∈ I , there is an open set O ⊆ M containing γ(s) such that, for all s1, s2 ∈ I , if
s1 ≤ s ≤ s2, and if γ([s1, s2]) ⊆ O, then there is no timelike curve from γ(s1) to γ(s2)
within O.

(Here γ([s1, s2]) is the image of γ as restricted to the interval [s1, s2].) For a proof, see Hawking and Ellis
[1972, p. 103].

15For if the metrics agree as to which curves are null geodesics up to reparametrization, they must agree as to
which vectors at arbitrary points are null, and this, we know, implies that the metrics are conformally equivalent.

16As Weyl put it [1950, p. 103],

... it can be shown that the metrical structure of the world is already fully determined by its
inertial and causal structure, that therefore mensuration need not depend on clocks and rigid
bodies but that light signals and mass points moving under the influence of inertia alone will
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Our characterization of relativistic spacetimes is extremely loose. Many further condi-
tions might be imposed. For the moment, we consider just one.

(M, gab) is said to be temporally orientable if there exists a continuous timelike vector
field τa on M . Suppose the condition is satisfied. Then two such fields τa and τ̂a on M
are said to be co-oriented if τaτ̂a > 0 everywhere, i.e. if τa and τ̂a fall in the same lobe
of the null-cone at every point of M . Co-orientation is an equivalence relation (on the
set of continuous timelike vector fields on M ) with two equivalence classes. A temporal
orientation of (M, gab) is a choice of one of those two equivalence classes to count as
the “future” one. Thus, a non-zero causal vector ξa at a point of M is said to be future
directed or past directed with respect to the temporal orientation T depending on whether
τaξa > 0 or τaξa < 0 at the point, where τa is any continuous timelike vector field in T .
Derivatively, a causal curve γ: I → M is said to be future directed (resp. past directed)
with respect to T if its tangent vectors at every point are.

In what follows, we assume that our background spacetime (M, gab) is temporally ori-
entable, and that a particular temporal orientation has been specified. Also, given events
p and q in M , we write p� q (resp. p < q) if there is a future-directed timelike (resp.
causal) curve that starts at p and ends at q.17

2.2 Proper Time

So far we have discussed relativistic spacetime structure without reference to either “time”
or “space”. We come to them in this section and the next.

Let γ : [s1, s2] → M be a future-directed timelike curve in M with tangent field ξa.
We associate with it an elapsed proper time (relative to gab) given by

|γ| =
∫ s2

s1

(gab ξa ξb)
1
2 ds.

This elapsed proper time is invariant under reparametrization of γ, and is just what we
would otherwise describe as the length of (the image of) γ. The following is another
basic principle of relativity theory.

P2 Clocks record the passage of elapsed proper time along their worldlines.

Again, a number of qualifications and comments are called for. Our formulation of C1,
C2, and P1 was rough. The present formulation is that much more so. We have taken
for granted that we know what “clocks” are. We have assumed that they have worldlines
(rather than worldtubes). And we have overlooked the fact that ordinary clocks (e.g. the
alarm clock on the nightstand) do not do well at all when subjected to extreme accelera-
tion, tidal forces, and so forth. (Try smashing the alarm clock against the wall.) Again,

suffice.

(For more on Weyl’s “causal-inertial” method of determining the spacetime metric, see Coleman and Korté
[2001, section 4.9].)

17It follows immediately that if p	 q, then p < q. The converse does not hold, in general. But the only way
the second condition can be true, without the first being true as well, is if the only future-directed causal curves
from p to q are null geodesics (or reparametrizations of null geodesics). See Hawking and Ellis [1972, p. 112].
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these concerns are important and raise interesting questions about the role of idealization
in the formulation of physical theory. (One might construe an “ideal clock” as a point-
sized test object that perfectly records the passage of proper time along its worldline, and
then take P2 to assert that real clocks are, under appropriate conditions, to varying degrees
of accuracy, approximately ideal.) But as with our concerns about the status of point par-
ticles, they do not have much to do with relativity theory as such. Similar ones arise
when one attempts to formulate corresponding principles about clock behavior within the
framework of Newtonian theory.

Now suppose that one has determined the conformal strucure of spacetime, say, by
using light rays. Then one can use clocks, rather than free particles, to determine the
conformal factor. One has the following simple result, which should be compared with
proposition 2.18

PROPOSITION 3. Let ḡab be a second smooth metric on M with ḡab = Ω2gab. Further
suppose that the two metrics assign the same lengths to all timelike curves, i.e. |γ|ḡab

=
|γ|gab

for all timelike curves γ : I → M . Then Ω = 1 everywhere. (Here |γ|gab
is the

length of γ relative to gab.)

P2 gives the whole story of relativistic clock behavior (modulo the concerns noted
above). In particular, it implies the path dependence of clock readings. If two clocks start
at an event p, and travel along different trajectories to an event q, then, in general, they
will record different elapsed times for the trip. (E.g. one will record an elapsed time of
3,806 seconds, the other 649 seconds.) This is true no matter how similar the clocks are.
(We may stipulate that they came off the same assembly line.) This is the case because,
as P2 asserts, the elapsed time recorded by each of the clocks is just the length of the
timelike curve it traverses in getting from p to q and, in general, those lengths will be
different.

Suppose we consider all future-directed timelike curves from p to q. It is natural to ask
if there are any that minimize or maximize the recorded elapsed time between the events.
The answer to the first question is ‘no’. Indeed, one has the following proposition.

PROPOSITION 4. Let p and q be events in M such that p � q. Then, for all ε > 0,
there exists a future-directed timelike curve γ from p to q with |γ| < ε. (But there is no
such curve with length 0, since all timelike curves have non-zero length.)

Though some work is required to give the proposition an honest proof (see O’Neill
[1983, pp. 294-5]), it should seem intuitively plausible. If there is a timelike curve con-
necting p and q, there also exists a jointed, zig-zag null curve that connects them.

It has length 0. But we can approximate the jointed null curve arbitrarily closely with
smooth timelike curves that swing back and forth. So (by the continuity of the length
function), we should expect that, for all ε > 0, there is an approximating timelike curve
that has length less than ε. (See figure 1.)

The answer to the second question (Can one maximize recorded elapsed time between

18Here we not only determine the metric up to a constant, but determine the constant as well. The difference
is that here, in effect, we have built in a choice of units for spacetime distance. We could obtain a more exact
counterpart to proposition 2 if we worked, not with intervals of elapsed proper time, but rather with ratios of
such intervals.
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p

q

short timelike curvelong timelike curve

Figure 1. A long timelike curve from p to q and a very short one that swings back-and-
forth, and approximates a broken null curve.

p and q?) is ‘yes’ if one restricts attention to local regions of spacetime. In the case
of positive definite metrics, i.e. ones with signature of form (n, 0), we know, geodesics
are locally shortest curves. The corresponding result for Lorentz metrics is that timelike
geodesics are locally longest curves.

PROPOSITION 5. Let γ : I → M be a future-directed timelike curve. Then γ can
be reparametrized so as to be a geodesic iff for all s ∈ I , there exists an open set O
containing γ(s) such that, for all s1, s2 ∈ I with s1 ≤ s ≤ s2, if the image of γ = γ|[s1,s2]

is contained in O, then γ (and its reparametrizations) are longer than all other timelike
curves in O from γ(s1) to γ(s2). (Here γ|[s1,s2] is the restriction of γ to the interval
[s1, s2].)

The proof of the proposition is very much the same as in the positive definite case. (See
Hawking and Ellis [1972, p. 105].) Thus of all clocks passing locally from p to q, that
one will record the greatest elapsed time that “falls freely” from p to q. To get a clock to
read a smaller elapsed time than the maximal value one will have to accelerate the clock.
Now acceleration requires fuel, and fuel is not free. So proposition 5 has the consequence
that (locally) “saving time costs money”. And proposition 4 may be taken to imply that
(locally) “with enough money one can save as much time as one wants”.

The restriction here to local regions of spacetime is essential. The connection described
between clock behavior and acceleration does not, in general, hold on a global scale. In
some relativistic spacetimes, one can find future-directed timelike geodesics connecting
two events that have different lengths, and so clocks following the curves will record
different elapsed times between the events even though both are in a state of free fall.
Furthermore — this follows from the preceding claim by continuity considerations alone
— it can be the case that of two clocks passing between the events, the one that undergoes
acceleration during the trip records a greater elapsed time than the one that remains in a
state of free fall.

The connection we have been considering between clock behavior and acceleration
was once thought to be paradoxical. (I am thinking of the “clock (or twin) paradox”.)
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Suppose two clocks, A and B, pass from one event to another in a suitably small region of
spacetime. Further suppose A does so in a state of free fall, but B undergoes acceleration
at some point along the way. Then, we know, A will record a greater elapsed time for
the trip than B. This was thought paradoxical because it was believed that “relativity
theory denies the possibility of distinguishing “absolutely” between free fall motion and
accelerated motion”. (If we are equally well entitled to think that it is clock B that is in a
state of free fall, and A that undergoes acceleration, then, by parity of reasoning, it should
be B that records the greater elapsed time.) The resolution of the paradox, if one can call
it that, is that relativity theory makes no such denial. The situations of A and B here are
not symmetric. The distinction between accelerated motion and free fall makes every bit
as much sense in relativity theory as it does in Newtonian physics.

In what follows, unless indication is given to the contrary, a “timelike curve” should be
understood to be a future-directed timelike curve, parametrized by elapsed proper time,
i.e. by arc length. In that case, the tangent field ξa of the curve has unit length (ξaξa = 1).
And if a particle happens to have the image of the curve as its worldline, then, at any point,
ξa is called the particle’s four-velocity there.

2.3 Space/Time Decomposition at a Point and Particle Dynamics

Let γ be a timelike curve representing the particle O with four-velocity field ξa. Let p be
a point on the image of γ, and let λa be a vector at p. There is a natural decomposition of
λa into components parallel to, and orthogonal to, ξa:

λa = (λbξb)ξa︸ ︷︷ ︸
parallel to ξa

+ (λa − (λbξb)ξa)︸ ︷︷ ︸
orthogonal to ξa

.(1)

These are standardly interpreted, respectively, as the “temporal” and “spatial” components
of λa (relative to ξa). In particular, the three-dimensional subspace of Mp consisting of
vectors orthogonal to ξa is interpreted as the “infinitesimal” simultaneity slice of O at p.19

If we introduce the tangent and orthogonal projection operators

kab = ξa ξb(2)

hab = gab − ξa ξb(3)

then the decomposition can be expressed in the form

λa = kab λb + hab λb.(4)

We can think of kab and hab as the relative temporal and spatial metrics determined by
ξa. They are symmetric and satisfy

kab kbc = kac(5)

hab hbc = hac.(6)

19Here we simply take for granted the standard identification of “relative simultaneity” with orthogonality.
We will return to consider its justification in section 3.1.
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Many standard textbook assertions concerning the kinematics and dynamics of point
particles can be recovered using these decomposition formulas. For example, suppose
that the worldline of a second particle O also passes through p and that its four-velocity at
p is ξa. (Since ξa and ξa are both future-directed, they are co-oriented, i.e. (ξa ξa) > 0.)
We compute the speed of O as determined by O. To do so, we take the spatial magnitude
of ξa relative to O and divide by its temporal magnitude relative to O:

v = speed of O relative to O =
‖hab ξb‖
‖kab ξb‖ .(7)

(Given any vector μa, we understand ‖μa‖ to be (μaμa)
1
2 if μa is causal, and (−μaμa)

1
2

if it is spacelike.) From (2), (3), (5), and (6), we have

‖kab ξb‖ = (kab ξb kac ξc)
1
2 = (kbc ξb ξc)

1
2 = (ξb ξb)(8)

and

‖hab ξb‖ = (−hab ξb hac ξc)
1
2 = (−hbc ξb ξc)

1
2 = ((ξb ξb)2 − 1)

1
2 .(9)

So

v =
((ξb ξb)2 − 1)

1
2

(ξb ξb)
< 1.(10)

Thus, as measured by O, no massive particle can ever attain the maximal speed 1. (A
similar calculation would show that, as determined by O, light always travels with speed
1.) For future reference, we note that (10) implies:

(ξb ξb) =
1√

1 − v2
.(11)

It is a basic fact of relativistic life that there is associated with every point particle,
at every event on its worldline, a four-momentum (or energy-momentum) vector Pa. In
the case of a massive particle with four-velocity ξa, P a is proportional to ξa, and the
(positive) proportionality factor is just what we would otherwise call the mass (or rest
mass) m of the particle. So we have P a = m ξa. In the case of a “photon” (or other mass
0 particle), no such characterization is available because its worldline is the image of a
null (rather than timelike) curve. But we can still understand its four-momentum vector
at the event in question to be a future-directed null vector that is tangent to its worldline
there. If we think of the four-momentum vector P a as fundamental, then we can, in both
cases, recover the mass of the particle as the length of P a: m = (P aPa)

1
2 . (It is strictly

positive in the first case, and 0 in the second.)
Now suppose a massive particle O has four-velocity ξa at an event, and another parti-

cle, either a massive particle or a photon, has four-momentum P a there. We can recover
the usual expressions for the energy and three-momentum of the second particle relative
to O if we decompose P a in terms of ξa. By (4) and (2), we have

P a = (P bξb) ξa + habP
b.(12)
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The energy relative to O is the coefficient in the first term: E = P bξb. In the case of a
massive particle where P a = mξa, this yields, by (11),

E = m (ξb ξb) =
m√

1 − v2
.(13)

(If we had not chosen units in which c = 1, the numerator in the final expression would

have been mc2 and the denominator
√

1− v2

c2 .) The three-momentum relative to O is the

second term in the decomposition, i.e. the component of P a orthogonal to ξa: hab P b. In
the case of a massive particle, by (9) and (11), it has magnitude

p = ‖hab mξb‖ = m ((ξb ξb)2 − 1)
1
2 =

mv√
1 − v2

.(14)

Interpretive principle P1 asserts that free particles traverse the images of timelike
geodesics. It can be thought of as the relativistic version of Newton’s first law of motion.
Now we consider acceleration and the relativistic version of the second law. Let γ : I→
M be a timelike curve whose image is the worldline of a massive particle O, and let ξa be
the four-velocity field of O. Then the four-acceleration (or just acceleration) field of O
is ξn∇n ξa, i.e. the directional derivative of ξa in the direction ξa. The four-acceleration
vector is orthogonal to ξa. (This is clear, since ξa(ξn∇n ξa) = 1

2 ξn∇n (ξa ξa) =
1
2 ξn∇n (1) = 0.) The magnitude ‖ξn∇n ξa‖ of the four-acceleration vector at a point
is just what we would otherwise describe as the Gaussian curvature of γ there. It is a
measure of the degree to which γ curves away from a straight path. (And γ is a geodesic
precisely if its curvature vanishes everywhere.)

The notion of spacetime acceleration requires attention. Consider an example. Sup-
pose you decide to end it all and jump off the Empire State Building. What would your
acceleration history be like during your final moments? One is accustomed in such cases
to think in terms of acceleration relative to the earth. So one would say that you un-
dergo acceleration between the time of your jump and your calamitous arrival. But on
the present account, that description has things backwards. Between jump and arrival you
are not accelerating. You are in a state of free fall and moving (approximately) along a
spacetime geodesic. But before the jump, and after the arrival, you are accelerating. The
floor of the observation desk, and then later the sidewalk, push you away from a geodesic
path. The all-important idea here is that we are incorporating the “gravitational field” into
the geometric structure of spacetime, and particles traverse geodesics if and only if they
are acted upon by no forces “except gravity”.

The acceleration of any massive particle, i.e. its deviation from a geodesic trajectory,
is determined by the forces acting on it (other than “gravity”). If the particle has mass
m > 0, and the vector field F a on γ[I] represents the vector sum of the various (non-
gravitational) forces acting on the particle, then the particle’s four-acceleration ξn∇n ξa

satisfies:

F a = m ξn∇n ξa.(15)

This is our version of Newton’s second law of motion.
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Consider an example. Electromagnetic fields are represented by smooth, anti-symmetric
fields Fab. (Here “anti-symmetry” is the condition that Fba = −Fab.) If a particle with
mass m > 0, charge q, and four-velocity field ξa is present, the force exerted by the field
on the particle at a point is given by q F a

b ξb. If we use this expression for the left side
of (15), we arrive at the Lorentz law of motion for charged particles in the presence of an
electromagnetic field:

q F a
b ξb = m ξb∇b ξa.20(16)

2.4 Matter Fields

In classical relativity theory, one generally takes for granted that all that there is, and all
that happens, can be described in terms of various matter fields, e.g. material fluids and
electromagnetic fields.21 Each such field is represented by one or more smooth tensor (or
spinor) fields on the spacetime manifold M . Each is assumed to satisfy field equations
involving the fields that represent it and the spacetime metric gab.

For present purposes, the most important basic assumption about the matter fields is
the following.

Associated with each matter field F is a symmetric smooth tensor field Tab
characterized by the property that, for all points p in M , and all future-
directed, unit timelike vectors ξa at p, T ab ξb is the four-momentum density
of F at p as determined relative to ξa.

Tab is called the energy-momentum field associated with F . The four-momentum density
vector T abξ

b at p can be further decomposed into its temporal and spatial components
relative to ξa, just as the four-momentum of a massive particle was decomposed in the
preceding section. The coefficient of ξa in the first component, Tabξ

aξb, is the energy
density ofF at p as determined relative to ξa. The second component, Tnb(gan−ξa ξn)ξb,
is the three-momentum density of F at p as determined relative to ξa.

Other assumptions about matter fields can be captured as constraints on the energy-
momentum tensor fields with which they are associated. Examples are the following.
(Suppose Tab is associated with matter field F .)

Weak Energy Condition: Given any future-directed unit timelike vector ξa at any point
in M , Tab ξaξb ≥ 0.

Dominant Energy Condition: Given any future-directed unit timelike vector ξa at any
point in M , Tab ξaξb ≥ 0 and T ab ξb is timelike or null.

Conservation Condition: ∇a T ab = 0 at all points in M.

The first asserts that the energy density of F , as determined by any observer at any point,
is non-negative. The second adds the requirement that the four-momentum density of
F , as determined by any observer at any point, is a future-directed causal (i.e. timelike

21This being the case, the question arises how (or whether) one can adequately recover talk about “point
particles” in terms of the matter fields. We will say just a bit about the question in this section.
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or null) vector. The addition can be understood as the assertion that there is an upper
bound to the speed with which energy-momentum can propagate (as determined by any
observer). It captures something of the flavor of principle C1 in section 2.1, but avoids
reference to “point particles”.22

The conservation condition, finally, asserts that the energy-momentum carried by F is
locally conserved. If two or more matter fields are present in the same region of spacetime,
it need not be the case that each one individually satisfies the condition. Interaction may
occur. But it is a fundamental assumption that the composite energy-momentum field
formed by taking the sum of the individual ones satisfies it. Energy-momentum can be
transferred from one matter field to another, but it cannot be created or destroyed.

The dominant energy and conservation conditions have a number of joint consequences
that support the interpretations just given. We mention two. The first requires a prelimi-
nary definition.

Let (M, gab) be a fixed relativistic spacetime, and let S be an achronal subset of M
(i.e. a subset in which there do not exist points p and q such that p � q). The domain of
dependence D(S) of S is the set of all points p in M with this property: given any smooth
causal curve without (past or future) endpoint,23 if (its image) passes through p, then it
necessarily intersects S. For all standard matter fields, at least, one can prove a theorem
to the effect that “what happens on S fully determines what happens throughout D(S)”.
(See Earman (this volume, chapter 15).) Here we consider just a special case.

PROPOSITION 6. Let S be an achronal subset of M . Further let Tab be a smooth
symmetric field on M that satisfies both the dominant energy and conservation conditions.
Finally, assume Tab = 0 on S. Then Tab = 0 on all of D(S).

The intended interpretation of the proposition is clear. If energy-momentum cannot
propagate (locally) outside the null-cone, and if it is conserved, and if it vanishes on S,
then it must vanish throughout D(S). After all, how could it “get to” any point in D(S)?
Note that our formulation of the proposition does not presuppose any particular physical
interpretation of the symmetric field Tab. All that is required is that it satisfy the two
stated conditions. (For a proof, see Hawking and Ellis [1972, p. 94].)

The next proposition (Geroch and Jang [1975]) shows that, in a sense, if one assumes
the dominant energy condition and the conservation condition, then one can prove that
free massive point particles traverse the images of timelike geodesics. (Recall principle
P1 in section 2.3.) The trick is to find a way to talk about “point particles” in the language
of extended matter fields.

PROPOSITION 7. Let γ : I →M be smooth curve. Suppose that given any open subset
O of M containing γ[I], there exists a smooth symmetric field Tab on M such that:

(1) Tab satisfies the dominant energy condition;

(2) Tab satisfies the conservation condition;
22This is the standard formulation of the dominant energy condition. The fit with C1 would be even closer

if we strengthened the condition slightly so as to be appropriate, specifically, for massive matter fields: at any
point p in M , if Tab �= 0 there, then Tab ξb is timelike for all future-directed unit timelike vectors ξa at p.

23Let γ : I →M be a smooth curve. We say that a point p in M is a future-endpoint of γ if, for all open sets
O containing p, there exists an s0 in I such that for all s ∈ I , if s ≥ s0, then γ(s) ∈ O, i.e. the image of γ
eventually enters and remains in O. (Past-endpoints are defined similarly.)
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(3) Tab = 0 outside of O;

(4) Tab �= 0 at some point in O.

Then γ is timelike, and can be reparametrized so as to be a geodesic.

The proposition might be paraphrased this way. If a smooth curve in spacetime is such
that arbitrarily small free bodies could contain the image of the curve in their worldtubes,
then the curve must be a timelike geodesic (up to reparametrization). In effect, we are
trading in “point particles” in favor of nested convergent sequences of smaller and smaller
extended particles. (Bodies here are understood to be “free” if their internal energy-
momentum is conserved. If a body is acted upon by a field, it is only the composite
energy-momentum of the body and field together that is conserved.)

Note that our formulation of the proposition takes for granted that we can keep the
background spacetime structure (M, gab) fixed while altering the fields Tab that live on
M . This is justifiable only to the extent that, in each case, Tab is understood to represent
a test body whose effect on the background spacetime structure is negligible.24 Note also
that we do not have to assume at the outset that the curve γ is timelike. That follows from
the other assumptions.

We have here a precise proposition in the language of matter fields that, at least to
some degree, captures principle P1 (concerning the behavior of free massive point par-
ticles). Similarly, it is possible to capture C2 (concerning the behavior of light) with a
proposition about the behavior of solutions to Maxwell’s equations in a limiting regime
(“the geometrical limit”) where wavelengths are small. It asserts, in effect, that when
one passes to this limit, packets of electromagnetic waves are constrained to move along
(images of) null geodesics. (See Wald [1984, p. 71].)

Now we consider an example. Perfect fluids are represented by three objects: a four-
velocity field ηa, an energy density field ρ, and an isotropic pressure field p (the latter two
as determined by a “co-moving” observer at rest in the fluid). In the special case where
the pressure p vanishes, one speaks of a dust field. Particular instances of perfect fluids
are characterized by “equations of state” that specify p as a function of ρ. (Specifically
excluded here are such complicating factors as anisotropic pressure, shear stress, and
viscosity.) Though ρ is generally assumed to be non-negative (see below), some perfect
fluids (e.g. to a good approximation, water) can exert negative pressure. The energy-
momentum tensor field associated with a perfect fluid is:

Tab = ρ ηa ηb − p (gab − ηa ηb).(17)

Notice that the energy-momentum density vector of the fluid at any point, as determined
by a co-moving observer (i.e. as determined relative to ηa), is T ab ηb = ρ ηa. So we can
understand ρ, equivalently, as the energy density of the fluid relative to ηa, i.e. Tab ηa ηb,
or as the (rest) mass density of the fluid, i.e. the length of ρ ηa. (Of course, the situ-
ation here corresponds to that of a point particle with mass m and four-velocity ηa, as
considered in section 2.3.)

24Stronger theorems have been proved (see Ehlers and Geroch [2004]) in which it is not required that the
perturbative effect of the extended body disappear entirely at each stage of the limiting process, but only that, in
a certain sense, it disappear in the limit.
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In the case of a perfect fluid, the weak energy condition (WEC), dominant energy
condition (DEC), and conservation condition (CC) come out as follows.

WEC ⇐⇒ ρ ≥ 0 and p ≥ −ρ

DEC ⇐⇒ ρ ≥ 0 and ρ ≥ p ≥ −ρ

CC ⇐⇒
{

(ρ + p) ηb∇b ηa − (gab − ηa ηb)∇b p = 0
ηb∇b ρ + (ρ + p) (∇b ηb) = 0.

Consider the two equations jointly equivalent to the conservation condition. The first
is the equation of motion for a perfect fluid. We can think of it as a relativistic version of
Euler’s equation. The second is an equation of continuity (or conservation) in the sense
familiar from classical fluid mechanics. It is easiest to think about the special case of a
dust field (p = 0). In that case, the equation of motion reduces to the geodesic equation:
ηb∇b ηa = 0. That makes sense. In the absence of pressure, particles in the fluid are free
particles. And the conservation equation reduces to: ηb∇b ρ + ρ (∇b ηb) = 0. The first
term gives the instantaneous rate of change of the fluid’s energy density, as determined
by a co-moving observer. The term ∇b ηb gives the instantaneous rate of change of its
volume, per unit volume, as determined by that observer. In a more familiar notation, the

equation might be written
dρ

ds
+

ρ

V

dV

ds
= 0 or, equivalently,

d(ρV )
ds

= 0. (Here we

use s for elapsed proper time.) It asserts that (in the absence of pressure, as determined
by a co-moving observer) the energy contained in an (infinitesimal) fluid blob remains
constant, even as its volume changes.

In the general case, the situation is more complex because the pressure in the fluid
contributes to its energy (as determined relative to particular observers), and hence to
what might be called its “effective mass density”. (If you compress a fluid blob, it gets
heavier.) In this case, the WEC comes out as the requirement that (ρ + p) ≥ 0 in addition
to ρ ≥ 0. If we take hab = (gab − ηa ηb), the equation of motion can be expressed as:

(ρ + p) ηb∇b ηa = hab∇b p.

This is an instance of the “second law of motion” (15) as applied to an (infinitesimal) blob
of fluid. On the left we have: “effective mass density × acceleration”. On the right, we
have the force acting on the blob. We can think of it as minus25 the gradient of the pressure
(as determined by a co-moving observer). Again, this makes sense. If the pressure on the
left side of the blob is greater than that on the right, it will move to the right. The presence
of the non-vanishing term (p∇bηb) in the conservation equation is now required because
the energy of the blob is not constant when its volume changes as a result of the pressure.
The equation governs the contribution made to its energy by pressure.

2.5 Einstein’s Equation

Once again, let (M, gab) be our background relativistic spacetime with a specified tem-
poral orientation.

25The minus sign comes in because of our sign conventions.
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It is one of the fundamental ideas of relativity theory that spacetime structure is not
a fixed backdrop against which the processes of physics unfold, but instead participates
in that unfolding. It posits a dynamical interaction between the spacetime metric in any
region and the matter fields there. The interaction is governed by Einstein’s field equation

Rab − 1
2

R gab − λ gab = 8π Tab,(18)

or, equivalently,

Rab = 8π (Tab − 1
2

T gab) − λ gab.(19)

Here λ is the cosmological constant, Rab (= Rn
abn) is the Ricci tensor field, R (= Ra

a)
is the Riemann scalar curvature field, and T is the contracted field Taa.26 We start with
four remarks about (18), and then consider an alternative formulation that provides a
geometric interpretation of sorts.

(1) It is sometimes taken to be a version of “Mach’s principle” that “the spacetime met-
ric is uniquely determined by the distribution of matter”. And it is sometimes proposed
that the principle can be captured in the requirement that “if one first specifies the energy-
momentum distribution Tab on the spacetime manifold M , then there is exactly one (or
at most one) Lorentzian metric gab on M that, together with Tab, satisfies (18)”. But
there is a serious problem with the proposal. In general, one cannot specify the energy-
momentum distribution in the absence of a spacetime metric. (E.g. one cannot have a
notion of energy-density unless one has a notion of volume.) Indeed, in typical cases the
metric enters explicitly in the expression for Tab. (Recall the expression (17) for a perfect
fluid.) Thus, in looking for solutions to (18), one must, in general, solve simultaneously
for the metric and matter field distribution.

(2) Given any smooth metric gab on M , there certainly exists a smooth symmetric
field Tab on M that, together with gab, is a solution to (18). It suffices to define Tab by
the left side of the equation. But the field Tab so introduced will not, in general, be the
energy-momentum field associated with any known matter field. It will not even satisfy
the weak energy condition discussed in section 2.4. With the latter constraint on Tab in
place, Einstein’s equation is an entirely non-trivial restriction on spacetime structure.

Discussions of spacetime structure in classical relativity theory proceed on three levels
according to the stringency of the constraints imposed on Tab. At the first level, one
considers only “exact solutions”, i.e. solutions where Tab is, in fact, the aggregate energy-
momentum field associated with one or more known matter fields. So, for example, one
might undertake to find all perfect fluid solutions exhibiting particular symmetries. At the
second level, one considers the larger class of what might be called “generic solutions”,
i.e. solutions where Tab satisfies one or more generic constraints (of which the weak
and dominant energy conditions are examples). It is at this level, for example, that the
singularity theorems of Penrose and Hawking (Hawking and Ellis [1972]) are proved.
Finally, at the third level, one drops all restrictions on Tab, and Einstein’s equation plays
no role. Many results about global structure are proved at this level, e.g. the assertion

26We use “geometrical units” in which the gravitational constant G, as well as the speed of light c, is 1.
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that there exist closed timelike curves in any relativistic spacetime (M, gab) where M is
compact.

(3) The role played by the cosmological constant in Einstein’s equation remains a mat-
ter of controversy. Einstein initially added the term (−λgab) in 1917 to allow for the
possibility of a static cosmological model (which, at the time, was believed necessary to
properly represent the actual universe).27 But there were clear problems with doing so.
In particular, one does not recover Poisson’s equation (the field equation of Newtonian
gravitation theory) as a limiting form of Einstein’s equation unless λ = 0. (See point (4)
below.) Einstein was quick to revert to the original form of the equation after Hubble’s
redshift observations gave convincing evidence that the universe is, in fact, expanding.
(That the theory suggested the possibility of cosmic expansion before those observations
must count as one of its great successes.) Since then the constant has often been reintro-
duced to help resolve discrepancies between theoretical prediction and observation, and
then abandoned when the (apparent) discrepancies were resolved. The controversy con-
tinues. Recent observations indicating an accelerating rate of cosmic expansion have led
many cosmologists to believe that our universe is characterized by a positive value for λ.
(See Earman [2001] for an overview.)

Claims about the value of the cosmological constant are sometimes cast as claims
about the “energy-momentum content of the vacuum”. This involves bringing the term
(−λgab) from the left side of equation (18) to the right, and re-interpreting it as an energy-
momentum field, i.e. taking Einstein’s equation in the form

Rab − 1
2

R gab = 8π (Tab + TV ACab ),(20)

where TV ACab =
λ

8π
gab. Here Tab is still understood to represent the aggregate energy-

momentum of all normal matter fields. But TV ACab is now understood to represent the
residual energy-momentum associated with empty space. Given any unit timelike vector

ξa at a point, (TV ACab ξa ξb) is
λ

8π
. So, on this re-interpretation, λ comes out (up to the

factor 8π) as the energy-density of the vacuum as determined by any observer, at any
point in spacetime.

It should be noted that there is a certain ambiguity involved in referring to λ as the
cosmological constant (and a corresponding ambiguity as to what counts as a solution to
Einstein’s equation). We can take (M, gab, Tab) to qualify if it satisfies the equation for
some value (or other) of λ. Or, more stringently, one can take it to qualify if it satisfies
the equation for some value of λ that is fixed, once and for all, i.e. the same for all models
(M, gab, Tab). In effect, we have here two versions of “relativity theory”. (See Earman
[2003] for discussion of what is at stake in choosing between the two.)

(4) It is instructive to consider the relation of Einstein’s equation to Poisson’s equation,
the field equation of Newtonian gravitation theory:

∇2φ = 4π ρ.(21)

27He did so for other reasons as well (see Earman [2001]), but I will pass over them here.
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Here φ is the Newtonian gravitational potential, and ρ is the Newtonian mass density
function. In the “geometrized” formulation of the theory that we will consider in section
3.2, one trades in the potential φ in favor of a curved derivative operator, and Poisson’s
equation comes out as

Rab = 4πρ tab,(22)

where Rab is the Ricci tensor field associated with the new curved derivative operator,
and tab is the temporal metric.

The geometrized formulation of Newtonian gravitation was discovered after general
relativity (in the 1920s). But now, after the fact, we can put ourselves in the position of
a hypothetical investigator who is considering possible candidates for a relativistic field
equation, and knows about the geometrized formulation of Newtonian theory. What could
be more natural than the attempt to adopt or adapt (22)? In the empty space case (ρ = 0),
this strategy suggests the equation Rab = 0, which is, of course, Einstein’s equation (19)
for Tab = 0 and λ = 0. This seems to me, by far, the best route to the latter equation.
Start with the Newtonian empty space equation (Rab = 0) and then simply leave it intact!

No such simple extrapolation is possible in the general case (ρ �= 0). Indeed, I know of
no heuristic argument for the full version of Einstein’s equation (with or without cosmo-
logical constant) that is nearly so convincing. But one can try something like the follow-
ing. The closest counterparts to (22) would seem to be ones of the form: Rab = 4πKab,
where Kab is a symmetric tensorial function of Tab and gab. The possibilities for Kab in-
clude Tab, gab T , T m

a Tmb, gab (TmnTmn), ..., and linear combinations of these terms.
All but the first two involve terms that are second order or higher in Tab. So, for example,
in the special case of a dust field with energy density ρ and four-velocity ηa, they will
contain occurrences of ρn with n ≥ 2. (E.g. gab (TmnTmn) comes out as ρ2gab.) But,
presumably, only terms first order in ρ should appear if the equation is to have a proper
Newtonian limit. This suggests that we look for a field equation of the form

Rab = 4π [k Tab + l gabT ](23)

or, equivalently,28

Rab − l

(k + 4l)
R gab = 4π k Tab,(24)

for some real numbers k and l. Let Gab(k, l) be the field on the left side of the equation. It
follows from the conservation condition that the field on the right side is divergence free,
i.e. ∇a (4π k T ab) = 0. So the conservation condition and (24) can hold jointly only if

∇a Gab(k, l) = 0.

But by the “Bianchi identity”(Wald [1984, pp. 39-40]),

∇a (Rab − 1
2

R gab) = 0.(25)

28Contraction on ‘a’ and ‘b’ in (23) yields: R = 4 π (k + 4l) T . Solving for T , and substituting for T in
(23) yields (24).
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The latter two conditions imply[
l

(k + 4l)
− 1

2

]
∇a(Rgab) = 0.

Now ∇a(Rgab) = 0 is an unreasonable constraint.29 So the initial scalar term must be
0. Thus, we are left with the conclusion that the conservation condition and (24) can hold
jointly only if k + 2l = 0, in which case (23) reduces to

Rab = 4π k

[
Tab − 1

2
gab T

]
.(26)

It remains to argue that k must be 2 if (26) is to have a proper Newtonian limit. To
do so, we consider, once again, the special case of a dust field with energy density ρ and
four-velocity ηa. Then, Tab = ρ ηa ηb, and T = ρ. If we insert these values in (26) and
contract with ηa ηb, we arrive at

Rab ηa ηb = 2π k ρ.(27)

Now the counterpart to a four-velocity field in Newtonian theory is a vector field of unit
temporal length, i.e. a field ηa where tab ηa ηb = 1. If we contract the geometrized
version of Poisson’s equation (22) with ηa ηb, we arrive at: Rab ηa ηb = 4π ρ. Comparing
this expression for Rab ηa ηb with that in (27), we are led to the conclusion that k = 2, in
which case (26) is just Einstein’s equation (19) with λ = 0.

Summarizing now, we have suggested that if one starts with the geometrized version
of Poisson’s equation (22) and looks for a relativistic counterpart, one is plausibly led to
Einstein’s equation with λ = 0. It is worth noting that if we had started instead with a
variant of (22) incorporating a “Newtonian cosmological constant”

Rab + λ tab = 4πρ tab,(28)

we would have been led instead to Einstein’s equation (19) without restriction on λ. We
can think of (28) as the geometrized version of

∇2φ + λ = 4π ρ.(29)

Let’s now put aside the question of how one might try to motivate Einstein’s equation.
However one arrives at it, the equation — let’s now take it in the form (18) — can
be understood to assert a dynamical connection between a certain tensorial measure of
spacetime curvature (on the left side) and the energy-momentum tensor field (on the right
side). It turns out that one can reformulate the connection in a way that makes reference
only to scalar quantities, as determined relative to arbitrary observers. The reformulation
provides a certain insight into the geometric significance of the equation.30

29It implies that R is constant and, hence, if (23) holds, that T is constant (since (23) implies R = 4 π (k +
4l) T ). But this, in turn, is an unreasonable constraint on the energy-momentum distribution Tab. E.g. in
the case of a dust field with Tab = ρ ηaηb, T = ρ, and so the constraint implies that ρ is constant. This is
unreasonable since it rules out any possibility of cosmic expansion. (Recall the discussion toward the close of
section 2.4.)

30Another approach to its geometrical significance proceeds via the equation of geodesic deviation. See, for
example, Sachs and Wu [1977b, p. 114].
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Let S be any smooth spacelike hypersurface in M .31 The background metric gab in-
duces a (three-dimensional) metric 3gab on S. In turn, this metric determines on S a
derivative operator, an associated Riemann curvature tensor field 3Ra

bcd, and a scalar cur-
vature field 3R = (3Ra

bca)(
3gbc). Our reformulation of Einstein’s equation will direct

attention to the values of 3R at a point for a particular family of spacelike hypersurfaces
passing through it.32

Let p be any point in M and let ξa be any future-directed unit timelike vector at p.
Consider the set of all geodesics through p that are orthogonal to ξa there. The (images of
these) curves, at least when restricted to a sufficiently small open set containing p, sweep
out a smooth spacelike hypersurface S.33 (See figure 2.) We will call it a geodesic

Figure 2. A “geodesic hypersurface” through a point is constructed by projecting
geodesics in all directions orthogonal to a given timelike vector there.

hypersurface. (We cannot speak of the geodesic hypersurface through p orthogonal to ξa

because we have left open how far the generating geodesics are extended. But given any
two, their restrictions to a suitably small open set containing p coincide.)

Geodesic hypersurfaces are of interest in their own right, the present context aside,
because they are natural candidates for a notion of “local simultaneity slice” (relative to a
timelike vector at a point). What matters here, though, is that, by the first Gauss-Codazzi
equation (Wald [1984, p. 258]), we have

3R = R − 2Rabξ
aξb(30)

at p.34 Here we have expressed the (three-dimensional) Riemann scalar curvature of S at

31We can take this to mean that S is a smooth, imbedded, three-dimensional submanifold of M with the
property that any curve γ : I →M with image in S is spacelike.

32In the case of a surface in three-dimensional Euclidean space, the associated Riemann scalar curvature 2R
is (up to a constant) just ordinary Gaussian surface curvature. We can think of 3R in the present context as
a higher dimensional analogue that gives averaged values of Gaussian surface curvature. This can be made
precise. See, for example, Laugwitz [1965, p. 127].

33More precisely, let Sp be the spacelike hyperplane in Mp orthogonal to ξa. Then for any sufficiently small
open set O in Mp containing p, the image of (Sp ∩O) under the exponential map exp : O →M is a smooth
spacelike hypersurface. We can take it to be S. (See, for example, Hawking and Ellis [1972, p. 33].)

34Let ξa — we use the same notation — be the extension of the original vector at p to a smooth future-directed
unit timelike vector field on S that is everywhere orthogonal to S. Then the first Gauss-Codazzi equation asserts
that at all points of S

3R = R − 2 Rabξ
aξb + πab hab + πab πab,

where hab is the spatial projection field (gab − ξaξb) on S, and πab is the extrinsic curvature field 1
2

£ξhab
on S. But our construction guarantees that πab vanish at p.
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p in terms of the (four-dimensional) Riemann scalar curvature of M at p and the Ricci
tensor there. And so, if Einstein’s equation (18) holds, we have

3R = −16π (Tab ξaξb)− 2λ.(31)

at p.
One can also easily work backwards to recover Einstein’s equation at p from the as-

sumption that (31) holds for all unit timelike vectors ξa at p (and all geodesic hypersur-
faces through p orthogonal to ξa). Thus, we have the following equivalence.

PROPOSITION 8. Let Tab be a smooth symmetric field on M , and let p be a point in
M . Then Einstein’s equation Rab − 1

2 R gab − λ gab = 8π Tab holds at p iff for all
future-directed unit timelike vectors ξa at p, and all geodesic hypersurfaces through p
orthogonal to ξa, the scalar curvature 3R of S satisfies 3R = [−16π (Tab ξaξb)− 2λ] at
p.

The result is particularly instructive in the case where λ = 0. Then (31) directly
equates an intuitive scalar measure of spatial curvature (as determined relative to ξa) with
energy density (as determined relative to ξa).

2.6 Congruences of Timelike Curves and “Public Space”

In this section, we consider congruences of timelike curves. (We understand these to
be sets of timelike curves that “fill” a region of spacetime in the sense that exactly one
curve (image) in the set passes through each point in the region.) We think of them as
representing the worldlines of a dense swarm of particles or the elements of a fluid.

Each such congruence is generated by a future-directed, unit timelike vector field (that
represents the four-velocity field of our particle swarm or fluid). We work directly with
these generating fields in what follows.

Once again, let (M, gab) be our background relativistic spacetime (endowed with a
temporal orientation). Let ξa be a smooth, future-directed, unit timelike vector field on
M (or some open subset thereof). Finally, hab be the spatial projection field determined
by ξa.

The rotation and expansion tensor fields associated with ξa are defined as follows:

ωab = h m
[a h n

b] ∇m ξn(32)

θab = h m
(a h n

b) ∇m ξn.(33)

They are smooth fields, orthogonal to ξa in both indices, and satisfy

∇a ξb = ωab + θab + ξa (ξn∇n ξb).(34)

We can give the two fields ωab and θab a geometric interpretation. Let ηa be a vector field
on the worldline of a particle O that is “carried along by the flow of ξa”, i.e. £ξ ηa = 0,
and is orthogonal to ξa at a point p. (Here £ξ ηa is the Lie derivative of ηa with respect
to ξa.35) We can think of ηa at p as a spatial “connecting vector” that spans the distance

35We drop the index on ξ here to avoid giving the impression that £ξ gab is a three index tensor field. Lie
derivatives are always taken with respect to (contravariant) vector fields, so no ambiguity is introduced when
the index is dropped.
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between O and a neighboring particle N that is “infinitesimally close”. The instantaneous
velocity of N relative to O at p is given by ξn∇n ηa. But ξn∇n ηa = ηn∇n ξa (since
£ξ ηa = 0). So, by (34), and the orthogonality of ξa with ηa at p, we have

ξn∇n ηa = (ω a
n + θ a

n ) ηn.(35)

at the point. Here we have simply decomposed the relative velocity vector into two com-
ponents. The first, (ω a

n ηn), is orthogonal to ηa (since ωab is anti-symmetric). It gives the
instantaneous rotational velocity of N with respect to O at p.

In support of this interpretation, consider the instantaneous rate of change of the squared
length (−ηa ηa) of ηa at p. It follows from (35) that

ξn∇n (−ηa ηa) = − 2 θna ηn ηa.(36)

Thus the computed rate of change depends solely on θab. Suppose θab = 0. Then the
instantaneous velocity of N with respect to O at p has vanishing radial component. If
ωab �= 0, N still exhibits a non-zero velocity with respect to O. But it can only be a
rotational velocity. The two conditions (θab = 0 and ωab �= 0) jointly characterize
“rigid rotation”.

The condition ωab = 0, by itself, characterizes irrotational flow. One gains consider-
able insight into the condition by considering a second, equivalent formulation. Let us say
that the field ξa is hypersurface orthogonal if there exist smooth, real valued maps f and
g (with the same domains of definition as ξa) such that, at all points, ξa = f ∇a g. Note
that if the condition is satisfied, then the hypersurfaces of constant g value are everywhere
orthogonal to ξa.36 Let us further say that ξa is locally hypersurface orthogonal if the
restriction of ξa to every sufficiently small open set is hypersurface orthogonal.

PROPOSITION 9. Let ξa be a smooth, future-directed unit timelike vector field defined
on M (or some open subset of M ). Then the following conditions are equivalent.

(1) ωab = 0 everywhere.

(2) ξa is locally hypersurface orthogonal.

The implication from (2) to (1) is immediate.37 But the converse is non-trivial. It is a
special case of Frobenius’s theorem (Wald [1984, p. 436]). The qualification ‘locally’ can
be dropped in (2) if the domain of ξa is, for example, simply connected.

There is a nice picture that goes with the proposition. Think about an ordinary rope.
In its natural twisted state, the rope cannot be sliced by an infinite family of slices in such
a way that each slice is orthogonal to all fibers. But if the rope is first untwisted, such a

36For if ηa is a vector tangent to one of these hypersurfaces, ηn∇n g = 0. So ηnξn = ηn(f ∇n g) = 0.
37Assume that ξa = f ∇a g. Then

ωab = h m
[a h n

b] ∇m ξn = h m
[a h n

b] ∇m (f ∇n g)

= f h m
[a h n

b] ∇m ∇n g + h m
[a h n

b] (∇m f) (∇n g)

= f h m
a h n

b ∇[m ∇n] g + h m
a h n

b (∇[m f) (∇n] g).

But ∇[m ∇n] g = 0 since ∇a is torsion-free, and the second term in the final line vanishes as well since
h n
b ∇n g = f−1 h n

b ξn = 0. So ωab = 0.
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slicing is possible. Thus orthogonal sliceability is equivalent to fiber untwistedness. The
proposition extends this intuitive equivalence to the four-dimensional “spacetime ropes”
(i.e. congruences of worldlines) encountered in relativity theory. It asserts that a con-
gruence is irrotational (i.e. exhibits no twistedness) iff it is, at least locally, hypersurface
orthogonal

Suppose that our vector field ξa is irrotational and, to keep things simple, suppose that
its domain of definition is simply connected. Then the hypersurfaces to which it is or-
thogonal are natural candidates for constituting “space” at a given “time” relative to ξa

or, equivalently, relative to its associated set of integral curves. This is a notion of pub-
lic space to be contrasted with private space, which is determined relative to individual
timelike vectors or timelike curves.38 Perhaps the best candidates for the latter are the
“geodesic hypersurfaces” we considered, in passing, in section 2.5. (Given a point p and
a timelike vector ξa there, we took a “geodesic hypersurface through p orthogonal to ξa”
to be a spacelike hypersurface generated by geodesics through p orthogonal to ξa.)

The distinction between public and private space is illustrated in Figure 3. There we

L

Sprivate

Spublic

q

p

Figure 3. “Private space” Sprivate at p relative to L, and “public space” Spublic at p
relative to a congruence of timelike curves of which L is a member.

consider a congruence of future-directed timelike half-geodesics in Minkowski spacetime
starting at some particular point p. One line L in the congruence is picked out along with
a point q on it. Private space relative to L at q is a spacelike hypersurface Sprivate that
is flat, i.e. the metric induced on Sprivate has a Riemann curvature tensor field 3Ra

bcd

that vanishes everywhere. In contrast, public space at q relative to the congruence is a
spacelike hypersurface Spublic of constant negative curvature. If ξa is the future-directed
unit timelike vector field everywhere tangent to the congruence, and hab = (gab−ξa ξb) is
its associated spatial projection field, then the curvature tensor field on Spublic associated
with hab has the form 3Rabcd = − 1

K2 (hac hbd − had hbc), where K is the distance along
L from p to q. (This is the characteristic form for a three-manifold of constant curvature
− 1
K2 .)
We have been considering “public space” as determined relative to an irrotational con-

gruence of timelike curves. There is another sense in which one might want to use the
term. Consider, for example, “geometry on the surface of a rigidly rotating disk” in
Minkowski spacetime. (There is good evidence that Einstein’s realization that this ge-

38The distinction between “public space” and “private space” is discussed in Rindler [1981] and Page [1983].
The terminology is due to E. A. Milne.
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ometry is non-Euclidean played an important role in his development of relativity theory
(Stachel [1980]).) One needs to ask in what sense the surface of a rotating disk has a
geometric structure.

We can certainly model the rigidly rotating disk as a congruence of timelike curves
in Minkowski spacetime. (Since the disk is two-dimensional, the congruence will be
confined to a three-dimensional, timelike submanifold M ′ of M .) But precisely because
the disk is rotating, we cannot find hypersurfaces everywhere orthogonal to the curves and
understand the geometry of the disk to be the geometry induced on them — or, strictly
speaking, induced on the two-dimensional manifolds determined by the intersection of
the putative hypersurfaces with M ′ — by the background spacetime metric gab.

The alternative is to think of “space” as constituted by the “manifold of trajectories”,
i.e. take the individual timelike curves in the congruence to play the role of spatial points,
and consider the metric induced on this manifold by the background spacetime metric.
The construction will not work for an arbitrary congruence of timelike curves. It is essen-
tial that we are dealing here with a “stationary” system. (The metric induced on the man-
ifold of trajectories (when the construction works) is fixed and frozen.) But it does work
for these systems, at least. More precisely, anticipating the terminology of the following
section, it works if the four-velocity field of the congruence in question is proportional to
a Killing field. (The construction is presented in detail in Geroch [1971, Appendix].)

Thus we have two notions of “public space”. One is available if the four-velocity field
of the congruence in question is irrotational; the other if it is proportional to a Killing
field. Furthermore, if the four-velocity field is irrotational and proportional to Killing
field, as is the case when we dealing with a “static” system, then the two notions of public
space are essentially equivalent.

2.7 Killing Fields and Conserved Quantities

Let κa be a smooth vector field on M . We say it is a Killing field if £κ gab = 0, i.e. if
the Lie derivative with respect to κa of the metric vanishes.39 This is equivalent to the
requirement that the “flow maps” generated by κa are all isometries. (See Wald [1984,
p. 441].) For this reason, Killing fields are sometimes called “infinitesimal generators of
smooth one-parameter families of isometries” or “infinitesimal symmetries”. The defining
condition can also be expressed as40

∇(a κb) = 0.(37)

This is “Killing’s equation”.
Given any two smooth vector fields ξa and μa on M , the bracket or commutator field

[ξ, μ]a defined by [ξ, μ]a = £ξ μa is also smooth. The set of smooth vector fields on M

39Once again, we drop the index on κ here to avoid giving the impression that £κ gab is a three index tensor
field. A similar remark applies to our bracket notation below.

40This follows since £κ gab = κn∇n gab + gnb∇a κn + gan∇b κn, and∇a is compatible with gab, i.e.
∇ngab = 0.
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forms a Lie algebra with respect to this operation, i.e. the bracket operation is linear in
each slot; it is anti-symmetric ([ξ, μ]a = −[μ, ξ]a); and it satisfies the Jacobi identity

[[ξ, μ], ν]a + [[ν, ξ], μ]a + [[μ, ν], ξ]a = 0(38)

for all smooth vector fields ξa, μa, and νa on M . It turns out that the bracket field of two
Killing fields is also a Killing field. So it follows, as well, that the set of Killing fields on
M has a natural Lie algebra structure.

The discussion of smooth symmetries in spacetime, and their associated conserved
quantities, is naturally cast in the language of Killing fields. For example, we can use the
latter to capture precisely the following intuitive notions.

(1) (M, gab) is stationary if it has a Killing field that is everywhere timelike.

(2) (M, gab) is static if it has a Killing field that is everywhere timelike and locally
hypersurface orthogonal.

(3) (M, gab) is homogeneous it its Killing fields, at every point of M , span the tangent
space.

(4) (M, gab) is spatially homogeneous it has a smooth unit timelike field ξa such that,
at every point of M , its Killings fields span the three-dimensional space of vectors
orthogonal to ξa.

(5) (M, gab) is axially symmetric if it has a Killing field that (i) is everywhere spacelike,
and (ii) has integral curve images that are closed. (The “axis” in this case is the set
of points, possibly empty, where the Killing field vanishes.)

(6) (M, gab) is spherically symmetric if it has three Killing fields
1
σa,

2
σa,

3
σa that (i) are

everywhere spacelike, (ii) are linearly dependent at every point, i.e.
1
σ[a 2

σb
3
σc] = 0,

and (iii) exhibit the same commutation relations as do the generators of the rotation
group in three dimensions:

[
1
σ ,

2
σ]a =

3
σa , [

2
σ ,

3
σ]a =

1
σa , [

3
σ ,

1
σ]a =

2
σa.(39)

The distinction between stationary and static spacetimes should be clear from our discus-
sion in the preceding section. (Recall proposition 9.) Roughly speaking, in a stationary
spacetime there is a “timelike flow” that preserves all spacetime distances. But the flow
can exhibit rotation. (Think of a perfect whirlpool.) It is the latter possibility that is ruled
out when one passes to the definition of a static spacetime.

Now we consider, very briefly, two types of conserved quantity. One is an attribute of
massive point particles, the other of extended bodies. Let κa be an arbitrary Killing field,
and let γ : I → M be a timelike curve, with unit tangent field ξa, whose image is the
worldline of a point particle with mass m > 0. Consider the quantity J = (P aκa), where
P a = mξa is the four-momentum of the particle. It certainly need not be constant on
γ[I]. But it will be if γ is a geodesic. For in that case, ξn∇n ξa = 0 and hence, by (37),

ξn∇nJ = m (κa ξn∇n ξa + ξnξa∇n κa) = mξnξa∇(n κa) = 0.(40)
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Thus, the value of J (construed as an attribute of massive point particles) is constant for
free particles.

We refer to J as the conserved quantity associated with κa. If κa is timelike, and
if the flow maps determined by κa have the character of translations41, then J is called
the energy of the particle (associated with κa).42 If it is spacelike, and if the flow maps
have the character of translations, then J is called the component of linear momentum of
the particle (associated with κa). Finally, if κa is spacelike, and if the flow maps have
the character of rotations, then it is called the component of angular momentum of the
particle (associated with κa).

It is useful to keep in mind a certain picture that helps one to “see” why the angular
momentum of free particles (to take that example) is conserved. It involves an analogue
of angular momentum in Euclidean plane geometry. Figure 4 shows a rotational Killing
field κa in the Euclidean plane, the image of a geodesic (i.e. a line L), and the tangent
field ξa to the geodesic. Consider the quantity J = ξaκa, i.e. the inner product of ξa with
κa, along L. Exactly the same proof as before (in equation (40)) shows that J is constant
along L.43 But here we can better visualize the assertion.

Let us temporarily drop indices and write κ · ξ as one would in ordinary Euclidean
vector calculus (rather than ξaκa). Let p be the point on L that is closest to the center
point where κ vanishes. At that point, κ is parallel to ξ. As one moves away from p along
L, in either direction, the length ‖κ‖ of κ grows, but the angle ∠(κ, ξ) between the vectors
increases as well. It is at least plausible from the picture (and easy to check directly with
an argument involving similar triangles) that the length of the projection of κ onto the line
is constant. Equivalently, the inner product κ · ξ = cos(∠(κ, ξ)) ‖κ‖ ‖ξ‖ is constant.

That is how to think about the conservation of angular momentum for free particles
in relativity theory. It does not matter that in the latter context we are dealing with a
Lorentzian metric and allowing for curvature. The claim is still that a certain inner product
of vector fields remains constant along a geodesic, and we can still think of that constancy
as arising from a compensatory balance of two factors.

Let us now turn to the second type of conserved quantity, the one that is an attribute of
extended bodies. Let κa be an arbitrary Killing field, and let Tab be the energy-momentum
field associated with some matter field. Assume it satisfies the conservation condition.
Then (T ab κb) is divergence free:

∇a(T abκb) = κb∇aT ab + T ab∇aκb = T ab∇(aκb) = 0.(41)

41In Minkowski spacetime, one has an unambiguous classification of Killing fields as generators of transla-
tions, spatial rotations, boosts (and linear combinations of them). No such classification is available in general.
Killing fields are just Killing fields. But sometimes a Killing field in a curved spacetime resembles a Killing field
in Minkowski spacetime in certain respects, and then the terminology may carry over naturally. For example, in
the case of asymptotically flat spacetimes, one can classify Killing fields by their asymptotic behavior.

42If κa is of unit length everywhere, this usage accords well with that in section 2.3. For there ascriptions of
energy to point particles were made relative to unit timelike vectors, and the value of the energy at any point
was taken to be the inner product of that unit timelike vector with the particle’s four-momentum vector. If κa is,
at least, of constant length, then one can always rescale it so as to achieve agreement of usage. But, in general,
Killing fields, timelike or otherwise, are not of constant length, and so the current usage must be regarded as a
generalization of that earlier usage.

43The mass m played no special role.
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p

L

κa

κa

ξa

ξa

Figure 4. κa is a rotational Killing field. (It is everywhere orthogonal to a circle radius,
and proportional to it in length.) ξa is a tangent vector field of constant length on the line.
The inner-product between them is constant. (Equivalently, the length of the projection
of κa onto the line is constant.)

(The second equality follows from the conservation condition for T ab (in section 2.4) and
the symmetry of T ab; the third from the fact that κa is a Killing field.) It is natural, then,
to apply Stokes’ theorem to the vector field (T abκb).

Consider a bounded system with aggregate energy-momentum field Tab in an otherwise
empty universe. Then there exists a (possibly huge) timelike world tube such that Tab van-
ishes outside the tube (and vanishes on its boundary). Let S1 and S2 be (non-intersecting)
spacelike hypersurfaces that cut the tube as in figure 5, and let N be the segment of the
tube falling between them (with boundaries included). By Stokes’ theorem,

∫
S2

(T abκb) dSa −
∫
S1

(T abκb) dSa

=
∫
S2∩ ∂N

(T abκb) dSa −
∫
S1∩ ∂N

(T abκb) dSa

=
∫
∂N

(T abκb) dSa =
∫
N

∇a(T abκb) dV = 0.

Thus, the integral
∫
S
(T abκb) dSa is independent of the choice of spacelike hypersurface

S intersecting the world tube, and is, in this sense, a conserved quantity (construed as an
attribute of the system confined to the tube). An “early” intersection yields the same value
as a “late” one. Again, the character of the background Killing field κa determines our de-
scription of the conserved quantity in question. If κa is timelike, we take

∫
S
(T abκb) dSa

to be the aggregate energy of the system (associated with κa). And so forth.
For further discussion of symmetry and conservation principles in general relativity,

see Brading and Castellani (this volume, chapter 13, sections 6 and 7).



256 David B. Malament

S1

S2

Tab = 0

Tab �= 0

Figure 5. The integrated energy (relative to a background timelike Killing field) over the
intersection of the world tube with a spacelike hypersurface is independent of the choice
of hypersurface.

3 SPECIAL TOPICS

3.1 Relative Simultaneity in Minkowski Spacetime

We noted in section 2.3, when discussing the decomposition of vectors at a point into their
“temporal” and “spatial” components relative to a four-velocity vector there, that we were
taking for granted the standard identification of relative simultaneity with orthogonality.
Here we return to consider the justification of that identification.

Rather than continue to cast the discussion as one concerning the decomposition of the
tangent space at a particular point, it is convenient to construe it instead as one about the
structure of Minkowski spacetime, the regime of so-called “special relativity”. Doing so
will bring it closer to the framework in which traditional discussions of the status of the
relative simultaneity relation have been conducted.

Minkowski spacetime is a relativistic spacetime (M, gab) characterized by three con-
ditions: (i) M is the manifold R

4; (ii) (M, gab) is flat, i.e. gab has vanishing Riemann
curvature everywhere; and (iii) (M, gab) is geodesically complete, i.e. every geodesic
(with respect to gab) can be extended to arbitrarily large parameter values in both direc-
tions.

By virtue of these conditions, Minkowski spacetime can be identified with its tangent
space at any point, and so it inherits the structure of a “metric affine space” in the follow-
ing sense. Pick any point o in M , and let V be the tangent space Mo at o. Then there is a
map (p, q) �→ −→pq from M ×M to V with the following two properties.

(1) For all p, q and r in M , −→pq +−→qr = −→pr.

(2) For all p in M , the induced map q �→ −→pq from M to V is a bijection.44

44If exp is the exponential map from Mo to M , we can take −→pq to be the vector

(exp−1(q)− exp−1(p))
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The triple consisting of the point set M , the vector space V , and the map (p, q) �→ −→pq
forms an affine space. If we add to this triple the inner product on V defined by gab it
becomes a (Lorentzian) metric affine space. (For convenience we will temporarily drop
the index notation and write 〈v, w〉 instead of gabv

awb for v and w in V .) We take
all this structure for granted in what follows, i.e. we work with Minkowski spacetime
and construe it as a metric affine space in the sense described. This will simplify the
presentation considerably.

We also use an obvious notation for orthogonality. Given four points p, q, r, s in M ,
we write −→pq ⊥ −→rs if 〈−→pq,−→rs〉 = 0. And given a line45 L in M , we write −→pq ⊥ L if−→pq ⊥ −→rs for all points r and s on L.

Now consider a timelike line L in M . What pairs of points (p, q) in M should qualify
as being “simultaneous relative to L”? That is the question we are considering. The
standard answer is that they should do so precisely if −→pq ⊥ L.

In traditional discussions of relative simultaneity, the standard answer is often cast in
terms of “epsilon” values. The connection is easy to see. Let p be any point that is not
on our timelike line L. Then there exist unique points r and s on L (distinct from one
another) such that −→rp and −→ps are future-directed null vectors. (See figure 6.) Now let q

p

q

r

s
L

Figure 6. The ε = 1
2 characterization of relative simultaneity: p and q are simultaneous

relative to L iff q is midway between r and s.

be any point on L. (We think of it as a candidate for being judged simultaneous with p

in Mo. All other standard properties of affine spaces follow from these two. E.g. it follows that −→pq = 0 ⇐⇒
p = q, for all p and q in M . (Here 0 is the zero vector in V .)

45In the present context we can characterize a line in more than one way. We can take it to be the image of a
maximally extended geodesic that is non-trivial, i.e. not a point. Equivalently, we can take it to be a set of points
of the form {r : −→pr = ε−→pq for some ε in R} where p and q are any two (distinct) points in M .
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relative to L.) Then −→rq = ε−→rs for some ε ∈ R. A simple computation46 shows that

ε =
1
2
⇐⇒ −→pq ⊥ −→rs.(42)

So the standard (orthogonality) relation of relative simultaneity in special relativity may
equally well be described as the “ε = 1

2” relation of relative simultaneity.
Yet another equivalent formulation involves the “one-way speed of light”. Suppose a

light ray travels from r to p with speed c+ relative to L, and from p to s with speed c−
relative to L. We saw in section 2.3 that if one adopts the standard criterion of relative
simultaneity, then it follows that c+ = c−. (Indeed, in that case, both c+ and c− turn out
to be 1.) The converse is true as well. For if c+ = c−, then, as determined relative to
L, it should take as much time for light to travel from r to p as from p to s. And in that
case, a point q on L should be judged simultaneous with p relative to L precisely if it is
midway between r and s. So we are led, once again, to the “ε = 1

2” relation of relative
simultaneity.

Now is adoption of the standard relation a matter of convention, or is it in some signif-
icant sense forced on us?

There is, of course, a large literature devoted to this question.47 It is not my purpose to
review it here, but I do want to draw attention to certain remarks of Howard Stein [1991,
pp. 153-4] that seem to me particularly insightful. He makes the point that determinations
of conventionality require a context.

There are really two distinct aspects to the issue of the “conventionality” of
Einstein’s concept of relative simultaneity. One may assume the position of
Einstein himself at the outset of his investigation — that is, of one confronted
by a problem, trying to find a theory that will deal with it satisfactorily; or
one may assume the position of (for instance) Minkowski — that is, of one
confronted with a theory already developed, trying to find its most adequate
and instructive formulation.

The problem Einstein confronted was (in part) that of trying to account for our apparent
inability to detect any motion of the earth with respect to the “aether”. A crucial element
of his solution was the proposal that we think about simultaneity a certain way (i.e. in
terms of the “ε = 1

2 criterion”), and resolutely follow through on the consequences of
doing so. Stein emphasizes just how different that proposal looks when we consider it,

46First note that, since−→ps and −→pr are null,

0 = 〈−→ps,−→ps〉 = 〈−→pr +−→rs, −→pr +−→rs〉 = 2〈−→pr,−→rs〉+ 〈−→rs,−→rs〉.
It follows that

〈−→pq,−→rs〉 = 〈−→pr +−→rq, −→rs〉 = 〈−→pr + ε−→rs, −→rs〉 = 〈−→pr,−→rs〉+ ε〈−→rs,−→rs〉 = (ε− 1

2
)〈−→rs,−→rs〉,

which implies (42).
47Classic statements of the conventionalist position can be found in Reichenbach [1958] and Grünbaum

[1973]. Grünbaum has recently responded to criticism of his views in [forthcoming]. An overview of the
debate with many references can be found in Janis [2002].
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not from Einstein’s initial position, but rather from the vantage point of the finished theory,
i.e. relativity theory conceived as an account of invariant spacetime structure.

[For] Einstein, the question (much discussed since Reichenbach) whether the
evidence really shows that that the speed of light must be regarded as the
same in all directions and for all observers is not altogether appropriate. A
person devising a theory does not have the responsibility, at the outset, of
showing that the theory being developed is the only possible one given the
evidence. [But] once Einstein’s theory had been developed, and had proved
successful in dealing with all relevant phenomena, the case was quite trans-
formed; for we know that within this theory, there is only one “reasonable”
concept of simultaneity (and in terms of that concept, the velocity of light
is indeed as Einstein supposed); therefore an alternative will only present
itself if someone succeeds in constructing, not simply a different empirical
criterion of simultaneity, but an essentially different (and yet viable) theory
of electrodynamics of systems in motion. No serious alternative theory is in
fact known. (emphasis in original)

My goal in the remainder of this section is to formulate three elementary uniqueness
results, closely related to one another, that capture the sense in which “there is only
one ‘reasonable’ concept of (relative) simultaneity” within the framework of Minkowski
spacetime.

It will help to first consider an analogy. In some formulations of Euclidean plane
geometry, the relation of congruence between angles is taken as primitive along with
that of congruence between line segments (and other relations suitable for formulating
axioms about affine structure). But suppose we have a formulation in which it is not,
and we undertake to define a notion of angle-congruence in terms of the other primitives.
The standard angle-congruence relation can certainly be defined this way, and there is a
clear sense in which it is the only reasonable candidate. Consider any two angles in the
Euclidean plane. (Let’s agree that an “angle” consists of two rays, i.e. half-lines, with
a common initial point.) Whatever else is the case, presumably, it is only reasonable to
count them as congruent, i.e. equal in “size”, if there is an isometry of the Euclidean
plane that maps one angle onto the other.48 So though we have here a notion of angle-
congruence that is introduced “by definition”, there is no interesting sense in which it is
conventional in character.

A situation very much like this arises if we think about “one-way light speeds” in terms
of Minkowskian spacetime geometry. Indeed, the claim that the speed of light in vacuo is
the same in all directions and for all inertial observers is naturally represented as a claim
about angle congruence (for a special type of angle) in Minkowski spacetime.

Let us take a “light-speed angle” to be a triple of the form (p, T,N), where p is a point
in M , T is a future-pointing timelike ray with initial point p, and N is a future-pointing
null ray with initial point p. (See figure 7.)

48In this context, a one-to-one map of the Euclidean plane onto itself is an “isometry” if it preserves the
relation of congruence between line segments.
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p p′

N T N ′T ′

Figure 7. Congruent “light speed angles” in Minkowski spacetime.

Then we can represent systematic attributions of one-way light speed as maps of the
form: (p, T,N) �→ v(p, T,N). (We understand v(p, T,N) to be the speed that an ob-
server with (half) worldline T at p assigns to the light signal with (half) worldline N .)
So, for example, the principle that the speed of light is the same in all directions and for
all inertial observers comes out as the condition that v(p, T,N) = v(p′, T ′, N ′) for all
light-speed angles (p, T,N) and (p′, T ′, N ′).

Now it is natural to regard v(p, T,N) as a measure of the “size” of the angle (p, T,N).
If we do so, then, just as in the Euclidean case, we can look to the background metric to
decide when two angles have the same size. That is, we can take them to be congruent
iff there is an isometry of Minkowski spacetime that maps one to the other. But on this
criterion, all light-speed angles are congruent (proposition 10). So we are led back to the
principle that the (one-way) speed of light is the same in all directions and for all inertial
observers and, hence, back to the standard relative simultaneity relation.

PROPOSITION 10. Let (p, T,N) and (p′, T ′, N ′) be any two light speed angles in
Minkowski spacetime. Then there is an isometry φ of Minkowski spacetime such that
ϕ(p) = p′, ϕ[T ] = T ′, and ϕ[N ] = N ′.49

Once again, let L be a timelike line in M , and let SimL be the standard relation of
simultaneity relative to L. (So (p, q) ∈ SimL iff −→pq ⊥ L, for all p and q in M .) Further,
let S be an arbitrary two-place relation on M that we regard as a candidate for the relation
of “simultaneity relative to L”. Our second uniqueness result asserts that if S satisfies
three conditions, including an invariance condition, then S = SimL.50

The first two conditions are straightforward.

(S1) S is an equivalence relation (i.e. S is reflexive, symmetric, and transitive).

(S2) For all points p ∈M , there is a unique point q ∈ L such that (p, q) ∈ S.

If S satisfies (S1), it has an associated family of equivalence classes. We can think of
them as “simultaneity slices” (as determined relative to L). Then (S2) asserts that every

49The required isometry can be realized in the form ϕ = ϕ3 ◦ ϕ2 ◦ ϕ1 where (i) ϕ1 is a translation that
takes p to p′, (ii) ϕ2 is a boost (based at p′) that maps ϕ1[T ] to T ′, and (iii) ϕ3 is a rotation about T ′ that maps
(ϕ2 ◦ ϕ1)[N ] to N ′.

50Many propositions of this form can be found in the literature. (See Budden [1998] for a review.) Ours is
intended only as an example. There are lots of possibilities here depending on exactly how one formulates the
conditions that S must satisfy. The proofs are all very much the same.
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simultaneity slice intersects L in exactly one point. Note that if S = SimL , then (S1)
and (S2) are satisfied. For in this case, the equivalence classes associated with S are
hyperplanes orthogonal to L, and these clearly intersect L in exactly one point.

The third, invariance condition is intended to capture the requirement that S is deter-
mined by, or definable in terms of, the background geometric structure of Minkowski
spacetime and by L itself. The one subtle point here is whether temporal orientation is
taken to count as part of that background geometric structure or not. Let’s assume for the
moment that it does not.

Let ϕ : M →M be an isometry of (M, gab). We say it is an L-isometry if, in addition,
it preserves L, i.e. if, for all points p in M , p ∈ L ⇐⇒ ϕ(p) ∈ L. The set of L-
isometries is generated by maps of the following three types: (a) translations (“up” and
“down”) in the direction of L, (b) spatial rotations that leave fixed every point in L, and
(c) temporal reflections with respect to spacelike hyperplanes orthogonal to L. We will
say that our two-place relation S is L-invariant if it preserved under all )-isometries, i.e.
if for all )-isometries ϕ : M →M , and all points p, q ∈M ,

(p, q) ∈ S ⇐⇒ (ϕ(p), ϕ(q)) ∈ S.(43)

We can now formulate the second uniqueness result.51

PROPOSITION 11. Let L be a timelike line, and let S be a two-place relation on M that
satisfies conditions (S1) and (S2), and is L-invariant. Then S = SimL.

As it turns out, the full strength of L-invariance in not needed here. If suffices to require
that S is preserved under all L-isometries of type (c).52

Suppose now that we do want to consider temporal orientation as part of the back-
ground structure that may play a role in the determination of S. Then we need to recast
the invariance condition. Let us say that an L-isometry ϕ : M →M is an (L, ↑)-isometry

if it (also) preserves temporal orientation, i.e. if for all timelike vectors −→pq,
−−−−−−→
ϕ(p)ϕ(q) is

co-oriented with −→pq. And let us say that S is (L, ↑)-invariant if it is preserved under all
(L, ↑)-isometries. (So, to be (L, ↑)-invariant, S must be preserved under all L-isometries
of type (a) and (b), but need not be preserved under those of type (c).)

(L, ↑)-invariance is a weaker condition than L-invariance and, in fact, is too weak to
deliver the uniqueness result we want. It turns out there are many two-place relations S
on M other than SimL that satisfy (S1), (S2), and are (L, ↑)-invariant. Their associated
“simultaneity slices” are “flat cones” that are preserved under L-isometries of type (a) and
(b), but not (c). (See figure 8.)

But we can still get a uniqueness result if we change the set-up slightly, and think of
simultaneity as determined, not relative to individual timelike lines, but, rather, relative
to families of parallel timelike lines. Let us officially take a frame in M to be a set of

51It is a close variant of one presented in Hogarth [1993].
52The key step in the proof is the following. Let p be a point in M . By (S2), there is a unique point q on L

such that (p, q) ∈ S. Let ϕ : M →M be a reflection with respect to the hyperplane orthogonal to L that passes
through p. Then ϕ(p) = p, ϕ(q) ∈ L, and S is invariant under ϕ. Hence (p, ϕ(q)) = (ϕ(p), ϕ(q)) ∈ S.
Since ϕ(q) ∈ L, it follows by the uniqueness condition in (S2) that ϕ(q) = q. But the only points left fixed by
ϕ are those on the hyperplane orthogonal to L that passes through p. So p and q are both on that hyperplane,
and −→pq is orthogonal to L, i.e. (p, q) ∈ SimL.
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L

Figure 8. The “flat cones” displayed are the simultaneity slices associated with a two-
place relation S that satisfies conditions (S1) and (S2), and is (L, ↑)-invariant (but not
L-invariant).

parallel timelike lines L that is maximal in the sense that every point in M falls on one
(and only one) of them. With hardly any work, we can recast our previous notions in
terms of frames rather than lines.

In what follows, let L be some fixed frame. Given any two lines L and L′ in L,
SimL = SimL′ . (Since L and L′ are parallel, any vector orthogonal to one must be
orthogonal to the other.) So we can, without ambiguity, make reference to SimL (the
standard relation of simultaneity relative to L). Let ϕ : M → M be an isometry of
(M, gab). We say it is an L-isometry if, for all L in L, the line ϕ[L] is also in L. And we
say that it it is an (L, ↑)-isometry if, in addition, it preserves temporal orientation.

If L is a line in L, then the set of L-isometries certainly includes all L-isometries of
types (a), (b), and (c) above. But it includes, in addition, (d) translations taking L to some
other line in L, and (e) isometries that leave fixed the points on some line in L other than
L. If we restrict attention to (L, ↑)-isometries, we lose maps of type (c), but we retain
those of types (a), (b), (d), and (e). Invariance under this larger class is sufficient to drive
a uniqueness result.

We say (of course) that S is L-invariant if it is preserved under all L-isometries, and
(L, ↑)-invariant if it is preserved under all (L, ↑)-isometries. Our third uniqueness result
comes out as follows.53

PROPOSITION 12. LetL be a frame, and let S be a two-place on M . Suppose S satisfies
(S1) and, for some L in L, satisfies (S2). Further, suppose S is (L, ↑)-invariant. Then
S = SimL.

The move from proposition 11 to proposition 12 involves a trade-off. We drop the
requirement that S be invariant under maps of type (c), but add the requirement that it be
invariant under those of type (d) and (e). (It is a good exercise to check that one does not
need the full strength of (L, ↑)-invariance in proposition 12. It suffices to require that S

53It is closely related to propositions in Spirtes [1981], Stein [1991], and Budden [1998].
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be invariant under maps of type (a) and (e), or, alternatively, invariant under maps of type
(b) and (d).)

Once again, many variations of these results can be found in the literature. For ex-
ample, if one subscribes to a “causal theory of time (or spacetime)”, one will want to
consider what candidate simultaneity relations are determined by the causal structure of
Minkowski spacetime (in adddition to the line L). Let ϕ : M →M be a bijection. We say
it is a causal isomorphism if it preserves the symmetric relation of causal connectibility,

i.e. if, for all points p and q in M , −→pq is a causal vector iff
−−−−−−→
ϕ(p)ϕ(q) is one. We say it is

L-causal isomorphism, an (L, ↑)-causal isomorphism, and L-causal isomorphism, or an
(L, ↑)-causal isomorphism if, in each case, it preserves the specified additional structure.
Since isometries of Minkowksi spacetime automatically qualify as causal isomorphisms,
we can replace the invariance condition in proposition 11 with the requirement that S be
invariant under all L-causal isomorphisms; and we can replace the one in proposition 12
with the requirement that S be invariant under all (L, ↑)-causal isomorphisms.

3.2 Geometrized Newtonian Gravitation Theory

The “geometrized” formulation of Newtonian gravitation theory was first introduced by
Cartan [1923; 1924], and Friedrichs [1927], and later developed by Trautman [1965],
Künzle [1972; 1976], Ehlers [1981], and others.

It is significant for several reasons. (1) It shows that several features of relativity theory
once thought to be uniquely characteristic of it do not distinguish it from (a suitably
reformulated version of) Newtonian gravitation theory. The latter too can be cast as a
“generally covariant” theory in which (a) gravity emerges as a manifestation of spacetime
curvature, and (b) spacetime structure is “dynamical”, i.e. participates in the unfolding of
physics rather than being a fixed backdrop against which it unfolds.

(2) It helps one to see where Einstein’s equation “comes from”, at least in the empty-
space case. (Recall the discussion in section 2.5.) It also allows one to make precise, in
coordinate-free, geometric language, the standard claim that Newtonian gravitation theory
(or, at least, a certain generalized version of it) is the “classical limit” of general relativity.
(See Künzle [1976] and Ehlers [1981].)

(3) It clarifies the gauge status of the Newtonian gravitational potential. In the ge-
ometrized formulation of Newtonian theory, one works with a single curved derivative

operator
g

∇a. It can be decomposed (in a sense) into two pieces — a flat derivative op-
erator ∇a and a gravitational potential φ — to recover the standard formulation of the
theory.54 But in the absence of special boundary conditions, the decomposition will not
be unique. Physically, there is no unique way to divide into “inertial” and “gravitational”
components the forces experienced by particles. Neither has any direct physical signifi-
cance. Only their “sum” does. It is an attractive feature of the geometrized formulation
that it trades in two gauge quantities for this sum.

(4) The clarification described in (3) also leads to a solution, or dissolution, of an old

54As understood here, the “standard” formulation is not that found in textbooks, but rather a “generally
covariant” theory of four-dimensional spacetime structure in which gravity is not geometrized.
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conceptual problem about Newtonian gravitation theory, namely the apparent breakdown
of the theory when applied (in cosmology) to a hypothetically infinite, homogeneous mass
distribution. (See Malament [1995] and Norton [1995; 1999].)

In what follows, we give a brief overview of the geometrized formulation of Newtonian
gravitation theory, and say a bit more about points (1) and (3). We start by characterizing a
new class of geometrical models for the spacetime structure of our universe (or subregions
thereof) that is broad enough to include the models considered in both the standard and
geometrized versions of Newtonian theory. We take a classical spacetime to be a structure
(M, tab, h

ab,∇a) where (i) M is a smooth, connected, four-dimensional differentiable
manifold; (ii) tab is a smooth, symmetric, covariant tensor field on M of signature (1,
0, 0, 0);55 (iii) hab is a smooth, symmetric, contravariant tensor field on M of signature
(0, 1, 1, 1); (iv) ∇a is a smooth derivative operator on M ; and (v) the following two
conditions are met:

hab tbc = 0(44)

∇a tbc = 0 = ∇a hbc.(45)

We refer to them, respectively, as the “orthogonality” and “compatibility” conditions.
M is interpreted as the manifold of point events (as before); tab and hab are understood

to be temporal and spatial metrics on M , respectively. Collectively, the objects tab, hab,
and ∇a represent the spacetime structure presupposed by classical, Galilean relativistic
dynamics. We review, briefly, how they do so.

In what follows, let (M, tab, h
ab,∇a) be a fixed classical spacetime.

Consider, first, tab. Given any vector ξa at a point, it assigns a “temporal length”
(tab ξa ξb)

1
2 ≥ 0. The vector ξa is classified as timelike or spacelike depending on

whether its temporal length is positive or zero. It follows from the signature of tab that
the subspace of spacelike vectors at any point is three-dimensional. It also follows from
the signature that at every point there exists a covariant vector ta, unique up to sign, such
that tab = tatb. We say that the structure (M, tab, h

ab,∇a) is temporally orientable
if there is a continuous (globally defined) vector field ta such that this decomposition
holds at every point. Each such field ta (which, in fact, must be smooth because tab
is) determines a temporal orientation. A timelike vector ξa qualifies as future-directed
relative to ta if ta ξa > 0; otherwise it is past-directed. Let us assume in what follows
that (M, tab, h

ab,∇a) is temporally orientable and that a temporal orientation ta has been
selected.

55The signature condition for tab is equivalent to the requirement that, at every point in M , the tangent space

there have a basis
1
ξa, ...,

4
ξa such that, for all i and j in {1, 2, 3, 4}, tab

i

ξa
j

ξb = 0 if i �= j, and

tab
i

ξa
i

ξb =

j
1 if i = 1
0 if i = 2, 3, 4.

Similarly, the signature condition for hab in (iii) requires that, at every point, the cotangent space there have a

basis 1
σa, ...,

4
σa such that, for all i and j in {1, 2, 3, 4}, hab

i
σa

j
σb = 0 if i �= j, and

hab
i
σa

i
σb =

j
0 if i = 1
1 if i = 2, 3, 4.
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From the compatibility condition, it follows that ta is closed, i.e. ∇[a tb] = 0. So, at
least locally, it must be exact, i.e. of form ta = ∇a t for some smooth function t. We call
any such function a time function. If M has a suitable global structure, e.g. if it is simply
connected, then a globally defined time function t : M → R must exist. In this case,
spacetime can be decomposed into a one-parameter family of global (t = constant) “time
slices”. One can speak of “space” at a given “time”. A different choice of time function
would result in a different zero-point for the time scale, but would induce the same time
slices and the same elapsed intervals between them.

We say that a smooth curve is timelike (respectively spacelike) if its tangent field is
timelike (respectively spacelike) at every point. In what follows, unless indication is
given to the contrary, it should further be understood that a “timelike curve” is future-
directed and parametrized by its tab–length. In this case, its tangent field ξa satisfies the
normalization condition taξ

a = 1. Also, in this case, if a particle happens to have the
image of the curve as its worldline, then, at any point, ξa is called the particle’s four-
velocity, and ξn∇n ξa its four-acceleration, there.56 If the particle has mass m, then its
four-acceleration field satisfies the equation of motion

F a = m ξn∇n ξa,(46)

where F a is a spacelike vector field (on the image of its worldline) that represents the
net force acting on the particle. This is, once again, our version of Newton’s second
law of motion. Recall (15). Note that the equation makes geometric sense because four-
acceleration vectors are necessarily spacelike.57

Now consider hab. It serves as a spatial metric, but just how it does so is a bit tricky. In
Galilean relativistic mechanics, we have no notion of spatial length for timelike vectors,
e.g. four-velocity vectors, since having one is tantamount to a notion of absolute rest. (We
can take a particle to be at rest if its four-velocity has spatial length 0 everywhere.) But
we do have a notion of spatial length for spacelike vectors, e.g. four-acceleration vectors.
(We can, for example, use measuring rods to determine distances between simultaneous
events.) hab serves to give us one without the other.

We cannot take the spatial length of a vector σa to be (hab σaσb)
1
2 because the latter

is not well-defined. (Since hab has degenerate signature, it is not invertible, i.e. there
does not exist a field hab satisfying habhbc = δac.) But if σa is spacelike, we can use
hab to assign a spatial length to it indirectly. It turns out that: (i) a vector σa is spacelike
iff it can be expressed in the form σa = hab λb, and (ii) if it can be so expressed, the
quantity (hab λa λb) is independent of the choice of λa. Furthermore, the signature of hab

guarantees that (hab λa λb) ≥ 0. So if σa is spacelike, we can take its spatial length to be
(hab λa λb)

1
2 , for any choice of corresponding λa.

56Here we take for granted an interpretive principle that corresponds to C1: (i) a curve is timelike iff its image
could be the worldline of a point particle. Other principles we can formulate at this stage correspond to P1 and
P2: (ii) a timelike curve can be reparametrized so as to be a geodesic (with respect to ∇a) iff its image could
be the worldline of a free particle; (iii) clocks record the passage of elapsed tab–length along their worldlines.
(Here, in contrast to the relativistic setting, we have only massive particles to consider; and until we geometrize
Newtonian gravity, we do not count a particle as “free” if it is subject to “gravitational force”.)

57By the compatibility condition, ta ξn∇n ξa = ξn∇n (ta ξa) = ξn∇n (1) = 0.
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One final preliminary remark about classical spacetimes is needed. It is crucial for
our purposes, as will be clear, that the compatibility condition (45) does not determine
a unique derivative operator. (It is a fundamental result that the compatibility condition
∇a gbc = 0 determines a unique derivative operator if gab is a semi-Riemannian metric,
i.e. a smooth, symmetric field that is invertible (i.e. non-degenerate). But neither tab nor
hab is invertible.)

Because hab is not invertible, we cannot raise and lower indices with it. But we can,
at least, raise indices with it, and it is sometimes convenient to do so. So, for example, if
Ra
bcd is the Riemann curvature tensor field associated with ∇a, we can understand Rab

cd

to be an abbreviation for hbnRa
ncd.

Let us now, finally, consider Newtonian gravitation theory. In the standard (non-
geometrized) version, one works with a flat derivative operator ∇a and a gravitational
potential φ, the latter understood to be a smooth, real-valued function on M . The gravi-
tational force on a point particle with mass m is given by −mhab∇b φ. (Notice that this
is a spacelike vector by the orthogonality condition.) Using our convention for raising
indices, we can also express the vector as: −m∇a φ. It follows that if the particle is
subject to no forces except gravity, and if it has four-velocity ξa, it satisfies the equation
of motion

−∇a φ = ξn∇n ξa.(47)

(Here we have just used −m∇a φ for the left side of (46).) It is also assumed that φ
satisfies Poisson’s equation:

∇a∇a φ = 4π ρ,(48)

where ρ is the Newtonian mass-density function (another smooth real-valued function on
M ). (The expression on the left side is an abbreviation for: hab∇b∇a φ.)

In the geometrized formulation of the theory, gravitation is no longer conceived as a
fundamental “force” in the world, but rather as a manifestation of spacetime curvature
(just as in relativity theory). Rather than thinking of point particles as being deflected
from their natural straight (i.e. geodesic) trajectories, one thinks of them as traversing
geodesics in curved spacetime. So we have a geometry problem. Starting with the struc-

ture (M, tab, h
ab,∇a), can we find a new derivative operator

g

∇a, also compatible with
the metrics tab and hab, such that a timelike curve satisfies the equation of motion (47)

with respect to the original derivative operator ∇a iff it is a geodesic with respect to
g

∇a?
The following proposition (essentially due to Trautman [1965]) asserts that there is ex-

actly one such
g

∇a. It also records several facts about the Riemann curvature tensor field
g

Ra
bcd associated with

g

∇a.
In formulating the proposition, we make use of the following basic fact about derivative

operators. Given any two such operators
1

∇a and
2

∇a on M , there is a unique smooth ten-
sor field Ca

bc, symmetric in its covariant indices, such that, for all smooth fields αa...bc...d
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on M ,

2

∇n αa...bc...d =
1

∇n αa...bc...d + Cr
nc αa...br...d + ... + Cr

nd αa...bc...r

− Ca
nr αr...bc...d − ... − Cb

nr αa...rc...d.(49)

In this case, we say that “the action of
2

∇a relative to that of
1

∇a is given by Ca
bc”.58

Conversely, given any one derivative operator
1

∇a on M , and any smooth, symmetric

field Ca
bcon M , (49) defines a new derivative operator

2

∇a on M . (See Wald [1984, p.
33].)

PROPOSITION 13 (Geometrization Theorem). Let (M, tab, h
ab,∇a) be a classical space-

time with ∇a flat (Ra
bcd = 0). Further, let φ and ρ be smooth real valued functions on

M satisfying Poisson’s equation: ∇a∇a φ = 4π ρ. Finally, let
g

∇a be the derivative op-
erator on M whose action relative to that of ∇a is given by Ca

bc = −tbc∇aφ. Then all
the following hold.

(G1) (M, tab, h
ab,

g

∇a) is a classical spacetime.

(G2)
g

∇a is the unique derivative operator on M such that, for all timelike
curves on M with four-velocity fields ξa,

ξn
g

∇n ξa = 0 ⇐⇒ −∇aφ = ξn∇n ξa.(50)

(G3) The curvature field
g

Ra
bcd associated with

g

∇a satisfies:
g

Rbc = 4π ρ tbc (51)
g

R
ab
cd = 0 (52)

g

R
[a

(b
c]
d) = 0. (53)

(51) is the geometrized version of Poisson’s equation. The proof proceeds by more-or-
less straight forward computation using (49).59

58Clearly, if the action of
2
∇a relative to that of

1
∇a is given by Cabc, then, conversely, the action of

1
∇a

relative to that of
2
∇a is given by −Cabc. In the sum on the right side of (49), there is one term involving Cabc

for each index in αa...bc...d. In each case, the index in question is contracted with Cabc, and the term carries a
coefficient of +1 or−1 depending on whether the index in question is in covariant (down) or contravariant (up)
position. (The components of Cabc in a particular coordinate system are obtained by subtracting the Christoffel

symbols associated with
1
∇a (in that coordinate system) from those associated with

2
∇a.)

59Here is a sketch. By (49),

g

∇a tbc = ∇a tbc + Crab trc + Crac tbr = ∇a tbc + (−tab∇rφ) trc + (−tac∇rφ) tbr.

The first term in the far right sum vanishes by the compatibility condition (45); the second and third do so by

the orthogonality condition (44) since, for example, (∇rφ) tbr = (hrm tbr)∇mφ. So
g

∇a is compatible with
tbc. Much the same argument shows that it is also compatible with hab. This give us (G1).
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We can also work in the opposite direction. In geometrized Newtonian gravitation the-

ory, one starts with a curved derivative operator
g

∇a satisfying (51), (52), (53), and with
the principle that point particles subject to no forces (except “gravity”) traverse geodesics

with respect to
g

∇a. (52) and (53) function as integrability conditions that ensure the
possibility of working backwards to recover the standard formulation in terms of a grav-
itational potential and flat derivative operator.60 We have the following recovery, or de-
geometrization, theorem (also essentially due to Trautman [1965]).

PROPOSITION 14 (Recovery Theorem). Let (M, tab, h
ab,

g

∇a) be a classical spacetime
that, together with a smooth, real-valued function ρ on M , satisfies conditions (51), (52),
(53). Then, at least locally (and globally if M is, for example, simply connected), there
exists a smooth, real-valued function φ on M and a flat derivative operator ∇a such that
all the following hold.

(R1) (M, tab, h
ab,∇a) is a classical spacetime.

(R2) For all timelike curves on M with four-velocity fields ξa, the geometri-
zation condition (50) is satisfied.

For (G2), let
g

∇a (temporarily) be an arbitrary derivative operator on M whose action relative to that ∇a is
given by some field Cabc. Let p be an arbitrary point in M , and let ξa be the four-velocity field of an arbitrary
timelike curve through p. Then, by (49),

ξn
g

∇n ξa = ξn∇n ξa − Carn ξrξn.

It follows that
g

∇n will satisfy (G2) iff Carnξrξn = −∇aφ or, equivalently,

[Carn + (∇aφ) trn] ξrξn = 0,

for all future-directed unit timelike vectors ξa at all points p. But the space of future-directed unit timelike
vectors at any p spans the tangent space Mp there, and the field in brackets is symmetric in its covariant indices.

So,
g

∇n will satisfy (G2) iff Carn = −(∇aφ) trn everywhere.

Finally, for (G3) we use the fact that
g

R a
bcd can be expressed as a sum of terms involving Rabcd and Cabc

(see Wald [1984, p. 184]), and then substitute for Cabc:

g

R
a
bcd = Rabcd + 2∇[c Cad]b + 2 Cnb[cC

a
d]n

= Rabcd − 2 tb[d∇c]∇aφ = − 2 tb[d∇c]∇aφ.

(Here Cn
b[c

Ca
d]n

turns out to be 0 by the orthogonality condition, and ∇[c Ca
d]b

turns out to be

−tb[d∇c]∇aφ by the compatibility condition. For the final equality we use our assumption that Rabcd = 0.)

(52) and (53) now follow from the orthogonality condition and (for (53)) from the fact that ∇[c∇a]φ = 0 for
any smooth function φ. Contraction on ‘a’ and ‘d’ yields

g

Rbc = tbc(∇a∇aφ).

So (51) follows from our assumption that∇a∇a φ = 4 π ρ (and the fact that∇a∇aφ = ∇a∇aφ).
60I am deliberately passing over some subtleties here. Geometrized Newtonian gravitation theory comes in

several variant formulations. (See Bain [2004] for a careful review of the differences.) The one presented here
is essentially that of Trautman [1965]. In other weaker formulations (such as that in Künzle [1972]), condition
(52) is dropped, and it is not possible to fully work back to the standard formulation (in terms of a gravitational
potential and flat derivative operator) unless special global conditions on spacetime structure are satisfied.
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(R3) ∇a satisfies Poisson’s equation: ∇a∇a φ = 4π ρ.

The theorem is an existential assertion of this form: given
g

∇a satisfying certain condi-
tions, there exists (at least locally) a smooth function φ on M and a flat derivative operator

∇a such that
g

∇a arises as the “geometrization” of the pair (∇a, φ). But, as claimed at the
beginning of this section, we do not have uniqueness unless special boundary conditions
are imposed on φ.

For suppose ∇a is flat, and the pair (∇a, φ) satisfies (R1), (R2), (R3). Let ψ be any
smooth function (with the same domain as φ) such that∇a∇bψ vanishes everywhere, but
∇bψ does not.61 If we set φ = φ+ψ, and take∇a to be the derivative operator relative to

which the action of
g

∇a is given by C a
bc = −tbc∇aφ, then∇a is flat and the pair (∇a, φ)

satisfies conditions (R1), (R2), (R3) as well.62

(∇a, φ)
↘ g

∇a↗
(∇a, φ)

But, because∇b ψ is non-vanishing (somewhere or other), the pairs (∇a, φ) and (∇a, φ)

are distinct decompositions of
g

∇a. Relative to the first, a point particle (with mass m
and four-velocity ξa) has acceleration ξn∇n ξa and is subject to a gravitational force

61We can think of ∇bψ as the “spatial gradient” of ψ. The stated conditions impose the requirement that
∇bψ be constant on all spacelike submanifolds (“time slices”), but not vanish on all of them.

62It follows directly from the way ∇a was defined that the pair (∇a, φ) satisfies conditions (R1) and (R2).
(The argument is almost exactly the same as that used in an earlier note to prove (G1) and (G2) in the Ge-
ometrization Theorem.) What must be shown that is that∇a is flat, and that the pair (∇a, φ) satisfies Poisson’s
equation: ∇a∇a φ = 4 π ρ. We do so by showing that (i) Ra

bcd = Rabcd, (ii) ∇a∇a ψ = 0, and (iii)
∇a∇a α = ∇a∇a α, for all smooth scalar fields α on M . (It follow immediately from (ii) and (iii) that
∇a∇a φ = ∇a∇a φ +∇a∇a ψ = ∇a∇a φ +∇a∇a ψ = 4 π ρ.)

We know from the uniqueness clause of (G2) in the Geometrization Theorem that the action of
g

∇a with
respect to∇a is given by the field Cabc = −tbc∇aφ. It follows that the action of∇a relative to that of∇a is

given by bC a
bc = −C a

bc + Cabc = −tbc∇a(−φ + φ) = tbc∇aψ. So, arguing almost exactly as we did in
the proof of (G3) in the Geometrization Theorem, we have

Ra
bcd = Rabcd + 2 tb[d∇c]∇aψ.(54)

Now it follows from∇a∇bψ = 0 that

∇c∇aψ = tc (ξn∇n∇aψ),(55)

where tab = tatb, and ξn is any smooth future-directed unit timelike vector field on M . Hence,
tb[d∇c]∇aψ = tb t[d tc](ξ

n∇n∇aψ) = 0. This, together with (54), gives us (i). And (ii) follows directly
from (55). Finally, for (iii), notice that

∇a∇a α = har∇r∇a α = har∇r∇a α = har (∇r∇a α + bCn
ra∇n α)

= ∇a∇a α + har tra (∇n ψ)(∇n α) = ∇a∇a α.

The final equality follows from the orthogonality condition.
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−m∇aφ. Relative to the second, it has acceleration ξn∇r ξa = ξn∇n ξa −∇a ψ and is
subject to a gravitational force −m∇a φ = −m∇aφ−m∇aψ.

As suggested at the beginning of the section, we can take this non uniqueness of recov-
ery result to capture in precise mathematical language the standard claim that Newtonian
gravitational force is a gauge quantity. By the argument just given, if we can take the
force on a point particle with mass m to be −m∇aφ, we can equally well take it to be
−m∇a(φ + ψ), where ψ is any field satisfying ∇a∇bψ = 0.

3.3 Recovering Global Geometric Structure from “Causal Structure”

There are many interesting and important issues concerning the global structure of rela-
tivistic spacetimes that might be considered here — the nature and significance of singu-
larities, the cosmic censorship hypothesis, the possibility of “time travel”, and others.63

But we limit ourselves to a few remarks about one rather special topic.
In our discussion of relativistic spacetime structure, we started with geometric models

(M, gab) exhibiting several levels of geometric structure, and used the latter to define the
(two-place) relations � and < on M .64 The latter are naturally construed as relations
of “causal connectibility (or accessibility)”. The question arises whether it is possible to
work backwards, i.e. start with the pair (M,�) or (M,<), with M now construed as a
bare point set, and recover the geometric structure with which we began. The question is
suggested by long standing interest on the part of some philosophers in “causal theories”
of time or spacetime. It also figures centrally in a certain approach to quantum gravity
developed by Rafael Sorkin and co-workers. (See, e.g. Sorkin [1995; 2005].)

Here is one way to make the question precise. (For convenience, we work with the
relation�.)

Let (M, gab) and (M, gab) be (temporally oriented) relativistic spacetimes. We say
that a bijection ϕ : M → M between their underlying point sets is a causal isomorphism
if, for all p and q in M ,

p� q ⇐⇒ ϕ(p)� ϕ(q).(56)

Now we ask: Does a causal isomorphism have to be a homeomorphism? a diffeomor-
phism? a conformal isometry?65

Without further restrictions on (M, gab) and (M, gab), the answer is certainly ‘no’
to all three questions. Unless the “causal structure” (i.e. the structure determined by
�) of a spacetime is reasonably well behaved, it provides no useful information at all.
For example, let us say that a spacetime is causally degenerate if p � q for all points
p and q. Any bijection between two causally degenerate spacetimes qualifies as a causal
isomorphism. But we can certainly find causally degenerate spacetimes whose underlying

63Earman [1995] offers a comprehensive review of many of them. On the topic of singularities, I can also
recommend Curiel [1999].

64Recall that p 	 q holds if there is a future-directed timelike curve that runs from p to q; and p < q holds
if there is a future-directed causal curve that runs from p to q.

65We know in advance that a causal isomorphism need not be a (full) isometry because conformally equivalent
metrics gab and Ω2gab on a manifold M determine the same relation	. The best one can ask for is that it be
a conformal isometry, i.e. that it be a diffeomorphism that preserves the metric up to a conformal factor.
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manifolds have different topologies (e.g. Gödel spacetime and a rolled-up version of
Minkowski spacetime).

There is a hierarchy of “causality conditions” that is relevant here. (See, e.g. Hawk-
ing and Ellis [1972, section 6.4].) They impose, with varying degrees of stringency, the
requirement that there exist no closed, or “almost closed”, timelike curves. Here are three.

chronology: There do not exist closed timelike curves. (Equivalently, for all p, it is not
the case that p� p.)

future (resp. past) distinguishability: For all points p, and all sufficiently small open sets
O containing p, no future directed (resp. past directed) timelike curve that starts at
p, and leaves O, ever returns to O.

strong causality: For all points p, and all sufficiently small open sets O containing p, no
future directed timelike curve that starts in O, and leaves O, ever returns to O.

It is clear that strong causality implies both future distinguishability and past distinguisha-
bility, and that each of the distinguishability conditions (alone) implies chronology. Stan-
dard examples (Hawking and Ellis [1972]) establish that the converse implications do not
hold, and that neither distinguishability condition implies the other.

The names “future distinguishability” and “past distinguishability” are easily explained.
For any p, let I+(p) be the set {q : p � q} and let I−(p) be the set {q : q � p}. Then
future distinguishability is equivalent to the requirement that, for all p and q,

I+(p) = I+(q) ⇒ p = q.

And the counterpart requirement with I+ replaced by I− is equivalent to past distin-
guishability.

We mention all this because it turns out that one gets a positive answer to all three
questions above if one restricts attention to spacetimes that are both future and past dis-
tinguishing.

PROPOSITION 15. Let (M, gab) and (M, gab) be (temporally oriented) relativistic space-
times that are past and future distinguishing, and let ϕ : M → M be a causal isomor-
phism. Then ϕ is a diffeomorphism and preserves gab up to a conformal factor, i.e. ϕ�gab
is conformally equivalent to gab.

A proof is given in Malament [1977]. A counterexample given there also shows that
the proposition fails if the initial restriction on causal structure is weakened to past distin-
guishability or to future distinguishability alone.

ACKNOWLEDGEMENTS

I am grateful to Jeremy Butterfield, Erik Curiel, John Earman, and Chris Smeenk for
comments on earlier drafts.



272 David B. Malament

BIBLIOGRAPHY

[Bain, 2004] J. Bain. Theories of Newtonian gravity and empirical distinguishability. Studies in the History
and Philosophy of Modern Physics, 35:345–376, 2004.

[Budden, 1998] T. Budden. Geometric simultaneity and the continuity of special relativity. Foundations of
Physics Letters, 11:343–357, 1998.

[Cartan, 1923] E. Cartan. Sur les variétés a connexion affine et la théorie de la relativité généralisée. Annales
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Scientifiques de l’Ecole Normale Supérieure, 41:1–25, 1924.
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der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Mathematische Annalen, 98:566–575,
1927.

[Geroch and Jang, 1975] R. Geroch and P. S. Jang. Motion of a body in general relativity. Journal of Mathe-
matical Physics, 16:65–67, 1975.

[Geroch, 1971] R. Geroch. A method for generating solutions of Einstein’s equation. Journal of Mathematical
Physics, 12:918–924, 1971.

[Geroch, unpublished] R. Geroch. General Relativity. Unpublished Lecture Notes from 1972, University of
Chicago, unpublished.
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NON-RELATIVISTIC
QUANTUM MECHANICS

Michael Dickson

This article is an introduction to some of the most important philosophical and
foundational issues that arise from or concern non-relativistic quantum theory.
The chapter has six main sections. The first introduces the theory, including some
of the important mathematical results required to formulate and address many of
the philosophical and foundational issues. This section is the longest, and most
important, for it will begin to give the careful reader the background needed to
understand and evaluate much of the vast literature on non-relativistic quantum
theory. And that literature is indeed vast — there is no way that it can even be
summarized in a chapter of this length. Instead, in the five subsequent sections,
I will consider some of the more important issues: foundational characterizations
of the formalism of quantum theory, empirical content, quantum uncertainty, the
measurement problem, and non-locality. There are many other issues one could
discuss, and some recent movements that merit consideration. Alas, we will not
have time for them. A careful reading of the material here is a start, however,
towards understanding these other issues.

Of these five issues, the first two are somewhat less discussed, especially in
the Anglo-American philosophical literature. Those sections are therefore longer,
relative to the final three, than some readers might expect. This fact is not meant
to imply anything about the relative importance of the issues, but is an attempt
to redress a relative lack of coverage in certain circles.

Much of the material presented here — especially from §4, §5, and §6 — is
largely my review of standard material that can be found in many places. I have
therefore chosen not to provide extensive bibliographic information. Indeed, I have
kept bibliographic references to a minimum. This article is thus not intended to be
a compendium of work in the field, much less an extensive annotated bibliography.
The reader is encouraged to seek additional resources to fill out the brief accounts
given here. Such resources are numerous.

The final section is a brief mathematical appendix, reviewing essential defini-
tions and results, mostly from the theory of Hilbert spaces and groups. It may
serve one of two purposes, depending on the reader: a brief reminder of concepts
learned elsewhere; or a prompt to learn the concepts elsewhere. It is unlikely
that a reader who is completely unfamiliar with these concepts will absorb them
just from what is said here. Reference is made to the relevant subsections of this
appendix at the appropriate places in the text.

c
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While at some points I have made some effort at rigor, for the most part, the
discussion here is only partly rigorous, with the occasional attempt made to point
towards what further would be required for complete rigor. The reader is, again,
encouraged to consult the literature for mathematical details, and in any case is
encouraged to bear in mind that much of the discussion here is not intended to be
entirely mathematically rigorous, while, I hope, also not being misleading.

1 THE THEORY

This section is an introduction to the formalism of quantum theory. After a brief
justification of this approach (§1.1), I will introduce the major elements of the
formalism (§1.2), followed by a simple, but important, example (§1.3). I will then
introduce the commonly used ‘Dirac’ notation (§1.4), and conclude by considering
the role of transformations (groups) in the theory (§1.5), including dynamical
transformations (equations of motion) and finally (§1.6) a brief preview of the
philosophical issues to come. More than subsequent sections, this section will
rely heavily on the material from the mathematical appendix (§7), with references
where appropriate.

1.1 The Thought Behind Starting with Formalism

Why begin an account of a physical theory with its formalism? Why not begin,
instead, with its basic physical insights, or fundamental physical principles? One
problem with such an approach here is that, in the case of quantum theory, there
is not much significant agreement about what the basic physical insights, or fun-
damental physical principles, are. Some argue that the collapse postulate (to be
discussed later) is at the heart of the theory. Others argue that it must be excised
from the theory. Some argue that the theory is fundamentally indeterministic,
while others argue that we can make sense of it only in terms of an underlying
determinism. Some argue that the familiar notion of a ‘particle’ with a definite
location is a casualty of the theory, while others argue that the theory makes sense
only if one takes such a notion as fundamental.

Now, advocates of these different views tend also, it is true, to advocate different
formulations of the theory, but they will not suggest that formulations other than
their preferred one are wrong, only that they, perhaps, emphasize the wrong points.
(Indeed, there is no disputing that the standard formalism — the one presented
here — is empirically successful; advocates of different views will ultimately have
to account for that success in their own terms.) Hence, while the choice of a single
formalism at the start of our discussion might slant our point of view somewhat, it
will, unlike the choice of basic physical insights or fundamental physical principles,
not prejudge the central issues.
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1.2 The Standard Formalism

I begin with a very brief sketch of a common understanding of the formalism,
which I shall flesh out and generalize subsequently. (The reader is not expected
to have a deep understanding of any aspect of the formalism merely as a result of
reading this subsection.)

1.2.1 Hilbert Space

The formalism of quantum mechanics is normally understood in terms of the the-
ory of Hilbert spaces (§7.1). A Hilbert space is a vector space (§7.1.1) with an inner
product (§7.1.3) that is also complete with respect to the norm (§7.1.4) defined
by this inner product. A standard example is the space, �2, of (modulus)-square-
summable sequences of complex numbers. In this space, the inner product of
two vectors, (x1, x2, . . .) and (y1, y2, . . .) is

∑∞
n=1 x∗

nyn. Another standard exam-
ple is the space, L2(RN ), of (modulus)-square-integrable, Lebesque-measurable,
complex-valued functions on R

N , where we identify two functions (i.e., they rep-
resent the same vector) if (and only if) they differ only on a set of Lebesque
measure (§7.5.4) zero. Here the inner product of two vectors, f(x) and g(x),
is
∫

f∗(x)g(x)dx (where f(x) and g(x) are arbitrary representatives from their
respective equivalence classes).1

1.2.2 Observables

The ‘observables’ of the theory — the physical quantities, or properties, whose
value or presence one can, in principle at least, measure, or ‘observe’ — are nor-
mally taken to be represented by the self-adjoint operators (§7.2.1, §7.2.3) on the
Hilbert space. (The nature of the representation — that is, which operators repre-
sent which observables — can depend on the physical situation being described.)
Via the spectral theorem (discussed below), one can identify each observable with
a spectral family of projection operators, the observable being given, essentially,
by a map from Borel sets (§7.5.5) of possible values of the observable to elements
in the spectral family. This subsection reviews these ideas briefly.

1.2.2.1 Positive Operator Valued Measures It is often useful to adopt a
broader notion of an observable, as a ‘positive-operator-valued measure’ (POVM).
In this approach, we begin with a set of ‘possible values’ for the observable, repre-
sented in the most general case as a locally compact topological space, S (§7.5.1).
In most cases of interest to us, S is a subset of the real numbers, or things can be
reworked so that it is.

1For those who have some familiarity with quantum theory: the space �2 is the space used in
Heisenberg’s ‘matrix mechanics’, while the space L2(RN ) is the space used in Schrödinger’s ‘wave
mechanics’. As Hilbert spaces, �2 and L2(RN ) are isomorphic, meaning that the two theories
are essentially the same.
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A map, E : B(S)→ B(H), from the Borel subsets of S to the bounded operators
(§7.2.2) on some Hilbert space, H, is a POVM just in case for any disjoint sequence
of such subsets, ∆n ⊆ S,

E(∆n) is a positive operator for all n(1)

E(S) = I, the identity on H(2)

E (∪n∆n) =
∑
n

E(∆n).(3)

In (1), an operator, E, is positive if 〈v,Ev〉 ≥ 0 for all v ∈ H. The positive opera-
tors on H are denoted by B(H)+. The convergence intended in (3) is in the weak
operator topology on H (§7.5.3). If, in addition, E(∆n ∩ ∆m) = E(∆n)E(∆m)
whenever n 	= m then: everything in the image of E is a projection operator;
E is then called a ‘projection-valued measure’ (PVM); and the family {E(∆n)}
is a ‘spectral family’. In this case, the E(∆n) are mutually orthogonal, mean-
ing that E(∆m)E(∆n) = 0 (the zero operator) whenever m 	= n, and we write
E(∆m)⊥E(∆n).

We can recover a self-adjoint operator from any PVM, E. If the cardinality of
S ⊂ R is finite (S = {s1, . . . , sN}), then the recovery is straightforward:2

F =
N∑
n=1

snE(sn).(4)

That is, the operator F is the weighted sum of the (mutually orthogonal) projec-
tions E(sn), the weights being the ‘possible values’ of the observable, i.e., elements
of S. If S is countably infinite, then the situation is much the same, though one
must worry about convergence. If S is uncountably infinite, then the sum becomes
an integral, and matters become considerably more complicated. In any case, the
resulting operator, F , is self-adjoint.

1.2.2.2 Spectral Theorem The spectral theorem states the converse of the
construction given by (4). Again, the finite case is simplest. There, every self-
adjoint operator, F , can be written as

F =
∑
n

snPn,(5)

where the sn are real numbers and the Pn are mutually orthogonal projections. A
spectral family therefore fixes a self-adjoint operator, and a self-adjoint operator
fixes a spectral family. Hence the formalism of PVMs makes quick contact with
a formalism (in terms of self-adjoint operators) that is perhaps more familiar to

2In (4) E(sn) should strictly be written E({sn}), because E() acts on Borel sets, but the no-
tation is clumsy, and the meaning of E(sn) should be clear enough. I follow the same convention
elsewhere.
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some readers, and certainly widely used in physics; thus that latter formalism can
be seen as a special case of the more general formalism in terms of POVMs. The
case of infinite-dimensional spaces is conceptually analogous, but mathematically
trickier.

Notice that every vector inside the subspace corresponding to a projection Pn
(henceforth, ranPn, the ‘range’ of Pn) is an eigenvector (§7.2.1) of F ; the ranPn
are therefore often called ‘eigenspaces’ of F . When the eigenspaces of F are all
one-dimensional, then F is called ‘maximal’. The import of being maximal will
become clear below.

Finally, notice that the spectral projections of F partially define an orthogonal,
indeed orthonormal (§7.1.4), basis for the space. Within each Pn, choose a set of
mutually orthogonal and normalized vectors, {en,m}dim(Pn)

m=1 . Do the same for the
kernel of F (the subspace that F maps to 0, denoted kerF ). The result (i.e., the
union of all these sets) is an orthonormal basis (which, if F is maximal, is in fact
fixed up to constant multipliers of the elements of the basis). Even when this basis
is not uniquely fixed by F (because it is non-maximal), I will refer to such a basis
as ‘a basis determined by F ’.

1.2.3 States

1.2.3.1 Probabilities The formalism in terms of POVMs (as well as the spe-
cial case of PVMs) describes a probabilistic theory, inasmuch as it provides prob-
abilities for (Borel sets of) values of observables, or (equivalently and sometimes
more conveniently) expectation values for observables. I will take probabilities as
fundamental; expectation values can then be generated from a probability measure
over the possible values, fn, of F in the usual way:

Exp(F ) = f1 Pr(f1) + f2 Pr(f2) + · · · .(6)

As we noticed above, rather than considering directly the possible values of an
observable, we can also consider the corresponding (spectral) projections, which
can be taken, in a given physical situation, to represent those values.

A probability measure, p, defined on the projection operators should, minimally,
be such that p(P1 + P2) = p(P1) + p(P2) whenever P1⊥P2. (Later I will motivate
this condition. The basic idea is that it corresponds to the usual ‘additivity axiom’
of Kolmogorovian probability theory — see §7.5.6.) More specifically, and for
now considering just the case of PVMs, we require a probability measure on the
projections on a Hilbert space to be a map, p, from projections to the interval
[0, 1], where p is countably additive on sets of mutually orthogonal projections.

Precisely what one means by countable additivity for the operators that are
in the image of a POVM (rather than a PVM) is a slightly subtle matter. In
particular, in general the operators in the image of a POVM — normally they are
called ‘effects’ — do not correspond to subspaces, and the notion of orthogonality
does not apply. However, there is a natural generalization of the concept. Notice
that for projections, {Pi}, in the image of a PVM, the condition that I −∑i Pi
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be a projection (or maybe the zero operator) is equivalent to the condition that
the {Pi} be mutually orthogonal.3 The analogous condition in the case of positive
operators is that, for effects {Ei} in the image of a POVM, if I−∑i Ei is positive
(or 0), then Pr(

∑
i Ei) =

∑
i Pr(Ei).

1.2.3.2 Statevectors and Wavefunctions

1.2.3.2.a Statevectors Normalized vectors determine probability measures
over the projections, via:

probability of P as given by v := Prv(P ) := 〈v, Pv〉.(7)

(One often sees the expression |〈ψ, v〉|2, where ψ is a normalized vector from ranP .
The two expressions are equivalent.) Notice that the probabilities generated by
the vectors v and eiφv (where φ is a real number) are the same. One says that
‘overall phases do not affect probabilities’. The expectation value of a self-adjoint
operator, F , given by the state v is

expectation of P as given by v := Expv(F ) := 〈v, Fv〉.(8)

(Note that the expectation value of a projection is also its probability.)
Note that if v ∈ ranP then Prv(P ) = 1. More generally, if Pn is an eigenspace

of F corresponding to the eigenvalue fn and v ∈ ranPn, then Prv(Pn) = 1, i.e. the
probability (in the state v) that F has the value fn is 1. Such a state, v, is called
an ‘eigenstate’ of F — it is a normalized vector inside the eigenspace, ranPn, of F .
Notice that, in this case, writing F in terms of its spectral decomposition (recall
4) makes the determination of probabilities and expectation values trivial. Indeed,
even when dealing with general states, it is often convenient to write F in terms
of its spectral decomposition, and the state in terms of a basis determined by F .

1.2.3.2.b Superposition It is a standard assumption of quantum theory
that every vector in the Hilbert space for a system is a possible state for the system.
This assumption is often expressed as the ‘superposition principle’, which asserts
that (normalized) linear combinations of statevectors are again statevectors.

Given an observable, F , the superposition principle gives rise to (possible) states
that are not eigenstates of F . Suppose, for simplicitly, that F is maximal, with
eigenspaces and eigenvalues {Pn} and {fn}, and consider an orthonormal basis,
{vn}, determined by F (which, because F is maximal, just amounts to choosing
one normalized vector from each ran Pn). Now form the statevector

v =
∑
n

kn|vn〉(9)

3Sketch of a proof: Write (I−P
i Pi)(I−

P
i Pi); expand; argue that if the {Pi} are mutually

orthogonal, then the result is I −P
i Pi; argue (using the fact that projections are positive —

this part is less trivial) that if the result is I −P
i Pi, then the {Pi} are mutually orthogonal;

finally, argue that I−P
i Pi is self-adjoint.
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where
∑
n |kn|2 = 1 and with at least two non-zero coefficients kn. In this case,

we say that v is a superposition of the vn. (One sometimes hears the word ‘su-
perposition’ used in a way that suggests that some vectors are ‘in superpositions’
and others are not. Relative to a given basis, this distinction makes sense, but
otherwise it does not. Every vector is a superposition for some choices of basis.)
Notice that v is not an eigenstate of F , and assigns non-trivial probabilities to
more than one possible value of F . Of course, the superposition principle implies
that v is nonetheless a possible state of a system.

1.2.3.2.c Wavefunctions Wavefunctions are just a specific way of repre-
senting statevectors. It is often convenient to take the Hilbert space for a quantum
system to be the elements of L2(R3), in which case statevectors are (equivalence
classes of) complex-valued functions on R

3. The equation of motion that they
standardly satisfy is a type of wave equation (e.g., the Schrödinger equation —
see §1.5.2.3.a), and for this reason — as well as the fact that the equation was
historically derived with wave phenomena in mind — these functions are called
‘wavefunctions’. Linear combinations of waves may be conceived in terms of ‘su-
perposing’ the waves; hence the term ‘superposition’.

1.2.3.3 Gleason’s Theorem One can generate probability measures using
non-negative trace-1 operators (‘density operators’). The functional Tr[·] is the
‘trace functional’, a map from the bounded operators on a Hilbert space to R

defined by:

Tr[F ] =
∑
k

〈ek, (F ∗F )1/2ek〉(10)

where {ek} is an orthonormal basis for H. (Note that F ∗F is self-adjoint and
positive. It is in fact true that every positive operator, A, has a positive self-
adjoint square root, B, defined by B2 = A.) And if F itself is positive, then
F =

√
F 2 and

Tr[F ] =
∑
k

〈ek, Fek〉.(11)

The trace functional is provably independent of the choice of orthonormal basis,
{ei}. Moreover, a very useful property of the trace functional is that it is invariant
under cyclic permutations of its arguments; for example,

Tr[ABC] = Tr[BCA] = Tr[CAB](12)

for any A,B,C.
Let W be any positive operator on a Hilbert space, H, with Tr[W ] = 1. Let E()

be any POVM from some ‘spectrum’, S, of possible values to positive operators.
Then Tr[WE(·)] is a countably additive probability measure on (the σ-algebra of
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Borel sets of) possible values of the observable represented by the POVM E as
follows:

Pr(∆) = Tr[WE(∆)].(13)

Countable additivity follows from (3) and the linearity of the trace functional.
Normalization follows from (2) and the fact that W has unit trace.

When E(·) is a PVM, (13) defines a countably additive normalized measure on
the projections on H. Hence any density operator generates such a measure. The
converse is (remarkably) true as well: every probability (i.e., countably additive,
normalized) measure on the projections on a Hilbert space is generated as in (13)
by some density operator. This theorem is due to Gleason ([1957]), and says, more
precisely:

Theorem (Gleason): Let H be a Hilbert space of dimension greater than 2. Then every count-
ably additive normalized measure, Pr(·), on the projections on (equivalently, closed subspaces
of) H is generated by some trace-1 positive operator, W , on H; for P a projection,

Pr(P ) = Tr[WP ].(14)

The proof is non-trivial. Gleason’s theorem is generalizable to the case of general
POVMs. That is, the countably additive probability measures over effects are also
given by the density operators. (Indeed, for POVMs, there is no restriction to the
case dim(H) > 2. Again, the proofs are non-trivial. See Busch ([2003]).)

In this common understanding of quantum theory, then, the kinematics of a
quantum system is, at its core, given by the POVMs on a Hilbert space together
with a state, a density operator. In many cases of interest, one deals with PVMs,
hence self-adjoint operators, rather than with POVMs.

Note, finally, that for any statevector, v, we can always represent v in terms of
the density-operator formalism, by choosing as the state the projection, Pv, onto
the subspace spanned by v. In this case, for any projection Q, Tr[PvQ] = 〈v,Qv〉.
(To prove: take the trace in an orthonormal basis containing v.)

1.2.3.4 Matrix Representation of States A vector — and in particular a
statevector, ψ — can, of course, be written in terms of any orthonormal basis,
{en}, and in this case, the coefficients cn in the expansion ψ =

∑
n cnen may

be considered as the ‘coordinates of ψ in the en-basis’. It is, in fact, sometimes
convenient (see, e.g., §1.3.3.2) to write the state as a column vector with these
coordinates.

A similar construction is available for density operators. Again in the (orthonor-
mal) basis {en}, consider a matrix whose elements are 〈en, Fem〉, for any operator,
F , on a Hilbert space, H. This map from operators onH to N×N matrices (where
N could be infinite) is in fact an isomorphism from the (algebra of) operators on
H to the (algebra of) N ×N matrices

In particular, let W be a density operator on H, and let Wnm = 〈en, Fem〉.
Now let F be an observable whose eigenvectors are the en. Notice, in this case,
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that 〈en, Fem〉 = δnm. One says that F is ‘diagonal’ in the basis {en} (because
all of the entries off of the diagonal are 0). If W is also diagonal in {en}, then the
probabilities assigned by W to F behave completely classically, and in particular
the classical ‘sum rule’ holds:

PrW (fn or fm) = PrW (fn) + PrW (fm)(15)

(where PrW is the probability assigned by W via 14 and fn is the eigenvalue of F
corresponding to the eigenvector en). However, if W is not diagonal in {en}, then
in general (15) fails. In this case, one speaks of ‘interference’ between the en (in
the state W ).

1.2.3.5 Expectation Values It follows immediately that the expectation value
of the observable (represented by the self-adjoint operator) F in the state (repre-
sented by the density operator) W is Tr[WF ]. To see why, write F in terms of
its spectral resolution. The point is most easily seen when F has only a discrete
spectrum, as in (5). Then by the linearity of the trace,

Tr[WF ] =
∑
n

Tr[WPn]sn.(16)

(When F has a continuous spectrum, one must work with integrals whose def-
inition must be treated carefully.) Notice that the expression Tr[WPn] is the
probability (in state W ) that F takes the value sn. Hence (16) is a weighted sum
of the possible (spectral) values, sn, for F , the weights given by the probabilities,
Tr[WPn], associated to those values in the state W . Note that the traces in (16)
will in general be easiest to calculate in a basis determined by F .

1.2.3.6 Quantum Probability Theory Classical probability theory stan-
dardly concerns measures over sigma-algebras of events (§7.5.5, §7.5.6). These
sigma-algebras are defined in terms of the usual set-theoretic operations of com-
plement and union. In quantum theory, we are dealing with a different structure.
However it is sufficiently analogous to the structure considered in the classical
setting that, mathematically at least, one can often easily carry over consid-
erations from classical probability theory. Our ‘sample space’ is the set of all
one-dimensional projections. Set-theoretic complement (E′) becomes ‘orthogonal
complement’ (E⊥); set-theoretic union (E ∪ F ) becomes ‘span’ (the span of the
subspaces E and F , written E ∨ F ); set-theoretic intersection (E ∩ F ) remains
intersection (now written E ∧ F ); and set-theoretic ‘inclusion’ (E ⊆ F ) becomes
subspace inclusion (often written E ≤ F ). Later, I will consider this structure in
more detail — it is the ‘lattice’, L, of subspaces of a Hilbert space (§7.4). For
now, I simply note that it has the correct properties: (i) H ∈ L, (ii) E ∈ L implies
E⊥ ∈ L; and (iii) for any countable sequence, {Ek} ∈ L, ∨kEk ∈ L. Analogous
to classical probability theory, quantum probability theory is then the theory of
normalized measures on such a structure. (Of course, if we are thinking in terms
of POVMs rather than PVMs, then this story cannot be told, at least not in
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its present form. Instead, one considers the algebra of effects, and probability
measures over it. However, I will not pursue the details here.)

1.2.3.7 Lüder’s Rule What about conditional probabilities? Although its
interpretation can be highly contentious, and its application somewhat tricky,
there is a standard expression for a conditional probability in quantum theory,
called ‘Lüder’s Rule’. Indeed, one can derive it from elementary considerations.

Recall from basic probability theory that the conditional probability, Pr(A|B),
of one event, A, given another, B, is defined by

Pr(A|B) :=
Pr(A ∩B)

Pr(B)
.(17)

The thought behind this definition is that the probability of A (and B) given B is
the probability that A and B occur jointly, ‘renormalized’ under the assumption
that B occurred; i.e., it is the probabilty of A ‘as if’ B had probability 1. Indeed,
(17) is the only probability measure that satisfies the condition that if A ⊆ B then
Pr(A|B) = Pr(A)/Pr(B). In other words, if A is contained in B, then Pr(A|B)
is just a renormalization of the original probability measure to one that assigns
probability 1 to B.

It turns out that this condition is already sufficient to determine the form of the
conditional probability measure over the (lattice of) closed subspaces of (or projec-
tions on) a Hilbert space (Bub [1977]). In other words, let PrW be the probability
measure associated with the density operator, W , on H. Let P be a subspace such
that PrW (P ) 	= 0 (where, of course, PrW (P ) = Tr[WP ]). Then there is a unique
probability measure, PrW |P (the ‘probability in state W conditional on P ’), over
the closed subspaces of H such that

PrW |P (Q) := PrW (Q|P ) =
PrW (Q)
PrW (P )

(18)

for any Q ≤ P . That measure is given by

PrW (Q|P ) =
Tr[PWPQ]

Tr[WP ]
.(19)

(19) is known as ‘Lüder’s Rule’. Note that for a statevector, |v〉, the same effect
is achieved by projecting |v〉 onto P , normalizing the result, and using that new
state (P |v〉/||Pv||) to calculate the probability of Q. Hence (using eq. 7)

Pr|v〉(Q|P ) = 〈Pv|QPv〉/||Pv||2.(20)

1.2.3.8 Mixed Versus Pure States Density operators that correspond to
one-dimensional projections (equivalently, statevectors) are ‘pure’ states. These
states assign probability 1 to that one-dimensional projection. Mixed states (i.e.,
states that are not pure) do not assign probabilty 1 to any one-dimensional pro-
jection. Moreover, mixed states are called ‘mixed’ because they can always be
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written as a linear combination of pure states. Indeed, by the spectral theorem,
any mixed state, W , can be written as W =

∑
n wnPn (and because W is a den-

sity operator, 0 ≤ wn ≤ 1 and
∑
n wn = 1). If one or more of the Pn is not

one-dimensional, we can always write it as a sum of mutually orthogonal one-
dimensional projections — so we may assume, without loss of generality, that all
of the Pn are one-dimensional.

The coefficients, or ‘weights’, wn, must add to one (because Tr[W ] = 1), and in
fact wn is the probability assigned by W to Pn. Hence one can apparently think
of W as representing, literally, a ‘mixture’ of systems in the pure states Pn, in the
proportions wn, so that wn is the probability that a system chosen at random from
the mixture will be found in the (pure) state Pn. We will explore (and qualify)
this interpretation of mixed states below.

The converse is also true: any convex combination of pure states is again a
state, in general mixed. Indeed, consider the operator

W =
∑
n

wnPn(21)

where the Pn are here one-dimensional but not necessarily mutually orthogonal
(yet still,

∑
n wn = 1).4 This W has unit trace (because the trace functional

is linear), and therefore it is a density operator. Note, however, that (21) is in
general not its spectral decomposition.

1.2.3.9 The Eigenstate-Eigenvalue Link According to a standard interpre-
tation of quantum states, a system in the state W has a value for the observable
F if and only if W assigns probability 1 to one of the possible values of F (and
0 to the others — in other words, ‘trivial probabilities’).5 Notice, in particular,
that this interpretation of states differs from the usual interpretation of classical
probabilistic states. In the classical case, the probabilistic state is a measure over
possible pure states, and one normally presumes that the system really is in one
of those pure states.

This rule for assigning definite values has come to be called, following Fine
([1973]), the ‘eigenstate-eigenvalue link’. Later (§5) we will consider in some detail
the apparent consequences of this rule.

1.2.4 Incompatibility

An immediate consequence of this formalism is the fact that there are ‘incom-
patible’ physical quantities, at least in the minimal sense that if a state assigns

4More generally, if some of the Pn are not one-dimensional, then we require thatP
n wn dim Pn = 1, because in general, for a projection P , Tr[P ] = dim P .
5For unbounded observables, such as position and momentum, one is naturally motivated

to seek some other account. One possibility is to deny that they ever have definite values,
but consider instead coarse-grained values, asserting, for example, that if the state W assigns
probability 1 to some region, ∆, then the system is definitely confined to ∆, where this latter
assertion is not meant to imply that there is some point in ∆ that is the location of the system.
There are, however, other approaches. See, for example, Halvorson ([2001]).
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probability 1 to some physical quantity (some projection, for example), then it
necessarily assigns non-trivial probabilities (i.e. neither 0 nor 1) to others (and
then, by the eigenstate-eigenvalue link, these other observables do not have values,
in that state — recall §1.2.3.9). This fact follows directly from Gleason’s theo-
rem. (Note, however, that one can show in other, simpler, ways that there are no
two-valued probability measures over the projections on a Hilbert space.)

Incompatibility is closely related to non-commutativity, and indeed the two
terms are sometimes used interchangeably. Consider two projection operators, Q
and Q′. To keep things simple, we will suppose throughout that Q and Q′ are
one-dimensional. Then if Q and Q′ do not commute, i.e., [Q,Q′] 	= 0, there is no
state that assigns probability 1 to Q and either 0 or 1 to Q′. To prove this claim,
we will first show (next paragraph) that the only state assigning probability 1 to
a one-dimensional projection, Q, is the state Q itself. (Notice that in the previous
sentence, the first mention of Q is as the representative of some physical quantity,
and the second is as a state.) We will then show (subsequent paragraph) that Q
assigns non-trivial probabilities to any non-commuting Q′.

Let W be a state that assigns probability 1 to (one-dimensional) Q. Writing W
in terms of its spectral decomposition, and taking the trace in a basis determined
by W , we immediately find that

Tr[WQ] =
∑
n

wn〈en, Qen〉 = 1(22)

where the weights wn (from the spectral decomposition of W ) sum to 1. Hence
for some n, Qen = en, i.e., W is in fact pure, and equal to Q. Therefore, the only
state assigning probability 1 to a one-dimensional projection, Q, is Q itself.6

Now suppose that (one-dimensional) Q′ 	= Q and Q′ 	⊥Q, i.e., Q and Q′ do not
commute (for a discussion, see below). Then, by the same reasoning as above,
replacing Q with Q′ in (22), if Tr[WQ′] = 1 then W must be pure and lie inside
the subspace associated with Q′; i.e., W = Q′. But it cannot, because we assumed
that Q 	= Q′. On the other hand, if we want Tr[WQ′] = 0, then kerW ⊆ ranQ′.
(The reasoning is essentially the same as above.) But again it cannot, because
then Q′⊥Q, given our earlier conclusion that W is pure and lies in the subspace
associated with Q, and we already assumed that Q′ 	⊥Q.

This fact is also true in a more general form. Given two self-adjoint operators,
F and G, if F and G do not share any eigenvectors then any state that assigns
probabiltiy 1 to some value for F will necessarily assign non-trivial probabilities
(neither 0 nor 1) to more than one of the possible values of G. I leave the proof
(using essentially the same reasoning as above) to the reader.

Above I claimed that (one-dimensional) Q and Q′ do not commute if Q′ 	= Q
and Q′ 	⊥Q. In fact, the following is true. For any subspaces, A and B, and the

6This claim is also true in a more general form. Let the state W assign probability 1 to the
projection Q (of any dimension). Then (ran Q)⊥ ⊆ ker(W ), with equality if Q is the smallest
subspace to which W assigns probability 1.
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corresponding projections PA and PB, [PA, PB ] = 0 if and only if

A = (A ∧B) ∨ (A ∧B⊥) and B = (B ∧A) ∨ (B ∧A⊥).(23)

(Here we are not restricting to one-dimensional subspaces. Note, however, that
(23) is implied by the disjunction ‘A = B or A⊥B’, and for one-dimensional
subspaces, they are equivalent.) Here is the idea of the proof. Note that A ∧ B
and A ∧ B⊥ are orthogonal. Hence, if (23) holds, we may write PA = PZ + PA′
for some Z⊥A′. (Indeed, of course, Z = A ∧ B and A′ = A ∧ B⊥.) Similarly,
PB = PZ + PB′ , with B′⊥Z. Moreover, A′⊥B′. In other words, the conditions
(23) imply that A and B ‘are orthogonal apart from some shared part (Z)’. Then
[PA, PB ] = [PZ+PA′ , PZ+PB′ ] = [PZ , PZ ]+[PZ , PB′ ]+[PA′ , PZ ]+[PA′ , PB′ ] = 0.

Going the other way, we will just sketch the idea. If PA and PB commute, then
for any vector, v, PAPBv = PBPAv. First choose v ∈ A, so that PAPBv = PBv.
In general, if PAw = w (here w = PBv), then either w ∈ A or w = 0. Hence
either (i) PBv = 0, or (ii) PBv ∈ A. If (i) is true for all v ∈ A, then B⊥A and
(23) clearly holds. If (ii) holds for all v ∈ A then B ≤ A and again (23) clearly
holds. Using the linearity of the operators involved, one can show that if (ii) holds
for just some v ∈ A, then the PBv must form a subspace of A, and clearly this
subspace is common to A and B; indeed it is A∧B. Similarly, one can show that
choosing v from the subspace orthogonal to A∧B gives rise to (i), so that indeed
A = (A ∧ B) ∨ (A ∧ B⊥). Repeating the argument for v ∈ B, we find that (23)
holds.

The fact of incompatibility marks a significant departure from classical physics,
where the structure of the space of states and observables allows for states that
assign values to all observables with probability 1 (i.e., there are two-valued prob-
ability measures over the space of all ‘properties’ of the system). The probabilities
of quantum theory appear, therefore, to be of a fundamentally different character
from the probabilities of classical theory, which arise always because the state of
the system is not maximally specific.7

1.2.5 Canonical Commutation Relations

An important and classic example of incompatibility involves the position and
momentum observables. In fact, they obey the ‘canonical commutation relations’
(CCRs):

[Pi, Qj ] = −iδij(24)

where i and j can be x, y, or z. (Henceforth, we will restrict our attention to one
dimension, writing [P,Q] = −i. The generalization to three dimensions is straight-
forward.) Note that the constant on the right-hand side implicitly multiplies the
identity operator.

7Here we are considering just cases where classical physics delivers genuine probability mea-
sures, and we ignore cases where classical physics is simply indeterminate. See Earman, Ch. 15,
this volume.
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Any two observables that obey these commutation relations are typically called
‘canonically conjugate’. These relations are central in quantum theory, and we will
discuss them in detail in §4. For now, we simply notice them as a central example
of incompatibility.

1.2.6 Compound Systems

1.2.6.1 Entangled States Compound systems are represented by tensor-
product Hilbert spaces (§7.1.9), so that, for example, a system composed of two
particles has a state that is a density operator on the tensor-product of the Hilbert
spaces for the two particles individually. There is a fundamental and physically
crucial distinction between two kinds of vector in H = H1 ⊗ H2. A vector, v, in
H is called ‘factorizable’ if it can be written as x⊗ y for some x ∈ H1 and y ∈ H2.
Otherwise, v is called ‘unfactorizable’, or ‘entangled’. An analogous definition
applies to the operators (hence, the density operator states) on H.

The existence of entangled states (whether represented as density operators or
vectors) turns out to have numerous interesting consequences. It is connected
with ‘quantum non-locality’, as well as the possibility of certain computational
and information-theoretic (for example, cryptographic) feats that cannot be done
with classical systems.8 The existence of these states follows from the demand that
the pure (vector) states for the compound system be closed under taking linear
combinations. In other words, it follows from applying the superposition principle
to compound systems as well as to simple systems.

1.2.6.2 Biorthogonal Decomposition An important result about vectors in
tensor-product spaces is the ‘biorthogonal decomposition theorem’ (Schrödinger
[1935b]), which states that, given a vector, v, in a Hilbert space, H, and a factor-
ization of H as H = H1⊗H2, there exist orthonormal bases {en} of H1 and {fm}
of H2 such that

v =
∑
n

cn(en ⊗ fn).(25)

If the |cn| 	= |c′n| for all n 	= n′, then the bases are unique (up to a phase eiθ on
each element of the basis). Note that, in general, for arbitrary bases {xn} and
{ym} of H1 and H2, v is expressed in general in terms of a double sum:

v =
∑
n,m

cnm(xn ⊗ ym)(26)

and compare this expression with (25).

1.2.6.3 Reduced States
8See Bub, Ch. 6, this volume.
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1.2.6.3.a Partial Trace and the Reduced Density Operator Suppose
we are given the state of a compound system, and wish to derive from it a state for
one of the components. If the compound state is factorizable, then the procedure
is straightforward. (The state W = W1 ⊗W2 fixes the component states to be
W1 and W2 respectively.) But what about when it is entangled? Here we face a
problem. If the state is entangled, then there is no obvious sense in which it can
be ‘divided’ into a ‘part’ corresponding to one system, and a ‘part’ corresponding
to the other.

The usual solution to this problem is to take the state of the component systems
to be given by a partial trace. For any tensor-product Hilbert space, H = H1⊗H2,
the ‘partial trace over H1’ is a map, tr(1)[·], from the operators on H to operators
on H2. It is the unique such map satisfying the condition that, for any density
operator W on H and any observable F2 on H2, the operator tr(1)[W ] generates
the same expectation value for F2 as W does for I1⊗F2 (Jauch [1968, §11-8]). The
idea is that tr(1)[·] ‘traces out’ system 1, extracting just that part of the compound
state that applies to system 2. Unless W is a ‘product state’ (i.e., W = W1⊗W2),
the reduced states derived from W are necessarily mixed states.

1.2.6.3.b Proper Versus Improper Mixtures In §1.2.3.8 I introduced
the idea that a mixed state can be understood as a literal mixture of systems each
in some pure state. Certainly when we are describing the state of a system chosen
at random from an ensemble that was produced by literally ‘mixing’ systems in
various pure states, it is quite proper to interpret the mixed state in this way.
However, we now see that mixed states can arise in another way, namely, as the
state of one component of a compound system that is in a non-factorizable com-
pound state. In these cases, it is far from clear that the state (of the component)
should be understood as above. Indeed, there need not even be an ensemble of
which this component is a part. Hence mixtures that arise from taking the partial
trace of the state of a compound system are normally called ‘improper mixtures’,
while those that arise from a mixing of individual systems in pure states are nor-
mally called ‘proper mixtures’ (a terminology introduced by dEspagnat §[1971]).
Whether the probabilities generated by improper mixtures can reasonably be un-
derstood as ‘ignorance about the true pure state’ (as they can for proper mixtures)
is a matter for interpretative investigation.

1.2.6.4 Correlations Compound systems that are in a non-factorizable state
will exhibit correlations between the measured values of observables on the two (or
more) components. Consider, for example, the statevector v = c1f1⊗g1+c2f2⊗g2

(where c1 and c2 are non-zero coefficients), and suppose that the fn and the gn
are eigenvectors of the observables F and G respectively. In this state, there is a
correlation between the value of F on system 1 and G on system 2. Indeed, let Pfn

and Pgn
be the projections onto the subspaces spanned by fn and gn respectively,

and let Pv be the projection onto the subspace spanned by v. Then, applying
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Lüder’s Rule (19), we find

PrPv
(I1 ⊗ Pgn′ |Pfn

⊗ I2) =
Tr[(Pfn

⊗ I2)Pv(Pfn
⊗ I2)(I1 ⊗ Pgn′ )]

Tr[Pv(I1 ⊗ Pfn
)]

(27)

where Ik is the identity on Hk. Taking the trace in a basis that includes the
fn ⊗ gn′ reveals that this conditional probability is 0 when n 	= n′ and 1 when
n = n′. In other words, the values of F (on system 1) and G (on system 2) are
perfectly correlated.9 Consideration of other observables would reveal additional
correlations (not always perfect correlations). We will see an example later.

1.2.7 Structure of the Space of States

We noted above (§1.2.3.8) that every convex combination of pure states is again a
state. Of course, a convex combination of mixed states is (by the spectral theorem)
also a convex combination of pure states, so that in fact the set of states forms a
convex set (§7.1.10), a point that I shall discuss in detail later (§2.2.1). Here we
note the fundamental point that the convex set of states in quantum theory is not
a simplex.

This point (§7.1.10) marks a departure from classical physics, where every mixed
state is uniquely decomposable in terms of pure states. One thus naturally takes
the mixed state as a measure of ignorance over the pure states that appear in its
decomposition. No correspondingly straightforward interpretation of mixed states
in quantum theory is available, in part because the mixed states are multiply
decomposable into a convex combination of pure states.

1.3 Simple Example: A Spin-1
2

Particle

An understanding of the formalism, and the issues to which it gives rise, is much
aided by some experience with actual calculations, however simple. In that spirit,
let us consider the example of a spin- 1

2 particle. The example is well-worn, but
deservedly so. While there are some important foundational and philosophical
issues concerning quantum theory that cannot be illustrated or investigated in the
context of spin- 1

2 particles, many such issues can be investigated in this context.

1.3.1 Introduction of Spin into Quantum Theory

Spin was introduced in 1924 in the course of an attempt to understand the spec-
trum of electromagnetic radiation emitted by certain metals. In the course of that
explanation, electrons were supposed to have some “two-valued quantum degree

9Authors will sometimes say that two observables are ‘perfectly anti-correlated’ if the two
observables have the same spectrum and the value of one is always minus the value of the other.
They will also occasionally reserve the term ‘perfect correlation’ for a similar case, where the
value of one is always equal to the value of the other. Our use of the term ‘perfect correlation’ —
according to which two observables are perfectly correlated in a state just in case the conditional
probabilities for values of one, given a value of the other, are always 0 or 1 — covers both cases.
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of freedom”.10 This degree of freedom was soon associated with a rotation of the
electron. Because the electron is a charged body, its rotation creates a magnetic
field — the electron acts as a magnet whose north and south poles lie on the
axis of rotation. This magnetic property was just what was needed to explain the
phenomena.

So far, the story sounds good. However, it was seen almost immediately that
the rotation cannot be literal. Nonetheless, the theory of ‘spin’ was developed
in the context of the new quantum theory; the name stuck, and we continue to
refer to this magnetic property of electrons (and as current theory tells us, other
particles) as ‘spin’.

1.3.2 Quantization of Spin

It turns out that spin is ‘quantized’, a fact already anticipated in Pauli’s character-
ization of the property as a ‘two-valued degree of freedom’. This fact is, classically,
unexpected. To see why, consider a standard method for measuring the spin of
a particle. (The method does not, in fact, work for electrons, but it illustrates
the point well enough, and does work for electrically neutral particles with spin.)
The relevant device is a ‘Stern-Gerlach’ device, a pair of magnets shaped and ar-
ranged to create an inhomogeneous magnetic field, that is, a magnetic field that
is stronger in one direction (say, the north) than in the other. (See figure 1.)

Imagine a simple bar magnet passing between the Stern-Gerlach magnets. If
the north pole points straight up so that it is close to the top magnet, then the top
magnet pushes the north pole (of the bar magnet) down more than the bottom
magnet pushes the south pole up, and the net result will be that the bar magnet is
deflected downward. If the bar magnet enters the Stern-Gerlach magnets with the
south pole facing up, then the result is the opposite: overall upward deflection. If,
on the other hand, the bar magnet enters the Stern-Gerlach magnets horizontally,
then it will pass straight through with no overall deflection in its path. Finally, if
the bar magnet passes through neither vertically nor horizontally, then the result
will be deflection, up or down, that is somewhere between the extreme cases. (The
trajectories of the magnet in the two extreme cases are illustrated in figure 1.)

(One’s physical intuition might be that in the intermediate cases, the axis of
rotation of the electron would snap into alignment with the magnetic field so
that the intermediate cases would quickly collapse into one of the extreme cases.
However, such is not the case, alas. Instead, the spinning electron would classically
be expected to act as a gyroscope, thereby maintaining its original inclination with
respect to the magnetic field.)

Now, imagine putting an ensemble of particles with ‘spin’ through the magnets.
Rather than the classically expected result (namely, a distribution of different
amounts of deflection, from ‘maximum down’ to ‘maximum up’), one finds only
two results: ‘maximum down’ and ‘maximum up’ — these results are illustrated
in figure 1.

10See Massimi ([2004, chs. 2,4]) for discussion.
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Figure 1. An experiment involving Stern-Gerlach magnets

This result holds no matter how the Stern-Gerlach magnets are oriented. That
is: notice that we could reorient the magnets so that the axis passing between them
is pointing in any direction in space. Passing an electron through the device, we
would, again, find that it goes either ‘up’ or ‘down’ (relative to this new direction
in space). Hence we can measure the spin of a particle in any direction, and we
refer to the observables thus measured as ‘spin-u’, where u refers to some specified
direction in space. These facts about spin make it clear, moreover, that classical
‘spin’ is at best a metaphor for whatever property particles with ‘spin’ have. (In
any case, in non-relativistic quantum theory, the electron is normally treated as a
point particle, so that its spin could not be coordinated with any spatial rotation.
As it is commonly said, spin has no ‘classical analogue’.)

1.3.3 Quantum Formalism for Spin

Let us see, now, how the observables for and states of a particle with spin are
represented in the formalism that I sketched above. I will consider just the degrees
of freedom related to spin, ignoring, for example, spatial degrees of freedom.

1.3.3.1 Hilbert Space and Observables The Hilbert space for a single spin-
1
2 particle is C

2, the space of complex column-vectors with 2 components (§7.3).
The ‘observables’ of the system correspond to ‘spin’ in various directions (every
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direction in space), and each will have just two possible values, which we may call
‘up’ (represented by the number +1/2) and ‘down’ (−1/2).11 The spin observables
in the x, y, and z directions are defined in terms of the Pauli matrices by Sx =
(1/2)σx, and similarly for Sy and Sz. (See §7.3.1).

1.3.3.2 States The pure states can be represented by norm-1 vectors, or by
projections onto the space spanned by them. Consider, for example, the statevec-
tors

ψ =
(

1
0

)
, χ =

(
0
1

)
.(28)

The vector ψ, for example, corresponds to the (pure) density operator (one-
dimensional projection operator)

W =
(

1 0
0 0

)
.(29)

The vectors ψ and χ are an eigenvectors of

σz =
(

1 0
0 −1

)
(30)

with eigenvalues +1 and −1 respectively.
Note that the expectation value of Sz in the state W is

Tr
[(

1 0
0 0

)(
1
2 0
0 − 1

2

)]
= Tr

[(
1
2 0
0 0

)]

= (1 0)
(

1
2 0
0 0

)(
1
0

)

+(0 1)
(

1
2 0
0 0

)(
0
1

)

= 1
2 + 0 = 1

2 .

(31)

(Recall our earlier comments about calculating traces in an appropriately chosen
basis.) Of course, in general a system’s having an expectation value equal to some
value, r, is not sufficient to imply that the system has the value r. (Indeed, r might
not even be in the spectrum of possible values.) In this case, however, we may

11 The particles that I have been discussing — those that have just two degrees of freedom
(‘up’ or ’down’) for any given direction of spin, are called ‘spin- 1

2
particles’, in part because their

angular momentum about any given axis is either +�/2 (‘up’) or −�/2 (‘down’), where � is a
unit of angular momentum equal, in familiar units, to 1.054× 10−34kg m2/s. (As is often done,
I have adopted units in which � = 1.) There are, in addition, deeper group-theoretic reasons for
calling these particles ‘spin- 1

2
’ particles, but we cannot go into that point here. (There are also

particles with higher spin, which means, operationally, that they have more than two degrees of
freedom for each direction of spin.)
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also note that the probability associated with the appropriate projection operator
is 1. So, first, note that the spectral decomposition of Sz is:

Sz =
(

1
2 0
0 − 1

2

)
=
(
+ 1

2

)( 1 0
0 0

)
+
(− 1

2

)( 0 0
0 1

)

:=
(
+ 1

2

)
Pz+ +

(− 1
2

)
Pz− .

(32)

Hence the projection associated with the value +1
2 for Sz is Pz+ and the probability

for the value +1
2 (for Sz) in the state W is

Tr[WPz+ ] = Tr
[(

1 0
0 0

)(
1 0
0 0

)]
= 1.(33)

(We leave the details of the calculation to the reader. Notice that taking the trace
of a matrix amounts to just adding the numbers along the diagonal. The reader
might wish to prove this fact.) As I noted above in a more general context, this
expression is, equivalently, the expectation value of Pz+ in the state W . Hence, in
particular, if one agrees that ‘value r for observable F has probability 1 in state
W ’ implies ‘a system in state W has value r for F ’ then we may conclude, from
(33), that a system in the state W has the value +1/2 for Sz. (We will discuss
such interpretive principles in more detail later.)

1.3.4 Incompatibility

Finally, notice that in this state, W , the expectation value of spin in the x and y
directions is 0. For example,

Tr[WSx] = Tr
[(

1 0
0 0

)(
0 1

2
1
2 0

)]
= Tr

[(
0 1

2
0 0

)]
= 0.(34)

This fact suggests (indeed, in this two-dimensional case, implies) that the proba-
bilities for Sx = + 1

2 and Sx = − 1
2 in the state W are 1

2 , as we can also verify by
a direct calculation. First, note that the spectral resolution of Sx is:

Sx =
(

0 1
2

1
2 0

)
=
(

1
2

)( 1
2

1
2

1
2

1
2

)
+
(− 1

2

)( 1
2 − 1

2

− 1
2

1
2

)

:=
(
+ 1

2

)
Px+ +

(− 1
2

)
Px− .

(35)

As the reader may verify, Tr[WPx+ ] = Tr[WPx− ] = 1
2 .

We have thus verified, in this particular case, a claim made previously made
abstractly, namely, that a state that is dispersion-free (i.e., generates probabil-
ties of just 0 or 1 for all possible values) for one observable, will necessarily not
be dispersion-free for some other observables. Indeed, I said earlier that non-
commuting observables that do not share eigenvectors are always incompatible,
in the sense that any state that is dispersion-free on one of them is necessarily
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Figure 2. Polar angles.

not dispersion-free on the other. Now notice that Sx, Sy, and Sz are mutually
non-commuting, and indeed share no eigenvectors. (In this two dimensional case,
non-commuting maximal observables cannot share any eigenvectors.) Hence a
state that is dispersion-free for one will necessarily generate non-trivial probabili-
ties for the others.

Indeed, consider any direction, u, in space specified relative to the z-axis by the
polar angles θ and φ, i.e., in Cartesian coordinates, u = (x, y, x) = (sin θ cos φ,
sin θ sinφ, cos θ). (See Figure 2.) Then the associated spin observable is repre-
sented by the matrix

Su =
1
2

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
.(36)

(One reasonable and quick justification of this expression is to note that Su =
Sx sin θ cos φ + Sy sin θ sin φ + Sz cos θ.) The only pairs of such operators that
commute are anti-parallel; i.e., they correspond to spin in anti-parallel directions
(and such operators are just multiples of one another by a factor of −1).

(One should keep in mind, however, that Gleason’s theorem does not hold for
our 2-dimensional space. Hence the density operators do not define all states, in
this case. Indeed, Bell [1964] shows how to define a dispersion-free measure over
the projections on C

2 in terms of an additional ‘hidden’ parameter. Moreover, the
quantum-mechanical states are obtainable by averaging over the possible values of
the hidden parameters with an appropriate probability distribution over them.)

1.3.5 The Bloch Sphere

The Hilbert space C
2 is used to represent any two-level quantum system, and such

systems are of great interest in quantum theory, all the more so in recent years, as
increasing interest in quantum information and quantum computation has focused
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attention even more on such systems (because they are the quantum analog of a
classical ‘bit’ — see Bub, Ch. 6, this volume). A careful study of the pure states
on C

2 is often aided by the representation of those states in terms of the Bloch
sphere. Note that any pure state on C

2 can be represented by a vector of the form
v = cos(θ/2)ψ+eiφ sin(θ/2)χ (using the notation of equations 28).12 Hence, again
referring to figure 2, we can represent each distinct pure state as a unique point
on the surface of a unit sphere (in R

3), normally called the ‘Bloch sphere’. The
‘north pole’ of the sphere corresponds to the state ψ and the ‘south pole’ to the
state χ.

In fact, however, the ‘Bloch sphere’ is a ball. The interior points correspond to
mixed states, as follows. Every density operator, W , on C

2 can be written as

W =
I + �r · �σ

2
(37)

for �σ the ‘vector’ of Pauli matrices (§7.3.1) and �r a vector from R
3 with ||�r|| ≤ 1.

The components of �r determine a point inside the Bloch sphere representing the
corresponding density operator. (Note, in particular, that �r = (0, 0, 1) corresponds
to the pure state given by θ = 0, as it should.)

1.4 Dirac Notation

I will return to the example of a spin-1
2 particle later to illustrate a number of

issues in quantum theory. When I do so — and, indeed, throughout the remainder
of this essay — it will be helpful to have at hand a useful notation, the so-called
‘Dirac bra-ket’ notation, used commonly by both physicists and philosophers.

1.4.1 Bras and Kets

In the bra-ket notation, vectors are denoted by (and sometimes called) ‘kets’, |v〉.
In the discussion above, for example, the column vector ψ in (28) might be denoted
|z+〉. Elements of the dual space (the ‘row vectors’ in our discussion above — see
§7.1.8) are denoted by ‘bras’, 〈v|. In our example above, there is a natural 1-1
map from the kets (column vectors) to the bras (row vectors):(

a
b

)
→ (a∗ b∗).(38)

The bras thus define (continuous) linear functionals in the obvious way. Letting

|v〉 =
(

a
b

)
and |w〉 =

(
c
d

)
,(39)

12The claim is not that every vector can be written in this form, but that every pure state can
be represented in this form. Recall that an overall phase factor does not affect the probabilities
generated by a vector. Hence we may assume, without loss of generality, that the coefficient of
ψ is real.
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the linear functional (bra) 〈v| acting on the vector (ket) |w〉 is

(a∗ b∗)
(

c
d

)
= a∗c + b∗d(40)

and is written, in the Dirac notation, as (the ‘bra-ket’) 〈v|w〉. (The reader might
wish to check that the functional thus defined is indeed linear.) Of course, as
it must be, 〈v|w〉 is also the inner product of |v〉 with |w〉, given (38). (In this
notation, we continue to write ||v|| for the norm of a vector, instead of |||v〉||.)

In the general case, i.e., where H is any (complex) Hilbert space (countable-
dimensional at most), we take the elements of H to be kets, and the elements of the
dual spaceH∗ to be bras. Inner products may now be written 〈v|w〉, which denotes
both the linear functional |v〉 acting on the vector |w〉 and the inner product of the
vectors |v〉 and |w〉.

1.4.2 Operators

The operator, F , acting on the vector |v〉 is written F |v〉. The expectation value
of the observable F in the state |v〉 is written 〈v|F |v〉, which is notationally (and
numerically) equivalent to 〈v|Fv〉, the latter to be read as the inner product of |v〉
with the vector F |v〉. The expression 〈w|F |v〉 is defined similarly.

Corresponding to what is sometimes called the ‘vector direct product’(
a
b

)
(c d) =

(
ac ad
bc bd

)
,(41)

we can define |v〉〈w| to be the operator on H defined by(
|v〉〈w|

)
|x〉 = 〈w|x〉 |v〉.(42)

Notice that simple symbol-manipulation would generate the same result.

1.4.3 Using the Dirac Notation

As I just hinted, the Dirac notation is enormously useful, once its true meaning
is understood, and dangerous otherwise. It’s power — and danger — lies in the
fact that it allows one more or less to ignore various distinctions, such as the
distinction between a vector and a linear functional (element of a dual space). It
also can be very helpful for ‘coordinate-free’ calculations. For example, we can
discuss the theory of spin-1

2 particles without bothering with Pauli matrices and
so on. Consider the basis {|z+〉, |z−〉} for C

2, where |z+〉 is the state that assigns
probability 1 to the value +1

2 for Sz and so on — note that we do not need to
worry about how to represent this state as a column of complex numbers. It is
sufficient to carry out calculations to note that for a direction in space, u, specified
by the angles θ and φ relative to the z-axis:

|u+〉 = cos
(
θ
2

)
e−i

φ
2 |z+〉+ sin

(
θ
2

)
ei

φ
2 |z−〉(43)

|u−〉 = − sin
(
θ
2

)
e−i

φ
2 |z+〉+ cos

(
θ
2

)
ei

φ
2 |z−〉.(44)
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The spin observables are then represented by

Su =
1
2
|u+〉〈u+| − 1

2
|u−〉〈u−|.(45)

Note, for example, that 〈z+|u+〉 = cos
(
θ
2

)
e−i

φ
2 and 〈z−|u+〉 = sin

(
θ
2

)
ei

φ
2 , facts

that are immediately read off of (43). Hence, for example, the probability that a
system in the state W = |z+〉〈z+| has the value +1

2 for the observable Su can be
quickly calculated as

Tr
[|z+〉〈z+|

(|u+〉〈u+|
)]

(46)

= 〈z+|
(|u+〉〈u+|

)|z+〉(47)
= 〈z+|u+〉〈u+|z+〉(48)
= |〈z+|u+〉|2(49)

= cos
(
θ
2

)2
.(50)

(To get from the first to the second line, calculate the trace using the basis
{|z+〉, |z−〉}.) The genuis of Dirac’s notation is that one can, as illustrated here,
simply ‘do the symbolically natural thing’ and get the correct answer. For exam-
ple, the third line follows from the second by ‘erasing the parentheses and joining
the bars’. Conceptually, we allowed the operator |u+〉〈u+| to act on |z+〉, obtain-
ing the vector 〈u+|z+〉|u+〉, then took the inner product of this vector with |z+〉
(or, applied the linear functional 〈z+| to 〈u+|z+〉|u+〉). The convenience of the
notation can also, however, lead one to forget conceptually important distinctions.

Keep in mind, moreover, that the convenience of not having to worry about ex-
plicit (e.g., matrix) representations of vectors and observables can also lead one to
write down some rather silly, or at least physically opaque, states. One frequently,
for example, sees ‘states’ such as |cat dead〉 or |Sarah sees the pointer〉 written
down. The Dirac notation naturally tempts one to write down such expressions,
but we are so far from knowing whether such ‘states’ correspond to some pure
vector state, and if so, what their properties are, that such expressions are best
left to cartoons.

1.5 Transformations

We have now seen how to represent observables, and how to calculate expectation
values (and probabilities). While such matters are indeed at the heart of the theory,
there are other aspects of the formalism that are important for philosophical and
foundational discussions. In particular, this subsection discusses transformations,
both of the states of physical systems and of the observables associated with those
systems. Along the way, I will have occasion to mention some theorems that are
fundamental for the foundations of quantum mechanics.
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1.5.1 Groups and Their Representations

1.5.1.1 Motivation Galileo observed that the laws of motion do not depend
on the constant velocity of the ‘lab’ (frame of reference) in which they are applied.
(For example, in the hull of a ship moving with constant velocity — more precisely,
moving inertially — “jumping with your feet together, you pass equal spaces in
every direction”, as Galileo writes, just as you would back on shore.) Neither do
they depend on one’s location, nor on the time at which they are applied, nor
on the direction in which one is facing. In other words, the laws are invariant
under certain transformations, namely, boosts (changes in velocity), spatial trans-
lations, temporal translations, and rotations. These sorts of transformation are
represented, mathematically, by groups, and in the case of the ‘Galilean transfor-
mations’ that I just mentioned, the group is normally called the ‘Galilean group’.13

Hence group theory (§7.6) is the natural context in which to study, among other
things, the ‘invariances’ of quantum theory.

The motivation here is that the properties of a group are exactly the properties
normally thought to apply to ‘invariance transformations’. In particular, if α and
β are transformations that each individually leave the laws unchanged, then the
composition of α followed by β is also such a transformation. Similarly, if α is a
such transformation, then there is the transformation that ‘undoes’ what α did,
that is the inverse of α. Notice, for example, that the composition of two Galilean
transformations is another one, and that each transformation has an inverse.14

Groups show up in other contexts as well. Suppose, for example, that we are
interested (as we soon will be) in the dynamics of a closed physical system. One
way to think about the time-evolution of the state of a system is as a transforma-
tion on the set of states. The set of all such time-evolutions, then, plausibly should
form a group. The identity represents ‘no change’ (or the degenerate case of evo-
lution over no time). The product represents one period of evolution followed by
another. And the inverse represents ‘reversed’ evolution, or evolution backwards
in time. (If a given theory is not time-reversible, then we would be dealing with a
semi-group rather than a group.)

Now, often one specifies a group abstractly, that is, by specifying the products
and inverses in the group without representing it as a group of transformations on
some set (such as the set of physical states of a system). The most trivial example
is the group Z2, which contains two elements, x and y. The multiplication rule is:
xy = x, yx = x, xx = y, and yy = y. The identity is (clearly) y, while x and y are
their own inverses. Notice that we specified this group without referring to any

13More precisely, the Galilean group is (R�V) � (A× T ), where × is the direct product, �

is the semi-direct product, and T , A, V, and R are the (sub-)groups of temporal translations,
spatial translations, boosts, and rotations, respectively (§7.6.2). If the Galilean group is defined,
first and foremost, as the set of affine (parallel-line-preserving) maps from E, the Euclidean 4-
dimensional manifold (§7.5.2) of events (space-time), to itself that preserve simultaneity of events
and the distance between simultaneous events, then it turns out that the subgroups mentioned
above are not all normal, as implied by the use of semi-direct products where one might expect
direct products.

14See Brading and Castellani, Ch. 13, this volume, for more nuanced discussion.
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specific mathematical objects — the symbols ‘x’ and ‘y’ are just names for the two
elements of this group and by themselves have no further mathematical content.
But we could also ‘represent’ the group Z2 as, for example, the group of maps
from any two-element set to itself, with y being the identity map, and x being the
map that swaps the elements (maps each to the other). (Another representation
of Z2 takes x to be complex conjugation, ∗, and y to be ∗∗.)

1.5.1.2 Wigner’s Theorem Thinking of groups as ‘collections of symmetry
transformations’, the very idea that these transformations are ‘symmetries’ sug-
gests that they should not change the relationships amongst states. In particular,
a symmetry transformation on the space of states should be such that a system
in state |ψ〉 generates the same probabilities for observables both before and af-
ter the transformation (at least for observables that are supposed to be invariant
under this symmetry, or have been ‘transformed along’ with |ψ〉, in the sense
that their eigenvectors are also transformed). How might such transformations be
represented?

Notice that a unitary operator (§7.2.6) fits the bill very nicely. Indeed, we
define a unitary operator as, in part, one that preserves inner products. There is
an important near-converse to this fact, due to Wigner ([1931, p. 251]).
Theorem (Wigner): Let H be a Hilbert space over C and let T : H → H be a 1-1 (but not
necessarily linear) map satisfying 〈Tw|Tv〉 = 〈w|v〉 for any |w〉, |v〉 ∈ H. Then

T |v〉 = ϕ(v)U |v〉(51)

where U is either unitary or anti-unitary and ϕ() is a ‘phase function’, a complex-valued function
on H whose values have modulus 1.

(Any anti-unitary operator, T , can be written as T = UK, where K is the ‘com-
plex conjugation’ operator. Hence the anti-unitary transformations are just the
unitary ones, followed by complex conjugation. Time-reversal, for example, is
often associated with complex conjugation.)

One normally rules out the anti-unitary case on various grounds related to the
‘unphysical’ nature of such transformations; in particular, they are not continu-
ously connected to the identity. In order to make this notion precise, one would
need to introduce a topology on the group. In the typical cases of interest, the
group is continuously parametrized (§7.6.4) by some set of real indices so that
the group in fact forms a manifold (§7.5.2); i.e., it is a Lie group (§7.6.5). In
these cases, a topology is already given. The significance of being continuously
connected to the identity is just that in this case, one has the picture of the group
transformations being built up from transformations that are ‘infinitesimal’, i.e.,
‘as close as you like to doing nothing at all to the system’ (the identity transfor-
mation). Of course, if we are talking just about symmetries, there is no reason to
suppose that being continuously connected to the identity is a necessary condition
— consider, just to mention the most obvious examples, time-reversal, or spatial
reflection. On the other hand, if the symmetries in question are supposed to cor-
respond, ultimately, to actual physical processes (such as dynamical evolution of a
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closed system), then continuous connectedness to the identity begins to look more
compelling.

Hence, in general, symmetries in quantum theory are represented in terms of
these maps, T , with U unitary or anti-unitary, and often under the assumption
(or hope) that U is unitary.

1.5.1.3 Projective Representations In the expression (51) one not only
(normally) sets aside the case where U is anti-unitary, but also (normally) seeks
maps, T , such that ϕ(v) is identically 1. In this case, the representation of the
symmetry group is just given in terms of a group of unitary operators. Such rep-
resentations are particularly nice because much is known about unitary operators.
(See §1.5.1.4 for an important example.) But one is not always so fortunate as
to be able to find this sort of representation, often called a ‘unitary’ or ‘ordinary’
representation (§7.6.8). Sometimes one must live with the phase function’s being
non-trivial. In this case, the representation is called ‘projective’.

The reason is as follows. Let H be a Hilbert space, and consider the set, PH,
of equivalence classes of vectors from H, where two vectors are equivalent if and
only if they lie in the same one-dimensional subspace. PH is a projective Hilbert
space, whose structure is given by the ‘angles’ between the rays of H (the modulus
of the inner product of normalized representatives from the rays). When the
phase function in (51) is non-trivial, the resulting transformation still generates
an automorphism of PH. (Moreover, we have already observed that the pure
states in quantum theory can, for the purposes of calculating probabilities, be
just as well represented by one-dimensional projections as by statevectors. Hence
it should come as no surprise that projective representations of a group can still
preserve all probabilities.) Hence, while ordinary representations tend to be easier
to handle, there is nothing terribly inconvenient or problematic about projective
representations, and one is sometimes forced to use them.

1.5.1.4 Stone’s Theorem Unitary representations are particularly nice, be-
cause they can be ‘generated’ by self-adjoint operators. Note, first, that given
any self-adjoint operator, F , the operator eiF is unitary. Moreover, the family of
operators eiαF with α a real parameter forms a continuously parametrized group
of unitary operators, where eiαF eiα

′F = ei(α+α′)F . (Note that limα→0 eiαF = I,
i.e., this group is continuously connected to the identity.) Now suppose that we
are interested in representing a continuously parametrized group, G, as a family
of unitary operators on a Hilbert space. Because of the nice behavior of the eiαF ,
one would very much like to find an F that generates a representation of G. We
are in luck:

Theorem (Stone [1932]): Let Uα be a (weakly) continuous unitary representation of G on a
Hilbert space, H.15 Then there exists a self-adjoint operator, F , on H such that Ua = e−iFa.

15 The map α �→ Uα is weakly continuous if and only if 〈w|Uα|v〉 is a continuous function
of α for every |v〉, |w〉 ∈ H. Indeed, Stone’s theorem holds under weaker conditions when H
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Because so many of the groups of interest in non-relativistic (and indeed rela-
tivistic) quantum mechanics have the requisite properties, Stone’s theorem is of
fundamental importance for the theory. We shall see some examples of its use
later.

1.5.2 Dynamics

1.5.2.1 Some Initial Assumptions about Dynamical Evolution Dynam-
ical evolution of the state of a system is just a kind of transformation on the space
of states. I begin with a few simplifying assumptions, which will turn out to be
sufficient to determine the form of dynamical evolution.

Keeping in mind that density operators are mixed states, and hence linear
combinations of pure states, let us assume that the evolution of a density operator
is induced by the evolution of the pure states of which is it composed. The idea
here is that a density operator can represent simple physical mixing, and in that
case at least, it should evolve as described. Suppose, for example, that we have
a mixture, in proportions r and 1 − r (with 0 < r < 1), of two different types of
system, the first in the pure state P1 and the second in the pure state P2. The
corresponding density operator is rP1 + (1 − r)P2. If the systems evolve without
interacting with one another (for example, they might be physically isolated from
one another), then one would expect that if the systems in Pn evolve to the state
P ′
n, the mixture evolves to rP ′

1 + (1− r)P ′
2, or so I shall assume. In that case, we

can focus our attention on the pure states, and hence on the (normalized) vectors
of a Hilbert space.

Notice that this argument certainly does not apply to density operators that
arise from partial tracing (i.e., ‘reduced density operators’). Indeed, in general,
such operators will not evolve in the way described. But rather than determining
their evolution directly, one may derive it from evolution of the state of the com-
pound system of which it is a component — and if that compound system is in an
improper mixture, then repeat the procedure.

We are therefore primarily interested in the dynamics of an isolated physical
system (though certainly the system would in general experience internal interac-
tions), represented by a pure state. The question then becomes: which transfor-
mations on a Hilbert space for this system are possible dynamical evolutions of
the state of the system?

Symmetry is again a helpful tool. Let T : H → H be a map from the Hilbert
space H to itself representing the time-evolution (over some given stretch of time)
of a closed system. Because the system is closed, it seems reasonable to suppose
that this T should be a symmetry, in the sense that we have already noticed:
|〈v|w〉|2 = |〈Tv|Tw〉|2 for all |v〉, |w〉 ∈ H. (Of course, the ultimate justification for
this supposition is empirical success.) Hence (51) applies. We will assume, further,
that the phase function ϕ(v) is identically 1, i.e., that time-evolution is given by an

has a countable basis (i.e., it is ‘separable’), in which case the functions 〈w|Uα|v〉 need only be
Lebesque-measurable. See Riesz and Sz.-Nagy ([1955, §137]).
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ordinary representation of some group of evolution operators. Finally, recall that
the anti-unitary operators are not continuously connected to the identity, meaning
that, in this case, if they were used to represent time-evolution, there would be
no way to represent evolution over infinitesimal times. Under the assumption that
time is continuous, we are led to suppose that time-evolution is given by some
group of unitary operators.

Notice, now, that our original argument for the conclusion that the evolution
of mixed states should follow from the evolution of pure states, essentially by the
assumption of linearity, is encapsulated in this result. As a transformation on H,
a unitary operator U also generates a transformation on the operators on H, and
assuming that dynamical evolution ought not change the relationship (that is, the
relations definable purely in terms of the structure of the Hilbert space) between
pure states and the mixtures that they compose, we must use U to generate the
transformation on mixed states by W �→ U−1WU . Indeed, this expression is
the most general form of the standard dynamics of a closed system in quantum
mechanics.

To see where it comes from, consider the density operator, W (t) =
∑
n wn(t)Pn(t).

Letting {|ψn,i(t)〉} be an orthonormal basis determined by W (t) (where the index
n ranges over the spectral projections Pn(t) and the index i ranges over the di-
mension of Pn(t)), we may write

W =
∑
n,i

wn,i(t)|ψn,i(t)〉〈ψn,i(t)|.(52)

According to our earlier assumption, the evolution of W will be given in terms
of the evolution of the |ψn,i(t)〉, which means in particular that the coefficients
wn,i(t) will be time-independent. (Keep in mind, here, that we presume W to be
the state of a closed (isolated) system. Without that assumption, nothing said
here would be at all plausible.) Hence, if Ut is the evolution operator for the
system, we may simply apply it to the summands:

W (t) =
∑
n,i

wn,i

(
Ut|ψn,i(0)〉

)(
〈ψn,i(0)|U∗

t

)
(53)

= Ut


∑

n,i

wn,i|ψn,i(0)〉〈ψn,i(0)|

U∗

t(54)

= UtW (0)U∗
t ,(55)

where we have used the linearity of the Ut. Finally, recall that for any unitary
operator, U , U∗ = U−1.

Finally, it is worth noticing that for any given unitary map, U , on H, considered
to be a ‘symmetry’, the map F �→ U−1FU for all operators F is the ‘correct’
corresponding symmetry of operators, at least in the sense that for any |v〉 ∈ H and
any operator, F , on H, U(F |v〉) = (UFU−1)U |v〉. That is, one can either ‘apply
the operator F to the vector |v〉, then transform according to U ’, or ‘transform
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according to U then apply the transformed operator to the transformed vector’,
and in both cases the result is the same.

1.5.2.2 The Hamiltonian We can say, then, that the evolutions on H are
generated by unitary operators. But which ones? For example, which operator
represents the evolution of a free particle? Which operator represents the evolution
of a particle under the influence of some given potential energy? Some progress
on that question is made via Stone’s Theorem.

Above I claimed that dynamical evolution has all the properties of a group. In
particular, let U1,2 represent the evolution of a system from time t1 to time t2,
and similarly for U2,3. Then it would seem that evolving from t1 to t2, and thence
to t3, is the same as evolving from t1 to t3; in other words, U1,3 = U2,3U1,2. (Keep
in mind that we are thinking of these Um,n as operating on some space of states
— hence the ordering.)

A slightly stronger, but still quite compelling, assumption is that of ‘time homo-
geneity’. Imagine a system evolving under the influence of some time-independent
constraints (for example, time-independent potential energies). Then, if t3 − t2 =
t2 − t1, the evolution operator U1,2 should in fact be the same as U2,3. (Keep in
mind that these operators transform the entire space; we are not assuming that a
given single system will ‘do the same thing’ from t2 to t3 as it did from t1 to t2, but
rather that two different isolated systems in the same state at two different times
will do the same thing for the next equal stretch of time.) In this case, evolution
operators require just a single parameter indicating the length of the time interval
concerned, and we then have the relation: UtUt′ = Ut+t′ . We assume, as well,
that U0 is the identity, meaning that ‘nothing happens instantaneously’.

Notice the similarity to an additive group. Indeed, a set of operators, Ut,
obeying this rule forms a semi-group. But there is, as well, reasonable motivation
for the existence of inverses in this case, namely, that they correspond to reverse
evolution (evolution backwards in time). Writing the time-reversal of Ut as U−t
then we require that UtU−t = Ut−t = I. In that case, the Ut form a one-parameter
group.

Finally, we will add an assumption of continuity in time. In particular, we
will assume the ‘weak continuity’ of the group Ut (see footnote 15). We can then
apply Stone’s Theorem to learn that, for any group representing time-evolution of
a quantum system, there is some self-adjoint operator, H, such that Ut = e−iHt.

How do we know which operator H to choose for a given system? Alas, the usual
answer to this question is via ‘quantization’ of the Hamiltonian of an analogous
classical system. For such a system, the Hamiltonian is usually the classical total
energy. I say ‘Alas’, because although at a practical level quantization is normally
straightforward, there is, as yet, no completely satisfactory foundational account
of the nature of the ‘analogy’ between a given quantum system and its classical
‘analogue’.16 The most frequent examples are, however, straightforward. For

16See Landsman, Ch. 5, §4, this volume.
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example, the classical kinetic energy of a particle moving in one dimension is
p2/2m (where p is the classical momentum and m is the mass of the particle),
and the quantum-theoretic (‘quantized’) Hamiltonian is P 2/2m (where P is the
momentum operator). Hence the time evolution of a free particle in quantum
theory is given by |ψ(t)〉 = e−iP

2t/2m|ψ(0)〉.

1.5.2.3 Equations of Motion In this final section about the formalism of
quantum theory, I briefly introduce the standard equations of motion in non-
relativistic quantum mechanics. Much of the actual practice of quantum mechanics
consists in solving these equations, either exactly (in rare cases where analytic so-
lutions are obtainable), or approximately (most of the time, either using standard
techniques from perturbation theory, or using numerical approximations).

1.5.2.3.a The Schrödinger Equation Consider the group of time-
evolutions Ut = e−iHt. These Ut uniquely solve the differential equation

∂Ut
∂t

= −iHUt.(56)

But ∂Ut

∂t |ψ(0)〉 is just the time-derivative of |ψ(t)〉 at time t, so that, allowing the
operators on both sides of (56) to act on |ψ(0)〉:

∂

∂t
|ψ(t)〉 = −iH|ψ(t)〉.(57)

Equation (57) is the Schrödinger equation for a time-independent Hamiltonian. A
similar equation holds for ‘bra’ vectors:

∂

∂t
〈ψ(t)| = 〈ψ(t)|(iH).(58)

(Recall our earlier comments about the simultaneous usefulness and seductiveness
of the Dirac notation. The reader is invited, here, to consider what the terms in
this equation really represent.) Of course, the evolution of mixed states is still
given by (53).

If H depends on time, then we can still consider each infinitesimal evolution
(from t to t + dt) to be given by unitary operators e−iH(t). In general, it is non-
trivial to build up finite-time evolution operators from these infinitesimal ones.
But when the Hamiltonian is time-independent, then of course we may define Ut =
e−iHt. If, moreover, the system is in a ‘stationary state’ at time t = 0 — that is if it
is in an energy eigenstate, |ψE(0)〉, of fixed energy, E, i.e., H|ψE(0)〉 = E|ψE(0)〉—
then the evolution takes the simple form |ψE(t)〉 = e−iHt|ψE(0)〉 = e−iEt|ψE(0)〉.
That is, the system remains in the same one-dimensional subspace; only the phase,
e−iEt, changes with time.

Of course, (57) tells us how expectation values change as well. A straightforward
application shows that for any operator, F , (57) implies:

d

dt
〈F 〉 = −i〈[F,H]〉+

〈
∂F

∂t

〉
,(59)
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where 〈·〉 is the expectation value of the operator on the inside in some (here
unspecified) state and H is the Hamiltonian.

Such is the standard account of ‘Schrödinger evolution’. One should note, how-
ever, that in practice the system is often not isolated, so that it is necessary to
add potentials to the Hamiltonian that represent the influence of some external
system, σext, on the system of interest, σ. The problem here is that it is often
impractical to attempt to model the entire compound system (σext and σ) whereas
one has at least a fighting chance to model the influence of σext on σ as an exter-
nal potential applied to σ. A typical example involves nano-electronics, where, for
example, one might be interested in studying a potential difference applied across
a molecule. In principle, one would include the electrodes at either end of the
molecule. In practice, just modeling the molecule is already very difficult, and in-
cluding the electrodes in the system is completely unfeasible. Instead, one simply
encodes their effect on the molecule into the potential term in the Hamiltonian.
In general, doing so results in non-unitary evolution (because the system is not
closed).

1.5.2.3.b The Schrödinger and Heisenberg Pictures We have been
thinking about dynamics in terms of the evolution of states. One may equiv-
alently consider that the state is constant in time, but evolve the observables
instead. Indeed, suppose that the state of the system is |ψ(t)〉, evolving under
the unitary evolution Ut. Then the expectation value of the observable F at time
t is (〈ψ(0)|U∗)F (U |ψ(0)〉). So we may just as well let the state be constant in
time, i.e. |ψ(t)〉 = |ψ(0)〉, while supposing that the observables change according
to F (t) = U∗

t F (0)Ut. Clearly, the expression for the expectation value will be the
same in either case. Hence the two pictures are empirically equivalent.

The first picture (where states evolve in time and observables are constant) is
normally called the ‘Schrödinger picture’, while the second picture (where states
are constant and observables evolve in time) is normally called the ‘Heisenberg
picture’.17

1.5.2.3.c The Heisenberg Equation In the Heisenberg picture, how do
the observables change in time? We will (temporarily) index ‘Schrödinger’ observ-
ables with an ‘S’ and the corresponding ‘Heisenberg’ observables with an ‘H’. We
will assume, as well, that the Schrödinger observables do not depend explicitly on
time (as is normally the case in basic applications). At any finite time, then, we
would have FH(t) = U∗

t F SUt. (See §1.5.2.3.b.) Then

dFH

dt
=

∂U∗
t

∂t
F SUt + U∗

t F S ∂U

∂t
(60)

17There is a third picture, the ‘interaction picture’ (sometimes called the ‘Dirac picture’), that
combines the first two. In this picture, both the states and the observables evolve in time. The
evolution of a system due to the free part of its Hamiltonian is encoded into the evolution of the
state, and the evolution of a system due to ‘the rest’ of the Hamiltonian (the ‘interaction’ part
of the Hamiltonian) in encoded in the evolution of the observables.
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= iU∗
t HSUtU

∗
t F SUt − iU∗

t F SUtU
∗
t HSU(61)

= i[U∗
t HSUt, F

H](62)
= i[H,FH](63)

where we have first used (56) and inserted UtU
∗
t into each term, and then we

used the fact that HS commutes with Ut, hence U∗
t HSUt = HS = HH. (We have

therefore also dropped the index from the Hamiltonian in (63).) This equation is
normally called the ‘Heisenberg equation’.18

There is an important similarity between the Heisenberg equation of motion
and the equation of motion for a classical observable (function on phase space)
f(x, p), written in terms of the Poisson bracket,

{f, g} =
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
.(64)

The commutator and the Poisson bracket have similar algebraic properties, and
moreover, the classical equation of motion is given by d

dtf = {H, f}, where H
is the classical Hamiltonian. Hence one way of thinking about the relationship
between classical and quantum theory is in terms of an algebraic analogy between
commutators and Poisson brackets.19

1.6 Preview of Philosophical Issues

Philosophy of non-relativistic quantum theory has traditionally been largely con-
cerned with four issues (which is not to suggest, of course, that there are not other
issues that have been discussed).

The first issue (discussed in §2) is in some ways the most fundamental, but
also, in some circles, the least discussed, namely, the origins or justification of
the quantum-theoretic formalism. How do we find ourselves using Hilbert spaces
and self-adjoint operators on them rather than phase spaces and functions on
them? Given that the other issues facing the philosopher of quantum theory are
mirrored in certain features of the formalism, answering (or at least addressing)
this question could prove very useful. There are some reasonably illuminating
attempts to explain why quantum theory uses the formalism it does. The next
section is devoted to a discussion of a few such attempts.

The second issue (discussed in §3) concerns empirical content. A close reading
of, for example, some of the founders of quantum theory (especially Niels Bohr)

18There is a similar equation for the evolution of the density operator in the Schrödinger
picture: d

dt
W = −i[H, W ]. Its derivation is similar to the one given above. Notice the change

of sign. There is no contradiction here. This equation describes the time-evolution of density
operators (states) in the Schrödinger picture. Equation (63) describes the time-evolution of
operators (observables) in the Heisenberg picture.

19Dirac proposed to define quantization in terms of this analogy. It turns out that the analogy
cannot be carried through rigorously, at least not in its original form. For further discussion of
quantization and this algebraic analogy, see Landsman, Ch. 5, this volume, especially §4. For
further discussion of Poisson manifolds in classical mechanics (hence, the classical side of the
analogy), see Butterfield, Ch. 1, this volume, especially §5.
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reveals a deep concern on their part with the question how the quantum formalism
gets its empirical meaning. I will sketch a proposal, motivated by Bohr, for how
to understand the connection between formalism and observation.

The issue of empirical content is closely connected with the issue of incompat-
ibility, and more precisely, the uncertainty relations (discussed in §4). Why is it
not possible to determine precise values for all observables? Does it follow from a
deeper claim that one observable’s having a definite value can preclude another,
incompatible, observable from doing so? Some of the founders of quantum theory
(again, especially Bohr) were concerned to explain how it is that the conditions re-
quired for the empirical well-definedness of some pieces of the formalism somehow
preclude the simultaneous satisfaction of the conditions required for the empiri-
cal well-definedness of other pieces of the formalism. Others (especially Einstein)
were concerned, instead, to ‘beat’ the uncertainty principle, initially by arguing
that one can determine precise values for incompatible observables, and later by
arguing for the weaker claim (in the famous Einstein-Podolsky-Rosen paper) that
they must have precise values (simultaneously), even if we cannot determine (for
example, measure) them.

The fourth issue (discussed in §5), again related to the previous one, arises
from Gleason’s Theorem: if there are no dispersion-free (sometimes in this context
called ‘two-valued’) states in quantum theory, then apparently some observables
can sometimes be in ‘indeterminate’ states. Even worse, it is easy to describe
physically plausible scenarios in which observables that one normally believes to
be definite will not be assigned a definite value by the state assigned via quantum
theory, under a standard interpretation of the relationship between states and
values for observables. Famously, Schrödinger described such a scenario, in which
a cat was somehow ‘neither alive nor dead’. The obvious way to avoid this problem
— by interpreting the probabilities generated by the quantum state epistemically
(i.e., as expressions of ignorance about the actual values, as classical probabilities
often are) seems to run into serious philosophical, indeed logical, difficulties. Hence
other solutions are proposed, in the form of sometimes quite exotic interpretations
of the formalism. While many of these solutions can be seen to avoid the basic
problem, each has its serious pitfalls as well — and therefore, detractors. No
generally accepted response to the problem seems to be on offer.

The final major issue (discussed in §6) is the non-locality of the theory, as
implied by the use of tensor-product spaces to represent compound systems. As
we noticed, such spaces allow for so-called ‘entangled’ (non-factorizable) states
that imply strong (even perfect) correlations between remote systems. Again, the
obvious ways to make sense of these correlations, in terms of a common causal
history or processes that propagate purely locally in space-time, turn out not to
work. Such is the upshot of a series of theorems, the first and most famous of which
is due to Bell [1964]. The result is an apparent conflict with the tendency among
space-time theorists of the past century or more to adopt some form of a principle
of ‘locality’. While various attempts have been made to resolve the apparent
conflict, or to argue that it is not a problem, no very satisfying resolution seems
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to be on offer.

2 WHENCE THE KINEMATICAL FORMALISM?

Our goal in this section is to review some attempts to say why we use the formal-
ism that we do in quantum theory. There are numerous attempts to ‘derive’ the
Hilbert-space formalism from physically ‘intuitive’ axioms. The attitude that we
shall adopt here is that many of these attempts are worthwhile — they can con-
tribute to our understanding of quantum theory — even if none of them succeeds
in deriving the formalism from axioms whose physical import (much less truth) is
always clear. It therefore makes sense to survey more than one such route to the
formalism, rather than relying on just one of them. Here we will consider a few
important representatives of the genre.

The first (§2.1) begins from the notion of a physical proposition, and argues
that these propositions are properly represented by the subspaces of a Hilbert
space. The second two routes (§2.2) begin from the notion of a physical state, and
argue that these states are properly represented as probability measures over the
subspaces of a Hilbert space. The final route (§2.3) is similar to these latter two,
but while they attempt to characterize the state spaces in a somewhat abstract
way (in terms of C∗-algebras), and then ‘represent’ them as states on a Hilbert
space, this final route constructs the Bloch sphere (§1.3.5) directly, and builds (the
state spaces of) higher-dimensional Hilbert spaces from it. (However, having said
that, we will not in fact examine the proofs enough to notice these differences in
any detail.)

Our intention is not to claim that any of these routes has, once and for all,
illuminated the true reasons behind the use of Hilbert spaces in quantum theory.
Rather, in each case, certain interesting or important aspects of the use of Hilbert
spaces in quantum theory can be illuminated by following through some of the
arguments that take us (ideally) from relatively uncontroversial and physically
clear principles to the Hilbert space formalism. Our emphasis here will be on
those aspects of each route that seem to be potentially helpful for understanding
quantum theory, skipping over what appear to be merely technical conditions. In
each case, our discussion will be necessarily brief (relative to the full story); proofs
and technicalities will be omitted.

Finally, many concepts (such as the lattice of propositions, and the convex space
of states) that are important for the foundations of quantum theory are discussed
here. Readers who are not necessarily looking to learn about routes to the Hilbert
space formalism will still learn something independently important from reading
at least some parts of this section.

2.1 From Propositions to Hilbert Space

In this section, we trace a route to Hilbert space that begins with the logic of
physical propositions. The goal, here, is to identify quantum theory (i.e., the
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Hilbert space formalism) as, in a sense, the unique theory that satisfies certain
logical constraints.20

2.1.1 The Lattice of Propositions

2.1.1.1 Physical Meaning of Propositions We begin by taking as funda-
mental the set of propositions about a physical system at a time. The idea is that
such propositions will take the form ‘the system has the property P at time t’.
(Hence, equivalently, one may take properties as fundamental. For each property,
there is a corresponding proposition stating that the system possesses the property,
at a given time. Here we shall speak solely in terms of these propositions.)

2.1.1.2 Definition It is standard in the algebraic approach to logic to assume
that the set of all propositions (syntactically, sentences) forms a lattice (§7.4).
The partial order in the lattice corresponds to implication: P ≤ Q means that P
implies Q. The supremum (join) on the lattice corresponds to disjunction, and
the infimum (meet) corresponds to conjunction. These identifications are far from
arbitrary. Consider, for example, disjunction. The join of two elements, P and Q,
in the lattice, L, is the logically weakest proposition implied by both P and Q,
which is, arguably, just what one means by ‘disjunction’. Similar considerations
apply to conjunction. Finally, assuming (again, as is standard) that the lattice is
an ortholattice, the orthocomplement in the lattice corresponds to negation.

2.1.1.3 Motivation and Interpretation of the Lattice Operations Apart
from the direct appeal to algebraic logic, such lattices have sometimes been moti-
vated by an operational description of measurements. One speaks, for example, of
yes-no experiments, to test for the truth of some proposition. The partial order on
the set of such tests is derived from the idea that one test, Q, might be passed every
time some other test, P , is, and in this case we write P ≤ Q. However, I shall not
pursue this approach in any detail here, but instead take it for granted that there
is some way to understand these logical operations and relations in physical terms.
(I do not mean to suggest that any particular approach — especially the various
operational approaches — are entirely satisfactory. Indeed, one could argue that a
firm understanding of the physical significance of the lattice-theoretic connectives
is the Achilles heel of the route to Hilbert space via propositions.21

20There are many versions of this program, which got its start with Birkhoff and von Neumann
[1936]. The discussion here is largely in the spirit of Piron’s [1976] work. A recent monograph
covering much of the territory is that of Dalla Chiara, Giuntini, and Greechie [2004]. A more
operational approach, somewhat different from these others, is that of Ludwig [1983].

21I do not mean to suggest, of course, that this issue has not been addressed by advocates
of the quantum-logic program. Jauch [1968], for example, proposes an understanding of the
conjunction of non-commuting projections (which, apparently, cannot be understood simply in
terms of the proposition ‘both are measured’) in terms of a limit of repeated measurements.
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2.1.1.4 Additional Constraints on the Lattice of Propostions In addi-
tion to the structure of the lattice of propositions that we have already established,
we will need to assume a number of additional properties. First, we assume that
the lattice has a bottom and a top (§7.4.5), 0 and 1, corresponding respectively to
the logically false proposition and the logically true proposition. (We then require
of the orthocomplement that P ∨ P⊥ = 1 for all P . It follows that 0⊥ = 1.)

Second, we assume that the lattice of propositions is complete and atomic
(§7.4.5). This assumption amounts to the idea that there are some fundamen-
tal propositions — maximally specific propositions — and that one can interpret
the truth of any weaker proposition as a consequence of the truth of some funda-
mental proposition. (It does not follow that one must interpret them in this way.)
Another approach to justifying this assumption refers to the convex structure of
the set of states. As we will see below (§2.2.1.3.c), there is good reason to suppose
that this set has extremal points, corresponding to pure states, i.e., states of maxi-
mal information. That characterization suggests that each pure state should assign
probability 1 to some maximal (logically strongest) proposition, which would be
an atom in the lattice of propositions.

Next we must assume that the lattice is irreducible (§7.4.4). The assumption of
irreducibility is far from trivial, but does have something approaching a physical
interpretation, due to the following theorem from the theory of lattices:

An ortholattice is irreducible if and only if its center (§7.4.3) is trivial,
i.e., {0, 1}.

Now, a proposition’s being in the center means, logically, that it is compatible with
all other propositions (§1.2.4). Therefore, one way to understand the irreducibility
of a lattice is as a consequence of the assumption that its center is trivial, i.e.,
that every proposition (except 0 and 1) is incompatible with at least some other
proposition. Note that this assumption is in a sense a ‘maximal’ violation of the
classical law p = (p ∧ q) ∨ (p ∧ q⊥), for it asserts that the law fails for every p
(which is not to say that there are not some p, q for which the law holds, but that
for every p, some q exists for which the law fails — recall, also, the discussion
surrounding the conditions 23).

Our final assumption is that L satisfies the covering property (§7.4.5). The
motivation here is, alas, less clear, although some arguments have been given.22

2.1.2 Piron’s Program

Piron’s program was to characterize exactly those lattices that are (isomorphic to)
the lattice of subspaces of a Hilbert space. He got as far as the following theorem:

Theorem (Piron [1964]) If L is a complete, atomic, irreducible, or-
thomodular lattice that satisfies the covering law and has at least 4
orthogonal atoms, then it is (isomorphic) to the lattice of subspaces of
an inner product space, V .

22For example: Piron [1964], and Cohen and Svetlichny [1987].
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In fact, Piron was able also to say something about the field over which V is
defined, but not much. In the end, Piron’s theorem is suggestive, but far from the
desired end, which is to characterize the lattice of subspaces of a Hilbert space as
the unique structure satisfying certain logical constraints.

Piron’s program made a huge step forward with the proof of the following
theorem, due to Solér

Theorem (Solér [1995]) If the lattice L in the statement of Piron’s
Theorem contains an infinite orthonormal sequence, then the vector
space in question is a Hilbert space over the reals, complex numbers,
or quaternions.

This result is an important contribution to Piron’s program, although there is
an obvious limitation to its applicability: it does not cover the case of finite-
dimensional Hilbert spaces (for example, those describing the spin of a particle, as
in §1.3).

2.2 From States to Hilbert Space

2.2.1 An Approach in Terms of Convex Spaces of States

We will now consider two approaches to Hilbert space that begin with the structure
of the space of states. The first begins with the observation that the states form
a convex set (§2.2.1.1). Our procedure will be to embed an arbitrary convex
set into a vector space, V (§2.2.1.2), and argue (in the subsequent sections) for
progressively adding more structure to V , until it has enough structure to support
a theorem to the effect that the convex set of states can in fact be represented as
density operators on a Hilbert space.

2.2.1.1 Convex Spaces of States Earlier we noticed that given any two
probability measures, p and p′, they can be combined to form a third, q = rp+(1−
r)p′, where 0 < r < 1. It is easily checked that q thus defined satisfies Kolmogorov’s
axioms (§7.5.6), if p and p′ do. Indeed, any convex combination (§7.1.10) of
probability measures yields another probability measure, called a ‘mixture’ of the
measures appearing in the convex combination.

The general idea, then, will be to take a convex space of states as fundamental.
At this point, we make no commitment about the space of states other than that
it is convex. We will then impose extra conditions on this space, eventually forcing
our space of states to be, in fact, the space of states on a Hilbert space. In other
words, we will have characterized the space of states (density operators) on a
Hilbert space.23

23The discussion in this section is largely an expansion and explanation of the program outlined
by Haag [1992, §VII.2]. The program has since taken on a new form, in the hands of Alfsen and
Shultz [2003], as briefly mentioned below.
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2.2.1.2 Embedding in a Vector Space So consider, to start, an arbitrary
convex set, S. It is mathematically natural and convenient to embed S into a
real vector space, V , in part because convex combinations are just a special type
of real linear combination, and the latter is naturally defined in the context of a
(real) vector space.

If S is generated by its extreme points, then our immediate task is easy. (An
extreme point of a convex set is a point that is not itself a convex combination
of other points in the set. S is generated by its extreme points just in case every
element of S can be expressed as a convex combination of extreme points.) In
that case, we can define the embedding by letting V be the free vector space
generated by the extreme points of S. (Intuitively, V is then all formal real linear
combinations of the extreme points of S.) However, this approach clearly requires
that we assume that S has extreme points; and while it does in quantum theory
as standardly understood, it is worth seeing that one need not assume so, but can
instead derive this fact from other considerations. (In the context of a physical
theory, where S is a set of states, the extreme points are just the pure states —
recall, also, §2.1.1.4.) So let V be a real vector space having S as a subset (i.e., S
is embedded in V — given the real linear structure of S, it should be clear that it
is always possible to find a vector space that contains a subset that is isomorphic
to S as a convex set; our problem here is not to show that there is such a V , but
to construct it from S, as above).

2.2.1.3 Sufficient Conditions for the Existence of Extreme Points

2.2.1.3.a Observables We will take an arbitrary observable, f , of our the-
ory to be a function from states to expectation values. That is, f(v) is the expec-
tation value of f in the state v. Indeed, after embedding the states in a vector
space, V , we will consider the observables to be (possibly a subset of the) real-
valued linear functionals on V . It is clear that observables, understood as maps
from states to expectation values, should be linear functionals, because for any
state, v =

∑
n wnvn (written here as a convex combination of states vn), we must

have f(v) = f(
∑
n wnvn) =

∑
n wnf(vn). Otherwise, f(v) would in general be

numerically different from the expectation value of f on a system randomly chosen
from the mixture

∑
n wnvn.

Let O be the set of observables. We need not (yet) make any commitments
about the contents of O except to require that it separate V ; that is, for any
non-zero v ∈ V , there is an f ∈ O such that f(v) 	= 0 (equivalently, if v1 	= v2

then there exists f ∈ O such that f(v1) 	= f(v2)).24 In S, this condition amounts
to requiring that O be rich enough to make probabilistic distinctions amongst
elements of S. To extend to all of V , assume now that O separates S, and note
that if O does not also separate all of V , then in fact V is ‘unnecessarily large’

24This condition can always be met — i.e., one can always find some linear functional that
does the job — for any normed vector space, by the Hahn-Banach theorem. Our space V will in
fact be normed.
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to embed S. For consider the subspace of all v such that f(v) = 0 for all f ∈ O.
Then consider the quotient space V/W . There is a homomorphism from V to
V/W that is an isomorphism from S to its image in V/W as convex sets. So we
can just as well work with V/W , and doing so in fact eliminates structure from V
that was not needed in order to embed S.

2.2.1.3.b Topology on the Embedding Space Therefore, we assume
that O separates V . We now introduce a topology (§7.5) for V . Here, the guiding
idea is that ‘infinitesimally small’ changes in the state should result in ‘infinitesi-
mally small’ changes in expectation values.25 We therefore introduce the coarsest
topology on V that makes all of O continuous. Call it the O-topology.26 In
this topology, it makes a certain amount of sense to require that S be compact
(§7.5.1).27 For example, that assumption guarantees that (the expectation values
of) observables are bounded, because the continuous image of a compact set is
compact.

2.2.1.3.c The Existence of Extreme Points Given these assumptions
about S and its embedding into a vector space, V , and the associated observables,
O, we can apply the following theorem from functional analysis:

Theorem (Krein-Millman; see Rudin [1973, p. 70]) Let S be a convex
subset of V , O a separating set of linear functionals on V , and let S
be compact in the O-topology. Then S has extremal points, and it is
the smallest closed convex set containing all of those points.

One says that S is the ‘closure of the convex hull of its extreme points’. In other
words, S has extreme points, and is ‘generated’ by them in the sense that S is the
closure of all convex combinations of extreme points. Hence every element of S
can be written as a convex combination of extreme points (pure states), or is the
limit of a sequence of such states.28

2.2.1.4 Further Properties of the Embedding Recall the prescription for
constructing the embedding space, V , as the free vector space over the extreme
points of S (§2.2.1.2) Now that we have established that S indeed has extreme
points, we can, almost, follow this prescription. The only addendum is that we

25This assumption, while apparently natural, is certainly not compelling. See §2.3.2 for dis-
cussion of this idea in the context of Hardy’s approach.

26A basis for this topology is given by all sets (‘open balls’), B, constructible as follows. Choose
v ∈ V , f1, f2, . . . , fn ∈ O, and ε > 0. B is then the set of all w ∈ V such that |fi(w)− fi(v)| < ε
for i = 1 . . . n.

27In the specific context in which we will soon work, compactness amounts to the assumption
that the identity — the linear functional that has value 1 everywhere — is an observable.

28Careful! Those familiar with quantum theory might be tempted to suppose that V is, or is
isomorphic to, the Hilbert space containing the statevectors for a system. It is neither. As we
will see (once we have defined a norm on V ), it is a vector space in which the density operators
form the unit sphere.
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wish V to be closed under the O-topology. Hence, V is constructed as the closure
of the free vector space over the extreme points of S. (By ‘closure’, here, we mean:
ensure that the closure of every open set in V is also in V .) In this case, the pure
states in S form a basis for V (because, in fact, the free vector space over the pure
states is in essence ‘all formal linear combinations’ of pure states).

Let us now insist that O contain a linear functional, I, that assigns the value 1
to every pure state (extreme point) in S. This I is unique (because the pure states
form a basis, and I is continuous by assumption and so is extended uniquely from
the pure states to all of V ). Now, let V + be the positive convex cone (§7.1.10)
generated by the pure states. The states in V are then identified as the elements
of V + that take the value 1 for I.

Indeed, I generates a norm on V in a natural way. For any v ∈ V +, define the
norm of v by ||v|| = I(v). Now, any v ∈ V can be decomposed as v1− v2 for some
v1, v2 ∈ V + (or is the limit of a sequence that can be so decomposed).29 Hence we
can define ||v|| (now for any v ∈ V ) as the infimum (over all such decompositions)
of ||v1|| + ||v2||, and require the norm to be continuous. V is thus a real Banach
space (§7.1.7), and (by construction) the norm on V assigns norm 1 to every state.
(We have now fulfilled our earlier promise that V would turn out to be a normed
space.)

2.2.1.5 Faces and Propositions To what do these states assign probabili-
ties? While we do not need to answer that question in order to finish the discussion
(at this level), it is instructive to do so nonetheless: the ‘propositions’ to which
states assign probabilities are faces of states in the convex set of states (§7.1.10).

In classical mechanics, one can form a face of a convex set by taking the closure,
under convex combination, of a set of pure states. In quantum theory, the process
of purification will in general add new pure states to the set, and so is essential
for the construction of the face. (Recall, as well, that the classical states form a
simplex, while the quantum states do not — see §1.2.7.) The physical idea behind
the definition of a face in both cases is something like ‘the set of all states that one
can create (from some initial set) via mixing, plus the set of all states of which the
resulting mixed states could, in principle, be a mixture’.

There is a natural connection between faces of states and propositions about, or
properties of, a physical system. (Here, as above, we shall use the terms ‘property’
and ‘proposition’ interchangeably. Also as before, we begin with the minimal
assumption that the set of propositions is a poset, the partial order corresponding
to implication.) In particular, let us say that a proposition (about a system, at
a time) asserts that a measurement on the system reveals that the state of the
system is in some face of states.

Note that an extremal point in the space of states is a (singleton) face, and vice
versa. Hence one sort of proposition is of the form ‘the system is in the state v’,

29Sketch of a proof: the pure states span V , so write v as a linear combination of the pure
states, and separate it into a part with positive coefficients and a part with negative coefficients.
The former is clearly in V +. The latter, multiplied by −1, is also in V +.
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for any pure v. This association makes sense, because pure states are supposed to
be, intuitively, states of maximal information, and if propositions correspond to
faces, then the most specific propositions are the singleton faces (extremal points).

The idea behind the general association between propositions and faces is the
following. Suppose you are handed an ensemble of systems, all in the same state,
and asked to determine in what state the ensemble was prepared. Given the
association between maximally specific propositions and pure states, if you can
determine that some maximally specific proposition is true of every member of
the ensemble, then you are done — the state is the corresponding pure state. But
suppose that there is no such proposition, i.e., no maximally specific proposition
true of every member of the ensemble. Then you have been handed a mixed state,
but a mixture of what? In general, you will be able to determine with certainty
only that the state was created by mixing states from the smallest face containing
the actual mixed state (hence, the smallest proposition to which the actual state
assigns probability 1).

In terms of standard quantum theory, the point here is that for any mixed state
(density operator) W , the logically strongest proposition that is rendered certain
by W is just ranW , here generalizing the notion of ‘range’ to mean ‘the image
of W under all vectors in the Hilbert space’. (It should come as no surprise that
ranW = ∨nPn, where Pn are the spectral projections of W .) In other words,
ranW is in fact the subspace of pure (vector) states that forms the smallest face
containing W .

2.2.1.6 Hilbert Space representations of faces of cones

2.2.1.6.a Homogenous cones Consider the automorphisms on the set of
states (that is, any map from the set of states to itself that preserves the con-
vex structure). Such maps plausibly correspond to the possible state-transitions.
Moreover, they are naturally extended to linear maps on V that are automorphisms
of V + (i.e., such maps take V + to itself, and preserve convex structure of V +; hence
they preserve the fact that V + is the positive convex cone generated by the pure
states). The extension to V + is effected simply by the condition that for any such
automorphism, f , any real number r, and any state, v, f(rv) = rf(v). Recalling
that every element of V can be written as a linear combination of elements of V +,
one can see that f is thus naturally extended to a linear transformation on V .

A cone is said to be ‘homogeneous’ with respect to this set, T , of transformations
if for any two non-extremal points, v, v′ inside the cone, there is a transformation
in T that takes v to v′. The physical idea here is that there is some way for a
system to evolve from any non-extremal point to any other non-extremal point.

2.2.1.6.b The Case of Finitely Many Pure States While we would not
want to assume that there are only finitely many pure states, nonetheless the
following theorem is extremely suggestive:
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Theorem (Vinberg [1965]). The faces of a self-dual,30 homogeneous
cone with finitely many extremal points are in one-to-one correspon-
dence with the subspaces of some Hilbert space (over the real numbers,
complex numbers, or quaternions).

Hence, if one is convinced that the states of a theory must form a convex set
with the properties discussed above, one is, in the sense given by this theorem,
committed to the Hilbert space formalism.

2.2.1.6.c The General Case Alfsen and Shultz [2003, p. 414] have ex-
tended this program to eliminate the unrealistic (and indeed false) asusmption
that there are only finitely many pure states. Their main result involves a number
of technical assumptions about the structure of the convex set of states that we do
not have the space to articulate here. Moreover, in the end, they arrive not quite
at a characterization of Hilbert space (at least not directly), but at a characteri-
zation of the state spaces of a C∗-algebra, although, via a GNS construction, they
can get to Hilbert space from there.31

2.2.2 An Approach in Terms of Pure States and C∗-Algebras

In this sense (i.e., in dealing ultimately with the state-spaces of C∗-algebras), the
theorem of Alfsen and Shultz is similar to a theorem due to Landsman [1998,
Theorem 3.9.2 and Corollary 3.9.3], which we will now consider, albeit briefly and
(again) in outline.

Landsman argues that the set of pure states should be endowed with two distinct
structures, dynamical and probabilistic, and that the two must be connected in
the right way. He then adds what is supposed to be the characteristically quantum
condition (described below), and arrives at a theorem that characterizes the state
spaces of C∗-algebras.

2.2.2.1 The Poissonian Structure

2.2.2.1.a State Spaces as Poisson Manifolds The first sort of structure
corresponds to the dynamics that we discussed earlier. Recall our discussion of
the Heisenberg equation (§1.5.2.3.c), and specifically the fact that (i times the)
commutator has the algebraic form of a Poisson bracket. In outline, the general
theory of dynamics generated by Poisson brackets goes as follows.

We begin with some space (indeed, manifold — §7.5.2) of states, M . Given M ,
one defines the evolution of observables in terms of a Poisson bracket defined on
the infinitely-differentiable real-valued functions on M , C∞(M) (the observables),
as a bilinear operation, {, }, on C∞(M). (Recall (64), and see Butterfield, Ch. 1,

30We pass over the issue of the physical motivation for this condition. See §7.1.10.
31For more on C∗ algebras, GNS-constructions, and related matters, see Landsman, Ch. 5,

Halvorson, Ch. 8, and Emch, Ch. 10, this volume.
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§5, this volume, for further discussion.) Together with a choice of a scalar function
H : M → R as the Hamiltonian, one can use this definition of the evolution of
observables to define an evolution (of states) on M (analogously to the equivalence
between the Heisenberg and Schrödinger pictures). For a given Hamiltonian, the
possible dynamical paths from M , thus defined, are the ‘Hamiltonian curves’ of
the system.

Keep in mind that this construction is supposed to be very generic. We are
essentially laying down ‘what one means’ by a certain kind of dynamical system.
To this end, Landsman puts additional constraints of ‘well-behavedness’ on the
space of states as a Poisson manifold, which we bypass here.

2.2.2.1.b Symplectic Leaves It can happen that some portions of a Pois-
son manifold are ‘inaccessible’ from others. In particular, there may be no (piece-
wise smooth) Hamiltonian curve connecting them, for any Hamiltonian. Let us say
that two points, x, y ∈M of a Poisson manifold 〈M, {, }〉 are symplectically equiv-
alent if for some Hamiltonian they lie on a single (piecewise smooth) Hamiltonian
curve. This relation is clearly an equivalence relation, and therefore partitions M
into ‘symplectic leaves’ (see Butterfield, Ch. 1, §5.3.3, this volume).

2.2.2.2 The Transition Probability Structure

2.2.2.2.a State Spaces as Transition Probability Spaces The only dy-
namical structure on a classical Hamiltonian phase space is its Poissonian struc-
ture (again see Butterfield, Ch. 1, especially §5.2.4, this volume). However, in
standard quantum theory, there are two types of evolution: the continuous, de-
terministic, evolution described by the Poisson bracket, and the discontinuous,
stochastic, ‘quantum jumping’ from one state to another, often associated with
‘measurement’. (See §5.4.3.)

This latter structure is reflected in the fact that, in Landsman’s scheme, the
quantum state space must be a ‘transition probability space’, meaning that there
must be maps, p, from pairs of elements in the space to [0, 1] that satisfy: p(v, w) =
1 if and only if v = w; and p(v, w) = 0 if and only if p(w, v) = 0. (The expression
p(v, w) is read as ‘the probability of a transition from v to w’.) In addition, we
require that these probabilities be symmetric: p(v, w) = p(w, v).

2.2.2.2.b Sectors A sector of a transition probability space is a region of
the space that is isolated from the rest. That is, for Q a sector of states, p(v, w) = 0
for all v ∈ Q and all w ∈ Q′ (the complement of Q in the set, S, of all states).
Note that the symmetry of p implies that a system cannot make a transition to or
from a sector.

2.2.2.2.c Superpositions Let Q ∈ S. We define Q⊥ by

Q⊥ := {v ∈ S|p(v, w) = 0∀w ∈ Q}.(65)
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That is, Q⊥ is the set of all states that are inaccessible (via a single probabilistic
transition) from every state in Q. We can use this definition to characterize a
generic notion of a ‘superposition’, as follows: the class of all ‘superpositions’ of
the states v and w is {v, w}⊥⊥ (see [Butterfield, 1993]).

2.2.2.3 Landsman’s Theorem Landsman shows, roughly, that the state space
of a C∗ algebra is uniquely determined by its Poissonian and transition probabil-
ity structure, assuming (among other things) that symplectic leaves correspond to
sectors. He then characterizes quantum theories as those in which the ‘2-sphere’
property holds, i.e., condition (iv) in the theorem as stated below. Classical the-
ories, on the other hand, are characterized by the condition that the transition
probabilities are trivial, i.e., p(w, v) = δvw. Notice that in this case, the sectors
are singeltons. We will see a similar characterization of the difference between
quantum and classical systems below (§2.3.2).

In effect, then, Landsman [1998, 104–106] proves roughly the following theo-
rem:32

Theorem (Landsman [1998, 104–106]). A pure state space, S, is the
pure state space of a quantum system if and only if: (i) S is a Poisson
manifold; (ii) S is a transition probability space; (iii) the symplectic
leaves of S correspond to the sectors of S; (iv) for any v, w ∈ S,
{v, w}⊥⊥ is isomorphic as a transition probability space to the space
of statevectors in C

2.

I have already discussed conditions (i) and (ii). Condition (iii) is a requirement
that what cannot happen by continuous evolution cannot happen by stochastic
evolution either (and vice versa). In other words, if it is ‘dynamically impossible’
to get from state v to state w, then the probability of a stochastic transition from
v to w is 0 (and vice versa).

Condition (iv) is, of course, the one that does a lot of the work getting us to
the Hilbert space formalism, for it is essentially the requirement that the set of
all ‘superpositions’ of a pair of states forms a transition probability space that
looks like the quantum-mechanical pure states on the space C

2, discussed earlier
(§1.3.3.2) in the context of spin. Whether or to what extent this more or less
explicit reliance on quantum theory is ultimately satisfactory is a matter of taste,
but it is, at any rate, worth noticing that what is ‘esssentially quantum’ about the
Hilbert space formalism can (more or less) be reduced to this assumption.

2.3 Hardy’s Axioms

Finally, we consider a result from Hardy [2001; 2002], again in the tradition of
trying to explain the origins of the quantum formalism. This approach also begins

32The conditions of the theorem are not stated here in full rigor. In addition, the proof of the
theorem requires a few other technical assumptions whose immediate physical import is perhaps
not clear. I have left them out.
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from the notion of a state space, but its framework differs sufficiently from the
previous two approaches that we consider it separately.

2.3.1 The Framework

2.3.1.1 States as Probabilistic Predictors Much as has been done already
in the previous sections, Hardy takes states in a physical theory to be the deter-
miners of probabilities associated with each possible outcome of any measurement
that may be performed by a given preparation of the system. (States are thus asso-
ciated with preparations.) Hence, for a given preparation, knowing the associated
state allows one to predict the probabilities for the results of any measurement.

2.3.1.2 Degrees of Freedom One mathematical characterization of a state
is as a ‘list’ of all of these probabilities. (Of course, in general there are at least
uncountably many items in the ‘list’.) However, in general the state space has
some structure that allows states to be somehow characterized by a shorter list of
what Hardy calls ‘fiduciary’ probabilities. In a given theory, we define the degrees
of freedom, K, to be the smallest number of fiduciary probabilities that is sufficient
to determine the state.

2.3.1.3 Dimension In addition, there may be sets of states that can be dis-
tinguished one from another with probability 1 in a single measurement. In other
words, for each pair of states, v, w, in the set, if v assigns non-zero probability to
some outcome of the measurement, then w assigns probability zero to the same
outcome. There will in general be a maximum number, N , of states that are
distinguishible in this way. Hardy calls N the dimension of the space.

2.3.2 The Axioms

Hardy proposes five ‘axioms’. The first axiom simply underwrites our earlier as-
sumption that states can be associated with preparations, that is, that there are
stable relative frequencies for the outcomes of measurements for a given type of
preparation. The remaining axioms are, as adapted from Hardy (2001):

Subspaces For any integer, N , there exist systems with dimension N . Moreover,
all systems of dimension N , and all systems with higher dimension but whose
state restricts the system to an ‘N -dimensional subspace’, have the same
properties.

Composite Systems A composite system consisting of systems A and B, with
degrees of freedom and dimensions KA,KB and NA,NB respectively, have
K = KAKB degrees of freedom and dimension N = NANB .

Continuity For any dimension, N , any system of dimension N , and any two
pure states, v and w, of such a system, there exists a continuous reversible
transformation (continuously connected to the identity) from v to w.
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Simplicity For given N , K takes the minimum value consistent with the other
axioms.

The motivation for some of these axioms is relatively clear, and for others, not as
clear. We will not discuss them all here. ‘Simplicity’ comes into play because the
other axioms imply that K = Nm for some integer m. For m = 1, the continuity
axiom is violated, and one arrives at classical probability theory. For m = 2, one
arrives at quantum theory.

The continuity condition is clearly significant, therefore. One understanding
of it that Hardy has encouraged is that it expresses the desideratum that ‘small
changes’ in the state should entail ‘small changes’ in the predictions based on that
state. However, it is not clear whether this principle is physically compelling.
After all, in Hardy’s sense, the state space of classical physics is not continuous
(cf. the beginning of §2.2.2.3), and yet in general one does not suppose that there
is somehow a serious problem with the relationship between changes of state and
changes of prediction based on that state.

A different understanding of continuity connects it with superpositions. The
basic point is easiest to visualize geometrically, and we will leave the matter at
that here. The quantum state space is ‘continuous’ (in Hardy’s sense) because for
any two pure states, there is another pure state that is ‘between’ them, and in fact
this ‘middle’ state is a superposition of the two original states. In other words,
continuity holds precisely because the superposition principle holds. Continuity
fails in the classical theory because the superposition principle fails there. From
this point of view, it is less surprising — though not necessarily less important
— that continuity is what makes the difference, in Hardy’s framework, between
classical and quantum theories.

3 EMPIRICAL CONTENT

In this section, we will discuss the issue of how the formalism of quantum theory
gets empirical content. That discussion will lead naturally to a discussion (§4) of
uncertainty, because the particular way that we will, here, understand how the
formalism gets empirical content leads naturally to the uncertainty principle (§4),
as it should. Hence this section is not merely expository. Implicitly, we will develop
an argument in favor of a particular way of understanding how the formalism gets
its empirical content, based on the fact that it leads naturally to uncertainty.

One question about empirical content concerns how measurement (or empirical
observation more generally) is modeled in the theory. Without such a model, it
is hard to see how the theory can make predictions about empirical observations.
Our first task (§3.1) will be to say something about this issue. But the more
difficult — and arguably more philosophically interesting — issue concerns how
any element of the formalism is connected with empirical fact at all. The remainder
(and majority) of this section will concern that issue.33

33Much of that material is adapted and revised from Dickson [2004a; 2004b].
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There are two elements in the present approach to establishing a connection be-
tween the formalism and its empirical content: symmetries, and reference frames.
These elements are connected — ‘legitimate’ reference frames are connected to
one another via certain symmetry transformations — but I will, for the most part,
keep them separated. In this section, I first frame the issue of empirical content in
terms of POVMs (§3.2), then discuss the role of symmetries (§3.3) and reference
frames §3.4) in the definition of physical quantities, and finally I briefly sketch an
account (§3.5) of how the formalism gets its empirical content.

3.1 Measurement

3.1.1 The Standard Account of Measurement

One frequently encounters the following account of measurement in quantum the-
ory. Suppose that the state of the system is W (a density operator). Suppose that
one measures an observable represented by the POVM E : B(S)→ B(H)+. Then
the result of the measurement will be some ∆ ⊂ S, with probability Tr[E(∆)W ].
Furthermore, the state after measurement is just the ‘projection’ of the original
state onto the result. In the case where the POVM is a PVM, the projection is
given by E(∆)WE(∆) (ignoring normalization). Otherwise, the usual procedure is
to define ‘measurement’ operators M(∆) =

√
E(∆), in terms of which the ‘projec-

tion’ (a misnomer, in this case) is (again ignoring normalization) M(∆)WM∗(∆).
Notice that the latter prescription is equivalent to the former for PVMs.

While useful for making predictions, this account of measurement is completely
unsatisfactory, from a foundational point of view. One problem, as it has been
pointed out repeatedly by both physicists and philosophers, is that measurement
is itself a physical process, and in particular a physical interaction between two
(or more) physical systems, one of which we call an ‘apparatus’ and the other of
which we call the ‘measured system’. Hence, if quantum theory is our best theory
of interactions amongst physical systems, it should be capable of describing this
interaction in such a way that the result — the states of the two systems at the
end of the interaction — are as stated above.

3.1.2 Impulsive Measurement

There is indeed an account of measurement along those lines.34 It is the so-
called ‘impulsive model’ of measurement. Suppose we are going to measure an
observable represented by the self-adjoint operator, F . For simplicity, suppose that
the measured system is initially in the pure state |ψ〉 and the apparatus is in the
pure state |χ〉. The compound system is thus in the state |Ψ〉 = |χ〉|ψ〉. Suppose
that apart from the interaction between them, each of these systems evolves freely,
with (free) Hamiltonians HS and HM. The total Hamiltonian for the combined
system is thus Htotal = HS + HM + HI, where HI is the interaction Hamiltonian

34For an extended classic discussion, which is more or less followed here, see Bohm [1951,
ch. 22, especially §5].
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(i.e., it represents the energy exchanged between the systems). Finally, let Π be
the momentum observable for the apparatus.

Now, for our model of measurement, we take HI = g(t)Π⊗F (henceforth the ⊗
is left implicit), where g(t) is an interaction function given by g(t) = γf(t), with γ
a constant, the ‘interaction strength’, and f(t) is a function that is zero except for
t between 0 (when the measurement-interaction begins) and τ (when the measure-
ment ends), and f(t) is (purely for convenience) normalized, i.e.,

∫ τ
0

f(t)dt = 1.
The Schrödinger equation (1.5.2.3.a) may therefore be written:

d

dt
|Ψ〉 = −i

(
HS + HM + γf(t)ΠF

)
|χ(t)〉|ψ(t)〉,(66)

where now we have explicitly indicated the time-dependence of the states of the
measured system and the measuring device.

For an ‘impulsive’ measurement, τ is very small and γ is very large. (The inter-
action is quick and strong.) If we may assume that the apparatus and system have
low or zero momentum, then during the interval [0, τ ], the influence of the inter-
action Hamiltonian on the evolution of the compound system completely swamps
the influence of the free Hamiltonians, so that, during this period, we have

d

dt
|Ψ〉 � −iγf(t)|χ(t)〉|ψ(t)〉.(67)

We can readily solve this equation35 to get the compound state at the end of the
interaction (immediately at the end, before the free Hamiltonians take over again):

|Ψ(τ)〉 � exp
[
−i

∫ τ

0

γf(t)ΠF dt

]
|χ(0)〉|ψ(0)〉.(68)

Write |ψ(0)〉 in terms of the (normalized) eigenstates, |fn〉, of F (which, for sim-
plicity, we will assume to be maximal): |ψ(0)〉 =

∑
n〈fn|ψ(0)〉|fn〉. (See the last

paragraph of 7.1.4). Then (68) becomes

|Ψ(τ)〉 �
∑
n

〈fn|ψ(0)〉 exp(−iγfnΠ)|χ(0)〉|ψ(0)〉,(69)

where fn is the eigenvalue of F corresponding to the eigenvector |fn〉. Now define

|ξn〉 = exp(−iγfnΠ)|χ(0)〉.(70)

Because γ is large, these states are effectively orthonormal:36

〈ξn|ξm〉 = 〈χ(0)| exp[−iγ(fn − fm)P |χ(0)〉 � δnm.(71)

35The solution in (68) follows only because the interaction Hamiltonian is given in terms of
a scalar function of time. General time-dependent Hamiltonians cannot be treated in this way.
See, e.g., Cohen-Tannoudji [1977, 172–175].

36The second equality in (71) holds by the Riemann-Lebesque lemma, under the assumption
that the apparatus has a continuous spectrum for P .
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As we will see below in a more generic context (78), because Π is the ‘momentum’
of a pointer, the states |ξn〉 are ‘spatial translations’ (i.e., translations in the value
of the ‘pointer-position observable’) by an amount γfn (and therefore, for large γ,
they are macroscopically distinguishable states). The upshot of this discussion is
that the final state of the compound system is

|Ψ(τ)〉 �
∑
n

〈fn|ψ(0)〉|fn〉|ξn〉.(72)

Notice that this state is entangled, and indeed that it represents a perfect corre-
lation (§1.2.6.4) between the value of F for the measured system and the pointer-
position.

In order for this model to match the prescription of the previous subsection,
we must adopt from that prescription the ‘rule’ that when the apparatus shows
the result |ξn〉, the state of the system ‘collapses’ to |fn〉. (Or, the state of the
compound system is projected onto I ⊗ |ξn〉〈ξn|, which, because of the perfect
correlation, will have the effect of making the compound state into the product
state |fn〉|ξn〉.) I will discuss this ‘collapse’ rule in §5.4.3.

Does this model apply to all, or indeed to any, actual ‘measurements’ made
by actual physical devices? To a reasonable degree of accuracy, probably. But
the point here is not to make such a claim, and certainly not to catalogue the
varieties of physical measurement and the ways in which they might be modeled
quantum mechanically. Creating and justifying such models is the business of
physics. The point, here, is that quantum theory can, to some degree, supply
a model of measurement. It need not rely on the non-account of the previous
subsection.

One final observation about this model: it models a type of measurement in
which the state of the system is in a sense unchanged by the interaction with the
measuring device: if the measurement is repeated, the probability of getting the
same result the second (and subsequent) times is 1. Notice that, contrary to the
occasional declaration by physicists or philosophers, in this sense at least, measure-
ment does not necessarily ‘disturb’ the state of the measured system. Following
Pauli [1958], such measurements are often called ‘measurements of the first kind’.

Of course, measurement sometimes does disturb the measured system. Indeed,
sometimes it destroys the measured system. Measurements in which the state of
the system is disturbed by the process of measurement (i.e., measurements that
either are not repeatable, or whose results will not necessarily be the same upon
repetition) are often called (again following Pauli) ‘measurements of the second
kind’.

3.1.3 Weak Measurement

Once we begin modeling measurement as an actual physical process, it becomes
natural to ask what would happen if the physical circumstances were different.
One natural case to consider is where the measurement is ‘adiabatic’; that is, the
interaction is weak, and takes a long time (on some appropriate scale).
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One scheme for realizing this idea has been called ‘protective measurement’
[Aharonov et al., 1993]. The idea is nicely illustrated by the case where |ψ(0)〉
is the ground state of a harmonic oscillator (the crucial feature of which, for us,
is that there is a finite energy difference between the possible states). When τ
is large and γ is small, of course we cannot ignore the evolution due to the free
Hamiltonians. Let the interaction Hamiltonian be HI = g(t)QF . The solution to
(66) in this case is

|Ψ(τ)〉 = exp
[−i

(
HSτ + HMτ +

∫ τ
0

γf(t′)QF dt′
)] |χ(0)〉|ψ(0)〉(73)

=
∑
n exp[−i(HSτ + HMτ + γQF )]〈fn|ψ(0)〉|χ(0)〉|ψ(0)〉.(74)

Now, because there is a finite difference in energy between the ground state and
any excited state of the measured system, one must add a finite amount of energy
to the ground state in order to change it. According to the quantnum-mechanical
adiabatic theorem (Schiff [1968, 289–291]), if the energy added to a system is small
enough and spread out over a long enough time, it is not additive (i.e., the total
energy added does not get larger and larger), but adiabatically negligible. Indeed,
the probability amplitudes for states other than the ground state can be made
arbitrarily small, with suitably small γ and large τ . In other words, the term
exp[−iγQF ] has no net effect on |ψ(0)〉, and we need consider its effect only on
|χ〉. (Note that there is a possible effect on |χ〉 if we presume that the energy
spectrum for |χ〉 is continuous, or effectively so.) Hence (74) becomes

|Ψ(τ)〉 �
∑
n

|φn(τ)〉|ψ(τ)〉 := |χn(τ)〉|ψ(τ)〉,(75)

where we have defined |φn(τ)〉 = exp[−i(γfnQ + HMτ)]|χ(0)〉.
Notice that the state (75) is a product state — the interaction effects only the

apparatus, and does not entangle the measured system with it. To see how this
change in the state of the apparatus can be used to gain information about the
system, recall (59). Taking the expectation value of I ⊗ Π (where here Π is the
momentum conjugate to Q) in the state |Ψ(τ)〉 from (75), we find that

d

dt
〈χ(τ)|I⊗Π|χ(τ)〉 = −g(t)〈ψ(τ)|F ⊗ I|ψ(τ)〉.(76)

In other words, the expected value of momentum for the apparatus is an ‘indicator’
of the expected value of F for the measured system. If the system is in a stationary
state (i.e., |ψ(t)〉 = |ψ(0)〉), then we could, for example, make many ‘protective’
measurements of F , measure the average value of the momentum of the apparatus
after the interaction, and gain information about the expected value of F for the
measured system.

There are two important remarks to make about this scenario. First, as many
have pointed out, in order for the scheme to work, one must know the state of the
measured system in advance. (In particular, in this case one must know that it is
the ground state of the harmonic oscillator.) Otherwise, we will not know that it
is ‘protected’ (i.e., will not change state as a result of the interaction). So there
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is an important sense in which the protective measurements do not yield any new
information about the system. Moreover, it has been argued [Uffink, 1999a] that
only observables, F , that commute with the measured system’s Hamiltonian can
be measured in this way.

Nonetheless, despite these limitations, there remains the question of what ex-
actly is going on in such an interaction. In the case of impulsive measurements (of
the first kind, anyway), if we measure F on a system whose value for F was just
measured, we will gain no new information about the value of F for the measured
system. Nonetheless, we might be tempted to explain the result of the second
measurement thus: the measuring device interacted with the system in such a way
that its indicator-state became correlated with the state of the system, and in par-
ticular with its value for F . That is, the second interaction was, again, physically
a measurement, albeit one that was bound to give us no new information. One
might, then, be tempted to say a similar thing about protective measurements.
True, they tell us nothing that we did not already know. But how are we to un-
derstand what is going on during such interactions? One plausible understanding
is that the apparatus’ state is changing because it is somehow sensitive to the
expected value of F on the measured system (even though, of course, we already
know what that expected value is). Indeed, what else could explain the change in
the apparatus’ state?

Second, protective measurements are an explicit model of a more general class of
measurements, so-called ‘weak measurements’.37 The general scheme (somewhat
in parallel with the general scheme for standard measurements, of which impulsive
measurement is one model) is as follows. Consider a quantum system known
to be in the state |ψ1〉 at time 0, and known to be in the state |ψ2〉 at time
t. Typically, this knowledge is obtained by what is often called ‘pre- and post-
selection’. That is, the state |ψ1〉 is ‘pre-selected’ (prior to what will be the ‘weak
measurement’ of F on the system) by performing a standard (e.g., impulsive)
measurement on some ensemble of systems and selecting just those for which the
result of this first measurement is |ψ1〉. (In particular, one might measure the
observable corresponding to |ψ1〉〈ψ1| then select just those systems for which the
result is 1.) Then, after the ‘weak measurement’, one again performs a standard
measurement on the ensemble, selecting just those systems for which the result
corresponds to |ψ2〉. The resulting ensemble of systems is said to be ‘pre- and
post-selected’. For any given observable represented by the operator F , define the
‘weak value of F on the pre- and post-selected ensemble’ by

〈ψ2|F |ψ1〉
〈ψ2|ψ1〉 .(77)

Note that in the protective measurement discussed above, we presumed that the
state of the measured system was unchanged over time, so that the weak value of
F was just its expectation value in the state |ψ(0)〉.38

37An early paper on weak measurements is [Aharonov et al., 1987]. See also note 38.
38 The very notion of ‘weak values’, not to mention the interpretation of these values, is con-
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There is, of course, a great deal more to be said about measurement. Later
(§5), we will consider perhaps the most important philosophical issue concerning
measurement, namely, the measurement problem (which has already made an early
appearance in the form of our barely suppressed skepticism about the collapse of
the state after an impulsive measurement). For now, however, we will rest content
with the observation that, barring problems to arise later, quantum theory provides
a rich framework in which to describe measurements.

3.2 The Issue of Empirical Content in Terms of POVMs

Describing measurements is part, but only part, of the story about how the formal-
ism is connected with empirical observation. Another part of the story concerns a
more general question about the connection between formalism and physical fact.
For example, we have been allowing observables such as Su to ‘represent’ spin in
the u-direction, but what precisely is this relationship of ‘representation’? How
may the connection between formalism and physical fact be made, or understood?
(Notice that the accounts of measurement above already presuppose an answer to
this, more fundamental, question.)

It is crucial to understand that the issue here is not about how to engineer a
spin-measuring device, for example. Rather, it is about what it means to ‘have’
spin-up in the u-direction (for example), and how this meaning is captured in the
formalism. Supposing that there are no limitations of engineering, there remains
a question about what laboratory procedures correspond to ‘measuring Su’, for
example. Below, we will offer a partial answer to this question.

Recall that, considered as POVMs, observables are maps from (Borel sets of)
‘the possible values’ to positive operators. Another way to put the question above,
then, is in terms of the empirical meanings of the mathematical elements in the
domain of this map. (Once this question is answered, then, for example, the prob-
ability calculus associated with the elements in the range of the map becomes a
calculus with empirical content.) Indeed, one advantage of conceiving of observ-
ables as POVMs (apart from the greater generality of this approach) is that it
affords greater precision to a discussion of the issue of which parts of the for-
malism are, in which contexts, doing the work of ‘representation’. For a POVM
E : B(S) → B(H)+, the elements of B(H)+ are doing the representing, and the
elements of B(S) (indeed, ultimately, S) are, in a sense, what is being represented.

Why we represent with elements of B(H)+ is a question that we have addressed
already in §2 (though certainly it has not been conclusively answered). But what
is the physical interpretation of the domain of the map E, and how are we to

troversial. A recent discussion by the main proponent (and co-author), with plenty of references
to prior work, both pro and con, is Aharonov and Botero [2005]. Note that Aharonov and other
proponents often discuss weak values in the context of a ‘two-state-vector’ formalism for quan-
tum theory (which concerns pre- and post-selected systems and is supposed to be time-reversal
invariant) that is itself controversial; however, the notion of a weak value is not irrevocably tied
to that approach to quantum theory, but only to the idea of a pre- and post-selected ensemble,
the operational meaning of which, at any rate, is clear enough.
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understand the statement that some element in its domain is ‘represented by’
some element in its range? What, in other words, is the relationship between
the elements of the mathematical formalism that we have described and physical
matters of fact? And finally, why do we pick one map (POVM) rather than
another to represent some given physical quantity? The next section (§3.3), on
symmetries, and the following one (§3.4), on reference frames, introduce material
that will eventually contribute to a sketch of a story (§3.5) about the empirical
content of quantum theory, one that addresses, or suggests ways to address, some
of the issues raised in this section.

3.3 Symmetries

3.3.1 Groups as Symmetries

There is a traditional account of one way that groups have been related to empirical
content.39 Take any group, G, and consider its action on a set, S. If two elements
of S are connected by an element of G, then call them ‘equivalent’. One can readily
verify that G thus paritions S into equivalance classes, and we can say, then, that
G is a group of ‘symmetries’ on S, in the sense that elements of S connected by
an element of G are in some important sense ‘the same’. (If, according to some
theory of the elements of S, distinct elements within the same equivalence class in
S can have ‘importantly’ distinct properties, then in this theory, G would arguably
not be a symmetry. What one means by ‘important’ is subtle, but in the context
of this discussion it could, for example, mean ‘empirical’, or ‘observable’.) For
example, let the elements of S represent the positions of all of the particles in the
universe (i.e., S is a configuration space for the universe). A spatial translation
of a point in S results in a universe that is, arguably, no different, empirically
(because all distances and other spatial relations amongst the particles stay the
same).

3.3.2 Groups and Observables

The (outline of an) approach to empirical content that we shall propose is given,
in part, in terms of groups of transformations on S (considered as the domain of
a POVM, E), and the requirement that E in a sense preserve the behavior of S
under those transformations.40 To get this view off of the ground, we require (at
least!) the following two things of a quantum theory: (1) a faithful representation
of the relevant groups on a Hilbert space, and (2) a map from B(S) to B(H)+ that
in some relevant sense ‘preserves’ the action of these groups.

39Here I am considering groups primarily as transformations on the set of states. One can also
think of them in terms of formal transformations of physical laws. For more discussion of this
and related points, see Brading and Castellani, Ch. 13, this volume.

40The view described here has been strongly influenced by discussions with Scott Tanona, and
by Tanona [2002; 2006]. (Tanona’s view is distinctive, and differs from the one presented here
in important ways.) Indeed, it is largely due to those discussions that I began to develop a view
about this matter.
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Let us consider these points in the context of an example, the Galilean group,
G, and more specifically, the spatial translations, A, and boosts, V (i.e., ignoring
rotations and temporal translations). For any a ∈ A and b ∈ V, let Ua and Vb be
the corresponding elements of a faithful representation of A and V, respectively.
It is, at this point, an open question whether there exist faithful representations
of A and V on a given Hilbert space, i.e., whether requirement (1), above, can be
met. On an infinite-dimensional space, there are in fact operators P (momentum)
and Q (position) that do the job:

Ua = e−iPa

Vb = e−iQmb,(78)

respectively, where m is the mass of the particle, and appears here because mo-
mentum is mass times velocity.41

Notice that positions are translated by the action of A and invariant under the
action of V. The converse holds for velocties (and therefore, of course, momenta).

Now, let EQ : B(R3) → B(H)+ be the POVM for position and consider the
action (§7.6.7) of G on R (or R

3 — see note 41), understood as representing
positions of a particle.42 In that case, the requirement (2) above amounts to the
requirement that the quantum-theoretic representation of position have the same
properties:

UaEQ(∆)U−1
a = EQ(αa(∆)) (covariance)

VbEQ(∆)V −1
b = EQ(∆) (invariance)

(79)

for any a ∈ A and any b ∈ V, where αa is the action of a on B(R3). Corresponding
conditions must hold for EP , the POVM for momentum (i.e., it should be invariant
under translations and covariant under boosts). Note that at this point, we do not
presume that the P and Q in (79) are those from (78). Indeed, these conditions
(79) turn out to be powerful enough on their own to determine the maps EQ
and EP , as well as the representations (78) (up to unitary equivalence). We shall
return to this point below. Here, we take it as motivation for defining ‘position’ and
‘momentum’ in terms of (79) (and the corresponding conditions for momentum).

One might have either of two objections at this point. First, where did these
requirements come from? Why do we insist that position must have this particular

41 One normally says that position is the ‘generator of translations’ and momentum is the ‘gen-
erator of boosts’. The reason ultimately has to do with the fact that the momentum (position)
operator is involved in the expression for an infinitesimal translation (boost). The expressions in
the text for finite translations and boosts are essentially integrals of their infinitesimal counter-
parts. Note, also, that (78) is given in one spatial dimension only. Replacing P and Q with the

‘vectors’ of operators �P = (Px, Py , Pz) and �P = (Px, Py , Pz), and the parameters a and v with

vectors (from R
3) �a and �b, we would have the three-dimensional version. Note, for example, that

these changes do not change anything about the definition of a continuously parametrized group
in §7.6.4.

42G naturally acts on the phase space in classical physics, but we can of course consider its
action on the reduced space of position or velocity.
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invariance and covariance, even in the classical case, or at all? The answer is that,
at least in this discussion, we are taking covariance with respect toA and invariance
with respect to V to define what we mean by position. For example, if the position
of a particle is �x in a reference frame F (below we will consider in more detail the
role of reference frames in this discussion), and if frame F is related to frame F ′ by
a spatial translation �a, then the position of the particle in frame F ′ is �x−�a. The
seeming triviality of this feature of position is, one might suppose, a consequence
of the fact that it is part of what ‘position’ means. That is, an observable (POVM)
that lacked this feature would, ipso facto, not be ‘position’. Similar remarks will
hold for boosts, and again for the relationship between momentum on the one
hand and translations and boosts on the other. Corresponding remarks hold for
other observables, such as angular momentum and spin.

Second (objection), by insisting that position ‘mean the same thing’ in the con-
text of quantum theory (i.e., that the POVM respect, in the relevant sense, the
action of the (representation of the) Galilean group), are we not thereby prevent-
ing ourselves from learning, perhaps, that position is ‘very different’ from what we
thought it was? (A similar remark holds, of course, for momentum, and indeed
for the hosts of other physical quantities that can be defined in this way.) There
are two answers to this objection. First, in the context of quantum theory (where
the position and momentum POVMs do obey the ‘correct’ invariances and covari-
ances), we do in fact learn that position is ‘very different’ from what we thought it
was, and this fact already makes it clear that we have not so narrowly restricted
our definition of position that substantial modifications to our existing conception
of it become impossible. The second answer is that we should distinguish between,
on the one hand, learning something new about an existing physical concept — in
which case something must make it ‘the same’ concept both before and after we
learned something new about it (and we are proposing that what is the same is
its relationship to certain parts of the Galilean group) — and, on the other hand,
discovering new physical concepts. We have no proposals to make here about how
such discoveries occur, or how to understand them.43

In the remainder of this subsection, I will discuss in further detail the claims
made above, that insisting on the relevant invariances and covariance is sufficient
to fix the position and momentum observables. In the next subsection, I will turn
to the role of reference frames in the definition of observables.

3.3.2.1 Systems of Imprimitivity and the ‘Uniqueness’ of Quantum
Observables Position and momentum, considered as POVMs, each give rise to
a ‘system of imprimitivity’, a special case of a system of covariance.44 Generically,
a system of covariance is a set (H, E, S,G, α, {Ug}) where H is a Hilbert space, E
is a POVM whose domain is S and whose range is positive operators on H, G is
some group, α is the action of G on S, and {Ug} is a unitary representation of G on

43Tanona [2006] is particularly helpful on this point.
44See Landsman, Ch. 5, this volume, for further discussion of imprimitivity and its application

to issues in quantum theory.
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H. If E is a PVM then the set is a system of imprimitivity.45 Systems of imprim-
itivity have important properties, in part summarized by Mackey’s imprimitivity
theorem. My discussion here will follow that of Mackey [1996], emphasizing the
structure and assumptions of the argument, rather than the mathematical details,
which can easily be found in many places.46

In a system of imprimitivity, S is often taken to be quite generic — e.g., it
might be a generic metric space with G some locally compact and separable group
of isometries (assumed to have a continuous and transitive action on S — see
§7.6.7). However, we will immediately specialize, in order to make quicker and
more evident contact with real physical concerns. With that goal in mind, it is
natural to take S to be R

3 and G to be, for example, the semi-direct product
(§7.6.2) of translations and rotations (A � R). However, in preparation for an
application of the imprimitivity theorem, it is more useful to take S to be the
topological group of translations (A = G/R), which is clearly isomorphic to R

3

as a topological space (indeed, as a metric space, given a suitable, and obvious,
metric on A). The idea, then, is that elements of S represent ‘displacements’ from
some fixed origin, and thereby represent a position (and so are possible values of
a position observable). The subgroup R describes rotations around this origin.

We now require that a PVM for position, EQ, be covariant with respect to
G = A�R. (The action of any g ∈ G on S = A is defined in the obvious way: for
g ∈ A its action on a ∈ A is just ga; g ∈ R acts as the identity on A. The action
thus defined is transitive.) Finally, given a representation {Ug}g∈G of G on some
Hilbert space, H, we have a system of imprimitivity.

In one form, the imprimitivity theorem is the following.

Theorem (Mackey): Let {Ug}g∈G be a unitary representation of a sep-
arable, locally compact, topological group, G, on a separable Hilbert
space, H, and let K be any closed subgroup of G. Let E be a PVM
whose domain is G/K such that (H,G/K,G, α, {Ug}, E) is a system
of imprimitivity (with α a transitive action of G on G/K). Then for
any representation, {Vk}k∈K of K on some Hilbert space, H′, the rep-
resentation of G induced by {Vk} on the Hilbert space L2(G/K) ⊗H′

(and this induced representation exists) is unitarily equivalent to {Ug}.
Moreover, E(∆) (or its appropriate unitary transform, if the induced
representation is related to {Ug} by a non-trivial unitary transforma-
tion) must be the tensor product of the multiplication operator χ∆ on
L2(G/K) with the identity on H′.

45Systems of covariance can be ‘dilated’ to systems of imprimitivity via the Neumark dila-
tion theorem. See, e.g., Cattaneo [1979]. It follows, in essence, that we lose no generality by
considering systems of imprimitivity.

46In addition to Mackey [1996], see Busch, Grabowski and Lahti [1995] and references therein
for additional mathematical details and alternative routes to the same conclusion. Full details
are available in Varadarjan [1985].
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So in the case we are considering, we will letH be L2(R3).47 Then let {Dr}r∈R be a
representation ofR on some Hilbert space, H′, and consider the associated induced
representation of G. This induced representation must be unitarily equivalent to
any representation of G, and moreover, EQ(∆) is just χ∆ ⊗ I

′.
Now consider the simplest case, where {Dr} is the trivial identity representa-

tion (i.e., every element of R is represented by the identity on a 1-dimensional
Hilbert space). Mackey’s theorem immediately yields the usual Schrödinger rep-
resentation of the position operator.48 More explicitly, for ∆ ∈ R

3, E(∆) = χ∆,
where the latter is the operator with action ‘multiply an element of L2(R3) by the
characteristic function of ∆’. (This operator is a projection.) Integrating over all
of S with respect to this PVM yields the usual position operator:

Q =
∫

R3
�r dEQ(�r),(80)

which is a ‘vector’ of operators, Qx, Qy, Qz, with the action, for �r = (x, y, z),
Qxψ(�r) = xψ(�r) for any ψ(�r) ∈ L2(R3, d�x), and similarly for Qy and Qz. No-
tice what has happened, here. We began with the requirement that the PVM
representing position have the ‘correct’ covariances with respect to translations
and rotations — i.e., that it be a part of the relevant system of imprimitivity —
and we ended up, via Mackey’s theorem, showing that up to unitary transforma-
tion, we must choose the usual (‘Schrödinger’) representation of position. Another,
somewhat more operational, way of putting the point is this: assuming that obser-
vations (or predictions) involving the position observable respect the symmetries
(translations and rotations) of the space of possible values of position, all represen-
tations of the position operator (PVM) are unitarily equivalent to the Schrödinger
representation. In terms of establishing the empirical meaning of the theory, we
might say that what it means to ‘be the position’ of a system is to transform in the
right way under the action of the relevant pieces of the Galilean group. Mackey’s
theorem establishes the uniqueness (up to unitary transformation) of position, so
defined.

Indeed, Mackey’s theorem establishes more. It also establishes the relationship
between the representation of (i.e., choice of a POVM for) position (and momen-
tum) and the representation of the Galilean group. To see why (in outline), let
G be any group continuously parametrized by a ∈ R (§7.6.4). Now, as we have
already discussed, if G is supposed to be a symmetry group, then in general it
should be represented, quantum-mechanically, in terms of transformations of the
Hilbert space that ‘make no difference, physically’, and such transformations are
often given in terms of unitary operators. (Recall the discussion from §1.5.1.2.)
Moreover (recall §1.5.1.4), when the group is continuously parametrized by a (as
it will be in the cases of interest for us), these unitary operators are given in terms

47More precisely, we should use the topological group of translations in place of R
3, but we

already noted that for our purposes these are the same spaces.
48The result is a description of a spinless particle — see Mackey [1996]. Non-trivial represen-

tations of R result in the description of particles with spin
dim(H′)−1

2
.
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of a self-adjoint operator, F , on H such that Ua = e−iFa. Hence, for example,
the unitary representation of spatial translations and boosts must take this form.
Mackey’s theorem then implies that, in fact, translations and boosts are given by
(78) up to unitary equivalence.

It is important to keep in mind that ‘up to unitary equivalence’ does not mean
that one can apply different unitary transformations to the Ua and Vv (from eq. 78)
and still satisfy all of the (invariance and covariance) conditions that have been
placed on the POVMs for position and momentum. The point here is that the
relationship between position and momentum is established by those conditions
via Mackey’s imprimitivity theorem. (On the other hand, one can always apply
a global unitary transformation, but such a transformation is akin to ‘translating
the universe five feet to the right’ in classical mechanics.)

Indeed, one can establish, from these results, the conclusion that position and
momentum must obey the Weyl form of the commutation relations.49 In particu-
lar,

UaVb = eiabVbUa, (a, b ∈ R).(81)

As we will discuss later (§4.1.2), this expression is a version of the canonical com-
mutation relation (24) between P and Q. In other words, the assumption that
position and momentum bear the right relation to the Galilean group leads di-
rectly to their incompatibility.

Hence the role that the position and momentum operators (POVMs) play in
the Galilean group, the action of the Galilean group on them, and the (Weyl form
of the) commutation relations between them, are fixed as soon as we insist on
two things: (1) that position and momentum satisfy the invariance and covari-
ance conditions given above, and (2) that position and momentum, as well as
the Galilean group itself, be represented on a Hilbert space. There seems to be
little room to deny (1) in a non-relativistic theory, and (2) may be understood
as the requirement that our theory be genuinely quantum-mechanical.50 Finally,
one should bear in mind the generality of Mackey’s theorem. I have discussed it
largely in the context of position and momentum, but analogous accounts hold
for any observables (POVMs) that form a system of imprimitivity (or covariance)
with regard to some group of symmetries. Some examples (among them, angular
momentum and spin) can be found throughout Busch et al., [1995]. We leave the

49Consult Varadarajan [1985, ch. V] or Mackey [1949; 1978] for details.
50We must be a little careful, here. (Thanks to Jos Uffink for raising this question.) It is well

known that classical mechanics can be represented as a theory on a complex Hilbert space. See
Bracken [2003] and references therein, the originator of the idea being, apparently, Groenewold
[1946]. However, the classical observables on Hilbert space form (unsurprisingly) a commutative
algebra, in virtue of the definition of a ‘non-standard’ product of linear operators (the ‘odot’
product in Bracken [2003]), one that does not make an appearance in quantum theory. (The
dynamics, for example, are defined in terms of a Lie bracket defined in terms of this ‘odot’
product rather than in terms of the usual product of operators given by the composition of their
action on the space.) Hence the more careful statement of the claim in the text is that we
require position and momentum to be operators in the algebra of operators on a Hilbert space
as standardly understood, that is, under the usual product of operators (composition).
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reader to investigate, and turn now to consider the role of reference frames in the
definition of physical quantities in quantum mechanics.

3.4 Reference Frames

3.4.1 Identification and Role of Reference Frames in Quantum Theory

It has been claimed (not unreasonably) since the early days of quantum theory that
there is no room in the theory for the notion of a reference frame. The apparent
difficulty is this: a reference frame, by definition, has a well-defined location and
state of motion, because locations and states of motion are defined relative to it.
But then it is hard to see how there could be any such thing as a quantum reference
frame, because, as I have mentioned already (§1.2.5), and shall discuss in some
detail below (§4), standard quantum theory cannot describe anything as having a
well-defined location and state of motion (momentum). Bohr (on one reading51)
concluded that it is up to us to stipulate some object (normally, a measuring
apparatus) as defining a reference frame, and that this stipulation requires us to
treat the object classically, because the stipulation requires the object to be well-
defined in position and momentum. (Of course, we can also step back and describe
that object quantum-mechanically again, having stipulated some other object to
serve the role of a reference frame.)

However, there are good and bad stipulations — as Bohr himself emphasized,
not every object is reasonably taken to define a reference frame for a given purpose.
One important reason is that there is a prima facie distinction between inertial
frames and reference frames. Inertial frames are the frames in which the laws of
motion (whether classical or quantum) are valid.52 It is a matter for empirical
investigation to seek out inertial frames. Reference frames, on the other hand, are
the frames used to define physical quantities, such as position, momentum, angular
momentum, spin, and so on. For the instantaneous definition of these quantities,
any stipulation of a reference frame is fine.

However, the choice of a reference frame for the description of systems over time
is far from arbitrary. For example, a rotating coordinate system used as a reference
frame will introduce fictitious Coriolis forces. Of course, by ‘rotating’ one means
‘rotating relative to an inertial frame’, and herein lies the crucial point: a reference
frame that is not inertial will always introduce fictitious forces (i.e., apparent
violations of the laws of motion). Hence, in the end, although it is certainly
permissible to describe our physical systems with respect to whichever reference

51See Bohr [1935]. For some (albeit flawed) interpretive remarks on this paper, see Dickson
[2002a; 2002b]. Recent detailed interpretations of Bohr’s insistence on the necessity of classical
concepts can be found, for example, in Tanona [2002] and Howard [2003]. Of course, many
others have also written on this topic. The references in those works will get the interested
reader started.

52 There is a long history behind this understanding of what it means to be inertial. See
DiSalle [1990; 2002] and Barbour [1989]. It culminates in the idea that Newton’s law of inertia
should be understood as the claim that there is a reference frame, an ‘inertial frame’, in which
the other two laws are true. This idea can be extended to quantum theory.
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frame is most convenient, it is also necessary that we know how to describe the
system in terms of a reference frame that is inertial, by which we mean, here, one
in which the laws of motion — classical or quantum, as the case may be — are
true.

Nothing in quantum theory rules out the possibility of an inertial frame in this
sense. Indeed, just as classical physics does, quantum physics contains an assump-
tion (usually left implicit) that there is some frame (some system of coordinates) in
which the laws are valid. (It does not follow that such a system of coordinates can
be used as a reference frame in the classical sense, i.e., to define, simultaneously,
definite positions and momenta.)

In quantum mechanics, as in classical mechanics, one goes about finding an
inertial frame by searching for coordinates in which the dynamical laws are true.
In classical mechanics, this search often extends to frames defined in terms of
celestial bodies (Ma et al., [1998]). In quantum theory, one does not go to such
lengths. Typically measuring devices, or the labs that contain them, are sufficient
to serve the purpose of defining a reference frame.

3.4.2 Relational and Absolute Coordinates

If it is correct that quantum observables are typically defined relative to a refer-
ence frame (whether inertial or otherwise), then typically, in quantum theory, the
observationally significant variables will be relational in character.

This point does not apply only to the case of measurements involving position
(or L2(R3N ) spaces) explicitly. Consider spin. What, for example, does it mean
observationally to say that a system is in the state |ψ〉 = |z+〉? If we are not told
which direction in space counts as z then the claim that a system is in that state
is observationally empty.

However, we saw above that when we wish to apply the quantum laws of motion
to a system, we must do so in coordinates given by some frame in which the laws are
valid. We also mentioned that in quantum theory, this frame is often determined
by some macroscopic piece of apparatus. What are the conditions that must be
met by this macroscopic piece of apparatus in order for it to serve the purpose
of defining coordinates in which the laws are valid? And how are we ever in a
position to verify that those conditions are met?

In the end, the answer to the last question is the same as in classical mechanics
— we never have access to any ‘absolute’ frame, one that is known to be inertial,
from which we can check the inertiality of other frames (and hence their suitability
to define coordinates in which the laws are valid). The best we can do is to
determine, empirically, as best we can, that the laws are valid in some particular
frame, F , and then justify the use of other frames by reference to F , and in
particular by noting that these other legitimate frames are related to F by an
appropriate symmetry transformation.

In other words, at least until we have a truly relational theory on hand, the
relational coordinates are ultimately defined in terms of the absolute coordinates,
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and they are so defined in terms of certain symmetry transformations, as we shall
now describe.53

Let us begin by recalling that the transformations from one inertial frame to
another are (in the present non-relativistic contex) given by the Galilean transfor-
mations. (Moreover, we have seen that we have little choice about the mathemat-
ical form that these transformations take in quantum theory.) We can use that
fact to derive an expression for a transformation from the absolute coordinates
of some given inertial frame to coordinates measured relative to some stipulated
reference frame.

A helpful way to consider the situation is as follows. Imagine an observer, A,
inside a lab and suppose that A measures physical quantities relative to the lab.
Now imagine an ‘external’ observer, B, who has been given the information (or has
assumed it) that some frame, F , is inertial. B also uses F as a reference frame: as
far as B is concerned, the lab and its contents are all described in the coordinates
given by F . But suppose B wishes to describe A’s measurements as relational and
in the frame given by the lab. How does B transform from the coordinates given
by F to the (relational) coordinates given by the lab (which could also be moving
relative to F )?

The answer follows more or less immediately from the form of the Galilean
transformations. (Of course, we are not simply applying a Galilean transformation
in this case. We are also transforming to relational coordinates.) As Aharonov
and Kaufherr [1984] point out, the correct transformations are

UAK = e−i
P

n>0 P
B
n Q

B
0(82)

where PB
n represents the momentum observable used by B to describe the momen-

tum of system n, and QB
n similarly represents B’s position observable. System 0

is the lab itself. (Note that their result implicitly assumes that the reference body
— the ‘lab’ — moves inertially in F . Notice also that in this situation, the lab
drops out of view. A has no coordinates to describe the lab (system 0) because
A’s coordinates are all defined relative to the lab.)

As a quick check, note that

UAKQA
nU−1

AK = QB
n −QB

0 (n > 0),(83)

so that, as expected, what A describes but QA
n , B ‘knows to be’ QB

n −QB
0 . That is,

B can describe, in purely quantum-theoretic terms, the fact that A’s measurements
of position are made relative to the lab.

The main lesson of this discussion, for us, is this: in general, we are in the
position of observer A, not that of B. We are not given an absolute frame. In-
stead, our quantities are measured (and therefore, operationally at least, defined)
relationally. Nonetheless, the symmetries that take us from one frame to another
are ultimately involved in the definition of those quantities, because in order for
our physical theories legitimately to apply to them, we must consider them to be

53The discussion here is motivated primarily by the work of Aharonov and Kaufherr [1984].
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‘really’ defined in terms of the coordinates of an ‘absolute’ inertial frame, and such
a definition involves the symmetry transformations that take us from one (inertial)
frame to another.

An interesting side-point here is the following. Observer B (whose point of view
is, in principle, the truly legitimate one, here), has a particularly interesting way
of noticing the incompatibility of position and momentum. Suppose A is going to
measure the position of a particle, and writes down an interaction Hamiltonian
along the lines of the model of impulsive measurement (§3.1.2). Of course, A just
writes down something like HI = g(t)ΠQ, where Q is A’s position operator for
the measured system. When B transforms this Hamiltonian to the correct, i.e.,
relational coordinates, and solves the equation, B finds that as a result of the
measurement, the lab itself experiences a shift in momentum, which renders the
lab unsuitable (for A) for defining momentum (because A has no way to measure
the shift in the momentum of the lab — the lab is the reference frame relative to
which any such measurement could be made, for A).54

3.5 A Group-Theoretic Characterization of Empirical Content

3.5.1 Reframing the Issue

How does the discussion of §3.3 and §3.4 help to establish an account of the
empirical content of the quantum formalism? Of all of the questions raised in
§3.2, let us focus on the following two: (1) What empirical meaning is attached to
the elements in the domain of a POVM? (2) Given an answer to (1), how is the
POVM itself chosen appropriately?

The discussion above suggests the following general approach. (a) Observables
are frame-dependent quantities that are defined in terms of their behavior with
regard to some group of symmetries. (b) Having pointed out that legitimate ref-
erence frames ought to be related in the right way to inertial frames — more
generally, they ought to be suitable for defining the quantities that we indeed wish
to define — we ought then seek to attach some empirical, observational, signif-
icance to such things. (c) Similarly, having pointed out the role that symmetry
transformations play in the definition of physical quantities, we ought then to
seek to attach some empirical, observational, significance to such things. A more
detailed version of (a) would constitute an answer to question (2) above. More
detailed versions of (b) and (c) would constitute an answer to question (1) above.

In fact, we have already said something about (a), and considerably more has
been said in the literature about the symmetries that are obeyed by (and thus that
are definitive of) quantum-mechanical observables. In any case, the basic point is
that the (reference-frame-dependent) observables may be uniquely characterized

54See Dickson [2004b] for details. It is not sufficiently emphasized there that these observations
are at best a first step towards understanding the incompatibility of position and momentum.
Note, moreover, that nothing in B’s calculations implies the uncertainty relations, understood as
placing a lower bound on the precision with which position and momentum can be simultaneously
measured, or known, or defined.
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(up to trivial transformations, such as scaling of length, and global unitary trans-
formations) by the invariances and covariances that they obey with respect to
some appropriate symmetry groups. In this sense, the very meaning of ‘position’,
‘momentum’, and so on, is partially given by these invariances and covariances. I
conclude this section with some preliminary thoughts about (b) and (c), followed
by the consideration of an objection.

3.5.2 The Empirical Content of Frames and Transformations

Concerning (b), the basic proposal here is that reference frames describe the world
as witnessed by some observer, and ultimately, some human being. This proposal
reflects a point of view according to which theories are, ultimately, human con-
structions. This point of view does not (necessarily) include the idea that there
is any (or much) arbitrariness in physical theory — the world might still dictate
how observational creatures such as ourselves are bound to construct theories, if
we are to be successful. It does entail that the ‘observables’ of a theory are inti-
mately connected with the observational capacities of human beings, and with the
properties of those capacities.

However, those who would subscribe to such a view must be careful, for at
least two related reasons. First, reference frames are typically idealized in various
ways that might not apply to actual human observation. They are, for example,
typically taken to be entirely rigid (spatially). Second, if a given reference frame
is to be used over any stretch of time, then either it must be inertial, or one must
know how to relate it to an inertial frame, in order legitimately (and successfully)
to apply the law of motion (whether that be Newton’s second law, Schrödinger’s
equation, or something else). But as noted earlier, in actual practice it is very
difficult to determine whether a given frame is inertial. Nonetheless, the proposal
being floated here is that ultimately reference frames should be understood as
‘legitimate (and idealized) human points of view’, where the notion of legitimacy
is to be spelled out in terms of a known connection with an inertial frame.

Concerning (c), the empirical content of the symmetry transformations them-
selves, I again offer a kind of anthropocentric view. The suggestion, coming from
various 19th century philosophers of geometry (for example Helmholtz, and in
a different way, Poincaré), is that such transformations are connected to experi-
ence via the physiological-kinesthetic experience of undergoing the change from
observing from one reference frame, to observing from another. (Consider, for
example, the physiological-kinesthetic experience associated with a rotation, or
spatial translation.) However, the connection of specific groups of transformations
with empirical content of various sorts is far beyond the scope of this essay. We
merely note that an essential ingredient in the program outlined here is establish-
ing (or understanding) such connections, for the groups that are at the heart of
quantum theory.55

55One could adopt an approach completely opposite to the one suggested here, one that takes a
theory as somehow ‘already’ empirically meaningful prior to the empirical account of the relevant



Non-Relativistic Quantum Mechanics 339

3.5.3 ‘Absolute’ Quantities

What about quantities that are not reference-frame dependent? Surely one of
the lessons of relativity theory is that while many measured quantities are frame-
dependent, some physical quantities — perhaps even the most important ones
— are ‘absolute’, i.e., frame-independent. Think, for example, of the spacetime
interval, defined by τ2 := t2− (x2 +x2 +x2). It is frame-independent, in the sense
that whatever coordinates one uses to calculate τ , the result is always the same.
Indeed, one understanding of non-absolute quantities is that they are nothing
more than the absolute quantities seen ‘from a particular perspective’, so that the
absolute quantities are somehow fundamental, the frame-dependent ones derived.

But how does one measure, or observe the value of an absolute quantity? The
claim made here is that we cannot help but do so from within some reference
frame. While the result is not dependent on the reference frame, the measurement
still occurs in one. (Consider, for example, how one might measure τ .) If this
claim is correct, there there are two responses to the point that some quantities
are absolute.

The less radical response is to allow that the absolute quantities might even
be more fundamental in some sense. However, we are here concerned with the
observational content of quantum theory — how does the mathematical formalism
connect with experimental observation? If, as claimed above, observation always
takes place within a frame, then it is fair enough for an account to consider the
empirical content of just the frame-dependent quantities.

The more radical response is to assert the reverse of the point of view mentioned
above: the fundamental quantities are the frame-dependent ones, and the ‘abso-
lute’ quantities are derived (calculated) from them. This view is in fact closely
connected with the view, expressed above, that (our) physical theories are funda-
mentally about the world as observed by us. On this view, the role of the absolute
quantities is to underwrite the possibility of communication amongst inhabitants
of different frames about the values of their frame-dependent quantities; it makes
possible some sort of agreement; and that is all.

4 UNCERTAINTY

This section is devoted to an examination of uncertainty in quantum theory. We
will begin (§4.1) with the formal origins of the uncertainty relations, namely, the
canonical commutation relations. We will then consider the uncertainty rela-
tions (§4.2), which, minimally, express the fact that the dispersions of two non-
commuting observables (a notion that we will define) cannot be made simultane-
ously arbitrarily small. We will then (§4.3) consider two fundamentally different
ways to understand, or interpret, the uncertainty relations, and finally (§4.4), we
will consider in some detail the famous argument by Einstein, Podolsky, and Rosen

groups of transformations, and then define the empirical content of those transformations in terms
of their consequences within the theory. I shall not follow that idea through here.
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[1935], intended to cast some form of doubt on the fundamentality of quantum un-
certainty, and ultimately on the ‘completeness’ of quantum theory as a description
of physical reality.

4.1 Canonical Commutation Relations

4.1.1 Representations of the Commutation Relations

Earlier (§1.2.5) we note that the quantum-mechanical position (Q) and momentum
(P ) operators obey the CCRs (24). It is perhaps more accurate to say that in
quantum theory, Q and P are chosen so that (24) is obeyed. Choosing operators,
Q and P , on some Hilbert space, H, such that (24) is satisfied is choosing a
representation of the CCRs. It is, arguably, the satisfaction of these commutation
relations by (the operators that stand for) certain pairs of observables — centrally,
position and momentum — that makes a theory truly ‘quantum’.

It turns out that for any representation, the operators cannot both be bounded,
and therefore H must be infinite-dimensional (§7.2.2). Heisenberg constructed
a representation on the space �2 (§1.2.1) in terms of infinite-dimensional square
matrices:

Q= 1√
2

0
BBBBBBB@

0 1 0 0 ...

1 0
√

2 0 ...

0
√

2 0
√

3 ...

0 0
√

3 0 ...
...

...
...

...
. . .

1
CCCCCCCA
, P=−i√

2

0
BBBBBBB@

0 1 0 0 ...

−1 0
√

2 0 ...

0 −√
2 0

√
3 ...

0 0 −√
3 0 ...

...
...

...
...

. . .

1
CCCCCCCA
.(84)

Schrödinger constructed a representation in terms of operators on the space L2(R)
in which Q is the multiplication operator (i.e., Qf(x) = xf(x) for any f ∈ L2(R))
and P = −i ddx .

These two representations are in fact unitarily equivalent. (I.e., there exists an
isomorphism from �2 to L2(R), under which the Heisenberg operators go to the
Schrödinger operators.) Any representation that is isomorphic to these is called
regular. Non-regular representations exist.56

Note that because (at least one of) the operators in a representation of the CCRs
must be unbounded, we must be careful about keeping track of their domains of
definition (§7.2.2). The CCRs are thus defined only on some (dense) subset of the
space.

4.1.2 The Weyl Relations

The fact that P and Q must be unbounded is occasionally bothersome. For ex-
ample, we just noted that this fact requires one to keep track of their domains of

56Here is an easy example. Consider the space of square-integrable functions on the open
interval (0, 1). Let Q and P again be the multiplication and differentiation operators (as given
above). In this case, Q is in fact bounded (but P is not), and so this representation cannot
be unitarily equivalent to the Schrödinger representation, because, in that case, both of the
operators are unbounded.
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definition. An alternative approach, due to Weyl, avoids the problem. We begin
by considering a pair of strongly continuous one-parameter unitary groups of op-
erators Ua and Vb, a, b ∈ R (§7.6.4). We will call them a Weyl pair if they satisfy
the relation (81) from §3.3.2.1. By Stone’s Theorem (§1.5.1.4), Ua and Vb can be
written as

Ua = e−iaQ, Vb = e−ibP(85)

where Q and P are unbounded selfadjoint operators, defined on a common (dense)
domain. (Recall eq. 78.) Writing these exponentials formally, in terms of a power
series expansion,

e−iaQ =
∞∑
n=0

(−iaQ)n

n!
,(86)

(similarly for e−ibP ) and substituting into (85) we retrieve the CCRs. (If both
sides of (85) are defined on a common dense subspace, then this procedure is
rigorously valid. Otherwise, it is suggestive symbol-manipulation.) Note, finally,
that the operators eiaQ and eibP are bounded, so that, for example, issues about
the domain of definition do not arise.

4.1.3 Von Neumann’s Uniqueness Theorem

There is another nice feature of the Weyl relations: all representations of them are
regular. In other words, every Weyl pair is unitarily equivalent to the Weyl pair
generated by the Schrödigner position and momentum operators. This result, due
to von Neumann [1931], implies that the generators of any Weyl pair must have
spectra that are the entire real line.

A further question concerns when a representation of the CCRs is regular — i.e.,
how can one tell, apart from checking for unitary equivalence directly (which can be
hard) that a given representation is regular? Answers to this question (beyond the
observation just made about spectra) are known (Rellich [1946], Dixmier [1958],
but beyond the scope of this essay). See Summers [2001] for discussion and further
references.

4.2 The Uncertainty Relations

One of the reasons that the CCRs are so important is that they give rise, directly,
to the uncertainty relations. Recall that if two bounded operators do not commute,
then there are eigenvectors of one that are not eigenvectors of the other. (Similar
remarks hold for unbounded operators, but there we must take account of the
fact that they might not have any eigenvectors, and speak instead in terms of
the non-commutativity of their spectral projections.) It follows that there are
states that assign trivial probabilities to the possible values of one observable (i.e.,
probability 1 for one eigenvalue, and 0 for the others), and non-trivial (not 0 or
1) to at least two possible values of the other. Hence non-commutativity already
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implies a type of ‘uncertainty relation’: certainty about the value of one observable
can imply uncertainty about the value of another. Below, we shall make this idea
more precise, and consider its interpretation.

4.2.1 The Optical Derivation

In [1927], and in an improved version in [1930], Heisenberg made the following
argument, intended to make some sense of, perhaps even to derive, the uncer-
tainty relations for position and momentum. Suppose we wished to measure the
location of a small particle (e.g., an electron), by means of an optical microscope.
The resolving power of the microscope with an aperture angle θ is approximately
λ/ sin θ, where λ is the wavelength of the light. This resolving power determines
our uncertainty about the position of the particle after the measurement. On the
other hand, in order for us to detect the particle, at least one photon would have to
strike it. This photon has momentum57 h/λ and the angle of impact is uncertain
to within the angle θ; hence the amount of momentum transferred to the particle
is uncertain to within roughly (h sin θ)/λ, and the product of the uncertainty in
the position and momentum of the measured particle, after the measurement, is
roughly h.

In other words, there is a lower limit on the product of the uncertainty of position
and momentum. Notice that this lower bound applies only after the measurement.
Indeed, we could measure the momentum of the particle with arbitrary precision
prior to measuring its position, also with arbitrary precision. We would then have
determined its position and momentum just prior to the moment of impact (of
the photon on the particle) with arbitrary precision (though we would still be
uncertain about its momentum after the measurment).

There are other derivations of the uncertainty relations, derivations that rely
more explicitly on the formalism of quantum theory. We now consider two of
them.

4.2.2 The Wavefunctional Derivation

Position and momentum are related by a Fourier transformation. Indeed, it is
often easier, when dealing with momentum in the Schrödinger representation,
to apply a Fourier transform (which is a unitary transformation on the Hilbert
space), so that the momentum operator becomes a multiplication operator (and
the position operator then becomes differentiation). But consider what happens to
the wavefunctions. A wavefunction that is very well peaked corresponds to a state
in which position is well-defined. That is, most of the probability is concentrated
in a relatively small region of space. But the Fourier transform of such a function is
very flat, so that the probability is uniformly distributed across all of the real line,
which, after the transformation, corresponds to possible momenta of the particle.

57 The relation p = h/λ as applied to photons was introduced as part of Einstein’s [1905]

explanation of the photoelectric effect, and generalized to material particles by de Broglie [1924].
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This general idea can be made mathematically more precise. Consider a Gaus-
sian ‘wavepacket’, a wavefunction from L2(R), which, as a function of x, has
appreciable magnitude only in some region of size 2a:

ψ(x) = e−x
2/2a2

.(87)

The Fourier transform of this wavefunction (i.e., transforming to a ‘momentum
representation’) is:

ψ̄(k) = e−a
2k2/2(88)

(where k is the ‘wave number’; momentum is given by p = �k). This Gaussian
has width 2/a. Hence a narrowly peaked wavefunction in position (i.e., a is small)
is widely spread in momentum (i.e., 1/a is large). Specifically, setting ∆x ≈ a
and ∆p = �∆k ≈ 1/a, we have that ∆x∆p ≈ �. (This expression is not quite
the standard uncertainty relation, but then the derivation here is not meant to be
exact.)

4.2.3 The Algebraic Derivation

There are in fact many roads from the quantum formalism to the uncertainty
relations. Here, we consider just one other commonly found derivation, in part
because it will shed some additional light on meaning of ‘uncertainty’, and in part
because unlike the previous two derivations, this one is rigorous, and results in the
exact form of the uncertainty relations.

Given an observable, F , define ∆F := F − 〈F 〉. (The right-hand side is the
expectation value of F , where we have left the state unspecified.) The expectation
of (∆F )2 is the dispersion of F . Indeed,

〈(∆F )2〉 =
〈
F 2 − 2F 〈F 〉+ 〈F 〉2

〉
= 〈F 2〉 − 〈F 〉2,(89)

which is a standard statistical notion of ‘dispersion’ (often called ‘mean-square
deviation’ by physicists, and ‘variance’ by statisticians; its square root is the stan-
dard deviation). Now, let F and G be observables (self-adjoint operators). Then
the Schwarz Inequality (§7.1.3) implies that

〈(∆F )2〉〈(∆G)2〉 ≥ |〈∆F∆G〉|2.(90)

Straightforward algebraic manipulations (see, e.g., Sakurai [1985, p. 36]) transform
(90) into the standard uncertainty relation:

〈∆F 〉〈∆G〉 ≥ 1
2
|〈[F,G]〉|.(91)

for any observables F and G. Notice, for example, that

〈∆P 〉〈∆Q〉 ≥ 1
2
.(92)
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(or, if we are not setting � = 1, then the right-hand side is �/2 — see note 11).
Above, we said that this derivation would shed some light on the meaning of

uncertainty. In particular, we can now see that, rigorously, ‘uncertainty’ refers
to the dispersion (standard deviation) of an observable in a given state, which is
normally understood as a measure of the ‘spread’ in its values over an ensemble
of systems all in some given state.

4.2.4 Limitations and Generalizations

The derivation of (91) makes it clear that any two non-commuting operators will
give rise to some uncertainty relation. Hence (91) is quite general. However, there
are also ‘uncertainty relations’ between quantities that are not represented by op-
erators. The most well-known is the time-energy uncertainty relation, whose in-
terpretation is notoriously problematic precisely because time is not an observable
in quantum theory. (There is no self-adjoint operator that represents time.) An-
other example is phase and photon number. (Again, there is no ‘phase’ operator.)
Various proposals exist for how to understand these other uncertainty relations,
but here we merely note the point that they must apparently be understood in
some sense other than that given by (91).

Moreover, (91) faces other problems. First, recall that (91) is state-dependent.
Indeed, if we choose a state that is an eigenstate of F (or G), then even if F and G
do not commute, both sides of (91) are zero, which certainly seems to violate the
spirit of ‘uncertainty’. (The ‘solution’, perhaps, is to notice that if F and G do not
commute, then in general the dispersion of G for a system in an eigenstate of F
will be non-zero.) Second, keep in mind that ‘dispersion’ itself can be misleading.
Even when most of the probability is concentrated on a narrow range of possible
values of F , a small amount of probability that is located very far from F ’s mean
can cause its dispersion to become large. There are proposals to handle these
shortcomings. (See especially Uffink [1994].)

4.2.5 ‘Wave-Particle Duality’

A quantum-theoretic experiment that is commonly associated with the uncertainty
principle is the double-slit experiment (which had been done, in some form, from
well before the advent of quantum theory). The set-up is as follows: a source of
particles (or monochromatic light, i.e., photons) is placed in front of an opaque
barrier with two parallel slits. Behind the barrier is a screen (such as a photo-
graphic plate). A particle is fired at the slits in the barrier, and the screen records
the location of each particle as it strikes the screen. (See figure 3.)

The main point is the following. We shine a beam of particles from the source
onto the barrier. If both slits are left open and no determination is made about
which slit the particle traverses, then an interference pattern develops on the
screen, which is just what one would expect if a wave somehow passes through
the slits. (See figure 4a.) If, on the other hand, we determine which slit the
particles traverse, then no interference pattern shows up on the screen — instead,
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source barrier

screen

Figure 3. Double-Slit Experiment.

a pattern that is characteristic of particles (one ‘blob’ behind each slit) shows up.
(See figure 4b.) What is more, one can do the experiment one particle at a time,
and in this case, one sees ‘dots’ on the screen, and yet, if no determination is made
about which slit the particles traverse, eventually the dots exhibit an interference
pattern. (See figure 4c.)

(a) (b) (c)
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Figure 4. Results of the Double-Slit Experiment: (a) with the particles passing
freely through the slits; (b) while determining which slit each particle traverses; (c)
with the particles passing freely through the slits, sent one at a time (simulated,
after 800 particles are detected at the screen).

This experiment illustrates ‘wave-particle duality’: when we measure a wave-
like property of particles (interference), we get wave-like behavior (interference
pattern), while when we measure a particle-like property of particles (which slit a
particle traverses), we get particle-like behavior (no interference pattern).

Indirectly, it also illustrates the uncertainty relations. For consider what it takes
to determine with reasonable accuracy which slit a particle traverses — in that
case, we must measure the particle’s position to an accuracy much better than
d/2, where d is the distance between the slits. If the interference pattern is to
be maintained despite this measurement, then the particle’s momentum cannot
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be disturbed so much that, with appreciable probability, it gets deflected from a
region of constructive interference (where, from the wave-theoretic point of view,
the waves passing through each slit interefere constructively, i.e., a region where
many dots show up in figure 4c) to an adjacent (or indeed any) region of destructive
inference (i.e., regions where few or no dots show up in figure 4c). A rough
trigonometric analysis shows that in fact the product of the uncertainty in our
position measurement and the required low uncertainty in momentum must violate
the uncertainty relation between position and momentum. In other words, the
uncertainty relations appear to require that measuring the position of the particle
at the slits well enough to determine (with good accuracy) which slit the particle
traverses will tend to wash out the interference pattern (the more so, the more
accurate the measurement of position).

4.3 Interpretation of the Uncertainty Relations

4.3.1 Observational-Epistemological

Interpretations of the uncertainty relations are helpfully divided into two kinds:
those that understand uncertainty purely in terms of observationally obtainable
facts about the values of observables, and those that attribute observational un-
certainty to a more fundamental, ‘ontological’, uncertainty, or ‘indeterminacy’. I
will consider each of these two kinds of interpretation in turn.

4.3.1.1 Uncertainty as Uncertainty The term ‘uncertainty’, and the un-
derstanding of uncertainty as standard deviation (dispersion), strongly suggests
an epistemic, even operationalist, understanding of the uncertainty relations. In
particular, one is quite tempted to understand the uncertainty relations in terms
of post-observational uncertainty about the actual values of observables.

There is a question about whether this uncertainty concerns single systems,
or ensembles. In the latter case — i.e., if, as suggested by the usual statistical
understanding of standard deviation, we understand uncertainty to reflect disper-
sion of values (for some observable) in an ensemble — the ‘interpretation’ of the
uncertainty relations does not go beyond a straightforward statistical understand-
ing of standard deviation. Of course, in this case then there is still a sense in
which uncertainty applies to single systems, namely, when they drawn at random
from such an ensemble. But one might, in addition, suppose that the notion of
uncertainty applies to single systems independently of the consideration of any en-
semble. Indeed, one might argue that only in this case would we really understand
why uncertainty holds at the statistical level. In any case, let us consider that
possibility.

The idea, then, is that measurement (more generally, observation) in general
reduces our uncertainty about the value of some observable, F , on the (single!)
measured system. The uncertainty principle would then be read as asserting that a
reduction in uncertainty about the value of F can imply an increase in uncertainty
about the values of observables that are incompatible with F .
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The meaning of such an assertion is clear enough, but understanding why in-
compatible observables have this feature is another matter. Suppose that F and G
are incompatible. Suppose that we measure F . We then measure G. Why should
it be the case that this second measurement ruins our previous knowledge of the
value of F? Indeed, supposing that the second measurement is isolated from the
first, and that the value of F was not in any way disturbed in the meantime, how
could the second measurement ruin our previous knowledge of the value of F?

4.3.1.2 Einstein’s Early Thought Experiment Early critics of quantum
theory — notably, Einstein — asked something like this question, and indeed
proposed (thought) experiments that were apparently intended to show that in fact
it is possible to ‘beat’ the uncertainty principle. A famous such experiment, due
to Einstein, involves a standard two-slit apparatus (see figure 3) that is mounted
on springs. The basic idea is to use the springs to determine which slit the particle
traversed, without in fact disturbing the particle itself, by measuring the exchange
of momentum between the particle and the barrier. (If the source is located on the
plane exactly between the slits, then if the particle goes through the right-hand
slit (and the slits are narrow enough), the barrier will in general experience a kick
to the right, and so on.)

4.3.1.3 Reply to Einstein Einstein’s challenge to the uncertainty principle,
here, is empirical: he is claiming that, contrary to what quantum theory allows, it
is possible to prepare a system in a state of precise position and momentum (or at
any rate, more precise than the uncertainty relations allow). The response must,
therefore, be empirical. If indeed it is possible to prepare a system in a precise state
of position and momentum, then we ought to be able to use our knowledge of either
to make a verifiable prediction about the system. In particular, if the measurement
of the position of the particle right after it passes through the slits does not, in fact,
disturb the momentum of the particle, then we should still see the same interference
pattern on the screen that we see in the standard two-slit experiment. If, on the
other hand, the interference pattern ‘washes out’ (see §4.2.5), and approaches the
‘two blobs’ (see figure 4b) as the measurement of position becomes more and more
precise, then the epistemic version of the uncertainty principle stands.

As far as current experiment can discern, it seems that a measurement of which
slit the particle traverses does indeed wash out the interference pattern. Indeed,
a remarkable experiment appears to show that not even this much is quite right;
rather, what seems to matter is whether a record of the result of the measure-
ment is kept, where by a ‘record’, here, we mean an encoding of the result in a
measurable physical state of the universe. The experiment58 is, in essence, the
two-slit experiment, with a detector placed behind one of the slits. The detector
is, moreover, ‘eraseable’, in the following sense. Once a particle passes through
the detector, the particle leaves a trace in the state of the detector. We may then

58See, for example, Scully and Walther [1989] and Walborn et al. [2002].
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choose to magnify this ‘trace’ in order to turn it into a discernible signal indicating
the presence of the particle, or we may completely erase it, so that the state of the
detector no longer contains any retrievable information about whether the particle
was once in the detector.

With this erasable detector in place, now imagine performing the following
experiment. Fire the particles at the barrier one at a time. After the particle
passes through the barrier, either erase the detector, or not. On the runs where
we erase the detector, the particles build up an interference pattern (as in figure
4c). On the runs where we do not erase the detector, the particles do not build
up an interference pattern, but instead ‘behave as particles’ (as in figure 4b).
The experiment is relatively recent, and requires further scrutiny, but it strongly
suggests, as do other quantum-mechanical experiments, that the epistemic version
of the uncertainty principle is a fact of nature.

4.3.2 Ontological

With the epistemic version of the uncertainty principle apparently intact, we are
left wondering why it is true. Different interpretations will propose different an-
swers to this question. Some assert a ‘disturbance theory’, according to which the
measurement of one quantity physically disturbs others (corresponding to incom-
patible observables) in an uncontrollable and unpredictable way. Others assert
that reality matches our knowledge, here: we cannot know the value of G (when
the value of incompatible F is known) because, in fact, G has no value.

There are many versions of this idea. Here we consider two. The first, often
claimed to be part of the ‘Copenhagen’ interpretation of quantum theory, rests
on some version of a verificationist, or operationalist, theory of the meanings of
physical quantities, according to which a physical quantity has a value if and
only if it has been measured (i.e., verified — the appropriate physical operations
have been carried out, with the appropriate outcome). One must then argue that
it is physically impossible to perform measurements of incompatible observables
simultaneously on the same system.

This argument suggests a second ontological version of the uncertainty princi-
ple, according to which a physical quantity is well-defined just in case the con-
ditions required for its well-definedness obtain. Of course, stated thus, this view
sounds almost tautologous. It’s real content comes from arguing that there are
indeed non-trivial physical conditions that must be in place in order for certain
physical quantities to be well-defined, and that the conditions required for the
well-definedness of a given quantity cannot be in place simultaneously with the
conditions required for the well-definedness of any incompatible quantity.

This sort of argument has bite, if it does, because of the role of reference frames
in the definition of physical quantities (§3.4). Hence, for example, ‘momentum’
must mean ‘momentum relative to X’, where ‘X’ is some physical system that
defines a reference frame. But if ‘X’ (more precisely, the reference frame that it
defines) is a non-inertial system, then it is not suitable for defining momentum (at
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least not over any stretch of time), unless we know its relation to some inertial
frame F (but then we are really defining momentum relative to F ) — recall §3.4.1.
Similarly, a non-inertial physical system is inappropriate for defining position (with
the same caveat as before). These brief points recall the more extensive discussion
above, and we shall have to leave the matter at that.

4.4 The Einstein-Podolsky-Rosen Argument

Thus far, everything that has been said about the uncertainty relations is consis-
tent with the claim that the loss of certainty about the value of one observable, F ,
upon measurement of incompatible G, is a result of an unknown and uncontrollable
physical disturbance of the value of F as a consequence of the measurement of G.
Indeed, Heisenberg’s ‘optical’ derivation of the uncertainty relations uses precisely
this idea. But an argument due to Einstein, Podolsky, and Rosen (EPR)59 pur-
ports to show that in fact the uncertainty relations cannot be understood in this
way.

This argument concedes that the epistemic version of the uncertainty principle
is true: the values of incompatible observables are not simultaneously verifiable.
The point, here, is to question ontological versions of the principle.

4.4.1 Incompleteness

In particular, the point is to call into question the completeness of quantum the-
ory. Recall (§1.2.3.9) the standard interpretation of quantum theory, according
to which an observable, F , has a value for a system in a state, W , just in case
W assigns probability 1 to some possible value of F (and 0 to the others). This
interpretation immediately implies that there are no quantum states that assign
simultaneously definite values to all observables, or indeed to any two observables
with no common eigenvectors. Hence any argument that successfully shows that
two such observables must have definite values implies that quantum theory is
incomplete — more precisely, it shows that under the standard interpretation of
the theory, quantum states do not describe (and cannot describe) the complete
physical state of a system. The EPR argument purports to show exactly this
claim.

4.4.2 The Generic Experiment

Generically, the experiment considered by EPR involves a pair of particles (call
them α and β) prepared in the state

|ΨEPR〉 =
1√
N

N∑
n=1

|an〉|bn〉(93)

59There are very good reasons to believe that the argument as presented by EPR [1935] was
not quite what Einstein himself had intended. (The paper was not written by him.) See Fine
[1986, esp. chs. 3-5], for example.
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where the |an〉 and the |bn〉 form orthonormal sets.60 Hence there are observables,
A for system α and B for system β (whose eigenvectors are respectively the |an〉
and the |bn〉, corresponding to eigenvalues an and bn) that are perfectly correlated
(§1.2.6.4) in this state.

So suppose that α and β are in the state |ΨEPR〉 while they are spatially sepa-
rated. Then the perfect correlation between A and B allows one to discover the
value of A without, as EPR say, ‘in any way disturbing’ α, simply by measuring
B on β.

Now for the crucial point. Consider orthonormal bases {|a′
n〉} and {|b′n〉}

obtained from the |an〉 and the |bn〉 as follows:

|a′
n〉 =

1√
2

(
|an〉 − i|an+1〉

)
|b′n〉 =

1√
2

(
|bn〉+ i|bn+1〉

)
,(94)

where the sum in subscripted ‘n + 1’ is modulo-N (i.e., N + 1 = 1). In this basis,
the state |ΨEPR〉 has exactly the same form:

|ΨEPR〉 =
1√
N

N∑
n=1

|a′
n〉|b′n〉.(95)

(To verify, plug (94) into (95) and simplify. The ‘cross’ terms of the form−i|an〉|bn+1〉
and i|an〉|bn+1〉 cancel.) Hence there are additional observables, A′ and B′ (whose
eigenvectors are respectively the |a′

n〉 and the |b′n〉) that are also perfectly corre-
lated in the state |ΨEPR〉. Moreover, A′ does not commute with (is incompatible
with) A — indeed, they share no eigenvetors — and similarly for B and B′. Again,
we can discover the value of A′ on α by measuring B′ on β.61

Finally, notice that this entire description is quantum-mechanical. One some-
times hears the EPR experiment described in more or less classical terms. For
example, letting A and B be position and momentum (see §4.4.3), one might be
tempted to describe the preparation of the EPR state as follows: fire two particles
of equal mass from a common source with equal (in magnitude) but oppositely
directed forces. Their positions (distance from the source) and momenta (relative
to the source) will then be perfectly correlated. This picture is tempting, but it
is also completely wrong. Indeed, standard quantum mechanics implies that the
state just described cannot be prepared in a way that would allow one to infer
the position (or momentum) of α from that of β, because such inferences would
require us to know, with precision, the position and momentum of the source, and
such knowledge already violates the (epistemic) uncertainty principle.

4.4.3 Position and Momentum

Above we assumed that the perfectly correlated observables have a discrete spec-
trum. In fact, when they consider an explicit example (rather than the abstract

60In fact, there is a ‘continuous’ version of (93), which is appropriate when we are considering
observables, such as position and momentum, with continuous spectra. See §4.4.3.

61The situation as described here is not mathematically exactly the same as that considered
by EPR, but the result is the same.
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case as considered above), EPR refer to position and momentum, and a state
that is perfectly correlated in position and momentum (in the sense that it is a
simultaneous eigenstate of the sum of the momenta of the two particles, and the
difference of their positions). Explicitly,

ΨEPR(x1, x2) =
∫ +∞

−∞
e(2πi/h)(x1−x2+x0)pdp,(96)

for some fixed x0. However, it is worth pointing out that in fact this state is not
an allowed state of the system at all — it is not a vector in L2(R2). Moreover, this
state, even if it could be prepared, necessarily spreads under any time evolution
(associated with a finite potential energy), hence immediately becoming a state of
less than perfect correlation.62

To overcome these limitations of EPR’s example, one could consider, for exam-
ple, a narrow Gaussian that is very close to being a state of perfect correlation,
but doing so makes the argument to come messy at best. And we should keep in
mind that the discussion in terms of position and momentum is in fact only an
example that EPR give to illustrate the main point.

In the end, in fact, it is easier to consider an example that involves bounded
observables. The simplest case is the so-called ‘singlet’ state of a pair of spin-
1/2 particles. Generically, this case corresponds (for an appropriate choice of the
|an〉 and the |bn〉) to the state |ΨEPR〉 above, for N = 2. We will just continue
to speak of the observables A, A′, B, and B′, with the understanding that the
perfect correlations discussed above obtain.

4.4.4 The Argument

How can this experimental situation be used to generate an argument for the in-
completeness of quantum theory? The conclusion that EPR hope to establish is
that A and A′ both have a definite value simultaneously. Because they share no
common eigenvectors, this conclusion is inconsistent with the standard interpre-
tation of quantum states (see §1.2.3.9).

One tempting path to this conclusion involves presuming that once B has been
measured on β, thereby establishing the value of A on α, we can measure A′ on α
and thereby establish its value directly. However, the problem with this suggestion
should be clear: the disturbance theory of uncertainty can quickly be applied to
conclude that the measurement of A′ on α disturbs the previously established
value of A. We are thus reminded that the point of this discussion is, in fact, to
establish the definiteness of A and A′ without ‘in any way’ disturbing α.

EPR’s strategy involves two assumptions. The first, with which at least some
versions of the standard interpretation can easily agree, is their ‘criterion for physi-
cal reality’, which asserts that whenever the value of an observable can be predicted
with certainty, the observable actually has that value. (Notice that this criterion

62By the state ‘spreading’, here, we mean, roughly, that it gets closer to a uniform distribution
over R

2. See Dickson [2002b] for a discussion of these points, and further references.
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is inconsistent with the sort of verificationist or operationalist views, mentioned
above (§4.3.2), according to which a system has a value only if that value has
been obtained as the result of a measurement.) Before we introduce the second
assumption, let us see how far we can get with just this one.

Notice that if we measure B on β, we can predict the value of A on α with
certainty. Similarly for B′ and A′. Of course, we cannot measure both B and B′.
Hence, instead of considering actual measurements of B and B′, let us consider
non-actual, but possible (i.e., ‘counterfactual’) measurements of B and B′. We
have:

Premise 1 Possibly, B is measured on β, and in this case, α has a definite value
for A.

Premise 2 Possibly, B′ is measured on β, and in this case, α has a definite value
for A′.

From these two premises (which follow from the criterion for physical reality),
EPR hope to conclude:

Conclusion Possibly, α has a definite value for both A and A′.

However, the Conclusion does not follow from the Premises 1 and 2. Indeed, the
logical problem is, in part, that there is no guarantee that the possible conditions
(‘B is measured’ and ‘B′ is measured’) are co-possible. Indeed, as we know, they
are not.63

Hence EPR need another premise. They introduce a notion of ‘non-disturbance’
that is supposed to help patch up the argument: although the conditions (measure-
ment of B) under which we can infer the definiteness of A on α are incompatible
with the conditions (measurement of B′) under which we can infer the definite-
ness of A′, the difference between them is supposed to make no difference to α,
because they only involve a change of circumstances for β, which may be spatially
separated from α.

However, not just any such principle will work. Consider, for example, the
following:

Weak non-disturbance. If B is measured on β and (therefore, by the criterion
for physical reality) A is definite for α, then: had we not measured B on
β, α would still have had a definite value for A (and likewise, substituting
primed observables for the unprimed ones).

This principle, which might be taken to deny that measuring B is what brings it
about that A has a definite value, is insufficient to get EPR’s conclusion. They
need, instead:

63Consider the following analogous argument. (i) It is possible that the paper is burned, and
in this case it will be reduced to ashes. (ii) It is possible that the paper is not burned, and in
this case it will remain whole. Therefore, (iii) it is possible that the paper is both whole and
reduced to ashes. Of course, this argument is invalid.
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Strong non-disturbance. If B is measured on β and (therefore, by the criterion
for physical reality) A is definite for α, then: had we instead measured B′ on
β, α would still have had a definite value for A (and likewise, substituting
primed observables for the unprimed ones).

The weak principle is insufficient to get the conclusion because the introduction
of the measurement of B′ (as opposed to the mere absence of the measurement
of B) could destroy essential features of the situation, and in particular features
that permit the inference of properties of α (its value for A) from the results of
measurements (of B) on β.64

The principle of strong non-disturbance is supposed, of course, to capture some
notion of ‘locality’. In particular, the idea is supposed to be that nothing that is
done to β can have any affect on the properties of α, under the assumption that
the two particles are space-like separated. Einstein’s theory of special relativity is
presumably supposed to license this assumption.65 In any case, with the principle
of strong non-disturbance, EPR have a logically valid argument for the Conclusion,
above. Indeed, they could (and seem to claim to) establish a stronger form of the
conclusion, replacing ‘Possibly’ with ‘Actually’, as follows. Argue, further, that a
measurement of B (or B′) does not bring it about that α has a value for A (A′),
so that α must have values for both A and A′ even when B (B′) is not measured.

4.4.5 Replies to EPR

One can, in fact, deny strong non-disturbance by denying locality. We shall con-
sider the status of locality in quantum theory below (§6). Here, we consider two
other replies to EPR.

We have already more or less encountered one of these replies: note that the
EPR argument has no impact on those verificationist or operationalist views ac-
cording to which an explicit measurement of a physical quantity is required not
merely for us to know its value, but also for it to have a value. Of course, such views
must deny the criterion for physical reality (which, keep in mind, is only a suffi-
cient, not a necessary condition), and many find this principle quite compelling.
(Apart from actually having the value in question, what else could, reasonably,
make it be the case that we can predict its value with certainty?)

But Bohr offered a reply that appears to rely neither on this verificationist or
operationalist strategy, nor — so he claims — on an explicit endorsement of non-
locality. In particular, recall that EPR were aiming to avoid the ‘disturbance’
account of uncertainty, according to which, for example, a measurement of A′

64The possible-worlds semantics for counterfactuals makes the point easy to see: while the
closest ‘B is not measured’-worlds to the ‘B is measured and A is definite for α’-worlds might all
be ‘A is definite for α’-worlds, those closest worlds might not contain any ‘B′ is measured’-worlds,
so that the closest ‘B is not measured but B′ is’-worlds to the ‘B is measured and A is definite
for α’-worlds need not be ‘A is definite for α’-worlds.

65See Malament, this volume.
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physically disturbs the value of A. Here, because we are only ever performing
measurements on β, it is far from clear how a measurement of B′, for example,
could disturb the value of A on α — after all, such a disturbance would have to be
non-local. Bohr’s reply denies strong non-disturbance, but without (so the claim
goes) endorsing a physically direct (Bohr uses the term ‘mechanical’) disturbance
of (e.g., the value of A for) α as a consequence of any measurement (e.g., of B)
on β. Instead, recall the idea from above (§4.3.2), that the very well-definedness
of certain physical quantities relies on certain physical conditions being in place.

Indeed, consider the EPR experiment, now, as Bohr (and EPR) did, in terms
of position and momentum. We will assume (without loss of generality) that
the positions and momenta are defined relative to the source. On Bohr’s view,
the well-definedness of the sum of the momenta for each particle (i.e., the total
momentum for the system) is maintained just so long as the system (particles plus
source) remains closed, i.e., just as long as total momentum is conserved. But
a measurement of the position of β introduces a disturbance of β’s momentum.
The system is no longer closed: β either loses momentum to or gains momentum
from an object (the measuring apparatus) that is external to the system. But
then the total momentum (relative to the source, which ‘knows nothing’ about
this external influence on β) is no longer conserved, and thus the conditions for its
well-definedness (relative to the source) are no longer in place, and therefore any
inferences that we might have made about the well-definedness of α’s momentum,
based on the well-definedness of the total momentum, are no longer valid. In other
words, on Bohr’s view, the conditions required (under the circumstances) for the
well-definedness of α’s momentum are, when we are measuring β’s position, no
longer in place. Note that the ‘old’ type of disturbance is still at work here — we
are indeed supposing that β’s momentum is physically disturbed by a measurement
of its position — but in addition there is another type of disturbance at work:
the measurement of β’s position ‘disturbs’ the conditions required for the well-
definedness of α’s momentum (under the circumstances). Thus Bohr believes that
he can avoid EPR’s conclusion by (in essence) denying strong non-disturbance, but
in a way that does not entail a non-local disturbance, in the sense of an exchange
of energy or momentum between β and α.

4.4.6 Where We Stand

Regardless, finally, of whether one finds any of these replies to EPR satisfactory
(and we should not make any judgment on this point at least until we have con-
sidered the issues in §5 and §6), it should be emphasized that none of them shows
that the EPR argument is unsound, much less invalid. Indeed, they are, in a sense,
defensive maneuvers designed to articulate a view of quantum theory that avoids
EPR’s conclusion by denying, in a consistent and presumably plausible way, one
of the premises of their argument. EPR’s conclusion is thus far from called into
question by such replies. Indeed, many philosophers of quantum theory are more
or less in agreement with EPR that standard quantum theory is incomplete, if not
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because of EPR’s argument, then because of the so-called ‘measurement problem’,
which we consider next.

5 THE ‘MEASUREMENT PROBLEM’

The problem of measurement is, perhaps, the most discussed issue in the foun-
dations of quantum theory, and has inspired numerous and varied interpretations
of the theory, from the brilliant to the bizarre. In this section, I will first review
the problem (§5.1), emphasizing its generality. Then I will consider some natural,
but in the end unsatisfactory, reactions to the problem (§5.4). In the final section
(§5.5), I will consider a few examples of interpretations of the theory, each of them
largely directed towards solving the measurement problem.

5.1 The Basic Problem

5.1.1 ‘Schrödinger’s Cat’

Recall (1.2.3.2.b) that the superposition principle implies that for any observable,
F , if a system can have each (or indeed, just two of) the eigenvalues of F as its
values for F , then it is also possible for a system to have (assuming the eigenstate-
eigenvalue link, §1.2.3.9) no value for F (because it is in a superposition of the
eigenstates of F ).

If F is some unfamiliar observable of the unfamiliar quantum world, then per-
haps one can live with this consequence. But what about observables on middle-
sized solid objects that are the bread and butter of our everyday experience? What
about ‘the (approximate) location of the house’, or ‘the (approximate) momentum
of the horse’, and so on? In 1935, Schrödinger illustrated the sort of problem that
we face with the following example.

One can even set up quite ridiculous cases. A cat is penned up in a
steel chamber, along with the following device (which must be secured
against direct interference by the cat): in a Geiger counter there is a
tiny bit of radioactive substance, so small, that perhaps in the course
of the hour one of the atoms decays, but also, with equal probability,
perhaps none; if it happens, the counter tube discharges and through
a relay releases a hammer which shatters a small flask of hydrocyanic
acid. If one has left this entire system to itself for an hour, one would
say that the cat still lives if meanwhile no atom has decayed. The
psi-function of the entire system would express this by having in it the
living and dead cat (pardon the expression) mixed or smeared out in
equal parts. (Schrödinger [1935a])

The point, of course, is that after some stretch of time, the atom is in a superposi-
tion of ‘decayed’ and ‘not decayed’, and hence the hammer, poison, and ultimately
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the cat, are in corresponding superpositions — in the case of the cat, a superpo-
sition of ‘alive’ and ‘dead’. But of course we never witness cats in such states. So
apparently there is a serious problem with quantum theory.

5.2 Measurement

Notice that the cat serves, in essence, as a decay-indication device, a kind of
crude measuring apparatus. Indeed, it is precisely Schrödinger’s point that one
can magnify a superposition at the microscopic level (the atom) to a superposi-
tion at the macroscopic level (the cat), the level at which one is probably more
inclined to deny categorically that superpositions (of at least some sorts, such as
of the states ‘alive’ and ‘dead’) make any sense, physically, or at any rate that
they exist with anything like the frequency that quantum theory apparently pre-
dicts. Measurement devices designed to measure quantum-mechanical observables
are characteristically of this sort: they ‘magnify’ the state of some microscopic
quantum system into the (indicator, or ‘pointer’) state of an apparatus that can
be directly observed.66

Of course, this magnification is a physical process, and as such, it is in principle
to be described as a solution to Schrödinger’s equation (or some other quantum-
theoretic equation of motion). Those equations are linear. (In fact, it is precisely
this linearity that partially grounds the principle of superposition: any linear
combination of solutions is again a solution.) Indeed, recall that the dynamical
evolution of a system can be described in terms of a family of unitary operators,
which are, of course, linear.

So let a given measurement-interaction (between some apparatus and some
measured system) be described by the operator U . (As an example, recall §3.1.2.)
Let the apparatus’ ‘ready-to-measure’ state be |Ψ0〉 and let its ‘pointer’ states be
|Ψn〉. For each of the eigenstates, |fn〉 of the measured observable, F , we presume
that the measurement-interaction results in an accurate indication of the result:

U(|fn〉|Ψ0〉) = |fn〉|Ψn〉(97)

so that the state |Ψn〉 indicates that the measured system has the value fn for F .
But then, by linearity,

U

(∑
n

kn|fn〉|Ψ0〉
)

=
∑
n

kn|fn〉|Ψn〉.(98)

Now we are in trouble. The eigenstate-eigenvalue link implies that this final state
is one in which the pointer-observable for the apparatus in fact has no value.

66Recall my earlier (§1.4.3) skepticism, however, about ‘pure’ states such as |cat dead〉. Does
this skepticism suggest a way out of the measurement problem? Alas, it does not. We could
just as well speak in terms of mixed states, here, and generate the problem, which relies only
on the fact that at the end of a measurement, the state of the apparatus may assign non-trivial
probabilities to all possible values of the ‘pointer-observable’.
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The pointer is not indicating anything. But at the end of typical successful mea-
surements, the apparatus does indicate a result, even when the measured system
begins in a superposition of eigenstates of the measured observable. Standard
quantum theory seems to contradict this apparent fact of experience. Hence the
‘measurement problem’.

5.3 Generality of the Problem

There are at least three senses in which the ‘measurement problem’ as described
above does not capture the real problem with sufficient generality. First, it relies on
the quite conservative eigenstate-eigenvalue link, and on a very restrictive notion of
‘measurement’. Second, it fails to indicate the ubiquity of superpositions. Third,
it relies on the questionable assumption that the macroscopic pointer-states of the
apparatus are pure states, when in fact they are almost surely mixed. In this
subsection I will briefly consider these points. Finally, I will briefly raise a related
problem, the problem of the ‘classical limit’.

5.3.1 ‘No-go’ Theorems

Two important premises in the argument leading up to the measurement problem,
above, were the eigenstate-eigenvalue link and the account of what counts as a suc-
cessful ‘measurement’. Both of these assumptions can be weakened considerably.67

I will consider each in turn.

5.3.1.1 Weaker Conditions for Definiteness First, we may introduce a
weak condition for when an observable has a definite value, roughly as follows:
the final state of the apparatus assigns a definite value to the pointer-observable
for the apparatus just in case the final state of the compound system is a mixture
of states each of which has a definite value for the pointer observable according
to the eigenstate-eigenvalue link. In other words, we now allow the adoption of
an ignorance interpretation of mixed states of the compound system, accepting
that when the compound system has the sort of mixed state just described, it
is actually in one of the pure states appearing in the mixture, and therefore,
according to the eigenstate-eigenvalue link, the apparatus has a definite value for
the pointer-observable.

Note that the condition applies to the compound system, not to the apparatus
on its own. The difference is subtle, but crucial. For example, in an ideal mea-
surement, the apparatus by itself will always be in a mixture of eigenstates of the
pointer-observable. It does not follow, however, that this mixture can be given an
ignorance interpretation. I shall discuss this point in a somewhat different context
below (§5.4.5.2.a).

67There is a long history of proofs, increasingly general, that the measurement problem is
‘insoluble’ in the context of standard quantum theory. A review of the early history, together
with arguably the simplest proof of the theorem, is given by Brown [1986]. For a more recent
survey and extensive discussion of this issue, see Mittestaedt [1998, esp. ch. 4].
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5.3.1.2 Weaker Accounts of Measurement We may also weaken the ac-
count of measurement, along the following lines. Let U represent the time-evolution
of states of the compound system during the measurement of a POVM, E, by a
‘pointer-observable’ POVM, Q. We require: for any two states, W and W ′, of
the compound system, if W and W ′ differ in their probabilities for at least one
of the effects in the image of E, then UWU−1 and UW ′U−1 differ in their prob-
abilities for at least one of the effects in the image of Q. Intuitively, U renders
the pointer-observable ‘somehow sensitive (even if only probabilistically) to the
measured observable’.

Note, however, that while this weaker account of measurement, together with
the weaker criterion for definiteness (§5.3.1.1), is sufficient to derive the measure-
ment problem (i.e., the non-definiteness of the pointer-observable at the end of a
measurement), it is also worth keeping in mind that, by the biorthogonal decompo-
sition theorem (§1.2.6.2), there are some observables (one for the measured system
and one for the apparatus) with respect to which the state of the compound system
has the same form that it does in an ideal measurement. (I.e., write the state in
its biorthogonal form. The bases for the measured system and apparatus will be
bases determined by some observable for each.) On the other hand, whether this
apparatus-observable is one that we antecedently believe to be definite is another
question, the answer to which probably depends on the details of the interaction.

5.3.2 The Ubiquity of Superposition

The superposition principle asserts that superpositions of possible states are again
possible states. But perhaps they are extremely rare. In that case, again perhaps
we should not be terribly concerned about the measurement problem.

In fact, however, superpositions at the microscopic level are ubiquitous. To see
why, we need only consider the case of spin. Recall that S�u and S�u′ are incompat-
ible unless �u = �u′ or �u = −�u′. Hence every spin-1/2 particle is ‘in a superposition’
with respect to just about every direction of spin. A similar remark holds for the
polarization of photons. And there is good experimental and theoretical reason to
believe that many fundamental particles may have wavefunctions that are highly
de-localized.

Moreover, we need not imagine exotic situations such as that described by
Schrödinger in order to believe that these microscopic superpositions may be ‘mag-
nified’. While such magnification is an important part of measurement, there is
little reason to suppose that it does not occur naturally, and frequently. After all,
the human eye, for example, is sensitive to as few as a half-dozen or so photons.
It seems plausible to suppose that many other interactions that occur in nature
have the effect of correlating the state of some macroscopic object with the state
of some microscopic object — and such correlation (even if imperfect) is sufficient
for the sort of magnification that will give rise to the measurement problem.

Hence, there is good reason to believe that the measurement problem is highly
general, in a few senses: (a) even under apparently weak accounts of when appa-



Non-Relativistic Quantum Mechanics 359

ratus’ have a definite value for some macroscopic observable (§5.3.1.1), quantum
theory apparently implies that they do not; (b) the sort of correlation between
a macroscopic and microscopic object that is required in order to bring about
the situation in (a) is very weak, and moreover perfect correlations are, by the
biorthogonal decomposition theorem, ubiquitous (§5.3.1.2); and (c) the sort of su-
perposition, and interaction, that is required give rise to the situation in (b) is
plausibly quite common (this section).

5.3.3 The Classical Limit

Finally, I will quickly notice a problem that is discussed in detail elsewhere in this
volume. In a sense, the measurement problem is the problem that the ‘weirdness’
of the quantum world is somehow not confined to the microscopic world. In other
words, the ‘weird’ quantum world does not (always) mesh nicely with our more
familiar classical world, in the sense that superpositions at the micro-level (where
we might be able to live with them) are not confined to that level, but can be
made to appear at the macro-level (where, so the argument goes, we cannot live
with them). This apparent conflict leads to a more general question: how does
quantum theory go over to classical theory (which, after all, works quite well for
a large domain of objects in a wide variety of conditions)? The question is vexed
in a number of ways, which, however, I shall not consider here. I refer the reader
to Landsman, Ch. 5, this volume (esp. §§5,6).

5.4 Non-Solutions

Numerous solutions to the measurement problem have been proposed, and we
shall consider some of them in a separate section on interpretations. Here, we
consider several proposed solutions that in fact do not work, or at the very least,
face extraordinary obstacles to making them work.

5.4.1 Näıve Realism

5.4.1.1 The Obvious Solution to the Rescue? The obvious solution to
the problem is to give up the eigenstate-eigenvalue link. Indeed, why not interpret
the probabilities delivered by quantum theory as entirely epistemic? That is, why
not suppose that every observable has a definite value all of the time, and that
incompatibility merely represents the fact that observing the value of one of them
disturbs the values of others in an incontrollable way? Something like an epistemic
version of Bohr’s approach to uncertainty, if it works, could be put to use in the
service of this view, both accounting for the uncertainty relations, and avoiding
the measurement problem.

5.4.1.2 The Kochen-Specker Theorem While initially attractive, this view
founders on a well-known theorem, the Kochen-Specker theorem (Kochen and
Specker [1967]). Notice that näıve realism seeks to identify a single value for each
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observable. With one further requirement, one can show that no such assignment
is possible.

5.4.1.2.a Non-Contextuality This further requirement is specifiable in a
variety of ways. Here we put it in terms of ‘non-contextuality’. Note that assigning
a value to an observable amounts to assigning, to each set of mutually orthogonal
subspaces that span the entire space, a ‘1’ to exactly one of the subspaces, and ‘0’
to the others. (These subspaces are the eigenspaces of the observable to which a
value is assigned; assigning a 1 to a given eigensubspace is equivalent to assigning
the corresponding eigenvalue to the observable.68 ) Proceeding in this way, we
will further assume that all observables with exactly the same eigenspaces have
‘the same’ value, in the sense that they have the eigenvalue associated with a given
common eigenspace. This assumption amounts to the requirement that for any
observable G, if G has the value g, then for any function, f(), the observable f(G)
has the value f(g).69

Non-contextuality includes this assumption, but goes a step further, requiring,
in addition, that the assignment of a ‘0’ or ‘1’ to a given subspace P is independent
of which set of mutually orthogonal and jointly spanning subspaces P is considered
to be a member. This requirement amounts to the condition that whenever two
observables, F and G, share an eigenspace, P (but do not necessarily share all of
their eigenspaces), F has the eigenvalue corresponding to P if and only if G does.
(The eigenvalues will in general differ, of course.) (Note that in this case F and
G in general will not commute.)

5.4.1.2.b The State-Independent Theorem Given non-contextuality, näıve
realism amounts to the requirement that we be able to find a homomorphism from
the lattice, L(H), of subspaces of a Hilbert space, H, to the Boolean lattice {0, 1}.
That is, we require a map, h : L(H → {0, 1} such that, for any P,Q ∈ L(H),
h(P ) ≤ h(Q) if and only if P ≤ Q. It follows (from the definitions of the meet,
joint, and orthocomplement, which are all given in terms of the partial order —
§7.4.2), that h(P )∧h(Q) = h(P∧Q), h(P )∨h(Q) = h(P∨Q), and h(P )⊥ = h(P⊥).
But notice that in {0, 1}, the operators ∧, ∨, and ⊥ behave just as those from clas-
sical logic (i.e.: 0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 1 = 1, 0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 1 = 1, and
0⊥ = 1). In other words, the näıve realist requires that it be possible to consider
quantum theory to arise from an underlying (logically) ‘classical’ theory.

Such a picture is available in classical mechanics. Indeed, let Γ be the phase
space for a classical system. The physical propositions (cf. §2.1.1) are represented
by the lattice of Borel subsets of Γ (where the partial order is given by subset
inclusion), and it is possible to define a homomorphism from this algebra to {0, 1}.

68Here I ignore observables, such as position and momentum, whose spectrum is continuous
(so that their possible values do not correspond to subspaces). After all, assigning them values
as well only makes the näıve realist’s life even harder.

69Note that, in general, if G =
P
n gnPn is the spectral decomposition of G, then f(G) =P

n f(gn)Pn.
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Indeed, choose a point x ∈ Γ, and define the map, δx, by, for any Borel subset
S ⊆ Γ, δx(S) = 1 if x ∈ S and 0 otherwise. This δx is a homomorphism.

The content of the Kochen-Specker theorem is that for lattices of subspaces
of a Hilbert space whose dimension is greater than 2, there are no such homo-
morphisms. This version of the theorem is sometimes called ‘state-independent’
because it does not rely on any presumptions about the quantum state of a system,
but only on the structure of the state space as a whole.

5.4.1.2.c State-Dependent Theorems There are other versions of the
theorem that begin with the assumption that the system is in some given quantum
state. In this case, we can introduce another condition on the value assignments:
they must respect the probabilities generated by the quantum state. For example,
if the state assigns probability 0 [1] to a given value, f , for F , then the value-
assignment must assign 0 [1] to the corresponding eigenspace. There are some
particularly simple state-dependent Kochen-Specker theorems, the most famous
being the GHZ (Greenberger-Horne-Zeilinger [Greenberger et al., 1989]) theorem,
which (in a form nicely described by Mermin [1990]) considers a three-particle
system of spin-1/2 particles, and the observables

S1
x, S1

y , S2
x, S2

y , S3
x, S3

y ,(99)

S1
x ⊗ S2

y ⊗ S3
y , S1

y ⊗ S2
x ⊗ S3

y , S1
y ⊗ S2

y ⊗ S3
x, andS1

x ⊗ S2
x ⊗ S3

x,(100)

where S1
x is shorthand for S1

x ⊗ I
2 ⊗ I

3 and the superscripts indicate the particles
with which each observables is associated. For simplicity, suppose that each of the
S

(n)
u has been ‘normalized’ to have eigenvalues ±1 (rather than the usual ±1/2).

Hence the eigenvalues of all of the observables in (99) and (100) are ±1.
Note that the observables in (100) commute. Hence we can consider a state,

the ‘GHZ-state’, that is a simultaneous eigenstate of them all. We shall consider
an eigenstate with eigenvalues +1,+1,+1,−1 respectively. For a system in this
quantum state, any ascription of definite values to the observables must assign
those values to the observables in (100). Let v() be a map from the observables in
(99) and (100) to their values, and consider then the following array of values:

v(S1
x) v(S2

y) v(S3
y)

v(S1
y) v(S2

x) v(S3
y)

v(S1
y) v(S2

y) v(S3
x)

v(S1
x) v(S2

x) v(S3
x).

(101)

The possible values are always ±1. The product of the values across each row must
be +1 for the first three rows, and −1 for the last, so that the product of all twelve
numbers must be −1. But on the other hand, v(Snu ) for each n = 1, 2, 3 and u =
x, y appears exactly twice in the array, so that the product of all twelve numbers
must be +1, contradicting our conclusion above. Hence there is no assignment of
values to all ten of the observables in (99) and (100) that is consistent with the
GHZ-state.
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Näıve realism is thus in serious trouble. The most straightforward reading of
its basic commitments leads, via the Kochen-Specker theorem and its analogues
such as the GHZ theorem, to a logical contradiction. While there are proposals
to save aspects of näıve realism from this problem, all of them (of course) violate
one or more of the conditions of the Kochen-Specker theorem, and, arguably, are
no longer ‘näıve’ realism.

5.4.2 Ensemble Interpretations

Ensemble interpretations (e.g., Ballentine [1970]) attempt to avoid the measure-
ment problem altogether by stipulating that quantum states are not about indi-
vidual quantum systems. They are essentially statistical, and thus can be used
to describe only ensembles of systems. Hence the state at the end of a measure-
ment ought not be thought of as describing a particular apparatus (and measured
system) at the end of a particular measurement, but all such apparatuses (and
measured systems) and the end of all such measurements.

There are two strains of this sort of interpretation in the literature, not always
distinguished. The first we might call ‘minimalist’: it is the deflationary view
that one can make sense of the quantum state (for example, at the end of a
measurement) only as the description of an ensemble of similarly prepared systems.

The second strain of the ensemble interpretation makes a stronger claim, namely,
something to the following effect: nothing more than the deflationary account of
the quantum state is needed; i.e., there is no scientific demand for a theory that
describes individual systems. On this view, such a demand is an artifact of a
deterministic world view, and the usual ’mysteries’ of quantum theory simply dis-
appear once one learns to live with statistical theories. However, most researchers
in the philosophy and foundations of quantum theory appear to be unconvinced.

Moreover, even the minimalist claim faces a problem, and the problem also
shows why the stronger claims are, at the least, in need of further development.
The Kochen-Specker theorem already shows that the probabilities generated by
quantum states cannot be understood straightforwardly as classical probabilities.
Thus the ensemble interpretations appear to be pushed towards other views, such
as the quantum logic view, which will be considered later.

5.4.3 Collapse Postulate

The ‘standard’ solution to the problem of measurement is the so-called ‘collapse
postulate’ (also called the ‘projection postulate’) of quantum theory, already men-
tioned in §3.1.2, first discussed in detail by von Neumann ([1932, p. 351 and
pp. 417-418 of the English translation]). The postulate can be found stated in
numerous ways, such as:

Collapse Postulate/ Upon measurement of the observable F on a
system in the state W , the result of the measurement will be an eigen-
value corresponding to some eigenspace, P of F , and the state of the
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system will then be PWP/Tr[PWP ].

If the state can be written as a vector, |ψ〉, then the ‘collapse’ amounts to projecting
this vector onto ranP , i.e., onto P |ψ〉, and renormalizing the result.

There are many reasons to be unhappy with the collapse postulate, but it is
worth saying, at the start, that most of the time, for most of the predictions that
one wants to make from quantum theory, the postulate works very well.

One often-cited problem with the collapse postulate is that it amounts to dis-
continuous (and irreversible) evolution of a system. The resulting picture of the
evolution of quantum systems is thus odd indeed: continuous, deterministic, re-
versible, unitary evolution (through Hilbert space) according to the Schrödinger
equation (or some other quantum equation of motion), punctuated by discontinu-
ous, irreversible, probabilistic, instantaneous, changes of the state.

At the very least, one would like some story about why these punctuations occur.
Clearly, in the statement of the postulate, they are connected with measurement.
But what is physically special about measurement? Alas, no compelling answer
is forthcoming. Indeed, the most obvious problem with the collapse postulate
is that it relies on an unanalyzed notion of ‘measurement’. Most of the time,
reasonable people can agree about when a measurement has occurred, but that
fact is entirely unhelpful. For most researchers in the foundations and philosophy
of quantum theory seem to agree that if quantum theory is supposed to be a
fundamental theory, then it should tell us when a measurement occurs (or more
generally, what a measurement is), not vice versa. The world should not rely on
us to ‘tell it’ when to collapse a state.

5.4.4 Macro-Micro Distinction

One answer to the question ‘what is a measurement’ is suggested by our discus-
sion of Schrödinger’s cat (§5.1.1), and is sometimes put forward as a response to
the measurement problem. The suggestion is that a measurement occurs when
the state of a microscopic system is ‘magnified’ in such a way that it becomes
correlated with the state of some macroscopic system. There is no denying that
paradigmatic measurements do have this feature. Alas, this characterization relies
on another ill-defined notion, namely, the difference between the microscopic and
the macroscopic.

The distinction is also sometimes made between the ‘easily reversible’ and the
‘esssentially irreversible’. Because microscopic systems have few degrees of free-
dom, their behavior is often easy to reverse, while the behavior of macroscopic
systems, with vastly many degrees of freedom, is very difficult if not practically
impossible to reverse.

In either case — whether the point is made in terms of size or reversibility — the
idea is supposed to be that at an appropriately large (or irreversible) scale, phys-
ical systems behave classically. Indeed, one sometimes hears ‘the Copenhagen’70

70This ‘interpretation’ — unlikely, however, to have ever been a single unified view — is
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interpretation of quantum theory, and especially Bohr’s version of it, characterized
in this way: one must presume that measuring apparatuses are classical objects,
and this presumption provides the grounds for determining when a collapse (mea-
surement) occurs.

However, while again providing an often useful practical characterization of
measurement and ‘the classical’, these distinctions are, in most researchers’ view,
not well enough defined to sit at the foundations of a supposedly fundamental
theory.

5.4.5 Decoherence

A related idea, but recently more well developed, is that sufficient interaction with
‘the environment’ serves, in essence, to ‘collapse’ (‘decohere’) the state of a system.
Here we need to be very careful, because there is a well-studied phenomenon,
called ‘decoherence’, that involves the interaction of a system with its environment.
There is no disputing the physical importance of this phenomenon. On the other
hand, many have invoked this phenomenon as providing some sort of solution to
the measurement problem. This claim requires careful scrutiny.

5.4.5.1 The Phenomenon of Decoherence

5.4.5.1.a Qualitative Description It is remarkably difficult to isolate a
physical system from the rest of the world (its ‘environment’). Particles from
almost every corner of the particle zoo are hurling around, and a great many of
them can penetrate even very strong barriers (such as lead walls). Even for very
small systems (such as a particle of dust), it is well-nigh impossible to prevent
significant interaction with the environment.

Physicists have developed both simple and very sophisticated models of this
interaction, ranging from assuming that the system interacts with an otherwise
unspecified thermal bath to carefully modeling the rate, nature, and strength of
interactions that a given system is likely to experience in a given type of envi-
ronment. With these models, one can estimate (and in very rare, usually highly
idealized, cases, explicitly determine) the effect of these interactions on the state
of the system.

Notice that these interactions will entangle the system with the environment.
We are therefore no longer talking, in the first place, about ‘the’ state of the
system, but about the state of the composite ‘system-plus-environment’. Of course,
typically we will have little or no access to the relevant environmental degrees of
freedom. (Imagine, for example, that a photon bounces off a dust particle, then
gets trapped in the atmosphere, or worse, heads out to space. In the former case,
recovering the photon will be practically impossible, and in the latter case, it could

so-called because it is typically associated with Niels Bohr and his associates, who worked in
Copenhagen. See Cushing [1994, chs. 6,7], Beller [1999], and references therein, as well as
Landsman, Ch. 4, §1, this volume.
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be literally impossible.) Although these degrees of freedom in a sense ‘encode’
certain information about the system (such as its location, because typically the
interactions are position-dependent), that information is almost always practically,
and occasionally in principle, lost to us.

Hence, although the system will become entangled with the environment, we
typically have access only to its reduced state, not to the state of the total com-
posite. We obtain this reduced state by tracing out the degrees of freedom of the
environment. In many models of the interaction, the result is a reduced state for
the system that is approximately diagonal in position; that is, its (mixed) state
looks like the state of a system that is well-localized in space (in the sense that
each component (spectral projection) of the mixture is well-localized in space).
Decoherence may, in this sense, be thought of as ‘localizing’ the system (but see
section 5.4.5.2.a, where we will worry explicitly about the fact that this mixture
is improper).

This localization ultimately derives from the fact that in these models, the in-
teraction between the system and the environment is position-dependent. (The
environment interacts with the particle only in the vicinity of the particle.) More
generally, if the interaction Hamiltonian that describes the exchanges of energy
between the system and its environment commutes with some system observable,
Q ⊗ I, then the reduced state of the system becomes approximately diagonal in
the basis picked out by the eigenvectors (or eigenspaces) of Q. The environment
is said to ‘suppress’ the off-diagonal, ‘interference’ terms. Moreover, because the
interaction Hamiltonian commutes with Q, a system that is already in an eigen-
state of Q will tend to remain so (assuming, as is often physically reasonable, that
the interaction Hamiltonian swamps the effects of the free Hamiltonian for the
system).

5.4.5.1.b Example A classic and much-studied example of decoherence
(e.g., Joos and Zeh [1985]), involves a dust particle in the atmosphere. Here
is a simplified summary of their argument.

Let |ψ〉 represent the initial state of the dust particle. Let the states |ψq〉 be a
basis of well-localized states for the particle (each centered at a position labeled
q). Let |E0〉 be the initial state of the environment, and consider the interaction
between the particle and a single air molecule in the environment for a particle that
is in one of the states |ψq〉: as a result of this single interaction, we will assume
that the particle-plus-environment evolves into the state |ψq〉 ⊗ |Eq〉. (Here we
assume, in particular, that the dust particle is much heavier than the air molecule,
so that the interaction leaves the state of the dust molecule essentially unchanged).
Joos and Zeh show, roughly, that if |ψ〉 (represented as a wavefunction) is initially
in a Gaussian (not necessarily well-localized) state, written in the |ψq〉-basis as
|ψ〉 =

∑
q cq|ψq〉, then the matrix representation of the reduced density operator

for the particle in the |ψq〉-basis (recall §1.2.3.4), after one such interaction, will
be:

Wqq′ = cqc
∗
q〈Eq|Eq′〉,(102)
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where |〈Eq|Eq′〉| ≈ 0 whenever the distance between q and q′ is much larger than
the wavelength of the dust particle.71 In other words, the off-diagonal (q 	= q′)
terms in Wqq′ get reduced by a factor of 〈Eq|Eq′〉. The intuition here is that be-
cause the states |Eq〉 and |Eq′〉 correspond to environments where the air molecule
has scattered from the dust particle in two different locations (represented by q
and q′), if those locations are very different, then the corresponding states of the
environment will be ‘very different’ (i.e., nearly orthogonal). (Of course, if q = q′

then this inner product is 1.)
Joos and Zeh then show, for a wide range of different models of the environment,

that after many such interactions, the off-diagonal terms in the reduced density
matrix decay exponentially, at a rate that depends on q − q′ (and is zero when
q = q′). The rate is very fast: according to Joos [1986], the reduced density
matrix for a dust particle with radius 10−5cm in even a high quality vaccuum will
be extremely close to diagonal in position72 in about one microsecond. One says
that the state of the object system (the dust particle) has ‘decohered’ as a result
of its interaction with the environment.

5.4.5.2 Decoherence and the Measurement Problem

5.4.5.2.a Decoherence Does not Solve the Problem Decoherence ap-
pears to ‘localize’ systems that interact with their environment, so that perhaps we
will not, after all, ever need to worry about encountering cats that are ‘smeared’
between two macroscopically distinct states (recall §5.1.1). Alas, there is a prob-
lem with this conclusion, stemming from the fact that the reduced state of the
system is an improper mixture (recall §1.2.6.3.b). Let us investigate this point
further.

On the one hand, we must acknowledge that it would be practically impossible
to perform an experiment to determine that the reduced state of a system that
has decohered is not a proper mixture. To see why, consider the very simple
case of two perfectly correlated particles (analogous to the object system and its
environment, which, as a result of their interaction, have become correlated), as
in (93). The reduced state for α is Wα =

∑
n(1/N)|an〉〈an| (analogous to the

reduced state of the object system, which, recall, is ‘nearly diagonal in position’).
This state makes the same predictions for every observable on α as the state in
(93) does. In order to distinguish between proper and improper Wα, we would
therefore need to measure some observable on the compound system (α&β), and
in particular we would need to measure the correlations between α and β (for α &
β is not in an entangled state — and therefore α’s state is a proper mixture — if
and only if there are no non-trivial correlations between them). Now, in the case

71Here we are relying on de Broglie’s relation between momentum and wavelength — recall
note 57 of §4.2.1.

72In this case, ‘extremely close to diagonal in position’ means that the reduced density operator
can be written as a sum of states that represent the dust particle localized to within about
10−13cm.
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of (93), measuring these correlations is relatively straightforward (assuming that
we have many copies of the pair all in the same state), because in fact they are
perfectly correlated in many observables. But in the case of interest here — an
object system and its environment — things are decidedly more difficult, because
the correlations exist only between a very few particles of the environment and the
object system. As I noted above, it is in general practically impossible to recover
those particles from the environment, and even if we could, in general not just any
measurement on them will do the job. Indeed, if we do not have many copies of
the total system (and in general we will not!), then the measurement in question
becomes even more difficult, because we must measure an observable (analogous
to the projection onto the state in eq. 93) that is not even a product (i.e., of the
form F ⊗G).

On the other hand, the practical impossibility of performing such a measurement
on the environment does not by itself license the assumption that the mixed state
of the decohered system is (or may be treated as if it is) proper. The problem,
as ever, is the eigenstate-eigenvalue link. The true quantum-mechanical state of
the compound system is an entangled state, and in this state, according to the
eigenstate-eigenvalue link, the object system does not have a definite location (in
general). The assumption that the state of the system ‘might as well’ be a proper
mixture is in fact inconsistent with this claim. In other words, while the two
states are observationally very hard to distinguish, they are (given the eigenstate-
eigenvalue link) interpretationally inconsistent.

Of course, one could give up on the eigenstate-eigenvalue link, and many inter-
pretations do. We will discuss some of them shortly. The point here is that, with
the eigenstate-eigenvalue link in place, decoherence does not solve the measure-
ment problem.

5.4.5.2.b Decoherence Does Help with the Problem Decoherence does,
however, help with the most general form of the problem of measurement. Recall
(§5.3.2) that the measurement problem is not confined to interactions that would
typically be regarded as measurments. Many interactions between quantum and
macroscopic systems will put the macroscopic system in a state that, given the
eigenstate-eigenvalue link, will be contrary to what most presume to be the de-
liverances of everyday experience. In other words, in its most general form, the
‘measurement’ problem is just the problem that quantum theory apparently fails
to assign definite values to observables that appear, on the basis of everyday ob-
servation, to have definite values. In the special case of a typical measurement,
we are perhaps already halfway to a solution, for in this case, the apparatus is at
least already in a mixture, albeit improper, of ‘desired’ states.

But what about the more general sorts of interactions, mentioned above, that
are not explicitly measurements but still generate ‘bad’ states for macroscopic ob-
jects? Decoherence promises to secure the following: for ‘relatively large’ systems
(for example, at least as big as a dust particle), interaction with the environment
will entail that the state of the system will become a mixture, albeit improper, of
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‘desired’ states (or something that is very close to such a mixture — so close that
one might be willing to overlook the difference). Even so, however, this strategy
has merely reduced the general problem to a problem that continues to elude a
satisfactory solution, although it does give one further justification for focusing the
discussion specifically on measurements (because decoherence apparently reduces
the general situation to one that is at least formally similar to measurement-
situations).

5.5 Interpretations

5.5.1 Ways of Pursuing the Project

I have covered a number of philosophical and foundational issues arising from
quantum theory, and an ‘interpretation’ of the theory should address all of them
in some way or other — from providing an account of the empirical content of
the theory, to providing an understanding of incompatibility (and thereby the ‘un-
certainty relations’), to providing some understanding of the apparent failure of
locality in the theory (§6). Nonetheless, most interpretations are aimed primarily
at solving the measurement problem. As we saw above, that problem can be char-
acterized (among other ways) as a conflict between (i) a common understanding
of the physical properties of familiar physical objects, including the sorts of infer-
ences about them that are valid, and (ii) a minimal account of when observables
are empirically well-defined, taken in the context of (iii) quantum theory. Con-
ceived in this way, there are three ingredients that lead to a contradiction, and
therefore three generic strategies for avoiding the contradiction:

1. Deny that the common understanding of the physical world or inferences
made about the physical world are always true or valid. For example, one
might deny, contrary to appearance, that ‘pointers’ at the end of a measure-
ment have a single definite (or nearly definite) position. We will encounter
other ways to ‘deny common sense’ below. Let us call these theories ‘uncom-
mon sense interpretations’.

2. Supplement, or replace, the minimal account of when observables are empir-
ically well-defined. In some cases, extra ‘hidden’ variables are added to the
theory. In all cases, systems are said to have properties that go beyond what
standard quantum theory would assign, and hence all such interpretations
are often, with admitted stretching of the concept, called ‘hidden-variables
interpretations’. (Inasmuch as adding new physical variables — and often a
dynamics for them — to the theory is tantamount to proposing a new the-
ory, these interpretations are often called ‘hidden-variables theories’. I shall
usually stick with the term ‘interpretation’, though I mean to be making no
particularly substantive claim by doing so, and I shall occasionally use the
term ‘theory’ to conform to custom.)

3. Supplement (i.e., change) standard quantum theory as thus far described
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with some additional physics. Such interpretations add a rule (usually con-
ceived as expressing a dynamical law of some sort) that results in systems
having the properties, or nearly the properties, that we näıvely take them
to have. Because the result of all such rules is a ‘collapse’ of the state from
a superposition of values to a single value, these interpretations are often
called ‘collapse interpretations’. (Again, they are sometimes instead called
‘collapse theories’ and I shall ocassionally use that term as well.)

(Of course, the strategies might also be combined, but generally interpretations
characterize themselves in terms of one of these strategies, even if one or both
of the others fall out as an additional consequence.) I shall accordingly discuss
interpretations under these three headings.

There is not space here to consider all, or even a majority, of the interpretations
in each class. I will therefore have to restrict attention to a brief account of just
two important representatives from each of the three genres. The reader should
keep in mind that there are different versions of even the few interpretations that
I shall discuss here. In most cases, I have chosen to describe a version that strikes
me as the least problematic, but this claim is, in most cases, controversial.

My treatment of these interpretations will, necessarily, be brief. I will give a
few more references than I have previously, to get the interested reader started on
the literature.

5.5.2 ‘Uncommon Sense’ Interpretations

5.5.2.1 Quantum Logic Interpretations I have already noticed (§2.1.1)
that the lattice of subspaces of a Hilbert space, i.e., the lattice of ‘propositions’
about a physical system, can, prima facie, be interpreted logically. Quantum
logic interpretations take this idea seriously, and understand quantum theory to
necessitate a revolutionary change from classical to quantum logic.73

One way to characterize the difference between classical and quantum logic is in
terms of the failure of distributivity (§7.4.3) — the classical and quantum lattices
of propositions are otherwise structurally (logically) the same. The basic idea of
the quantum logic interpretation, then, is that in particular the classical law of
distributivity is invalid. This invalidity is supposed to allow one to make the sorts
of assertion that, for example, the näıve realist (§5.4.1) had hoped all along to be
able to make. For example, let F and G be two incompatible maximal observ-
ables sharing no eigenvectors. Denote their eigenspaces by {Fn} and {Gm}. As
propositions (elements of the lattice of subspaces of the Hilbert space, interpreted

73 Birkhoff and von Neumann [1936] were among the earliest advocates of something like
a quantum logic interpretation. Subsequent work in this area is founded on theirs. Some of
the advocates of a quantum logic interpretation have been: Finklestein [1962; 1969], Putnam
[1969], Friedman and Putnam [1978], and Bub [1974]. See also the collection of papers (Hooker
[1975; 1979]. Some well-known critiques have been made by Dummett [1976] and Gibbons [1987].
Many of the standard objections are addressed in Dickson [2001], and occasionally also in the
work of the advocates listed above.
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logically), they assert that a system has the corresponding eigenvalue as a value
for the observable. Then:(∨

n

Fn

)
∧
(∨
m

Gn

)
= I ∧ I = I(103)

where I is the logically true proposition. If we read the first half of this conjunction
as asserting that the observable F has some value (understanding the existential
quantifier in terms of disjunction, as one often does), and similarly for the second
half of the conjunction, then (103) asserts that F has a value and G has a value.
Indeed, this assertion is logically true. (Note that if we could apply distributivity
to (103), then we could quickly turn it into a logical contradiction, because for any
n and m, Fn ∧Gm = 0, the logically false proposition.)

Moreover, the corresponding claim is true for a similar conjunction (∧) of such
disjunctions for any number of observables. Hence (understanding the universal
quantifier in terms of conjunction) the quantum logic interpretation claims to re-
cover the idea that all observables (for a given system) always have a value (for
that system). If so, then the measurement problem is no longer a problem. Of
course, this approach also raises some questions. In addition to doubts about
whether logic is revisable at all, some have argued that the quantum logic inter-
pretation simply moves the mystery from one place (quantum theory) to another
(logic). In any case, it is clear that the quantum logic interpretation needs to make
some argument about why classical logic does in fact work within certain domains.
(Decoherence could be helpful, here.) It also needs to say something about the
success of classical reasoning in mathematics. Both of these projects amount to
open questions in the quantum-logic interpretation (Dickson [2001]).

5.5.2.2 Many-Somethings Interpretations Our second example of
‘uncommon-sense’ interpretations is the ‘many-somethings’ interpretations. These
interpretations generally go under the heading ‘many-worlds’ interpretations, but
the notion of a ‘world’ that is at work here (quite problematic in its own right)
is sufficiently far from the usual understanding of that term that a less committal
word seems appropriate.74

In any case, whereas quantum-logic interpretations deny (or at best re-interpret)
the logical validity of apparently valid inferences about the properties of physical
objects, many-somethings interpretations deny (or at best re-interpret) the truth
of apparently true claims about the properties of physical objects.

Consider again the right-hand side of (98). The problem that this state raised
earlier was that, on the standard interpretation (adopting the eigenstate-eigenvalue

74Indeed, we are talking, here, about a rather wide class of interpretations. It is far from clear
that the intention of the originator of this class of views, Everett [1957], was to invoke the idea of
many worlds, which appears to have been introduced by DeWitt (see his, and Everett’s, article in
DeWitt and Graham, [1973]). A ‘many-minds’ variant has been proposed by Albert and Loewer
[1988] and Donald ([1990]), among others. See the review by Butterfield ([1995]) and the book
by Barrett [1999] for finer-grained classifications and many references.
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link), a (compound) system in this state has no particular value for the observable
F ⊗Q (where Q is the pointer-observable). The many-somethings interpretations
go to the opposite extreme, and claim that every term on the right-hand side is
‘real’, corresponds to some reality. The apparatus has neither zero, nor one, of the
values for the pointer-observable, but all of them.

Immediately, these interpretations face some questions. There is, of course, the
obvious question of how systems can manage to ‘have’ multiple states — it appears
to involve a straightforward contradiction. Generically, the reply is to introduce
an indexical property that resolves the contradiction — the different values of
the pointer-observable, for example, are realized relative to different values of the
indexical property, which correspond to different somethings (‘worlds’, or in some
versions, ‘minds’).

Everett’s original idea, however, seems rather to have been fundamentally re-
lational in character. Indeed, consider a generic two-system state, as in (26). If
the first system might be said, in some sense, to ‘really have’ the state |xj〉, then
relative to |xj〉, the second system might be said to be in the state |ψrelative to xj〉 =
Kj

∑
m cjm|ym〉, where Kj is some constant of normalization. The probabilities

generated by |ψrelative to xj〉 for the results of measurements on the second system
are exactly those generated by the original compound state (for measurements that
are restricted to the second system). Everett’s original idea seems to have been
that systems posses states only ‘relative’ to the states of other systems. Others
seem to adopt something like the view that the first system has various of the |xj〉
in different ‘worlds’, and in those worlds, the second system has the corresponding
relative state.

Each of these views raises difficult questions. In the case of Everett’s relational
view, more needs doing. Consider the analogous case in space-time theories, where
(prior to the 20th century), relationalists asserted that the only (spatio-temporal)
reality is relational, but the only theory that was available (Newtonian classical
mechanics) was not explicitly relational.75 Everett’s relational view seems to be in
somewhat of a similar situation. (For example, how and from what ‘point of view’
does the quantum state for the compound system itself get assigned? And how
can it be understood relationally?) Moreover, the many-somethings views face the
obvious metaphysical hurdle of making some sense of the plurality of ‘somethings’
(worlds, minds, whatever).

Here, I will raise just one additional question, commonly raised. The general
prescription of these interpretations is to allow that every term in a superposition
corresponds to a ‘reality’, in the sense just described. But recall that a given state
can be decomposed in many ways, and that in general the terms in the super-
position are different, depending on the decomposition. Which decomposition is
‘correct’?

One sort of answer to this question will postulate, or argue for, a preferred
basis, in terms of which the decomposition is to be made. (The argument for a

75See, for example, Brown and Pooley [2002] for details of the history, and see Butterfield, Ch.
1, §2.3, this volume, for further discussion of relationalism.
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preferred basis is most often made on the grounds that decoherence (§5.4.5) picks
it out, but there is a serious question whether the near-diagonality in position that
decoherence typically effects is sufficient.76) This answer is, in any case, highly
problematic. For suppose that we had some good reason to believe that there
is a preferred basis whose elements represented the true physical properties of
all objects. In that case, we would hardly need the extravagance of the many-
somethings interpretations to resolve the measurement problem. Relying on the
preferred basis, we would simply assert that systems are always to be described
in terms of this basis. There would then be no obstacle (for example, no Kochen-
Specker contradiction) to defining probabilities over the properties picked out by
this basis. (Indeed, below (§5.5.3.1) we will consider an interpretation — the de
Broglie-Bohm theory — that can be characterized in precisely these terms.)

Another answer allows all decompositions to correspond to realities. Here, deco-
herence can be helpful, because it suggests that creatures like us, that is, creatures
who interact with their environment in the particular way that we in fact do, will
in fact be subject to decoherence, so that our perceptions will be correlated to the
‘right’ states of the objects of our perception, and we, as perceivers, will, as far as
we can tell (with very high probability) be in worlds where the properties are the
ones we typically believe objects to have. Of course, there remains to explain the
point that in fact there are many ‘copies’ of each one of us (one for each value of
the indexical), but we leave that issue to the advocates of these interpretations,
who have their own ways of making sense of this type of plurality.

5.5.3 ‘Hidden-variables’ Interpretations

Ths basic idea behind any hidden-variables interpretation is that quantum the-
ory (as EPR argued! see §4.4) is incomplete. These interpretations propose to
supplement the state assigned to a system by quantum theory with an additional,
‘hidden’, state. (The variables need not in any sense be unavailable to observation;
they are ‘hidden’ only from the eyes of quantum theory.) Of course, not just any
proposal will do. In particular, such theories must somehow recover the empirical
success of quantum theory. Doing so amounts to recovering the quantum probabil-
ities as an average over the hidden states, in much the same way that one hopes to
recover classical thermodynamics from classical statistical mechanics by averaging
over the micro-states of the system. (See Uffink, Ch. 9, this volume.)

Hence, for example, label the hidden states by λ (where for simplicity we will
assume that λ ∈ R). Let ρW () be the distribution of the hidden states in the
(quantum) state W . Finally, let Prλ,W (F = fk) be the probability assigned by the
hidden state λ to the result (eigenvalue) fk of a measurement of F on a system in
the state W . (In the deterministic case, all such probabilities are of course 0 or

76It is worth noticing as well that a state’s being nearly diagonal in position does not entail
that the basis in which it is diagonal is anything close to position. See Bacciagaluppi [2000]. In
these cases, which basis are we to say is ‘picked out’ by decoherence?
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1.) Empirical adequacy then requires that∫
R

ρW (λ)Prλ,W (F = fk)dλ = Tr[WPfk
],(104)

where Pfk
is the eigenspace of F corresponding to the eigenvalue fk.

In this section, I will consider the de Broglie-Bohm theory (§5.5.3.1), a deter-
ministic hidden-variables theory, and modal interpretations (§5.5.3.2), which are
in general indeterministic.

5.5.3.1 The Theory of de Broglie and Bohm The de Broglie-Bohm theory
is a deterministic theory of the trajectories of particles, somewhat in the mold of
classical Newtonian (better, Hamiltonian) dynamics.77 In its original form, the
hidden-variables theory was formulated explicitly by separating the Schrödinger
equation (including a potential, V , in the Hamiltonian) into a real and complex
part, so that the solution, ψ(x, t), is written as ψ(x, t) = R(x, t)eiS(x,t). The
complex part has the form:

∂S

∂t
+

(∇S)2

2m
+ V − 1

2m

∇2R

R
= 0.(105)

This equation has the form of Hamilton’s equation, with the potential given by
V + U where U is the ‘quantum’ potential − 1

2m
∇2R
R . The real part has the form

of a continuity equation, and implies the conservation of probability:

∂p

∂t
+∇ · pq̇ = 0,(106)

where p(x, t) = R2(x, t) = |ψ(x, t)|2 is understood (stipulated to be) the probabil-
ity of finding a particle at the point x (at time t) and

q̇(x, t) = ∇S(x, t)/m(107)

is interpreted as the velocity of the particle (when it is at the point x and time t).
Hence, one can understand the one-particle Schrödinger equation as describing

an ensemble of particles (each of whose ‘quantum state’ is the same), distributed
(in space) according to p(x, t). By (106), this distribution is conserved over time,
and thus may be understood properly as a probability distribution. The individual
particles move as if they were classical particles governed essentially by Newton’s
laws with the usual classical potential plus the additional ‘quantum potential’, U .

This theory is important for several reasons. Here I will mention three.
First, it shows that the eigenstate-eigenvalue link is far from a required principle

of interpretation. Indeed, the eigenstate-eigenvalue link is quite strongly denied in

77The basic idea was first suggested by de Broglie, most famously in his [1927]. Later (after
de Broglie had been convinced that the theory does not work) it was developed by Bohm [1952],
and has seen much further development in the past few decades. For a variety of approaches to
and viewpoints on the theory, see Cushing, Fine, and Goldstein [1996].
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this theory. The position observable does not even have eigenstates, and yet, on
this theory, every particle always has a definite position.

Second, it provides a clear counter-example to oft-cited lessons of quantum the-
ory, to the effect that quantum mechanics implies a lack of determinacy at the
fundamental level, the impossibility of fundamental determinism, the impossibil-
ity of definite trajectories for particles, the impossibility of picturing quantum
phenomena, and so on. The theory clearly describes particles with definite trajec-
tories, moving deterministically under the potential V + U .

Third, this theory is probably the best-developed interpretation, with applica-
tions. There are compelling accounts of how particles behave during measurements
of spin, for example (Dewdney, Holland, and Kyprianidis, [1986]). Moreover, the
theory has occasionally been used to make headway on applications and problems
that seemed much more difficult from the standard point of view. A nice example
involves the prediction of how long a particle that will tunnel through a potential
barrier will spend in the barrier. Determining this quantity is conceptually tricky
(at best) in standard quantum theory, because the ‘particles’ have no definite tra-
jectories, and there is no time observable in quantum theory. But the problem is
conceptually straightforward within the de Broglie-Bohm theory (Leavens [1990]),
precisely because one can essentially display the possible trajectories of a particle
under the influence of the potential barrier (and the quantum potential), and then
simply take the average of the times spent in the barrrier in each trajectory.

However, we should not ignore some difficult issues faced by the theory. Set-
ting aside (as outside the purview of this article) the (very significant) difficulty
of extending the basic idea to relativistic quantum field theory, there are other
questions that it faces. Here I will mention one.

Initial appearances notwithstanding, the ontology of the theory can stretch the
imagination a bit. Indeed, one faces the following dilemma. One the one hand,
if we take the ‘guiding field’ (quantum potential) to be a real potential field of
some sort, it is highly non-local. (In the literature, this point is sometimes put
in terms of the fact that it ‘lives’ not in R

3, but in the configuration space for
the multi-particle system; of course, for a one-particle system they are the same.)
This point gets reflected in the form of the ‘guidance condition’ (107) for many
particles: q̇i(x1, x2, . . . xn, t) = ∇iS(x1, x2, . . . xn, t)/mi. That is, the velocity of
particle i depends not only on its location, but also on the locations of the other
particles. Finally, notice that the particle does not respond to the intensity of the
quantum potential in its region, but to the form. That is, increasing the intensity
of the quantum potential (multiplying R in (105) by some constant > 1) does
not change its effect on the particles at all. All of these (and more) observations
will, for some, add up to the conclusion that the quantum potential is, at best,
in need of some serious metaphysical clarification, and at worst, too bizarre to
countenance.

On the other hand, one might then deny its reality. A particle moving according
to the guidance condition, with V = 0 (zero ‘classical’ potential) will in general
still ‘deviate’ from the classically expected trajectory, but are we thereby required
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to suppose that this ‘deviation’ is due to the presence of some additional, non-
classical, potential? Perhaps, instead, we can take the guidance condition as a
fundamental rewriting of Newton’s laws.78 In this case, we may avoid the oddness
of the quantum potential as a physical entity, but the theory becomes extremely
reductionistic — the only real property of particles is their spatio-temporal tra-
jectory. Such a theory is forced to eschew providing explanations (for phenomena
such as bonding between particles) that one might wish to have, and in general
we do have in standard quantum theory.79

5.5.3.2 ‘Modal’ Interpretations Modal interpretations80 are in many ways
similar to the de Broglie-Bohm theory: they also postulate hidden-variables (deny-
ing the eigenstate-eigenvalue link) and they also (at least, they can) formulate a
dynamics for these hidden-variables. There are two major differences: (1) in gen-
eral modal interpretations will allow that the physical quantities that are ‘definite’
for a system are state-dependent, and therefore they can change in time; (2) in
general (and typically as a consequence of the choice they make for which physical
quantities are definite) modal interpretations are stochastic. Many such interpre-
tations have been proposed. Here we concentrate one class of such interpretations
(‘spectral modal interpretations’) that has seen much development, and briefly
refer to some more recent ideas.

Recall that every density operator can be uniquely decomposed as a weighted
sum of its spectral projections. The central claim of spectral modal interpretations
is that the set of observables with a definite value is the largest set that can
consistently be assigned values, with the restriction that the spectral projections
of the density operator must have values (0 or 1, in this case). In other words,
treat the density operator as an observable, and assign it a value; then assign
values to as much else as one can without running into a Kochen-Specker-type
contradiction. It turns out that, under some reasonable assumptions, this idea
leads, for any given state (density operator), to a unique set of observables that
will get assigned a definite value.81 Because the state (of course) changes in time
— and keep in mind that we are talking about the reduced density operator, so that
it need not change unitarily — the definite-valued observables generally change in
time.

Many (though not all) modal theorists aim to define some sort of dynamics for
the definite properties of a system. The problem is complicated because there are

78Indeed, the basic idea here is to reform the very notion of an ‘inertial’ trajectory. See
Pitowsky [1991].

79See Bedard [1999] and Dickson [2000].
80There are many variants on the general theme of modal interpretations. The term itself was

coined by van Fraasen [1972]. A renaissance of sorts occurred in the 1980s, with, for example,
key works by Kochen [1985], Dieks [1988], and Healey [1989], and a later related but somewhat
different view put forward by Bub [1997]. A helpful monograph is Vermaas [2000], and a helpful
collection is Dieks and Vermaas [1998].

81As an example of this genre of theorem, see Clifton [1995]. Bub and Clifton [1996] prove a
similar theorem, but geared towards Bub’s [1997] interpretation.
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two sorts of dynamics occurring ‘together’: (deterministic) changes in the set of
definite-valued properties (observables) for a system, and (stochastic) transitions
from one definitely possessed property to another. It was shown by Bacciagaluppi
and Dickson [1999] that the problem has a solution, and they exhibit some ex-
amples. However, just as in the de Broglie-Bohm theorem, there arises a serious
difficulty about whether such a dynamics can be made Lorentz-invariant. Straight-
forward generalizations from the non-relativistic to the relativistic case are known
to be unavailable, but it remains an open question whether a ‘natively’ relativistic
version of the approach can work. The resolution of this issue is connected with the
more general issue of whether, and if so how, the basic idea of the modal interpre-
tation (‘make as many observables definite as possible, given certain constraints’)
can be extended to quantum field theory. If it can, it seems that the most likely
venue will be that of algebraic quantum field theory, for even the non-relativistic
quantum-mechanical versions of the modal interpretation lend themselves nicely
to an algebraic formulation.82

Do modal theories solve the measurement problem? If so, they do because their
prescription for choosing the definite-valued observables manages to pick out the
observables — such as pointer observables — whose definiteness is threatened by
the measurement problem. The de Broglie-Bohm theory (as well as the modal
interpretation of Bub [1997]) accomplishes this feat more or less by fiat. So long
as the properties we believe pointers (and cats, and so on) to have can ultimately
be understood to supervene on the trajectories of the constituent particles, the
de Broglie-Bohm theory has a convincing solution to the measurement problem.
Modal interpretations must in general argue their way to this point. For example,
is definiteness of the spectral projections of the reduced density operator enough
to secure definiteness of the properties that we believe macroscopic objects have?
This question, as it turns out, is quite difficult to answer. In the case of an
idealized impulsive measurement, the reduced density operator for the apparatus
does have the definite pointer-states as its spectral projections. But in realistic
(non-ideal) measurements, there is potential trouble. At one time, it was thought
that decoherence saves the day, but it is no longer clear whether decoherence does
the work needed here.83

5.5.4 Collapse Interpretations

5.5.4.1 Non-Dynamical Collapse Interpretation The idea that the quan-
tum state must, in some sense or other, ‘collapse’, is quite natural as soon as one
interprets it in terms of probability. And various suggestions have been made,

82For example, see Halvorson and Clifton [1999]. For an initial foray into modal interpretations
of quantum field theory, see Clifton [2000]. For a discussion of this foray especially as it relates to
the issue of Lorentz-invariance, see Earman and Ruetsche [2006], which also includes references
to the earlier work on Lorentz-invariance in modal interpretations. Cf. also Halvorson, Ch. 8,
Section5, this vol.

83See Bacciagaluppi and Hemmo [1996] for the former attitude, and Bacciagaluppi [2000] for
the latter.
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from time to time, about when this collapse occurs. See, for example, Dirac [1930]

Consider an observation, consisting of the measurement of an observable α, to be made on a
system in the state ψ. The state of the system after the observation must be an eigenstate of α,
since the result of a measurement of α for this state must be a certainty.

That is, collapse occurs upon observation (i.e., measurement). The argument that
Dirac is making here is the following. If we repeat the measurement of α on the
system, we will get the same result that we got the first time (regardless of ψ, and
assuming, of course, that the measurement was of the first kind — §3.1.2) with
probability 1. Suppose that result was a. There is only one state that assigns
probability 1 to a, namely, the eigenstate corresponding to a.

I have already suggested (§5.4.3) that an account along these lines is, at best, in
need of help.84 Otherwise, it is little more than a statement of the collapse postu-
late, with no clear account of what makes the difference between ‘measurements’
and other interactions.

One obstacle to drawing this distinction in a principled way is that if too few
interactions count as measurements, then we might, after all, still be stuk with
the measurement problem (because collapse might not occur in situations where
we need it to get the definiteness of properties that we experience as definite).
However, if too many interactions count as measurements, we might end up with
a theory that is empirically false. (For example, if the state of a photon passing
through the double-slit apparatus (figure 3) always collapses after it passes through
the barrier, then we will never see an interference pattern, contrary to experimental
results.)

One approach to drawing the distinction (between cases where collapse occurs
and cases where no collapse occurs) that arguably avoids both of these pitfalls,
and arguably does begin to smell like an interpretation of the theory, is due to
Wigner [1961]. Wigner is motivated by the following argument, often referred to
by the name ‘Wigner’s friend’.

Wigner asks us to imagine the following scenario. A measuring apparatus, µ,
measures some observable, F (by means of a pointer-observable, M), on an object-
system, σ. Meanwhile, both Wigner (α) and his friend (β) are in a position to
observe µ (by means of ‘observation-observables’ A and B). Let us use |mn〉 to
refer to the eigenstates of M , and similarly for the rest.85 Now, suppose that the
measurement of σ by µ has occurred, while neither α nor β has observed µ. If
σ was originally in the state

∑
n cn|fn〉 then we may write the state of the total

system as∑
n

cn|fn〉|mn〉|a0〉|b0〉(108)

84And, alas, such help has only rarely been forthcoming. Hence I have no list of references
to offer the reader, here. Perhaps the most famous attempt to make sense of non-dynamical
collapse is precisely the one discussed here, due to Wigner.

85There is a serious question whether a physical state such as ‘observes the pointer to be in
the state |Mn〉’ is pure, and therefore whether there are observables such as A and B. See §1.4.3.
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According to the eigenstate-eigenvalue link, in this state, µ and σ are not in a
definite states of M ⊗ F . At this stage, standard quantum theory will say to
invoke the collapse postulate, so that the state becomes |fk〉|mk〉|a0〉|b0〉 for some
k. In other words, in absence of specific knowledge about the outcome, the state
becomes the (ignorance-interpretable) mixture∑

n

|cn|2Pfn
⊗ Pmn

⊗ Pa0 ⊗ Pb0 .(109)

However, as noticed above (§5.4.5.2.a), there is a real empirical difference between
(108) and (109), even if in general it is practically impossible to detect. Wigner
finds nothing in the nature of σ, µ, or the interaction between them, to warrant
the assumption that this physical change of state occurs.

Notice, moreover, that the observers α and β have not yet entered the picture
in a substantial way. But it is their definite experiences that we are (in this
argument) obligated to secure. Wigner considers himself (α), and notices that
at this stage of the process (i.e., once the state is given by eq. 108), nothing
threatens the definiteness of his experiences — in fact, he remains in the ‘has not
yet observed’ state (|a0〉) with probability 1. So consider the state after α observes
the apparatus:∑

n

cn|fn〉|mn〉|an〉|b0〉.(110)

Now Wigner feels compelled to assent to collapse, because otherwise (by the
eigenstate-eigenvalue link) his own state would be indefinite.

But what about Wigner’s friend (β)? Suppose that β observes the apparatus
before α. Wigner argues that, given a principle of charity about β’s reports of
prior mental states, he is obligated to collapse the state upon observation by β,
even if he (α) has not yet observed µ. For suppose that α then (after β) observes
µ, and then asks β: After you observed µ, did you feel that you experienced a
definite outcome? Did you observe it to be in a definite state? Surely β will
answer ‘yes’, and assuming (as Wigner does — this assumption is the principle of
charity) that we are to believe β’s report, we must assume that the state collapses
upon observation by β.

Hence any observer to whom the principle of charity applies will effect a collapse
of the state, upon observation. Wigner believes that the principle extends to
anything that is, or has, a ‘mind’ (a term that is largely uncircumscribed, here).
Moreover, given a fairly strong distinction between physical bodies and minds (i.e.,
given some form of dualism), one can point to the distinctness of minds as somehow
the reason that observation by a mind collapses the state, while observation by a
non-mind (e.g., a typical measuring apparatus) does not collapse the state.

Setting aside the question of the plausibility of the premises of Wigner’s argu-
ment, notice that we have arrived at this conclusion through the backdoor. In
other words, Wigner does not give us an argument that proceeds from the nature
of minds, and appeals to that nature to argue that observation by a mind will



Non-Relativistic Quantum Mechanics 379

collapse the physical state. Indeed, Wigner’s view faces the same difficulty that
all dualisms face: what is the connection between mind and matter? How does
mind collapse the physical state of a system? Various extraordinarily speculative
ideas have been floated, none particularly convincing. (See Atmanspacher [2004]
for a review.)

5.5.4.2 Dynamical Reduction Theories Another strategy for making col-
lapse well-defined is to describe it as a physical process. Of course, in one sense
it already has been characterized as a physical process, for it is a change in the
physical state of a system. Here, however, I mean something more, namely, formu-
lating a single equation of motion that somehow incorporates both the continuous
‘Schrödinger’ evolution and collapse, in a unified way. There have been (and con-
tinue to be) many proposed schemes along these lines.86 Here, again, I consider
just one example.

5.5.4.2.a Intuitive Account of Continuous Spontaneous Localization
The example that I will consider is the continuous version of a theory originally
proposed by Ghirardi, Rimini, and Weber [1986]. The continuous version, called
‘continuous spontaneous localization’ (CSL), is due to Pearle [1989]. It is easiest
to state in terms of wavefunctions. The basic idea is that each physical system
in the universe experiences, simultaneously, two types of evolution: the ‘normal’,
deterministic, ‘Schrödinger evolution’, and a stochastic tendency towards local-
ization. By the latter, we mean that the system’s wavefunction (in configuration
space) experiences random (but infinitesimally small) fluctuations, the net result
of which is, on average and with overwhelming probability, to tend to make the
wavefunction more localized — more of the probability gets concentrated in some
localized region.

The strength of this stochastic evolution, which determines how quickly the
localization occurs, is determined by the number of particles in the system.87 For
systems with microscopic numbers of particles, the stochastic part of the evolution
is swamped by the Schrödinger evolution, so that the evolution is, for such systems,
nearly identical to that given by standard quantum theory. But for systems with
macroscopic (e.g., around 1023) numbers of particles, if the system is initially in
a superposition of two (or more) localized states whose centers of localization are
far apart (> 10−5cm or so), then the stochastic element of the evolution acts very
quickly to suppress (continuously) all but one of the terms in the superposition.
The parameters of this stochastic process are arranged so that the probability of
reduction to one state or the other is equal to the quantum probability assigned
to that state (by the initial superposition).

86See, for just a few examples, Diosi [1992], Ghirardi, Rimini, and Weber [1986], Gisin [1984],
and Primas [1990].

87There are schemes in which the strength of the stochastic evolution depends on other things,
for example, mass.
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5.5.4.2.b Mathematical Account of Continuous Spontaneous Local-
ization Here are a few mathematical details. In CSL, the evolution of the wave-
function (here written in one spatial dimension) is given in terms of the (non-
unitary)88 operator:

U(t) = exp[−iHt] exp
[
−γ

2
t

∫
N2(x)dx

]
exp

[∫
N(x)Bx(t)dx

]
.(111)

The first term is just the usual quantum-mechanical evolution operator (for a
time-independent Hamiltonian, H). The N(x) are a family of ‘number density’
operators that, intuitively, indicate roughly the number of particles inside some
region centered on x (or, in three dimensions, a ball of some fixed radius around x
— this fixed radius is part of the definition of the N(x), which we set aside here).
The Bx(t) is a field of stochastic processes (i.e., a continuous family of stochastic
processes, each evolving at a point x). Hence the evolution operator in (111) is
‘stochastic’ — it depends on the values that the Bx(t) take. Notice, though, that
for a given realization of the Bx(t), one can plug the realization into (111) and it
would then be deterministic.

The second term in (111) is a ‘decay’ term, where the rate of decay depends on
γ (and the particle-density). The third term in (111) is a ‘growth’ term, where
the growth depends on the evolution of the stochastic process Bx(t) (and the
particle-density). These two terms ‘fight’ against one another, with the ultimate
result tending (with extremely high probability) to be an overall decay of the
wavefunction, except in some localized region, where it grows.

Bx(t) is defined so that the likelihood of a growth in any given region is di-
rectly proportional to the amplitude of the wavefunction in that area. Hence the
probability that the growth term will eventually cause the wavefunction to grow
in a given area is indeed the same as the quantum-mechanical probability that a
collapse would occur in that region. Notice that as the wavefunction begins to
collapse onto some region, the probability that it will continue to collapse onto
that region grows, because the amplitude of the wavefunction will be higher there,
and therefore the stochastic processes in that region will be more likely to grow.

The final ‘trick’ is to choose γ so that the claim of the previous section is
true, namely: for systems with a small number of particles, the first term in
(111) dominates the other two (because N(x) will be small everywhere), while for
systems with a very large number of particles, the second and third terms will
come into play. There are empirical constraints on the choice of γ, but it is in fact
possible to find values for γ that are consistent with known experimental fact.

5.5.4.2.c Evaluation CSL has the obvious virtue of being a well-defined,
mathematically precise, theory that manages to describe ‘collapse’ as a physical
process in an unambiguous way. Nonetheless, several questions have been raised
about it. Here I mention two.

88In general, the norm of the wavefunction is not preserved by its evolution in CSL. However,
it is a straightforward matter to renormalize the the wavefunction at any time.
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The first concerns perhaps the biggest theoretical obstacle faced by the theory,
namely, the formulation of a relativistic version. While progress has been made
in various directions (e.g., Ghirardi, Grassi and Pearle [1990]), serious problems
remain. Moreover, these problems are directly related to the characteristic feature
of CSL, the introduction of the family stochastic processes Bx(t), which, in the
relativistic context, gives rise to infinities that do not appear in the standard theory
(and cannot be ‘renormalized away’ in the same way).

The second issue concerns the fact that the collapse in CSL is never complete.
That is, the state never becomes one whose support is entirely contained within a
localized region. Instead, it always has ‘tails’ — the wavefunction always has non-
zero amplitude at points outside the region in which the system has supposedly
been localized.

The question here is whether one is still licensed to call such a system ‘localized’.
If we maintain the eigenstate-eigenvalue link then the answer might well be ‘no’.
After all, a wavefunction with tails is not an eigenstate of the position observable,
nor any coarse-graining of it. The response on the part of at least some advocates
of CSL has indeed been a new understanding of the wavefunction, as some sort
of direct representation of, as Bell [1990] put it, ‘density of stuff’. This view,
while avoiding the immediate problem, does have some metaphysically disturbing
consequences, such as the fact that apparently there will, on this view, be very
‘faint’ (low-density) ‘copies’ of all objects located in many places.

6 NON-LOCALITY

Recall (§1.2.6.4) that compound systems in a non-factorizable state may exhibit
correlations in the propreties that they exhibit (upon measurement at least). These
correlations may be ‘non-local’. Non-locality involves, first, the spatial separation
of the particles (and the measurement-events on them that exhibit the correlated
properties). There is the question, then, whether correlations exhibited by spa-
tially separated systems can be explained in terms of a ‘common cause’, a single
event in the history of the two systems that could explain the correlation between
them.

In §6.1 I will clarify this question (§6.1.1), and then consider some theorems
that show, under reasonable assumptions, that in fact no such common cause
explanation is available (§§6.1.2–6.1.3). Hence quantum theory — and indeed the
physical world itself! — appears to be ‘non-local’, in some sense or other. In §6.2
I will consider several reactions to these theorems, and the implications for the
prospects of finding a relativistically invariant and also conceptually satisfactory
interpretation of quantum theory.
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6.1 No-Go Theorems

6.1.1 Non-local Correlations

6.1.1.1 Statistical Correlation The term ‘correlation’ comes from statistics,
and it is being used here in that sense. Given two random variables, A and B,
their correlation is defined to be:

rAB =
E[(A− Ā)(B− B̄)]

σ(A)σ(B)
,(112)

where E[·] is the expected value and σ(·) is the standard deviation. The correlation
is 1 if A = kB + m for positive k (and any fixed m, and −1 for negative k.
The numerator of (112) is called the ‘covariance’. The denominator is present
essentially for normalization.

It should be clear that correlation is a measure of the ‘dependence’ of the value
of one variable on the other. Non-zero correlations will generally be a consequence
of the fact that, for at least some possible values a and b of the random variables,
Pr(A = a|B = b) 	= Pr(A = a), i.e., A and B are not statistically independent.

6.1.1.2 Correlations in the Singlet State For a pair of spin-1/2 particles,
the state

|ψsinglet〉 =
1√
2

(
|z+〉|z−〉 − |z−〉|z+〉

)
.(113)

is called the ‘singlet’ state. (Notice that it is a two-particle analogue of the state
in eq. 93.) Consider the observables Sz on each of the two particles. (One can
think of these observables as random variables, because the state in (113) generates
probabilities for the possible values of these observables, or more precisely, for the
observables S

(1)
z ⊗I

(2) and I
(1)⊗S

(2)
z , where the superscripts number the particles.)

The covariance of these observables (normalized to have eigenvalues ±1 in order
to bypass calculating standard deviations) in the state |ψ〉 above is:

r
S

(1)
z S

(2)
z

= 〈ψ|
(
S

(1)
z ⊗ S

(2)
z

)
|ψ〉

= 1
2

(
〈z+|〈z−| − 〈z−|〈z+|

)(
(−1)|z+〉|z−〉 − (−1)|z−〉|z+〉

)
= −1.

(114)

The values are perfectly anti-correlated. Indeed, a similar calculation for S
(1)
u ⊗S

(2)
u

(for an arbitrary direction u) shows that r
S

(1)
u S

(2)
u

= −1; the perfect anti-correlation
holds in every direction. For distinct directions, u and u′ (but, without loss of
generality given the spherical symmetry of the state, setting φ = φ′ = 0 in (36)
and again ‘normalizing’ the observables), we calculate:

r
S

(1)
u S

(2)
u′

= − cos θ cos θ′ − sin θ sin θ′ = − cos(θ − θ′).(115)
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This correlation is predicted by quantum theory, and well confirmed by a variety
of experimental tests.

6.1.1.3 Common-Cause Accounts of Correlations Of course, in one sense,
non-local correlations are ubiquitous. Consider: there is a correlation in the tides
at different locations on the planet; there is a (negative) correlation between the
average daily temperature in Sydney, Australia and London, England; there is a
(postive, near-perfect) correlation in the number of words appearing in the news-
paper at my front door each morning, and the one appearing at my neighbor’s
front door each morning. None of these correlations are surprising, even though
they are correlations between the properties of spatially separated objects. The
reason is clear: these ‘non-local’ correlations have a local explanation, in terms of
a common cause.

Following Reichenbach [1956, 158-159], one can formalize the notion of a com-
mon cause in terms of conditional probabilities. Suppose that A and B are corre-
lated. In this case, Pr(A∧B) 	= Pr(A) Pr(B). A common cause for the (let us say,
simultaneously occurring) events A and B is an event, C, such that: (i) Pr(A|C) >
Pr(A|¬C); (ii) Pr(B|C) > Pr(B|¬C); (iii) Pr(A ∧ B|C) = Pr(A|C) Pr(B|C); and
(iv) Pr(A ∧ B|¬C) = Pr(A|¬C) Pr(B|¬C). Conditions (i) and (ii) say that C is
probabilistically relevant to the occurrence A and B respectively, while conditions
(iii) and (iv) say that C ‘screens A off from B’ (and vice versa) — that is, C
completely accounts for the correlation between A and B.89

Hence, for example, we may observe that the newspaper at my front door (A)
was printed from the same master (C) as the one at my neighbor’s front door
(B). The same earth whose inclination towards the sun (C) partially determines
temperature in Sydney (A) also partially determines temperature in London (B).
And so on.

And yes, thanks to Einstein’s theory of general relativity, even the moon’s grav-
itational pull on the oceans is a local common cause: the gravitational ‘force’ prop-
agates locally, as a wave, through space. Indeed, physics has, for at least the past
century, been pushing towards local theories, and indeed theories that are, in some
appropriate sense, Lorentz-invariant. (The precise meaning of ‘Lorentz-invariant’
varies, but the rough idea is that the theory does not permit the transmission of
matter and energy faster than light, or does not permit a signal to be sent faster
than light, or at the very least, does not permit matter to be accelerated from
subluminal to superluminal speeds. See Malament, Ch. 3, §2, this volume.)

Quantum theory permits non-local correlations. The question we face is whether
those correlations can also, like the others mentioned here, be given a (local)
common cause explanation. In particular, can the correlations implied by (115)
be explained by a common cause?

89This formulation is not entirely satisfactory, but illustrates the notion of a common cause
well enough for present purposes. See Uffink [1999b] and references therein.
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6.1.2 Bell’s Theorem

Bell’s theorem essentially answers ‘no’ to this question. Moreover, Bell was able
to derive some constraints on the predictions made by any local theory. These
constraints are quite convincingly violated by experiment.

6.1.2.1 The Experiment The experiment considered by Bell is essentially
the one considered by EPR (§4.4), in a version described by Bohm [1951, ch. 22].
There is a source of pairs of spin-1/2 particles, each pair in the state |ψsinglet〉
(113); the particles are directed towards Stern-Gerlach devices, each oriented in
some direction (labeled u and u′). The particles arrive at these devices in such a
way that the measurements are made at space-like separation. Indeed, even the
choices of the directions u and u′ are made at space-like separation. That is, the
choice of measurement, and the measurements themselves, are made sufficiently
far apart in space, and sufficiently close together in time, that a signal of any sort
from one measurement-event to the other would have to travel faster than light.
After many runs of the experiment, the results are collected, and correlations
determined.

In fact, in order to get Bell’s Theorem underway, we need consider only three
possible directions (ua, ub, and uc) on each side. The measurement-devices thus
choose, at the ‘last second’, which of these three directions to measure, and then
they record the result.

6.1.2.2 The Issue in Terms of ‘Hidden Variables’ One way to think about
the question about common causes that we raised above is in terms of so-called
‘hidden-variables theories’ (§5.5.3) and indeed Bell conceived of the issue in these
terms. Recall that hidden variables describe complete states of the particles, states
that include information not provided by the quantum state. In the deterministic
case, these complete states fix the values of Su for each value of u, for each particle.
The picture, then, is that, back at the source, the pair of particles about to be
released towards the two measurement-devices has some ‘hidden’ state. This state
already determines, for each particle, and each possible direction ua, ub, and uc,
a value (+1 or −1) for spin.

Indeed, recall the EPR argument (§4.4), and their conclusion that quantum
mechanics is ‘incomplete’. The point there was that locality (plus the criterion
for physical reality) forces one to conclude, in the context of this experiment, that
each system must in some way already have values for all Su — they must have
‘established’ the correct correlations back at the source (for they cannot do so
later, at spacelike separation, by locality).

Note that for a given direction, the hidden state must determine the particles to
have opposite spin, because of the perfect anti-correlations. (These hidden states
can thus be partitioned into eight classes, two possible assignments of spin for
each of the three directions.) Apart from that, the only requirement is that it
be possible to recover the quantum-theoretic correlations by averaging over some
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distribution of the hidden states, as in (104).

6.1.2.3 Probabilistic Hidden States A slightly more general approach is
to allow the hidden states to determine spins only probabilistically. The theory
will remain ‘local’ as long as the hidden state of the particles back at the source
screens off the measurement-event at one side from the results at the other side
(§6.1.1.3). Letting Prλ be the probabilities for measurement-results prescribed by
the hidden state λ (and we are assuming, now, that the quantum state is fixed as
|ψsinglet〉), the screening-off condition is that, for any u, u′, k = ±1, and k′ = ±1:

Prλ(x = k|i = u, j = u′, y = k′) = Prλ(x = k|i = u),(116)

where x is the result for particle 1, y is the result for particle 2, i is the direction
of spin measured on particle 1, and j is the direction of spin measured on particle
2. The intuitive idea, here, is that the result for particle 1 depends only on the
direction of spin measured (and λ), and is thus independent of the result for particle
2, and the direction in which spin was measured on particle 2. This condition, or
something similar, is often called ‘Bell locality’.

So, finally, the question we face is whether there can be hidden states, λ, and a
distribution over them, ρ(), such that the probabilties, Prλ both obey Bell locality
(116) and reproduce the quantum correlations (115) via averaging as in (104).
(Note that a similar condition will hold for the single-wing probabilities, i.e., those
obtained for just one of the two particles, which will also, of course, be obtained
by averaging over hidden states.)

In general, as I mentioned earlier (§5.5.3), the distribution ρ() would depend on
the quantum state (which, recall, we are presuming here to be |ψsinglet〉). But it
must not depend on anything that would require a non-local influence on the
source, because ρ() is supposed to represent the distribution of hidden states
amongst pairs produced at the source. For example, we will presume that the
choice of measurement-direction and the results of the measurements d not influ-
ence ρ().

6.1.2.4 Bell’s Theorem Bell’s theorem shows that in fact no common-cause
explanation of the sort outlined above exists.

Theorem (Bell [1964]): For any choice of directions ua, ub, and uc,
any hidden-variables theory that satisfies (i) Bell locality (116) and
(ii) independence of ρ() from the measurement-events will obey the
inequality

|rac − rbc| − rab ≤ 1.(117)

(where rab := r
S

(1)
ua S

(2)
ub

and so on).90

90Numerous other inequalities have since been derived, with various virtues, especially regard-
ing experimental testability. See Clauser and Shimony [1978].
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Given the quantum-mechanical prediction (115), this inequality is violated by
many choices for ua, ub, and uc. For example, defining each uk in terms of Euler
angles φk and θk, choose φk = 0 for k = a, b, c (so that these directions are co-
planar), θa = 0, θb = π/4, and θc = π/2. In this case, the quantity on the left-hand
side of (117) is

√
2.

6.1.2.5 Experimental Violation of Bell’s Inequality Bell’s Inequality is
violated by experiment. Of course, as is always the case with experimental real-
izations of theory, there are complications. For example, actual sources often do
not produce particles that move away from the source in precisely opposite direc-
tions. One must either filter out those that do not, or take account of the fact that
they do not move in exactly opposite directions. Neither solution is completely
straightforward. And there are other issues with existing experimental tests of
Bell’s inequality, although experimentalists are increasingly able to settle these
issues in favor of the violation of the inequality in the world, i.e., the confirmation
of the quantum correlations.

There is one issue that will not be settled by experiment, at least not entirely,
and it involves the fact that for any given pair of particles, only one pair of mea-
surements (one on each particle) can be made. In other words, for each given pair,
we are not really probing the entire hidden state, but only its implications for one
pair of measurements. We must therefore presume that the sample we are getting
of ensemble of hidden states is representative. To put the point another way, con-
sider all of the pairs where we measure, for example, ua, ub, and then all the pairs
where we measure ub, uc. In order to test Bell’s inequality, we will calculate the
correlations amongst these two groups of pairs, then plug the results into (117).
In doing so, we are assuming that had we measured ub, uc on the ua, ub-pairs (i.e.,
instead of measuring ua, ub on them), we would have gotten the same correlation
that we in fact got for our actual ub, uc-measurements. Most consider this coun-
terfactual innocuous — in large part because violating it seems to involve one in
some rather odd conspiracy theories, many of which would in any case be non-
local.91 It is worth pointing out, however, that the counterfactual nature of the
assumption is not due to contingent facts about what we happened to measure (as
the corresponding counterfactuals often would be in classical physics), but rather
it is due to the in principle incompatibility of the measurements involved — Sua

and Sub
cannot be measured at the same time on the same particle, and, more-

over, in accordance with the uncertainty principle (§4.2), measuring one destroys
whatever previous knowledge we have of the other.

91For example, it will not do to suppose that only a ‘certain kind’ of hidden state is ever involved
in a ub, uc-measurement, because this theory would violate the condition that the distribution at
the source be independent of the choice of measurement. However, models that rely on detector
inefficiencies can assert — however oddly — that detectors have a preference for revealing only
‘certain kinds’ of hidden states, based on which measurement was performed. Fine’s ‘prism
models’ are of this sort — see Fine [1991] and Szabó and Fine [2002]. Note that detector
efficiencies continue to improve, and could eventually rule out such theories on purely empirical
grounds.
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Finally, note that although Bell’s Theorem is framed in terms of so-called ‘hid-
den’ states, it is ultimately not a theorem about hidden-variables theories, but
about locality. After all, there is nothing stopping us from taking the λ to be the
quantum state itself and following through Bell’s derivation. Of course, in doing
so, we will make an assumption (Bell locality) that is violated by quantum theory,
and we could have checked this violation directly if we had wanted to. Either way
the conclusion is the same: in the sense discussed here (Bell locality), standard
quantum theory is itself a non-local theory.

6.1.3 Other Bell-Like Theorems

Plenty of other theorems are floating around that also bear on the issue of locality.
A couple of them we have already seen (§5.4.1.2 and §5.4.1.2.c), and so will be
mentioned only briefly here.

6.1.3.1 The Kochen-Specker Theorem as a Theorem about Locality
The non-contextuality condition in the Kochen-Specker theorem can, in the right
circumstances, be seen as a locality condition, and the sought-for homomorphisms
(recall §5.4.1.2.b) from the lattice of subspaces to the Boolean lattice {0, 1} are
the ‘hidden states’. However, rather than develop this point in the context of the
general Kochen-Specker theorem, let us just consider the point in the context of
the GHZ theorem, which in fact was originally (and correctly) characterized by its
authors as a Bell-like theorem without inequalities — one need only suppose that
the three particles are space-like separated.

In this context, the condition of non-contextuality becomes this: the value
assigned to each of the observables in (99) must be assigned independently of
which observables (100) one considers it to be a part, that is, independently of the
‘context of measurement’, which is given by the set of observables measured on
each of the three particles. In other words, the value that particle 1, for example,
has for S

(1)
x cannot depend on whether we are measuring S

(1)
x ⊗ S

(2)
y ⊗ S

(3)
y or

S
(1)
x ⊗ S

(2)
x ⊗ S

(3)
x . This condition is a consequence of locality, because such a

dependence would imply that the result of the measurement on particle 1 would
depend on which observable we decided to measure on particles 2 and 3, even if
those decisions were made at space-like separation from the measurement-event
on particle 1.

6.1.3.2 Hardy’s Argument GHZ simplified the conclusion of Bell’s argu-
ment, getting rid of the inequality, but at the expense of introducing another
particle. Hardy [1992] managed to make an argument not based on inequalities,
but considering only two particles.92 He considers the experimental arrangement
depicted in figure 5, which shows a ‘double-interferometer’ (called ‘double’ because
there are two interferometers, ‘overlapping’ at the point A). The electron (e−) and

92The exposition here follows that in Dickson [1998, pp. 209–211].
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Figure 5. Hardy’s Experiment.

positron (e+) enter the interferometers on the paths s− and s+ repectively. They
encounter a beam-splitter, and as a result, follow either the ‘u’ path or the ‘v’
path, with equal probability. If they both follow their u path then they meet at
A and annihilate one another. Otherwise, they both reach a second beam splitter
and the positron then goes on to either the detector C+ or the detector D+, with
equal probability. The electron is in the corresponding situation.

Hardy assumes that a hidden-variable theory will assign a definite path (u or
v) to each particle. He claims further that the question whether a particle is
on a given path ought to have a Lorentz-invariant answer — its path ought not
depend on an observer’s reference frame. Otherwise the hidden-variable theory
is not Lorentz-invariant, and is, in that sense at least, non-local. Here, we will
consider three reference frames. In the first, F+, the detection of the positron (at
C+ or D+) occurs before the electron has passed through its beam splitter. In the
second, F−, the order of these events is reversed. And in the third, the detections
are simultaneous.

The initial state of the electron and positron is |s−〉|s+〉 respectively, indicating
that (before they reach the initial beam-splitter) they are on the paths s− and s+

respectively. The initial beam splitters effect the evolution

|s±〉 → (1/
√

2)(i|u±〉+ |v±〉).(118)

Similarly, the second set of beam splitters effect the evolution

|u±〉 → (1/
√

2)(|c±〉+ i|d±〉)(119)

|v±〉 → (1/
√

2)(i|c±〉+ |d±〉).(120)
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Using (118), the state after the system passes the point A is (in frame F )

1
2

(
− |γ〉+ i|u+〉|v−〉+ i|v+〉|u−〉+ |v+〉|v−〉

)
,(121)

where |γ〉 is the state after an annihilation. One can calculate the state at various
times in the frames F , F+, and F− by applying one or more of (118–120). I leave
these calculations to the reader.

Now, in F+, if the positron is detected at D+, then the electron must be on the
path u− (with probability 1). Similarly, in F−, if the electron is detected at D−,
then the positron is on the path u+. However, in F , the state of the pair before
either particle goes through its second beam splitter is orthogonal to a state where
the particles take the paths u+ and u− (because of the annihilation in that case).

Consider, then, a run of the experiment in which detectors D+ and D− both
register a hit. (This outcome does indeed have non-zero probability.) In that case,
an observer in F+ will conclude that the electron took the path u−. An observer
in F− will conclude that the positron took the path u+. Both of these statements
must be true for an observer in F , but as we saw above, they cannot both be
true. Hence, Hardy concludes, a theory that assigns definite paths to the particles
cannot be Lorentz-invariant.

Note, finally, that Hardy has implicitly assumed non-contextuality as well. A
hidden-variables theory is obliged only to reproduce the experimental predictions
of quantum theory. If the theory is contextual, then in particular the path of a
particle may depend on the presence (or not) of a device on the path that will detect
the particle (or not) on the path. Hence, for example, such a theory is not obliged
to assign the path u+ to the positron if the electron is detected at D− (in F−)
unless there is a detector in place to determine whether the positron is on u+. But
in this case, the detector will interact with the positron, and everything changes,
including (most importantly) the quantum-theoretic calculations that are behind
Hardy’s argument. In the absence of such a detector, and such an interaction, a
hidden-variables theory need not respect the quantum probabilities. But agreed,
a non-contextual theory does always have to respect those probabilities, because
such a theory cannot alter the (hidden) state (i.e., the path) that it assigns to a
particle depending on whether a detector is in place along the path u+.

6.2 Reactions to the Theorems

What should we make of the failure of locality? In this section, I shall consider four
more precise versions of that question.93 Can the failure of locality be used to send
signals from one measurement-station to the other (§6.2.2)? Does the failure of
locality imply the existence of some causal connection between the measurement-
stations (§6.2.3)? Does the failure of locality imply (or can it be understood in
terms of the claim that) the two systems are somehow not really distinct (§6.2.4)?

93Extensive discussion of these issues and more is available in many places. Cushing and
McMullin [1989], Butterfield [1992], Maudlin [1994], and Dickson [1998, chs. 6-9] will get the
interested reader started.
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Finally, and perhaps most important from the point of view of theoretical physics,
what does the failure of locality imply about the possibilities for a fully Lorentz-
invariant (relativistic) quantum theory (§6.2.5)?

Prior to asking these questions, I shall review (§6.2.1) an important analysis of
locality, one that some have claimed helps resolve some of these questions.

6.2.1 Parameter Independence and Outcome Independence

Once we have accepted the non-locality of quantum theory, and of empirically
adequate hidden-variables theories — and it is surprising how far some will go
to resist this conclusion — the question becomes how to understand Bell locality.
The most famous analysis of this condition is in terms of two other conditions,
often called ‘parameter independence’ and ‘outcome independence’. The former
expresses the idea that the parameters — the settings on (direction of spin to be
measured by) the measurement-apparatus — at one measurement-station do not
affect the outcomes at the other measurement-station. The latter expresses the
idea that the outcomes at one measurement-station do not affect the outcomes at
the other.

These conditions are, like Bell locality, statements of probabilistic indepen-
dence:94

Parameter Independence for all i, j, k, k′, λ,

Prλ(x = k|y = k′, i = u, j = u′) = Prλ(x = k|y = k′, i = u)(122)

and similarly, reversing the roles of particles 1 and 2.

Outcome Independence for all i, j, k, k′, λ,

Prλ(x = k, y = k′|i = u, j = u′)

= Prλ(x = k|i = u, j = u′)× Prλ(y = k′|i = u, j = u′).
(123)

(See 6.1.2.3 for the notation.) The conjunction of Parameter Independence and
Outcome Independence yields Bell locality with just some trivial applications of
probability theory.

One of the values of this analysis is that it reveals, more precisely, how quan-
tum theory violates Bell locality. In particular, quantum theory violates Outcome
Independence, but satisfies Parameter Independence. The derivation of the corre-
lation (115) more or less proves the first claim.95 We will see one way of proving
the second claim in the next subsection.

94There are subtly different versions of these conditions, taking into account, for example,
hidden variables in the apparatus, and so on. We are skating over such distinctions here. In
addition, there are hosts of other locality conditions one might introduce. See Dickson [1998,
chs. 6-9]. Jarrett [1984] is responsible for the first clear statement of this distinction. The
conditions as stated here, and the terminology used here, is due to Shimony [1986].

95Strictly speaking, in order to implement the probabilities in (123), one should introduce the
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6.2.2 Signaling

6.2.2.1 Locality and Signaling Part of the original intention behind the
analysis of Bell locality into Parameter Independence and Outcome Independence
was to isolate a part of Bell Locality that does not involve a violation of relativity
theory, in some sense or other. In particular, the claim is often made that a failure
of Outcome Independence is somehow consistent with relativity, while a failure of
Parameter Independence is not.

In particular, one might understand relativity theory as prohibiting superlu-
minal signaling. A violation of Outcome Independence, so the argument goes,
does not involve the possibility signaling, because even though it implies that the
outcome at one measurement-station depends probabilistically on the outcome at
the other (and of course the measurement-events are space-like separated), the
outcomes themselves are probabilistic. That is, an experimenter cannot control
the outcomes. But controlling the outcomes would be necessary in order to use
the dependence between outcomes to send a signal.

On the other hand, experimenters are in control of parameters — they are
in fact normally assumed to be the result of a free choice of the experimenter.
Hence, so the argument goes, a violation of Parameter Independence implies that
an experimenter can (probabilistically) influence the outcomes at the other station
by manipulating the parameter (direction in which spin is measured) at the local
station.

However, keep in mind that the probabilities in Parameter Independence and
Outcome Independence are those generated by the hidden state, λ. If the ex-
perimenter is not in control of these hidden states, then a failure of Parameter
Independence will also not imply the possibility of signaling. Moreover, control of
the hidden states would mean that in fact a violation of Outcome Independence
also implies the possibility of signaling, so long as the probabilities for the outcomes
generated by different hidden states are different. In this case, an experimenter
can in fact locally manipulate the outcomes in the probabilistic sense of controlling
the hidden state in order to make a given outcome more or less likely, and thus,
via the probabilistic dependence between outcomes, influence (probabilistically)
the outcomes at the other station.outcome independence

An illuminating example of the significance of being able to control the hidden
state is provided by the de Broglie-Bohm theory. It is clear that the theory sat-
isfies Outcome Independence, because it is a fully deterministic theory. That is,
given the parameters i and j, and the initial state (which, in this theory, is the
initial positions of the particles, plus the quantum wavefunction), the results of
the measurements are fixed. Hence, in particluar, the result of one measurement,
being fixed by λ, i, and j, does not depend on the result of the other measure-

apparatuses as two additional systems, and define the apparatus-settings (choice of direction of
spin) as states of these additional systems. Hence one would have a state in a four-fold tensor
product Hilbert space, and would consider the probabilities generated by that state. Following
through the analysis in this way, however, is not particularly enlightening, and yields the same
result, namely, the failure of Outcome Independence.
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ment. On the other hand, the de Broglie-Bohm theory does violate Parameter
Independence, for the result of a measurement on one particle does in general
depend on the direction in which spin is measured on the other. (Changing the
setting on the apparatus changes the wavefunction for the compound system in
a way that ultimately changes the quantum potential, and hence the trajectories
for both particles.) However, knowing how a particle is affected by a change in
the parameters (and therefore being able to control this effect) requires knowing
its precise position but recall that the precise positions of the particles are not
knowing in this theory. Hence the violation of Parameter Independence cannot be
used for signaling.

Indeed, as Cushing [1994] points out in this context, Valentini [1991a; 1991b]
has shown that in the de Broglie-Bohm theory, signaling is possible if and only if
the distribution of the particles is different from that given by the usual quantum-
mechanical probability. Hence, given that Bohm’s theory does respect this distri-
bution, we have a case where, phenomenologically, the theory violates Outcome
Independence and respects Parameter Independence, while at the level of the (un-
controllable!) hidden-variables (trajectories of particles), the reverse is true.96

Hence one should be very cautious about identifying a failure of Parameter Inde-
pendence with the possibility of signaling.

6.2.2.2 The No-Signaling Theorem While the distinction between Out-
come Independence and Parameter Independence is, as explained above, not the
same as the distinction between the impossibility and possibility of signaling, it
is true that quantum theory (which, recall, obeys Outcome Independence but
not Parameter Independence) does not permit signaling from one measurement-
station to the other (or, indeed, non-local signaling in general). This claim is the
conclusion of the quantum no-signaling theorem.

There are (at least) two routes to this conclusion, one focused on the effect that
local generic interactions can have on the states of spatially separated systems,
and on focused on the effect that measurements can have on the results of mea-
surements on spatially separated systems. I shall outline each in turn. In both
cases, we will consider a two-particle system in the (generally entangled) state W ,
and suppose that the two particles are spatially separated.

6.2.2.2.a Local Interactions and Reduced States Now consider the
evolution of the compound system by two different unitary evolutions (generated
by two different Hamiltonians), U (1) ⊗ U (2) and U (1) ⊗ Ũ (2). The no-signaling
theorem says that the reduced state for particle 1 is the same at the end of the
evolution, whether the system evolves according to U (1) ⊗ U (2) or U (1) ⊗ Ũ (2). In

96In fact, Valentini’s [1991a; 1991b] view, supported by a kind of quantum analogue of the
classical H-Theorem (see Uffink, ch. 9, §I.4.2, this volume), is that the standard quantum dis-
tribution is a kind of ‘equilibrium’ distribution, to which the universe naturally relaxes. It is
possible (indeed quite likely), on this view, that the universe is not quite in the equilibrium
distribution, which means that in principle one could signal, if one could find an ensemble of
particles not in the equilibrium distribution.
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fact, under the first evolution, the reduced state for particle 1 is (recall §1.2.6.3.a)

W (1) = tr(2)[U (1) ⊗ U (2)W (U (1) ⊗ U (2))−1] =(124) ∑
n

〈en|U (1) ⊗ U (2)W (U (1) ⊗ U (2))−1|en〉.

where {|en〉} is some orthonormal basis in the Hilbert space for particle 2. But
recall that the (partial) trace functional does not depend on the choice of this
basis. Hence, when figuring the reduced state under the alternative evolution,
tr(2)[U (1)⊗ Ũ (2)W (U (1)⊗ Ũ (2))−1], we need only choose a basis, {|ẽn〉}, such that
Ũ (2)|ẽn〉 = U (2)|en〉. Because U (2) and Ũ (2) are unitary, such a basis always exists.

In other words, no interaction with just one of the systems can effect the re-
duced state of the other, and because the marginal probabilities for particle 1
(the probabilities for outcomes of measurements of observables on particle 1 only)
depend only on the reduced state W (1), no interaction that involves just particle
2 can change the statistics of measurement-results for particle 1 (and, of course,
vice versa).

6.2.2.2.b Single-System Measurements But what about measurements?
Consider a measurement of an observable I⊗G, i.e., a measurement of G on system
2, leaving system 1 untouched. Let G =

∑
n gnPn. Of course, we have already

seen that if we project the state of the compound system onto the result of this
measurement, then in general (for example, if W is the singlet state), the proba-
bilities for results of measurements on system 1 will change. That fact is just a
rehearsal of the existence of correlations between the two systems. But keep in
mind that we are talking about the possibility of signaling, here. An observer who
is restricted to the vicinity of system 1 will not know the results of measurements
on system 2, but will know only that a measurement of I⊗G might or might not
occur. To such an observer, the measurement of I ⊗ G on particle 2 is a ‘non-
selective’ measurement, meaning that the most that this observer can say about
the state after the measurement is that the compound system is now in the state∑

n

(I⊗ Pn)W (I⊗ Pn).(125)

It is instructive to see why (125) is the state after a non-selective measurement.
Suppose that the result were in fact gk. In that case, applying the collapse postu-
late, the state would be PkWPk/Tr[WPk]. (Compare this expression with Lüder’s
Rule, eq. 19.) Now consider that the probability of the result Pk is Tr[WPk], so
that if we do not know the result of the measurement (i.e., the measurement is
non-selective) then the state is a weighted sum of all possible results, the weights
given by the probabilities of the various results. I.e., the state is (125).

The idea here is that an experimenter (‘B’) in the vicinity of particle 2 will
attempt to send a signal to an experimenter (‘A’) in the vicinity of particle 1 by
choosing to measure G (on particle 2) or not. The question, then, is whether A
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can detect any change in the statistics of results for measurements on particle 1
as a result of B’s measurement on particle 2.

The answer is ‘no’. To see why, consider an observable, F ⊗ I, and let F =∑
n fnQn. In the state W , the probability for the result fm (of a measurement of

F ⊗ I) is

Tr[(Qm ⊗ I)W ].(126)

Suppose, instead, that the state is (125), i.e., a non-selective measurement of I⊗G
has been made. In that case, the probability for the result fm (of a measurement
of F ⊗ I) is

Tr

[
(Qm ⊗ I)

∑
n

(I⊗ Pn)W (I⊗ Pn)

]
.(127)

By the linearity of Qm ⊗ I, it can be taken inside the sum, and by the linearity of
the trace functional, the trace of a sum then becomes a sum of traces. Moreover,
because Qm ⊗ I commutes with I⊗ Pn (for any n,m), this sum becomes:∑

n

Tr [(I⊗ Pn)(Qm ⊗ I)W (I⊗ Pn)] .(128)

Using (12) together with the fact that PP = P for any projection P , (128) is∑
n

Tr [(I⊗ Pn)(Qm ⊗ I)W ] .(129)

Taking the sum back inside the trace functional and observing that the I ⊗ Pn
constitute a resolution of the identity (i.e.,

∑
n I⊗ Pn = I⊗ I), we find that (129)

is exactly (126). In other words, no measurement that A can make on particle 1
can determine whether the compound state is the original W , or the state (125)
— B’s non-selective measurement of I ⊗ G has no effect on the probabilities for
outcomes of measurements performed by A on particle 1. Hence B cannot send a
signal to A by means of such a measurement.

6.2.3 Causation

Does a failure of Bell locality (or one of its constituent conditions) imply a causal
connection between the two measurement-stations? This question is much-discussed
and disputed, and I certainly will not settle it here. But let us consider a few ap-
proaches.

Consider a counterfactual approach to the analysis of causation, one that, for
example, takes as a sufficient condition for causal connection the truth of coun-
terfactuals such as ‘if it had been that C then it would have been that E’ and
‘if it had not been that C, then it would not have been that E’.97 It would ap-
pear, adopting some such understanding of causation, that causal connections do

97Causation has frequently been associated with counterfactuals such as these. Lewis [1973] is
famous for such an analysis, and as his work clearly shows, one must add several additional con-
ditions to this basic idea — for example, conditions about the similarity of possible worlds, where
those conditions will effect the semantics, hence truth-values, of the counterfactuals involved.
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exist between outcomes, or between parameters and outcomes, in a deterministic
hidden-variables theory that violates Outcome Independence, or Parameter Inde-
pendence, respectively. If the hidden-variables theory is probabilistic, then per-
haps one would conclude instead that there is a relation of probabilistic causality,
though of course one would have to formulate appropriate probabilistic counter-
factual conditions, for example, replacing ‘it would [not] have been the case that
E’ with ‘the probability of E would have been higher [lower]’.

On the other hand, others prefer an account of causation that requires that
causal connections are underwritten by ‘causal processes’ that can transmit a
‘mark’.98 That is, impressing some sort of ‘mark’ on the cause should leave a
trace ‘from the cause to the effect’, and ultimately in the effect itself. There are
different understandings of what this account really means, but on at least some
understandings — most clearly, those that require the mark to travel continuously
in space — the violation of Parameter Independence and Outcome Independence
does not imply the existence of a causal connection between the measurement-
stations.

Finally, some, e.g., Collier [1999], have argued that causation amounts to the
transfer of information, in the information-theoretic sense. Maudlin [1994, ch. 6]
has argued that there is a transfer of information in the Bell-type experiments.
Hence, if one buys these arguments, there is causation between the measurement-
stations, on this account of causation.

6.2.4 Holism

The issues surrounding Bell’s Theorem have led some to a radical view of entan-
gled states as representing ‘holistic’ properties of entangled pairs (or n-tuples) of
particles. On the one hand, we can agree that the properties represented by, for
example, the (projection onto the) singlet state are not reducible to, and do not
supervene on, properties of the individual particles. (Otherwise, a local hidden
variables theory would, after all, be possible.) On the other hand, some claim that
these holistic properties explain our inability to provide a common cause expla-
nation for the quantum correlations in a way that does not violate any version of
locality that we should care about, and does not, in particular, imply any violation
of relativity theory. The basic idea is clear enough: the ‘two’ (or more) particles
involved in a Bell-type experiment are not really ‘two’ particles; they are really one
object, and therefore, no matter how far apart they may be, there is no question
of an ‘influence from one to the other’, for there is no ‘one and other’ but only the
whole thing.

There are, however, some prima facie problems with this proposal. First, it is
not clear that it really explains anything; perhaps it only restates the problem
in the form of an equally mysterious doctrine. Moreover, it is unclear what the
real difference is, as regards the apparent conflict with relativity theory, between
a space-like influence between two distinct objects and a space-like ‘connection’

98See, for example, Salmon [1984].
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between different ‘parts’ of the same object. (Of course, we must be very cau-
tious about the meaning of ‘part’ here.) Indeed, the events that are involved in
Bell-type experiments are well-defined, localized, events in space-time, viz., macro-
scopic pointer-readings. There are correlations between these events that cannot
be explained in terms of a local common cause. That fact is enough to raise the
question about non-locality and the compatibility with relativity, regardless of
whether one wishes to invoke some ‘holistic’ property of the pair that somehow
gives rise to these correlations. In other words, we might simply have to conclude
that holism itself is incompatible with relativity. (See Butterfield [1992].)

Second, as discussed earlier in the context of the measurement problem (§5.3.2),
entanglement is ubiquitous — even the objects of our everyday experience are likely
in entangled states. Can we make sense of the idea that these apparently distinct
objects are in fact not independent objects at all, but somehow ‘parts’ of some
holistic object? Perhaps, but at the very least, some serious metaphysical work is
going to have to be done here, if we are to recover the obvious facts of ordinary
experience.

6.2.5 Relativity Theory

While some might find non-locality to be contrary to intuition, the real problem
that it poses, arguably, is an apparent incompatibility with the theory of relativity.
Indeed, supposing that the non-locality of quantum theory were completely and
unambiguously compatible with the theory of relativity, it is hard to see how one
could have any serious objections to it.

And indeed, on the one hand, one might note that the quantum no-signaling
theorem (§6.2.2.2) suggests some kind of compatibility of quantum theory with
relativity theory. Hence, there may be, as some have called it, a ‘peaceful co-
existence’ between the two theories.99 While the quantum correlations seem to
imply a failure of locality, and while collapse of the quantum state occurs instanta-
neously, neither of these facts entails the capacity to send a signal faster than light.
More generally, neither of these features of quantum theory entails an experimen-
tal, or observational conflict with relativity. It is sometimes said that quantum
theory respects the letter of the law of relativity (but violates the spirit of the
law).

Moreover, even the claim that superluminal signaling is incompatible with rel-
ativity is controversial. The argument for the incompatibility relies on the idea
that such signaling generates inconsistent causal loops because it allows for causal
propagation into the past. And some will point out that even superluminal causal
processes (for example, the superluminal transmission of matter or energy) is not
inconsistent with relativity.

So what does relativity demand? One thing seems clear, and is, at least, agreed
by the vast majority of physicists: a theory must be Lorentz-invariant to be rela-
tivistic. Here, we encounter the real problem. The collapse postulate of standard

99The term was introduced by Shimony [1978].
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quantum theory is not Lorentz-invariant, nor is it clear how to make it so, while
maintaining empirical adequacy. (See Aharonov and Albert [1981].)

There are, of course, relativistic quantum theories. (See ’t Hooft, Ch. 7 and
Halvorson, Ch. 8, this volume.) Their equations of motion are Lorentz-invariant
in the requisite way. However, the collapse postulate, the need for which does not
disappear in relativistic quantum theories, is not Lorentz-invariant — it specifies
an instantaneous collapse.

Moreover, it is far from clear whether the interpretations of quantum theory
that most straightforwardly and obviously solve the measurement problem (recall
§5.5) can be made Lorentz-invariant. We do not know that all hidden-variables
theories must violate Lorentz-invariance, but the evidence for this claim is very
good.

On the other hand, the no-signaling theorem seems to imply that quantum
theory itself is observationally consistent with relativity. Hence any theory, and
in particular any hidden-variables theory, that is observationally indistinguishable
from quantum theory, will be observationally consistent with relativity. Hence,
while many hidden-variables theories explicitly violate Lorentz-invariance at the
level of the evolution of the values of the hidden variables, this violation is not
empirically accessible. Another way to put the point is this: these theories require
a preferred reference frame (as quantum theory with the collapse postulate itself
does), and yet there is no way to determine, experimentally, which is the preferred
frame. The question of whether they are thus satisfactory therefore has a lot do
with the status one attaches to Lorentz-invariance.

7 MATHEMATICAL APPENDIX

These notes are intended as quick reminders of several definitions and standard
mathematical facts that are assumed in the text. All proofs are omitted.

7.1 Hilbert Spaces

7.1.1 Vector Spaces

A vector space, V , is a set that is closed under addition and ‘multiplication by a
scalar’ from a field, K. These operations must satisfy, for any u, v, w ∈ V and
k, k′ ∈ K: (commutativity) v + w = w + v; (vector associativity) u + (v + w) =
(u + v) + w; (additive identity) ∃�0 ∈ V ∀v ∈ V, v + �0 = v; (additive inverses)
∀v ∈ V,∃−v ∈ V, v + (−v) = �0, and one generally writes v − w for v + (−w);
(scalar associativity) k(k′v) = (kk′)v; (scalar identity) for 1 ∈ K (the identity
in K) 1v = v; (vector distributivity) k(v + w) = kv + kw; (scalar distributivity)
(k + k′)v = kv + k′v. (Notes: commutativity actually follows from the others;
additive inverses are (provably) unique; ∀k ∈ K, v ∈ V, k�0 = 0v = �0.) In all of the
cases that we consider, K = R or K = C. The set V is used interchangeably to
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refer to the entire vector space, and to the underlying set of vectors. Sometimes
for clarity one speaks of ‘a vector space over K’.

7.1.2 Bases and Dimension

Given a set of vectors {vn} ⊆ V , any vector of the form v =
∑N
i=1 knvn (with

kn ∈ K) is called a linear combination of the vn. The set {vn} is called linearly
independent if none of the vn can be written as a linear combination of the others.
(In this case, the set may have infinite cardinality, but notice that linear combi-
nations are always finite sums.) Any maximal linearly independent set in V is
called a basis for V . All such sets provably have the same cardinality, which is
called the dimension of the space, denoted dim V . All vector spaces, V, V ′, with
the same dimension are isomorphic. That is, there exists a 1-1 map m : V → V ′

such that, for any k ∈ K and any v, w ∈ V , m[k(v + v′)] = km(v) + km(v′).
(This last condition makes m a linear map, and being 1-1 in addition makes it an
isomorphism.)

7.1.3 Inner Product Spaces

An inner product on a vector space, V over K, is a map from V × V to K,
denoted 〈·, ·〉, and satisfying, for all u, v, w ∈ V and all k ∈ K: (non-negativity)
〈v, w〉 ≥ 0; (non-degeneracy) 〈v, v〉 = 0 iff v = �0; (sesquilinearity) 〈u, k(v + w)〉 =
k〈u, v〉 + k〈u,w〉 and 〈v, w〉 = 〈w, v〉∗, where ∗ indicates conjugation in K (so,
complex conjugation if K = C and the identity map if K = R). (Note: it follows
from the last two properties that 〈k(v + w), u〉 = k∗〈v, u〉 + k∗〈w, u〉; hence the
name ‘sesquilinearity’.) A vector space with an inner product is called an ‘inner
product space.’ In an inner product space, w is orthogonal to w′, written w⊥w′,
if and only if 〈w,w′〉 = 0. In an inner product space, a basis is called ‘orthogonal’
if its elements are mutually orthogonal.

An important fact about inner products is the Schwarz Inequality: for any
v, w ∈ V , 〈v, v〉〈w,w〉 ≥ |〈v, w〉|2.

7.1.4 Norms and Orthonormal Bases

A norm on a vector space, V , over K is a function from V to R, denoted || · ||,
satisfying, for all v, w ∈ V and k ∈ K: ||v|| = 0 iff v = 0; ||kv|| = |k| ||v||; and
||v + w|| ≤ ||v|| + ||w||. (Note: it follows that ||v|| ≥ 0 for all v ∈ V .) The norm
defines a topology (see §7.5) on V in the obvious way: the open balls are sets
of the form {x| ||x − v|| < r} for some v ∈ V and r ∈ R. Another way to put
the point is this: a sequence {vn} ⊆ V converges to a vector v ∈ V ‘in the norm
topology’ just in case ||vn−v|| converges to 0 (in R). Inner products define a norm
by: ||v|| =

√〈v, v〉. An important fact about normed complex vector spaces in
which the norm is derived from an inner product is the ‘polarization identity’:

〈w, v〉 = 1
4

(||w + v||2 − ||w − v||2 + i||w + iv||2 − i||w − iv||2).(130)
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In other words, in such spaces, the inner product is also derived from the norm.
In an inner product space, an orthogonal basis (§7.1.3) is called orthonormal

if its elements all have norm-1. Given any basis for an inner product space, it is
possible to construct an orthonormal basis by ‘Gram-Schmidt orthogonalization’,
the details of which we will skip. Note that in an inner product space, there is a
convenient expression for a given vector, v, in terms of some orthonormal basis,
{en}, as: v =

∑
n〈en, v〉en.

7.1.5 Subspaces

A subset, W , of a vector space, V , is a subspace if it is a vector space in its own
right, under the operations inherited from V . Similar definitions hold for inner
product spaces and Hilbert spaces (defined below, §7.1.7). In an inner product
space, one subspace, W , is orthogonal to another, W ′, when, for any w ∈ W and
any w′ ∈W ′, w⊥w′.

7.1.6 Direct Sums

A direct sum of vector spaces V and V ′ (over the same field, e.g., R or C) is the
vector space whose elements are taken from the Cartesian product V × V ′, with
the vector space operations defined component-wise. If V = V ′⊕V ′′, for example,
then V ′ and V ′′ are disjoint (or, in an inner-product space, orthogonal) subspaces
of V , and V is their span.

7.1.7 Banach Space and Hilbert Space

A Banach space is a normed vector space that is complete with respect to the norm
topology (meaning that the limit of any sequence of vectors is itself contained in the
space). A Hilbert space is an inner product space that is complete with respect to
the norm topology (the norm here being the one given by the inner product). The
three ‘classical’ types of Hilbert space are those over the real numbers, complex
numbers, and quaternions.

7.1.8 Dual Space

Given a vector space, V , the dual space (sometimes denoted V ∗, but the ∗ here is
not complex conjugation) is the space of linear functionals on V , that is, the space
of linear maps from V to R. When V has topological structure (such as when V
is a Hilbert space), we restrict to the continuous linear functionals. The norm of
a (continuous) linear functional, φ, on V is

||φ|| = sup
v∈V
{|φ(v)| | ||v|| ≤ 1}.(131)

Every finite-dimensional vector space has the same dimension as its dual. The
Riesz Representation Theorem states that for any Hilbert space,H (finite-dimensional
or infinite-dimensional), and any continuous linear functional, φ, in its dual H∗,
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there is a unique v ∈ H such that, for all w ∈ H, φ(w) = 〈v, w〉. Conversely, each
v ∈ H obviously generates a continuous linear functional, 〈v, ·〉, on H. In other
words, there is a 1-1 map, Φ : H → H∗, from a Hilbert space to its dual. More-
over, Φ is an isometry (||v|| = ||Φ(v)||) and an ‘anti-isomorphism’ (in particular,
Φ(kv) = k∗Φ(v) for any v ∈ V and k ∈ C). This last property follows from the
fact that the inner product is sesquilinear.

7.1.9 Tensor Products

The tensor-product of two Hilbert spaces, H1 and H2, both over K, is a third
Hilbert space, H = H1⊗H2 over K, constructed from H1 and H2 as follows. First
choose bases {en} for H1 and {fn} for H2. Then form the Cartesian product of
{en} and {fn}. This set contains all pairs of the form (en, fm), and it is stipulated
to be a basis for the tensor product space H. Hence, at this stage, H consists
of all formal linear combinations (over K) of the (en, fm). Now, let the inner
products on H1 and H2 be denoted 〈, 〉1 and 〈, 〉2. Define the inner product on H
by 〈v⊗w, x⊗y〉 = 〈v, x〉1〈w, y〉2 for all v, w ∈ H1 and x, y ∈ H2, and extend to all
of H1 ⊗H2 by linearity. Finally, complete H1 ⊗H2 in the norm topology induced
by this inner product.

Note that dimH = dimH1×dimH2. One can (if dimH is not prime) ‘factorize’
a given Hilbert space into a tensor product, typically in many ways.

7.1.10 Convex Sets and Cones

A subset, X, of a real vector space, V , is convex if for any x, y ∈ X, rx+(1−r)y ∈ X
for all r in the real interval [0, 1]. In other words, the ‘line segment’ connecting x
and y is also in X. A point, x, in a convex set X is an extreme point if it is not a
convex combination of other points from X. A convex set, X, is a simplex if every
non-extreme point has a unique decomposition as a convex combination of points
from X.

A positive cone in V is a set C ⊆ V such that rx ∈ C for all real r ≥ 0 and
all x ∈ C. (A negative cone requires instead r ≤ 0.) A convex cone is a cone
that is also convex. Given a set, S ⊆ V , one can form the convex set generated by
S, in the obvious way, by closing under the required condition. Equivalently, one
can take the intersection of all convex sets containing S. A similar point holds for
cones, and of course for convex cones.

Given a positive cone, C, in V , and an inner product, 〈·, ·〉 on V , the dual of C
with respect to this inner product is: C∗ = {y|〈x, y〉 ≥ 0, x ∈ C}. If C = C∗ we
say that C is self-dual.

A face, F ⊆ X, of a convex set, X, is a convex subset that is closed under
‘purification’, meaning that for any v ∈ F , if v = pv1 + (1 − p)v2 then v1 and v2

are in F as well.
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7.2 Operators

7.2.1 Basic Definitions Regarding Operators

A linear operator, F , on a vector space, V over K, is a map from V to itself
that preserves the linear structure of V , i.e., for any v, w ∈ V and any k ∈ K:
F (v + w) = F (v) + F (w); and F (kv) = kF (v). One normally just writes Fv,
and here we refer to F as an ‘operator’ (as we will not be discussing non-linear
operators). Two operators, F and G, are said to commute if their commutator,
[F,G] := FG−GF is 0 (i.e., the ‘zero operator’). The identity operator, denoted
I, is the operator on V such that Iv = v, ∀v ∈ V .

Given an operator, F , any vector, v, such that Fv = kv for some k ∈ K is called
an eigenvector of F , and k is its associated eigenvalue. Operators need not have
any eigenvectors. The zero vector is not normally counted amongst an operator’s
eigenvectors.

An operator, F , on the vector space V is invertible just in case there is an
operator, G, such that FG = I, where I is the identity on V . The operator G is
denoted F−1. It is unique if it exists.

On a tensor-product space V = V1⊗V2, consider two operators, F on V1 and G
on V2. The tensor-product operator F ⊗G can be defined as follows. Choose any
bases, {en} and {fm} for V1 and V2. Define (F ⊗G)(en ⊗ fm) = (Fen)⊗ (Gfm),
and extend to all of V by linearity.

7.2.2 Boundedness and Continuity

If V has a norm, || · ||, then F is bounded if and only if there is some r ∈ R such
that ||Fv|| ≤ r||v|| for all v ∈ V . When V has a topology (as when it is a Hilbert
space), one says that an operator F is continuous if and only if it is continuous as
a function on V as a topological space. An operator is bounded if and only if it is
continuous. Moreover, if the dimension of V is finite, then all operators on V are
bounded, i.e., continuous. Note that unbounded operators do not have the entire
space as their domain, so that one must keep track of their domains of definition.

7.2.3 Adjoints

When H is finite-dimensional, we define adjoints and related notions as follows.
The adjoint, F ∗, of an operator, F , on H satisfies 〈Fw, v〉 = 〈w,F ∗v〉∀v, w,∈ V .
An operator, F , is self-adjoint if F = F ∗. The proof that adjoints exist is non-
trivial.

When H is infinite-dimensional, we must be slightly more careful, because V
might not be in the domain of F , if F is unbounded (see §7.2.2). In the infinite-
dimensional case, then, we define the adjoint, F ∗, of F as follows. The domain of
F ∗ is all v ∈ H such that there is a v′ ∈ H satisfying 〈Fw, v〉 = 〈w, v′〉 for all w in
the domain of F . For each such v, define F ∗v = v′. (One must show that F ∗ is
thus an operator.) Finally, in order to make relevant distinctions in the infinite-
dimensional case, we say that an operator, F , is symmetric if 〈Fw, v〉 = 〈w,Fv〉
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for all v, w in the domain of F . We say that F is self-adjoint if F = F ∗. The
difference is, provably, that a symmetric but non-self-adjoint operator will have a
domain that is a proper subset of the domain of its adjoint.

7.2.4 Normal Operators

A normal operator, F , is one that commutes with its adjoint: FF ∗ = F ∗F . Given
the comments above, it is clear that one must be aware of issues relating to the
domains of operators if H is infinite-dimensional. Clearly all self-adjoint operators
are normal, but the converse is not true. Consider F = 2iI.

7.2.5 Projection Operators

An operator, P , is idempotent just in case PP = P , i.e., P (Pv) = Pv for any
v ∈ V . An operator, P , on V is a projection operator just in case it is self-adjoint
and idempotent. Each projection operator, P , corresponds to a closed subspace,
namely, the subspace of vectors, v, for which Pv = v. Note that PQ = 0 if and
only if the corresponding subspaces are orthogonal.

7.2.6 Unitary Operators

An automorphism of a vector space, V , is a map from V to itself that ‘preserves
the structure of V ’, and in particular the linear, inner-product, and topological
structures (the latter two if they exist in V ). Let U be a (linear) operator on the
Hilbert space H such that: U is invertible (hence U is 1-1); and U preserves inner
products (i.e., for any v, w ∈ H, 〈Uw,Uv〉 = 〈w, v〉). Such an operator is called
‘unitary’, and clearly implements an automorphism of H. In that case, of course
U also preserves norms, i.e., ||Uv|| = ||v|| for all v.

It is readily shown that for any unitary operator, U , U∗ = U−1. Conversely, any
invertible linear operator with that property is unitary. (If, instead, 〈Uw,Uv〉 =
〈w, v〉∗ and U(kv) = k∗Uv, then U is anti-unitary.)

7.3 The Hilbert Space C
2

The space of complex column-vectors with 2 components is denoted C
2. The

elements of C
2 are added component-wise:(

a
b

)
+
(

c
d

)
=
(

a + c
b + d

)
.(132)

The (linear) operators on this space can be represented by 2×2 complex matrices.
A matrix operates on a vector according to the rule:(

a b
c d

)(
x
y

)
=
(

ax + by
cx + dy

)
.(133)
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The product of two matrices (which can in fact be derived from the rule above) is:(
a b
c d

)(
e f
g h

)
=
(

ae + bg ce + dg
af + bh cf + dh

)
.(134)

The inner product on the space is given by〈(
a
b

)
,

(
c
d

)〉
= a∗c + b∗d.(135)

The norm, or ‘length’, of the vector with components a, b is then just
√

a∗a + b∗b.
(Compare this expression with the Euclidean length of a vector in the real vector
space R

2.)

7.3.1 The Pauli Matrices

The Pauli Matrices (operators on C
2) are:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.(136)

These matrices have many nice properties, which the reader might wish to verify.
For example:

σ2
x = σ2

x = σ2
x = I

Tr[σx] = Tr[σy] = Tr[σz] = 0

σxσy = iσz

[σx, σy] = 2iσz.

(137)

The last two properties generalize: they remain true under cyclic permutations of
the indices.

One often sees the expression �σ, which is to be understood as a ‘vector’ whose
components are the three Pauli matrices, so that, for example, �r ·�σ is a shorthand
for a linear combination of the three Pauli matrices, with the coefficients given by
the components of (the real vector) �r.

7.4 Posets and Lattices

7.4.1 Posets

A partially ordered set (normally, poset) is a set, L, together with a relation, ≤,
that obeys, for all a, b, c ∈ L: (reflexivity) a ≤ a; (anti-symmetry) if a ≤ b and
b ≤ a then a = b; and (transitivity) if a ≤ b and b ≤ c then a ≤ c. The relation
≤ is called a partial order on L. Note, in particular, that in general there will be
a, b ∈ L such that neither a ≤ b nor b ≤ a. (If there are no such a and b in L, then
≤ is a total order on L.) As elsewhere, I let L denote both the poset itself as well
as its underlying set.
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7.4.2 Lattices

Let L be a poset. Define the join of two elements, a, b ∈ L as the least upper
bound of a and b, i.e., the smallest (under ≤) c such that a ≤ c and b ≤ c. The
join of a and b (which need not exist in general) is denoted a∨ b. Define the meet
of two elements, a, b ∈ L as the greatest lower bound of a and b, i.e., the largest
(under ≤) c such that c ≤ a and c ≤ b. The meet of a and b (which need not exist
in general) is denoted a ∧ b. A poset in which every pair (hence every finite set)
of elements has a meet and a join is called a lattice.

A lattice, L, is complemented if every a ∈ L has a complement, a⊥ ∈ L, satisfy-
ing: a∧ a⊥ = 0; and a∨ a⊥ = 1. The operation ⊥ is in this case a complement. A
complemented lattice L is called orthocomplemented, or an ortholattice, if for all
a, b ∈ L: a ≤ b implies b⊥ ≤ a⊥; and a⊥⊥ = a. The operation ⊥ is in this case an
orthocomplement.

7.4.3 Distributivity

A lattice, L, is distributive if, for all a, b, c ∈ L: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
and similarly, swapping ∧ with ∨. In general, lattices are not distributive. The
center, Z(L), of a lattice L is the set of all z ∈ L such that, for any p ∈ L,
p = (p ∧ z) ∨ (p ∧ z⊥). Z(L) is a distributive sublattice of L.

7.4.4 Direct Products and Reducibility

Let L1 and L2 be ortholattices. Then we can form a third ortholattice, L, which
is the ‘direct product’ of L1 and L2. As a set, L is the direct (Cartesian) product
of L1 and L2 as sets. Then define, for a, b ∈ L where a = (a1, a2) and b = (b1, b2),
a ≤ b just in case a1 ≤ b1 and a2 ≤ b2. Meets, joins, and orthocomplements are
similarly (therefore) defined componentwise. An ortholattice, L is ‘irreducible’ if
it is not isomorphic to the direct product of non-trivial ortholattices.

7.4.5 Atomicity and the Covering Property

The ‘top’ (or ‘identity’) of a lattice (if it exists) is the element I ∈ L such that
a ≤ I for all a ∈ L. The ‘bottom’ (or ‘zero’) of a lattice (if it exists) is the element
0 ∈ L such that 0 ≤ a for all a ∈ L. An atom in a poset, L, is a non-zero element
a ∈ L such that, for any b ∈ L, if b ≤ a then either b = 0 or b = a. A poset is
atomic if every non-zero element contains (under ≤) an atom. Finally, a lattice is
complete if every collection of elements from L has a meet and join. In a complete
atomic lattice, every element (apart from 0) is either an atom or the join of atoms.

Finally, we say that a lattice L has the covering property if, for every atom
a ∈ L and any b ∈ L where a ∧ b = 0, a ∨ b ‘covers’ b; that is, there is no element
strictly between b and a ∨ b.
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7.5 Topology and Measure

7.5.1 Topological Spaces

A topological space is a set, S, together with a collection, T , of subsets of S
satisfying: ∅, S ∈ T (with ∅ the null set); the union of any collection of sets in T is
in T ; the intersection of any pair of sets in T is in T . T is the topology of S. The
elements of T are the open sets, and their complements (in S) are the closed sets.
A function, f , from one topological space to another is continuous if the inverse
image under f of every open set is again an open set.

A base, B, for a topology, T , is a collection of open sets in T such that every open
set in T can be written as a union of elements of B. A common example involves
spaces (such as vector spaces) with a norm, where one can define a base as the
collection of ‘open balls’, that is, the collection of sets of the form {x|||x− y|| < ε}
where x and y are points (e.g., vectors) in the space, and ε is a real number.

A topological space is compact if every sequence of points has a subsequence
that converges to some point in the space. The space is locally compact if, roughly,
each point in the space has a neighborhood that is compact — roughly, each small
part of the space ‘looks like’ a small part of a compact space.

Given two topological spaces, S1 and S2, we can form their Cartesian product,
S1 × S2 as sets. We then define the product topology on this Cartesian product as
follows. Let B1 and B2 be bases for the topologies on S1 and S2 respectively. The
product topology on S1 × S2 is the topology whose base is the Cartesian product
B1 ×B2. (The definition of the product topology on a Cartesian product of more
than two spaces is more convoluted. We will not need it here.)

7.5.2 Manifolds

A manifold is a topological space that is ‘locally Euclidean’, meaning that there
is a neighborhood around each point that is topologically the same as the open
unit ball in R

n (for some n — and n is then the dimension of the manifold). An
open set, S, of the manifold M , together with a homeomorphism between S and
an open set of R

n is called a coordinate chart. A collection of charts that covers
M is an atlas. Now consider the region, S, in which two charts overlap. We thus
have two distinct maps from S to R

n, which defines a map, µ, from a subset of R
n

(the range of the first chart, applied to S) to some other subset of R
n (the range of

the second chart, applied to S). If all of the µ generated by all overlapping charts
in the atlas are infinitely differentiable, then the manifold is a smooth manifold.

7.5.3 Weak Operator Topology

The weak operator topology over the operators on a Hilbert space, H is the weakest
topology on the set, B(H), of bounded operators on H, such that the map F �→
〈w,Fv〉 is continuous for any vectors v, w ∈ H and any F ∈ B(H). In the weak
operator topology, a sequence, {Fn}, of operators converges to the operator F just
in case |〈w,Fnv〉 − 〈w,Fv〉| converges to 0 for every v, w ∈ H.
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7.5.4 Lebesque Measure

On the real line, R, the Lebesque measure is the natural extension of the usual
measure of distance (size of intervals) to more complicated sets of points. For
example, given any open set, S, that is the union of disjoint intervals, the Lebesque
measure of S is the sum of the size of the intervals. Any countable union of
individual points in R has Lebesque-measure zero. The measure is extended to
volumes in R

3 in the obvious way.

7.5.5 Borel Sets

Borel sets of real numbers are definable as follows. Given some set, S, a σ-algebra
over S is a family of subsets of S closed under complement, countable union
and countable intersection. The Borel algebra over R is the smallest σ-algebra
containing the open sets of R. (One must show that there is indeed a smallest.)
A Borel set of real numbers is an element of the Borel algebra over R. Note
that not every subset of real numbers is a Borel set, though the ones that are
not are somewhat exotic. All open and closed sets are Borel. The importance of
Borel algebras (hence Borel sets) lies in the fact that certain measure-theoretic
results apply only to them. On the other hand, in many cases one can extend the
important results and definitions to a wider class of sets, for example, all sets that
are the image of a Borel set under a continuous function. However, we shall not
continue to make note of such points.

7.5.6 Probability Measures

Let X be a set (a ‘sample space’) of basic events and A a σ-algebra over X. The
(Kolmogorovian) axioms of probability theory may then be stated as follows. Let
p : A → [0, 1] be a map from A to the interval [0, 1]. This p is a probability measure
on A just in case: (normalization) p(X) = 1; (negation) p(E′) = 1− p(E) for any
E ∈ A; and (additivity) for any countable disjoint sequence {Ek} of elements of
A, p(∪kEk) =

∑
k p(Ek).

7.6 Groups

7.6.1 Groups and Homomorphisms

A group is a non-empty set, G, with a binary operation, ∗ (called the ‘product’)
on that set satisfying: (associativity) for all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c);
(identity) there is an element, e ∈ G, such that for any a ∈ G, e ∗ a = a ∗ e = a;
(inverse) for all a ∈ G, there exists b ∈ G such that a ∗ b = b ∗ a = e (this b is
usually denoted a−1); (closure) for all a, b ∈ G, a ∗ b ∈ G. A structure satisfying
all of these properties except for the existence of inverses is called a ‘semi-group’.
A map, m : G → G′, from one group, G, to another, G′, is a homomorphism if, for
all a, b ∈ G, m(a ∗ b) = m(a) ∗m(b). (Note that the product on the left-hand side
is taken in G, while the product on the right-hand side is taken in G′.) It follows
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that m preserves inverses and maps the identity in G to the identity in G′. The
map m is an isomorphism if it is a homomorphism and it is 1-1. An isomorphism
from G to itself is an automorphism of G. Normally the group product operator ∗
is left implicit; hence we will from now on write a ∗ b as ab and so on.

7.6.2 Subgroups and Products

Given a group, G, the subgroup H is normal if and only if gHg−1 ⊂ H for any
g ∈ G (where gHg−1 is the set {ghg−1|h ∈ H}). Given two groups, H and K,
the group G is their direct product if and only if: (i) H and K are (isomorphic to)
normal subgroups of G; (ii) H ∩ K = e, the identity in G; and (iii) as a set, G is
(isomorphic to) {hk : h ∈ H, k ∈ K}. We write G = H × K. The usual way to
construct a direct product of groups is to let G as a set be the Cartesian product
of H and K as sets, and define (h, k)(h′, k′) = (hh′, kk′) for all h, h′ ∈ H and
k, k′ ∈ K. (Notice in this case that H is isomorphic to the subgroup of elements
of the form (h, e) for any h ∈ H and e the identity in G, and similarly for K. Both
H and K in this case are also normal subgroups.) If only K is a normal subsgroup
of G, while H is a non-normal subgroup, then G is the semi-direct product of H by
K, and we write G = H�K.

7.6.3 Cosets and Quotients

Let H be a subgroup of G. We define the (left) cosets of H in G as the set
{gH|g ∈ G}, where gH = {gh|h ∈ H}. (Note that for some of the g, g′ ∈ G we will
have gH = g′H.) The left cosets of H in G partition G. They also themselves form
a group, with the multiplication rule (gH)(g′H) = (gg′)H. This group is called
the quotient of G by H, typically written G/H.

7.6.4 Continuously Parametrized Groups

To say that the group, G, is continuously parametrized by a means, in particular,
that the group as a set is indexed by a, and: g0 = I (the identity on G); ga+b =
gagb; limn→∞ an = b implies limn→∞ gan

= gb. In the third condition, the limit
on the right requires that the group be a topological group, i.e., the group is also
a topological space.

7.6.5 Lie Groups

A Lie group is a smooth manifold (§7.5.2) that is also a group, where the group
operations of multiplication and inversion are continuous maps on the manifold.
(In fact, Lie groups are often defined as analytic manifolds, but we will not bother
with that point here.)
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7.6.6 Vector Space Representations

It is a fundamental theorem of group theory that every group, G, is (isomorphic
to) a subgroup of the group of permutations on some set. Another common type of
representation of G is a vector space representation, a group-homomorphism from
G to GL(V ), the ‘general linear group’ of transformations of the vector space V ,
that is, the group of invertible linear operators on V .

A representation m : G → GL(V ) of the group G is faithful just in case m is 1-1.
Non-faithful representations ignore structure in the represented group. Represen-
tations can also introduce structure, in the following sense. A proper subspace
W of V that is invariant under the group (that is, the group is an automorphism
of W ) carries a ‘subrepresentation’ of G in the sense that the restriction of the
representation of G on V to W is itself a representation of G. When a (proper)
subrepresentation of a representation, m, of G exists, m is called ‘reducible’. Oth-
erwise, it is ‘irreducible’. If a representation is reducible, then the vector space on
which is it represented is in a sense ‘bigger than it needs to be’ to represent the
group.

7.6.7 Group Action

For any set, S, a group action of G on S is a map µ : G × S → S satisfying:
(a) µ(g, µ(h, s)) = µ(gh, s) for all g, h ∈ G and s ∈ S; and (b) µ(e, s) = s for
all s ∈ S (where e is the identity in G). µ(g, s) is often written µgs. Each µg
is in fact a bijection on S, so that we may also define a group action as a group
homomorphism from G to the group of bijections on S. Sometimes µg is called the
‘action of g on S’. A group action, µ, of G on S is transitive if and only if for any
s, t ∈ S, there exists g ∈ G such that µgx = y. If both G and S have a topological
structure, then the action of G on S is continuous if the map µ is continuous with
respect to the product topology (§7.5.1) of G × S.

7.6.8 Unitary Representations

Given a Hilbert space, H, any unitary operator, U , on H implements an auto-
morphism of GL(H). In particular, map GL(H) to itself via F �→ U−1FU for
every F ∈ GL(H). Note that, in particular, U−1FGU = (U−1FU)(U−1GU) and
U−1F−1U = (U−1FU)−1 (assuming F is invertible), for any F,G ∈ GL(H) (using
the fact that (AB)−1 = B−1A−1 for any invertible operators A and B). Moreover,
note that this map is 1-1: for any operator F , there is a unique operator G such
that U−1GU = F , namely, G = UFU−1.

Note also that every unitary operator is an element of GL(H). Hence we have
here an example of a general construction, the group inner isomorphism, by which
one maps a group, G, to itself via h �→ ghg−1 for some g ∈ G and all h ∈ G.
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7.6.9 Induced Representations

Given a group, G, and a subgroup, H, a representation of H on a vector space, W ,
‘induces’ a representation of G, in the following sense. One can construct, from
the representation of H on W , a vector space, V , which is in fact the direct sum
of copies of W , and a representation of G on V . Each of the copies of W inside V
carries a representation of H.

Here is a rough description of how the construction goes. Let σ be a represen-
tation of H on W . The general idea behind constructing the representation of G
induced by σ is to construct a vector space V that is the direct sum of copies of
W , i.e., V =

⊕
n Wn, where each Wn is a copy of W , and each copy of W corre-

sponds to an element of G/H. The representation, ρ, of G induced by σ is defined
as follows. Fix a representative, gn, for each coset, n, of G/H. Note that for any
g ∈ G, ggn = gmh for some h ∈ H and some m ∈ G/H. Let wn be an arbitrary
vector from Wn, corresponding (under some isomorphism) to w ∈ W . (Note that
if we define an operator on a basis for each of the Wn then we have defined it for
all of V , by linearity.) Define the ρ(g) (for any g ∈ G) by ρ(g)wn = (σ(h)w)m,
where h and m are given as above. The expression on the right should be read
as ‘let σ(h) act on wn ∈ Wn in the same way that it acts on w ∈ W , then map
the result to the corresponding vector in Wm.’ Note that this entire prescription
presupposes a set of isomorphisms between W and the Wn. Finally, it can be
shown that none of the above depends on the choice of representatives gn, in the
sense that a different choice produces an isomorphic representation.
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BETWEEN CLASSICAL AND QUANTUM

N.P. Landsman

‘But the worst thing is that I am quite unable to clarify the transition
[of matrix mechanics] to the classical theory.’ [Heisenberg to Pauli,
October 23th, 1925]1

‘Hendrik Lorentz considered the establishment of the correct relation
between the classical and the quantum theory as the most fundamental
problem of future research. This problem bothered him as much as it
did Planck.’ [Mehra and Rechenberg, 2000, 721]

‘Thus quantum mechanics occupies a very unusual place among phys-
ical theories: it contains classical mechanics as a limiting case, yet at
the same time it requires this limiting case for its own formulation.’
[Landau and Lifshitz, 1977, 3]

1 INTRODUCTION

Most modern physicists and philosophers would agree that a decent interpretation
of quantum mechanics should fullfil at least two criteria. Firstly, it has to eluci-
date the physical meaning of its mathematical formalism and thereby secure the
empirical content of the theory. This point (which we address only in a derivative
way) was clearly recognized by all the founders of quantum theory.2 Secondly
(and this is the subject of this paper), it has to explain at least the appearance
of the classical world.3 As shown by our second quotation above, Planck saw the
difficulty this poses, and as a first contribution he noted that the high-temperature

1‘Aber das Schlimmste ist, daß ich über den Übergang in die klassische Theorie nie Klarheit
bekommen kann.’ See [Pauli, 1979, 251].

2The history of quantum theory has been described in a large number of books. The most
detailed presentation is in [Mehra and Rechenberg, 1982–2001], but this multi-volume series has
by no means superseded smaller works such as [Jammer, 1966; van der Waerden, 1967; Hendry,
1984; Darrigol, 1992], and [Beller, 1999]. Much information may also be found in biographies
such as [Heisenberg, 1969; Pais, 1982; Moore, 1989; Pais, 1991; Cassidy, 1992; Heilbron, 2000;
Enz, 2002], etc. See also [Pauli, 1979]. A new project on the history of matrix mechanics led by
Jürgen Renn is on its way.

3That these points are quite distinct is shown by the Copenhagen Interpretation, which exclu-
sively addresses the first at utter neglect of the second. Nonetheless, in most other approaches
to quantum mechanics there is substantial overlap between the various mechanisms that are
proposed to fullfil the two criteria in question.

c
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limit of his formula for black-body radiation converged to the classical expression.
Although Bohr believed that quantum mechanics should be interpreted through
classical physics, among the founders of the theory he seems to have been unique
in his lack of appreciation of the problem of deriving classical physics from quan-
tum theory. Nonetheless, through his correspondence principle (which he proposed
in order to address the first problem above rather than the second) Bohr made
one of the most profound contributions to the issue. Heisenberg initially recog-
nized the problem, but quite erroneously came to believe he had solved it in his
renowned paper on the uncertainty relations.4 Einstein famously did not believe
in the fundamental nature of quantum theory, whereas Schrödinger was well aware
of the problem from the beginning, later highlighted the issue with his legendary
cat, and at various stages in his career made important technical contributions
towards its resolution. Ehrenfest stated the well-known theorem named after him.
Von Neumann saw the difficulty, too, and addressed it by means of his well-known
analysis of the measurement procedure in quantum mechanics.

The problem is actually even more acute than the founders of quantum the-
ory foresaw. The experimental realization of Schrödinger’s cat is nearer than
most physicists would feel comfortable with [Leggett, 2002; Brezger et al., 2002;
Chiorescu et al., 2003; Marshall et al., 2003; Devoret et al., 2004]. Moreover, awk-
ward superpositions are by no means confined to physics laboratories: due to its
chaotic motion, Saturn’s moon Hyperion (which is about the size of New York)
has been estimated to spread out all over its orbit within 20 years if treated as
an isolated quantum-mechanical wave packet [Zurek and Paz, 1995]. Furthermore,
decoherence theorists have made the point that “measurement” is not only a proce-
dure carried out by experimental physicists in their labs, but takes place in Nature
all the time without any human intervention. On the conceptual side, parties as
diverse as Bohm and Bell and their followers on the one hand and the quantum
cosmologists on the other have argued that a “Heisenberg cut” between object
and observer cannot possibly lie at the basis of a fundamental theory of physics.5

These and other remarkable insights of the past few decades have drawn wide at-
tention to the importance of the problem of interpreting quantum mechanics, and
in particular of explaining classical physics from it.

We will discuss these ideas in more detail below, and indeed our discussion of
the relationship between classical and quantum mechanics will be partly historical.
However, other than that it will be technical and mathematically rigorous. For
the problem at hand is so delicate that in this area sloppy mathematics is almost
guaranteed to lead to unreliable physics and conceptual confusion (notwithstand-

4‘One can see that the transition from micro- to macro-mechanics is now very easy to under-
stand: classical mechanics is altogether part of quantum mechanics.’ (Heisenberg to Bohr, 19
March 1927, just before the submission on 23 March of Heisenberg [1927]. See Bohr’s Scientific
Correspondence in the Archives for the History of Quantum Physics).

5Not to speak of the problem, also raised by quantum cosmologists, of deriving classical
space-time from some theory of quantum gravity. This is certainly part of the general program
of deriving classical physics from quantum theory, but unfortunately it cannot be discussed in
this paper.
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ing the undeniable success of poor man’s math elsewhere in theoretical physics).
Except for von Neumann, this was not the attitude of the pioneers of quantum
mechanics; but while it has to be acknowledged that many of their ideas are still
central to the current discussion, these ideas per se have not solved the problem.
Thus we assume the reader to be familiar with the Hilbert space formalism of
quantum mechanics,6 and for some parts of this paper (notably Section 6 and
parts of Section 4) also with the basic theory of C∗-algebras and its applications
to quantum theory.7 In addition, some previous encounter with the conceptual
problems of quantum theory would be helpful.8

Which ideas have solved the problem of explaining the appearance of the clas-
sical world from quantum theory? In our opinion, none have, although since the
founding days of quantum mechanics a number of new ideas have been proposed
that almost certainly will play a role in the eventual resolution, should it ever be
found. These ideas surely include:

• The limit �→ 0 of small Planck’s constant (coming of age with the mathe-
matical field of microlocal analysis);

• The limit N → ∞ of a large system with N degrees of freedom (studied in
a serious way only after the emergence of C∗-algebraic methods);

• Decoherence and consistent histories.

Mathematically, the second limit may be seen as a special case of the first,
though the underlying physical situation is of course quite different. In any case,
after a detailed analysis our conclusion will be that none of these ideas in isolation
is capable of explaining the classical world, but that there is some hope that by
combining all three of them, one might do so in the future.

Because of the fact that the subject matter of this review is unfinished business,
to date one may adopt a number of internally consistent but mutually incompatible
philosophical stances on the relationship between classical and quantum theory.
Two extreme ones, which are always useful to keep in mind whether one holds one
of them or not, are:

1. Quantum theory is fundamental and universally valid, and the classical world
has only “relative” or “perspectival” existence.

2. Quantum theory is an approximate and derived theory, possibly false, and
the classical world exists absolutely.

6Apart from seasoned classics such as [Mackey, 1963; Jauch, 1968; Prugovecki, 1971; Reed and
Simon, 1972], or [Thirring, 1981], the reader might consult more recent books such as [Gustafson
and Sigal, 2003] or [Williams, 2003]. See also [Dickson, 2005].

7For physics-oriented introductions to C∗-algebras see [Davies, 1976; Roberts and Roepstorff,
1969; Primas, 1983; Thirring, 1983; Emch, 1984; Strocchi, 1985; Sewell, 1986; Roberts, 1990;
Haag, 1992; Landsman, 1998; Araki, 1999], and [Sewell, 2002]. Authoratitive mathematical texts
include [Kadison and Ringrose, 1983; 1986] and [Takesaki, 2003].

8Trustworthy books include, for example, [Scheibe, 1973; Jammer, 1974; van Fraassen, 1991;
d’Espagnat, 1995; Peres, 1995; Omnès, 1994; 1999; Bub, 1997], and [Mittelstaedt, 2004].
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An example of a position that our modern understanding of the measurement
problem9 has rendered internally inconsistent is:

3. Quantum theory is fundamental and universally valid, and (yet) the
classical world exists absolutely.

In some sense stance 1 originates with Heisenberg [1927], but the modern era
started with Everett [1957].10 These days, most decoherence theorists, consistent
historians, and modal interpreters seem to support it. Stance 2 has a long and
respectable pedigree unequivocally, including among others Einstein, Schrödinger,
and Bell. More recent backing has come from Leggett as well as from “spontaneous
collapse” theorists such as Pearle, Ghirardi, Rimini, Weber, and others. As we
shall see in Section 3, Bohr’s position eludes classification according to these terms;
our three stances being of an ontological nature, he probably would have found
each of them unattractive.

Of course, one has to specify what the terminology involved means. By quantum
theory we mean standard quantum mechanics including the eigenvector-eigenvalue
link.11 Modal interpretations of quantum mechanics [Dieks, 1989a; 1989b; van
Fraassen, 1991; Bub, 1999; Vermaas, 2000; Bene & Dieks, 2002; Dickson, 2005]
deny this link, and lead to positions close to or identical to stance 1. The projection
postulate is neither endorsed nor denied when we generically speak of quantum
theory.

It is a bit harder to say what “the classical world” means. In the present
discussion we evidently can not define the classical world as the world that exists
independently of observation – as Bohr did, see Subsection 3.1 – but neither can
it be taken to mean the part of the world that is described by the laws of classical
physics full stop; for if stance 1 is correct, then these laws are only approximately
valid, if at all. Thus we simply put it like this:

The classical world is what observation shows us to behave – with ap-
propriate accuracy – according to the laws of classical physics.

There should be little room for doubt as to what ‘with appropriate accuracy’
means: the existence of the colour grey does not imply the nonexistence of black
and white!

We can define the absolute existence of the classical world à la Bohr as its
existence independently of observers or measuring devices. Compare with Moore’s
[1939] proof of the existence of the external world:

9See the books cited in footnote 8, especially [Mittelstaedt, 2004].
10 Note, though, that stance 1 by no means implies the so-called Many-Worlds Interpretation,

which also in our opinion is ‘simply a meaningless collage of words’ [Leggett, 2002].
11Let A be a selfadjoint operator on a Hilbert space H, with associated projection-valued

measure P (∆), ∆ ⊂ R, so that A =
R

dP (λ) λ (see also footnote 99 below). The eigenvector-
eigenvalue link states that a state Ψ of the system lies in P (∆)H if and only if A takes some value
in ∆ for sure. In particular, if Ψ is an eigenvector of A with eigenvalue λ (so that P ({λ}) �= 0
and Ψ ∈ P ({λ})H), then A takes the value λ in the state Ψ with probability one. In general, the
probability pΨ(∆) that in a state Ψ the observable a takes some value in ∆ (“upon measurement”)
is given by the Born–von Neumann rule pΨ(∆) = (Ψ, P (∆)Ψ).
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How? By holding up my two hands, and saying, as I make a certain
gesture with the right hand, ‘Here is one hand’, and adding, as I make
a certain gesture with the left, ‘and here is another’.

Those holding position 1, then, maintain that the classical world exists only as
an appearance relative to a certain specification, where the specification in question
could be an observer (Heisenberg), a certain class of observers and states (as in de-
coherence theory), or some coarse-graining of the Universe defined by a particular
consistent set of histories, etc. If the notion of an observer is construed in a suffi-
ciently abstract and general sense, one might also formulate stance 1 as claiming
that the classical world merely exists from the perspective of the observer (or the
corresponding class of observables).12 For example, Schrödinger’s cat “paradox”
dissolves at once when the appropriate perspective is introduced; cf. Subsection
6.6.

Those holding stance 2, on the other hand, believe that the classical world
exists in an absolute sense (as Moore did). Thus stance 2 is akin to common-
sense realism, though the distinction between 1 and 2 is largely independent of
the issue of scientific realism.13 For defendants of stance 1 usually still believe
in the existence of some observer-independent reality (namely somewhere in the
quantum realm), but deny that this reality incorporates the world observed around
us. This justifies a pretty vague specification of such an important notion as the
classical world: one of the interesting outcomes of the otherwise futile discussions
surrounding the Many Worlds Interpretation has been the insight that if quantum
mechanics is fundamental, then the notion of a classical world is intrinsically vague
and approximate. Hence it would be self-defeating to be too precise at this point.14

Although stance 1 is considered defensive if not cowardly by adherents of stance
2, it is a highly nontrivial mathematical fact that so far it seems supported by the
formalism of quantum mechanics. In his derision of what he called ‘FAPP’ (= For
All Practical Purposes) solutions to the measurement problem (and more general
attempts to explain the appearance of the classical world from quantum theory),
Bell [1987; 2001] and others in his wake mistook a profound epistemological stance
for a poor defensive move.15 It is, in fact, stance 2 that we would recommend to
the cowardly: for proving or disproving stance 1 seems the real challenge of the

12The terminology “perspectival” was suggested to the author by Richard Healey.
13See [Landsman, 1995] for a more elaborate discussion of realism in this context. Words like

“objective” or “subjective” are not likely to be helpful in drawing the distinction either: the claim
that ‘my children are the loveliest creatures in the world’ is at first glance subjective, but it can
trivially be turned into an objective one through the reformulation that ‘Klaas Landsman finds
his children the loveliest creatures in the world’. Similarly, the proposition that (perhaps due to
decoherence) ‘local observers find that the world is classical’ is perfectly objective, although it
describes a subjective experience. See also [Davidson, 2001].

14See [Wallace, 2002; 2003]; also cf. [Butterfield, 2002]. This point was not lost on Bohr and
Heisenberg either; see [Scheibe, 1973].

15The insistence on “precision” in such literature is reminiscent of Planck’s long-held belief in
the absolute nature of irreversibility [Darrigol, 1992; Heilbron, 2002]. It should be mentioned
that although Planck’s stubbornness by historical accident led him to take the first steps towards
quantum theory, he eventually gave it up to side with Boltzmann.
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entire debate, and we regard the technical content of this paper as a survey of
progress towards actually proving it. Indeed, to sum up our conclusions, we claim
that there is good evidence that:

1. Classical physics emerges from quantum theory in the limit �→ 0 or N →∞
provided that the system is in certain “classical” states and is monitored with
“classical” observables only;

2. Decoherence and consistent histories will probably explain why the system
happens to be in such states and has to be observed in such a way.

However, even if one fine day this scheme will be made to work, the explanation
of the appearance of the classical world from quantum theory will be predicated
on an external solution of the notorious ‘from “and” to “or” problem’: If quantum
mechanics predicts various possible outcomes with certain probabilities, why does
only one of these appear to us?16

For a more detailed outline of this paper we refer to the table of contents above.
Most philosophical discussion will be found in Section 3 on the Copenhagen inter-
pretation, since whatever its merits, it has undeniably set the stage for the entire
discussion on the relationship between classical and quantum.17 The remainder of
the paper will be of an almost purely technical nature. Beyond this point we will
try to avoid controversy, but when unavoidable it will be confined to the Epilogues
appended to Sections 3-6. The final Epilogue (Section 8) expresses our deepest
thoughts on the subject.

2 EARLY HISTORY

This section is a recapitulation of the opinions and contributions of the founders
of quantum mechanics regarding the relationship between classical and quantum.
More detail may be found in the books cited in footnote 2 and in specific literature
to be cited; for an impressive (but incomplete) bibliography see also [Gutzwiller,
1998]. The early history of quantum theory is of interest in its own right, con-
cerned as it is with one of the most significant scientific revolutions in history.
Although this history is not a main focus of this paper, it is of special significance
for our theme. For the usual and mistaken interpretation of Planck’s work (i.e.
the idea that he introduced something like a “quantum postulate”, see Subsection
3.2 below) appears to have triggered the belief that quantum theory and Planck’s
constant are related to a universal discontinuity in Nature. Indeed, this discon-
tinuity is sometimes even felt to mark the basic difference between classical and
quantum physics. This belief is particularly evident in the writings of Bohr, but
still resonates even today.

16It has to be acknowledged that we owe the insistence on this question to the defendants of
stance 2. See also footnote 10.

17We do not discuss the classical limit of quantum mechanics in the philosophical setting of
theory reduction and intertheoretic relations; see, e.g., [Scheibe, 1999] and [Batterman, 2002].
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2.1 Planck and Einstein

The relationship between classical physics and quantum theory is so subtle and
confusing that historians and physicists cannot even agree about the precise way
the classical gave way to the quantum! As Darrigol [2001] puts it: ‘During the
past twenty years, historians [and physicists] have disagreed over the meaning of
the quanta which Max Planck introduced in his black-body theory of 1900. The
source of this confusion is the publication (. . . ) of Thomas Kuhn’s [1978] icono-
clastic thesis that Planck did not mean his energy quanta to express a quantum
discontinuity.’

As is well known (cf. [Mehra and Rechenberg, 1982a], etc.), Planck initially
derived Wien’s law for blackbody radiation in the context of his (i.e. Planck’s)
program of establishing the absolute nature of irreversibility (competing with
Boltzmann’s probabilistic approach, which eventually triumphed). When new
high-precision measurements in October 1900 turned out to refute Wien’s law,
Planck first guessed his expression

Eν/Nν = hν/(ehν/kT − 1)(1)

for the correct law, en passant introducing two new constants of nature h and k,18

and subsequently, on December 14, 1900, presented a theoretical derivation of his
law in which he allegedly introduced the idea that the energy of the resonators
making up his black body was quantized in units of εν = hν (where ν is the
frequency of a given resonator). This derivation is generally seen as the birth of
quantum theory, with the associated date of birth just mentioned.

However, it is clear by now [Kuhn, 1978; Darrigol, 1992; 2001; Carson, 2000;
Brush, 2002] that Planck was at best agnostic about the energy of his resonators,
and at worst assigned them a continuous energy spectrum. Technically, in the
particular derivation of his empirical law that eventually turned out to lead to the
desired result (which relied on Boltzmann’s concept of entropy),19 Planck had to
count the number of ways a given amount of energy Eν could be distributed over a
given number of resonators Nν at frequency ν. This number is, of course, infinite,
hence in order to find a finite answer Planck followed Boltzmann in breaking up Eν
into a large number Aν of portions of identical size εν , so that Aνεν = Eν .20 Now,
as we all know, whereas Boltzmann let εν → 0 at the end of his corresponding
calculation for a gas, Planck discovered that his empirical blackbody law emerged
if he assumed the relation εν = hν.

However, this postulate did not imply that Planck quantized the energy of
his resonators. In fact, in his definition of a given distribution he counted the
number of resonators with energy between say (k − 1)εν and kεν (for some k ∈

18Hence Boltzmann’s constant k was introduced by Planck, who was the first to write down
the formula S = k log W .

19Despite the fact that Planck only converted to Boltzmann’s approach to irreversibility around
1914.

20The number in question is then given by (N + A− 1)!/(N − 1)!A!, dropping the dependence
on ν in the notation.
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N), as Boltzmann did in an analogous way for a gas, rather than the number of
resonators with energy kεν , as most physicists came to interpret his procedure.
More generally, there is overwhelming textual evidence that Planck himself by
no means believed or implied that he had quantized energy; for one thing, in
his Nobel Prize Lecture in 1920 he attributed the correct interpretation of the
energy-quanta εν to Einstein. Indeed, the modern understanding of the earliest
phase of quantum theory is that it was Einstein rather than Planck who, during
the period 1900–1905, clearly realized that Planck’s radiation law marked a break
with classical physics [Büttner et al., 2003]. This insight, then, led Einstein to
the quantization of energy. This he did in a twofold way, both in connection
with Planck’s resonators — interpreted by Einstein as harmonic oscillators in the
modern way — and, in a closely related move, through his concept of a photon.
Although Planck of course introduced the constant named after him, and as such
is the founding father of the theory characterized by �, it is the introduction of the
photon that made Einstein at least the mother of quantum theory. Einstein himself
may well have regarded the photon as his most revolutionary discovery, for what
he wrote about his pertinent paper is not matched in self-confidence by anything
he said about relativity: ‘Sie handelt über die Strahlung und die energetischen
Eigenschaften des Lichtes und ist sehr revolutionär.’21

Finally, in the light of the present paper, it deserves to be mentioned that
Einstein [1905] and Planck [1906] were the first to comment on the classical limit
of quantum theory; see the preamble to Section 5 below.

2.2 Bohr

Bohr’s brilliant model of the atom reinforced his idea that quantum theory was a
theory of quanta.22 Since this model simultaneously highlighted the clash between
classical and quantum physics and carried the germ of a resolution of this conflict
through Bohr’s equally brilliant correspondence principle, it is worth saying a few
words about it here.23 Bohr’s atomic model addressed the radiative instability
of Rutherford’s solar-system-style atom:24 according to the electrodynamics of
Lorentz, an accelerating electron should radiate, and since the envisaged circular
or elliptical motion of an electron around the nucleus is a special case of an ac-
celerated motion, the electron should continuously lose energy and spiral towards

21‘[This paper] is about radiation and the energetic properties of light, and is very revolution-
ary.’ See also the Preface to Pais [1982].

22Although at the time Bohr followed practically all physicists in their rejection of Einstein’s
photon, since he believed that during a quantum jump the atom emits electromagnetic radiation
in the form of a spherical wave. His model probably would have gained in consistency by adopting
the photon picture of radiation, but in fact Bohr was to be the last prominent opponent of the
photon, resisting the idea until 1925. See also Blair Bolles [2004] and footnote 33 below.

23Cf. [Darrigol, 1992] for a detailed treatment; also see [Liboff, 1984] and [Steiner, 1998].
24The solar system provides the popular visualization of Rutherford’s atom, but his own picture

was more akin to Saturn’ rings than to a planet orbiting the Sun.
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the nucleus.25 Bohr countered this instability by three simultaneous moves, each
of striking originality:

1. He introduced a quantization condition that singled out only a discrete num-
ber of allowed electronic orbits (which subsequently were to be described
using classical mechanics, for example, in Bohr’s calculation of the Rydberg
constant R).

2. He replaced the emission of continuous radiation called for by Lorentz by
quantum jumps with unpredictable destinations taking place at unpredictable
moments, during which the atom emits light with energy equal to the energy
difference of the orbits between which the electron jumps.

3. He prevented the collapse of the atom through such quantum jumps by
introducing the notion of a ground state, below which no electron could fall.

With these postulates, for which at the time there existed no foundation whatso-
ever,26 Bohr explained the spectrum of the hydrogen atom, including an amazingly
accurate calculation of R. Moreover, he proposed what was destined to be the
key guiding principle in the search for quantum mechanics in the coming decade,
viz. the correspondence principle (cf. [Darrigol, 1992, passim], and [Mehra and
Rechenberg, 1982a, 249–257]).

In general, there is no relation between the energy that an electron loses during
a particular quantum jump and the energy it would have radiated classically (i.e.
according to Lorentz) in the orbit it revolves around preceding this jump. Indeed,
in the ground state it cannot radiate through quantum jumps at all, whereas
according to classical electrodynamics it should radiate all the time. However,
Bohr saw that in the opposite case of very wide orbits (i.e. those having very
large principal quantum numbers n), the frequency ν = (En − En−1)/h (with
En = −R/n2) of the emitted radiation approximately corresponds to the frequency
of the lowest harmonic of the classical theory, applied to electron motion in the
initial orbit.27 Moreover, the measured intensity of the associated spectral line
(which theoretically should be related to the probability of the quantum jump,
a quantity out of the reach of early quantum theory), similarly turned out to be
given by classical electrodynamics. This property, which in simple cases could
be verified either by explicit computation or by experiment, became a guiding
principle in situations where it could not be verified, and was sometimes even

25In addition, any Rutherford style atom with more than one electron is mechanically unstable,
since the electrons repel each other, as opposed to planets, which attract each other.

26What has hitherto been mathematically proved of Bohr’s atomic model is the existence of
a ground state (see [Griesemer et al., 2001], and references therein for the greatest generality
available to date) and the metastability of the excited states of the atom after coupling to the
electromagnetic field (cf. [Bach et al., 1998; 1999] and [Gustafson and Sigal, 2003]). The energy
spectrum is discrete only if the radiation field is decoupled, leading to the usual computation of
the spectrum of the hydrogen atom first performed by Schrödinger and Weyl. See also the end
of Subsection 5.4.

27Similarly, higher harmonics correspond to quantum jumps n→ n− k for k > 1.
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extended to low quantum numbers, especially when the classical theory predicted
selection rules.

It should be emphasized that Bohr’s correspondence principle was concerned
with the properties of radiation, rather than with the mechanical orbits them-
selves.28 This is not quite the same as what is usually called the correspondence
principle in the modern literature.29 In fact, although also this modern correspon-
dence principle has a certain range of validity (as we shall see in detail in Section
5), Bohr never endorsed anything like that, and is even on record as opposing such
a principle:30

‘The place was Purcell’s office where Purcell and others had taken Bohr
for a few minutes of rest [during a visit to the Physics Department
at Harvard University in 1961]. They were in the midst of a general
discussion when Bohr commented: “People say that classical mechanics
is the limit of quantum mechanics when h goes to zero.” Then, Purcell
recalled, Bohr shook his finger and walked to the blackboard on which
he wrote e2/hc. As he made three strokes under h, Bohr turned around
and said, “you see h is in the denominator.”’

2.3 Heisenberg

Heisenberg’s [1925] paper Über die quantentheoretische Umdeutung kinematischer
und mechanischer Beziehungen31 is generally seen as a turning point in the devel-
opment of quantum mechanics. Even A. Pais, no friend of Heisenberg’s,32 conceded
that Heisenberg’s paper marked ’one of the great jumps — perhaps the greatest —
in the development of twentieth century physics.’ What did Heisenberg actually
accomplish? This question is particularly interesting from the perspective of our
theme.

At the time, atomic physics was in a state of crisis, to which various camps
responded in different ways. Bohr’s approach might best be described as damage
control : his quantum theory was a hybrid of classical mechanics adjusted by means
of ad hoc quantization rules, whilst keeping electrodynamics classical at all cost.33

28As such, it remains to be verified in a rigorous way.
29A typical example of the modern version is: ‘Non-relativistic quantum mechanics was founded

on the correspondence principle of Bohr: “When the Planck constant � can be considered small
with respect to the other parameters such as masses and distances, quantum theory approaches
classical Newton theory.”’ [Robert, 1998, 44]. The reference to Bohr is historically inaccurate!

30Quoted from [Miller, 1984, 313].
31On the quantum theoretical reinterpretation of kinematical and mechanical relations. English

translation in [van der Waerden, 1967].
32For example, in [Pais, 2000], claiming to portray the ‘genius of science’, Heisenberg is con-

spicously absent.
33 Continuing footnote 22, we quote from [Mehra and Rechenberg, 1982a, 256–257]: ‘Thus, in

the early 1920s, Niels Bohr arrived at a definite point of view how to proceed forward in atomic
theory. He wanted to make maximum use of what he called the “more dualistic prescription”
(. . . ) In it the atom was regarded as a mechanical system having discrete states and emitting
radiation of discrete frequencies, determined (in a nonclassical way) by the energy differences
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Einstein, who had been the first physicist to recognize the need to quantize classical
electrodynamics, in the light of his triumph with General Relativity nonetheless
dreamt of a classical field theory with singular solutions as the ultimate explanation
of quantum phenomena. Born led the radical camp, which included Pauli: he saw
the need for an entirely new mechanics replacing classical mechanics,34 which was
to be based on discrete quantities satisfying difference equations.35 This was a
leap in the dark, especially because of Pauli’s frowning upon the correspondence
principle [Hendry, 1984; Beller, 1999].

It was Heisenberg’s genius to interpolate between Bohr and Born.36 The mean-
ing of his Umdeutung was to keep the classical equations of motion,37 whilst rein-
terpreting the mathematical symbols occurring therein as (what were later rec-
ognized to be) matrices. Thus his Umdeutung x �→ a(n,m) was a precursor of
what now would be called a quantization map f �→ Q�(f), where f is a classical
observable, i.e. a function on phase space, and Q�(f) is a quantum mechanical
observable, in the sense of an operator on a Hilbert space or, more abstractly, an
element of some C∗-algebra. See Section 4 below. As Heisenberg recognized, this
move implies the noncommutativity of the quantum mechanical observables; it is
this, rather than something like a “quantum postulate” (see Subsection 3.2 below),
that is the defining characteristic of quantum mechanics. Indeed, most later work
on quantum physics and practically all considerations on the connection between
classical and quantum rely on Heisenberg’s idea of Umdeutung. This even applies
to the mathematical formalism as a whole; see Subsection 2.5.

We here use the term “observable” in a loose way. It is now well recognized
[Mehra and Rechenberg, 1982b; Beller, 1999; Camilleri, 2005] that Heisenberg’s
claim that his formalism could be physically interpreted as the replacement of
atomic orbits by observable quantities was a red herring, inspired by his discussions
with Pauli. In fact, in quantum mechanics any mechanical quantity has to be
“reinterpreted”, whether or not it is observable. As Heisenberg [1969] recalls,
Einstein reprimanded him for the illusion that physics admits an a priori notion
of an observable, and explained that a theory determines what can be observed.
Rethinking the issue of observability then led Heisenberg to his second major
contribution to quantum mechanics, namely his uncertainty relations.

These relations were Heisenberg’s own answer to the quote opening this paper.
Indeed, matrix mechanics was initially an extremely abstract and formal scheme,

between stationary states; radiation, on the other hand, had to be described by the classical
electrodynamic theory.’

34It was Born who coined the name quantum mechanics even before Heisenberg’s paper.
35This idea had earlier occurred to Kramers.
36Also literally! Heisenberg’s traveled between Copenhagen and Göttingen most of the time.
37This crucial aspect of Umdeutung was appreciated at once by Dirac [1926]: ‘In a recent

paper Heisenberg puts forward a new theory which suggests that it is not the equations of
classical mechanics that are in any way at fault, but that the mathematical operations by which
physical results are deduced from them require modification. (. . . ) The correspondence between
the quantum and classical theories lies not so much in the limiting agreement when � → 0 as
in the fact that the mathematical operations on the two theories obey in many cases the same
laws.’
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which lacked not only any visualization but also the concept of a state (see below).
Although these features were initially quite to the liking of Born, Heisenberg, Pauli,
and Jordan, the success of Schrödinger’s work forced them to renege on their
radical stance, and look for a semiclassical picture supporting their mathematics;
this was a considerable U-turn [Beller, 1999; Camilleri, 2005]. Heisenberg [1927]
found such a picture, claiming that his uncertainty relations provided the ‘intuitive
content of the quantum theoretical kinematics and mechanics’ (as his paper was
called). His idea was that the classical world emerged from quantum mechanics
through observation: ‘The trajectory only comes into existence because we observe
it.’38 This idea was to become extremely influential, and could be regarded as the
origin of stance 1 in the Introduction.

2.4 Schrödinger

The history of quantum mechanics is considerably clarified by the insight that
Heisenberg and Schrödinger did not, as is generally believed, discover two equiv-
alent formulations of the theory, but rather that Heisenberg [1925] identified the
mathematical nature of the observables, whereas Schrödinger [1926a] found the
description of states.39 Matrix mechanics lacked the notion of a state, but by
the same token wave mechanics initially had no observables; it was only in his
attempts to relate wave mechanics to matrix mechanics that Schrödinger [1926c]
introduced the position and momentum operators40

Q�(qj) = xj ;

Q�(pj) = −i�
∂

∂xj
.(2)

This provided a new basis for Schrödinger’s equation41


− �

2

2m

n∑
j=1

∂2

∂x2
j

+ V (x)


Ψ = i�

∂Ψ
∂t

,(3)

by interpreting the left-hand side as HΨ, with H = Q�(h) in terms of the classical
Hamiltonian h(p, q) =

∑
j p2

j/2m + V (q). Thus Schrödinger founded the theory of
the operators now named after him,42 and in doing so gave what is still the most
important example of Heisenberg’s idea of Umdeutung of classical observables.

38‘Die Bahn entsteht erst dadurch, daß wir sie beobachten.’
39See also [Muller, 1997].
40Here j = 1, 2, 3. In modern terms, the expressions on the right-hand side are unbounded

operators on the Hilbert space H = L2(Rn). See Section 4 for more details. The expression
xi is a multiplication operator, i.e. (xjΨ)(x) = xjΨ(x), whereas, obviously, (∂/∂xjΨ)(x) =
(∂Ψ/∂xj)(x).

41Or the corresponding time-independent one, with EΨ on the right-hand side.
42 See [Reed and Simon, 1972; 1975; 1987; 1979; Cycon et al., 1987; Hislop and Sigal, 1996;

Hunziker and Sigal, 2000; Simon, 2000; Gustafson and Sigal, 2003]. For the mathematical origin
of the Schrödinger equation also cf. [Simon, 1976].
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Subsequently, correcting and expanding on certain ideas of Dirac, Pauli, and
Schrödinger, von Neumann [1932] brilliantly glued these two parts together through
the concept of a Hilbert space. He also gave an abstract form of the formulae of
Born, Pauli, Dirac, and Jordan for the transition probabilities, thus completing
the mathematical formulation of quantum mechanics.

However, this is not how Schrödinger saw his contribution. He intended wave
mechanics as a full-fledged classical field theory of reality, rather than merely as
one half (namely in modern parlance the state space half) of a probabilistic de-
scription of the world that still incorporated the quantum jumps he so detested
[Mehra and Rechenberg, 1987; Götsch, 1992; Bitbol and Darrigol, 1992; Bitbol,
1996; Beller, 1999]. Particles were supposed to emerge in the form of wave packets,
but it was immediately pointed out by Heisenberg, Lorentz, and others that in re-
alistic situations such wave packets tend to spread in the course of time. This had
initially been overlooked by Schrödinger [1926b], who had based his intuition on
the special case of the harmonic oscillator. On the positive side, in the course of his
unsuccessful attempts to derive classical particle mechanics from wave mechanics
through the use of wave packets, Schrödinger [1926b] gave the first example of what
is now called a coherent state. Here a quantum wave function Ψz is labeled by a
‘classical’ parameter z, in such a way that the quantum-mechanical time-evolution
Ψz(t) is approximately given by Ψz(t), where z(t) stands for some associated clas-
sical time-evolution; see Subsections 4.2 and 5.2 below. This has turned out to be
a very important idea in understanding the transition from quantum to classical
mechanics.

Furthermore, in the same paper Schrödinger [1926b] proposed the following
wave-mechanical version of Bohr’s correspondence principle: classical atomic states
should come from superpositions of a very large number (say at least 10,000) of
highly excited states (i.e. energy eigenfunctions with very large quantum num-
bers). After decades of limited theoretical interest in this idea, interest in wave
packets in atomic physics was revived in the late 1980s due to the development
of modern experimental techniques based on lasers (such as pump-probing and
phase-modulation). See [Robinett, 2004] for a recent technical review, or [Nauen-
berg et al., 1994] for an earlier popular account. Roughly speaking, the picture
that has emerged is this: a localized wave packet of the said type initially follows
a time-evolution with almost classical periodicity, as Schrödinger hoped, but sub-
sequently spreads out after a number of orbits. Consequently, during this second
phase the probability distribution approximately fills the classical orbit (though
not uniformly). Even more surprisingly, on a much longer time scale there is a
phenomenon of wave packet revival, in which the wave packet recovers its initial
localization. Then the whole cycle starts once again, so that one does see periodic
behaviour, but not of the expected classical type. Hence even in what naively
would be thought of as the thoroughly classical regime, wave phenomena continue
to play a role, leading to quite unusual and unexpected behaviour. Although a
rigorous mathematical description of wave packet revival has not yet been forth-
coming, the overall picture (based on both “theoretical physics” style mathematics
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and experiments) is clear enough.
It is debatable (and irrelevant) whether the story of wave packets has evolved

according to Schrödinger’s intentions (cf. [Littlejohn, 1986]); what is certain is
that his other main idea on the relationship between classical and quantum has
been extremely influential. This was, of course, Schrödinger’s [1926a] “derivation”
of his wave equation from the Hamilton–Jacobi formalism of classical mechanics.
This gave rise to the WKB approximation and related methods; see Subsection
5.5.

In any case, where Schrödinger hoped for a classical interpretation of his wave
function, and Heisenberg wanted to have nothing to do with it whatsoever [Beller,
1999], Born and Pauli were quick to realize its correct, probabilistic significance.
Thus they deprived the wave function of its naive physical nature, and effectively
degraded it to the purely mathematical status of a probability amplitude. And
in doing so, Born and Pauli rendered the connection between quantum mechanics
and classical mechanics almost incomprehensible once again! It was this incom-
prehensibility that Heisenberg addressed with his uncertainty relations.

2.5 von Neumann

Through its creation of the Hilbert space formalism of quantum mechanics, von
Neumann’s book [1932] can be seen as a mathematical implementation of Heisen-
berg’s idea of Umdeutung. Von Neumann in effect proposed the following quantum-
theoretical reinterpretations:

Phase space M �→ Hilbert space H;

Classical observable (i.e. real-valued measurable function on M) �→ self-adjoint
operator on H;

Pure state (seen as point in M) �→ unit vector (actually ray) in H;

Mixed state (i.e. probability measure on M) �→ density matrix on H;

Measurable subset of M �→ closed linear subspace of H;

Set complement �→ orthogonal complement;

Union of subsets �→ closed linear span of subspaces;

Intersection of subsets �→ intersection of subspaces;

Yes-no question (i.e. characteristic function on M) �→ projection operator.43

Here we assume for simplicity that quantum observables R on a Hilbert space
H are bounded operators, i.e. R ∈ B(H). Von Neumann actually derived his
Umdeutung of classical mixed states as density matrices from his axiomatic char-
acterization of quantum-mechanical states as linear maps Exp : B(H) → C that

43Later on, he of course added the Umdeutung of a Boolean lattice by a modular lattice, and
the ensuing Umdeutung of classical logic by quantum logic [Birkhoff and von Neumann, 1936].
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satisfy Exp(R) ≥ 0 when R ≥ 0,44 Exp(1) = 1,45, and countable additivity on
a commuting set of operators. For he proved that such a map Exp is necessar-
ily given by a density matrix ρ according to Exp(R) = Tr (ρR).46 A unit vector
Ψ ∈ H defines a pure state in the sense of von Neumann, which we call ψ, by
ψ(R) = (Ψ, RΨ) for R ∈ B(H). Similarly, a density matrix ρ on H defines a (gen-
erally mixed) state, called ρ as well, by ρ(R) = Tr (ρR). In modern terminology,
a state on B(H) as defined by von Neumann would be called a normal state. In
the C∗-algebraic formulation of quantum physics (cf. footnote 7), this axiomati-
zation has been maintained until the present day; here B(H) is replaced by more
general algebras of observables in order to accommodate possible superselection
rules [Haag, 1992].

Beyond his mathematical axiomatization of quantum mechanics, which (along
with its subsequent extension by the C∗-algebraic formulation) lies at the basis of
all serious efforts to relate classical and quantum mechanics, von Neumann con-
tributed to this relationship through his analysis of the measurement problem.47

Since here the apparent clash between classical and quantum physics comes to a
head, it is worth summarizing von Neumann’s analysis of this problem here. See
also [Wheeler and Zurek, 1983; Busch et al., 1991; Auletta, 2001] and [Mittel-
staedt, 2004] for general discussions of the measurement problem.

The essence of the measurement problem is that certain states are never seen
in nature, although they are not merely allowed by quantum mechanics (on the
assumption of its universal validity), but are even predicted to arise in typical
measurement situations. Consider a system S, whose pure states are mathemat-
ically described by normalized vectors (more precisely, rays) in a Hilbert space
HS . One wants to measure an observable O, which is mathematically represented
by a self-adjoint operator O on HS . Von Neumann assumes that O has discrete

44I.e., when R is self-adjoint with positive spectrum, or, equivalently, when R = S∗S for some
S ∈ B(H).

45Where the 1 in Exp(1) is the unit operator on H.
46This result has been widely misinterpreted (apparently also by von Neumann himself) as a

theorem excluding hidden variables in quantum mechanics. See [Scheibe, 1991]. However, Bell’s
characterization of von Neumann’s linearity assumption in the definition of a state as “silly” is
far off the mark, since it holds both in classical mechanics and in quantum mechanics. Indeed,
von Neumann’s theorem does exclude all hidden variable extensions of quantum mechanics that
are classical in nature, and it is precisely such extensions that many physicists were originally
looking for. See [Rédei and Stöltzner, 2001] and [Scheibe, 2001] for recent discussions of this
issue.

47Von Neumann [1932] refrained from discussing either the classical limit of quantum mechanics
or (probably) the notion of quantization. In the latter direction, he declares that ‘If the quantity
R has the operator R, then the quantity f(R) has the operator f(R)’, and that ‘If the quantities
R, S, · · · have the operators R, S, · · · , then the quantity R+S+· · · has the operator R+S+· · · ’.
However, despite his legendary clarity and precision, von Neumann is rather vague about the
meaning of the transition R �→ R. It is tempting to construe R as a classical observable whose
quantum-mechanical counterpart is R, so that the above quotations might be taken as axioms
for quantization. However, such an interpretation is neither supported by the surrounding text,
nor by our current understanding of quantization (cf. Section 4). For example, a quantization
map R �→ Q�(R) cannot satisfy f(R) �→ f(Q�(R)) even for very reasonable functions such as
f(x) = x2.
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spectrum, a simplification which does not hide the basic issues in the measure-
ment problem. Hence O has unit eigenvectors Ψn with real eigenvalues on. To
measure O, one couples the system to an apparatus A with Hilbert space HA
and “pointer” observable P, represented by a self-adjoint operator P on HA, with
discrete eigenvalues pn and unit eigenvectors Φn. The pure states of the total
system S + A then correspond to unit vectors in the tensor product HS ⊗HA. A
good (“first kind”) measurement is then such that after the measurement, Ψn is
correlated to Φn, that is, for a suitably chosen initial state I ∈ HA, a state Ψn⊗ I
(at t = 0) almost immediately evolves into Ψn ⊗Φn. This can indeed be achieved
by a suitable Hamiltonian.

The problem, highlighted by Schrödinger’s cat, now arises if one selects the
initial state of S to be

∑
n cnΨn (with

∑ |cn|2 = 1), for then the superposition
principle leads to the conclusion that the final state of the coupled system is∑
n cnΨn ⊗ Φn. Now, basically all von Neumann said was that if one restricts

the final state to the system S, then the resulting density matrix is the mixture∑
n |cn|2[Ψn] (where [Ψ] is the orthogonal projection onto a unit vector Ψ),48

so that, from the perspective of the system alone, the measurement appears to
have caused a transition from the pure state

∑
n,m cncmΨnΨ∗

m to the mixed state∑
n |cn|2[Ψn], in which interference terms ΨnΨ∗

m for n �= m are absent. Here
the operator ΨnΨ∗

m is defined by ΨnΨ∗
mf = (Ψm, f)Ψn; in particular, ΨΨ∗ =

[Ψ].49 Similarly, the apparatus, taken by itself, has evolved from the pure state∑
n,m cncmΦnΦ∗

m to the mixed state
∑
n |cn|2[Φn]. This is simply a mathematical

theorem (granted the possibility of coupling the system to the apparatus in the
desired way), rather than a proposal that there exist two different time-evolutions
in Nature, viz. the unitary propagation according to the Schrödinger equation side
by side with the above “collapse” process.

In any case, by itself this move by no means solves the measurement problem.50

Firstly, in the given circumstances one is not allowed to adopt the ignorance in-
terpretation of mixed states (i.e. assume that the system really is in one of the
states Ψn); cf., e.g., [Mittelstaedt, 2004]. Secondly, even if one were allowed to do
so, one could restore the problem (i.e. the original superposition

∑
n cnΨn ⊗ Φn)

by once again taking the other component of the system into account.
Von Neumann was well aware of at least this second point, to which he re-

sponded by his construction of a chain: one redefines S + A as the system, and
couples it to a new apparatus B, etc. This eventually leads to a post-measurement
state

∑
n cnΨn ⊗ Φn ⊗ χn (in hopefully self-explanatory notation, assuming the

vectors χn form an orthonormal set), whose restriction to S + A is the mixed
state

∑
n |cn|2[Ψn] ⊗ [Φn]. The restriction of the latter state to S is, once again,∑

n |cn|2[Ψn]. This procedure may evidently be iterated; the point of the con-
struction is evidently to pass on superpositions in some given system to arbitrary

48I.e., [Ψ]f = (Ψ, f)Ψ; in Dirac notation one would have [Ψ] = |Ψ〉〈Ψ|.
49In Dirac notation one would have ΨnΨ∗

m = |Ψn〉〈Ψm|.
50Not even in an ensemble-interpretation of quantum mechanics, which was the interpretation

von Neumann unfortunately adhered to when he wrote his book.
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systems higher up in the chain. It follows that for the final state of the original
system it does not matter where one “cuts the chain” (that is, which part of the
chain one leaves out of consideration), as long as it is done somewhere. Von Neu-
mann ([1932], in beautiful prose) and others suggested identifying the cutting with
the act of observation, but it is preferable and much more general to simply say
that some end of the chain is omitted in the description.

The burden of the measurement problem, then, is to

1. Construct a suitable chain along with an appropriate cut thereof; it doesn’t
matter where the cut is made, as long as it is done.

2. Construct a suitable time-evolution accomplishing the measurement.

3. Justify the ignorance interpretation of mixed states.

As we shall see, these problems are addressed, in a conceptually different but
mathematically analogous way, in the Copenhagen interpretation as well as in the
decoherence approach. (The main conceptual difference will be that the latter
aims to solve also the more ambitious problem of explaining the appearance of the
classical world, which in the former seems to be taken for granted).

We conclude this section by saying that despite some brilliant ideas, the founders
of quantum mechanics left wide open the problem of deriving classical mechanics
as a certain regime of their theory.

3 COPENHAGEN: A REAPPRAISAL

The so-called “Copenhagen interpretation” of quantum mechanics goes back to
ideas first discussed and formulated by Bohr, Heisenberg, and Pauli around 1927.
Against the idea that there has been a “party line” from the very beginning, it has
frequently been pointed out that in the late 1920s there were actually sharp differ-
ences of opinion between Bohr and Heisenberg on the interpretation of quantum
mechanics and that they never really arrived at a joint doctrine [Hooker, 1972;
Stapp, 1972; Hendry, 1984; Beller, 1999; Howard, 2004; Camilleri, 2005]. For ex-
ample, they never came to agree about the notion of complementarity (see Subsec-
tion 3.3). More generally, Heisenberg usually based his ideas on the mathematical
formalism of quantum theory, whereas Bohr’s position was primarily philosophi-
cally oriented. Nonetheless, there is a clearly identifiable core of ideas on which
they did agree, and since this core has everything to do with the relationship
between classical and quantum, we are going to discuss it in some detail.

The principal primary sources are Bohr’s Como Lecture, his reply to epr, and
his essay dedicated to Einstein [Bohr, 1927; 1935; 1949].51 Historical discussions
of the emergence and reception of these papers are given in Bohr [1985; 1996]
and in Mehra and Rechenberg [2001]. As a selection of the enormous literature

51These papers were actually written in collaboration with Pauli (after first attempts with
Klein), Rosenfeld, and Pais, respectively.
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these papers have given rise to, we mention among relatively recent works [Hooker,
1972; Scheibe, 1973; Folse, 1985; Murdoch, 1987; Lahti and Mittelstaedt, 1987;
Honner, 1987; Chevalley, 1991; 1999; Faye, 1991; Faye and Folse, 1994; Held,
1994; Howard, 1994; Beller, 1999; Faye, 2002], and [Saunders, 2005]. For Bohr’s
sparring partners see [Heisenberg, 1930; 1942; 1958; 1984a,b; 1985] with associated
secondary literature [Heelan, 1965; Hörz, 1968; Geyer et al., 1993; Camilleri, 2005]
and [Pauli, 1933; 1949; 1979; 1985; 1994]), along with [Laurikainen, 1988] and
[Enz, 2002].

As with Wittgenstein (and many other thinkers), it helps to understand Bohr
if one makes a distinction between an “early” Bohr and a “later” Bohr.52 Despite
a good deal of continuity in his thought (see below), the demarcation point is
his response to epr [Bohr, 1935],53 and the main shift he made afterwards lies
in his sharp insistence on the indivisible unity of object and observer after 1935,
focusing on the concept of a phenomenon. Before epr, Bohr equally well believed
that object and observer were both necessary ingredients of a complete description
of quantum theory, but he then thought that although their interaction could
never be neglected, they might at least logically be considered separately. After
1935, Bohr gradually began to claim that object and observer no longer even
had separate identities, together forming a “phenomenon”. Accordingly, also his
notion of complementarity changed, increasingly focusing on the idea that the
specification of the experimental conditions is crucial for the unambiguous use of
(necessarily) classical concepts in quantum theory [Scheibe, 1973; Held, 1994]. See
also Subsection 3.3 below. This development culminated in Bohr’s eventual denial
of the existence of the quantum world:

‘There is no quantum world. There is only an abstract quantum-
physical description. It is wrong to think that the task of physics
is to find out how nature is. Physics concerns what we can say about
nature. (. . . ) What is it that we humans depend on? We depend on
our words. Our task is to communicate experience and ideas to others.
We are suspended in language.’ (quoted by [Petersen, 1963, 8].)54

3.1 The doctrine of classical concepts

Despite this shift, it seems that Bohr stuck to one key thought throughout his
career:

52Here we side with Held [1994] and Beller [1999] against Howard [1994] and Saunders [2005].
See also [Pais, 2000, 22]: ‘Bohr’s Como Lecture did not bring the house down, however. He
himself would later frown on expressions he used there, such as “disturbing the phenomena by
observation”. Such language may have contributed to the considerable confusion that for so long
has reigned around this subject.’

53This response is problematic, as is epr itself. Consequently, there exists a considerable
exegetical literature on both, marked by the fact that equally competent and well-informed pairs
of commentators manage to flatly contradict each other while at the same time both claiming to
explain or reconstruct what Bohr “really” meant.

54See [Mermin, 2004] for a witty discussion of this controversial quotation.
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‘However far the phenomena transcend the scope of classical physical
explanation, the account of all evidence must be expressed in classical
terms. (. . . ) The argument is simply that by the word experiment we
refer to a situation where we can tell others what we have done and
what we have learned and that, therefore, the account of the exper-
imental arrangements and of the results of the observations must be
expressed in unambiguous language with suitable application of the
terminology of classical physics.’ [Bohr, 1949, 209].

This is, in a nutshell, Bohr’s doctrine of classical concepts. Although his many
drawings and stories may suggest otherwise, Bohr does not quite express the idea
here that the goal of physics lies in the description of experiments.55 In fact, he
merely points out the need for “unambiguous” communication, which he evidently
felt threatened by quantum mechanics.56 The controversial part of the quote lies in
his identification of the means of unambiguous communication with the language
of classical physics, involving particles and waves and the like. We will study
Bohr’s specific argument in favour of this identification shortly, but it has to be
said that, like practically all his foundational remarks on quantum mechanics, Bohr
presents his reasoning as self-evident, necessary, and not in need of any further
analysis [Scheibe, 1973; Beller, 1999]. Nonetheless, young Heisenberg clashed with
Bohr on precisely this point, for Heisenberg felt that the abstract mathematical
formalism of quantum theory (rather than Bohr’s world of words and pictures)
provided those means of unambiguous communication.57

By classical physics Bohr undoubtedly meant the theories of Newton, Maxwell,
and Lorentz, but that is not the main point.58 For Bohr, the defining property of
classical physics was the property that it was objective, i.e. that it could be studied
in an observer-independent way:

‘All description of experiences so far has been based on the assumption,
already inherent in ordinary conventions of language, that it is possible
to distinguish sharply between the behaviour of objects and the means
of observation. This assumption is not only fully justified by everyday
experience, but even constitutes the whole basis of classical physics’

55Which often but misleadingly has been contrasted with Einstein’s belief that the goal of
physics is rather to describe reality. See [Landsman, 2006b] for a recent discussion.

56Here “unambiguous” means “objective” [Scheibe, 1973; Chevalley, 1991].
57It is hard to disagree with Beller’s [1999] conclusion that Bohr was simply not capable of

understanding the formalism of post-1925 quantum mechanics, turning his own need of under-
standing this theory in terms of words and pictures into a deep philosophical necessity.

58Otherwise, one should wonder why one shouldn’t use the physics of Aristotle and the scholas-
tics for this purpose, which is a much more effective way of communicating our naive impressions
of the world. In contrast, the essence of physics since Newton has been to unmask a reality
behind the phenomena. Indeed, Newton himself empasized that his physics was intended for
those capable of natural philosophy, in contrast to ye vulgar who believed naive appearances.
The fact that Aristotle’s physics is now known to be wrong should not suffice to disqualify its use
for Bohr’s purposes, since the very same comment may be made about the physics of Newton
etc.
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[Bohr, 1958, 25; italics added].59

See also [Hooker, 1972; Scheibe, 1973] and [Howard, 1994]. Heisenberg [1958,
55] shared this view:60

‘In classical physics science started from the belief — or should one say
from the illusion? — that we could describe the world or at least part of
the world without any reference to ourselves. This is actually possible
to a large extent. We know that the city of London exists whether
we see it or not. It may be said that classical physics is just that
idealization in which we can speak about parts of the world without
any reference to ourselves. Its success has led to the general idea of an
objective description of the world.’

On the basis of his “quantum postulate” (see Subsection 3.2), Bohr came to
believe that, similarly, the defining property of quantum physics was precisely the
opposite, i.e. the necessity of the role of the observer (or apparatus — Bohr did
not distinguish between the two and never assigned a special role to the mind of
the observer or endorsed a subjective view of physics). Identifying unambiguous
communication with an objective description, in turn claimed to be the essence
of classical physics, Bohr concluded that despite itself quantum physics had to
be described entirely in terms of classical physics. Thus his doctrine of classical
concepts has an epistemological origin, arising from an analysis of the conditions
for human knowledge.61 In that sense it may be said to be Kantian in spirit
[Hooker, 1972; Murdoch, 1987; Chevalley, 1991; 1999].

Now, Bohr himself is on record as saying: ‘They do it smartly, but what counts
is to do it right’ [Rosenfeld, 1967, 129].62 The doctrine of classical concepts is
certainly smart, but is it right? As we have seen, Bohr’s argument starts from the
claim that classical physics is objective (or ‘unambiguous’) in being independent
of the observer. In fact, nowadays it is widely believed that quantum mechanics
leads to the opposite conclusion that “quantum reality” (whatever that may be) is
objective (though “veiled” in the terminology of d’Espagnat [1995]), while “clas-
sical reality” only comes into existence relative to a certain specification: this is

59Despite the typical imperative tone of this quotation, Bohr often regarded certain other
properties as essential to classical physics, such as determinism, the combined use of space-time
concepts and dynamical conservation laws, and the possibility of pictorial descriptions. However,
these properties were in some sense secondary, as Bohr considered them to be consequences
of the possibility of isolating an object in classical physics. For example: ‘The assumption
underlying the ideal of causality [is] that the behaviour of the object is uniquely determined, quite
independently of whether it is observed or not’ [Bohr, 1937], and then again, now negatively:
‘the renunciation of the ideal of causality [in quantum mechanics] is founded logically only on
our not being any longer in a position to speak of the autonomous behaviour of a physical object’
[Bohr, 1937]. See [Scheibe, 1973].

60As Camilleri [2005, 161] states: ‘For Heisenberg, classical physics is the fullest expression of
the ideal of objectivity.’

61See, for example, the very title of Bohr [1958]!
62‘They’ refers to epr.
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stance 1 discussed in the Introduction.63 Those who disagree with stance 1 cannot
use stance 2 (of denying the fundamental nature of quantum theory) at this point
either, as that is certainly not what Bohr had in mind. Unfortunately, in his most
outspoken defence of Bohr, even Heisenberg [1958, 55] was unable to find a bet-
ter argument for Bohr’s doctrine than the lame remark that ‘the use of classical
concepts is finally a consequence of the general human way of thinking.’64

In our opinion, Bohr’s motivation for his doctrine has to be revised in the light
of our current understanding of quantum theory; we will do so in Subsection 3.4.
In any case, whatever its motivation, the doctrine itself seems worth keeping:
apart from the fact that it evidently describes experimental practice, it provides a
convincing explanation for the probabilistic nature of quantum mechanics (cf. the
next subsection).

3.2 Object and apparatus: the Heisenberg cut

Describing quantum physics in terms of classical concepts sounds like an impossi-
ble and even self-contradictory task (cf. [Heisenberg, 1958]). For one, it precludes
a completely quantum-mechanical description of the world: ‘However far the phe-
nomena transcend the scope of classical physical explanation, the account of all
evidence must be expressed in classical terms.’ But at the same time it precludes
a purely classical description of the world, for underneath classical physics one has
quantum theory.65 The fascination of Bohr’s philosophy of quantum mechanics
lies precisely in his brilliant resolution of this apparently paradoxical situation.

The first step of this resolution that he and Heisenberg proposed is to divide
the system whose description is sought into two parts: one, the object, is to be
described quantum-mechanically, whereas the other, the apparatus, is treated as
if it were classical. Despite innumerable claims to the contrary in the literature
(i.e. to the effect that Bohr held that a separate realm of Nature was intrinsi-
cally classical), there is no doubt that both Bohr and Heisenberg believed in the
fundamental and universal nature of quantum mechanics, and saw the classical
description of the apparatus as a purely epistemological move without any coun-

63Indeed, interesting recent attempts to make Bohr’s philosophy of quantum mechanics precise
accommodate the a priori status of classical observables into some version of the modal interpre-
tation; see [Dieks, 1989b; Bub, 1999; Halvorson and Clifton, 1999; 2002], and [Dickson, 2005]. It
should give one some confidence in the possibility of world peace that the two most hostile inter-
pretations of quantum mechanics, viz. Copenhagen and Bohm [Cushing, 1994] have now found
a common home in the modal interpretation in the sense of the authors just cited! Whether or
not one agrees with Bub’s [2004] criticism of the modal interpretation, Bohr’s insistence on the
necessity of classical concepts is not vindicated by any current version of it.

64And similarly: ‘We are forced to use the language of classical physics, simply because we
have no other language in which to express the results.’ [Heisenberg, 1971, 130]. This in spite
of the fact that the later Heisenberg thought about this matter very deeply; see, e.g., his [1942],
as well as [Camilleri, 2005]. Murdoch [1987, 207–210] desperately tries to boost the doctrine of
classical concepts into a profound philosophical argument by appealing to Strawson [1959].

65This peculiar situation makes it very hard to give a realist account of the Copenhagen
interpretation, since quantum reality is denied whereas classical reality is neither fundamental
nor real.



438 N.P. Landsman

terpart in ontology, expressing the fact that a given quantum system is being used
as a measuring device.66 For example: ‘The construction and the functioning of
all apparatus like diaphragms and shutters, serving to define geometry and timing
of the experimental arrangements, or photographic plates used for recording the
localization of atomic objects, will depend on properties of materials which are
themselves essentially determined by the quantum of action’ [Bohr, 1948, 315], as
well as: ‘We are free to make the cut only within a region where the quantum
mechanical description of the process concerned is effectively equivalent with the
classical description’ [Bohr, 1935, 701].67

The separation between object and apparatus called for here is usually called
the Heisenberg cut, and it plays an absolutely central role in the Copenhagen inter-
pretation of quantum mechanics.68 The idea, then, is that a quantum-mechanical
object is studied exclusively through its influence on an apparatus that is described
classically. Although described classically, the apparatus is a quantum system, and
is supposed to be influenced by its quantum-mechanical coupling to the underlying
(quantum) object.

The alleged necessity of including both object and apparatus in the description
was initially claimed to be a consequence of the so-called “quantum postulate”.
This notion played a key role in Bohr’s thinking: his Como Lecture [Bohr, 1927]
was even entitled ‘The quantum postulate and the recent development of atomic
theory’. There he stated its contents as follows: ‘The essence of quantum theory
is the quantum postulate: every atomic process has an essential discreteness —
completely foreign to classical theories — characterized by Plancks quantum of
action.’69 Even more emphatically, in his reply to epr [Bohr, 1935, 697]: ‘Indeed
the finite interaction between object and measuring agencies conditioned by the

66See especially [Scheibe, 1973] on Bohr, and [Heisenberg, 1958]). The point in question has
also been made by R. Haag (who knew both Bohr and Heisenberg) in most of his talks on
quantum mechanics in the 1990s. In this respect we disagree with Howard [1994], who claims
that according to Bohr a classical description of an apparatus amounts to picking a particular
(maximally) abelian subalgebra of its quantum-mechanical algebra of ‘beables’, which choice is
dictated by the measurement context. But having a commutative algebra falls far short of a
classical description, since in typical examples one obtains only half of the canonical classical
degrees of freedom in this way. Finding a classical description of a quantum-mechanical system
is a much deeper problem, to which we shall return throughout this paper.

67This last point suggests that the cut has something to do with the division between a mi-
croscopic and a macroscopic realm in Nature, but although this division often facilitates making
the cut when it is well defined, this is by no means a matter of principle. Cf. [Howard, 1994]. In
particular, all objections to the Copenhagen interpretation to the effect that the interpretation
is ill-defined because the micro-macro distinction is blurred are unfounded.

68Pauli [1949] went as far as saying that the Heisenberg cut provides the appropriate gener-
alization modern physics offers of the old Kantian opposition between a knowable object and a
knowing subject: ’Auf diese Weise verallgemeinert die moderne Physik die alte Gegenüberstellung
von erkennenden Subjekt auf der einen Seite und des erkannten Objektes auf der anderen Seite
zu der Idee des Schnittes zwischen Beobachter oder Beobachtungsmittel und dem beobachten
System.’ (‘In this way, modern physics generalizes the old opposition between the knowing sub-
ject on the one hand and the known object on the other to the idea of the cut between observer
or means of observation and the observed system.’) He then continued calling the cut a necessary
condition for human knowledge: see footnote 72.

69Instead of ‘discreteness’, Bohr alternatively used the words ‘discontinuity’ or ‘individuality’
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very existence of the quantum of action entails — because of the impossibility of
controlling the reaction of the object on the measurement instruments if these are
to serve their purpose — the necessity of a final renunication of the classical ideal
of causality and a radical revision of our attitude towards the problem of physical
reality.’ Also, Heisenberg’s uncertainty relations were originally motivated by the
quantum postulate in the above form. According to Bohr and Heisenberg around
1927, this ‘essential discreteness’ causes an ‘uncontrollable disturbance’ of the ob-
ject by the apparatus during their interaction. Although the “quantum postulate”
is not supported by the mature mathematical formalism of quantum mechanics
and is basically obsolete, the intuition of Bohr and Heisenberg that a measure-
ment of a quantum-mechanical object causes an ‘uncontrollable disturbance’ of
the latter is actually quite right.70

In actual fact, the reason for this disturbance does not lie in the “quantum pos-
tulate”, but in the phenomenon of entanglement, as further discussed in Subsection
3.4. Namely, from the point of view of von Neumann’s measurement theory (see
Subsection 2.5) the Heisenberg cut is just a two-step example of a von Neumann
chain, with the special feature that after the quantum-mechanical interaction has
taken place, the second link (i.e. the apparatus) is described classically. The lat-
ter feature not only supports Bohr’s philosophical agenda, but, more importantly,
also suffices to guarantee the applicability of the ignorance interpretation of the
mixed state that arises after completion of the measurement.71 All of von Neu-
mann’s analysis of the arbitrariness of the location of the cut applies here, for one
may always extend the definition of the quantum-mechanical object by coupling
the original choice to any other purely quantum-mechanical system one likes, and
analogously for the classical part. Thus the two-step nature of the Heisenberg cut
includes the possibility that the first link or object is in fact a lengthy chain in
itself (as long as it is quantum-mechanical), and similarly for the second link (as
long as it is classical).72 This arbitrariness, subject to the limitation expressed by
the second [1935] Bohr quote in this subsection, was well recognized by Bohr and
Heisenberg, and was found at least by Bohr to be of great philosophical impor-
tance.

It is the interaction between object and apparatus that causes the measurement
to ‘disturb’ the former, but it is only and precisely the classical description of

as well. He rarely omitted amplifications like ‘essential’.
70Despite the fact that Bohr later distanced himself from it; cf. [Beller, 1999] and footnote

52 above. In a correct analysis, what is disturbed upon coupling to a classical apparatus is the
quantum-mechanical state of the object (rather than certain sharp values of classical observables
such as position and momentum, as the early writings of Bohr and Heisenberg suggest).

71In a purely quantum-mechanical von Neumann chain the final state of system plus apparatus
is pure, but if the apparatus is classical, then the post-measurement state is mixed.

72 Pauli [1949] once more: ’Während die Existenz eines solchen Schnittes eine notwendige
Bedingung menschlicher Erkenntnis ist, faßt sie die Lage des Schnittes als bis zu einem gewissen
Grade willkürlich und als Resultat einer durch Zweckmäßigkeitserwägungen mitbestimmten, also
teilweise freien Wahl auf.’ (‘While the existence of such a [Heisenberg] cut is a necessary
condition for human knowledge, its location is to some extent arbitrary as a result of a pragmatic
and thereby partly free choice.’)
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the latter that (through the ignorance interpretation of the final state) makes
the disturbance ‘uncontrollable’.73 In the Copenhagen interpretation, probabilities
arise solely because we look at the quantum world through classical glasses.

‘Just the necessity of accounting for the function of the measuring agen-
cies on classical lines excludes in principle in proper quantum phenom-
ena an accurate control of the reaction of the measuring instruments
on the atomic objects.’ [Bohr, 1956, 87]

‘One may call these uncertainties objective, in that they are simply a
consequence of the fact that we describe the experiment in terms of
classical physics; they do not depend in detail on the observer. One
may call them subjective, in that they reflect our incomplete knowledge
of the world.’ [Heisenberg, 1958, 53–54]

Thus the picture that arises is this: Although the quantum-mechanical side of
the Heisenberg cut is described by the Schrödinger equation (which is determin-
istic), while the classical side is subject to Newton’s laws (which are equally well
deterministic),74 unpredictability arises because the quantum system serving as
an apparatus is approximated by a classical system. The ensuing probabilities
reflect the ignorance arising from the decision (or need) to ignore the quantum-
mechanical degrees of freedom of the apparatus. Hence the probabilistic nature of
quantum theory is not intrinsic but extrinsic, and as such is entirely a consequence
of the doctrine of classical concepts, which by the same token explains this nature.

Mathematically, the simplest illustration of this idea is as follows. Take a
finite-dimensional Hilbert space H = C

n with the ensuing algebra of observables
A = Mn(C) (i.e. the n×n matrices). A unit vector Ψ ∈ C

n determines a quantum-
mechanical state in the usual way. Now describe this quantum system as if it were
classical by ignoring all observables except the diagonal matrices. The state then
immediately collapses to a probability measure on the set of n points, with prob-
abilities given by the Born rule p(i) = |(ei,Ψ)|2, where (ei)i=1,...,n is the standard
basis of C

n. Similarly, the Born–Pauli rule for the probabilistic interpretation
of the wave function Ψ ∈ L2(R3) in terms of |Ψ(x)|2 immediately follows if one
ignores all observables on L2(R3) except the position operator.75

Despite the appeal of this entire picture, it is not at all clear that it actually
applies! There is no a priori guarantee whatsoever that one may indeed describe
a quantum system “as if it were classical”. Bohr and Heisenberg apparently took
the existence of the classical world of mountains and creeks they loved so much for
granted, the former probably on empirical grounds, the latter on the basis of his

73These points were not clearly separated by Heisenberg [1927] in his paper on the uncertainty
relations, but were later clarified by Bohr. See [Scheibe, 1973].

74But see [Earman, 1986; 2005].
75Technically, one restricts Ψ — seen as a state on the C∗-algebra B(L2(R3)) — to the C∗-

algebra C0(R3) given by all multiplication operators on L2(R3) defined by continuous functions
of x ∈ R

3 that vanish at infinity. This restriction yields a probability measure on R
3, which is

precisely the usual one originally proposed by Pauli.
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own uncertainty relations — both almost blind to the extremely delicate mathe-
matical and conceptual problems involved. In our opinion, the main difficulty in
making sense of the Copenhagen interpretation therefore lies in the justification
of the classical description in question. This difficulty is the main topic of this
paper, of which Section 6 is of particular relevance in the present context.

3.3 Complementarity

The notion of a Heisenberg cut is subject to a certain arbitrariness even apart
from the precise location of the cut within a given chain, for one might in principle
construct the chain in various different and incompatible ways. This arbitrariness
was analyzed by Bohr in terms of what he called complementarity.76

Bohr never gave a precise definition of complementarity,77 but restricted him-
self to the analysis of a number of examples.78 A prominent such example is the
complementarity between a “causal”79 description of a quantum system in which
conservation laws hold, and a space-time description that is necessarily statisti-
cal in character. Here Bohr’s idea seems to have been that a stationary state
(i.e. an energy eigenstate) of an atom is incompatible with an electron moving
in its orbit in space and time — see Subsection 5.4 for a discussion of this is-
sue. Heisenberg [1958], however, took this example of complementarity to mean
that a system on which no measurement is performed evolves deterministically ac-
cording to the Schrödinger equation, whereas a rapid succession of measurements
produces a space-time path whose precise form quantum theory is only able to
predict statistically [Camilleri, 2005]. In other words, this example reproduces
precisely the picture through which Heisenberg [1927] believed he had established
the connection between classical and quantum mechanics; cf. Subsection 2.3.

Bohr’s other key example was the complementarity between particles and waves.
Here his principal aim was to make sense of Young’s double-slit experiment. The
well-known difficulty with a classical visualization of this experiment is that a
particle description appears impossible because a particle has to go through a single
slit, ruining the interference pattern gradually built up on the detection screen,
whereas a wave description seems incompatible with the point-like localization on
the screen once the wave hits it. Thus Bohr suggested that whilst each of these
classical descriptions is incomplete, the union of them is necessary for a complete

76Unfortunately and typically, Bohr once again presented complementarity as a necessity of
thought rather than as the truly amazing possible mode of description it really is.

77Perhaps he preferred this approach because he felt a definition could only reveal part of what
was supposed to be defined: one of his favourite examples of complementarity was that between
definition and observation.

78We refrain from discussing the complementarity between truth and clarity, science and reli-
gion, thoughts and feelings, and objectivity and introspection here, despite the fact that on this
basis Bohr’s biographer Pais [1997] came to regard his subject as the greatest philosopher since
Kant.

79 Bohr’s use the word “causal” is quite confusing in view of the fact that in the British
empiricist tradition causality is often interpreted in the sense of a space-time description. But
Bohr’s “causal” is meant to be complementary to a space-time description!
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description of the experiment.
The deeper epistemological point appears to be that although the completeness

of the quantum-mechanical description of the microworld systems seems to be
endangered by the doctrine of classical concepts, it is actually restored by the
inclusion of two “complementary” descriptions (i.e. of a given quantum system
plus a measuring device that is necessarily described classicaly, ‘if it is to serve
its purpose’). Unfortunately, despite this attractive general idea it is unclear to
what precise definition of complementarity Bohr’s examples should lead. In the
first, the complementary notions of determinism and a space-time description are
in mutual harmony as far as classical physics is concerned, but are apparently in
conflict with each other in quantum mechanics. In the second, however, the wave
description of some entity contradicts a particle description of the same entity
precisely in classical physics, whereas in quantum mechanics these descriptions
somehow coexist.80

Scheibe [1973, 32] notes a ‘clear convergence [in the writings of Bohr] towards a
preferred expression of a complementarity between phenomena’, where a Bohrian
phenomenon is an indivisible union (or “whole”) of a quantum system and a classi-
cally described experimental arrangement used to study it; see item 2 below. Some
of Bohr’s early examples of complementarity can be brought under this heading,
others cannot [Held, 1994]. For many students of Bohr (including the present
author), the fog has yet to clear up.81 Nonetheless, the following mathematical
interpretations might assign some meaning to the idea of complementarity in the
framework of von Neumann’s formalism of quantum mechanics.82

1. Heisenberg [1958] identified complementary pictures of a quantum-mechanical
system with equivalent mathematical representations thereof. For example,
he thought of the complementarity of x and p as the existence of what we
now call the Schrödinger representations of the canonical commutation re-
lations (CCR) on L2(Rn) and its Fourier transform to momentum space.
Furthermore, he felt that in quantum field theory particles and waves gave
two equivalent modes of description of quantum theory because of second
quantization. Thus for Heisenberg complementary pictures are classical be-
cause there is an underlying classical variable, with no apparatus in sight,
and such pictures are not mutually contradictory but (unitarily) equivalent.

80On top of this, Bohr mixed these examples in conflicting ways. In discussing bound states
of electrons in an atom he jointly made determinism and particles one half of a complementary
pair, waves and space-time being the other. In his description of electron-photon scattering he
did it the other way round: this time determinism and waves formed one side, particles and
space-time the other (cf. [Beller, 1999]).

81Even Einstein [1949, 674] conceded that throughout his debate with Bohr he had never
understood the notion of complementarity, ‘the sharp formulation of which, moreover, I have
been unable to achieve despite much effort which I have expended on it.’ See [Landsman, 2006b]
for the author’s view on the Bohr–Einstein debate.

82This exercise is quite against the spirit of Bohr, who is on record as saying that ‘von Neu-
mann’s approach (. . . ) did not solve problems but created imaginary difficulties ([Scheibe, 1973,
11], quoting Feyerabend; italics in original).
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See also [Camilleri, 2005, 88], according to whom ‘Heisenberg never accepted
Bohr’s complementarity arguments’.

2. Pauli [1933] simply stated that two observables are complementary when
the corresponding operators fail to commute.83 Consequently, it then follows
from Heisenberg’s uncertainty relations that complementary observables can-
not be measured simultaneously with arbitrary precision. This suggests (but
by no means proves) that they should be measured independently, using mu-
tually exclusive experimental arrangements. The latter feature of comple-
mentarity was emphasized by Bohr in his later writings.84 This approach
makes the notion of complementarity unambiguous and mathematically pre-
cise, and perhaps for this reason the few physicists who actually use the idea
of complementarity in their work tend to follow Pauli and the later Bohr.85

3. The present author proposes that observables and pure states are comple-
mentary. For in the Schrödinger representation of elementary quantum me-
chanics, the former are, roughly speaking, generated by the position and

83More precisely, one should probably require that the two operators in question generate
the ambient algebra of observables, so that complementarity in Pauli’s sense is really defined
between two commutative subalgebras of a given algebra of observables (again, provided they
jointly generate the latter).

84Bohr’s earlier writings do not quite conform to Pauli’s approach [Scheibe, 1973; Held, 1994].
In Bohr’s discussions of the double-slit experiment particle and wave form a complementary pair,
whereas Pauli’s complementary observables are position and momentum, which refer to a single
side of Bohr’s pair. For a precise analysis of the relationship between mutually exclusive experi-
mental arrangements, non-commuting observables, and the Heisenberg uncertainty relations see
[Busch et al., 1998] and [De Muynck, 2002].

85Adopting this point of view, it is tempting to capture the complementarity between position
and momentum by means of the following conjecture: Any normal pure state ω on B(L2(Rn))
(that is, any wave function seen as a state in the sense of C∗-algebras) is determined by the pair
{ω|L∞(Rn), ω|FL∞(Rn)F−1} (in other words, by its restrictions to position and momentum).
Here L∞(Rn) is the von Neumann algebra of multiplication operators on L2(Rn), i.e. the von
Neumann algebra generated by the position operator, whereas FL∞(Rn)F−1 is its Fourier trans-
form, i.e. the von Neumann algebra generated by the momentum operator. The idea is that each
of its restrictions ω|L∞(Rn) and ω|FL∞(Rn)F−1 gives a classical picture of ω. These restric-
tions are a measure on R

n interpreted as position space, and another measure on R
n interpreted

as momentum space. Unfortunately, this conjecture is false. The following counterexample was
provided by D. Buchholz (private communication): take ω as the state defined by the wave
function Ψ(x) ∼ exp(−ax2/2) with Re (a) > 0, Im (a) �= 0, and |a|2 = 1. Then ω depends on
Im (a), whereas neither ω|L∞(Rn) nor ω|FL∞(Rn)F−1 does. There is even a counterexample
to the analogous conjecture for the C∗-algebra of 2 × 2 matrices, found by H. Halvorson: if A
is the commutative C∗-algebra generated by σx, and B the one generated by σy , then the two
different eigenstates of σz coincide on A and on B. One way to improve our conjecture might
be to hope that if, in the Schrödinger picture, two states coincide on the two given commutative
von Neumann algebras for all times, then they must be equal. But this can only be true for
certain “realistic” time-evolutions, for the trivial Hamiltonian H = 0 yields the above counterex-
ample. We leave this as a problem for future research. At the time of writing, Halvorson [2004]
contains the only sound mathematical interpretation of the complementarity between position
and momentum, by relating it to the representation theory of the CCR. He shows that in any
representation where the position operator has eigenstates, there is no momentum operator, and
vice versa.
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momentum operators, whereas the latter are given by wave functions. Some
of Bohr’s other examples of complementarity also square with this inter-
pretation (at least if one overlooks the collapse of the wavefunction upon a
measurement). Here one captures the idea that both ingredients of a com-
plementary pair are necessary for a complete description, though the alleged
mutual contradiction between observables and states is vague. Also, this
reading of complementarity relies on a specific representation of the canon-
ical commutation relations. It is not quite clear what one gains with this
ideology, but perhaps it deserves to be developed in some more detail. For
example, in quantum field theory it is once more the observables that carry
the space-time description, especially in the algebraic description of Haag
[1992].

3.4 Epilogue: entanglement to the rescue?

Bohr’s “quantum postulate” being obscure and obsolete, it is interesting to con-
sider Howard’s [1994] ‘reconstruction’ of Bohr’s philosophy of physics on the basis
of entanglement.86 His case can perhaps be strengthened by an appeal to the
analysis Primas [1983] has given of the need for classical concepts in quantum
physics.87 Primas proposes to define a “quantum object” as a physical system S
that is free from what he calls “epr-correlations” with its environment. Here the
“environment” is meant to include apparatus, observer, the rest of the universe if
necessary, and what not. In elementary quantum mechanics, quantum objects in
this sense exist only in very special states: if HS is the Hilbert space of the system
S, and HE that of the environment E, any pure state of the form

∑
i ciΨi ⊗ Φi

(with more than one term) by definition correlates S with E; the only uncorre-
lated pure states are those of the form Ψ ⊗ Φ for unit vectors Ψ ∈ HS , Φ ∈ HE .
The restriction of a pure epr-correlated state on S + E to S is mixed, so that the
(would-be) quantum object ‘does not have its own pure state’; in other words, the
restriction of an epr-correlated state ω to S together with its restriction to E do
not jointly determine ω. More generally, if the state of S + E is epr-correlated,
a complete characterization of the state of S requires E (and vice versa). But
(against Bohr!) mathematics defeats words: the sharpest characterization of the
notion of epr-correlations can be given in terms of operator algebras, as follows.
In the spirit of the remainder of the paper we proceed in a rather general and
abstract way.88 For what follows see especially [Werner, 1989].

86We find little evidence that Bohr himself ever thought along those lines. With approval we
quote Zeh, who, following a statement of the quantum postulate by Bohr similar to the one
in Subsection 3.2 above, writes: ‘The later revision of these early interpretations of quantum
theory (required by the important role of entangled quantum states for much larger systems)
seems to have gone unnoticed by many physicists.’ [Joos et al., 2003, 23] See also [Howard, 1990]
for an interesting historical perspective on entanglement, and cf. [Raimond et al., 2001] for the
experimental situation.

87See also [Amann and Primas, 1997] and [Primas, 1997].
88Summers and Werner [1987] give even more general results, where the tensor product A⊗̂B

below is replaced by an arbitrary C∗-algebra C containing A and B as C∗-subalgebras.
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LetA and B be C∗-algebras,89 with tensor productA⊗̂B.90 Less abstractly, just
think of two Hilbert spaces HS and HE as above, with tensor product HS ⊗HE ,
and assume that A = B(HS) while B is either B(HE) itself or some (norm-closed
and involutive) commutative subalgebra thereof. The tensor product A⊗̂B is
then a (norm-closed and involutive) subalgebra of B(HS ⊗HE), the algebra of all
bounded operators on HS ⊗HE .

A product state on A⊗̂B is a state of the form ω = ρ⊗ σ, where the states ρ on
A and σ on B may be either pure or mixed.91 We say that a state ω on A⊗̂B is
decomposable when it is a mixture of product states, i.e. when ω =

∑
i piρi ⊗ σi,

where the coefficients pi > 0 satisfy
∑
i pi = 1.92 A decomposable state ω is pure

precisely when it is a product of pure states. This has the important consequence
that both its restrictions ω|A and ω|B to A and B, respectively, are pure as well.93

On the other hand, a state on A⊗̂B may be said to be epr-correlated [Primas,
1983] when it is not decomposable. An epr-correlated pure state has the property
that its restriction to A or B is mixed.

Raggio [1981] proved that the following two conditions are equivalent:

89 Recall that a C∗-algebra is a complex algebra A that is complete in a norm ‖·‖ that satisfies
‖AB‖ ≤ ‖A‖ ‖B‖ for all A, B ∈ A, and has an involution A→ A∗ such that ‖A∗A‖ = ‖A‖2. A
basic examples is A = B(H), the algebra of all bounded operators on a Hilbert space H, equipped
with the usual operator norm and adjoint. By the Gelfand–Naimark theorem, any C∗-algebra is
isomorphic to a norm-closed self-adjoint subalgebra of B(H), for some Hilbert space H. Another
key example is A = C0(X), the space of all continuous complex-valued functions on a (locally
compact Hausdorff) space X that vanish at infinity (in the sense that for every ε > 0 there is
a compact subset K ⊂ X such that |f(x)| < ε for all x /∈ K), equipped with the supremum
norm ‖f‖∞ := supx∈X |f(x)|, and involution given by (pointwise) complex conjugation. By the
Gelfand–Naimark lemma, any commutative C∗-algebra is isomorphic to C0(X) for some locally
compact Hausdorff space X.

90 The tensor product of two (or more) C∗-algebras is not unique, and we here need the so-
called projective tensor product A⊗̂B, defined as the completion of the algebraic tensor product
A ⊗ B in the maximal C∗-cross-norm. The choice of the projective tensor product guarantees
that each state on A ⊗ B extends to a state on A⊗̂B by continuity; conversely, since A ⊗ B is
dense in A⊗̂B, each state on the latter is uniquely determined by its values on the former. See
[Wegge-Olsen, 1993, Appendix T], or [Takesaki, 2003, Vol. i, Ch. iv]. In particular, product
states ρ⊗σ and mixtures ω =

P
i piρi⊗σi thereof as considered below are well defined on A⊗̂B.

If A ⊂ B(HS) and B ⊂ B(HE) are von Neumann algebras, as in the analysis of Raggio [1981;
1988], it is easier (and sufficient) to work with the spatial tensor product A⊗B, defined as the
double commutant (or weak completion) of A ⊗ B in B(HS ⊗ HE). For any normal state on
A⊗ B extends to a normal state on A⊗B by continuity.

91We use the notion of a state that is usual in the algebraic framework. Hence a state on a C∗-
algebra A is a linear functional ρ : A → C that is positive in that ρ(A∗A) ≥ 0 for all A ∈ A and
normalized in that ρ(1) = 1, where 1 is the unit element of A. If A is a von Neumann algebra, one
has the notion of a normal state, which satisfies an additional continuity condition. If A = B(H),
then a fundamental theorem of von Neumann states that each normal state ρ on A is given by
a density matrix ρ̂ on H, so that ρ(A) = Tr (ρ̂A) for each A ∈ A. In particular, a normal pure
state on B(H) (seen as a von Neumann algebra) is necessarily of the form ψ(A) = (Ψ, AΨ) for
some unit vector Ψ ∈ H.

92Infinite sums are allowed here. More precisely, ω is decomposable if it is in the w∗-closure
of the convex hull of the product states on A⊗̂B.

93The restriction ω|A of a state ω on A⊗̂B to, say, A is given by ω|A(A) = ω(A⊗ 1), where 1
is the unit element of B, etc.
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• Each state on A⊗̂B is decomposable;

• A or B is commutative.

In other words, epr-correlated states exist precisely when A and B are both non-
commutative.94 As one might expect, this result is closely related to the Bell
inequalities. Namely, consider the inequality

| sup{ω(A1(B1 + B2) + A2(B1 −B2))}| ≤ 2,(1)

where ω is a fixed state on A⊗̂B and the supremum is taken over all self-adjoint
operators A1, A2 ∈ A, B1, B2 ∈ B, each of norm ≤ 1. Eq. (1) holds if and only
if ω is decomposable [Baez, 1987; Raggio, 1988]. Consequently, the inequality
(1) can only be violated in some state ω when the algebras A and B are both
noncommutative. If, on the other hand, (1) is satisfied, then one knows that there
exists a classical probability space and probability measure (and hence a “hidden
variables” theory) reproducing the given correlations [Pitowsky, 1989]. As stressed
by Bacciagaluppi [1993], such a description does not require the entire setting to be
classical; as we have seen, only one of the algebras A and B has to be commutative
for the Bell inequalities to hold.

Where does this leave us with respect to Bohr? If we follow Primas [1983]
in describing a (quantum) object as a system free from epr-correlations with
its environment, then the mathematical results just reviewed leave us with two
possibilities. Firstly, we may pay lip-service to Bohr in taking the algebra B
(interpreted as the algebra of observables of the environment in the widest possible
sense, as above) to be commutative as a matter of description. In that case,
our object is really an “object” in any of its states. But clarly this is not the
only possibility. For even in the case of elementary quantum mechanics — where
A = B(HS) and B = B(HE) — the system is still an “object” in the sense of
Primas as long as the total state ω of S + E is decomposable. In general, for pure
states this just means that ω = ψ⊗φ, i.e. that the total state is a product of pure
states. To accomplish this, one has to define the Heisenberg cut in an appropriate
way, and subsequently hope that the given product state remains so under time-
evolution (see [Amann and Primas, 1997] and [Atmanspacher et al., 1999], and
references therein). This selects certain states on A as “robust” or “stable”, in
much the same way as in the decoherence approach. We therefore continue this
discussion in Section 7 (see especially point 6 in Subsection 7.1).

4 QUANTIZATION

Heisenberg’s [1925] idea of Umdeutung (reinterpretation) suggests that it is possible
to construct a quantum-mechanical description of a physical system whose classical
description is known. As we have seen, this possibility was realized by Schrödinger

94Raggio [1981] proved this for von Neumann algebras and normal states. His proof was
adapted to C∗-algebras by Bacciagaluppi [1993].
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[1925c], who found the simplest example (2) and (3) of Umdeutung in the context
of atomic physics. This early example was phenomenally successful, as almost all
of atomic and molecular physics is still based on it.

Quantization theory is an attempt to understand this example, make it math-
ematically precise, and generalize it to more complicated systems. It has to be
stated from the outset that, like the entire classical-quantum interface, the nature
of quantization is not yet well understood. This fact is reflected by the existence
of a fair number of competing quantization procedures, the most transparent of
which we will review below.95 Among the first mathematically serious discussions
of quantization are [Mackey, 1968] and [Souriau, 1969]; more recent and compre-
hensive treatments are, for example, [Woodhouse, 1992; Landsman, 1998], and
[Ali and Englis, 2004].

4.1 Canonical quantization and systems of imprimitivity

The approach based on (2) is often called canonical quantization. Even apart from
the issue of mathematical rigour, one can only side with Mackey [1992, 283], who
wrote: ‘Simple and elegant as this model is, it appears at first sight to be quite
arbitrary and ad hoc. It is difficult to understand how anyone could have guessed
it and by no means obvious how to modify it to fit a model for space different from
R
r.’
One veil of the mystery of quantization was lifted by von Neumann [1931],

who (following earlier heuristic proposals by Heisenberg, Schrödinger, Dirac, and
Pauli) recognized that (2) does not merely provide a representation of the canonical
commutation relations

[Q�(pj),Q�(qk)] = −i�δkj ,(1)

but (subject to a regularity condition)96 is the only such representation that is
irreducible (up to unitary equivalence). In particular, the seemingly different for-
mulations of quantum theory by Heisenberg and Schrödinger (amended by the
inclusion of states and of observables, respectively — cf. Section 2) simply in-
volved superficially different but unitarily equivalent representations of (1): the
difference between matrices and waves was just one between coordinate systems in
Hilbert space, so to speak. Moreover, any other conceivable formulation of quan-

95The path integral approach to quantization is still under development and so far has had no
impact on foundational debates, so we will not discuss it here. See [Albeverio and Høegh-Krohn,
1976] and [Glimm and Jaffe, 1987].

96It is required that the unbounded operators Q�(pj) and Q�(qk) integrate to a unitary repre-
sentation of the 2n + 1-dimensional Heisenberg group Hn, i.e. the unique connected and simply
connected Lie group with 2n+1-dimensional Lie algebra with generators Xi, Yi, Z (i = 1, . . . , n)
subject to the Lie brackets [Xi, Xj ] = [Yi, Yj ] = 0, [Xi, Yj ] = δijZ, [Xi, Z] = [Yi, Z] = 0. Thus
von Neumann’s uniqueness theorem for representations of the canonical commutation relations
is (as he indeed recognized himself) really a uniqueness theorem for unitary representations of
Hn for which the central element Z is mapped to −i�−11, where � �= 0 is a fixed constant. See,
for example, [Corwin and Greenleaf, 1989] or [Landsman, 1998].
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tum mechanics — now simply defined as a (regular) Hilbert space representation
of (1) — has to be equivalent to the one of Heisenberg and Schrödinger.97

This, then, transfers the quantization problem of a particle moving on R
n to

the canonical commutation relations (1). Although a mathematically rigorous the-
ory of these commutation relations (as they stand) exists [Jørgensen and Moore,
1984; Schmüdgen, 1990], they are problematic nonetheless. Firstly, technically
speaking the operators involved are unbounded, and in order to represent phys-
ical observables they have to be self-adjoint; yet on their respective domains of
self-adjointness the commutator on the left-hand side is undefined. Secondly, and
more importantly, (1) relies on the possibility of choosing global coordinates on
R
n, which precludes a naive generalization to arbitrary configuration spaces. And

thirdly, even if one has managed to quantize p and q by finding a representa-
tion of (1), the problem of quantizing other observables remains — think of the
Hamiltonian and the Schrödinger equation.

About 50 years ago, Mackey set himself the task of making good sense of canon-
ical quantization; see [Mackey, 1968; 1978; 1992] and the brief exposition below
for the result. Although the author now regards Mackey’s reformulation of quan-
tization in terms of induced representations and systems of imprimitivity merely
as a stepping stone towards our current understanding based on deformation the-
ory and groupoids (cf. Subsection 4.3 below), Mackey’s approach is (quite rightly)
often used in the foundations of physics, and one is well advised to be familiar
with it. In any case, Mackey [1992, 283] — continuing the previous quotation)
claims with some justification that his approach to quantization ‘removes much of
the mystery.’

Like most approaches to quantization, Mackey assigns momentum and position
a quite different role in quantum mechanics, despite the fact that in classical
mechanics p and q can be interchanged by a canonical transformation:98

1. The position operatorsQ�(qj) are collectively replaced by a single projection-
valued measure P on R

n,99 which on L2(Rn) is given by P (E) = χE as a
multiplication operator. Given this P , any multiplication operator defined
by a (measurable) function f : R

n → R can be represented as
∫

Rn dP (x) f(x),
which is defined and self-adjoint on a suitable domain.100 In particular, the
position operators Q�(qj) can be reconstructed from P by choosing f(x) =

97This is unrelated to the issue of the Heisenberg picture versus the Schrödinger picture, which
is about the time-evolution of observables versus that of states.

98Up to a minus sign, that is. This is true globally on R
n and locally on any symplectic

manifold, where local Darboux coordinates do not distinguish between position and momentum.
99 A projection-valued measure P on a space Ω with Borel structure (i.e. equipped with a

σ-algebra of measurable sets defined by the topology) with values in a Hilbert space H is a map
E �→ P (E) from the Borel subsets E ⊂ Ω to the projections on H that satisfies P (∅) = 0,
P (Ω) = 1, P (E)P (F ) = P (F )P (E) = P (E ∩ F ) for all measurable E, F ⊂ Ω, and P (∪∞i=1Ei) =P∞
i=1 P (Ei) for all countable collections of mutually disjoint Ei ⊂ Ω.

100 This domain consists of all Ψ ∈ H for which
R

Rn d(Ψ, P (x)Ψ) |f(x)|2 <∞.
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xj , i.e.

Q�(qj) =
∫

Rn

dP (x)xj .(2)

2. The momentum operatorsQ�(pj) are collectively replaced by a single unitary
group representation U(Rn), defined on L2(Rn) by

U(y)Ψ(x) := Ψ(x− y).

Each Q�(pj) can be reconstructed from U by means of

Q�(pj)Ψ := i� lim
tj→0

t−1
j (U(tj)− 1)Ψ,(3)

where U(tj) is U at xj = tj and xk = 0 for k �= j.101

Consequently, it entails no loss of generality to work with the pair (P,U) instead
of the pair (Q�(qk),Q�(pj)). The commutation relations (1) are now replaced by

U(x)P (E)U(x)−1 = P (xE),(4)

where E is a (Borel) subset of R
n and xE = {xω | ω ∈ E}. On the basis of this

reformulation, Mackey proposed the following sweeping generalization of the the
canonical commutation relations:102

A system of imprimitivity (H, U, P ) for a given action of a group G on
a space Q consists of a Hilbert space H, a unitary representation U of
G on H, and a projection-valued measure E �→ P (E) on Q with values
in H, such that (4) holds for all x ∈ G and all Borel sets E ⊂ Q.

In physics such a system describes the quantum mechanics of a particle moving
on a configuration space Q on which G acts by symmetry transformations; see
Subsection 4.3 for a more detailed discussion. When everything is smooth,103 each
element X of the Lie algebra g of G defines a generalized momentum operator

Q�(X) = i�dU(X)(5)

on H.104 These operators satisfy the generalized canonical commutation rela-
tions105

[Q�(X),Q�(Y )] = i�Q�([X,Y ]).(6)
101By Stone’s theorem (cf. Reed and Simon, 1972), this operator is defined and self-adjoint on

the set of all Ψ ∈ H for which the limit exists.
102All groups and spaces are supposed to be locally compact, and actions and representations

are assumed continuous.
103I.e. G is a Lie group, Q is a manifold, and the G-action is smooth.
104This operator is defined and self-adjoint on the domain of vectors Ψ ∈ H for which

dU(X)Ψ := limt→0 t−1(U(exp(tX))− 1)Ψ exists.
105As noted before in the context of (1), the commutation relations (6), (8) and (9) do not hold

on the domain of self-adjointness of the operators involved, but on a smaller common core.
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Furthermore, in terms of the operators106

Q�(f) =
∫
Q

dP (x) f(x),(7)

where f is a smooth function on Q and X ∈ g, one in addition has

[Q�(X),Q�(f)] = i�Q�(ξQXf),(8)

where ξQX is the canonical vector field on Q defined by the G-action,107 and

[Q�(f1),Q�(f2)] = 0.(9)

Elementary quantum mechanics on R
n corresponds to the special case Q = R

n

and G = R
n with the usual additive group structure. To see this, we denote the

standard basis of R
3 (in its guise as the Lie algebra of R

3) by the name (pj),
and furthermore take f1(q) = qj , f2(q) = f(q) = qk. Eq. (6) for X = pj and
Y = pk then reads [Q�(pj),Q�(pk)] = 0, eq. (8) yields the canonical commuta-
tion relations (1), and (9) states the commutativity of the position operators, i.e.
[Q�(qj),Q�(qk)] = 0.

In order to incorporate spin, one picks G = E(3) = SO(3) � R
3 (i.e. the Eu-

clidean motion group), acting on Q = R
3 in the obvious (defining) way. The Lie

algebra of E(3) is R
6 = R

3×R
3 as a vector space; we extend the basis (pj) of the

second copy of R
3 (i.e. the Lie algebra of R

3) by a basis (Ji) of the first copy of
R

3 (in its guise as the Lie algebra of SO(3)) , and find that the Q�(Ji) are just
the usual angular momentum operators.108

Mackey’s generalization of von Neumann’s [1931] uniqueness theorem for the
irreducible representations of the canonical commutation relations (1) is his im-
primitivity theorem. This theorem applies to the special case where Q = G/H for
some (closed) subgroup H ⊂ G, and states that (up to unitary equivalence) there
is a bijective correspondence between:

1. Systems of imprimitivity (H, U, P ) for the left-translation of G on G/H;

2. Unitary representations Uχ of H.

This correspondence preserves irreducibility.109

106For the domain of Q�(f) see footnote 100.
107I.e. ξQXf(y) = d/dt|t=0[f(exp(−tX)y)].
108The commutation relations in the previous paragraph are now extended by the fa-

miliar relations [Q�(Ji),Q�(Jj)] = i�εijkQ�(Jk), [Q�(Ji),Q�(pj)] = i�εijkQ�(pk), and

[Q�(Ji),Q�(qj)] = i�εijkQ�(qk).
109Specifically, given Uχ the triple (Hχ, Uχ, Pχ) is a system of imprimitivity, where Hχ =

L2(G/H) ⊗ Hχ carries the representation Uχ(G) induced by Uχ(H), and the Pχ act like mul-
tiplication operators. Conversely, if (H, U, P ) is a system of imprimitivity, then there exists
a unitary representation Uχ(H) such that the triple (H, U, P ) is unitarily equivalent to the
triple (Hχ, Uχ, Pχ) just described. For example, for G = E(3) and H = SO(3) one has
χ = j = 0, 1, 2, . . . and Hj = L2(R3) ⊗ Hj (where Hj = C

2j+1 carries the given representa-
tion Uj(SO(3))).
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For example, von Neumann’s theorem is recovered as a special case of Mackey’s
by making the choice G = R

3 and H = {e} (so that Q = R
3, as above): the

uniqueness of the (regular) irreducible representation of the canonical commuta-
tion relations here follows from the uniqueness of the irreducible representation
of the trivial group. A more illustrative example is G = E(3) and H = SO(3)
(so that Q = R

3), in which case the irreducible representations of the associated
system of imprimitivity are classified by spin j = 0, 1, . . .. Mackey saw this as an
explanation for the emergence of spin as a purely quantum-mechanical degree of
freedom.110 Although the opinion that spin has no classical analogue was widely
shared also among the pioneers of quantum theory,111 it is now obsolete (see Sub-
section 4.3 below). Despite this unfortunate misinterpretation, Mackey’s approach
to canonical quantization is hard to surpass in power and clarity, and has many
interesting applications.112

We mention one of specific interest to the philosophy of physics, namely the
Newton–Wigner position operator (as analyzed by Wightman [1962]).113 Here the
general question is whether a given unitary representation U of G = E(3) on some
Hilbert space H may be extended to a system of imprimitivity with respect to
H = SO(3) (and hence Q = R

3, as above); in that case, U (or rather the associ-
ated quantum system) is said to be localizable in R

3. Following Wigner’s (1939)
suggestion that a relativistic particle is described by an irreducible representation
U of the Poincaré group P , one obtains a representation U(E(3)) by restricting
U(P ) to the subgroup E(3) ⊂ P .114 It then follows from the previous analysis
that the particle described by U(P ) is localizable if and only if U(E(3)) is induced
by some representation of SO(3). This can, of course, be settled, with the result
that massive particles of arbitrary spin can be localized in R

3 (the corresponding
position operator being precisely the one of Newton and Wigner), whereas mass-
less particles may be localized in R

3 if and only if their helicity is less than one. In
particular, the photon (and the graviton) cannot be localized in R

3 in the stated
110By the usual arguments (Wigner’s theorem), one may replace SO(3) by SU(2), so as to

obtain j = 0, 1/2, . . ..
111This opinion goes back to Pauli [1925], who talked about a ‘klassisch nicht beschreibbare

Zweideutigkeit in den quantentheoretischen Eigenschaften des Elektrons,’ (i.e. an ‘ambivalence
in the quantum theoretical properties of the electron that has no classical description’) which was
later identified as spin by Goudsmit and Uhlenbeck. Probably the first person to draw attention
to the classical counterpart of spin was Souriau [1969]. Another misunderstanding about spin is
that its ultimate explanation must be found in relativistic quantum mechanics.
112This begs the question about the ‘best’ possible proof of Mackey’s imprimitivity theorem.

Mackey’s own proof was rather measure-theoretic in flavour, and did not shed much light on
the origin of his result. Probably the shortest proof has been given by [Ørsted, 1979], but
the insight brevity gives is still rather limited. Quite to the contrary, truly transparent proofs
reduce a mathematical claim to a tautology. Such proofs, however, tend to require a formidable
machinery to make this reduction work; see [Echterhoff et al., 2002] and [Landsman, 2006a] for
two different approaches to the imprimitivity theorem in this style.
113Fleming and Butterfield [2000] give an up-to-date introduction to particle localization in

relativistic quantum theory. See also [De Bièvre, 2003].
114Strictly speaking, this hinges on the choice of an inertial frame in Minkowski space, with

associated adapted co-ordinates such that the configuration space R
3 in question is given by

x0 = 0.
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sense.115

To appreciate our later material on both phase space quantization and defor-
mation quantization, it is helpful to give a C∗-algebraic reformulation of Mackey’s
approach. Firstly, by the spectral theorem [Reed and Simon, 1972; Pedersen,
1989], a projection-valued measure E �→ P (E) on a space Q taking values in a
Hilbert space H is equivalent to a nondegenerate representation π of the commu-
tative C∗-algebra C0(Q) on H through the correspondence (7).116 Secondly, if H
in addition carries a unitary representation U of G, the defining condition (4) of
a system of imprimitivity (given a G-action on Q) is equivalent to the covariance
condition

U(x)Q�(f)U(x)−1 = Q�(Lxf)(10)

for all x ∈ G and f ∈ C0(Q), where Lxf(m) = f(x−1m). Thus a system of
imprimitivity for a given G-action on Q is “the same” as a covariant nondegenerate
representation of C0(Q). Thirdly, from a G-action on Q one can construct a certain
C∗-algebra C∗(G,Q), the so-called transformation group C∗-algebra defined by the
action, which has the property that its nondegenerate representations correspond
bijectively (and “naturally”) to covariant nondegenerate representations of C0(Q),
and therefore to systems of imprimitivity for the given G-action [Effros and Hahn,
1967; Pedersen, 1979; Landsman, 1998]. In the C∗-algebraic approach to quantum
physics, C∗(G,Q) is the algebra of observables of a particle moving on Q subject to
the symmetries defined by the G-action; its inequivalent irreducible representations
correspond to the possible superselection sectors of the system [Doebner and Tolar,
1975; Majid, 1988; 1990; Landsman, 1990a; 1990b; 1992].117

4.2 Phase space quantization and coherent states

In Mackey’s approach to quantization, Q is the configuration space of the sys-
tem; the associated position coordinates commute (cf. (9)). This is reflected by
the correspondence just discussed between projection-valued measures on Q and
representations of the commutative C∗-algebra C0(Q). The noncommutativity of
observables (and the associated uncertainty relations) typical of quantum mechan-
ics is incorporated by adding the symmetry group G to the picture and imposing

115Seeing photons as quantized light waves with two possible polarizations transverse to the
direction of propagation, this last result is physically perfectly reasonable.
116A representation of a C∗-algebra A on a Hilbert space H is a linear map π : A → B(H) such

that π(AB) = π(A)π(B) and π(A∗) = π(A)∗ for all A, B ∈ A. Such a representation is called
nondegenerate when π(A)Ψ = 0 for all A ∈ A implies Ψ = 0.
117Another reformulation of Mackey’s approach, or rather an extension of it, has been given by

Isham [1984]. In an attempt to reduce the whole theory to a problem in group representations,
he proposed that the possible quantizations of a particle with configuration space G/H are given
by the inequivalent irreducible representations of a “canonical group” Gc = G � V , where V is
the lowest-dimensional vector space that carries a representation of G under which G/H is an
orbit in the dual vector space V ∗. All pertinent systems of imprimitivity then indeed correspond
to unitary representations of Gc, but this group has many other representations whose physical
interpretation is obscure. See also footnote 157.
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the relations (4) (or, equivalently, (8) or (10)). As we have pointed out, this
procedure upsets the symmetry between the phase space variables position and
momentum in classical mechanics.

This somewhat unsatisfactory feature of Mackey’s approach may be avoided by
replacing Q by the phase space of the system, henceforth called M .118 In this
approach, noncommutativity is incorporated by a treacherously tiny modification
to Mackey’s setup. Namely, the projection-valued measure E �→ P (M) on M with
which he starts is now replaced by a positive-operator-valued measure or POVM
on M , still taking values in some Hilbert space K. This is a map E �→ A(E)
from the (Borel) subsets E of M to the collection of positive bounded operators
on K,119 satisfying A(∅) = 0, A(M) = 1, and A(∪iEi) =

∑
i A(Ei) for any

countable collection of disjoint Borel sets Ei.120 A POVM that satisfies A(E∩F ) =
A(E)A(F ) for all (Borel) E,F ⊂ M is precisely a projection-valued measure, so
that a POVM is a generalization of the latter.121 The point, then, is that a
given POVM defines a quantization procedure by the stipulation that a classical
observable f (i.e. a measurable function on the phase space M , for simplicity
assumed bounded) is quantized by the operator122

Q(f) =
∫
M

dA(x)f(x).(11)

Thus the seemingly slight move from projection-valued measures on configuration
space to positive-operator valued measures on phase space gives a wholly new
perspective on quantization, actually reducing this task to the problem of finding
such POVM’s.123

118Here the reader may think of the simplest case M = R
6, the space of p’s and q’s of a particle

moving on R
3. More generally, if Q is the configuration space, the associated phase space is

the cotangent bundle M = T ∗Q. Even more general phase spaces, namely arbitrary symplectic
manifolds, may be included in the theory as well. References for what follows include [Busch et
al., 1998; Schroeck, 1996], and [Landsman, 1998; 1999a].
119A bounded operator A on K is called positive when (Ψ, AΨ) ≥ 0 for all Ψ ∈ K. Consequently,

it is self-adjoint with spectrum contained in R
+.

120Here the infinite sum is taken in the weak operator topology. Note that the above conditions
force 0 ≤ A(E) ≤ 1, in the sense that 0 ≤ (Ψ, A(E)Ψ) ≤ (Ψ, Ψ) for all Ψ ∈ K.
121This has given rise to the so-called operational approach to quantum theory, in which ob-

servables are not represented by self-adjoint operators (or, equivalently, by their associated
projection-valued measures), but by POVM’s. The space M on which the POVM is defined
is the space of outcomes of the measuring instrument; the POVM is determined by both A and
a calibration procedure for this instrument. The probability that in a state ρ the outcome of the
experiment lies in E ⊂ M is taken to be Tr (ρA(E)). See [Davies, 1976; Holevo, 1982; Ludwig,
1985; Schroeck, 1996; Busch et al., 1998], and [De Muynck, 2002].
122The easiest way to define the right-hand side of (11) is to fix Ψ ∈ K and define a probability

measure pΨ on M by means of pΨ(E) = (Ψ, A(E)Ψ). One then defines Q(f) as an operator
through its expectation values (Ψ,Q(f)Ψ) =

R
M dpΨ(x) f(x). The expression (11) generalizes

(7), and also generalizes the spectral resolution of the operator f(A) =
R

R
dP (λ)f(λ), where P

is the projection-valued measure defined by a self-adjoint operator A.
123An important feature of Q is that it is positive in the sense that if f(x) ≥ 0 for all x ∈ M ,

then (Ψ,Q(f)Ψ) ≥ 0 for all Ψ ∈ K. In other words, Q is positive as a map from the C∗-algebra
C0(M) to the C∗-algebra B(H).
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The solution to this problem is greatly facilitated by Naimark’s dilation theo-
rem.124 This states that, given a POVM E �→ A(E) on M in a Hilbert space K,
there exists a Hilbert space H carrying a projection-valued measure P on M and
an isometric injection K ↪→ H, such that

A(E) = [K]P (E)[K](12)

for all E ⊂M (where [K] is the orthogonal projection from H onto K). Combining
this with Mackey’s imprimitivity theorem yields a powerful generalization of the
latter [Poulsen, 1970; Neumann, 1972; Scutaru, 1977; Cattaneo, 1979; Castrigiano
and Henrichs, 1980]. First, define a generalized system of imprimitivity (K, U,A)
for a given action of a group G on a space M as a POVM A on M taking values
in a Hilbert space K, along with a unitary representation V of G on K such that

V (x)A(E)V (x)−1 = A(xE)(13)

for all x ∈ G and E ⊂ M ; cf. (4). Now assume M = G/H (and the associated
canonical left-action on M). The generalized imprimitivity theorem states that a
generalized system of imprimitivity (K, V, A) for this action is necessarily (unitar-
ily equivalent to) a reduction of a system of imprimitivity (H, U, P ) for the same
action. In other words, the Hilbert space H in Naimark’s theorem carries a unitary
representation U(G) that commutes with the projection [K], and the representa-
tion V (G) is simply the restriction of U to K. Furthermore, the POVM A has
the form (12). The structure of (H, U, P ) is fully described by Mackey’s imprimi-
tivity theorem, so that one has a complete classification of generalized systems of
imprimitivity.125 One has

K = pH; H = L2(M)⊗Hχ,(14)

where L2 is defined with respect to a suitable measure on M = G/H,126 the
Hilbert space Hχ carries a unitary representation of H, and p is a projection in the
commutant of the representation Uχ(G) induced by Uχ(G).127 The quantization
(11) is given by

Q(f) = pfp,(15)

where f acts on L2(M)⊗Hχ as a multiplication operator, i.e. (fΨ)(x) = f(x)Ψ(x).
In particular, one has P (E) = χE (as a multiplication operator) for a region
E ⊂ M of phase space, so that Q(χE) = A(E). Consequently, the probability

124See, for example, [Riesz and Sz.-Nagy, 1990]. It is better, however, to see Naimark’s theorem
as a special case of Stinesprings’s, as explained e.g. in [Landsman, 1998], and below.
125Continuing footnote 109: V (G) is necessarily a subrepresentation of some representation

Uχ(G) induced by Uχ(H).
126In the physically relevant case that G/H is symplectic (so that it typically is a coadjoint

orbit for G) one should take a multiple of the Liouville measure.
127The explicit form of Uχ(g), g ∈ G, depends on the choice of a cross-section σ : G/H → G

of the projection π : G → G/H (i.e. π ◦ σ = id). If the measure on G/H defining L2(G/H) is
G-invariant, the explicit formula is Uχ(g)Ψ(x) = Uχ(s(x)−1gs(g−1x))Ψ(g−1x).
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that in a state ρ (i.e. a density matrix on K) the system is localized in E is given
by Tr (ρA(E)).

In a more natural way than in Mackey’s approach, the covariant POVM quanti-
zation method allows one to incorporate space-time symmetries ab initio by taking
G to be the Galilei group or the Poincaré group, and choosing H such that G/H is
a physical phase space (on which G, then, canonically acts). See [Ali et al., 1995]
and [Schroeck, 1996].

Another powerful method of constructing POVM’s on phase space (which in the
presence of symmetries overlaps with the preceding one)128 is based on coherent
states.129 The minimal definition of coherent states in a Hilbert spaceH for a phase
space M is that (for some fixed value of Planck’s constant �, for the moment) one
has an injection130 M ↪→ H, z �→ Ψ�

z , such that

‖Ψ�

z‖ = 1(16)

for all z ∈M , and

c�

∫
M

dµL(z) |(Ψ�

z ,Φ)|2 = 1,(17)

for each Φ ∈ H of unit norm (here µL is the Liouville measure on M and c� > 0
is a suitable constant).131 Condition (17) guarantees that we may define a POVM
on M in K by132

A(E) = c�

∫
E

dµL(z) [Ψ�

z ].(18)

Eq. (11) then simply reads (inserting the �-dependence of Q and a suffix B for
later use)

QB
�

(f) = c�

∫
M

dµL(z) f(z)[Ψ�

z ].(19)

The time-honoured example, due to Schrödinger [1926b], is M = R
2n, H =

L2(Rn), and

Ψ�

(p,q)(x) = (π�)−n/4e−ipq/2�eipx/�e−(x−q)2/2�.(20)

128Suppose there is a vector Ω ∈ K such that
R
G/H dµ(x)|(Ω, V (σ(x))Ω)|2 <∞ with respect to

some cross-section σ : G/H → G and a G-invariant measure µ, as well as V (h)Ω = Uχ(h)Ω for
all h ∈ H, where Uχ : H → C is one-dimensional. Then (taking � = 1) the vectors V (σ(x))Ω
(suitably normalized) form a family of coherent states on G/H [Ali et al., 1995; Schroeck, 1996;
Ali, Antoine, and Gazeau, 2000]. For example, the coherent states (20) are of this form for the
Heisenberg group.
129 See [Klauder and Skagerstam, 1985; Perelomov, 1986; Odzijewicz, 1992; Paul and Uribe,

1995; 1996; Ali et al., 1995], and [Ali et al., 2000], for general discussions of coherent states.
130This injection must be continuous as a map from M to PH, the projective Hilbert space of
H.
131Other measures might occur here; see, for example, [Bonechi and De Bièvre, 2000].
132Recall that [Ψ] is the orthogonal projection onto a unit vector Ψ.
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Eq. (17) then holds with dµL(p, q) = (2π)−ndnpdnq and c� = �
−n. One may verify

that QB
�

(pj) and QB
�

(qj) coincide with Schrödinger’s operators (2). This example
illustrates that coherent states need not be mutually orthogonal; in fact, in terms
of z = p + iq one has for the states in (20)

|(Ψ�

z ,Ψ
�

w)|2 = e−|z−w|2/2�;(21)

the significance of this result will emerge later on.
In the general case, it is an easy matter to verify Naimark’s dilation theorem

for the POVM (18): changing notation so that the vectors Ψ�

z now lie in K, one
finds

H = L2(M, c�µL),(22)

the embedding W : K ↪→ H being given by (WΦ)(z) = (Ψ�

z ,Φ). The projection-
valued measure P on H is just P (E) = χE (as a multiplication operator), and the
projection p onto WK is given by

pΨ(z) = c�

∫
M

dµL(w)(Ψ�

z ,Ψ
�

w)Ψ(w).(23)

Consequently, (19) is unitarily equivalent to (15), where f acts on L2(M) as a
multiplication operator.133

Thus (15) and (22) (or its possible extension (14)) form the essence
of phase space quantization.134

We close this subsection in the same fashion as the previous one, namely by
pointing out the C∗-algebraic significance of POVM’s. This is extremely easy:
whereas a projection-valued measure on M in H is the same as a nondegenerate
representation of C0(M) in H, a POVM on M in a Hilbert space K is nothing but
a nondegenerate completely positive map ϕ : C0(M) → B(K).135 Consequently,
Naimark’s dilation theorem becomes a special case of Stinespring’s [1955] theorem:
if Q : A → B(K) is a completely positive map, there exists a Hilbert space H
carrying a representation π of C0(M) and an isometric injection K ↪→ H, such
that Q(f) = [K]π(f)[K] for all f ∈ C0(M). In terms of Q(C0(M)), the covariance
condition (13) becomes U(x)Q(f)U(x)−1 = Q(Lxf), just like (10).

133This leads to a close relationship between coherent states and Hilbert spaces with a repro-
ducing kernel; see [Landsman, 1998] or [Ali et al., 2000].
134See also footnote 172 below.
135A map ϕ : A → B between C∗-algebras is called positive when ϕ(A) ≥ 0 whenever A ≥ 0;

such a map is called completely positive if for all n ∈ N the map ϕn : A⊗Mn(C)→ B⊗Mn(C),
defined by linear extension of ϕ ⊗ id on elementary tensors, is positive (here Mn(C) is the C∗-
algebra of n × n complex matrices). When A is commutative a nondegenerate positive map
A → B is automatically completely positive for any B.
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4.3 Deformation quantization

So far, we have used the word ‘quantization’ in a heuristic way, basing our account
on historical continuity rather than on axiomatic foundations. In this subsection
and the next we set the record straight by introducing two alternative ways of
looking at quantization in an axiomatic way. We start with the approach that his-
torically came last, but which conceptually is closer to the material just discussed.
This is deformation quantization, originating in the work of Berezin [1974; 1975a;
1975b], Vey [1975], and Bayen et al. [1977]. We here follow the C∗-algebraic
approach to deformation quantization proposed by Rieffel [1989a; 1994], since it
is not only mathematically transparent and rigorous, but also reasonably close
to physical practice.136 Due to the mathematical language used, this method of
course naturally fits into the general C∗-algebraic approach to quantum physics.

The key idea of deformation quantization is that quantization should be defined
through the property of having the correct classical limit. Consequently, Planck’s
“constant” � is treated as a variable, so that for each of its values one should have
a quantum theory. The key requirement is that this family of quantum theories
converges to the underlying classical theory as � → 0.137 The mathematical
implementation of this idea is quite beautiful, in that the classical algebra of
observables is “glued” to the family of quantum algebras of observables in such a
way that the classical theory literally forms the boundary of the space containing
the pertinent quantum theories (one for each value of � > 0). Technically, this is
done through the concept of a continuous field of C∗-algebras.138 What follows
may sound unnecessarily technical, but the last 15 years have indicated that this
yields exactly the right definition of quantization.

Let I ⊂ R be the set in which � takes values; one usually has I = [0, 1], but
when the phase space is compact, � often takes values in a countable subset of
(0, 1].139 The same situation occurs in the theory of infinite systems; see Section
6. In any case, I should contain zero as an accumulation point. A continuous field
of C∗-algebras over I, then, consists of a C∗-algebra A, a collection of C∗-algebras
{A�}�∈I , and a surjective morphism ϕ� : A → A� for each � ∈ I , such that:

1. The function � �→ ‖ϕ�(A)‖� is in C0(I) for all A ∈ A;140

2. The norm of any A ∈ A is ‖A‖ = sup
�∈I ‖ϕ�(A)‖;

136See also [Landsman, 1998] for an extensive discussion of the C∗-algebraic approach to de-
formation quantization. In other approaches to deformation quantization, such as the theory of
star products, � is a formal parameter rather than a real number. In particular, the meaning of
the limit �→ 0 is obscure.
137Cf. the preamble to Section 5 for further comments on this limit.
138See [Dixmier, 1977; Fell and Doran, 1988], and [Kirchberg and Wassermann, 1995] for three

different approaches to the same concept. Our definition follows the latter; replacing I by an
arbitrary locally compact Hausdorff space one finds the general definition.
139Cf. [Landsman, 1998] and footnote 204, but in contrast see [Rieffel, 1989a] for the example

of the noncommutative torus, where one quantizes a compact phase space for each � ∈ (0, 1].
Further examples of this sort are discussed by Natsume and Nest [1999], Natsume, Nest and Ingo
[2003], and Hawkins [2005].
140Here ‖ · ‖� is the norm in the C∗-algebra A� .
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3. For any f ∈ C0(I) and A ∈ A there is an element fA ∈ A for which
ϕ�(fA) = f(�)ϕ�(A) for all � ∈ I.

The idea is that the family (A�)�∈I of C∗-algebras is glued together by specify-
ing a topology on the bundle

∐
�∈[0,1]A� (disjoint union). However, this topology

is in fact defined rather indirectly, via the specification of the space of continuous
sections of the bundle.141 Namely, a continuous section of the field is by definition
an element {A�}�∈I of

∏
�∈I A� (equivalently, a map � �→ A� where A� ∈ A�) for

which there is an A ∈ A such that A� = ϕ�(A) for all � ∈ I. It follows that the
C∗-algebra A may actually be identified with the space of continuous sections of
the field: if we do so, the morphism ϕ� is just the evaluation map at �.142

Physically, A0 is the commutative algebra of observables of the underlying clas-
sical system, and for each � > 0 the noncommutative C∗-algebra A� is supposed
to be the algebra of observables of the corresponding quantum system at value �

of Planck’s constant. The algebra A0, then, is of the form C0(M), where M is the
phase space defining the classical theory. A phase space has more structure than
an arbitrary topological space; it is a manifold on which a Poisson bracket { , }
can be defined. For example, on M = R

2n one has the familiar expression

{f, g} =
∑
j

∂f

∂pj

∂g

∂qj
− ∂f

∂qj
∂g

∂pj
.(24)

Technically, M is taken to be a Poisson manifold. This is a manifold equipped
with a Lie bracket { , } on C∞(M) with the property that for each f ∈ C∞(M)
the map g �→ {f, g} defines a derivation of the commutative algebra structure of
C∞(M) given by pointwise multiplication. Hence this map is given by a vector field
ξf , called the Hamiltonian vector field of f (i.e. one has ξfg = {f, g}). Symplectic
manifolds are special instances of Poisson manifolds, characterized by the property
that the Hamiltonian vector fields exhaust the tangent bundle. A Poisson manifold
is foliated by its symplectic leaves: a given symplectic leaf L is characterized by
the property that at each x ∈ L the tangent space TxL ⊂ TxM is spanned by
the collection of all Hamiltonian vector fields at x. Consequently, the flow of any
Hamiltonian vector field on M through a given point lies in its entirety within the
symplectic leaf containing that point. The simplest example of a Poisson manifold
is M = R

2n with Poisson bracket (24); this manifold is even symplectic.143

141This is reminiscent of the Gelfand–Naimark theorem for commutative C∗-algebras, which
specifies the topology on a locally compact Hausdorff space X via the C∗-algebra C0(X). Sim-
ilarly, in the theory of (locally trivial) vector bundles the Serre–Swan theorem allows one to

reconstruct the topology on a vector bundle E
π→ X from the space Γ0(E) of continuous sections

of E, seen as a (finitely generated projective) C0(X)-module. See, for example, [Gracia-Bond́ıa
et al., 2001]. The third condition in our definition of a continuous field of C∗-algebras makes A
a C0(I)-module in the precise sense that there exits a nondegenerate morphism from C0(I) to
the center of the multiplier of A. This property may also replace our condition 3.
142The structure of A as a C∗-algebra corresponds to the operations of pointwise scalar multi-

plication, addition, adjointing, and operator multiplication on sections.
143See [Marsden and Ratiu, 1994] for a mechanics-oriented introduction to Poisson manifolds;

also cf. [Landsman, 1998] or [Butterfield, 2005] for the basic facts. A classical mathematical
paper on Poisson manifolds is [Weinstein, 1983].
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After this preparation, our basic definition is this:144

A deformation quantization of a phase space M consists of a continuous
field of C∗-algebras (A�)�∈[0,1] (with A0 = C0(M)), along with a family
of self-adjoint145 linear maps Q� : C∞

c (M)→ A�, � ∈ (0, 1], such that:

1. For each f ∈ C∞
c (M) the map defined by 0 �→ f and � �→ Q�(f) (� �= 0) is

a continuous section of the given continuous field;146

2. For all f, g ∈ C∞
c (M) one has

lim
�→0

∥∥∥∥ i

�
[Q�(f),Q�(g)]−Q�({f, g})

∥∥∥∥
�

= 0.(25)

Obvious continuity properties one might like to impose, such as

lim
�→0
‖Q�(f)Q�(g)−Q�(fg)‖ = 0,(26)

or

lim
�→0
‖Q�(f)‖ = ‖f‖∞,(27)

turn out to be an automatic consequence of this definition.147 Condition (25),
however, transcends the C∗-algebraic setting, and is the key ingredient in prov-
ing (among other things) that the quantum dynamics converges to the classical
dynamics;148 see Section 5. The map Q� is the quantization map at value �

of Planck’s constant; we feel it is the most precise formulation of Heisenberg’s
original Umdeutung of classical observables known to date. It has the same in-
terpretation as the heuristic symbol Q� used so far: the operator Q�(f) is the
quantum-mechanical observable whose classical counterpart is f .

This has turned out to be an fruitful definition of quantization, firstly because
most well-understood examples of quantization fit into it [Rieffel, 1994; Landsman,
1998], and secondly because it has suggested various fascinating new ones [Rieffel,

144Here C∞
c (M) stands for the space of smooth functions on M with compact support; this is

a norm-dense subalgebra of A0 = C0(M). The question whether the maps Q� can be extended
from C∞

c (M) to C0(M) has to be answered on a case by case basis. Upon such an extension, if
it exists, condition (25) will lose its meaning, since the Poisson bracket {f, g} is not defined for
all f, g ∈ C0(M).
145I.e. Q�(f) = Q�(f)∗.
146Equivalently, one could extend the family (Q�)�∈(0,1] to � = 0 by Q0 = id, and state that

� �→ Q�(f) is a continuous section. Also, one could replace this family of maps by a single section
Q : C∞

c (M)→ A of ϕ0 and define Q� = ϕ� ◦ Q : C∞
c (M)→ A� .

147That they are automatic should not distract from the fact that especially (27) is a beautiful
connection between classical and quantum mechanics. See footnote 89 for the meaning of ‖f‖∞.
148This insight is often attributed to Dirac [1930], who was the first to recognize the analogy

between the commutator in quantum mechanics and the Poisson bracket in classical mechanics.
In fact, the Poisson structure on M is uniquely determined by the continuous field structure
together with condition (25). Thus the choice of the Q� is secondary.
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1989a; Natsume and Nest, 1999; Natsume et al., 2003; Hawkins, 2005]. Restricting
ourselves to the former, we note, for example, that (19) with (20) defines a defor-
mation quantization of the phase space R

2n (with standard Poisson bracket) if one
takes A� to be the C∗-algebra of compact operators on the Hilbert space L2(Rn).
This is called the Berezin quantization of R

2n (as a phase space);149 explicitly, for
Φ ∈ L2(Rn) one has

QB
�

(f)Φ(x) =
∫

R2n

dnpdnqdny

(2π�)n
f(p, q)Ψ�

(p,q)(y)Φ(y)Ψ�

(p,q)(x).(28)

This quantization has the distinguishing feature of positivity,150 a property not
shared by its more famous sister called Weyl quantization.151 The latter is a
deformation quantization of R

2n as well, having the same continuous field of C∗-
algebras, but differing from Berezin quantization in its quantization map

QW
�

(f)Φ(x) =
∫

R2n

dnpdnq

(2π�)n
eip(x−q)/�f

(
p, 1

2
(x + q)

)
Φ(q).(29)

Although it lacks good positivity and hence continuity properties,152 Weyl quan-
tization enjoys better symmetry properties than Berezin quantization.153 Despite
these differences, which illustrate the lack of uniqueness of concrete quantization
procedures, Weyl and Berezin quantization both reproduce Schrödinger’s position
and momentum operators (2).154 Furthermore, if f ∈ L1(R2n), then QB

�
(f) and

QW
�

(f) are trace class, with

TrQB
�

(f) = TrQW
�

(f) =
∫

R2n

dnpdnq

(2π�)n
f(p, q).(30)

Weyl and Berezin quantization are related by

QB
�

(f) = QW
�

(e
�

4 ∆2nf),(31)

149In the literature, Berezin quantization on R
2n is often called anti-Wick quantization (or

ordering), whereas on compact complex manifolds it is sometimes called Toeplitz or Berezin–
Toeplitz quantization. Coherent states based on other phase spaces often define deformation
quantizations as well; see [Landsman, 1998].
150Cf. footnote 123. As a consequence, (28) is valid not only for f ∈ C∞

c (R2n), but even for all
f ∈ L∞(R2n), and the extension of QB

�
from C∞

c (R2n) to L∞(R2n) is continuous.
151The original reference is Weyl [1931]. See, for example, [Dubin et al., 2000] and [Esposito et

al., 2004] for a modern physics-oriented yet mathematically rigorous treatment. See also [Rieffel,
1994] and [Landsman, 1998] for a discussion from the perspective of deformation quantization,
as well as [Binz et al., 2004] for infinite-dimensional examples.
152Nonetheless, Weyl quantization may be extended from C∞

c (R2n) to much larger function
spaces using techniques from the theory of distributions (leaving the Hilbert space setting typical
of quantum mechanics). The classical treatment is in Hörmander [1979; 1985a].
153 Weyl quantization is covariant under the affine symplectic group Sp(n, R) � R

2n, whereas
Berezin quantization is merely covariant under its subgroup O(2n) � R

2n.
154This requires a formal extension of the maps QW

�
and QB

�
to unbounded functions on M

like pj and qj .
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where ∆2n =
∑n
j=1(∂

2/∂p2
j + ∂2/∂(qj)2), from which it may be shown that Weyl

and Berezin quantization are asymptotically equal in the sense that for any f ∈
C∞
c (R2n) one has

lim
�→0
‖QB

�
(f)−QW

�
(f)‖ = 0.(32)

Mackey’s approach to quantization also finds its natural home in the setting of
deformation quantization. Let a Lie group G act on a manifold Q, interpreted as
a configuration space, as in Subsection 4.1. It turns out that the corresponding
classical phase space is the manifold g∗ × Q, equipped with the so-called semidi-
rect product Poisson structure [Marsden et al., 1984; Krishnaprasad and Marsden,
1987]. Relative to a basis (Ta) of the Lie algebra g of G with structure constants
Cc
ab (i.e. [Ta, Tb] =

∑
c Cc

abTc), the Poisson bracket in question is given by

{f, g} =
∑
a

(
ξMa f

∂g

∂θa
− ∂f

∂θa
ξMa g

)
−
∑
a,b,c

Cc
abθc

∂f

∂θa

∂g

∂θb
,(33)

where ξMa = ξMTa
. To illustrate the meaning of this lengthy expression, we consider

a few special cases. First, take f = X ∈ g and g = Y ∈ g (seen as linear functions
on the dual g∗). This yields

{X,Y } = −[X,Y ].(34)

Subsequently, assume that g depends on position q alone. This leads to

{X, g} = −ξMX g.(35)

Finally, assume that f = f1 and g = f2 depend on q only; this clearly gives

{f1, f2} = 0.(36)

The two simplest physically relevant examples, already considered at the quan-
tum level in Subsection 4.1, are as follows. First, take G = R

n (as a Lie group) and
Q = R

n (as a manifold), with G acting on Q by translation. Eqs. (34) - (36) then
yield the Poisson brackets {pj , pk} = 0, {pj , qk} = δkj , and {qj , qk} = 0, showing
that in this case M = g∗ × Q = R

2n is the standard phase space of a particle
moving in R

n; cf. (24). Second, the case G = E(3) and Q = R
3 yields a phase

space M = R
3×R

6, where R
6 is the phase space of a spinless particle just consid-

ered, and R
3 is an additional internal space containing spin as a classical degree

of freedom. Indeed, beyond the Poisson brackets on R
6 just described, (34) - (36)

give rise to the additional Poisson brackets {Ji, Jj} = εijkJk, {Ji, pj} = εijkpk,
and {Ji, qj} = εijkq

k.155

The analogy between (34), (35), (36) on the one hand, and (6), (8), (9), re-
spectively, on the other, is no accident: the Poisson brackets in question are the

155These are the classical counterparts of the commutation relations for angular momentum
written down in footnote 108.
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classical counterpart of the commutation relations just referred to. This obser-
vation is made precise by the fundamental theorem relating Mackey’s systems of
imprimitivity to deformation quantization [Landsman, 1993; 1998]: one can equip
the family of C∗-algebras

A0 = C0(g∗ ×Q);
A� = C∗(G,Q),(37)

where C∗(G,Q) is the transformation grouo C∗-algebra defined by the given G-
action on Q (cf. the end of Subsection 4.1), with the structure of a continuous
field, and one can define quantization maps Q� : C∞

c (g∗×Q)→ C∗(G,Q) so as to
obtain a deformation quantization of the phase space g∗×Q. It turns out that for
special functions of the type X,Y ∈ g, and f = f(q) just considered, the equality

i

�
[Q�(f),Q�(g)]−Q�({f, g}) = 0(38)

holds exactly (and not merely asymptotically for �→ 0, as required in the funda-
mental axiom (25) for deformation quantization).

This result clarifies the status of Mackey’s quantization by systems of imprim-
itivity. The classical theory underlying the relations (4) is not the usual phase
space T ∗Q of a structureless particle moving on Q, but M = g∗ × Q. For sim-
plicity we restrict ourselves to the transitive case Q = G/H (with canonical left
G-action). Then M coincides with T ∗Q only when H = {e} and hence Q = G;156

in general, the phase space g∗× (G/H) is locally of the form T ∗(G/H)×h∗ (where
h∗ is the dual of the Lie algebra of H). The internal degree of freedom described
by h∗ is a generalization of classical spin, which, as we have seen, emerges in the
case G = E(3) and H = SO(3). All this is merely a special case of a vast class
of deformation quantizations described by Lie groupoids; see [Landsman, 1998;
1999b; 2006a] and [Landsman and Ramazan, 2001].157

4.4 Geometric quantization

Because of its use of abstract C∗-algebras, deformation quantization is a fairly so-
phisticated and recent technique. Historically, it was preceded by a more concrete
and traditional approach called geometric quantization.158 Here the goal is to
156For a Lie group G one has T ∗G ∼= g∗ ×G.
157A similar analysis can be applied to Isham’s [1984] quantization scheme mentioned in foot-

note 117. The unitary irreducible representations of the canonical group Gc stand in bijective
correspondence with the nondegenerate representations of the group C∗-algebra C∗(Gc) [Peder-
sen, 1979], which is a deformation quantization of the Poisson manifold g∗c (i.e. the dual of the
Lie algebra of Gc). This Poisson manifold contains the coadjoint orbits of Gc as “irreducible”
classical phase spaces, of which only one is the cotangent bundle T ∗(G/H) one initially thought
one was quantizing (see [Landsman, 1998] for the classification of the coadjoint orbits of semidi-
rect products). All other orbits are mere lumber that one should avoid. See also [Robson, 1996].
If one is ready for groupoids, there is no need for the canonical group approach.
158 Geometric quantization was independently introduced by Kostant [1970] and Souriau [1969].

Major later treatments on the basis of the original formalism are [Guillemin and Sternberg, 1977;
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firstly “quantize” a phase space M by a concretely given Hilbert space H(M), and
secondly to map the classical observables (i.e. the real-valued smooth functions
on M) into self-adjoint operators on H (which after all play the role of observ-
ables in von Neumann’s formalism of quantum mechanics).159 In principle, this
program should align geometric quantization much better with the fundamental
role unbounded self-adjoint operators play in quantum mechanics than deforma-
tion quantization, but in practice geometric quantization continues to be plagued
by problems.160 However, it would be wrong to see deformation quantization and
geometric quantization as competitors; as we shall see in the next subsection, they
are natural allies, forming “complementary” parts of a conjectural quantization
functor.

In fact, in our opinion geometric quantization is best compared and contrasted
with phase space quantization in its concrete formulation of Subsection 4.2 (i.e.
before its C∗-algebraic abstraction and subsequent absorption into deformation
quantization as indicated in Subsection 4.3).161 For geometric quantization equally
well starts with the Hilbert space L2(M),162 and subsequently attempts to con-
struct H(M) from it, though typically in a different way from (14).

Before doing so, however, the geometric quantization procedure first tries to
define a linear map Qpre

�
from C∞(M) to the class of (generally unbounded)

operators on L2(M) that formally satisfies

i

�
[Qpre

�
(f),Qpre

�
(g)]−Qpre

�
({f, g}) = 0,(39)

i.e. (38) with Q = Qpre
�

, as well as the nondegeneracy property

Qpre
�

(χM ) = 1,(40)

where χM is the function on M that is identically equal to 1, and the 1 on the right-
hand side is the unit operator on L2(M). Such a map is called a prequantization

Śniatycki, 1980; Kirillov, 1990; Woodhouse, 1992; Puta, 1993; Chernoff, 1995; Kirillov, 2004], and
[Ali and Englis, 2004]. The modern era (based on the use of Dirac operators and K-theory) was
initiated by unpublished remarks by Bott in the early 1990s; see [Vergne, 1994] and [Guillemin
et al., 2002]. The postmodern (i.e. functorial) epoch was launched in [Landsman, 2005].
159In geometric quantization phase spaces are always seen as symplectic manifolds (with the

sole exception of [Vaisman, 1991]; the reason why it is unnatural to start with the more general
class of Poisson manifolds will become clear in the next subsection.
160 Apart from rather technical issues concerning the domains and self-adjointness properties of

the operators defined by geometric quantization, the main point is that the various mathematical
choices one has to make in the geometric quantization procedure cannot all be justified by physical
arguments, although the physical properties of the theory depend on these choices. (The notion
of a polarization is the principal case in point; see also footnote 173 below.) Furthermore, as we
shall see, one cannot quantize sufficiently many functions in standard geometric quantization.
Our functorial approach to geometric quantization in Subsection 4.5 was partly invented to
alleviate these problems.
161See also [Tuynman, 1987].
162Defined with respect to the Liouville measure times a suitable factor c� , as in (17) etc.; in

geometric quantization this factor is not very important, as it is unusual to study the limit �→ 0.
For M = R

2n the measure on M with respect to which L2(M) is defined is dnpdnq/(2π�)n.
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of M .163 For M = R
2n (equipped with its standard Poisson bracket (24)), a

prequantization map is given (on Φ ∈ L2(M)) by

Qpre
�

(f)Φ = −i�{f,Φ}+


f −

∑
j

pj
∂f

∂pj


Φ.(41)

This expression is initially defined for Φ ∈ C∞
c (M) ⊂ L2(M), on which domain

Qpre
�

(f) is symmetric when f is real-valued;164 note that the operator in question
is unbounded even when f is bounded.165 This looks complicated; the simpler
expression Q�(f)Φ = −i�{f,Φ}, however, would satisfy (38) but not (40), and the
goal of the second term in (41) is to satisfy the latter condition while preserving
the former.166 For example, one has

Qpre
�

(qk) = qk + i�
∂

∂pk
;

Qpre
�

(pj) = −i�
∂

∂qj
.(42)

For general phase spaces M one may construct a map Qpre
�

that satisfies (39)
and (40) when M is “prequantizable”; a full explanation of this notion requires
some differential geometry.167 Assuming this to be the case, then for one thing
prequantization is a very effective tool in constructing unitary group representa-
tions of the kind that are interesting for physics. Namely, suppose a Lie group G
acts on the phase space M in “canonical” fashion. This means that there exists
a map µ : M → g∗, called the momentum map, such that ξµX

= ξMX for each

163The idea of prequantization predates geometric quantization; see [van Hove, 1951] and [Segal,
1960].
164An operator A defined on a dense subspace D ⊂ H of a Hilbert space H is called symmetric

when (AΨ, Φ) = (Ψ, AΦ) for all Ψ, Φ ∈ D.
165As mentioned, self-adjointness is a problem in geometric quantization; we will not address

this issue here. Berezin quantization is much better behaved than geometric quantization in this
respect, since it maps bounded functions into bounded operators.
166One may criticize the geometric quantization procedure for emphasizing (39) against its

equally natural counterpart Q(fg) = Q(f)Q(g), which fails to be satisified by Qpre
�

(and indeed
by any known quantization procedure, except the silly Q(f) = f (as a multiplication operator
on L2(M)).
167A symplectic manifold (M, ω) is called prequantizable at some fixed value of � when it admits

a complex line bundle L → M (called the prequantization line bundle) with connection ∇ such
that F = −iω/� (where F is the curvature of the connection, defined by F (X, Y ) = [∇X ,∇Y ]−
∇[X,Y ]). This is the case iff [ω]/2π� ∈ H2(M, Z), where [ω] is the de Rham cohomology class

of the symplectic form. If so, prequantization is defined by the formula Qpre
�

(f) = −i�∇ξf
+ f ,

where ξf is the Hamiltonian vector field of f (see Subsection 4.3). This expression is defined and
symmetric on the space C∞

c (M, L) ⊂ L2(M) of compactly supported smooth sections of L, and
is easily checked to satisfy (39) and (40). To obtain (41) as a special case, note that for M = R

2n

with the canonical symplectic form ω =
P
k dpk ∧ dqk one has [ω] = 0, so that L is the trivial

bundle L = R
2n × C. The connection ∇ = d + A with A = − i

�

P
k pkdqk satisfies F = −iω/�,

and this eventually yields (41).
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X ∈ g,168 and in addition {µX , µY } = µ[X,Y ]. See [Abraham and Marsden, 1985;
Marsden and Ratiu, 1994; Landsman, 1998; Belot, 2005; Butterfield, 2005], etc.
On then obtains a representation π of the Lie algebra g of G by skew-symmetric
unbounded operators on L2(M) through

π(X) = −i�Qpre
�

(µX),(43)

which often exponentiates to a unitary representation of G.169

As the name suggests, prequantization is not yet quantization. For example, the
prequantization of M = R

2n does not reproduce Schrödinger’s wave mechanics:
the operators (42) are not unitarily equivalent to (2). In fact, as a carrier of the
representation (42) of the canonical commutation relations (1), the Hilbert space
L2(R2n) contains L2(Rn) (carrying the representation (2)) with infinite multiplic-
ity [Ali and Emch, 1986]. This situation is often expressed by the statement that
“prequantization is reducible” or that the prequantization Hilbert space L2(M) is
‘too large’, but both claims are misleading: L2(M) is actually irreducible under
the action of Qpre

�
(C∞(M)) [Tuynman, 1998], and saying that for example L2(Rn)

is “larger” than L2(Rn) is unmathematical in view of the unitary isomorphism of
these Hilbert spaces. What is really meant here is that in typical examples L2(M)
is generically reducible under the action of some Lie algebra where one would like
it to be irreducible. This applies, for example, to (2), which defines a representa-
tion of the Lie algebra of the Heisenberg group. More generally, in the case where
a phase space M carries a transitive action of a Lie group G, so that one would
expect the quantization of this G-action by unitary operators on a Hilbert space to
be irreducible, L2(M) is typically highly reducible under the representation (43)
of g.170

Phase space quantization encounters this problem as well. Instead of the com-
plicated expression (41), through (11) it simply “phase space prequantizes” f ∈
C∞(M) on L2(M) by f as a multiplication operator.171 Under this action of
C∞(M) the Hilbert space L2(M) is of course highly reducible.172 The identifica-

168Here µX ∈ C∞(M) is defined by µX(x) = 〈µ(x), X〉, and ξMX is the vector field on M
defined by the G-action (cf. footnote 107). Hence this condition means that {µX , f}(y) =
d/dt|t=0[f(exp(−tX)y)] for all f ∈ C∞(M) and all y ∈M .
169An operator A defined on a dense subspace D ⊂ H of a Hilbert space H is called skew-

symmetric when (AΨ, Φ) = −(Ψ, AΦ) for all Ψ, Φ ∈ D. If one has a unitary representation U
of a Lie group G on H, then the derived representation dU of the Lie algebra g (see footnote
104) consists of skew-symmetric operators, making one hopeful that a given representation of g
by skew-symmetric operators can be integrated (or exponentiated) to a unitary representation
of G. See [Barut and Raçka, 1977] or [Jørgensen and Moore, 1984] and references therein.
170This can be made precise in the context of the so-called orbit method, cf. the books cited in

footnote 158.
171For unbounded f this operator is defined on the set of all Φ ∈ L2(M) for which fΦ ∈ L2(M).
172 Namely, each (measurable) subset E ⊂M defines a projection χE , and χEL2(M) is stable

under all multiplication operators f . One could actually decide not to be bothered by this
problem and stop here, but then one is simply doing classical mechanics in a Hilbert space
setting [Koopman, 1931]. This formalism even turns out to be quite useful for ergodic theory
[Reed and Simon, 1972].
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tion of an appropriate subspace

H(M) = pL2(M)(44)

of L2(M) (where p is a projection) as the Hilbert space carrying the “quantization”
of M (or rather of C∞(M)) may be seen as a solution to this reducibility problem,
for if the procedure is successful, the projection p is chosen such that pL2(M) is
irreducible under pC∞(M)p. Moreover, in this way practically any function on
M can be quantized, albeit at the expense of (38) (which, as we have seen, gets
replaced by its asymptotic version (25)). See Subsection 6.3 for a discussion of
reducibility versus irreducibility of representations of algebras of observables in
classical and quantum theory.

We restrict our treatment of geometric quantization to situations where it adopts
the same strategy as above, in assuming that the final Hilbert space has the form
(44) as well.173 But it crucially differs from phase space quantization in that its
first step is (41) (or its generalization to more general phase spaces) rather than
just having fΦ on the right-hand side.174 Moreover, in geometric quantization one
merely quantizes a subspace of the set C∞(M) of classical observables, consisting
of those functions that satisfy

[Qpre
�

(f), p] = 0.(45)

If a function f ∈ C∞(M) satisfies this condition, then one defines the “geometric
quantization” of f as

QG
�

(f) = Qpre
�

(f) � H(M).(46)

This is well defined, since because of (45) the operator Qpre
�

(f) now maps pL2(M)
onto itself. Hence (38) holds for Q� = QG

�
because of (39); in geometric quantiza-

tion one simply refuses to quantize functions for which (38) is not valid.
Despite some impressive initial triumphs,175 there is no general method that

accomplishes the goals of geometric quantization with guaranteed success. There-
fore, geometric quantization has remained something like a hacker’s tool, whose
applicability largely depends on the creativity of the user.

In any case, our familiar example M = R
2n is well understood, and we illustrate

the general spirit of the method in its setting, simplifying further by taking n = 1.
It is convenient to replace the canonical coordinates (p, q) on M by z = p+ iq and
z = p− iq, and the mathematical toolkit of geometric quantization makes it very

173 Geometric quantization has traditionally been based on the notion of a polarization (cf. the
references in footnote 158). This device produces a final Hilbert space H(M) which may not be
a subspace of L2(M), except in the so-called (anti-) holomorphic case.
174It also differs from phase space quantization in the ideology that the projection p ought to

be constructed solely from the geometry of M : hence the name ‘geometric quantization’.
175Such as the orbit method for nilpotent groups and the newly understood Borel–Weil method

for compact groups, cf. [Kirillov, 2004] and most other books cited in footnote 158.
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natural to look at the space of solutions within L2(R2) of the equations176(
∂

∂z
+

z

4�

)
Φ(z, z) = 0.(47)

The general solution of these equations that lies in L2(R2) = L2(C) is

Φ(z, z) = e−|z|2/4�f(z),(48)

where f is a holomorphic function such that∫
C

dzdz

2π�i
e−|z|2/2�|f(z)|2 <∞.(49)

The projection p, then, is the projection onto the closed subspace of L2(C) con-
sisting of these solutions.177 The Hilbert space pL2(C) is unitarily equivalent to
L2(R) in a natural way (i.e. without the choice of a basis). The condition (45)
boils down to ∂2f(z, z)/∂zi∂zj = 0; in particular, the coordinate functions q and
p are quantizable. Transforming to L2(R), one finds that the operators QG

�
(q)

and QG
�

(p) coincide with Schrödinger’s expressions (2). In particular, the Heisen-
berg group H1, which acts with infinite multiplicity on L2(C), acts irreducibly on
pL2(C).

4.5 Epilogue: functoriality of quantization

A very important aspect of quantization is its interplay with symmetries and con-
straints. Indeed, the fundamental theories describing Nature (viz. electrodynam-
ics, Yang–Mills theory, general relativity, and possibly also string theory) are a
priori formulated as constrained systems. The classical side of constraints and re-
duction is well understood,178 a large class of important examples being codified by
the procedure of symplectic reduction. A special case of this is Marsden–Weinstein
reduction: if a Lie group G acts on a phase space M in canonical fashion with mo-
mentum map µ : M → g∗ (cf. Subsection 4.4), one may form another phase space
M//G = µ−1(0)/G.179 Physically, in the case where G is a gauge group and M
is the unconstrained phase space, µ−1(0) is the constraint hypersurface (i.e. the

176Using the formalism explained in footnote 167, we replace the 1-form A = − i
�

P
k pkdqk

defining the connection∇ = d+A by the gauge-equivalent form A = i
2�

(
P
k qkdpk−

P
k pkdqk) =

− i
�

P
k pkdqk + i

2�
d(

P
k pkqk), which has the same curvature. In terms of this new A, which in

complex coordinates reads A =
P
k(zkdzk − zkdzk)/4�, eq. (47) is just ∇∂/∂zΦ = 0. This is an

example of the so-called holomorphic polarization in the formalism of geometric quantization.
177 The collection of all holomorphic functions on C satisfying (49) is a Hilbert space with respect

to the inner product (f, g) = (2π�i)−1
R

C
dzdz exp(−|z|2/2�)f(z)g(z), called the Bargmann–Fock

space HBF . This space may be embedded in L2(C) by f(z) �→ exp(−|z|2/2�)f(z), and the image
of this embedding is of course just pL2(C).
178See [Gotay et al., 1978; Binz et al., 1988; Marsden, 1992; Marsden and Ratiu, 1994; Lands-

man, 1998; Butterfield, 2005], and [Belot, 2005].
179Technically, M has to be a symplectic manifold, and if G acts properly and freely on µ−1(0),

then M//G is again a symplectic manifold.
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subspace of M on which the constraints defined by the gauge symmetry hold), and
M//G is the true phase space of the system that only contains physical degrees of
freedom.

Unfortunately, the correct way of dealing with constrained quantum systems
remains a source of speculation and controversy:180 practically all rigorous results
on quantization (like the ones discussed in the preceding subsections) concern
unconstrained systems. Accordingly, one would like to quantize a constrained
system by reducing the problem to the unconstrained case. This could be done
provided the following scenario applies. One first quantizes the unconstrained
phase space M (supposedly the easiest part of the problem), and subsequently
imposes a quantum version of symplectic reduction. Finally, one proves by abstract
means that the quantum theory thus constructed is equal to the theory defined by
first reducing at the classical level and then quantizing the constrained classical
phase space (usually an impossible task to perform in practice).

Tragically, sufficiently powerful theorems stating that “quantization commutes
with reduction” in this sense remain elusive.181 So far, this has blocked, for exam-
ple, a rigorous quantization of Yang–Mills theory in dimension 4; this is one of the
Millenium Problems of the Clay Mathematical Institute, rewarded with 1 Million
dollars.182

On a more spiritual note, the mathematician E. Nelson famously said that ‘First
quantization is a mystery, but second quantization is a functor.’ The functoriality
of ‘second’ quantization (a construction involving Fock spaces, see [Reed and Si-
mon, 1975] being an almost trivial matter, the deep mathematical and conceptual
problem lies in the possible functoriality of ‘first’ quantization, which simply means
quantization in the sense we have been discussing so far. This was initially taken to
mean that canonical transformations α of the phase space M should be ‘quantized’
by unitary operators U(α) on H(M), in such a way U(α)Q�(f)U(α)−1 = Q(Lαf)
(cf. (10)). This is possible only in special circumstances, e.g., when M = R

2n and
α is a linear symplectic map, and more generally when M = G/H is homogeneous
and α ∈ G (see the end of Subsection 4.2).183 Consequently, the functoriality of
quantization is widely taken to be a dead end.184

However, all no-go theorems establishing this conclusion start from wrong and

180Cf. [Dirac, 1964; Sundermeyer, 1982; Gotay, 1986; Duval et al., 1991; Govaerts, 1991; Hen-
neaux and Teitelboim, 1992], and [Landsman, 1998] for various perspectives on the quantization
of constrained systems.
181 The so-called Guillemin–Sternberg conjecture [Guillemin and Sternberg, 1982] — now a

theorem [Meinrenken, 1998; Meinrenken and Sjamaar, 1999] — merely deals with the case of
Marsden–Weinstein reduction where G and M are compact. Mathematically impressive as the
“quantization commutes with reduction” theorem already is here, it is a far call from gauge
theories, where the groups and spaces are not only noncompact but even infinite-dimensional.
182See http://www.claymath.org/millennium/
183Canonical transformations can be quantized in approximate sense that becomes precise as

� → 0 by means of so-called Fourier integral operators; see [Hörmander, 1971; 1985b] and
[Duistermaat, 1996].
184See [Groenewold, 1946; van Hove, 1951; Gotay et al., 1996], and [Gotay, 1999].
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naive categories, both on the classical and on the quantum side.185 It appears
very likely that one may indeed make quantization functorial by a more sophisti-
cated choice of categories, with the additional bonus that deformation quantization
and geometric quantization become unified: the former is the object part of the
quantization functor, whereas the latter (suitably reinterpreted) is the arrow part.
Amazingly, on this formulation the statement that ‘quantization commutes with
reduction’ becomes a special case of the functoriality of quantization [Landsman,
2002; 2005].

To explain the main idea, we return to the geometric quantization of M = R
2 ∼=

C explained in the preceding subsection. The identification of pL2(C)186 as the
correct Hilbert space of the problem may be understood in a completely different
way, which paves the way for the powerful reformulation of the geometric quan-
tization program that will eventually define the quantization functor. Namely, C

supports a certain linear first-order differential operator D/ that is entirely defined
by its geometry as a phase space, called the Dirac operator.187 This operator is
given by188

D/ = 2
(

0 − ∂
∂z + z

4�
∂
∂z + z

4�
0

)
,(50)

acting on L2(C)⊗ C
2 (as a suitably defined unbounded operator). This operator

has the generic form

D/ =
(

0 D/ −
D/ + 0

)
.

The index of such an operator is given by

index(D/ ) = [ker(D/ +)]− [ker(D/ −)],(51)

where [ker(D/ ±)] stand for the (unitary) isomorphism class of ker(D/ ±) seen as a
representation space of a suitable algebra of operators.189 In the case at hand,

185Typically, one takes the classical category to consist of symplectic manifolds as objects and
symplectomorphisms as arrows, and the quantum category to have C∗-algebras as objects and
automorphisms as arrows.
186Or the Bargmann–Fock space HBF , see footnote 177.
187 Specifically, this is the so-called Spinc Dirac operator defined by the complex structure of

C, coupled to the prequantization line bundle. See [Guillemin et al., 2002].

188Relative to the Dirac matrices γ1 =

„
0 i
i 0

«

and γ2 =

„
0 −1
1 0

«

.

189 The left-hand side of (51) should really be written as index(D/ +), since coker(D/ +) = ker(D/ ∗
+)

and D/ ∗
+ = D/ −, but since the index is naturally associated to D/ as a whole, we abuse notation

in writing index(D/ ) for index(D/ +). The usual index of a linear map L : V → W between
finite-dimensional vector spaces is defined as index(L) = dim(ker(L)) − dim(coker(L)), where
coker(L) = W/ran(L). Elementary linear algebra yields index(L) = dim(V ) − dim(W ). This is
surprising because it is independent of L, whereas dim(ker(L)) and dim(coker(L)) quite sensi-
tively depend on it. For, example, take V = W and L = ε · 1. If ε �= 0 then dim(ker(ε · 1)) =
dim(coker(ε · 1)) = 0, whereas for ε = 0 one has dim(ker(0)) = dim(coker(0)) = dim(V )! Simi-
larly, the usual definiton of geometric quantization through (47) etc. is unstable against perturba-
tions of the underlying symplectic structure, whereas the refined definition through (51) is not. To
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one has ker(D/ +) = pL2(C) (cf. (47) etc.) and ker(D/ −) = 0, 190 where we regard
ker(D/ +) as a representation space of the Heisenberg group H1. Consequently, the
geometric quantization of the phase space C is given modulo unitary equivalence
by index(D/ ), seen as a “formal difference” of representation spaces of H1.

This procedure may be generalized to arbitrary phase spaces M , where D/ is
a certain operator naturally defined by the phase space geometry of M and the
demands of quantization.191 This has turned out to be the most promising for-
mulation of geometric quantization — at some cost.192 For the original goal of
quantizing a phase space by a Hilbert space has now been replaced by a much
more abstract procedure, in which the result of quantization is a formal difference
of certain isomorphism classes of representation spaces of the quantum algebra of
observables. To illustrate the degree of abstraction involved here, suppose we ig-
nore the action of the observables (such as position and momentum in the example
just considered). In that case the isomorphism class [H] of a Hilbert space H is
entirely characterized by its dimension dim(H), so that (in case that ker(D/ −) �= 0)
quantization (in the guise of index(D/ )) can even be a negative number! Have we
gone mad?

Not quite. The above picture of geometric quantization is indeed quite irrelevant
to physics, unless it is supplemented by deformation quantization. It is convenient
to work at some fixed value of � in this context, so that deformation quantization
merely associates some C∗-algebra A(P ) to a given phase space P .193 Looking
for a categorical interpretation of quantization, it is therefore natural to assume
that the objects of the classical category C are phase spaces P ,194 whereas the

pass to the latter from the above notion of an index, we first write index(L) = [ker(L)]−[coker(L)],
where [X] is the isomorphism class of a linear space X as a C-module. This expression is an
element of K0(C), and we recover the earlier index through the realization that the class [X]
is entirely determined by dim(X), along with and the corresponding isomorphism K0(C) ∼= Z.
When a more complicated finite-dimensional C∗-algebra A acts on V and W with the property
that ker(L) and coker(L) are stable under the A-action, one may define [ker(L)] − [coker(L)]
and hence index(L) as an element of the so-called C∗-algebraic K-theory group K0(A). Under
certain technical conditions, this notion of an index may be generalized to infinite-dimensional
Hilbert spaces and C∗-algebras; see [Baum et al., 1994] and [Blackadar, 1998]. The K-theoretic
index is best understood when A = C∗(G) is the group C∗-algebra of some locally compact
group G. In the example M = R

2 one might take G to be the Heisenberg group H1, so that
index(D/ ) ∈ K0(C∗(H1)). See [Elliott et al., 1993] for a description of this K0-group.
190Since (− ∂

∂z
+ z

4�
)Φ = 0 implies Φ(z, z) = exp(|z2|/4�)f(z), which lies in L2(C) iff f = 0.

191Any symplectic manifold carries an almost complex structure compatible with the symplectic
form, leading to a Spinc Dirac operator as described in footnote 187. See, again, [Guillemin et
al., 2002]. If M = G/H, or, more generally, if M carries a canonical action of a Lie group G with
compact quotient M/G, then index(D/ ) defines an element of K0(C∗(G)). See footnote 189. In
complete generality, index(D/ ) ought to be an element of K0(A), where A is the C∗-algebra of
observables of the quantum system.
192On the benefit side, the invariance of the index under continuous deformations of D/ seems to

obviate the ambiguity of traditional quantization procedures with respect to different ‘operator
orderings’ not prescribed by the classical theory.
193Here P is not necessarily symplectic; it may be a Poisson manifold, and to keep Poisson and

symplectic manifolds apart we denote the former by P from now on, preserving the notation M
for the latter.
194Strictly speaking, to be an object in this category a Poisson manifold P must be integrable;
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objects of the quantum category Q are C∗-algebras.195 The object part of the
hypothetical quantization functor is to be deformation quantization, symbolically
written as P �→ Q(P ).

Everything then fits together if geometric quantization is reinterpreted as the
arrow part of the conjectural quantization functor. To accomplish this, the arrows
in the classical category C should not be taken to be maps between phase spaces,
but symplectic bimodules P1 ← M → P2.196 More precisely, the arrows in C
are suitable isomorphism classes of such bimodules.197 Similarly, the arrows in
the quantum category Q are not morphisms of C∗-algebras, as might naively be
expected, but certain isomorphism classes of bimodules for C∗-algebras, equipped
with the additional structure of a generalized Dirac operator.198

Having already defined the object part of the quantization map Q : C → Q
as deformation quantization, we now propose that the arrow part is geometric
quantization, in the sense of a suitable generalization of (51); see [Landsman,
2005] for details. We then conjecture that Q is a functor; in the cases where this
can and has been checked, the functoriality of Q is precisely the statement that
quantization commutes with reduction.199

Thus Heisenberg’s idea of Umdeutung finds it ultimate realization in the quan-
tization functor.

5 THE LIMIT �→ 0

It was recognized at an early stage that the limit �→ 0 of Planck’s constant going
to zero should play a role in the explanation of the classical world from quantum
theory. Strictly speaking, � is a dimensionful constant, but in practice one studies
the semiclassical regime of a given quantum theory by forming a dimensionless
combination of � and other parameters; this combination then re-enters the theory
as if it were a dimensionless version of � that can indeed be varied. The oldest
example is Planck’s radiation formula (1), with temperature T as the pertinent

see [Landsman, 2001].
195For technical reasons involving K-theory these have to be separable.
196Here M is a symplectic manifold and P1 and P2 are integrable Poisson manifolds; the map

M → P2 is anti-Poisson, whereas the map P1 ← M is Poisson. Such bimodules (often called
dual pairs) were introduced by Karasev [1989] and Weinstein [1983]. In order to occur as arrows
in C, symplectic bimodules have to satisfy a number of regularity conditions [Landsman, 2001].
197This is necessary in order to make arrow composition associative; this is given by a general-

ization of the symplectic reduction procedure.
198The category Q is nothing but the category KK introduced by Kasparov, whose objects

are separable C∗-algebras, and whose arrows are the so-called Kasparov group KK(A, B), com-
posed with Kasparov’s product KK(A, B) × KK(B, C) → KK(A, C). See [Higson, 1990] and
[Blackadar, 1998].
199A canonical G-action on a symplectic manifold M with momentum map µ : M → g∗ gives

rise to a dual pair pt ← M → g∗, which in C is interpreted as an arrow from the space pt with
one point to g∗. The composition of this arrow with the arrow g∗ ←↩ 0 → pt from g∗ to pt is
pt←M//G→ pt. If G is connected, functoriality of quantization on these two pairs is equivalent
to the Guillemin–Sternberg conjecture (cf. footnote 181); see [Landsman, 2005].



472 N.P. Landsman

variable. Indeed, the observation of Einstein [1905] and Planck [1906] that in
the limit �ν/kT → 0 this formula converges to the classical equipartition law
Eν/Nν = kT may well be the first use of the �→ 0 limit of quantum theory.200

Another example is the Schrödinger equation (3) with Hamiltonian H = − �
2

2m∆x+
V (x), where m is the mass of the pertinent particle. Here one may pass to di-
mensionless parameters by introducing an energy scale ε typical of H, like ε =
supx |V (x)|, as well as a typical length scale λ, such as λ = ε/ supx |∇V (x)| (if these
quantities are finite). In terms of the dimensionless variable x̃ = x/λ, the rescaled
Hamiltonian H̃ = H/ε is then dimensionless and equal to H̃ = −�̃

2∆x̃ + Ṽ (x̃),
where �̃ = �/λ

√
2mε and Ṽ (x̃) = V (λx̃)/ε. Here �̃ is dimensionless, and one might

study the regime where it is small [Gustafson and Sigal, 2003]. Our last example
will occur in the theory of large quantum systems, treated in the next Section. In
what follows, whenever it is considered variable � will denote such a dimensionless
version of Planck’s constant.

Although, as we will argue, the limit �→ 0 cannot by itself explain the classical
world, it does give rise to a number of truly pleasing mathematical results. These,
in turn, render almost inescapable the conclusion that the limit in question is
indeed a relevant one for the recovery of classical physics from quantum theory.
Thus the present section is meant to be a catalogue of those pleasantries that
might be of direct interest to researchers in the foundations of quantum theory.

There is another, more technical use of the � → 0 limit, which is to perform
computations in quantum mechanics by approximating the time-evolution of states
and observables in terms of associated classical objects. This endeavour is known
as semiclassical analysis. Mathematically, this use of the � → 0 limit is closely
related to the goal of recovering classical mechanics from quantum mechanics, but
conceptually the matter is quite different. We will attempt to bring the pertinent
differences out in what follows.

5.1 Coherent states revisited

As Schrödinger [1926b] foresaw, coherent states play an important role in the
limit �→ 0. We recall from Subsection 4.2 that for some fixed value � of Planck’s
constant coherent states in a Hilbert space H for a phase space M are defined by
an injection M ↪→ H, z �→ Ψ�

z , such that (16) and (17) hold. In what follows, we
shall say that Ψ�

z is centered at z ∈M , a terminology justified by the key example
(20).

To be relevant to the classical limit, coherent states must satisfy an additional
property concerning their dependence on �, which also largely clarifies their nature
[Landsman, 1998]. Namely, we require that for each f ∈ Cc(M) and each z ∈ M
the following function from the set I in which � takes values (i.e. usually I = [0, 1],

200Here Einstein [1905] put �ν/kT → 0 by letting ν → 0 at fixed T and �, whereas Planck
[1906] took T →∞ at fixed ν and �.
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but in any case containing zero as an accumulation point) to C is continuous:

� �→ c�

∫
M

dµL(w) |(Ψ�

w,Ψ�

z)|2f(w) (� > 0);(1)

0 �→ f(z).(2)

In view of (19), the right-hand side of (2) is the same as (Ψ�

z ,QB� (f)Ψ�

z). In
particular, this continuity condition implies

lim
�→0

(Ψ�

z ,QB� (f)Ψ�

z) = f(z).(3)

This means that the classical limit of the quantum-mechanical expectation value
of the phase space quantization (19) of the classical observable f in a coherent
state centered at z ∈ M is precisely the classical expectation value of f in the
state z. This interpretation rests on the identification of classical states with
probability measures on phase space M , under which points of M in the guise
of Dirac measures (i.e. delta functions) are pure states. Furthermore, it can be
shown (cf. [Landsman, 1998]) that the continuity of all functions (1) - (2) implies
the property

lim
�→0
|(Ψ�

w,Ψ�

z)|2 = δwz,(4)

where δwz is the ordinary Kronecker delta (i.e. δwz = 0 whenever w �= z and
δzz = 1 for all z ∈ M). This has a natural physical interpretation as well: the
classical limit of the quantum-mechanical transition probability between two co-
herent states centered at w, z ∈M is equal to the classical (and trivial) transition
probability between w and z. In other words, when � becomes small, coher-
ent states at different values of w and z become increasingly orthogonal to each
other.201 This has the interesting consequence that

lim
�→0

(Ψ�

w,QB
�

(f)Ψ�

z) = 0 (w �= z).(5)

for all f ∈ Cc(M). In particular, the following phenomenon of the Schrödinger
cat type occurs in the classical limit: if w �= z and one has continuous functions
� �→ c�

w ∈ C and � �→ c�

z ∈ C on � ∈ [0, 1] such that

Ψ�

w,z = c�

wΨ�

w + c�

zΨ
�

z(6)

is a unit vector for � ≥ 0 and also |c0
w|2 + |c0

z|2 = 1, then

lim
�→0

(
Ψ�

w,z,QB� (f)Ψ�

w,z

)
= |c0

w|2f(w) + |c0
z|2f(z).(7)

Hence the family of (typically) pure states ψ�

w,z (on the C∗-algebras A� in which
the map QB

�
takes values)202 defined by the vectors Ψ�

w,z in some sense converges

201See [Mielnik, 1968; Cantoni, 1975; Beltrametti and Cassinelli, 1984; Landsman, 1998], and
Subsection 6.3 below for the general meaning of the concept of a transition probability.
202For example, for M = R

2n each A� is equal to the C∗-algebra of compact operators on
L2(Rn), on which each vector state is certainly pure.
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to the mixed state on C0(M) defined by the right-hand side of (7). This is made
precise at the end of this subsection.

It goes without saying that Schrödinger’s coherent states (20) satisfy our axioms;
one may also verify (4) immediately from (21). Consequently, by (32) one has the
same property (3) for Weyl quantization (as long as f ∈ S(R2n)),203 that is,

lim
�→0

(Ψ�

z ,QW� (f),Ψ�

z) = f(z).(8)

Similarly, (5) holds for QW
�

as well.
In addition, many constructions referred to as coherent states in the literature

(cf. the references in footnote 129) satisfy (16), (17), and (4); see [Landsman,
1998].204 The general picture that emerges is that a coherent state centered at
z ∈ M is the Umdeutung of z (seen as a classical pure state, as explained above)
as a quantum-mechanical pure state.205

Despite their wide applicability (and some would say beauty), one has to look
beyond coherent states for a complete picture of the � → 0 limit of quantum
mechanics. The appropriate generalization is the concept of a continuous field of
states.206 This is defined relative to a given deformation quantization of a phase
space M ; cf. Subsection 4.3. If one now has a state ω� on A� for each � ∈ [0, 1]
(or, more generally, for a discrete subset of [0, 1] containing 0 as an accumulation
point), one may call the ensuing family of states a continuous field whenever the
function � �→ ω�(Q�(f)) is continuous on [0, 1] for each f ∈ C∞

c (M); this notion is
actually intrinsically defined by the continuous field of C∗-algebras, and is therefore
independent of the quantization maps Q�. In particular, one has

lim
�→0

ω�(Q�(f)) = ω0(f).(9)

Eq. (3) (or (8)) shows that coherent states are indeed examples of continuous
fields of states, with the additional property that each ω� is pure. As an example
where all states ω� are mixed, we mention the convergence of quantum-mechanical

203Here S(R2n) is the usual Schwartz space of smooth test functions with rapid decay at infinity.
204For example, coherent states of the type introduced by Perelomov [1986] fit into our setting

as follows [Simon, 1980]. Let G be a compact connected Lie group, and Oλ an integral coadjoint
orbit, corresponding to a highest weight λ. (One may think here of G = SU(2) and λ =
0, 1/2, 1, . . ..) Note that Oλ ∼= G/T , where T is the maximal torus in G with respect to which
weights are defined. Let Hhw

λ be the carrier space of the irreducible representation Uλ(G) with

highest weight λ, containing the highest weight vector Ωλ. (For G = SU(2) one hasHhw
j = C

2j+1,

the well-known Hilbert space of spin j, in which Ωj is the vector with spin j in the z-direction.)
For � = 1/k, k ∈ N, define H� := Hhw

λ/�
. Choosing a section σ : Oλ → G of the projection

G → G/T , one then obtains coherent states x �→ Uλ/�(σ(x))Ωλ/� with respect to the Liouville

measure on Oλ and c� = dim(Hhw
λ/�

). These states are obviously not defined for all values of �

in (0, 1], but only for the discrete set 1/N.
205This idea is also confirmed by the fact that at least Schrödinger’s coherent states are states

of minimal uncertainty; cf. the references in footnote 129.
206The use of this concept in various mathematical approaches to quantization is basically

folklore. For the C∗-algebraic setting see [Emch, 1984; Rieffel, 1989b; Werner, 1995; Blanchard,
1996; Landsman, 1998], and [Nagy, 2000].



Between Classical and Quantum 475

partition functions to their classical counterparts in statistical mechanics along
these lines; see [Lieb, 1973; Simon, 1980; Duffield, 1990], and [Nourrigat and
Royer, 2004]. Finally, one encounters the phenomenon that pure quantum states
may coverge to mixed classical ones. The first example of this has just been
exhibited in (7); other cases in point are energy eigenstates and WKB states (see
Subsections 5.4, 5.5, and 5.6 below).

5.2 Convergence of quantum dynamics to classical motion

Nonrelativistic quantum mechanics is based on the Schrödinger equation (3), which
more generally reads

HΨ(t) = i�
∂Ψ
∂t

.(10)

The formal solution with initial value Ψ(0) = Ψ is

Ψ(t) = e−
it
�
HΨ.(11)

Here we have assumed that H is a given self-adjoint operator on the Hilbert
space H of the system, so that this solution indeed exists and evolves unitarily
by Stone’s theorem; cf. [Reed and Simon, 1972] and [Simon, 1976]. Equivalently,
one may transfer the time-evolution from states (Schrödinger picture) to operators
(Heisenberg picture) by putting

A(t) = e
it
�
HAe−

it
�
H .(12)

We here restrict ourselves to particle motion in R
n, so that H = L2(Rn).207 In

that case, H is typically given by a formal expression like (3) (on some specific
domain).208 Now, the first thing that comes to mind is Ehrenfest’s Theorem [1927],
which states that for any (unit) vector Ψ ∈ L2(Rn) in the domain of Q�(qj) = xj

and ∂V (x)/∂xj one has

m
d2

dt2
〈xj〉(t) = −

〈
∂V (x)
∂xj

〉
(t),(13)

with the notation

〈xj〉(t) = (Ψ(t), xjΨ(t));〈
∂V (x)
∂xj

〉
(t) =

(
Ψ(t),

∂V (x)
∂xj

Ψ(t)
)

.(14)

This looks like Newton’s second law for the expectation value of x in the state
ψ, with the tiny but crucial difference that Newton would have liked to see
(∂V/∂xj)(〈x〉(t)) on the right-hand side of (13). Furthermore, even apart from
207See [Hunziker and Sigal, 2000] for a recent survey of N -body Schrödinger operators.
208One then has to prove self-adjointness (or the lack of it) on a larger domain on which the

operator is closed; see the literature cited in footnote 42.
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this point Ehrenfest’s Theorem by no means suffices to have classical behaviour,
since it gives no guarantee whatsoever that 〈x〉(t) behaves like a point particle.
Much of what follows can be seen as an attempt to sharpen Ehrenfest’s Theorem
to the effect that it does indeed yield appropriate classical equations of motion for
the expectation values of suitable operators.

We assume that the quantum Hamiltonian has the more general form

H = h(Q�(pj),Q�(qj)),(15)

where h is the classical Hamiltonian (i.e. a function defined on classical phase
space R

2n) and Q�(pj) and Q�(qj) are the operators given in (2). Whenever
this expression is ambiguous (as in cases like h(p, q) = pq), one has to assume a
specific quantization prescription such as Weyl quantization QW

�
(cf. (29)), so that

formally one has

H = QW
�

(h).(16)

In fact, in the literature to be cited an even larger class of quantum Hamiltonians
is treated by the methods explained here. The quantum Hamiltonian H carries an
explicit (and rather singular) �-dependence, and for �→ 0 one then expects (11)
or (12) to be related in one way or another to the flow of the classical Hamiltonian
h. This relationship was already foreseen by Schrödinger (1926a), and was formal-
ized almost immediately after the birth of quantum mechanics by the well-known
WKB approximation (cf. [Landau and Lifshitz, 1977] and Subsection 5.5 below).
A mathematically rigorous understanding of this and analogous approximation
methods only emerged much later, when a technique called microlocal analysis
was adapted from its original setting of partial differential equations [Hörmander,
1965; Kohn and Nirenberg, 1965; Duistermaat, 1974; 1996; Guillemin and Stern-
berg, 1977; Howe, 1980; Hörmander, 1979; 1985a; 1985b; Grigis and Sjöstrand,
1994] to the study of the �→ 0 limit of quantum mechanics. This adaptation (of-
ten called semiclassical analysis) and its results have now been explained in various
reviews written by the main players, notably [Robert, 1987; 1998; Helffer, 1988;
Paul and Uribe, 1995; Colin de Verdière, 1998; Ivrii, 1998; Dimassi and Sjöstrand,
1999], and [Martinez, 2002] (see also the papers in [Robert, 1992]). More specific
references will be given below.209

As mentioned before, the relationship between H and h provided by semiclas-
sical analysis is double-edged. On the one hand, one obtains approximate solu-
tions of (11) or (12), or approximate energy eigenvalues and energy eigenfunctions
(sometimes called quasi-modes) for small values of � in terms of classical data.
This is how the results are usually presented; one computes specific properties of
quantum theory in a certain regime in terms of an underlying classical theory.
On the other hand, however, with some effort the very same results can often be
reinterpreted as a partial explanation of the emergence of classical dynamics from

209For the heuristic theory of semiclassical asymptotics [Landau and Lifshitz, 1977] is a gold-
mine.
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quantum mechanics. It is the latter aspect of semiclassical analysis, somewhat
understated in the literature, that is of interest to us. In this and the next three
subsections we restrict ourselves to the simplest type of results, which nonetheless
provide a good flavour of what can be achieved and understood by these means.
By the same token, we just work with the usual flat phase space M = R

2n as
before.

The simplest of all results relating classical and quantum dynamics is this:210

If the classical Hamiltonian h(p, q) is at most quadratic in p and q, and
the Hamiltonian in (12) is given by (16), then

QW
�

(f)(t) = QW
�

(ft).(17)

Here ft is the solution of the classical equation of motion dft/dt = {h, ft}; equiv-
alently, one may write

ft(p, q) = f(p(t), q(t)),(18)

where t �→ (p(t), q(t)) is the classical Hamiltonian flow of h with initial condition
(p(0), q(0)) = (p, q). This holds for all decent f , e.g., f ∈ S(R2n).

This result explains quantum in terms of classical, but the converse may be
achieved by combining (17) with (9). This yields

lim
�→0

ω�(Q�(f)(t)) = ω0(ft)(19)

for any continuous field of states (ω�). In particular, for Schrödinger’s coherent
states (20) one obtains

lim
�→0

(
Ψ�

(p,q),Q�(f)(t)Ψ�

(p,q)

)
= ft(p, q).(20)

Now, whereas (17) merely reflects the good symmetry properties of Weyl quantiza-
tion,211 (and is false for QB

�
), eq. (20) is actually valid for a large class of realistic

Hamiltonians and for any deformation quantization map Q� that is asymptotically
equal to QW

�
(cf. (32)). A result of this type was first established by Hepp [1974];

further work in this direction includes [Yajima, 1979; Hogreve et al., 1983; Wang,
1986; Robinson, 1988a; 1988b; Combescure, 1992; Arai, 1995; Combescure and
Robert, 1997; Robert, 1998], and [Landsman, 1998].

Impressive results are available also in the Schrödinger picture. The counterpart
of (17) is that for any suitably smooth classical Hamiltonian h (even a time-
dependent one) that is at most quadratic in the canonical coordinates p and q on

210More generally, Egorov’s Theorem states that for a large class of Hamiltonians one has
QW

�
(f)(t) = QW

�
(ft) + O(�). See, e.g., [Robert, 1987; Dimassi and Sjöstrand, 1999], and [Mar-

tinez, 2002].
211Eq. (17) is equivalent to the covariance of Weyl quantization under the affine symplectic

group; cf. footnote 153.
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phase space R
2n one may construct generalized coherent states Ψ�

(p,q,C), labeled
by a set C of classical parameters dictated by the form of h, such that

e−
it
�
QW

�
(h)Ψ�

(p,q,C) = eiS(t)/�Ψ�

(p(t),q(t),C(t)).(21)

Here S(t) is the action associated with the classical trajectory (p(t), q(t)) deter-
mined by h, and C(t) is a solution of a certain system of differential equations
that has a classical interpretation as well [Hagedorn, 1998]. Schrödinger’s coher-
ent states (20) are a special case for the standard harmonic oscillator Hamiltonian.
For more general Hamiltonians one then has an asymptotic result [Hagedorn and
Joye, 1999; 2000]212

lim
�→0

∥∥∥e− it
�
QW

�
(h)Ψ�

(p,q,C) − eiS(t)/�Ψ�

(p(t),q(t),C(t))

∥∥∥ = 0.(22)

Once again, at first sight such results merely contribute to the understanding
of quantum dynamics in terms of classical motion. As mentioned, they may be
converted into statements on the emergence of classical motion from quantum
mechanics by taking expectation values of suitable �-dependent obervables of the
type QW

�
(f).

For finite �, the second term in (22) is a good approximation to the first - the
error even being as small as O(exp(−γ/�)) for some γ > 0 as �→ 0 - whenever t
is smaller than the so-called Ehrenfest time

TE = λ
−1

log(�−1),(23)

where λ is a typlical inverse time scale of the Hamiltonian (e.g., for chaotic sys-
tems it is the largest Lyapunov exponent).213 This is the typical time scale on
which semiclassical approximations to wave packet solutions of the time-dependent
Schrödinger equation with a general Hamiltonian tend to be valid [Ehrenfest, 1927;
Berry et al., 1979; Zaslavsky, 1981; Combescure and Robert, 1997; Bambusi et al.,
1999; Hagedorn and Joye, 2000].214 For example, Ehrenfest [1927] himself esti-
mated that for a mass of 1 gram a wave packet would double its width only in
212See also [Paul and Uribe, 1995; 1996] as well as the references listed after (20) for analogous

statements.
213Recall that throughout this section we assume that � has been made dimensionless through

an appropriate rescaling.
214One should distinguish here between two distinct approximation methods to the time-

dependent Schrödinger equation. Firstly, one has the semiclassical propagation of a quantum-
mechanical wave packet, i.e. its propagation as computed from the time-dependence of the pa-
rameters on which it depends according to the underlying classical equations of motion. It is
shown in the references just cited that this approximates the full quantum-mechanical prop-
agation of the wave packet well until t ∼ TE . Secondly, one has the time-dependent WKB
approximation (for integrable systems) and its generalization to chaotic systems (which typically
involve tens of thousands of terms instead of a single one). This second approximation is valid
on a much longer time scale, typically t ∼ �

−1/2 [O’Connor, Tomsovic, and Heller, 1992; Heller
and Tomsovic, 1993; Tomsovic and Heller, 1993; 2002; Vanicek and Heller, 2003]. Adding to
the confusion, Ballentine has claimed over the years that even the semiclassical propagation of a
wave packet approximates its quantum-mechanical propagation for times much longer than the
Ehrenfest time, typically t ∼ �

−1/2 [Ballentine et al., 1994; Ballentine, 2002; 2003]. This claim
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about 1013 years under free motion. However, Zurek and Paz [1995] have estimated
the Ehrenfest time for Saturn’s moon Hyperion to be of the order of 20 years! This
obviously poses a serious problem for the program of deriving (the appearance of)
classical behaviour from quantum mechanics, which affects all interpretations of
this theory.

Finally, we have not discussed the important problem of combining the limit
t → ∞ with the limit � → 0; this should be done in such a way that TE is kept
fixed. This double limit is of particular importance for quantum chaos; see Robert
[1998] and most of the literature cited in Subsection 5.6.

5.3 Wigner functions

The � → 0 limit of quantum mechanics is often discussed in terms of the so-
called Wigner function, introduced by Wigner [1932].215 Each unit vector (i.e.
wave function) Ψ ∈ L2(Rn) defines such a function W �

Ψ on classical phase space
M = R

2n by demanding that for each f ∈ S(R2n) one has

(
Ψ,QW

�
(f)Ψ

)
=
∫

R2n

dnpdnq

(2π)n
W �

Ψ(p, q)f(p, q).(24)

The existence of such a function may be proved by writing it down explicitly as

W �

Ψ(p, q) =
∫

Rn

dnv eipvΨ(q + 1
2
�v)Ψ(q − 1

2
�v).(25)

In other words, the quantum-mechanical expectation value of the Weyl quantiza-
tion of the classical observable f in a quantum state Ψ formally equals the classical
expectation value of f with respect to the distribution WΨ. However, the latter
may not be regarded as a probability distribution because it is not necessarily
positive definite.216 Despite this drawback, the Wigner function possesses some
attractive properties. For example, one has

QW
�

(W �

Ψ) = �
−n[Ψ].(26)

This somewhat perverse result means that if the Wigner function defined by Ψ is
seen as a classical observable (despite its manifest �-dependence!), then its Weyl

is based on the criterion that the quantum and classical (i.e. Liouville) probabilities are approx-
imately equal on such time scales, but the validity of this criterion hinges on the “statistical”
or “ensemble” interpretation of quantum mechanics. According to this interpretation, a pure
state provides a description of certain statistical properties of an ensemble of similarly prepared
systems, but need not provide a complete description of an individual system. See [Ballentine,
1970; 1986]. Though once defended by von Neumann, Einstein and Popper, this interpretation
has now completely fallen out of fashion.
215The original context was quantum statistical mechanics; one may write down (24) for mixed

states as well. See [Hillery et al., 1984] for a survey.
216Indeed, it may not even be in L1(R2n), so that its total mass is not necessarily defined, let

alone equal to 1. Conditions for the positivity of Wigner functions defined by pure states are
given by Hudson [1974]; see [Bröcker and Werner, 1995] for the case of mixed states.
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quantization is precisely (�−n times) the projection operator onto Ψ.217 Further-
more, one may derive the following formula for the transition probability:218

|(Φ,Ψ)|2 = �
n

∫
R2n

dnpdnq

(2π)n
W �

Ψ(p, q)W �

Φ(p, q).(27)

This expression has immediate intuitive appeal, since the integrand on the right-
hand side is supported by the area in phase space where the two Wigner functions
overlap, which is well in tune with the idea of a transition probability.

The potential lack of positivity of a Wigner function may be remedied by not-
ing that Berezin’s deformation quantization scheme (see (28)) analogously defines
functions B�

Ψ on phase space by means of

(
Ψ,QB

�
(f)Ψ

)
=
∫

R2n

dnpdnq

(2π)n
B�

Ψ(p, q)f(p, q).(28)

Formally, (28) and (28) immediately yield

B�

Ψ(p, q) = �
−n|(Ψ�

(p,q),Ψ)|2(29)

in terms of Schrödinger’s coherent states (20). This expression is manifestly pos-
itive definite. The existence of B�

Ψ may be proved rigorously by recalling that
the Berezin quantization map f �→ QB

�
(f) is positive from C0(R2n) to B(L2(Rn)).

This implies that for each (unit) vector Ψ ∈ L2(Rn) the map f �→ (Ψ,QB
�

(f)Ψ) is
positive from Cc(R2n) to C, so that (by the Riesz theorem of measure theory) there
must be a measure µΨ on R

2n such that (Ψ,QB
�

(f)Ψ) =
∫

dµΨ f . This measure,
then, is precisely given by dµΨ(p, q) = (2π)−ndnpdnq B�

Ψ(p, q). If (Ψ,Ψ) = 1, then
µΨ is a probability measure. Accordingly, despite its �-dependence, B�

Ψ defines a
bona fide classical probability distribution on phase space, in terms of which one
might attempt to visualize quantum mechanics to some extent.

For finite values of �, the Wigner and Berezin distribution functions are differ-
ent, because the quantization maps QW

�
and QB

�
are. The connection between B�

Ψ

and W �

Ψ is easily computed to be

B�

Ψ = W �

Ψ ∗ g�,(30)

where g� is the Gaussian function

g�(p, q) = (2/�)n exp(−(p2 + q2)/�).(31)

This is how physicists look at the Berezin function,219 viz. as a Wigner function
smeared with a Gaussian so as to become positive. But since g� converges to a

217In other words, WΨ is the Weyl symbol of the projection operator [Ψ].
218This formula is well defined since Ψ ∈ L2(Rn) implies W �

Ψ ∈ L2(R2n).
219The ‘Berezin’ functions B�

Ψ were introduced by Husimi [1940] from a different point of view,
and are therefore actually called Husimi functions by physicists.



Between Classical and Quantum 481

Dirac delta function as � → 0 (with respect to the measure (2π)−ndnpdnq in the
sense of distributions), it is clear from (30) that as distributions one has220

lim
�→0

(
B�

Ψ −W �

Ψ

)
= 0.(32)

See also (32). Hence in the study of the limit �→ 0 there is little advantage in the
use of Wigner functions; quite to the contrary, in limiting procedures their generic
lack of positivity makes them more difficult to handle than Berezin functions.221

For example, one would like to write the asymptotic behaviour (8) of coherent
states in the form lim�→0 W �

Ψ�
z

= δz. Although this is indeed true in the sense of
distributions, the corresponding limit

lim
�→0

B�

Ψ�
z

= δz,(33)

exists in the sense of (probability) measures, and is therefore defined on a much
larges class of test functions.222 Here and in what follows, we abuse notation: if
µ0 is some probability measure on R

2n and (Ψ�) is a sequence of unit vectors in
L2(Rn) indexed by � (and perhaps other labels), then B�

Ψ� → µ0 for � → 0 by
definition means that for any f ∈ C∞

c (R2n) one has223

lim
�→0

(
Ψ�,QB

�
(f)Ψ�

)
=
∫

R2n

dµ0 f.(34)

5.4 The classical limit of energy eigenstates

Having dealt with coherent states Ψ�

z in (33), in this subsection we discuss the
much more difficult problem of computing the limit measure µ0 for eigenstates
Ψ�

n of the quantum Hamiltonian H. Thus we assume that H has eigenvalues E�

n

labeled by n ∈ N (defined with or without 0 according to convenience), and also
depending on � because of the explicit dependence of H on this parameter. The
associated eigenstates Ψ�

n then by definition satisfy

HΨ�

n = E�

nΨ�

n .(35)

Here we incorporate the possibility that the eigenvalue E�

n is degenerate, so that
the label n extends n. For example, for the one-dimensional harmonic oscillator
one has E�

n = �ω(n+ 1
2
) (n = 0, 1, 2, . . .) without multiplicity, but for the hydrogen

220 Eq. (32) should be interpreted as a limit of the distribution on D(R2n) or S(R2n) defined
by B�

Ψ−W �

Ψ. Both functions are continuous for � > 0, but lose this property in the limit �→ 0,
generally converging to distributions.
221See, however, [Robinett, 1993] and [Arai, 1995]. It should be mentioned that (32) expresses

the asymptotic equivalence of Wigner and Berezin functions as distributions on �-independent
test functions. Even in the limit �→ 0 one is sometimes interested in studying O(�) phenomena,
in which case one should make a choice.
222Namely those in C0(R2n) rather than in D(R2n) or S(R2n).
223Since QB

�
may be extended from C∞

c (R2n) to L∞(R2n), one may omit the stipulation that
µ0 be a probability measure in this definition if one requires convergence for all f ∈ L∞(R2n), or
just for all f in the unitization of the C∗-algebra C0(R2n).
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atom the Bohrian eigenvalues E�

n = −mee
4/2�

2n2 (where me is the mass of the
electron and e is its charge) are degenerate, with the well-known eigenfunctions
Ψ�

(n,l,m) [Landau and Lifshitz, 1977]. Hence in this case one has n = (n, l,m) with
n = 1, 2, 3, . . ., subject to l = 0, 1, . . . , n− 1, and m = −l, . . . , l.

In any case, it makes sense to let n → ∞; this certainly means n → ∞, and
may in addition involve sending the other labels in n to infinity (subject to the ap-
propriate restrictions on n→∞, as above). One then expects classical behaviour
à la Bohr if one simultaneously lets � → 0 whilst E�

n → E0 converges to some
‘classical’ value E0. Depending on how one lets the possible other labels behave in
this limit, this may also involve similar asymptotic conditions on the eigenvalues
of operators commuting with H — see below for details in the integrable case. We
denote the collection of such eigenvalues (including E�

n) by E�

n . (Hence in the case
where the energy levels E�

n are nondegenerate, the label E is just E.) In general,
we denote the collective limit of the eigenvalues E�

n as �→ 0 and n→∞ by E0.
For example, for the hydrogen atom one has the additional operators J2 of

total angular momentum as well as the operator J3 of angular momentum in the
z-direction. The eigenfunction Ψ�

(n,l,m) of H with eigenvalue E�

n is in addition
an eigenfunction of J2 with eigenvalue j2

�
= �

2l(l + 1) and of J3 with eigenvalue
j�

3 = �m. Along with n→∞ and �→ 0, one may then send l→∞ and m→ ±∞
in such a way that j2

�
and j�

3 approach specific constants.
The object of interest, then, is the measure on phase space obtained as the limit

of the Berezin functions (29), i.e.

µ0
E = lim

�→0,n→∞
B�

Ψ�
n
.(36)

Although the pioneers of quantum mechanics were undoubtedly interested in quan-
tities like this, it was only in the 1970s that rigorous results were obtained. Two
cases are well understood: in this subsection we discuss the integrable case, leaving
chaotic and more generally ergodic motion to Subsection 5.6.

In the physics literature, it was argued that for an integrable system the lim-
iting measure µ0

E is concentrated (in the form of a δ-function) on the invariant
torus associated to E0 [Berry, 1977a].224 Independently, mathematicians began to
study a quantity very similar to µ0

E, defined by limiting sequences of eigenfunc-
tions of the Laplacian on a Riemannian manifold M . Here the underlying classical
flow is Hamiltonian as well, the corresponding trajectories being the geodesics of
the given metric (see, for example, [Klingenberg, 1982; Abraham and Marsden,
1985; Katok and Hasselblatt, 1995], or [Landsman, 1998]).225 The ensuing picture
largely confirms the folklore of the physicists:

In the integrable case the limit measure µ0
E is concentrated on invariant

tori.
224This conclusion was, in fact, reached from the Wigner function formalism. See [Ozorio de

Almeida, 1988] for a review of work of Berry and his collaborators on this subject.
225The simplest examples of integrable geodesic motion are n-tori, where the geodesics are

projections of lines, and the sphere, where the geodesics are great circles [Katok and Hasselblatt,
1995].
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See [Charbonnel, 1986; 1988; Zelditch, 1990, 1996a; Toth, 1996; 1999; Nadirashvili
et al., 2001], and [Toth and Zelditch, 2002; 2003a; 2003b].226 Finally, as part of
the transformation of microlocal analysis to semiclassical analysis (cf. Subsection
5.2), these results were adapted to quantum mechanics [Paul and Uribe, 1995;
1996].

Let us now give some details for integrable systems (of Liouville type); these
include the hydrogen atom as a special case. Integrable systems are defined
by the property that on a 2p-dimensional phase space M one has p indepen-
dent227 classical observables (f1 = h, f2, . . . , fp) whose mutual Poisson brack-
ets all vanish [Arnold, 1989]. One then hopes that an appropriate quantization
scheme Q� exists under which the corresponding quantum observables (Q�(f1) =
H,Q�(f2), . . . ,Q�(fp)) are all self-adjoint and mutually commute (on a common
core).228 This is indeed the case for the hydrogen atom, where (f1, f2, f3) may
be taken to be (h, j2, j3) (where j2 is the total angular momentum and j3 is its
z-component),229 H is given by (16), J2 = QW

�
(j2), and J3 = QW

�
(j3). In gen-

eral, the energy eigenfunctions Ψ�

n will be joint eigenfunctions of the operators
(Q�(f1), . . . ,Q�(fp)), so that E�

n = (E�

n1
, . . . , E�

np
), with Q�(fk)Ψ�

n = E�

nk
Ψ�

n . We
assume that the submanifolds ∩pk=1f

−1
k (xk) are compact and connected for each

x ∈ R
p, so that they are tori by the Liouville–Arnold Theorem [Abraham and

Marsden, 1985; Arnold, 1989].
Letting �→ 0 and n→∞ so that E�

nk
→ E0

k for some point E0 = (E0
1 , . . . , E0

p) ∈
R
p, it follows that the limiting measure µ0

E as defined in (36) is concentrated on
the invariant torus ∩pk=1f

−1
k (E0

k). This torus is generically p-dimensional, but for
singular points E0 it may be of lower dimension. In particular, in the exceptional
circumstance where the invariant torus is one-dimensional, µ0

E is concentrated on a
classical orbit. Of course, for p = 1 (where any Hamiltonian system is integrable)
this singular case is generic. Just think of the foliation of R

2 by the ellipses that
form the closed orbits of the harmonic oscillator motion.230

226These papers consider the limit n → ∞ without �→ 0; in fact, a physicist would say that
they put � = 1. In that case En → ∞; in this procedure the physicists’ microscopic E ∼ O(�)
and macroscopic E ∼ O(1) regimes correspond to E ∼ O(1) and E →∞, respectively.
227I.e. df1 ∧ · · · ∧ dfp �= 0 everywhere. At this point we write 2p instead of 2n for the dimension

of phase space in order to avoid notational confusion.
228There is no general theory of quantum integrable systems. Olshanetsky and Perelomov [1981;

1983] form a good starting point.
229In fact, if µ is the momentum map for the standard SO(3)-action on R

3, then j2 =
P3
k=1 µ2

k
and j3 = µ3.
230 It may be enlightening to consider geodesic motion on the sphere; this example may be seen

as the hydrogen atom without the radial degree of freedom (so that the degeneracy in question
occurs in the hydrogen atom as well). If one sends l→∞ and m→∞ in the spherical harmonics
Y m
l (which are eigenfunctions of the Laplacian on the sphere) in such a way that lim m/l = cos ϕ,

then the invariant tori are generically two-dimensional, and occur when cos ϕ �= ±1; an invariant
torus labeled by such a value of ϕ �= 0, π comprises all great circles (regarded as part of phase
space by adding to each point of the geodesic a velocity of unit length and direction tangent to
the geodesic) whose angle with the z-axis is ϕ (more precisely, the angle in question is the one
between the normal of the plane through the given great circle and the z-axis). For cos ϕ = ±1
(i.e. m = ±l), however, there is only one great circle with ϕ = 0 namely the equator (the case



484 N.P. Landsman

What remains, then, of Bohr’s picture of the hydrogen atom in this light?231

Quite a lot, in fact, confirming his remarkable physical intuition. The energy
levels Bohr calculated are those given by the Schrödinger equation, and hence re-
main correct in mature quantum mechanics. His orbits make literal sense only in
the “correspondence principle” limit � → 0, n → ∞, where, however, the situa-
tion is even better than one might expect for integrable systems: because of the
high degree of symmetry of the Kepler problem [Guillemin and Sternberg, 1990],
one may construct energy eigenfunctions whose limit measure µ0 concentrates on
any desired classical orbit [Nauenberg, 1989].232 In order to recover a travelling
wave packet, one has to form wave packets from a very large number of energy
eigenstates with very high quantum numbers, as explained in Subsection 2.4. For
finite n and � Bohr’s orbits seem to have no meaning, as already recognized by
Heisenberg [1969] in his pathfinder days!233

5.5 The WKB approximation

One might have expected a section on the � → 0 limit of quantum mechanics
to be centered around the WKB approximation, as practically all textbooks base
their discussion of the classical limit on this notion. Although the scope of this
method is actually rather limited, it is indeed worth saying a few words about
it. For simplicity we restrict ourselves to the time-independent case.234 In its
original formulation, the time-independent WKB method involves an attempt to
approximate solutions of the time-independent Schrödinger equation HΨ = EΨ
by wave functions of the type

Ψ(x) = a�(x)e
i
�
S(x),(37)

where a� admits an expansion in � as a power series. Assuming the Hamiltonian
H is of the form (15), plugging the Ansatz (37) into the Schrödinger equation, and
expanding in �, yields in lowest order the classical (time-independent) Hamilton–
Jacobi equation

h

(
∂S

∂x
, x

)
= E,(38)

ϕ = π corresponds to the same equator traversed in the opposite direction). Hence in this
case the invariant torus is one-dimensional. The reader may be surprised that the invariant tori
explicitly depend on the choice of variables, but this feature is typical of so-called degenerate
systems; see Arnold (1989), §51.
231We ignore coupling to the electromagnetic field here; see footnote 26.
232Continuing footnote 230, for a given principal quantum number n one forms the eigenfunction

Ψ�

(n,n−1,n−1)
by multiplying the spherical harmonic Y n−1

n−1 with the appropriate radial wave

function. The limiting measure (36) as n → ∞ and � → 0 is then concentrated on an orbit
(rather than on an invariant torus). Now, beyond what it possible for general integrable systems,
one may use the SO(4) symmetry of the Kepler problem and the construction in footnote 204 for
the group-theoretic coherent states of Perelomov [1986] to find the desired eigenfunctions. See
also [De Bièvre, 1992] and [De Bièvre et al., 1993].
233The later Bohr also conceded this through his idea that causal descriptions are complemen-

tary to space-time pictures; see Subsection 3.3.
234Cf. [Robert, 1998] and references therein for the time-dependent case.
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supplemented by the so-called (homogeneous) transport equation235

(
1
2
∆S +

∑
k

∂S

∂xk
∂

∂xk

)
a0 = 0.(39)

In particular, E should be a classically allowed value of the energy. Even when it
applies (see below), in most cases of interest the Ansatz (37) is only valid locally
(in x), leading to problems with caustics. These problems turn out to be an
artefact of the use of the coordinate representation that lies behind the choice
of the Hilbert space H = L2(Rn), and can be avoided [Maslov and Fedoriuk,
1981]: the WKB method really comes to its own in a geometric reformulation in
terms of symplectic geometry. See [Arnold, 1989; Bates and Weinstein, 1995], and
[Dimassi and Sjöstrand, 1999] for (nicely complementary) introductory treatments,
and [Guillemin and Sternberg, 1977; Hörmander, 1985a; 1985b], and [Duistermaat,
1974; 1996] for advanced accounts.

The basic observation leading to this reformulation is that in the rare cases that
S is defined globally as a smooth function on the configuration space R

n, it defines
a submanifold L of the phase space M = R

2n by L = {(p = dS(x), q = x), x ∈ R
n}.

This submanifold is Lagrangian in having two defining properties: firstly, L is n-
dimensional, and secondly, the restriction of the symplectic form (i.e.

∑
k dpk ∧

dqk) to L vanishes. The Hamilton–Jacobi equation (38) then guarantees that
the Lagrangian submanifold L ⊂ M is contained in the surface ΣE = h−1(E) of
constant energy E in M . Consequently, any solution of the Hamiltonian equations
of motion that starts in L remains in L.

In general, then, the starting point of the WKB approximation is a Lagrangian
submanifold L ⊂ ΣE ⊂ M , rather than some function S that defines it locally.
By a certain adaptation of the geometric quantization procedure, one may, under
suitable conditions, associate a unit vector ΨL in a suitable Hilbert space to L,
which for small � happens to be a good approximation to an eigenfunction of
H at eigenvalue E. This strategy is successful in the integrable case, where the
nondegenerate tori (i.e. those of maximal dimension n) provide such Lagrangian
submanifolds of M ; the associated unit vector ΨL then turns out to be well defined
precisely when L satisfies (generalized) Bohr–Sommerfeld quantization conditions.
In fact, this is how the measures µ0

E in (36) are generally computed in the integrable
case.

If the underlying classical system is not integrable, it may still be close enough
to integrability for invariant tori to be defined. Such systems are called quasi-
integrable or perturbations of integrable systems, and are described by the Kol-
mogorov–Arnold–Moser (KAM) theory; see [Gallavotti, 1983; Abraham and Mars-
den, 1985; Ozorio de Almeida, 1988; Arnold, 1989; Lazutkin, 1993; Gallavotti et
al., 2004], and many other books. In such systems the WKB method continues to

235Only stated here for a classical Hamiltonian h(p, q) = p2/2m + V (q). Higher-order terms
in � yield further, inhomogeneous transport equations for the expansion coefficients aj(x) in
a� =

P
j aj�

j . These can be solved in a recursive way, starting with (39).
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provide approximations to the energy eigenstates relevant to the surviving invari-
ant tori [Colin de Verdière, 1977; Lazutkin, 1993; Popov, 2000], but already loses
some of its appeal.

In general systems, notably chaotic ones, the WKB method is almost useless.
Indeed, the following theorem of Werner [1995] shows that the measure µ0

E defined
by a WKB function (37) is concentrated on the Lagrangian submanifold L defined
by S:

Let a� be in L2(Rn) for each � > 0 with pointwise limit a0 = lim�→0 a�

also in L2(Rn),236 and suppose that S is almost everywhere differen-
tiable. Then for each f ∈ C∞

c (R2n):

lim
�→0

(
a�e

i
�
S ,QB

�
(f)a�e

i
�
S
)

=
∫

Rn

dnx |a0(x)|2f
(

∂S

∂x
, x

)
.(40)

As we shall see shortly, this behaviour is impossible for ergodic systems, and this
is enough to seal the fate of WKB for chaotic systems in general (except perhaps
as a hacker’s tool).

Note, however, that for a given energy level E the discussion so far has been
concerned with properties of the classical trajectories on ΣE (where they are con-
strained to remain by conservation of energy). Now, it belongs to the essence of
quantum mechanics that other parts of phase space than ΣE might be relevant
to the spectral properties of H as well. For example, for a classical Hamiltonian
of the simple form h(p, q) = p2/2m + V (q), this concerns the so-called classically
forbidden area {q ∈ R

n | V (q) > E} (and any value of p). Here the classical
motion can have no properties like integrability or ergodicity, because it does not
exist. Nonetheless, and perhaps counterintuitively, it is precisely here that a slight
adaptation of the WKB method tends to be most effective. For q = x in the
classically forbidden area, the Ansatz (37) should be replaced by

Ψ(x) = a�(x)e−
S(x)

� ,(41)

where this time S obeys the Hamilton–Jacobi equation ‘for imaginary time’, 237

i.e.

h

(
i
∂S

∂x
, x

)
= E,(42)

and the transport equation (39) is unchanged. For example, it follows that in one
dimension (with a Hamiltonian of the type (3)) the WKB function (41) assumes
the form

Ψ(x) ∼ e−
√

2m
�

R |x| dy
√
V (y)−E(43)

236This assumption is not made in Werner (1995), who directly assumes that Ψ = a0 exp(iS/�)
in (37).
237This terminology comes from the Lagrangian formalism, where the classical action S =R
dt L(t) is replaced by iS through the substitution t = −iτ with τ ∈ R.



Between Classical and Quantum 487

in the forbidden region, which explains both the tunnel effect in quantum mechan-
ics (i.e. the propagation of the wave function into the forbidden region) and the
fact that this effect disappears in the limit � → 0. However, even here the use of
WKB methods has now largely been superseded by techniques developed by Ag-
mon [1982]; see, for example, [Hislop and Sigal, 1996] and [Dimassi and Sjöstrand,
1999] for reviews.

5.6 Epilogue: quantum chaos

Chaos in classical mechanics was probably known to Newton and was famously
highlighted by Poincaré (1892–1899),238 but its relevance for (and potential threat
to) quantum theory was apparently first recognized by Einstein [1917] in a paper
that was ‘completely ignored for 40 years’ [Gutzwiller, 1992].239 Currently, the
study of quantum chaos is one of the most thriving businesses in all of physics,
as exemplified by innumerable conference proceedings and monographs on the
subject, ranging from the classic by Gutzwiller [1990] to the online opus magnum
by Cvitanovic et al. [2005].240 Nonetheless, the subject is still not completely
understood, and provides a fascinating testing ground for the interplay between
classical and quantum mechanics.

One should distinguish between various different goals in the field of quantum
chaos. The majority of papers and books on quantum chaos is concerned with the
semiclassical analysis of some concretely given quantum system having a chaotic
system as its classical limit. This means that one tries to approximate (for small
�) a suitable quantum-mechanical expression in terms of data associated with the
underlying classical motion. Michael Berry even described this goal as the “Holy
Grail” of quantum chaos. The methods described in Subsection 5.2 contribute
to this goal, but are largely independent of the nature of the dynamics. In this
subsection we therefore concentrate on techniques and results specific to chaotic
motion.

Historically, the first new tool in semiclassical approximation theory that specif-
ically applied to chaotic systems was the so-called Gutzwiller trace formula.241

Roughly speaking, this formula approximates the eigenvalues of the quantum
Hamiltonian in terms of the periodic (i.e. closed) orbits of the underlying clas-

238See also [Diacu and Holmes, 1996] and [Barrow-Green, 1997] for historical background.
239It was the study of the very same Helium atom that led Heisenberg to believe that a fun-

damentally new ‘quantum’ mechanics was needed to replace the inadequate old quantum theory
of Bohr and Sommerfeld. See [Mehra and Rechenberg, 1982b] and [Cassidy, 1992]. Another
microscopic example of a chaotic system is the hydrogen atom in an external magnetic field.
240Other respectable books include, for example, [Guhr et al., 1998, [Haake, 2001] and [Reichl,

2004].
241This attribution is based on Gutzwiller [1971]. A similar result was independently derived

by Balian and Bloch [1972; 1974]. See also [Gutzwiller, 1990] and [Brack and Bhaduri, 2003]
for mathematically heuristic but otherwise excellent accounts of semiclassical physics based on
the trace formula. Mathematically rigorous discussions and proofs may be found in [Colin de
Verdière, 1973; Duistermaat and Guillemin, 1975; Guillemin and Uribe, 1989; Paul and Uribe,
1995], and [Combescure et al., 1999].
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sical Hamiltonian.242 The Gutzwiller trace formula does not start from the wave
function (as the WKB approximation does), but from the propagator K(x, y, t).
Physicists write this as K(x, y, t) = 〈x| exp(−itH/�)|y〉, whereas mathematicians
see it as the Green’s function in the formula

e−
it
�
HΨ(x) =

∫
dny K(x, y, t)Ψ(y),(44)

where Ψ ∈ L2(Rn). Its (distributional) Laplace transform

G(x, y,E) =
1
i�

∫ ∞

0

dt K(x, y, t)e
itE

�(45)

contains information about both the spectrum and the eigenfunctions; for if the
former is discrete, one has

G(x, y,E) =
∑
j

Ψj(x)Ψj(y)
E − Ej

.(46)

It is possible to approximate K or G itself by an expression of the type

K(x, y, t) ∼ (2πi�)−n/2
∑
P

√
|det VP |e i

�
SP (x,y,t)− 1

2
iπµP ,(47)

where the sum is over all classical paths P from y to x in time t (i.e. paths that
solve the classical equations of motion). Such a path has an associated action
SP , Maslov index µP , and Van Vleck [1928] determinant detVP [Arnold, 1989].
For chaotic systems one typically has to include tens of thousands of paths in
the sum, but if one does so the ensuing approximation turns out to be remarkably
successful [Heller and Tomsovic, 1993; Tomsovic and Heller, 1993]. The Gutzwiller
trace formula is a semiclassical approximation to

g(E) =
∫

dnxG(x, x,E) =
∑
j

1
E − Ej

,(48)

for a quantum Hamiltonian with discrete spectrum and underlying classical Hamil-
tonian having chaotic motion. It has the form

g(E) ∼ g0(E) +
1
i�

∑
P

∞∑
k=1

TP
2 sinh(kχP /2)

e
ik
�
SP (E)− 1

2
iπµP ,(49)

where g0 is a smooth function giving the mean density of states. This time, the
sum is over all (prime) periodic paths P of the classical Hamiltonian at energy E
with associated action SP (E) =

∮
pdq (where the momentum p is determined by

P , given E), period TP , and stability exponent χP (this is a measure of how rapidly
neighbouring trajectories drift away from P ). Since the frustration expressed by
242Such orbits are dense but of Liouville measure zero in chaotic classical systems. Their crucial

role was first recognized by Poincaré (1892–1899).
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Einstein [1917], this was the first indication that semiclassical approximations had
some bearing on chaotic systems.

Another important development concerning energy levels was the formulation
of two key conjectures:243

• If the classical dynamics defined by the classical Hamiltonian h is integrable,
then the spectrum of H is “uncorrelated” or “random” [Berry and Tabor,
1977].

• If the classical dynamics defined by h is chaotic, then the spectrum of H is
“correlated” or “regular” [Bohigas, Giannoni, and Schmit, 1984].

The notions of correlation and randomness used here can be made precise using
notions like the distribution of level spacings and the pair correlation function
of eigenvalues; see [Zelditch, 1996a] and [De Bièvre, 2001] for introductory treat-
ments, and most of the literature cited in this subsection for further details.244

We now consider energy eigenfunctions instead of eigenvalues, and return to the
limit measure (36). In the non (quasi-) integrable case, the key result is that

for ergodic classical motion,245 the limit measure µ0
E coincides with the

(normalized) Liouville measure induced on the constant energy surface
ΣE ≡ h−1(E).246

This result was first suggested in the mathematical literature for ergodic geodetic
motion on compact hyperbolic Riemannian manifolds [Snirelman, 1974], where
it was subsequently proved with increasing generality [Colin de Verdière, 1985;
Zelditch, 1987].247 For certain other ergodic systems this property was proved by
Zelditch [1991], Gérard and Leichtnam [1993], Zelditch and Zworski [1996], and

243Strictly speaking, both conjectures are wrong; for example, the harmonic oscillator yields a
counterexamples to the first one. See [Zelditch, 1996a] for further information. Nonetheless, the
conjectures are believed to be true in a deeper sense.
244This aspect of quantum chaos has applications to number theory and might even lead to

a proof of the Riemann hypothesis; see, for example, [Sarnak, 1999; Berry and Keating, 1999],
and many other recent papers. Another relevant connection, related to the one just mentioned,
is between energy levels and random matrices; see especially [Guhr et al., 1998]. For the plain
relevance of all this to practical physics see [Mirlin, 2000].
245Ergodicity is the weakest property that any chaotic dynamical system possesses. See [Katok

and Hasselblatt, 1995; Emch and Liu, 2002; Gallavotti et al., 2004], and countless other books.
246The unnormalized Liouville measure µuE on ΣE is defined by µuE(B) =R
B dSE(x) (‖dh(x)‖)−1, where dSE is the surface element on ΣE and B ⊂ ΣE is a

Borel set. If ΣE is compact, the normalized Liouville measure µE on ΣE is given by
µE(B) = µuE(B)/µuE(ΣE). It is a probability measure on ΣE , reflecting the fact that the

eigenvectors Ψ�
n are normalized to unit length so as to define quantum-mechanical states.

247In the Riemannian case with � = 1 the cosphere bundle S∗Q (i.e. the subbundle of the
cotangent bundle T ∗Q consisting of one-forms of unit length) plays the role of ΣE . Low-
dimensional examples of ergodic geodesic motion are provided by compact hyperbolic spaces.
Also cf. [Zelditch, 1992a] for the physically important case of a particle moving in an external
gauge field. See also the appendix to Lazutkin [1993] by A.I. Shnirelman, and [Nadirashvili et
al., 2001] for reviews.
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others; to the best of our knowledge a completely general proof remains to be
given.

An analogous version for Schrödinger operators on R
n was independently stated

in the physics literature [Berry, 1977b; Voros, 1979], and was eventually proved
under certain assumptions on the potential by Helffer, Martinez and Robert [1987],
Charbonnel [1992], and Paul and Uribe [1995]. Under suitable assumptions one
therefore has

lim
�→0,n→∞

(
Ψ�

n ,QB
�

(f)Ψ�

n

)
=
∫

ΣE

dµE f(50)

for any f ∈ C∞
c (R2n), where again µE is the (normalized) Liouville measure on

ΣE ⊂ R
2n (assuming this space to be compact). In particular, in the ergodic case

µ0
E only depends on E0 and is the same for (almost) every sequence of energy eigen-

functions (Ψ�

n) as long as E�

n → E0.248 Thus the support of the limiting measure
is uniformly spread out over the largest part of phase space that is dynamically
possible.

The result that for ergodic classical motion µ0
E is the Liouville measure on ΣE

under the stated condition leaves room for the phenomenon of ‘scars’, according
to which in chaotic systems the limiting measure is sometimes concentrated on
periodic classical orbits. This terminology is used in two somewhat different ways
in the literature. ‘Strong’ scars survive in the limit �→ 0 and concentrate on stable
closed orbits;249 they may come from ‘exceptional’ sequences of eigenfunctions.250

These are mainly considered in the mathematical literature; cf. [Nadirashvili et
al., 2001] and references therein.

In the physics literature, on the other hand, the notion of a scar usually refers
to an anomalous concentration of the functions B�

Ψ�
n

(cf. (29)) near unstable closed
orbits for finite values of �; see [Heller and Tomsovic, 1993; Tomsovic and Heller,
1993; Kaplan and Heller, 1998a; 1998b], and [Kaplan, 1999] for surveys. Such
scars turn out to be crucial in attempts to explain the energy spectrum of the
associated quantum system. The reason why such scars do not survive the (double)
limit in (36) is that this limit is defined with respect to �-independent smooth
test functions. Physically, this means that one averages over more and more De
Broglie wavelengths as � → 0, eventually losing information about the single
wavelength scale [Kaplan, 1999]. Hence to pick them up in a mathematically
sound way, one should redefine (36) as a pointwise limit [Duclos and Hogreve,
1993; Paul and Uribe, 1996; 1998]. In any case, there is no contradiction between
the mathematical results cited and what physicists have found.

Another goal of quantum chaos is the identification of chaotic phenomena within
a given quantum-mechanical model. Here the slight complication arises that one
248 The result is not necessarily valid for all sequences (Ψ�

n ) with the given limiting behaviour,
but only for ‘almost all’ such sequences (technically, for a class of sequences of density 1). See,
for example, [De Bièvre, 2001] for a simple explanation of this.
249An orbit γ ⊂M is called stable when for each neighbourhood U of γ there is neighbourhood

V ⊂ U of γ such that z(t) ∈ U for all z ∈ V and all t.
250Cf. footnote 248.
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cannot simply copy the classical definition of chaos in terms of diverging trajecto-
ries in phase space, since (by unitarity of time-evolution) in quantum mechanics
‖Ψ(t) − Φ(t)‖ is constant in time t for solutions of the Schrödinger equation.
However, this just indicates that should intrinsic quantum chaos exist, it has to
be defined differently from classical chaos.251 This has now been largely accom-
plished in the algebraic formulation of quantum theory [Benatti, 1993; Emch et
al., 1994; Zelditch, 1996b; 1996c; Belot and Earman, 1997; Alicki and Fannes,
2001; Narnhofer, 2001]. The most significant recent development in this direction
in the “heuristic” literature has been the study of the quantity

M(t) = |(e− it
�

(H+Σ)Ψ, e−
it
�
HΨ)|2,(51)

where Ψ is a coherent state (or Gaussian wave packet), and Σ is some perturbation
of the Hamiltonian H [Peres, 1984]. In what is generally regarded as a break-
through in the field, Jalabert and Pastawski [2001] discovered that in a certain
regime M(t) is independent of the detailed form of Σ and decays as ∼ exp(−λt),
where λ is the (largest) Lyapunov exponent of the underlying classical system. See
[Cucchietti, 2004] for a detailed account and further development.

In any case, the possibility that classical chaos appears in the � → 0 limit
of quantum mechanics is by no means predicated on the existence of intrinsic
quantum chaos in the above sense.252 For even in the unlikely case that quan-
tum dynamics would turn out to be intrinsically non-chaotic, its classical limit is
sufficiently singular to admit kinds of classical motion without a qualitative coun-
terpart in quantum theory. This possibility is not only confirmed by most of the
literature on quantum chaos (little of which makes any use of notions of intrinsic
quantum chaotic motion), but even more so by the possibility of incomplete mo-
tion. This is a type of dynamics in which the flow of the Hamiltonian vector field is
only defined until a certain time tf <∞ (or from an initial time ti > −∞), which
means that the equations of motion have no solution for t > tf (or t < ti).253 The
251As pointed out by Belot and Earman [1997], the Koopman formulation of classical mechanics

(cf. footnote 172) excludes classical chaos if this is formulated in terms of trajectories in Hilbert
space. The transition from classical to quantum notions of chaos can be smoothened by first
reformulating the classical definition of chaos (normally put in terms of properties of trajectories
in phase space).
252Arguments by [Ford, 1988] and others to the effect that quantum mechanics is wrong because

it cannot give rise to chaos in its classical limit have to be discarded for the reasons given
here. See also [Belot and Earman, 1997]. In fact, using the same argument, such authors could
simultaneously have ‘proved’ the opposite statement that any classical dynamics that arises as
the classical limit of a quantum theory with non-degenerate spectrum must be ergodic. For the
naive definition of quantum ergodic flow clearly is that quantum time-evolution sweeps out all
states at some energy E; but for non-degenerate spectra this is a tautology by definition of an
eigenfunction!
253 The simplest examples are incomplete Riemannian manifolds Q with geodesic flow; within

this class, the case Q = (0, 1) with flat metric is hard to match in simplicity. Clearly, the particle
reaches one of the two boundary points in finite time, and does not know what to do (or even
whether its exists) afterwards. Other examples come from potentials V on Q = R

n with the
property that the classical dynamics is incomplete; see [Reed and Simon, 1975] and [Gallavotti,
1983]. On a somewhat different note, the Universe itself has incomplete dynamics because of the
Big Bang and possible Big Crunch.
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point, then, is that unitary quantum dynamics, though intrinsically complete, may
very well have incomplete motion as its classical limit.254

6 THE LIMIT N →∞

In this section we show to what extent classical physics may approximately emerge
from quantum theory when the size of a system becomes large. Strictly classical
behaviour would be an idealization reserved for the limit where this size is infinite,
which we symbolically denote by “lim N → ∞”. As we shall see, mathematically
speaking this limit is a special case of the limit � → 0 discussed in the previous
chapter. What is more, we shall show that formally the limit N → ∞ even falls
under the heading of continuous fields of C∗-algebras and deformation quantization
(see Subsection 4.3.) Thus the ‘philosophical’ nature of the idealization involved in
assuming that a system is infinite is much the same as that of assuming �→ 0 in
a quantum system of given (finite) size; in particular, the introductory comments
in Section 1 apply here as well.

An analogous discussion pertains to the derivation of thermodynamics from
statistical mechanics [Emch and Liu, 2002; Batterman, 2005]. For example, in
theory phase transitions only occur in infinite systems, but in practice one sees
them every day. Thus it appears to be valid to approximate a pot of 1023 boiling
water molecules by an infinite number of such molecules. The basic point is that
the distinction between microscopic and macroscopic regimes is unsharp unless
one admits infinite systems as an idealization, so that one can simply say that

254 The quantization of the Universe is unknown at present, but geodesic motion on Rieman-

nian manifolds, complete or not, is quantized by H = − �
2

2m
∆ (perhaps with an additonal term

proportional to the Ricci scalar R, see [Landsman, 1998]), where ∆ is the Laplacian, and quanti-
zation on Q = R

n is given by the Schrödinger equation (3), whether or not the classical dynamics
is complete. In these two cases, and probably more generally, the incompleteness of the clas-
sical motion is often (but not always) reflected by the lack of essential self-adjointness of the
quantum Hamiltonian on its natural initial domain C∞

c (Q). For example, if Q is complete as a
Riemannian manifold, then ∆ is essentially self-adjoint on C∞

c (Q) [Chernoff, 1973; Strichartz,
1983], and if Q is incomplete then the Laplacian usually fails to be essentially self-adjoint on this
domain (but see [Horowitz and Marolf, 1995] for counterexamples). One may refer to the latter
property as quantum-mechanical incompleteness [Reed and Simon, 1975], although a Hamilto-
nian that fails to be essentially self-adjoint on C∞

c (Q) can often be extended (necessarily in
a non-unique way) to a self-adjoint operator by a choice of boundary conditions (possibly at
infinity). By Stone’s theorem, the quantum dynamics defined by each self-adjoint extension is
unitary (and therefore defined for all times). Similarly, although no general statement can be
made relating (in)complete classical motion in a potential to (lack of) essential selfadjointness
of the corresponding Schrödinger operator, it is usually the case that completeness implies es-
sential selfadjointness, and vice versa. See [Reed and Simon, 1975], Appendix to §X.1, where
the reader may also find examples of classically incomplete but quantum-mechanically complete
motion, and vice versa. Now, here is the central point for the present discussion: as probably
first noted by Hepp [1974], different self-adjoint extensions have the same classical limit (in the
sense of (20) or similar criteria), namely the given incomplete classical dynamics. This proves
that complete quantum dynamics can have incomplete motion as its classical limit. However,
much remains to be understood in this area. See also [Earman, 2005; 2006].
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microscopic systems are finite, whereas macroscopic systems are infinite. This
procedure is eventually justified by the results it produces.

Similarly, in the context of quantum theory classical behaviour is simply not
found in finite systems (when � > 0 is fixed), whereas, as we shall see, it is found
in infinite ones. Given the observed classical nature of the macroscopic world,255

at the end of the day one concludes that the idealization in question is apparently
a valid one. One should not be confused by the fact that the error in the number
of particles this approximation involves (viz.∞−1023 =∞) is considerably larger
than the number of particles in the actual system. If all of the 1023 particles in
question were individually tracked down, the approximation is indeed a worthless
ones, but the point is rather that the limit N → ∞ is valid whenever averaging
over N = 1023 particles is well approximated by averaging over an arbitrarily
larger number N (which, then, one might as well let go to infinity). Below we
shall give a precise version of this argument.

Despite our opening comments above, the quantum theory of infinite systems
has features of its own that deserve a separate section. Our treatment is comple-
mentary to texts such as Thirring [1983], Strocchi [1985], Bratteli and Robinson
[1987], Haag [1992], Araki [1999], and Sewell [1986; 2002], which should be con-
sulted for further information on infinite quantum systems. The theory in Subsec-
tions 6.1 and 6.5 is a reformulation in terms of continuous field of C∗-algebras and
deformation quantization of the more elementary parts of a remarkable series of pa-
pers on so-called quantum mean-field systems by Raggio and Werner [1989; 1991],
Duffield and Werner [1992a,b,c], and Duffield, Roos, and Werner [1992]. These
models have their origin in the treatment of the BCS theory of superconductivity
due to Bogoliubov [1958] and Haag [1962], with important further contributions
by Thirring and Wehrl [1967], Thirring [1968], Hepp [1972], Hepp and Lieb [1973],
Rieckers [1984], Morchio and Strocchi [1987], Duffner and Rieckers [1988], Bona
[1988; 1989; 2000], Unnerstall [1990a; 1990b], Bagarello and Morchio [1992], Sewell
[2002], and others.

6.1 Macroscopic observables

The large quantum systems we are going to study consist of N copies of a sin-
gle quantum system with unital algebra of observables A1. Almost all features
already emerge in the simplest example A1 = M2(C) (i.e. the complex 2× 2 ma-
trices), so there is nothing wrong with having this case in mind as abstraction
increases.256 The aim of what follows is to describe in what precise sense macro-
scopic observables (i.e. those obtained by averaging over an infinite number of
sites) are “classical”.

255With the well-known mesoscopic exceptions [Leggett, 2002; Brezger et al., 2002; Chiorescu
et al., 2003; Marshall et al., 2003; Devoret et al., 2004].
256In the opposite direction of greater generality, it is worth noting that the setting below

actually incorporates quantum systems defined on general lattices in R
n (such as Z

n). For one
could relabel things so as to make A1/N below the algebra of observables of all lattice points Λ
contained in, say, a sphere of radius N . The limit N →∞ then corresponds to the limit Λ→ Z

n.
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From the single C∗-algebra A1, we construct a continuous field of C∗-algebras
A(c) over

I = 0 ∪ 1/N = {0, . . . , 1/N, . . . , 1
3
, 1

2
, 1} ⊂ [0, 1],(1)

as follows. We put

A(c)
0 = C(S(A1));

A(c)
1/N = AN1 ,(2)

where S(A1) is the state space of A1 (equipped with the weak∗-topology)257 and
AN1 = ⊗̂NA1 is the (spatial) tensor product of N copies of A1.258 This explains
the suffix c in A(c): it refers to the fact that the limit algebra A(c)

0 is classical or
commutative.

For example, take A1 = M2(C). Each state is given by a density matrix, which
is of the form

ρ(x, y, z) = 1
2

(
1 + z x− iy
x + iy 1− z

)
,(3)

for some (x, y, z) ∈ R
3 satisfying x2 + y2 + z2 ≤ 1. Hence S(M2(C)) is isomorphic

(as a compact convex set) to the three-ball B3 in R
3. The pure states are precisely

the points on the boundary,259 i.e. the density matrices for which x2 + y2 + z2 = 1
(for these and these alone define one-dimensional projections).260

In order to define the continuous sections of the field, we introduce the sym-
metrization maps jNM : AM1 → AN1 , defined by

jNM (AM ) = SN (AM ⊗ 1⊗ · · · ⊗ 1),(4)

where one has N −M copies of the unit 1 ∈ A1 so as to obtain an element of AN1 .
The symmetrization operator SN : AN1 → AN1 is given by (linear and continuous)

257In this topology one has ωλ → ω when ωλ(A)→ ω(A) for each A ∈ A1.
258When A1 is finite-dimensional the tensor product is unique. In general, one needs the

projective tensor product at this point. See footnote 90. The point is the same here: any tensor
product state ω1 ⊗ · · · ⊗ ωN on ⊗NA1 — defined on elementary tensors by ω1 ⊗ · · · ⊗ ωN (A1 ⊗
· · · ⊗AN ) = ω1(A1) · · ·ωN (AN ) — extends to a state on ⊗̂NA1 by continuity.
259 The extreme boundary ∂eK of a convex set K consists of all ω ∈ K for which ω = pρ+(1−p)σ

for some p ∈ (0, 1) and ρ, σ ∈ K implies ρ = σ = ω. If K = S(A) is the state space of a C∗-algebra
A, the extreme boundary consists of the pure states on A (the remainder of S(A) consisting of
mixed states). If K is embedded in a vector space, the extreme boundary ∂eK may or may not
coincide with the geometric boundary ∂K of K. In the case K = B3 ⊂ R

3 it does, but for an
equilateral triangle in R

2 it does not, since ∂eK merely consists of the corners of the triangle
whereas the geometric boundary includes the sides as well.
260Eq. (3) has the form ρ(x, y, z) = 1

2
(xσx + yσy + zσz), where the σi are the Pauli matrices.

This yields an isomorphism between R
3 and the Lie algebra of SO(3) in its spin- 1

2
representation

D1/2 on C
2. This isomorphism intertwines the defining action of SO(3) on R

3 with its adjoint

action on M2(C). I.e., for any rotation R one has ρ(Rx) = D1/2(R)ρ(x)D1/2(R)−1. This will
be used later on (see Subsection 6.5).
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extension of

SN (B1 ⊗ · · · ⊗BN ) =
1

N !

∑
σ∈SN

Bσ(1) ⊗ · · · ⊗Bσ(N),(5)

where SN is the permutation group (i.e. symmetric group) on N elements and
Bi ∈ A1 for all i = 1, . . . , N . For example, jN1 : A1 → AN1 is given by

jN1(B) = B
(N)

=
1
N

N∑
k=1

1⊗ · · · ⊗B(k) ⊗ 1 · · · ⊗ 1,(6)

where B(k) is B seen as an element of the k’th copy of A1 in AN1 . As our notation

B
(N)

indicates, this is just the ‘average’ of B over all copies of A1. More generally,
in forming jNM (AM ) an operator AM ∈ AM1 that involves M sites is averaged over
N ≥M sites. When N →∞ this means that one forms a macroscopic average of
an M -particle operator.

We say that a sequence A = (A1, A2, · · · ) with AN ∈ AN1 is symmetric when

AN = jNM (AM )(7)

for some fixed M and all N ≥M . In other words, the tail of a symmetric sequence
entirely consists of ‘averaged’ or ‘intensive’ observables, which become macroscopic
in the limit N → ∞. Such sequences have the important property that they
commute in this limit; more precisely, if A and A′ are symmetric sequences, then

lim
N→∞

‖ANA′
N −A′

NAN‖ = 0.(8)

As an enlightening special case we take AN = jN1(B) and A′
N = jN1(C) with

B,C ∈ A1. One immediately obtains from the relation [B(k), C(l)] = 0 for k �= l
that [

B
(N)

, C
(N)
]

=
1
N

[B,C]
(N)

.(9)

For example, if A1 = M2(C) and if for B and C one takes the spin- 1
2

operators
Sj = �

2σj for j = 1, 2, 3 (where σj are the Pauli matrices), then[
S

(N)

j , S
(N)

k

]
= i

�

N
εjklS

(N)

l .(10)

This shows that averaging one-particle operators leads to commutation relations
formally like those of the one-particle operators in question, but with Planck’s
constant � replaced by a variable �/N . For constant � = 1 this leads to the
interval (1) over which our continuous field of C∗-algebras is defined; for any other
constant value of � the field would be defined over I = 0 ∪ �/N, which of course
merely changes the labeling of the C∗-algebras in question.

We return to the general case, and denote a section of the field with fibers (2)
by a sequence A = (A0, A1, A2, · · · ), with A0 ∈ A(c)

0 and AN ∈ AN1 as before
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(i.e. the corresponding section is 0 �→ A0 and 1/N �→ AN ). We then complete
the definition of our continuous field by declaring that a sequence A defines a
continuous section iff:

• (A1, A2, · · · ) is approximately symmetric, in the sense that for any ε > 0
there is an Nε and a symmetric sequence A′ such that ‖AN − A′

N‖ < ε for
all N ≥ Nε;261

• A0(ω) = limN→∞ ωN (AN ), where ω ∈ S(A1) and ωN ∈ S(AN1 ) is the tensor
product of N copies of ω, defined by (linear and continuous) extension of

ωN (B1 ⊗ · · · ⊗BN ) = ω(B1) · · ·ω(BN ).(11)

This limit exists by definition of an approximately symmetric sequence.262

It is not difficult to prove that this choice of continuous sections indeed defines a
continuous field of C∗-algebras over I = 0 ∪ 1/N with fibers (2). The main point
is that

lim
N→∞

‖AN‖ = ‖A0‖(12)

whenever (A0, A1, A2, · · · ) satisfies the two conditions above.263 This is easy to
show for symmetric sequences,264 and follows from this for approximately sym-
metric ones.

Consistent with (8), we conclude that in the limit N →∞ the macroscopic ob-
servables organize themselves in a commutative C∗-algebra isomorphic to C(S(A1)).

6.2 Quasilocal observables

In the C∗-algebraic approach to quantum theory, infinite systems are usually de-
scribed by means of inductive limit C∗-algebras and the associated quasilocal
261A symmetric sequence is evidently approximately symmetric.
262If (A1, A2, · · · ) is symmetric with (7), one has ωN (AN ) = ωM (AM ) for N > M , so that the

tail of the sequence (ωN (AN )) is even independent of N . In the approximately symmetric case
one easily proves that (ωN (AN )) is a Cauchy sequence.
263Given (12), the claim follows from Prop. II.1.2.3 in Landsman [1998] and the fact that the

set of functions A0 on S(A1) arising in the said way are dense in C(S(A1)) (equipped with the
supremum-norm). This follows from the Stone–Weierstrass theorem, from which one infers that
the functions in question even exhaust S(A1).
264Assume (7), so that ‖AN‖ = ‖jNN (AN )‖ for N ≥ M . By the C∗-axiom ‖A∗A‖ = ‖A2‖

it suffices to prove (12) for A∗
0 = A0, which implies A∗

M = AM and hence A∗
N = AN for all

N ≥ M . One then has ‖AN‖ = sup{|ρ(AN )|, ρ ∈ S(AN1 )}. Because of the special form of
AN one may replace the supremum over the set S(AN1 ) of all states on AN1 by the supremum
over the set Sp(AN1 ) of all permutation invariant states, which in turn may be replaced by
the supremum over the extreme boundary ∂Sp(AN1 ) of Sp(AN1 ). It is well known ([Størmer,
1969]; see also Subsection 6.2) that the latter consists of all states of the form ρ = ωN , so
that ‖AN‖ = sup{|ωN (AN )|, ω ∈ S(A1)}. This is actually equal to ‖AM‖ = sup{|ωM (AM )|}.
Now the norm in A(c)

0 is ‖A0‖ = sup{|A0(ω)|, ω ∈ S(A1)}, and by definition of A0 one has
A0(ω) = ωM (AM ). Hence (12) follows.
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observables [Thirring, 1983; Strocchi, 1985; Bratteli and Robinson, 1981; 1987;
Haag, 1992; Araki, 1999; Sewell, 1986; 2002]. To arrive at these notions in the
case at hand, we proceed as follows [Duffield and Werner, 1992c].

A sequence A = (A1, A2, · · · ) (where AN ∈ AN1 , as before) is called local when
for some fixed M and all N ≥M one has AN = AM ⊗ 1⊗ · · · ⊗ 1 (where one has
N −M copies of the unit 1 ∈ A1); cf. (4). A sequence is said to be quasilocal when
for any ε > 0 there is an Nε and a local sequence A′ such that ‖AN − A′

N‖ < ε
for all N ≥ Nε. On this basis, we define the inductive limit C∗-algebra

∪N∈NAN1(13)

of the family of C∗-algebras (AN1 ) with respect to the inclusion maps AN1 ↪→
AN+1

1 given by AN �→ AN ⊗ 1. As a set, (13) consists of all equivalence classes
[A] ≡ A0 of quasilocal sequences A under the equivalence relation A ∼ B when
limN→∞ ‖AN −BN‖ = 0. The norm on ∪N∈NAN1 is

‖A0‖ = lim
N→∞

‖AN‖,(14)

and the rest of the C∗-algebraic structure is inherited from the quasilocal sequences
in the obvious way (e.g., A∗

0 = [A∗] with A∗ = (A∗
1, A

∗
2, · · · ), etc.). As the notation

suggests, eachAN1 is contained in ∪N∈NAN1 as a C∗-subalgebra by identifying AN ∈
AN1 with the local (and hence quasilocal) sequence A = (0, · · · , 0, AN⊗1, AN⊗1⊗
1, · · · ), and forming its equivalence class A0 in ∪N∈NAN1 as just explained.265 The
assumption underlying the common idea that (13) is “the” algebra of observables of
the infinite system under study is that by locality or some other human limitation
the infinite tail of the system is not accessible, so that the observables must be
arbitrarily close (i.e. in norm) to operators of the form AN ⊗ 1 ⊗ 1, · · · for some
finite N .

This leads us to a second continuous field of C∗-algebras A(q) over 0∪1/N, with
fibers

A(q)
0 = ∪N∈NAN1 ;

A(q)
1/N = AN1 .(15)

Thus the suffix q reminds one of that fact that the limit algebra A(q)
0 consists

of quasilocal or quantum-mechanical observables. We equip the collection of C∗-
algebras (15) with the structure of a continuous field of C∗-algebras A(q) over
0∪ 1/N by declaring that the continuous sections are of the form (A0, A1, A2, · · · )
where (A1, A2, · · · ) is quasilocal and A0 is defined by this quasilocal sequence as
just explained.266 For N <∞ this field has the same fibers

A(q)
1/N = A(c)

1/N = AN1(16)

265Of course, the entries A1, · · ·AN−1, which have been put to zero, are arbitrary.
266The fact that this defines a continuous field follows from (14) and Prop. II.1.2.3 in [Landsman,

1998]; cf. footnote 263.
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as the continuous fieldA of the previous subsection, but the fiberA(q)
0 is completely

different from A(c)
0 . In particular, if A1 is noncommutative then so is A(q)

0 , for it
contains all AN1 .

The relationship between the continuous fields of C∗-algebras A(q) and A(c) may
be studied in two different (but related) ways. First, we may construct concrete
representations of all C∗-algebras AN1 , N < ∞, as well as of A(c)

0 and A(q)
0 on a

single Hilbert space; this approach leads to superselections rules in the traditional
sense. This method will be taken up in the next subsection. Second, we may look
at those families of states (ω1, ω1/2, · · · , ω1/N , · · · ) (where ω1/N is a state on AN1 )
that admit limit states ω

(c)
0 and ω

(q)
0 on A(c)

0 and A(q)
0 , respectively, such that the

ensuing families of states (ω(c)
0 , ω1, ω1/2, · · · ) and (ω(q)

0 , ω1, ω1/2, · · · ) are continuous
fields of states on A(c) and on A(q), respectively (cf. the end of Subsection 5.1).

Now, any state ω
(q)
0 on A(q)

0 defines a state ω
(q)
0|1/N on AN1 by restriction, and the

ensuing field of states on A(q) is clearly continuous. Conversely, any continuous
field (ω(q)

0 , ω1, ω1/2, . . . , ω1/N , . . .) of states on A(q) becomes arbitrarily close to a
field of the above type for N large.267 However, the restrictions ω

(q)
0|1/N of a given

state ω
(q)
0 on A(q)

0 to AN1 may not converge to a state ω
(c)
0 on A(c)

0 for N →∞.268.
States ω

(q)
0 on ∪N∈NAN1 that do have this property will here be called classical.

In other words, ω
(q)
0|1/N is classical when there exists a probability measure µ0 on

S(A1) such that

lim
N→∞

∫
S(A1)

dµ0(ρ) (ρN (AN )− ω
(q)
0|1/N (AN )) = 0(17)

for each (approximately) symmetric sequence (A1, A2, . . .). To analyze this notion
we need a brief intermezzo on general C∗-algebras and their representations.

• A folium in the state space S(B) of a C∗-algebra B is a convex, norm-closed
subspace F of S(B) with the property that if ω ∈ F and B ∈ B such that
ω(B∗B) > 0, then the “reduced” state ωB : A �→ ω(B∗AB)/ω(B∗B) must
be in F [Haag et al., 1970].269 For example, if π is a representation of B
on a Hilbert space H, then the set of all density matrices on H (i.e. the
π-normal states on B)270 comprises a folium Fπ. In particular, each state ω
on B defines a folium Fω ≡ Fπω

through its GNS-representation πω.

• Two representations π and π′ are called disjoint, written π⊥π′, if no sub-
representation of π is (unitarily) equivalent to a subrepresentation of π′ and

267For any fixed quasilocal sequence (A1, A2, · · · ) and ε > 0, there is an Nε such that

|ω1/N (AN )− ω
(q)
0|1/N (AN )| < ε for all N > Nε.

268See footnote 288 below for an example
269See also [Haag, 1992]. The name ‘folium’ is very badly chosen, since S(B) is by no means

foliated by its folia; for example, a folium may contain subfolia.
270A state ω on B is called π-normal when it is of the form ω(B) = Tr ρπ(B) for some density

matrix ρ. Hence the π-normal states are the normal states on the von Neumann algebra π(B)′′.
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vice versa. They are said to be quasi-equivalent, written π ∼ π′, when π has
no subrepresentation disjoint from π′, and vice versa.271 Quasi-equivalence
is an equivalence relation ∼ on the set of representations. See [Kadison and
Ringrose, 1986, Ch. 10].

• Similarly, two states ρ, σ are called either quasi-equivalent (ρ ∼ σ) or disjoint
(ρ⊥σ) when the corresponding GNS-representations have these properties.

• A state ω is called primary when the corresponding von Neumann algebra
πω(B)′′ is a factor.272 Equivalently, ω is primary iff each subrepresentation
of πω(B) is quasi-equivalent to πω(B), which is the case iff πω(B) admits no
(nontrivial) decomposition as the direct sum of two disjoint subrepresenta-
tions.

Now, there is a bijective correspondence between folia in S(B) and quasi-
equivalence classes of representations of B, in that Fπ = Fπ′ iff π ∼ π′. Fur-
thermore (as one sees from the GNS-construction), any folium F ⊂ S(B) is of
the form F = Fπ for some representation π(B). Note that if π is injective (i.e.
faithful), then the corresponding folium is dense in S(B) in the weak∗-topology by
Fell’s Theorem. So in case that B is simple,273 any folium is weak∗-dense in the
state space.

Two states need not be either disjoint or quasi-equivalent. This dichotomy
does apply, however, within the class of primary states. Hence two primary states
are either disjoint or quasi-equivalent. If ω is primary, then each state in the
folium of πω is primary as well, and is quasi-equivalent to ω. If, on the other
hand, ρ and σ are primary and disjoint, then Fρ ∩ Fσ = ∅. Pure states are, of
course, primary.274 Furthermore, in thermodynamics pure phases are described
by primary KMS states [Emch and Knops, 1970; Bratteli and Robinson, 1981;
Haag, 1992; Sewell, 2002]. This apparent relationship between primary states and
“purity” of some sort is confirmed by our description of macroscopic observables:275

• If ω
(q)
0 is a classical primary state on A(q)

0 = ∪N∈NAN1 , then the correspond-
ing limit state ω

(c)
0 on A(c)

0 = C(S(A1)) is pure (and hence given by a point
in S(A1)).

271Equivalently, two representations π and π′ are disjoint iff no π-normal state is π′-normal and
vice versa, and quasi-equivalent iff each π-normal state is π′-normal and vice versa.
272A von Neumann algebra M acting on a Hilbert space is called a factor when its center
M∩M′ is trivial, i.e. consists of multiples of the identity.
273In the sense that it has no closed two-sided ideals. For example, the matrix algebra Mn(C) is

simple for any n, as is its infinite-dimensional analogue, the C∗-algebra of all compact operators
on a Hilbert space. The C∗-algebra of quasilocal observables of an infinite quantum systems is
typically simple as well.
274Since the corresponding GNS-representation πω is irreducible, πω(B)′′ = B(Hω) is a factor.
275These claims easily follow from Sewell [2002], §2.6.5, which in turn relies on Hepp [1972].
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• If ρ
(q)
0 and σ

(q)
0 are classical primary states on A(q)

0 , then

ρ
(c)
0 = σ

(c)
0 ⇔ ρ

(q)
0 ∼ σ

(q)
0 ;(18)

ρ
(c)
0 �= σ

(c)
0 ⇔ ρ

(q)
0 ⊥σ

(q)
0 .(19)

As in (17), a general classical state ω
(q)
0 with limit state ω

(c)
0 on C(S(A1)) defines

a probability measure µ0 on S(A1) by

ω
(c)
0 (f) =

∫
S(A1)

dµ0 f,(20)

which describes the probability distribution of the macroscopic observables in that
state. As we have seen, this distribution is a delta function for primary states. In
any case, it is insensitive to the microscopic details of ω

(q)
0 in the sense that local

modifications of ω
(q)
0 do not affect the limit state ω

(c)
0 [Sewell, 2002]. Namely, it

easily follows from (8) and the fact that the GNS-representation is cyclic that one
can strengthen the second claim above:

Each state in the folium F
ω

(q)
0

of a classical state ω
(q)
0 is automatically

classical and has the same limit state on A(c)
0 as ω

(q)
0 .

To make this discussion a bit more concrete, we now identify an important
class of classical states on ∪N∈NAN1 . We say that a state ω on this C∗-algebra is
permutation-invariant when each of its restrictions to AN1 is invariant under the
natural action of the symmetric group SN onAN1 (i.e. σ ∈ SN maps an elementary
tensor AN = B1 ⊗ · · · ⊗BN ∈ AN1 to Bσ(1) ⊗ · · · ⊗Bσ(N), cf. (5)). The structure
of the set SS of all permutation-invariant states in S(A(q)

0 ) has been analyzed by
Størmer [1969]. Like any compact convex set, it is the (weak∗-closed) convex hull
of its extreme boundary ∂eSS. The latter consists of all infinite product states
ω = ρ∞, where ρ ∈ S(A1). I.e. if A0 ∈ A(q)

0 is an equivalence class [A1, A2, · · · ],
then

ρ∞(A0) = lim
N→∞

ρN (AN );(21)

cf. (11). Equivalently, the restriction of ω to any AN1 ⊂ A(q)
0 is given by ⊗Nρ.

Hence ∂eSS is isomorphic (as a compact convex set) to S(A1) in the obvious way,
and the primary states in SS are precisely the elements of ∂eSS.
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A general state ω
(q)
0 in SS has a unique decomposition276

ω
(q)
0 (A0) =

∫
S(A1)

dµ(ρ) ρ∞(A0),(22)

where µ is a probability measure on S(A1) and A0 ∈ A(q)
0 .277 The following

beautiful illustration of the abstract theory [Unnerstall, 1990a,b] is then clear
from (17) and (22):

If ω
(q)
0 is permutation-invariant, then it is classical. The associated

limit state ω
(c)
0 on A(c)

0 is characterized by the fact that the measure µ0

in (20) coincides with the measure µ in (22).278

6.3 Superselection rules

Infinite quantum systems are often associated with the notion of a superselection
rule (or sector), which was originally introduced by Wick, Wightman and Wigner
[1952] in the setting of standard quantum mechanics on a Hilbert space H. The
basic idea may be illustrated in the example of the boson/fermion (or “univalence”)
superselection rule.279 Here one has a projective unitary representation D of the
rotation group SO(3) on H, for which D(R2π) = ±1 for any rotation R2π of
2π around some axis. Specifically, on bosonic states ΨB one has D(R2π)ΨB =
ΨB , whereas on fermionic states ΨF the rule is D(R2π)ΨF = −ΨF . Now the
argument is that a rotation of 2π accomplishes nothing, so that it cannot change
the physical state of the system. This requirement evidently holds on the subspace
HB ⊂ H of bosonic states in H, but it is equally well satisfied on the subspace
HF ⊂ H of fermionic states, since Ψ and zΨ with |z| = 1 describe the same
physical state. However, if Ψ = cBΨB + cFΨF (with |cB |2 + |cF |2 = 1), then
D(R2π)Ψ = cBΨB−cFΨF , which is not proportional to Ψ and apparently describes
a genuinely different physical state from Ψ.

The way out is to deny this conclusion by declaring that D(R2π)Ψ and Ψ do
describe the same physical state, and this is achieved by postulating that no phys-

276This follows because SS is a so-called Bauer simplex [Alfsen, 1970]. This is a compact convex
set K whose extreme boundary ∂eK is closed and for which every ω ∈ K has a unique decompo-
sition as a probability measure supported by ∂eK, in the sense that a(ω) =

R
∂eK

dµ(ρ) a(ρ) for

any continuous affine function a on K. For a unital C∗-algebra A the continuous affine functions
on the state space K = S(A) are precisely the elements A of A, reinterpreted as functions Â on

S(A) by Â(ω) = ω(A). For example, the state space S(A) of a commutative unital C∗-algebra
A is a Bauer simplex, which consists of all (regular Borel) probability measures on the pre state
space P(A).
277This is a quantum analogue of De Finetti’s representation theorem in classical probability

theory [Heath and Sudderth, 1976; van Fraassen, 1991]; see also [Hudson and Moody, 1975/76]
and [Caves et al., 2002].
278In fact, each state in the folium FS in S(A(q)

0 ) corresponding to the (quasi-equivalence class
of) the representation ⊕[ω∈SS]πω is classical.
279See also [Giulini, 2003] for a modern mathematical treatment.
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ical observables A (in their usual mathematical guise as operators on H) exist for
which (ΨB , AΨF ) �= 0. For in that case one has

(cBΨB ± cFΨF , A(cBΨB ± cFΨF )) = |cB |2(ΨB , AΨB) + |cF |2(ΨF , AΨF )(23)

for any observable A, so that (D(R2π)Ψ, AD(R2π)Ψ) = (Ψ, AΨ) for any Ψ ∈ H.
Since any quantum-mechanical prediction ultimately rests on expectation values
(Ψ, AΨ) for physical observables A, the conclusion is that a rotation of 2π indeed
does nothing to the system. This is codified by saying that superpositions of the
type cBΨB+cFΨF are incoherent (whereas superpositions c1Ψ1+c2Ψ2 with Ψ1,Ψ2

both in either HB or in HF are coherent). Each of the subspaces HB and HF of
H is said to be a superselection sector, and the statement that (ΨB , AΨF ) = 0 for
any observbale A and ΨB ∈ HB and ΨF ∈ HF is called a superselection rule.280

The price one pays for this solution is that states of the form cBΨB + cFΨF

with cB �= 0 and cF �= 0 are mixed, as one sees from (23). More generally, if
H = ⊕λ∈ΛHλ with (Ψ, AΦ) = 0 whenever A is an observable, Ψ ∈ Hλ, Φ ∈ Hλ′ ,
and λ �= λ′, and if in addition for each λ and each pair Ψ,Φ ∈ Hλ there exists an
observable A for which (Ψ, AΦ) �= 0, then the subspaces Hλ are called superse-
lection sectors in H. Again a key consequence of the occurrence of superselection
sectors is that unit vectors of the type Ψ =

∑
λ cλΨλ with Ψ ∈ Hλ (and cλ �= 0

for at least two λ’s) define mixed states

ψ(A) = (Ψ, AΨ) =
∑
λ

|cλ|2(Ψλ, AΨλ) =
∑
λ

|cλ|2ψλ(A).

This procedure is rather ad hoc. A much deeper approach to superselection the-
ory was developed by Haag and collaborators; see [Roberts and Roepstorff, 1969]
for an introduction. Here the starting point is the abstract C∗-algebra of observ-
ables A of a given quantum system, and superselection sectors are reinterpreted as
equivalence classes (under unitary isomorphism) of irreducible representations ofA
(satisfying a certain selection criterion — see below). The connection between the
concrete Hilbert space approach to superselection sectors discussed above and the
abstract C∗-algebraic approach is given by the following lemma [Hepp, 1972]:281

Two pure states ρ, σ on a C∗-algebra A define different sectors iff for
each representation π(A) on a Hilbert space H containing unit vectors
Ψρ,Ψσ such that ρ(A) = (Ψρ, π(A)Ψρ) and σ(A) = (Ψσ, π(A)Ψσ) for
all A ∈ A, one has (Ψρ, π(A)Ψσ) = 0 for all A ∈ A.

In practice, however, most irreducible representations of a typical C∗-algebra A
used in physics are physically irrelevant mathematical artefacts. Such representa-
tions may be excluded from consideration by some selection criterion. What this
280In an ordinary selection rule between Ψ and Φ one merely has (Ψ, HΦ) = 0 for the Hamil-

tonian H.
281Hepp proved a more general version of this lemma, in which ‘Two pure states ρ, σ on a

C∗-algebra B define different sectors iff. . . ’ is replaced by ‘Two states ρ, σ on a C∗-algebra B are
disjoint iff. . . ’
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means depends on the context. For example, in quantum field theory this notion
is made precise in the so-called DHR theory (reviewed by Roberts [1990], Haag
[1992], Araki [1999], and Halvorson [2005]). In the class of theories discussed in
the preceding two subsections, we take the algebra of observables A to be A(q)

0

— essentially for reasons of human limitation — and for pedagogical reasons de-
fine (equivalence classes of) irreducible representations of A(q)

0 as superselection
sectors, henceforth often just called sectors, only when they are equivalent to the
GNS-representation given by a permutation-invariant pure state on A(q)

0 . In par-
ticular, such a state is classical. On this selection criterion, the results in the
preceding subsection trivially imply that there is a bijective correspondence be-
tween pure states on A1 and sectors of A(q)

0 . The sectors of the commutative
C∗-algebra A(c)

0 are just the points of S(A1); note that a mixed state on A1 de-
fines a pure state on A(c)

0 ! The role of the sectors of A1 in connection with those
of A(c)

0 will be clarified in Subsection 6.5.
Whatever the model or the selection criterion, it is enlightening (and to some

extent even in accordance with experimental practice) to consider superselection
sectors entirely from the perspective of the pure states on the algebra of observables
A, removing A itself and its representations from the scene. To do so, we equip
the space P(A) of pure states on A with the structure of a transition probability
space [von Neumann, 1981; Mielnik, 1968].282 A transition probability on a set P
is a function

p : P × P → [0, 1](24)

that satisfies

p(ρ, σ) = 1 ⇐⇒ ρ = σ(25)

and

p(ρ, σ) = 0 ⇐⇒ p(σ, ρ) = 0.(26)

A set with such a transition probability is called a transition probability space.
Now, the pure state space P(A) of a C∗-algebra A carries precisely this structure
if we define283

p(ρ, σ) := inf{ρ(A) | A ∈ A, 0 ≤ A ≤ 1, σ(A) = 1}.(27)

To give a more palatable formula, note that since pure states are primary, two
pure states ρ, σ are either disjoint (ρ⊥σ) or else (quasi, hence unitarily) equivalent
(ρ ∼ σ). In the first case, (27) yields

p(ρ, σ) = 0 (ρ⊥σ).(28)
282See also [Beltrametti and Cassinelli, 1984] or [Landsman, 1998] for concise reviews.
283This definition applies to the case that A is unital; see [Landsman, 1998] for the general case.

An analogous formula defines a transition probability on the extreme boundary of any compact
convex set.
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In the second case it follows from Kadison’s transitivity theorem (cf. Thm. 10.2.6 in
[Kadison and Ringrose, 1986]) that the Hilbert spaceHρ from the GNS-representation
πρ(A) defined by ρ contains a unit vector Ωσ (unique up to a phase) such that

σ(A) = (Ωσ, πρ(A)Ωσ).(29)

Eq. (27) then leads to the well-known expression

p(ρ, σ) = |(Ωρ,Ωσ)|2 (ρ ∼ σ).(30)

In particular, if A is commutative, then

p(ρ, σ) = δρσ.(31)

For A = M2(C) one obtains

p(ρ, σ) = 1
2
(1 + cos θρσ),(32)

where θρσ is the angular distance between ρ and σ (seen as points on the two-sphere
S2 = ∂eB

3, cf. (3) etc.), measured along a great circle.
Superselection sectors may now be defined for any transition probability spaces

P. A family of subsets of P is called orthogonal if p(ρ, σ) = 0 whenever ρ and σ do
not lie in the same subset. The space P is called reducible if it is the union of two
(nonempty) orthogonal subsets; if not, it is said to be irreducible. A component
of P is a subset C ⊂ P such that C and P\C are orthogonal. An irreducible com-
ponent of P is called a (superselection) sector. Thus P is the disjoint union of its
sectors. For P = P(A) this reproduces the algebraic definition of a superselection
sector (modulo the selection criterion) via the correspondence between states and
representations given by the GNS-constructions. For example, in the commutative
case A ∼= C(X) each point in X ∼= P(A) is its own little sector.

6.4 A simple example: the infinite spin chain

Let us illustrate the occurrence of superselection sectors in a simple example,
where the algebra of observables is A(q)

0 with A1 = M2(C). Let H1 = C
2, so

that HN1 = ⊗NC
2 is the tensor product of N copies of C

2. It is clear that AN1
acts on HN1 in a natural way (i.e. componentwise). This defines an irreducible
representation πN of AN1 , which is indeed its unique irreducible representation
(up to unitary equivalence). In particular, for N <∞ the quantum system whose
algebra of observables is AN1 (such as a chain with N two-level systems) has no
superselection rules. We define the N →∞ limit “(M2(C))∞” of the C∗-algebras
(M2(C))N as the inductive limit A(q)

0 for A1 = M2(C), as introduced in Subsection
6.2; see (13). The definition of “⊗∞

C
2” is slightly more involved, as follows [von

Neumann, 1938].
For any Hilbert space H1, let Ψ be a sequence (Ψ1,Ψ2, . . .) with Ψn ∈ H1. The

space H1 of such sequences is a vector space in the obvious way. Now let Ψ and Φ be
two such sequences, and write (Ψn,Φn) = exp(iαn)|(Ψn,Φn)|. If

∑
n |αn| = ∞,
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we define the (pre-) inner product (Ψ,Φ) to be zero. If
∑
n |αn| < ∞, we put

(Ψ,Φ) =
∏
n(Ψn,Φn) (which, of course, may still be zero!). The (vector space)

quotient of H1 by the space of sequences Ψ for which (Ψ,Ψ) = 0 can be completed
to a Hilbert space H∞

1 in the induced inner product, called the complete infinite
tensor product of the Hilbert space H1 (over the index set N).284 We apply this
construction with H1 = C

2. If (ei) is some basis of C
2, an orthonormal basis of

H∞
1 then consists of all different infinite strings ei1 ⊗ · · · ein ⊗ · · · , where ein is ei

regarded as a vector in C
2.285 We denote the multi-index (i1, . . . , in, . . .) simply

by I, and the corresponding basis vector by eI .
This Hilbert space H∞

1 carries a natural faithful representation π of A(q)
0 : if

A0 ∈ A(q)
0 is an equivalence class [A1, A2, · · · ], then π(A0)eI = limN→∞ ANei,

where AN acts on the first N components of eI and leaves the remainder un-
changed.286 Now the point is that although each AN1 acts irreducibly on HN1 , the
representation π(A(q)

0 ) on H∞
1 thus constructed is highly reducible. The reason

for this is that by definition (quasi-) local elements of A(q)
0 leave the infinite tail

of a vector in H∞
1 (almost) unaffected, so that vectors with different tails lie in

different superselection sectors. Without the quasi-locality condition on the ele-
ments of A(q)

0 , no superselection rules would arise. For example, in terms of the
usual basis{

↑=
(

1
0

)
, ↓=

(
0
1

)}
(33)

of C
2, the vectors Ψ↑ =↑ ⊗ ↑ · · · ↑ · · · (i.e. an infinite product of ‘up’ vectors)

and Ψ↓ =↓ ⊗ ↓ · · · ↓ · · · (i.e. an infinite product of ‘down’ vectors) lie in different
sectors. The reason why the inner product (Ψ↑, π(A)Ψ↓) vanishes for any A ∈ A(q)

0

is that for local observables A one has π(A) = AM ⊗ 1⊗ · · · 1 · · · for some AM ∈
B(HM ); the inner product in question therefore involves infinitely many factors
(↑, 1 ↓) = (↑, ↓) = 0. For quasilocal A the operator π(A) might have a small
nontrivial tail, but the inner product vanishes nonetheless by an approximation
argument.

More generally, elementary analysis shows that (Ψu, π(A)Ψv) = 0 whenever
Ψu = ⊗∞u and Ψv = ⊗∞v for unit vectors u, v ∈ C

2 with u �= v. The corre-
sponding vector states ψu and ψv on A(q)

0 (i.e. ψu(A) = (Ψu, π(A)Ψu) etc.) are
obviously permutation-invariant and hence classical. Identifying S(M2(C)) with
B3, as in (3), the corresponding limit state (ψu)0 on A(c)

0 defined by ψu is given
by (evaluation at) the point ũ = (x, y, z) of ∂eB

3 = S2 (i.e. the two-sphere) for
which the corresponding density matrix ρ(ũ) is the projection operator onto u. It
284Each fixed Ψ ∈ H1 defines an incomplete tensor product H∞

Ψ , defined as the closed subspace
of H∞

1 consisting of all Φ for which
P
n |(Ψn, Φn)− 1| <∞. If H1 is separable, then so is H∞

Ψ
(in contrast to H∞

1 , which is an uncountable direct sum of the H∞
Ψ ).

285The cardinality of the set of all such strings equals that of R, so that H∞
1 is non-separable,

as claimed.
286Indeed, this yields an alternative way of defining ∪N∈NAN1 as the norm closure of the union

of all AN1 acting on H∞
1 in the stated way.
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follows that ψu and ψv are disjoint; cf. (19). We conclude that each unit vector
u ∈ C

2 determines a superselection sector πu, namely the GNS-representation of
the corresponding state ψu, and that each such sector is realized as a subspace Hu
of H∞

1 (viz. Hu = π(A(q)
0 )Ψu). Moreover, since a permutation-invariant state on

A(q)
0 is pure iff it is of the form ψu, we have found all superselection sectors of our

system. Thus in what follows we may concentrate our attention on the subspace
(of H∞

1 ) and subrepresentation (of π)

HS = ⊕ũ∈S2Hu;
πS(A(q)

0 ) = ⊕ũ∈S2πu(A(q)
0 ),(34)

where πu is simply the restriction of π to Hu ⊂ H∞
1 .

In the presence of superselection sectors one may construct operators that dis-
tinguish different sectors whilst being a multiple of the unit in each sector. In
quantum field theory these are typically global charges, and in our example the
macroscopic observables play this role. To see this, we return to Subsection 6.1. It
is not difficult to show that for any approximately symmetric sequence (A1, A2, · · · )
the limit

A = lim
N→∞

πS(AN )(35)

exists in the strong operator topology on B(HS) [Bona, 1988]. Moreover, if A0 ∈
A(c)

0 = C(S(A1)) is the function defined by the given sequence,287 then the map
A0 �→ A defines a faithful representation of A(c)

0 on HS, which we call πS as well
(by abuse of notation). An easy calculation in fact shows that πS(A0)Ψ = A0(ũ)Ψ
for Ψ ∈ Hu, or, in other words,

πS(A0) = ⊕ũ∈S2A0(ũ)1Hu
.(36)

Thus the πS(A0) indeed serve as the operators in question.
To illustrate how delicate all this is, it may be interesting to note that even for

symmetric sequences the limit limN→∞ π(AN ) does not exist on H∞
1 , not even in

the strong topology.288 On the positive side, it can be shown that limN→∞ π(AN )Ψ
exists as an element of the von Neumann algebra π(A(q)

0 )′′ whenever the vector
state ψ defined by Ψ lies in the folium FS generated by all permutation-invariant
states [Bona, 1988; Unnerstall, 1990a].

This observation is part of a general theory of macroscopic observables in the set-
ting of von Neumann algebras [Primas, 1983; Rieckers, 1984; Amann, 1986; 1987;
Morchio and Strocchi, 1987; Bona, 1988; 1989; Unnerstall, 1990a; 1990b; Breuer,

287Recall that A0(ω) = limN→∞ ωN (AN ).
288 For example, let us take the sequence AN = jN1(diag(1,−1)) and the vector

Ψ =↑↓↓↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ · · · , where a sequence of 2N factors of ↑ is followed
by 2N+1 factors of ↓, etc. Then the sequence {π(AN )Ψ}N∈N in H∞

1 diverges: the subsequence

where N runs over all numbers 2n with n odd converges to 1
3
Ψ, whereas the subsequence where

N runs over all 2n with n even converges to − 1
3
Ψ.
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1994; Atmanspacher et al., 1999], which complements the purely C∗-algebraic
approach of Raggio and Werner [1989; 1991], Duffield and Werner [1992a,b,c],
and Duffield et al. [1992] explained above.289 In our opinion, the latter has the
advantage that conceptually the passage to the limit N →∞ (and thereby the ide-
alization of a large system as an infinite one) is very satisfactory, especially in our
reformulation in terms of continuous fields of C∗-algebras. Here the commutative
C∗-algebra A(c)

0 of macroscopic observables of the infinite system is glued to the
noncommutative algebras AN1 of the corresponding finite systems in a continuous
way, and the continuous sections of the ensuing continuous field of C∗-algebras
A(c) exactly describe how macroscopic quantum observables of the finite systems
converge to classical ones. Microscopic quantum observables of the pertinent fi-
nite systems, on the other hand, converge to quantum observables of the infinite
quantum system, and this convergence is described by the continuous sections of
the continuous field of C∗-algebras A(q). This entirely avoids the language of su-
perselection rules, which rather displays a shocking discontinuity between finite
and infinite systems: for superselection rules do not exist in finite systems!290

6.5 Poisson structure and dynamics

We now pass to the discussion of time-evolution in infinite systems of the type
considered so far. We start with the observation that the state space S(B) of a
finite-dimensional C∗-algebra B (for simplicity assumed unital in what follows) is a
Poisson manifold (cf. Subsection 4.3) in a natural way. A similar statement holds
in the infinite-dimensional case, and we carry the reader through the necessary
adaptations of the main argument by means of footnotes.291 We write K = S(B).

289Realistic models have been studied in the context of both the C∗-algebraic and the von
Neumann algebraic approach by Rieckers and his associates. See, for example, [Honegger and
Rieckers, 1994; Gerisch et al., 1999; Gerisch, et al. 2003], and many other papers. For altogether
different approaches to macroscopic observables see [van Kampen, 1954; 1988; 1993; Wan and
Fountain, 1998; Harrison and Wan, 1997; Wan et al., 1998; Fröhlich et al., 2002], and [Poulin,
2004].
290We here refer to superselection rules in the traditional sense of inequivalent irreducible repre-

sentations of simple C∗-algebras. For topological reasons certain finite-dimensional systems are
described by (non-simple) C∗-algebras that do admit inequivalent irreducible representations
[Landsman, 1990a,b].
291Of which this is the first. When B is infinite-dimensional, the state space S(B) is no longer

a manifold, let alone a Poisson manifold, but a Poisson space [Landsman, 1997; 1998]. This is a
generalization of a Poisson manifold, which turns a crucial property of the latter into a definition.
This property is the foliation of a Poisson manifold by its symplectic leaves [Weinstein, 1983],
and the corresponding definition is as follows: A Poisson space P is a Hausdorff space of the
form P = ∪αSα (disjoint union), where each Sα is a symplectic manifold (possibly infinite-
dimensional) and each injection ια : Sα ↪→ P is continuous. Furthermore, one has a linear
subspace F ⊂ C(P, R) that separates points and has the property that the restriction of each
f ∈ F to each Sα is smooth. Finally, if f, g ∈ F then {f, g} ∈ F , where the Poisson bracket
is defined by {f, g}(ια(σ)) = {ι∗αf, ι∗αg}α(σ). Clearly, a Poisson manifold M defines a Poisson
space if one takes P = M , F = C∞(M), and the Sα to be the symplectic leaves defined by
the given Poisson bracket. Thus we refer to the manifolds Sα in the above definition as the
symplectic leaves of P as well.
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Firstly, an element A ∈ B defines a linear function Â on B∗ and hence on K
(namely by restriction) through Â(ω) = ω(A). For such functions we define the
Poisson bracket by

{Â, B̂} = i[̂A,B].(37)

Here the factor i has been inserted in order to make the Poisson bracket of two
real-valed functions real-valued again; for Â is real-valued on K precisely when A
is self-adjoint, and if A∗ = A and B∗ = B, then i[A,B] is self-adjoint (whereras
[A,B] is skew-adjoint). In general, for f, g ∈ C∞(K) we put

{f, g}(ω) = iω([dfω, dgω]),(38)

interpreted as follows.292 Let BR be the self-adjoint part of B, and interpret K
as a subspace of B∗

R
; since a state ω satisfies ω(A∗) = ω(A) for all A ∈ B, it is

determined by its values on self-adjoint elements. Subsequently, we identify the
tangent space at ω with

TωK = {ρ ∈ B∗
R
| ρ(1) = 0} ⊂ B∗

R
(39)

and the cotangent space at ω with the quotient (of real Banach spaces)

T ∗
ωK = B∗∗

R
/R1,(40)

where the unit 1 ∈ B is regarded as an element of B∗∗ through the canonical
embedding B ⊂ B∗∗. Consequently, the differential forms df and dg at ω ∈ K
define elements of B∗∗

R
/R1. The commutator in (38) is then defined as follows: one

lifts dfω ∈ B∗∗R
/R1 to B∗∗

R
, and uses the natural isomorphism B∗∗ ∼= B typical of

finite-dimensional vector spaces.293 The arbitrariness in this lift is a multiple of 1,
which drops out of the commutator. Hence i[dfω, dgω] is an element of B∗∗

R
∼= BR,

on which the value of the functional ω is defined.294 This completes the definition
of the Poisson bracket; one easily recovers (37) as a special case of (38).

The symplectic leaves of the given Poisson structure on K have been determined
by Duffield and Werner [1992a].295 Namely:

Two states ρ and σ lie in the same symplectic leaf of S(B) iff ρ(A) =
σ(UAU∗) for some unitary U ∈ B.

292In the infinite-dimensional case C∞(K) is defined as the intersection of the smooth functions
on K with respect to its Banach manifold structure and the space C(K) of weak∗-continuous
functions on K. The differential forms df and dg in (38) also require an appropriate definition; see
[Duffield and Werner, 1992a; Bona, 2000], and [Odzijewicz and Ratiu, 2003] for the technicalities.
293In the infinite-dimensional case one uses the canonical identification between B∗∗ and the

enveloping von Neumann algebra of B to define the commutator.
294If B is infinite-dimensional, one here regards B∗ as the predual of the von Neumann algebra
B∗∗.
295See also [Bona, 2000] for the infinite-dimensional special case where B is the C∗-algebra of

compact operators.
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When ρ and σ are pure, this is the case iff the corresponding GNS-representations
πρ(B) and πσ(B) are unitarily equivalent,296 but in general the implication holds
only in one direction: if ρ and σ lie in the same leaf, then they have unitarily
equivalent GNS-representations.297

It follows from this characterization of the symplectic leaves of K = S(B) that
the pure state space ∂eK = P(B) inherits the Poisson bracket from K, and thereby
becomes a Poisson manifold in its own right.298 This leads to an important con-
nection between the superselection sectors of B and the Poisson structure on P(B)
[Landsman, 1997; 1998]:

The sectors of the pure state space P(B) of a C∗-algebra B as a tran-
sition probability space coincide with its symplectic leaves as a Poisson
manifold.

For example, when B ∼= C(X) is commutative, the space S(C(X)) of all (regular
Borel) probability measures on X acquires a Poisson bracket that is identically
zero, as does its extreme boundary X. It follows from (31) that the sectors in X
are its points, and so are its symplectic leaves (in view of their definition and the
vanishing Poisson bracket). The simplest noncommutative case is B = M2(C), for
which the symplectic leaves of the state space K = S(M2(C)) ∼= B3 (cf. (3)) are
the spheres with constant radius.299 The sphere with radius 1 consists of points
in B3 that correspond to pure states on M2(C), all interior symplectic leaves of K
coming from mixed states on M2(C).

The coincidence of sectors and symplectic leaves of P(B) is a compatibility
condition between the transition probability structure and the Poisson structure.
It is typical of the specific choices (27) and (38), respectively, and hence of quantum
theory. In classical mechanics one has the freedom of equipping a manifold M with
an arbitrary Poisson structure, and yet use C0(M) as the commutative C∗-algebra
of observables. The transition probability (31) (which follows from (27) in the
commutative case) are clearly the correct ones in classical physics, but since the

296Cf. Thm. 10.2.6 in [Kadison and Ringrose, 1986].
297An important step of the proof is the observation that the Hamiltonian vector field ξf (ω) ∈

TωK ⊂ A∗
R

of f ∈ C∞(K) is given by 〈ξf (ω), B〉 = i[dfω , B], where B ∈ BR ⊂ B∗∗R
and

dfω ∈ B∗∗R
/R1. (For example, this gives ξÂB̂ = i[̂A, B] = {Â, B̂} by (37), as it should be.) If

ϕht denotes the Hamiltonian flow of h at time t, it follows (cf. [Duffield et al., 1992, Prop. 6.1]
or [Duffield and Werner, 1992a, Prop. 3.1] that 〈ϕth(ω), B〉 = 〈ω, Uht B(Uht )∗〉 for some unitary

Uht ∈ B. For example, if h = Â then Uht = exp(itA).
298More generally, a Poisson space. The structure of P(B) as a Poisson space was introduced

by Landsman [1997; 1998] without recourse to the full state space or the work of Duffield and
Werner [1992a].
299Equipped with a multiple of the so-called Fubini–Study symplectic structure; see [Landsman,

1998] or any decent book on differential geometry for this notion. This claim is immediate from
footnote 260. More generally, the pure state space of Mn(C) is the projective space PC

n, which
again becomes equipped with the Fubini–Study symplectic structure. This is even true for n =∞
if one defines M∞(C) as the C∗-algebra of compact operators on a separable Hilbert space H: in
that case one has P(M∞(C)) ∼= PH. Cf. [Cantoni, 1977; Cirelli et al., 1983; Cirelli et al., 1990;
Landsman, 1998; Ashtekar and Schilling, 1999; Marmo et al., 2005], etc.
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symplectic leaves of M can be almost anything, the coincidence in question does
not hold.

However, there exists a compatibility condition between the transition probabil-
ity structure and the Poisson structure, which is shared by classical and quantum
theory. This is the property of unitarity of a Hamiltonian flow, which in the
present setting we formulate as follows.300 First, in quantum theory with algebra
of observables B we define time-evolution (in the sense of an automorphic action
of the abelian group R on B, i.e. a one-parameter group α of automorphisms
on B) to be Hamiltonian when A(t) = αt(A) satisfies the Heisenberg equation
i�dA/dt = [A,H] for some self-adjoint element H ∈ B. The corresponding flow
on P(B) — i.e. ωt(A) = ω(A(t)) — is equally well said to be Hamiltonian in that
case. In classical mechanics with Poisson manifold M we similarly say that a flow
on M is Hamiltonian when it is the flow of a Hamiltonian vector field ξh for some
h ∈ C∞(M). (Equivalently, the time-evolution of the observables f ∈ C∞(M) is
given by df/dt = {h, f}; cf. (18) etc.) The point is that in either case the flow is
unitary in the sense that

p(ρ(t), σ(t)) = p(ρ, σ)(41)

for all t and all ρ, σ ∈ P with P = P(B) (equipped with the transition probabil-
ities (27) and the Poisson bracket (38)) or P = M (equipped with the transition
probabilities (31) and any Poisson bracket).301

In both cases P = P(B) and P = M , a Hamiltonian flow has the property
(which is immediate from the definition of a symplectic leaf) that for all (finite)
times t a point ω(t) lies in the same symplectic leaf of P as ω = ω(0). In particular,
in quantum theory ω(t) and ω must lie in the same sector. In the quantum
theory of infinite systems an automorphic time-evolution is rarely Hamiltonian,
but one reaches a similar conclusion under a weaker assumption. Namely, if a
given one-parameter group of automorphisms α on B is implemented in the GNS-
representation πω(B) for some ω ∈ P(B),302 then ω(t) and ω lie in the same sector
and hence in the same symplectic leaf of P(B).

To illustrate these concepts, let us return to our continuous field of C∗-algebras
A(c); cf. (2). It may not come as a great surprise that the canonical C∗-algebraic
transition probabilities (27) on the pure state space of each fiber algebra A(c)

1/N

for N <∞ converge to the classical transition probabilities (31) on the commuta-
tive limit algebra A(c)

0 . Similarly, the C∗-algebraic Poisson structure (38) on each
P(A(c)

1/N ) converges to zero. However, we know from the limit � → 0 of quantum
mechanics that in generating classical behaviour on the limit algebra of a contin-
uous field of C∗-algebras one should rescale the commutators; see Subsection 4.3
300All this can be boosted into an axiomatic structure into which both classical and quantum

theory fit; see [Landsman, 1997; 1998].
301In quantum theory the flow is defined for any t. In classical dynamics, (41) holds for all t

for which ρ(t) and σ(t) are defined, cf. footnote 253.
302This assumption means that there exists a unitary representation t �→ Ut of R on Hω such

that πω(αt(A)) = Utπω(A)U∗
t for all A ∈ B and all t ∈ R.
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and Section 5. Thus we replace the Poisson bracket (38) for A(c)
1/N by

{f, g}(ω) = iNω([dfω, dgω]).(42)

Thus rescaled, the Poisson brackets on the spaces P(A(c)
1/N ) turn out to converge to

the canonical Poisson bracket (38) on P(A(c)
0 ) = S(A1), instead of the zero bracket

expected from the commutative nature of the limit algebra A(c)
0 . Consequently,

the symplectic leaves of the full state space S(A1) of the fiber algebra A(c)
1 become

the symplectic leaves of the pure state space S(A1) of the fiber algebra A(c)
0 . This

is undoubtedly indicative of the origin of classical phase spaces and their Poisson
structures in quantum theory.

More precisely, we have the following result [Duffield and Werner, 1992a]:

If A = (A0, A1, A2, · · · ) and A′ = (A′
0, A

′
1, A

′
2, · · · ) are continuous sec-

tions of A(c) defined by symmetric sequences,303 then the sequence

({A0, A
′
0}, i[A1, A

′
1], . . . , iN [AN , A′

N ], · · · )(43)

defines a continuous section of A(c).

This follows from an easy computation. In other words, although the sequence of
commutators [AN , A′

N ] converges to zero, the rescaled commutators iN [AN , A′
N ] ∈

AN converge to the macroscopic observable {A0, A
′
0} ∈ A(c)

0 = C(S(A1)). Al-
though it might seem perverse to reinterpret this result on the classical limit of
a large quantum system in terms of quantization (which is the opposite of taking
the classical limit), it is formally possible to do so (cf. Section 4.3) if we put

� =
1
N

.(44)

Using the axiom of choice if necessary, we devise a procedure that assigns a con-
tinuous section A = (A0, A1, A2, · · · ) of our field to a given function A0 ∈ A(c)

0 .
We write this as AN = Q 1

N
(A0), and similarly A′

N = Q 1
N

(A′
0). This choice need

not be such that the sequence (43) is assigned to {A0, A
′
0}, but since the latter is

the unique limit of (43), it must be that

lim
N→∞

∥∥∥iN [
Q 1

N
(A0),Q 1

N
(A′

0)
]
−Q 1

N
({A0, A

′
0})
∥∥∥ = 0.(45)

Also note that (27) is just (12). Consequently (cf. (25) and surrounding text):
303The result does not hold for all continuous sections (i.e. for all approximately symmetric

sequences), since, for example, the limiting functions A0 and A′
0 may not be differentiable, so

that their Poisson bracket does not exist. This problem occurs in all examples of deforma-
tion quantization. However, the class of sequences for which the claim is valid is larger than
the symmetric ones alone. A sufficient condition on A and B for (43) to make sense is that

AN =
P
M≤N jNM (A

(N)
M ) (with A

(N)
M ∈ AM1 ), such that limN→∞ A

(N)
M exists (in norm) and

P∞
M=1 M supN≥M{‖A(N)

M ‖} <∞. See [Duffield and Werner, 1992a].
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The continuous field of C∗-algebras A(c) defined by (2) and approxi-
mately symmetric sequences (and their limits) as continuous sections
yields a deformation quantization of the phase space S(A1) (equipped
with the Poisson bracket (38)) for any quantization map Q.

For the dynamics this implies:

Let H = (H0,H1,H2, · · · ) be a continuous section of A(c) defined by
a symmetric sequence,304 and let A = (A0, A1, A2, · · · ) be an arbitrary
continuous section of A(c) (i.e. an approximately symmetric sequence).
Then the sequence

(
A0(t), eiH1tA1e

−iH1t, · · · eiNHN tANe−iNHN t, · · · ) ,(46)

where A0(t) is the solution of the equations of motion with classical
Hamiltonian H0,305 defines a continuous section of A(c).

In other words, for bounded symmetric sequences of Hamiltonians HN the quan-
tum dynamics restricted to macroscopic observables converges to the classical dy-
namics with Hamiltonian H0. Compare the positions of � and N in (12) and (46),
respectively, and rejoice in the reconfirmation of (44).

In contrast, the quasilocal observables are not well behaved as far as the N →∞
limit of the dynamics defined by such Hamiltonians is concerned. Namely, if
(A0, A1, · · · ) is a section of the continuous field A(q), and (H1,H2, · · · ) is any
bounded symmetric sequence of Hamiltonians, then the sequence(

eiH1tA1e
−iH1t, · · · eiNHN tANe−iNHN t, · · · )

has no limit for N → ∞, in that it cannot be extended by some A0(t) to a
continuous section of A(q). Indeed, this was the very reason why macroscopic
observables were originally introduced in this context [Rieckers, 1984; Morchio and
Strocchi, 1987; Bona, 1988; Unnerstall, 1990a; Raggio and Werner, 1989; Duffield
and Werner, 1992a]. Instead, the natural finite-N Hamiltonians for which the limit
N → ∞ of the time-evolution on AN1 exists as a one-parameter automorphism
group on A(q) satisfy an appropriate locality condition, which excludes the global
averages defining symmetric sequences.

6.6 Epilogue: Macroscopic observables and the measurement problem

In a renowned paper, Hepp [1972] suggested that macroscopic observables and su-
perselection rules should play a role in the solution of the measurement problem of

304Once again, the result in fact holds for a larger class of Hamiltonians, namely the ones
satisfying the conditions specified in footnote 303 [Duffield and Werner, 1992a]. The assumption
that each Hamiltonian HN lies in AN1 and hence is bounded is natural in lattice models, but is
undesirable in general.
305See (18) and surrounding text.
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quantum mechanics. He assumed that a macroscopic apparatus may be idealized
as an infinite quantum system, whose algebra of observables AA has disjoint pure
states. Referring to our discussion in Subsection 2.5 for context and notation,
Hepp’s basic idea (for which he claimed no originality) was that as a consequence
of the measurement process the initial state vector ΩI =

∑
n cnΨn ⊗ I of system

plus apparatus evolves into a final state vector ΩF =
∑
n cnΨn ⊗ Φn, in which

each Φn lies in a different superselection sector of the Hilbert space of the appa-
ratus (in other words, the corresponding states ϕn on AA are mutually disjoint).
Consequently, although the initial state ωI is pure, the final state ωF is mixed.
Moreover, because of the disjointness of the ωn the final state ωF has a unique de-
composition ωF =

∑
n |cn|2ψn ⊗ϕn into pure states, and therefore admits a bona

fide ignorance interpretation. Hepp therefore claimed with some justification that
the measurement “reduces the wave packet”, as desired in quantum measurement
theory.

Even apart from the usual conceptual problem of passing from the collective of
all terms in the final mixture to one actual measurement outcome, Hepp himself
indicated a serious mathematical problem with this program. Namely, if the initial
state is pure it must lie in a certain superselection sector (or equivalence class of
states); but then the final state must lie in the very same sector if the time-
evolution is Hamiltonian, or, more generally, automorphic (as we have seen in the
preceding subsection). Alternatively, it follows from a more general lemma Hepp
[1972] himself proved:

If two states ρ, σ on a C∗-algebra B are disjoint and α : B → B is an
automorphism of B, then ρ ◦ α and σ ◦ α are disjoint, too.

To reach the negative conclusion above, one takes B to be the algebra of observables
of system and apparatus jointly, and computes back in time by choosing α =
α−1
tF −tI , where αt is the one-parameter automorphism group on B describing the

joint time-evolution of system and apparatus (and tI and tF are the initial and
final times of the measurement, respectively). However, Hepp pointed out that this
conclusion may be circumvented if one admits the possibility that a measurement
takes infinitely long to complete. For the limit A �→ limt→∞ αt(A) (provided it
exists in a suitable sense, e.g., weakly) does not necessarily yield an automorphism
of B. Hence a state — evolving in the Schrödinger picture by ωt(A) ≡ ω(αt(A)) —
may leave its sector in infinite time, a possibility Hepp actually demonstrated in a
range of models; see also [Frigerio, 1974; Whitten-Wolfe and Emch, 1976; Araki,
1980; Bona, 1980; Hannabuss, 1984; Bub, 1988; Landsman, 1991; Frasca, 2003;
2004], and many other papers.

Despite the criticism that has been raised against the conclusion that a quantum-
mechanical measurement requires an infinite apparatus and must take infinite time
[Bell, 1975; Robinson, 1994; Landsman, 1995], and despite the fact that this pro-
cedure is quite against the spirit of von Neumann [1932], in whose widely accepted
description measurements are practically instantaneous, this conclusion resonates
well with the modern idea that quantum theory is universally valid and the classical
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world has no absolute existence; cf. the Introduction. Furthermore, a quantum-
mechanical measurement is nothing but a specific interaction, comparable with a
scattering process; and it is quite uncontroversial that such a process takes infi-
nite time to complete. Indeed, what would it mean for scattering to be over after
some finite time? Which time? As we shall see in the next section, the theory of
decoherence requires the limit t→∞ as well, and largely for the same mathemat-
ical reasons. There as well as in Hepp’s approach, the limiting behaviour actually
tends to be approached very quickly (on the pertinent time scale), and one needs
to let t → ∞ merely to make terms ∼ exp−γt (with γ > 0) zero rather than
just very small. See also [Primas, 1997] for a less pragmatic point of view on the
significance of this limit.

A more serious problem with Hepp’s approach lies in his assumption that the
time-evolution on the quasilocal algebra of observables of the infinite measurement
apparatus (which in our class of examples would be A(q)

0 ) is automorphic. This,
however, is by no means always the case; cf. the references listed near the end
of Subsection 6.5. As we have seen, for certain natural Hamiltonian (and hence
automorphic) time-evolutions at finite N the dynamics has no limit N → ∞ on
the algebra of quasilocal observables — let alone an automorphic one.

Nonetheless, Hepp’s conclusion remains valid if we use the algebraA(c)
0 of macro-

scopic observables, on which (under suitable assumptions — see Subsection 6.5)
Hamiltonian time-evolution on AN1 does have a limit as N → ∞. For, as pointed
out in Subsection 6.3, each superselection sector of A(q)

0 defines and is defined by
a pure state on A1, which in turn defines a sector of A(c)

0 . Now the latter sector is
simply a point in the pure state space S(A1) of the commutative C∗-algebra A(c)

0 ,
so that Hepp’s lemma quoted above boils down to the claim that if ρ �= σ, then
ρ ◦α �= σ ◦α for any automorphism α. This, of course, is a trivial property of any
Hamiltonian time-evolution, and it follows once again that a transition from a pure
pre-measurement state to a mixed post-measurement state on A(c)

0 is impossible
in finite time. To avoid this conclusion, one should simply avoid the limt N →∞,
which is the root of the t→∞ limit; see [Janssens, 2005].

What, then, does all this formalism mean for Schrödinger’s cat? In our opinion,
it confirms the impression that the appearance of a paradox rests upon an equiv-
ocation. Indeed, the problem arises because one oscillates between two mutually
exclusive interpretations.306

Either one is a bohemian theorist who, in vacant or in pensive mood, puts
off his or her glasses and merely contemplates whether the cat is dead or alive.
Such a person studies the cat exclusively from the point of view of its macroscopic
observables, so that he or she has to use a post-measurement state ω

(c)
F on the

algebra A(c)
0 . If ω

(c)
F is pure, it lies in P(A1) (unless the pre-measurement state

was mixed). Such a state corresponds to a single superselection sector [ω(q)
F ] of

A(q)
0 , so that the cat is dead or alive. If, on the other hand, ω

(c)
F is mixed (which

306Does complementarity re-enter through the back door?
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is what occurs if Schrödinger has his way), there is no problem in the first place:
at the level of macroscopic observables one merely has a statistical description of
the cat.

Or one is a hard-working experimental physicist of formidable power, who in-
vestigates the detailed microscopic constitution of the cat. For him or her the cat
is always in a pure state on AN1 for some large N . This time the issue of life and
death is not a matter of lazy observation and conclusion, but one of sheer endless
experimentation and computation. From the point of view of such an observer,
nothing is wrong with the cat being in a coherent superposition of two states that
are actually quite close to each other microscopically — at least for the time being.

Either way, the riddle does not exist (Wittgenstein, TLP, §6.5).

7 WHY CLASSICAL STATES AND OBSERVABLES?

‘We have found a strange footprint on the shores of the unknown. We
have devised profound theories, one after another, to account for its
origins. At last, we have succeeded in reconstructing the creature that
made the footprint. And lo! It is our own.’ [Eddington, 1920, 200–201]

The conclusion of Sections 5 and 6 is that quantum theory may give rise to
classical behaviour in certain states and with respect to certain observables. For
example, we have seen that in the limit � → 0 coherent states and operators
of the form Q�(f), respectively, are appropriate, whereas in the limit N → ∞
one should use classical states (nomen est omen!) as defined in Subsection 6.2
and macroscopic observables. If, instead, one uses superpositions of such states,
or observables with the wrong limiting behaviour, no classical physics emerges.
Thus the question remains why the world at large should happen to be in such
states, and why we turn out to study this world with respect to the observables in
question. This question found its original incarnation in the measurement problem
(cf. Subsection 2.5), but this problem is really a figure-head for a much wider
difficulty.

Over the last 25 years,307 two profound and original answers to this question
have been proposed.

7.1 Decoherence

The first goes under the name of decoherence. Pioneering papers include [van
Kampen, 1954; Zeh, 1970; Zurek, 1981; 1982],308 and [Joos and Zeh, 1985], and
some recent reviews are [Bub, 1999; Auletta, 2001; Joos et al., 2003; Zurek, 2003;
Blanchard and Olkiewicz, 2003; Bacciagaluppi, 2004] and [Schlosshauer, 2004].309

307Though some say the basic idea of decoherence goes back to Heisenberg and Ludwig.
308See also [Zurek, 1991] and the subsequent debate in Physics Today [Zurek, 1993], which drew

wide attention to decoherence.
309The website http://almaak.usc.edu/∼tbrun/Data/decoherence−list.html contains an ex-

tensive list of references on decoherence.
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More references will be given in due course. The existence (and excellence) of
these reviews obviates the need for a detailed treatment of decoherence in this
article, all the more so since at the time of writing this approach appears to be
in a transitional stage, conceptually as well as mathematically (as will be evident
from what follows). Thus we depart from the layout of our earlier chapters and
restrict ourselves to a few personal comments.

1. Mathematically, decoherence boils down to the idea of adding one more
link to the von Neumann chain (see Subsection 2.5) beyond S + A (i.e.
the system and the apparatus). Conceptually, however, there is a major
difference between decoherence and older approaches that took such a step:
whereas previously (e.g., in the hands of von Neumann, London and Bauer,
Wigner, etc.)310 the chain converged towards the observer, in decoherence
it diverges away from the observer. Namely, the third and final link is now
taken to be the environment (taken in a fairly literal sense in agreement with
the intuitive meaning of the word). In particular, in realistic models the
environment is treated as an infinite system (necessitating the limit N →
∞), which has the consequence that (in simple models where the pointer
has discrete spectrum) the post-measurement state

∑
n cnΨn ⊗Φn ⊗ χn (in

which the χn are mutually orthogonal) is only reached in the limit t → ∞.
However, as already mentioned in Subsection 6.6, infinite time is only needed
mathematically in order to make terms of the type ∼ exp−γt (with γ > 0)
zero rather than just very small: in many models the inner products (χn, χm)
are actually negligible for n �= m within surprisingly short time scales.311

If only in view of the need for limits of the type N → ∞ (for the envi-
ronment) and t → ∞, in our opinion decoherence is best linked to stance
1 of the Introduction: its goal is to explain the approximate appearance of
the classical world from quantum mechanics seen as a universally valid the-
ory. However, decoherence has been claimed to support almost any opinion
on the foundations of quantum mechanics; cf. [Bacciagaluppi, 2004] and
[Schlosshauer, 2004] for a critical overview and also see Point 3 below.

2. Originally, decoherence entered the scene as a proposed solution to the mea-
surement problem (in the precise form stated at the end of Subsection 2.5).
For the restriction of the state

∑
n cnΨn ⊗ Φn ⊗ χn to S + A (i.e. its trace

over the degrees of freedom of the environment) is mixed in the limit t→∞,
which means that the quantum-mechanical interference between the states
Ψn⊗Φn for different values of n has become ‘delocalized’ to the environment,
and accordingly is irrelevant if the latter is not observed (i.e. omitted from
the description). Unfortunately, the application of the ignorance interpreta-
tion of the mixed post-measurement state of S + A is illegal even from the
point of view of stance 1 of the Introduction. The ignorance interpretation

310See [Wheeler and Zurek, 1983].
311Cf. Tables 3.1 and 3.2 on pp. 66–67 of [Joos et al., 2003].
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is only valid if the environment is kept within the description and is classical
(in having a commutative C∗-algebra of observables). The latter assumption
[Primas, 1983], however, makes the decoherence solution to the measurement
problem circular.312

In fact, as quite rightly pointed out by Bacciagaluppi [2004], decoherence ac-
tually aggravates the measurement problem. Where previously this problem
was believed to be man-made and relevant only to rather unusual labora-
tory situations (important as these might be for the foundations of physics),
it has now become clear that “measurement” of a quantum system by the
environment (instead of by an experimental physicist) happens everywhere
and all the time: hence it remains even more miraculous than before that
there is a single outcome after each such measurement. Thus decoherence
as such does not provide a solution to the measurement problem [Leggett,
2002];313 Adler, 2003; Joos and Zeh, 2003], but is in actual fact parasitic on
such a solution.

3. There have been various responses to this insight. The dominant one has
been to combine decoherence with some interpretation of quantum mechan-
ics: decoherence then finds a home, while conversely the interpretation in
question is usually enhanced by decoherence. In this context, the most pop-
ular of these has been the many-worlds interpretation, which, after decades
of obscurity and derision, suddenly started to be greeted with a flourish of
trumpets in the wake of the popularity of decoherence. See, for example,
[Saunders, 1993; 1995; Joos et al., 2003] and [Zurek, 2003]. In quantum
cosmology circles, the consistent histories approach has been a popular part-
ner to decoherence, often in combination with many worlds; see below. The
importance of decoherence in the modal interpretation has been emphasized
by Dieks [1989b] and Bene and Dieks [2002], and practically all authors on
decoherence find the opportunity to pay some lip-service to Bohr in one way
or another. See [Bacciagaluppi, 2004] and [Schlosshauer, 2004] for a critical
assessment of all these combinations.

In our opinion, none of the established interpretations of quantum mechan-
ics will do the job, leaving room for genuinely new ideas. One such idea is
the return of the environment: instead of “tracing it out”, as in the original
setting of decoherence theory, the environment should not be ignored! The

312On the other hand, treating the environment as if it were classical might be an improvement
on the Copenhagen ideology of treating the measurement apparatus as if it were classical (cf.
Section 3).
313In fact, Leggett’s argument only applies to strawman 3 of the Introduction and loses its force

against stance 1. For his argument is that decoherence just removes the evidence for a given
state (of Schrödinger’s cat type) to be a superposition, and accuses those claiming that this
solves the measurement problem of committing the logical fallacy that removal of the evidence
for a crime would undo the crime. But according to stance 1 the crime is only defined relative to
the evidence! Leggett is quite right, however, in insisting on the ‘from “ and” to “or” problem’
mentioned at the end of the Introduction.
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essence of measurement has now been recognized to be the redundancy of
the outcome (or “record”) of the measurement in the environment. It is this
very redundancy of information about the underlying quantum object that
“objectifies” it, in that the information becomes accessible to a large number
of observers without necessarily disturbing the object314 [Zurek, 2003; Ol-
livier et al. 2004; Blume-Kohout and Zurek, 2004; 2005]. This insight (called
“Quantum Darwinism”) has given rise to the “existential” interpretation of
quantum mechanics due to Zurek [2003].

4. Another response to the failure of decoherence (and indeed all other ap-
proaches) to solve the measurement problem (in the sense of failing to win
a general consensus) has been of a somewhat more pessimistic (or, some
would say, pragmatic) kind: all attempts to explain the quantum world are
given up, yielding to the point of view that ‘the appropriate aim of physics
at the fundamental level then becomes the representation and manipula-
tion of information’ [Bub, 2004]. Here ‘measuring instruments ultimately
remain black boxes at some level’, and one concludes that all efforts to un-
derstand measurement (or, for that matter, epr-correlations) are futile and
pointless.315

5. Night thoughts of a quantum physicist, then?316 Not quite. Turning vice
into virtue: rather than solving the measurement problem, the true signif-
icance of the decoherence program is that it gives conditions under which
there is no measurement problem! Namely, foregoing an explanation of the
transition from the state

∑
n cnΨn ⊗ Φn ⊗ χn of S + A + E to a single one

of the states Ψn ⊗ Φn of S + A, at the heart of decoherence is the claim
that each of the latter states is robust against coupling to the environment
(provided the Hamiltonian is such that Ψn ⊗ Φn tensored with some initial
state IE of the environment indeed evolves into Ψn ⊗ Φn ⊗ χn, as assumed
so far). This implies that each state Ψn⊗Φn remains pure after coupling to
the environment and subsequent restriction to the original system plus ap-
paratus, so that at the end of the day the environment has had no influence
on it. In other words, the real point of decoherence is the phenomenon of
einselection (for environment-induced superselection), where a state is ‘einse-
lected’ precisely when (given some interaction Hamiltonian) it possesses the
stability property just mentioned. The claim, then, is that einselected states
are often classical, or at least that classical states (in the sense mentioned at
the beginning of this section) are classical precisely because they are robust
against coupling to the environment. Provided this scenario indeed gives

314Such objectification is claimed to yield an ‘operational definition of existence’ [Zurek, 2003,
749].
315It is indeed in describing the transformation of quantum information (or entropy) to classical

information during measurement that decoherence comes to its own and exhibits some of its
greatest strength. Perhaps for this reason such thinking pervades also Zurek [2003].
316[Kent, 2000]. Pun on the title of McCormmach [1982].
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rise to the classical world (which remains to be shown in detail), it gives a
dynamical explanation of it. But even short of having achieved this goal,
the importance of the notion of einselection cannot be overstated; in our
opinion, it is the most important and powerful idea in quantum theory since
entanglement (which einselection, of course, attempts to undo!).

6. The measurement problem, and the associated distinction between system
and apparatus on the one hand and environment on the other, can now be
omitted from decoherence theory. Continuing the discussion in Subsection
3.4, the goal of decoherence should simply be to find the robust or eins-
elected states of a object O coupled to an environment E , as well as the
induced dynamics thereof (given the time-evolution of O + E). This search,
however, must include the correct identification of the object O within the
total S + E , namely as a subsystem that actually has such robust states.
Thus the Copenhagen idea that the Heisenberg cut between object and ap-
paratus be movable (cf. Subsection 3.2) will not, in general, extend to the
“Primas–Zurek” cut between object and environment. In traditional physics
terminology, the problem is to find the right “dressing” of a quantum system
so as to make at least some of its states robust against coupling to its envi-
ronment [Amann and Primas, 1997; Brun and Hartle, 1999; Omnès, 2002].
In other words: What is a system? To mark this change in perspective, we
now change notation from O (for “object”) to S (for “system”). Various
tools for the solution of this problem within the decoherence program have
now been developed — with increasing refinement and also increasing re-
liance on concepts from information theory [Zurek, 2003] — but the right
setting for it seems the formalism of consistent histories, see below.

7. Various dynamical regimes haven been unearthed, each of which leads to a
different class of robust states [Joos et al., 2003; Zurek, 2003; Schlosshauer,
2004]. Here HS is the system Hamiltonian, HI is the interaction Hamiltonian
between system and environment, and HE is the environment Hamiltonian.
As stated, no reference to measurement, object or apparatus need be made
here.

• In the regime HS << HI , for suitable Hamiltonians the robust states
are the traditional pointer states of quantum measurement theory. This
regime conforms to von Neumann’s [1932] idea that quantum measure-
ments be almost instantaneous. If, moreover, HE << HI as well —
with or without a measurement context — then the decoherence mech-
anism turns out to be universal in being independent of the details of
E and HE [Strunz et al., 2003).

• If HS ≈ HI , then (at least in models of quantum Brownian motion) the
robust states are coherent states (either of the traditional Schrödinger
type, or of a more general nature as defined in Subsection 5.1); see
[Zurek et al., 1993] and [Zurek, 2003]. This case is, of course, of supreme
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importance for the physical relevance of the results quoted in our Sec-
tion 5 above, and — if only for this reason — decoherence theory would
benefit from more interaction with mathematically rigorous results on
quantum stochastic analysis.317

• Finally, if HS >> HI , then the robust states turn out to be eigenstates
of the system Hamiltonian HS [Paz and Zurek, 1999; Ollivier et al.,
2004]. In view of our discussion of such states in Subsections 5.5 and
5.6, this shows that robust states are not necessarily classical. It should
be mentioned that in this context decoherence theory largely coincides
with standard atomic physics, in which the atom is taken to be the
system S and the radiation field plays the role of the environment E ; see
[Gustafson and Sigal, 2003] for a mathematically minded introductory
treatment and [Bach et al., 1998; 1999] for a full (mathematical) meal.

8. Further to the above clarification of the role of energy eigenstates, decoher-
ence also has had important things to say about quantum chaos [Zurek, 2003;
Joos et al., 2003]. Referring to our discussion of wave packet revival in Sub-
section 2.4, we have seen that in atomic physics wave packets do not behave
classically on long time scales. Perhaps surprisingly, this is even true for cer-
tain chaotic macroscopic systems: cf. the case of Hyperion mentioned in the
Introduction and at the end of Subsection 5.2. Decoherence now replaces
the underlying superposition by a classical probability distribution, which
reflects the chaotic nature of the limiting classical dynamics. Once again,
the transition from the pertinent pure state of system plus environment to a
single observed system state remains clouded in mystery. But granted this
transition, decoherence sheds new light on classical chaos and circumvents
at least the most flagrant clashes with observation.318

9. Robustness and einselection form the state side or Schrödinger picture of de-
coherence. Of course, there should also be a corresponding observable side
or Heisenberg picture of decoherence. But the transition between the two
pictures is more subtle than in the quantum mechanics of closed systems.
In the Schrödinger picture, the whole point of einselection is that most pure
states simply disappear from the scene. This may be beautifully visualized
on the example of a two-level system with Hilbert space HS = C

2 [Zurek,
2003]. If ↑ and ↓ (cf. (33)) happen to be the robust vector states of the
system after coupling to an appropriate environment, and if we identify the
corresponding density matrices with the north-pole (0, 0, 1) ∈ B3 and the
south-pole (0, 0,−1) ∈ B3, respectively (cf. (3)), then following decoherence
all other states move towards the axis connecting the north- and south poles

317Cf. [Davies, 1976; Accardi et al., 1990; Parthasarathy, 1992; Streater, 2000; Kümmerer,
2002; Maassen, 2003], etc.
318It should be mentioned, though, that any successful mechanism explaining the transition

from quantum to classical should have this feature, so that at the end of the day decoherence
might turn out to be a red herring here.
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(i.e. the intersection of the z-axis with B3) as t → ∞. In the Heisenberg
picture, this disappearance of all pure states except two corresponds to the
reduction of the full algebra of observables M2(C) of the system to its diag-
onal (and hence commutative) subalgebra C⊕C in the same limit. For it is
only the latter algebra that contains enough elements to distinguish ↑ and
↓ without containing observables detecting interference terms between these
pure states.

10. To understand this in a more abstract and general way, we recall the mathe-
matical relationship between pure states and observables [Landsman, 1998].
The passage from a C∗-algebra A of observables of a given system to its
pure states is well known: as a set, the pure state space P(A) is the extreme
boundary of the total state space S(A) (cf. footnote 259). In order to re-
construct A from P(A), the latter needs to be equipped with the structure
of a transition probability space (see Subsection 6.3) through (27). Each
element A ∈ A defines a function Â on P(A) by Â(ω) = ω(A). Now, in the
simple case that A is finite-dimensional (and hence a direct sum of matrix
algebras), one can show that each function Â is a finite linear combination
of the form Â =

∑
i pωi

, where ωi ∈ P(A) and the elementary functions pρ
on P(A) are defined by pρ(σ) = p(ρ, σ). Conversely, each such linear combi-
nation defines a function Â for some A ∈ A. Thus the elements of A (seen as
functions on the pure state space P(A)) are just the transition probabilities
and linear combinations thereof. The algebraic structure of A may then be
reconstructed from the structure of P(A) as a Poisson space with a transi-
tion probability (cf. Subsection 6.5). In this sense P(A) uniquely determines
the algebra of observables of which it is the pure state space. For example,
the space consisting of two points with classical transition probabilities (31)
leads to the commutative algebra A = C ⊕ C, whereas the unit two-sphere
in R

3 with transition probabilities (32) yields A = M2(C).

This reconstruction procedure may be generalized to arbitrary C∗-algebras
[Landsman, 1998], and defines the precise connection between the Schrödinger
picture and the Heisenberg picture that is relevant to decoherence. These
pictures are equivalent, but in practice the reconstruction procedure may be
difficult to carry through.

11. For this reason it is of interest to have a direct description of decoherence
in the Heisenberg picture. Such a description has been developed by Blan-
chard and Olkiewicz [2003], partly on the basis of earlier results by Olkiewicz
[1999a,b; 2000]. Mathematically, their approach is more powerful than the
Schrödinger picture on which most of the literature on decoherence is based.
Let AS = B(HS) and AE = B(HE), and assume one has a total Hamiltonian
H acting on HS⊗HE as well as a fixed state of the environment, represented
by a density matrix ρE (often taken to be a thermal equilibrium state). If ρS
is a density matrix on HS (so that the total state is ρS⊗ρE), the Schrödinger



522 N.P. Landsman

picture approach to decoherence (and more generally to the quantum theory
of open systems) is based on the time-evolution

ρS(t) = TrHE
(
e−

it
�
HρS ⊗ ρEe

it
�
H
)

.(1)

The Heisenberg picture, on the other hand, is based on the associated oper-
ator time-evolution for A ∈ B(HS) given by

A(t) = TrHE
(
ρEe

it
�
HA⊗ 1 e−

it
�
H
)

,(2)

since this yields the equivalence of the Schrödinger and Heisenberg pictures
expressed by

TrHS (ρS(t)A) = TrHS (ρSA(t)) .(3)

More generally, let AS and AE be unital C∗-algebras with spatial tensor
product AS⊗AE , equipped with a time-evolution αt and a fixed state ωE on
AE . This defines a conditional expectation PE : AS⊗AE → AS by linear and
continuous extension of PE(A ⊗ B) = AωE(B), and consequently a reduced
time-evolution A �→ A(t) on AS via

A(t) = PE(αt(A⊗ 1)).(4)

See, for example, Alicki and Lendi [1987]; in our context, this generality is
crucial for the potential emergence of continuous classical phase spaces; see
below.319 Now the key point is that decoherence is described by a decompo-
sition AS = A(1)

S ⊕A(2)
S as a vector space (not as a C∗-algebra), where A(1)

S
is a C∗-algebra, with the property that limt→∞ A(t) = 0 (weakly) for all
A ∈ A(2)

S , whereas A �→ A(t) is an automorphism on A(1)
S for each finite t .

Consequently, A(1)
S is the effective algebra of observables after decoherence,

and it is precisely the pure states on A(1)
S that are robust or einselected in

the sense discussed before.

12. For example, if AS = M2(C) and the states ↑ and ↓ are robust under de-
coherence, then A(1)

S = C ⊕ C and A(2)
S consists of all 2 × 2 matrices with

zeros on the diagonal. In this example A(1)
S is commutative hence classi-

cal, but this may not be the case in general. But if it is, the automorphic
time-evolution on A(1)

S induces a classical flow on its structure space, which
should be shown to be Hamiltonian using the techniques of Section 6.320

319For technical reasons Blanchard and Olkiewicz [2003] assume AS to be a von Neumann
algebra with trivial center.
320Since on the assumption in the preceding footnote A(1)

S is a commutative von Neumann
algebra one should define the structure space in an indirect way; see [Blanchard and Olkiewicz,
2003].
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In any case, there will be some sort of classical behaviour of the decohered
system whenever A(1)

S has a nontrivial center.321 If this center is discrete,
then the induced time-evolution on it is necessarily trivial, and one has the
typical measurement situation where the center in question is generated by
the projections on the eigenstates of a pointer observable with discrete spec-
trum. This is generic for the case where AS is a type i factor. However, type
ii and iii factors may give rise to continuous classical systems with nontriv-
ial time-evolution; see [Lugiewicz and Olkiewicz, 2002; 2003]. We cannot do
justice here to the full technical details and complications involved here. But
we would like to emphasize that further to quantum field theory and the the-
ory of the thermodynamic limit, the present context of decoherence should
provide important motivation for specialists in the foundations of quantum
theory to learn the theory of operator algebras.322

7.2 Consistent histories

Whilst doing so, one is well advised to work even harder and simultaneously fa-
miliarize oneself with consistent histories. This approach to quantum theory was
pioneered by Griffiths [1984] and was subsequently taken up by Omnès [1992] and
others. Independently, Gell-Mann and Hartle [1990; 1993] proposed analogous
ideas. Like decoherence, the consistent histories method has been the subject of
lengthy reviews [Hartle, 1995] and even books [Omnès, 1994; 1999; Griffiths, 2002]
by the founders. See also the reviews by Kiefer [2003] and Halliwell [2004], the cri-
tiques by Dowker and Kent [1996], Kent [1998], Bub [1999], and Bassi and Ghirardi
[2000], as well as the various mathematical reformulations and reinterpretations
of the consistent histories program [Isham, 1994; 1997; Isham and Linden, 1994;
1995; Isham et al., 1994; Isham and Butterfield, 2000; Rudolph, 1996a; 1996b;
2000; Rudolph and Wright, 1999].

The relationship between consistent histories and decoherence is somewhat pe-
culiar: on the one hand, decoherence is a natural mechanism through which ap-
propriate sets of histories become (approximately) consistent, but on the other
hand these approaches appear to have quite different points of departure. Namely,
where decoherence starts from the idea that (quantum) systems are naturally cou-
pled to their environments and therefore have to be treated as open systems, the
aim of consistent histories is to deal with closed quantum systems such as the Uni-
verse, without a priori talking about measurements or observers. However, this
distinction is merely historical: as we have seen in item 6 in the previous subsec-
tion, the dividing line between a system and its environment should be seen as a
dynamical entity to be drawn according to certain stability criteria, so that even
in decoherence theory one should really study the system plus its environment as
a whole from the outset.323 And this is precisely what consistent historians do.

321This is possible even when AS is a factor!
322See the references in footnote 7.
323This renders the distinction between “open” and “closed” systems a bit of a red herring, as
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As in the preceding subsection, and for exactly the same reasons, we format our
treatment of consistent histories as a list of items open to discussion.

1. The starting point of the consistent histories formulation of quantum the-
ory is conventional: one has a Hilbert space H, a state ρ, taken to be the
initial state of the total system under consideration (realized as a density
matrix on H) and a Hamiltonian H (defined as a self-adjoint operator on
H). What is unconventional is that this total system may well be the entire
Universe. Each property α of the total system is mathematically represented
by a projection Pα on H; for example, if α is the property that the energy
takes some value ε, then the operator Pα is the projection onto the associ-
ated eigenspace (assuming ε belongs to the discrete spectrum of H). In the
Heisenberg picture, Pα evolves in time as Pα(t) according to (12); note that
Pα(t) is once again a projection.

A history HA is a chain of properties (or propositions) (α1(t1), . . . , αn(tn))
indexed by n different times t1 < . . . < tn; here A is a multi-label incorpo-
rating both the properties (α1, . . . , αn) and the times (t1, . . . , tn). Such a
history indicates that each property αi holds at time ti, i = 1, . . . , n. Such
a history may be taken to be a collection {α(t)}t∈R defined for all times,
but for simplicity one usually assumes that α(t) �= 1 (where 1 is the trivial
property that always holds) only for a finite set of times t; this set is precisely
{t1, . . . , tn}. An example suggested by Heisenberg (1927) is to take αi to be
the property that a particle moving through a Wilson cloud chamber may be
found in a cell ∆i ⊂ R

6 of its phase space; the history (α1(t1), . . . , αn(tn))
then denotes the state of affairs in which the particle is in cell ∆1 at time t1,
subsequently is in cell ∆2 at time t2, etcetera. Nothing is stated about the
particle’s behaviour at intermediate times. Another example of a history is
provided by the double slit experiment, where α1 is the particle’s launch at
the source at t1 (which is usually omitted from the description), α2 is the
particle passing through (e.g.) the upper slit at t2, and α3 is the detection
of the particle at some location L at the screen at t3. As we all know, there
is a potential problem with this history, which will be clarified below in the
present framework.

The fundamental claim of the consistent historians seems to be that quantum
theory should do no more (or less) than making predictions about the proba-
bilities that histories occur. What these probabilities actually mean remains
obscure (except perhaps when they are close to zero or one, or when refer-
ence is made to some measurement context; see [Hartle, 2005]), but let us
first see when and how one can define them. The only potentially meaningful
mathematical expression (within quantum mechanics) for the probability of

even in decoherence theory the totality of the system plus its environment is treated as a closed
system.
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a history HA with respect to a state ρ is [Groenewold, 1952; Wigner, 1963]

p(HA) = Tr (CAρC∗
A),(5)

where

CA = Pαn
(tn) · · ·Pα1(t1).(6)

Note that CA is generally not a projection (and hence a property) itself
(unless all Pαi

mutually commute). In particular, when ρ = [Ψ] is a pure
state (defined by some unit vector Ψ ∈ H), one simply has

p(HA) = ‖CAΨ‖2 = ‖Pαn
(tn) · · ·Pα1(t1)Ψ‖2.(7)

When n = 1 this just yields the Born rule. Conversely, see Isham (1994) for
a derivation of (5) from the Born rule.324

2. Whatever one might think about the metaphysics of quantum mechanics,
a probability makes no sense whatsoever when it is only attributed to a
single history (except when it is exactly zero or one). The least one should
have is something like a sample space (or event space) of histories, each
(measurable) subset of which is assigned some probability such that the
usual (Kolmogorov) rules are satisfied. This is a (well-known) problem even
for a single time t and a single projection Pα (i.e. n = 1). In that case,
the problem is solved by finding a self-adjoint operator A of which Pα is a
spectral projection, so that the sample space is taken to be the spectrum
σ(A) of A, with α ⊂ σ(A). Given Pα, the choice of A is by no means
unique, of course; different choices may lead to different and incompatible
sample spaces. In practice, one usually starts from A and derives the Pα
as its spectral projections Pα =

∫
α

dP (λ), given that the spectral resolution
of A is A =

∫
R

dP (λ)λ. Subsequently, one may then either coarse-grain
or fine-grain this sample space. The former is done by finding a partition
σ(A) =

∐
i αi (disjoint union), and only admitting elements of the σ-algebra

generated by the αi as events (along with the associated spectral projection
Pαi

), instead of all (measurable) subsets of σ(A). To perform fine-graining,
one supplements A by operators that commute with A as well as with each
other, so that the new sample space is the joint spectrum of the ensuing
family of mutually commuting operators.

In any case, in what follows it turns out to be convenient to work with
the projections Pα instead of the subsets α of the sample space; the above
discussion then amounts to extending the given projection on H to some

324See also [Zurek, 2005] for a novel derivation of the Born rule, as well as the ensuing discussion
in [Schlosshauer, 2004].
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Boolean sublattice of the lattice P(H) of all projections on H.325 Any state
ρ then defines a probability measure on this sublattice in the usual way
[Beltrametti and Cassinelli, 1984].

3. Generalizing this to the multi-time case is not a trivial task, somewhat facil-
itated by the following device (Isham, 1994). Put HN = ⊗NH, where N is
the cardinality of the set of all times ti relevant to the histories in the given
collection,326 and, for a given history HA, define

CA = Pαn
(tn)⊗ · · · ⊗ Pα1(t1).(8)

Here Pαi
(ti) acts on the copy of H in the tensor product HN labeled by

ti, so to speak. Note that CA is a projection on HN (whereas CA in (6)
is generally not a projection on H). Furthermore, given a density matrix ρ
on H as above, define the decoherence functional d as a map from pairs of
histories into C by

d(HA, HB) = Tr (CAρC∗
B).(9)

The main point of the consistent histories approach may now be summarized
as follows: a collection {HA}A∈A of histories can be regarded as a sample
space on which a state ρ defines a probability measure via (5), which of
course amounts to

p(HA) = d(HA, HA),(10)

provided that:

(a) The operators {CA}A∈A form a Boolean sublattice of the lattice P(HN )
of all projections on HN ;

(b) The real part of d(HA, HB) vanishes whenever HA is disjoint from
HB .327

In that case, the set {HA}A∈A is called consistent. It is important to realize
that the possible consistency of a given set of histories depends (trivially)
not only on this set, but in addition on the dynamics and on the initial state.

Consistent sets of histories generalize families of commuting projections at
a single time. There is no great loss in replacing the second condition by
the vanishing of d(HA, HB) itself, in which case the histories HA and HB are

325This sublattice is supposed to the unit of P(H), i.e. the unit operator on H, as well as the
zero projection. This comment also applies to the Boolean sublattice of P(HN ) discussed below.
326See the mathematical references above for the case N =∞.
327This means that CACB = 0; equivalently, Pαi (ti)Pβi

(ti) = 0 for at least one time ti. This
condition guarantees that the probability (10) is additive on disjoint histories.
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said to decohere.328 For example, in the double slit experiment the pair of
histories {HA, HB} where α1 = β1 is the particle’s launch at the source at
t1, α2 (β2) is the particle passing through the upper (lower) slit at t2, and
α3 = β3 is the detection of the particle at some location L at the screen, is
not consistent. It becomes consistent, however, when the particle’s passage
through either one of the slits is recorded (or measured) without the recording
device being included in the histories (if it is, nothing would be gained). This
is reminiscent of the von Neumann chain in quantum measurement theory,
which indeed provides an abstract setting for decoherence (cf. item 1 in
the preceding subsection). Alternatively, the set can be made consistent by
omitting α2 and β2. See [Griffiths, 2002] for a more extensive discussion of
the double slit experiment in the language of consistent histories.

More generally, coarse-graining by simply leaving out certain properties is
often a promising attempt to make a given inconsistent set consistent; if the
original history was already consistent, it can never become inconsistent by
doing so. Fine-graining (by embedding into a larger set), on the other hand,
is a dangerous act in that it may render a consistent set inconsistent.

4. What does it all mean? Each choice of a consistent set defines a “universe
of discourse” within which one can apply classical probability theory and
classical logic [Omnès, 1992]. In this sense the consistent historians are quite
faithful to the Copenhagen spirit (as most of them acknowledge): in order
to understand it, the quantum world has to be looked at through classical
glasses. In our opinion, no convincing case has ever been made for the
absolute necessity of this Bohrian stance (cf. Subsection 3.1), but accepting
it, the consistent histories approach is superior to Copenhagen in not relying
on measurement as an a priori ingredient in the interpretation of quantum
mechanics.329 It is also more powerful than the decoherence approach in
turning the notion of a system into a dynamical variable: different consistent
sets describe different systems (and hence different environments, defined as
the rest of the Universe); cf. item 6 in the previous subsection.330 In other
words, the choice of a consistent set boils down to a choice of “relevant
variables” against “irrelevant” ones omitted from the description. As indeed

328Consistent historians use this terminology in a different way from decoherence theorists. By
definition, any two histories involving only a single time are consistent (or, indeed, “decohere”)
iff condition (a) above holds; condition (b) is trivially satisfied in that case, and becomes relevant
only when more than one time is considered. However, in decoherence theory the reduced density
matrix at some given time does not trivially “decohere” at all; the whole point of the (original)
decoherence program was to provide models in which this happens (if only approximately) be-
cause of the coupling of the system with its environment. Having said this, within the context
of models there are close links between consistency (or decoherence) of multi-time histories and
decoherence of reduced density matrices, as the former is often (approximately) achieved by the
same kind of dynamical mechanisms that lead to the latter.
329See [Hartle, 2005] for an analysis of the connection between consistent histories and the

Copenhagen interpretation and others.
330Technically, as the commutant of the projections occurring in a given history.
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stressed in the literature, the act of identification of a certain consistent set as
a universe of discourse is itself nothing but a coarse-graining of the Universe
as a whole.

5. But these conceptual successes come with a price tag. Firstly, consistent sets
turn out not to exist in realistic models (at least if the histories in the set carry
more than one time variable). This has been recognized from the beginning
of the program, the response being that one has to deal with approximately
consistent sets for which (the real part of) d(HA, HB) is merely very small.
Furthermore, even the definition of a history often cannot be given in terms
of projections. For example, in Heisenberg’s cloud chamber example (see
item 1 above), because of his very own uncertainty principle it is impossible
to write down the corresponding projections Pαi

. A natural candidate would
be Pα = QB

�
(χ∆), cf. (19) and (28), but in view of (21) this operator fails to

satisfy P 2
α = Pα, so that it is not a projection (although it does satisfy the

second defining property of a projection P ∗
α = Pα). This merely reflects the

usual property Q(f)2 �= Q(f2) of any quantization method, and necessitates
the use of approximate projections [Omnès, 1997]. Indeed, this point calls
for a reformulation of the entire consistent histories approach in terms of
positive operators instead of projections [Rudolph, 1996a,b].

These are probably not serious problems; indeed, the recognition that classi-
cality emerges from quantum theory only in an approximate sense (conceptu-
ally as well as mathematically) is a profound one (see the Introduction), and
it rather should be counted among its blessings that the consistent histories
program has so far confirmed it.

6. What is potentially more troubling is that consistency by no means implies
classicality beyond the ability (within a given consistent set) to assign clas-
sical probabilities and to use classical logic. Quite to the contrary, neither
Schrödinger cat states nor histories that look classical at each time but fol-
low utterly unclassical trajectories in time are forbidden by the consistency
conditions alone [Dowker and Kent, 1996]. But is this a genuine problem,
except to those who still believe that the earth is at the centre of the Uni-
verse and/or that humans are privileged observers? It just seems to be the
case that — at least according to the consistent historians — the ontological
landscape laid out by quantum theory is far more “inhuman” (or some would
say “obscure”) than the one we inherited from Bohr, in the sense that most
consistent sets bear no obvious relationship to the world that we observe. In
attempting to make sense of these, no appeal to “complementarity” will do
now: for one, the complementary pictures of the quantum world called for
by Bohr were classical in a much stronger sense than generic consistent sets
are, and on top of that Bohr asked us to only think about two such pictures,
as opposed to the innumerable consistent sets offered to us. Our conclusion
is that, much as decoherence does not solve the measurement problem but
rather aggravates it (see item 2 in the preceding subsection), also consistent
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histories actually make the problem of interpreting quantum mechanics more
difficult than it was thought to be before. In any case, it is beyond doubt
that the consistent historians have significantly deepened our understanding
of quantum theory — at the very least by providing a good bookkeeping
device!

7. Considerable progress has been made in the task of identifying at least
some (approximately) consistent sets that display (approximate) classical
behaviour in the full sense of the word [Gell-Mann and Hartle, 1993; Omnès,
1992; 1997; Halliwell, 1998; 2000; 2004; Brun and Hartle, 1999; Bosse and
Hartle, 2005]. Indeed, in our opinion studies of this type form the main
concrete outcome of the consistent histories program. The idea is to find a
consistent set {HA}A∈A with three decisive properties:

(a) Its elements (i.e. histories) are strings of propositions with a classical
interpretation;

(b) Any history in the set that delineates a classical trajectory (i.e. a solu-
tion of appropriate classical equations of motion) has probability (10)
close to unity, and any history following a classically impossible trajec-
tory has probability close to zero;

(c) The description is sufficiently coarse-grained to achieve consistency, but
is sufficiently fine-grained to turn the deterministic equations of motion
following from (b) into a closed system.

When these goals are met, it is in this sense (no more, no less) that the
consistent histories program can claim with some justification that it has
indicated (or even explained) ‘How the quantum Universe becomes classical’
[Halliwell, 2005].

Examples of propositions with a classical interpretation are quantized clas-
sical observables with a recognizable interpretation (such as the operators
QB

�
(χ∆) mentioned in item 5), macroscopic observables of the kind studied

in Subsection 6.1, and hydrodynamic variables (i.e. spatial integrals over con-
served currents). These represent three different levels of classicality, which
in principle are connected through mutual fine- or coarse-grainings.331 The
first are sufficiently coarse-grained to achieve consistency only in the limit
� → 0 (cf. Section 5), whereas the latter two are already coarse-grained by
their very nature. Even so, also the initial state will have to be “classical”
in some sense in order te achieve the three targets (a) - (c).

All this is quite impressive, but we would like to state our opinion that neither
decoherence nor consistent histories can stand on their own in explaining the
appearance of the classical world. Promising as these approaches are, they have to
331The study of these connections is relevant to the program laid out in this paper, but really

belongs to classical physics per se; think of the derivation of the Navier–Stokes equations from
Newton’s equations.
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be combined at least with limiting techniques of the type described in Sections 5
and 6 — not to speak of the need for a new metaphysics! For even if it is granted
that decoherence yields the disappearance of superpositions of Schrödinger cat
type, or that consistent historians give us consistent sets none of whose elements
contain such superpositions among their properties, this by no means suffices to
explain the emergence of classical phase spaces and flows thereon determined by
classical equations of motion. Since so far the approaches cited in Sections 5 and
6 have hardly been combined with the decoherence and/or the consistent histories
program, a full explanation of the classical world from quantum theory is still in
its infancy. This is not merely true at the technical level, but also conceptually;
what has been done so far only represents a modest beginning. On the positive
side, here lies an attractive challenge for mathematically minded researchers in the
foundations of physics!

8 EPILOGUE

As a sobering closing note, one should not forget that whatever one’s achievements
in identifying a “classical realm” in quantum mechanics, the theory continues to
incorporate another realm, the pure quantum world, that the young Heisenberg
first gained access to, if not through his mathematics, then perhaps through the
music of his favourite composer, Beethoven. This world beyond ken has never been
better described than by Hoffmann [1810] in his essay on Beethoven’s instrumental
music, and we find it appropriate to end this paper by quoting at some length from
it:332

Should one, whenever music is discussed as an independent art, not
always be referred to instrumental music which, refusing the help of
any other art (of poetry), expresses the unique essence of art that can
only be recognized in it? It is the most romantic of all arts, one would
almost want to say, the only truly romantic one, for only the infinite
is its source. Orpheus’ lyre opened the gates of the underworld. Music
opens to man an unknown realm, a world that has nothing in common
with the outer sensual world that surrounds him, a realm in which he
leaves behind all of his feelings of certainty, in order to abandon himself
to an unspeakable longing. (. . . )

Beethoven’s instrumental music opens to us the realm of the gigantic
and unfathomable. Glowing rays of light shoot through the dark night
of this realm, and we see gigantic shadows swaying back and forth,
encircling us closer and closer, destroying us (. . . ) Beethoven’s music
moves the levers of fear, of shudder, of horror, of pain and thus awakens
that infinite longing that is the essence of romanticism. Therefore, he
is a purely romantic composer, and may it not be because of it, that

332Translation copyright: Ingrid Schwaegermann [2001].
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to him, vocal music that does not allow for the character of infinite
longing — but, through words, achieves certain effects, as they are not
present in the realm of the infinite — is harder?(. . . )

What instrumental work of Beethoven confirms this to a higher degree
than his magnificent and profound Symphony in c-Minor. Irresistibly,
this wonderful composition leads its listeners in an increasing climax
towards the realm of the spirits and the infinite.(. . . ) Only that com-
poser truly penetrates into the secrets of harmony who is able to have
an effect on human emotions through them; to him, relationships of
numbers, which, to the Grammarian, must remain dead and stiff math-
ematical examples without genius, are magic potions from which he lets
a miraculous world emerge. (. . . )

Instrumental music, wherever it wants to only work through itself and
not perhaps for a certain dramatic purpose, has to avoid all unimpor-
tant punning, all dallying. It seeks out the deep mind for premonitions
of joy that, more beautiful and wonderful than those of this limited
world, have come to us from an unknown country, and spark an inner,
wonderful flame in our chests, a higher expression than mere words —
that are only of this earth — can spark.
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[De Bièvre, 2003] S. De Bièvre. Local states of free bose fields. Lectures given at the Summer

School on Large Coulomb Systems, Nordfjordeid, 2003.
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- Physique Théorique, 56: 143–186, 1992.

[Duffner and Rieckers, 1988] E. Duffner and A. Rieckers. On the global quantum dynamics of
multilattice systems with nonlinear classical effects. Zeitschrift für Naturforschung, A43: 521–
532, 1988.

[Duistermaat, 1974] J. J. Duistermaat. Oscillatory integrals, Lagrange immersions and unfolding
of singularities. Communications in Pure and Applied Mathematics, 27: 207–281, 1974.

[Duistermaat and Guillemin, 1975] J. J. Duistermaat and V. Guillemin. The spectrum of pos-
itive elliptic operators and periodic bicharacteristics. Inventiones Mathematicae, 29: 39–79,
1975.

[Duistermaat, 1996] J. J. Duistermaat. Fourier Integral Operators. Original Lecture Notes from
1973. Basel: Birkhäuser, 1996.
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[Fröhlich et al., 2002] J. Fröhlich, T.-P. Tsai, and H.-T. Yau. On the point-particle (Newtonian)

limit of the non-linear Hartree equation. Communications in Mathematical Physics, 225: 223–
274, 2002.

[Gallavotti, 1983] G. Gallavotti. The Elements of Mechanics. Berlin: Springer-Verlag, 1983.
[Gallavotti et al., 2004] G. Gallavotti, F. Bonetto, and G. Gentile. Aspects of Ergodic, Qualita-

tive and Statistical Theory of Motion. New York: Springer, 2004.
[Gell-Mann and Hartle, 1990] M. Gell-Mann and J. B. Hartle. Quantum mechanics in the light

of quantum cosmology. In W. H. Zurek (ed.) Complexity, Entropy, and the Physics of Infor-
mation, pages 425–458. Reading, Addison-Wesley, 1990.

[Gell-Mann and Hartle, 1993] M. Gell-Mann and J. B. Hartle. Classical equations for quantum
systems. Physical Review, D47: 3345–3382, 1993.

[Gérard and Leichtnam, 1993] P. Gérard and E. Leichtnam. Ergodic properties of eigenfunctions
for the Dirichlet problem. Duke Mathematical Journal, 71: 559–607, 1993.

[Gerisch et al., 1999] T. Gerisch, R. Münzner, and A. Rieckers. Global C∗-dynamics and its
KMS states of weakly inhomogeneous bipolaronic superconductors. Journal of Statistical
Physics, 97: 751–779, 1999.

[Gerisch et al., 2003] T. Gerisch, R. Honegger, and A. Rieckers. Algebraic quantum theory of
the Josephson microwave radiator. Annales Henri Poincaré, 4: 1051–1082, 2003.
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Between Classical and Quantum 549

[Raggio, 1988] G. A. Raggio. A remark on Bell’s inequality and decomposable normal states.
Letters in Mathematical Physics, 15: 27–29, 1988.

[Raggio and Werner, 1989] G. A. Raggio and R. F. Werner. Quantum statistical mechanics of
general mean field systems. Helvetica Physica Acta, 62: 980–1003, 1989.

[Raggio and Werner, 1991] G. A. Raggio and R. F. Werner. The Gibbs variational principle for
inhomogeneous mean field systems. Helvetica Physica Acta, 64: 633–667, 1991.

[Raimond et al., 2001] R. M. Raimond, M. Brune, and S. Haroche. Manipulating quantum en-
tanglement with atoms and photons in a cavity. Reviews of Modern Physics, 73: 565–582,
2001.
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QUANTUM INFORMATION AND
COMPUTATION

Jeffrey Bub

1 INTRODUCTION

The subject of quantum information has its roots in the debate about conceptual
issues in the foundations of quantum mechanics.

The story really begins with the dispute between Einstein and Bohr about
the interpretation of quantum states, in particular the interpretation of so-called
‘entangled states’, which exhibit peculiar nonlocal statistical correlations for widely
separated quantum systems. See, for example, [Bohr, 1949, 283] and Einstein’s
reply in the same volume [Schilpp, 1949]. Einstein took the position that quantum
mechanics is simply an incomplete theory. On the basis of a certain restricted
set of correlations for a pair of systems in a particular entangled state, Einstein,
Podolsky, and Rosen (EPR) argued in a seminal paper [Einstein et al., 1935] that
the phenomenon of entanglement conflicts with certain basic realist principles of
separability and locality that all physical theories should respect, unless we regard
quantum states as incomplete descriptions.

Bohr’s view, which he termed ‘complementarity’, eventually became entrenched
as the orthodox Copenhagen interpretation, a patchwork of reformulations by
Heisenberg, Pauli, von Neumann, Dirac, Wheeler, and others. (For a discussion,
see [Howard, 2004] and Landsman, this vol., ch. 5.) As Pauli put it in correspon-
dence with Max Born [Born, 1971, 218], a ‘detached observer’ description of the
sort provided by classical physics is precluded by the nature of quantum phenom-
ena, and a quantum description of events is as complete as it can be (in principle).
Any application of quantum theory requires a ‘cut’ between the observer and the
observed, or the macroscopic measuring instrument and the measured system, so
that the description is in a certain sense contextual, where the relevant context
is defined by the whole macroscopic experimental arrangement. So, for exam-
ple, a ‘position measurement context’ provides information about position but
excludes, in principle, the possibility of simultaneously obtaining momentum in-
formation, because there is no fact of the matter about momentum in this context:
the momentum value is indeterminate. The Copenhagen interpretation conflicts
with Einstein’s realism, his ‘philosophical prejudice’, as Pauli characterized it in a
letter to Born [Born, 1971, 221], that lies at the heart of the dispute between Ein-
stein and Bohr about the significance of the transition from classical to quantum
mechanics.

c
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The 1990’s saw the development of a quantum theory of information, based on
the realization that entanglement, rather than being a minor source of embarrass-
ment for physics that need only concern philosophers, can actually be exploited as a
nonclassical communication channel to perform information-processing tasks that
would be impossible in a classical world. In a two-part commentary on the EPR
paper, Schrödinger [1935, 555] identified entanglement as ‘the characteristic trait
of quantum theory, the one that enforces its entire departure from classical lines
of thought.’ This has led to an explosive surge of research among physicists and
computer scientists on the application of information-theoretic ideas to quantum
computation (which exploits entanglement in the design of a quantum computer,
so as to enable the efficient performance of certain computational tasks), to quan-
tum communication (new forms of ‘entanglement-assisted’ communication, such
as quantum teleportation), and to quantum cryptography (the identification of
cryptographic protocols that are guaranteed to be unconditionally secure against
eavesdropping or cheating, by the laws of quantum mechanics, even if all parties
have access to quantum computers).

Some milestones: Bell’s analysis [1964] turned the EPR argument on its head by
showing that Einstein’s assumptions of separability and locality, applicable in clas-
sical physics and underlying the EPR incompleteness argument, are incompatible
with certain quantum statistical correlations (not explicitly considered by EPR)
of separated systems in EPR-type entangled states. Later experiments [Aspect et
al., 1981; Aspect et al., 1982] confirmed these nonclassical correlations in set-ups
that excluded the possibility of any sort of physically plausible, non-superluminal,
classical communication between the separated systems.

In the 1980s, various authors, e.g., Wiesner, Bennett, and Brassard [Wiesner,
1983; Bennett and Brassard, 1984; Bennett et al., 1982] pointed out that one
could exploit features of the measurement process in quantum mechanics to thwart
the possibility of undetected eavesdropping in certain cryptographic procedures,
specifically in key distribution — a procedure where two parties, Alice and Bob,
who initially share no information end up each holding a secret random key which
can be used to send encrypted messages between them. No third party, Eve, can
obtain any information about the communications between Alice and Bob that led
to the establishment of the key, without Alice and Bob becoming aware of Eve’s
interference, because Eve’s measurements necessarily disturb the quantum states
of the systems in the communication channel.

Bennett [1973] showed how to make a universal Turing machine reversible for
any computation, a required step in the design of a quantum computer that evolves
via unitary (and hence reversible) state transformations, and Benioff [1980] devel-
oped Hamiltonian models for computer computers. Feynman [1982] considered
the problem of efficiently simulating the evolution of physical systems using quan-
tum resources (noting that the classical simulation of a quantum process would
be exponentially costly), which involves the idea of a quantum computation, but
it was Deutsch [1985; 1989] who characterized the essential features of a universal
quantum computer and formulated the first genuinely quantum algorithm.
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Following Duetsch’s work on quantum logic gates and quantum networks, sev-
eral quantum algorithms were proposed for performing computational tasks more
efficiently than any known classical algorithm, or in some cases more efficiently
than any classical algorithm. The most spectacular of these is Shor’s algorithm
[1994; 1997] for finding the two prime factors of a positive integer N = pq, which is
exponentially faster than the best-known classical algorithm. Since prime factor-
ization is the basis of the most widely used public key encryption scheme (currently
universally applied in communications between banks and commercial transactions
over the internet), Shor’s result has enormous practical significance.

In the following, I present an account of some of the theoretical developments
in quantum information, quantum communication, quantum cryptography, and
quantum computation. I conclude by considering whether a perspective in terms
of quantum information suggests a new way of resolving the foundational problems
of quantum mechanics that were the focus of the debate between Einstein and
Bohr.

My discussion is heavily indebted to Michael Nielsen and Isaac Chuang’s illu-
minating and comprehensive Quantum Computation and Quantum Information
[2000], and to several insightful review articles: ‘The Joy of Entanglement’ by
Sandu Popescu and Daniel Rohrlich [1998], ‘Quantum Information and its Prop-
erties’ by Richard Jozsa [1998], and ‘Quantum Computing’ by Andrew Steane
[1998].

2 CLASSICAL INFORMATION

2.1 Classical Information Compression and Shannon Entropy

In this section, I review the basic elements of classical information theory. In §2.1,
I introduce the notion of the Shannon entropy of an information source and the
fundamental idea of information compression in Shannon’s source coding theorem
(or noiseless channel coding theorem). In §2.2, I define some information-theoretic
concepts relevant to Shannon’s noisy channel coding theorem.

The classical theory of information was initially developed to deal with certain
questions in the communication of electrical signals. Shannon’s ground-breaking
paper ‘A Mathematical Theory of Communication’ [Shannon, 1948] followed earlier
work by people like Nyquist [1924] and Hartley [1928] in the 1920s. The basic
problem was the representation of messages, selected from an ensemble generated
by a stochastic process at the message source, in such a way as to ensure their
efficient transmission over an electrical circuit such as a noisy telegraph wire.

A communication set-up involves a transmitter or source of information, a (pos-
sibly noisy) channel, and a receiver. The source produces messages in the form
of sequences of symbols from some alphabet, which Shannon represented math-
ematically as sequences of values of independent, identically distributed random
variables. In later idealizations, the source is represented as stationary , in the sense
(roughly) that the probability of any symbol (or n-tuple of symbols) appearing at
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any given position in a (very long) sequence, when that position is considered with
respect to an ensemble of possible sequences, is the same for all positions in the
sequence, and ergodic, in the sense that this ‘ensemble average’ probability is equal
to the ‘time average’ probability, where the time average refers to the probability
of a symbol (or n-tuple of symbols) in a given (very long) sequence.

The fundamental question considered by Shannon was how to quantify the
minimal physical resources required to store messages produced by a source, so
that they could be communicated via a channel without loss and reconstructed by
a receiver. Shannon’s source coding theorem (or noiseless channel coding theorem)
answers this question.

To see the idea behind the theorem, consider a source that produces long se-
quences (messages) composed of symbols from a finite alphabet a1, a2, . . . , ak,
where the individual symbols are produced with probabilities p1, p2, . . . , pk. A
given sequence of symbols is represented as a sequence of values of independent,
identically distributed, discrete random variables X1,X2, . . .. A typical sequence
of length n, for large n, will contain close to pin symbols ai, for i = 1, . . . , n. So
the probability of a sufficiently long typical sequence (assuming independence) will
be:

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn) ≈ pp1n1 pp2n2 . . . ppkn
k .(1)

Taking the logarithm of both sides (conventionally, in information theory, to the
base 2) yields:

log p(x1, . . . , xn) ≈ n
∑
i

pi log pi := −nH(X)(2)

where H(X) := −∑i pi log pi is the Shannon entropy of the source.
We can think about information in Shannon’s sense in various ways. We can

take − log pi, a decreasing function of pi with a minimum value of 0 when pi = 1
for some i, as a measure of the information associated with identifying the symbol
ai produced by an information source. Then H(X) = −∑i pi log pi is the average
information gain, or the expectation value of the information gain associated with
ascertaining the value of the random variable X. Alternatively, we can think of the
entropy as a measure of the amount of uncertainty about X before we ascertain
its value. A source that produces one of two distinguishable symbols with equal
probability, such as the toss of a fair coin, is said to have a Shannon entropy of 1
bit: ascertaining which symbol is produced, or reducing one’s uncertainty about
which symbol is produced, is associated with an amount of information equal to 1
bit.1 If we already know which symbol will be produced (so the probabilities are
1 and 0), the entropy is 0: there is no uncertainty, and no information gain.

Since

p(x1, . . . , xn) = 2−nH(X)(3)
1Note that the term ‘bit’ (for ‘binary digit’) is used to refer to the basic unit of classical infor-

mation in terms of Shannon entropy, and to an elementary two-state classical system considered
as representing the possible outputs of an elementary classical information source.
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for sufficiently long typical sequences, and the probability of all the typical n-length
sequences is less than 1, it follows that there are at most 2nH(X) typical sequences.
In fact, if the pi are not all equal, the typical sequences comprise an exponentially
small set T (of equiprobable typical sequences) in the set of all sequences as n→∞,
but since the probability that the source produces an atypical sequence tends to
zero as n → ∞, the set of typical sequences has probability close to 1. So each
typical n-sequence could be encoded as a distinct binary number of nH(X) binary
digits or bits before being sent through the channel to the receiver, where the
original sequence could then be reconstructed by inverting the 1–1 encoding map.
(The reconstruction would fail, with low probability, only for the rare atypical
sequences, each of which could be encoded as, say, a string of 0’s.)

Notice that if the probabilities pi are all equal (pi = 1/k for all i), then H(X) =
log k, and if some pj = 1 (and so pi = 0 for i �= j), then H(X) = 0 (taking
0 log 0 = limx→0 x log x = 0). It can easily be shown that:

0 ≤ H(X) ≤ log k.(4)

If we encoded each of the k distinct symbols as a distinct binary number, i.e.,
as a distinct string of 0’s and 1’s, we would need binary numbers composed of
log k bits to represent each symbol (2log k = k). So Shannon’s analysis shows that
messages produced by a stochastic source can be compressed, in the sense that
(as n → ∞ and the probability of an atypical n-length sequence tends to zero)
n-length sequences can be encoded without loss of information using nH(X) bits
rather than the n log k bits required if we encoded each of the k symbols ai as a
distinct string of 0’s and 1’s: this is a compression, since nH(X) < n log k except
for equiprobable distributions.

More precisely, let X = 1
n (X1 + X2 + . . . + Xn), where X1,X2, . . . , Xn are n

independent and identically distributed random variables with mean < X > and
finite variance. The weak law of large numbers tells us that, for any ε, δ > 0,

Pr(|X− < X > | ≥ δ) < ε(5)

for sufficiently large n.
Now consider a random variable X that takes values x in an alphabet X with

probabilities p(x) = Pr(X = x), x ∈ X . 2 Let

Z = − log p(X)(6)

be a function of X that takes the value − log p(x) when X takes the value x. Then

< Z >= −
∑
x∈X

p(x) log p(x) = H(X)(7)

2Note that p(x) is an abbreviation for pX(x), so p(x) and p(y) refer to two different random
variables. The expression Pr(X ∈ S) =

P
x∈S p(x) denotes the probability that the random

variable X takes a value in the set S, and Pr(X = x) denotes the probability that X takes
the value x. The expression p(x1, x2, . . . , xn) denotes the probability that the sequence of ran-
dom variables X1, X2, . . . , Xn takes the sequence of values (x1, x2, . . . , xn). The discussion here
follows Cover and Thomas [1991] and I use their notation.
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and for a sequence of n independent and identically distributed random variables
X1,X2, . . . , Xn:

− 1
n

log p(X1, . . . , Xn) = − 1
n

∑
i

log p(Xi)

=
1
n

(Z1 + . . . + Zn)

= Z.(8)

So, by the weak law of large numbers, for ε, δ > 0 and sufficiently large n:

Pr(|Z− < Z > | ≥ δ) < ε(9)

i.e.,

Pr(| − 1
n

log p(X1, . . . , Xn)−H(X)| ≥ δ) < ε(10)

or equivalently,

Pr(| − 1
n

log p(X1, . . . , Xn)−H(X)| < δ) ≥ 1− ε(11)

and hence, with probability greater than or equal to 1− ε:

−n(H(X) + δ) < log p(X1, . . . , Xn) < −n(H(X)− δ).(12)

A ‘δ-typical n-length sequence’ (x1, . . . , xn) ∈ Xn of values of the random vari-
ables X1, . . . , Xn is defined as a sequence of symbols of X satisfying:

2−n(H(X)+δ) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−δ).(13)

Denote the set of δ-typical n-length sequences by T
(n)
δ and the number of sequences

in T
(n)
δ by |T (n)

δ |. Then, for sufficiently large n,

Pr({X1, . . . , Xn} ∈ T
(n)
δ ) ≥ 1− ε;(14)

and it can be shown that

(1− ε)2n(H(X)−δ) ≤ |T (n)
δ | ≤ 2n(H(X)+δ).(15)

So, roughly, T (n) contains 2nH equiprobable sequences, each having a probability
of 2−nH .

Shannon’s source coding theorem applies the above result about typical se-
quences to show that the compression rate of H(X) bits per symbol produced by
a source of independent and identically distributed random variables is optimal.
The source produces n-length sequences of symbols x1, x2, . . . , xn with probabil-
ity p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn), where each symbol is chosen from an
alphabet X . If there are k symbols in X , these n-sequences can be represented
as sequences of n log k bits. Suppose there is a ‘block coding’ compression scheme
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that encodes each ‘block’ or n-length sequence (for sufficiently large n) as a shorter
sequence of nR bits, where 0 ≤ R ≤ log k. Suppose also that the receiver has a de-
compression scheme for decoding sequences of nR bits into sequences of n symbols.
Then one speaks of a compression/decompression scheme of rate R.

The source coding theorem states that

if the Shannon entropy of a source is H(X), then there exists a reliable
compression/decompression scheme of rate R if and only if R ≥ H(X),
where a scheme is said to be reliable if it reproduces the original se-
quence with a probability that tends to 1 as n→∞.

For reliable communication, we want the compression and decompression of a
sequence of symbols to yield the original sequence, but in general there will be
a certain probability, q(x1, . . . , xn), of decoding a given sequence of nR encoded
bits received by the receiver as the original n-sequence produced by the source.
The average fidelity3 of a compression/decompression scheme for n-length blocks
is defined as:

Fn =
∑

all n-sequences
p(x1, . . . , xn)q(x1, . . . , xn)(16)

If all the probabilities q(x1, . . . , xn) are 1, Fn = 1; otherwise Fn < 1. In terms
of the fidelity as a measure of reliability of correct decoding, the source coding
theorem states that

for any ε, δ > 0: (i) there exists a compression/decompression scheme
using H(X)+δ bits per symbol for n-length sequences produced by the
source that can be decompressed by the receiver with a fidelity Fn >
1− ε, for sufficiently large n, and (ii) any compression/decompression
scheme using H(X) − δ bits per symbol for n-length sequences will
have a fidelity Fn < ε, for sufficiently large n.

As a simple example of compression, consider an information source that pro-
duces sequences of symbols from a 4-symbol alphabet a1, a2, a3, a4 with proba-
bilities 1/2, 1/4, 1/8, 1/8. Each symbol can be represented by a distinct 2-digit
binary number:

a1 : 00
a2 : 01
a3 : 10
a4 : 11

3Note that this definition of fidelity is different from the definition proposed by Nielsen
and Chuang [2000, 400] for the fidelity between two probability distributions {px} and {qx}
as a ‘distance measure‘ between the distributions. They define FNC(px, qx) :=

P
x
√

pxqx, so
FNC(px, qx) = 1 if px = qx.
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so without compression we need two bits per symbol of storage space to store the
output of the source. The Shannon entropy of the source is H(X) = −1

2 log 1
2 −

1
4 log 1

4− 1
8 log 1

8− 1
8 log 1

8 = 7
4 . Shannon’s source coding theorem tells us that there

is a compression scheme that uses an average of 7/4 bits per symbol rather than
two bits per symbol, and that such a compression scheme is optimal. The optimal
scheme is provided by the following encoding:

a1 : 0
a2 : 10
a3 : 110
a4 : 111

for which the average length of a compressed sequence is: 1
2 ·1+ 1

4 ·2+ 1
8 ·3+ 1

8 ·3 = 7
4

bits per symbol.
The significance of Shannon’s source coding theorem lies is showing that there is

an optimal or most efficient way of compressing messages produced by a source (as-
suming a certain idealization) in such a way that they can be reliably reconstructed
by a receiver. Since a message is abstracted as a sequence of distinguishable sym-
bols produced by a stochastic source, the only relevant feature of a message with
respect to reliable compression and decompression is the sequence of probabili-
ties associated with the individual symbols: the nature of the physical systems
embodying the representation of the message through their states is irrelevant to
this notion of compression (provided only that the states are reliably distinguish-
able), as is the content or meaning of the message. The Shannon entropy H(X)
is a measure of the minimal physical resources, in terms of the average number of
bits per symbol, that are necessary and sufficient to reliably store the output of
a source of messages. In this sense, it is a measure of the amount of information
per symbol produced by an information source.

The essential notion underlying Shannon’s measure of information is compress-
ibility: information as a physical resource is something that can be compressed,
and the amount of information produced by an information source is measured by
its optimal compressibility.

2.2 Conditional Entropy, Mutual Information, Channel Capacity

The analysis so far assumes a noiseless channel between the source and the receiver.
I turn now to a brief sketch of some concepts relevant to a noisy channel, and a
statement of Shannon’s noisy channel coding theorem.

An information channel maps inputs consisting of values of a random variable
X onto outputs consisting of values of a random variable Y , and the map will
generally not be 1-1 if the channel is noisy. Consider the conditional probabilities
p(y|x) of obtaining an output value y for a given input value x, for all x, y. From
the probabilities p(x) we can calculate p(y) as:

p(y) =
∑
x

p(y|x)p(x)
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and we can also calculate p(x|y) by Bayes’ rule from the probabilities p(y|x) and
p(x), for all x, y, and hence the Shannon entropy of the conditional distribution
p(x|y), for all x and a fixed y, denoted by H(X|Y = y).

The quantity

H(X|Y ) =
∑
y

p(y)H(X|Y = y)(17)

is known as the conditional entropy . It is the expected value of H(X|Y = y) for
all y. If we think of H(X), the entropy of the distribution {p(x) : x ∈ X}, as a
measure of the uncertainty of the X-value, then H(X|Y = y) is a measure of the
uncertainty of the X-value, given the Y -value y, and H(X|Y ) is a measure of the
average uncertainty of the X-value, given a Y -value.

Putting it differently, the number of input sequences of length n that are con-
sistent with a given output sequence (as n → ∞) is 2nH(X|Y ), i.e., H(X|Y ) is
the number of bits per symbol of additional information needed, on average, to
identify an input X-sequence from a given Y -sequence. This follows because there
are 2nH(X,Y ) typical sequences of pairs (x, y), where the joint entropy H(X,Y ) is
calculated from the joint probability p(x, y). So there are

2nH(X,Y )

2nH(Y )
= 2n(H(X,Y )−H(Y )) = 2nH(X|Y )(18)

typical X-sequences associated with a given Y -sequence.
The ‘chain rule’ equality

H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ) = H(Y,X)(19)

follows immediately from the logarithmic definitions of the quantities:

H(X :Y ) := −
∑
x,y

p(x, y) log p(x, y)

= −
∑
x,y

p(x)p(y|x) log (p(x)p(y|x))

= −
∑
x,y

p(x)p(y|x) log p(x)−
∑
x,y

p(x)p(y|x) log p(y|x)

= −
∑
x

p(x) log p(x) +
∑
x

p(x)

(
−
∑
y

p(y|x) log p(y|x)

)

= H(X) + H(Y |X)(20)

Note that H(X|Y ) �= H(Y |X).
The mutual information measures the average amount of information gained

about X by ascertaining a Y -value, i.e., the amount of information one random
variable contains about another, or the reduction in uncertainty of one random
variable obtained by measuring another.
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Mutual information can be defined in terms of the concept of relative entropy ,
which is a measure of something like the distance between two probability distri-
butions (although it is not a true metric, since it is not symmetric and does not
satisfy the triangle inequality). The relative entropy between distributions p(x)
and q(x) is defined as:

D(p ‖ q) =
∑
x∈A

p(x) log
p(x)
q(x)

.(21)

The mutual information can now be defined as:

H(X :Y ) = D(p(x, y) ‖ p(x)p(y))

=
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
.(22)

It follows that

H(X :Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X),(23)

i.e., the mutual information of two random variables represents the average in-
formation gain about one random variable obtained by measuring the other: the
difference between the initial uncertainty of one of the random variables, and the
average residual uncertainty of that random variable after ascertaining the value
of the other random variable. Also, since H(X,Y ) = H(X) + H(Y |X), it follows
that

H(X :Y ) = H(X) + H(Y )−H(X,Y );(24)

i.e., the mutual information of two random variables is a measure of how much
information they have in common: the sum of the information content of the two
random variables, as measured by the Shannon entropy (in which joint information
is counted twice), minus their joint information. Note that H(X :X) = H(X), as
we would expect.

For a noisy channel, if X represents the input to the channel and Y represents
the output of the channel, H(X :Y ) represents the average amount of information
gained about the input X by ascertaining the value of the output Y . The capacity
of a channel, C, is defined as the supremum of H(X :Y ) over all input distributions.

Shannon’s noisy channel coding theorem shows, perhaps surprisingly, that up
to C bits of information can be sent through a noisy channel with arbitrary low
error rate. That is,

there exists an optimal coding for an information source with entropy
H ≤ C such that n-length sequences produced by the source can be
transmitted faithfully over the channel: the error rate tends to zero as
n→∞. The probability of error tends to 1 if we attempt to transmit
more than C bits through the channel.
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This means that there are two ways of improving the transmission rate over a
noisy channel such as a telephone cable. We can improve the channel capacity by
replacing the cable with a faster one, or we can improve the information processing
(the data compression).

3 QUANTUM INFORMATION

The physical notion of information, discussed in §2, is profoundly transformed
by the transition from classical mechanics to quantum mechanics. The aim of
this section is to bring out the nature of this transformation. In §3.1, I develop
some core concepts of quantum mechanics relevant to quantum information: en-
tangled states, the Schmidt decomposition, the density operator formalism for
the representation of pure and mixed states, the ‘purification’ of mixed states,
generalized quantum measurements in terms of positive operator valued measures
(POVMs), and the evolution of open systems represented by quantum operations.
I assume throughout Hilbert spaces of finite dimension (and so avoid all the tech-
nicalities of functional analysis required for the treatment of infinite-dimensional
Hilbert spaces). In fact, there is no loss of generality here, since both classical
and quantum information sources are considered to produce messages consisting
of sequences of symbols from some finite alphabet, which we represent in terms
of a finite set of classical or quantum states. Moreover, all the conceptual issues
relevant to the difference between classical and quantum information show up in
finite-dimensional Hilbert spaces. In §3.2, I introduce von Neumann’s generaliza-
tion of the Shannon entropy and related notions for quantum information. In §3.3
and §3.4, I discuss some salient features that distinguish quantum information
from classical information: §3.3 deals with the limitations on copying quantum
information imposed by the ‘no cloning’ theorem, and §3.4 deals with the limited
accessibility of quantum information defined by the Holevo bound. Finally, in §3.5
I show how the notion of compressibility applies to quantum information, and I
outline Schumacher’s generalization of Shannon’s source coding theorem for quan-
tum information, noting a distinction between ‘visible’ and ‘blind’ compression
applicable to quantum information.

3.1 Some Relevant Quantum Mechanics

Entangled States

Consider a quantum system Q which is part of a compound system QE; E for
‘environment’, although E could be any quantum system of which Q is a subsys-
tem. Pure states of QE are represented as rays or unit vectors in a tensor product
Hilbert space HQ ⊗HE . A general pure state of QE is a state of the form:

|Ψ〉 =
∑

cij |qi〉|ej〉(25)
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where |qi〉 ∈ HQ is a complete set of orthonormal states (a basis) in HQ and
|ej〉 ∈ HE is a basis in HE . If the coefficients cij are such that |Ψ〉 cannot be
expressed as a product state |Q〉|E〉, then |Ψ〉 is called an entangled state.

For any state |Ψ〉 of QE, there exist orthonormal bases |i〉 ∈ HQ, |j〉 ∈ HE such
that |Ψ〉 can be expressed in a biorthogonal correlated form as:

|Ψ〉 =
∑
i

√
pi|i〉|i〉(26)

where the coefficients
√

pi are real and non-negative, and
∑

pi = 1. This repre-
sentation is referred to as the Schmidt decomposition. The Schmidt decomposition
is unique if and only if the pi are all distinct.

An example is the biorthogonal EPR state4

|Ψ〉 = (|0〉|1〉 − |1〉|0〉)/
√

2;(27)

say, the singlet state of two spin-1/2 particles (the Schmidt form with positive
coefficients is obtained by asborbing the relative phases in the definition of the
basis vectors). In the singlet state, |0〉 and |1〉 can be taken as representing the
two eigenstates of spin in the z-direction, but since the state is symmetric, |Ψ〉
retains the same form for spin in any direction. The EPR argument exploits the
fact that spin measurements in the same direction on the two particles, which could
be arbitrarily far apart, will yield outcomes that are perfectly anti-correlated for
any spin direction. Bell’s counterargument exploits the fact that when the spin is
measured on one particle in a direction θ1 to the z-axis, but on the other particle
in a direction θ2 to the z-axis, the probability of finding the same outcome for
both particles (both 1 or both 0) is 1

2 sin2(θ1 − θ2). It follows that the outcomes
are perfectly correlated when θ1 − θ2 = π and that 3/4 of the outcomes are the
same when θ1 − θ2 = 2π/3. On the other hand, from Bell’s inequality, derived
under Einstein’s realist assumptions of separability and locality, we see that the
correlation for θ1 − θ2 = 2π/3 cannot exceed 2/3. See Dickson (this vol., ch. 4)
for further discussion.

This means that the dynamical evolution of a quantum system can result in a
state representing correlational information that no classical computer can simu-
late. That is, no classical computer can be programmed to perform the following
task: for any pair of input angles, θ1, θ2, at different locations, output a pair of
values (0 or 1) for these locations such that the values are perfectly correlated
when θ1 − θ2 = π, perfectly anti-correlated when θ1 = θ2, and 75% correlated
when θ1 − θ2 = 2π/3, where the response time between being given the input and
producing the output in each case is less than the time taken by light to travel
between the two locations.

4Einstein, Podolsky and Rosen considered a more complicated state entangled over position
and momentum values. The spin example is due to Bohm [1951, pp, 611–623].
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Notice that the four states:

|00〉 =
1√
2
(|0〉|0〉+ |1〉|1〉)(28)

|01〉 =
1√
2
(|0〉|1〉+ |1〉|0〉)(29)

|10〉 =
1√
2
(|0〉|0〉 − |1〉|1〉)(30)

|11〉 =
1√
2
(|0〉|1〉 − |1〉|0〉)(31)

form an orthonormal basis, called the Bell basis, in the 2 x 2-dimensional Hilbert
space. Any Bell state can be transformed into any other Bell state by a local
unitary transformation, X,Y , or Z, where X,Y,Z are the Pauli spin matrices:

X = σx = |0〉〈1|+ |1〉〈0| =
(

0 1
1 0

)
(32)

Y = σy = i|0〉〈1| − i|1〉〈0| =
(

0 −i
i 0

)
(33)

Z = σz = |0〉〈0|+ |1〉〈1| =
(

1 0
0 −1

)
.(34)

For example:

X ⊗ I · 1√
2
(|0〉〈1| − |1〉|0〉 =

1√
2
(|0〉〈0| − |1〉|1〉.(35)

If QE is a closed system in an entangled pure state represented by

|Ψ〉 =
∑
i

√
pi|i〉|i〉(36)

in the Schmidt decomposition, the expected value of any Q-observable A on HQ
can be computed as:

〈A〉 = Tr(|Ψ〉〈Ψ|A⊗ I)
= TrQ(TrE(|Ψ〉〈Ψ|A))

= TrQ(
∑
i

pi|i〉〈i|A)

= TrQ(ρA)(37)

where TrQ() =
∑
q〈qi| · |qi〉, for any orthonormal basis in HQ, is the partial trace

over HQ, TrE() is the partial trace over HE , and ρ =
∑
i pi|i〉〈i| ∈ HQ is the

reduced density operator of the open system Q, a positive operator with unit trace.
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Since the density operator ρ yields the statistics of all Q-observables via Eq. (37),
ρ is taken as representing the quantum state of the system Q.

If QE is an entangled pure state, then the open system Q is in a mixed state
ρ, i.e., ρ �= ρ2; for pure states, ρ is a projection operator onto a ray and ρ = ρ2.
A mixed state represented by a density operator ρ =

∑
ρi|i〉〈i| can be regarded

as a mixture of pure states |i〉 prepared with prior probabilities pi, but this rep-
resentation is not unique — not even if the states combined in the mixture are
orthogonal. For example, the equal-weight mixture of orthonormal states |0〉, |1〉
in a 2-dimensional Hilbert space H2 has precisely the same statistical properties,
and hence the same density operator ρ = I/2, as the equal weight mixture of
any pair of orthonormal states, e.g., the states 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉), or the

equal-weight mixture of nonorthogonal states |0〉, 1
2 |0〉+

√
3

2 |1〉, 1
2 |0〉 −

√
3

2 |1〉 120◦

degrees apart, or the uniform continuous distribution over all possible states in
H2.

More generally, for any basis of orthonormal states |ei〉 ∈ HE , the entangled
state |Ψ〉 can be expressed as:

|Ψ〉 =
∑
ij

cij |qi〉|ej〉 =
∑
j

√
wj |rj〉|ej〉(38)

where the normalized states |rj〉 =
∑
i
cij√
wj
|qi〉 are relative states to the |ej〉

(√wj =
∑
j |cij |2). Note that the states |rj〉 are not in general orthogonal. Since

the |ej〉 are orthogonal, we can express the density operator representing the state
of Q as:

ρ =
∑
i

wi|ri〉〈ri|.(39)

In effect, a measurement of an E-observable with eigenstates |ei〉 will leave
the composite system QE in one of the states |ri〉|ei〉 with probability wi, and a
measurement of an E-observable with eigenstates |i〉 (the orthogonal states of the
Schmidt decomposition in (36) above) will leave the system QE in one of the states
|i〉|i〉 with probability pi. Since Q and E could be widely separated from each other
in space, no measurement at E could affect the statistics of any Q-observable; or
else measurements at E would allow superluminal signaling between Q and E. It
follows that the mixed state ρ can be realized as a mixture of orthogonal states |i〉
(the eigenstates of ρ) with weights pi, or as a mixture of non-orthogonal relative
states |rj〉 with weights wj in infinitely many ways, depending on the choice of
basis in HE :

ρ =
∑
i

pi|i〉〈i| =
∑
j

wj |rj〉〈rj |(40)

and all these different mixtures with the same density operator ρ must be physically
indistinguishable.
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Note that any mixed state density operator ρ ∈ HQ can be ‘purified’ by adding
a suitable ancilla system E, in the sense that ρ is the partial trace of a pure state
|Ψ〉 ∈ HQ ⊗HE over HE . A purification of a mixed state is, clearly, not unique,
but depends on the choice of |Ψ〉 in HE . The Hughston-Jozsa-Wootters theorem
[Hughston et al., 1993] shows that for any mixture of pure states |ri〉 with weights
wi, where ρ =

∑
j wj |rj〉〈rj |, there is a purification of ρ and a suitable measure-

ment on the system E that will leave Q in the mixture ρ. So an observer at E can
remotely prepare Q in any mixture that corresponds to the density operator ρ (and
of course all these different mixtures are physically indistinguishable). Similar re-
sults were proved earlier by Schrödinger [1936], Jaynes [1957] and Gisin [1989].
See Halvorson [2004] for a generalization to hyperfinite von Neuman algebras.

Measurement

A standard von Neumann ‘yes-no’ measurement is associated with a projection
operator; so a standard observable is represented in the spectral representation
as a sum of projection operators, with coefficients representing the eigenvalues of
the observable. Such a measurement is the quantum analogue of the measurement
of a property of a system in classical physics. Classically, we think of a property
of a system as being associated with a subset in the state space (phase space)
of the system, and determining whether the system has the property amounts to
determining whether the state of the system lies in the corresponding subset. In
quantum mechanics, the counterpart of a subset in phase space is a closed linear
subspace in Hilbert space. Just as the different possible values of an observable
(dynamical quantity) of a classical system correspond to the subsets in a mutu-
ally exclusive and collectively exhaustive set of subsets covering the classical state
space, so the different values of a quantum observable correspond to the subspaces
in a mutually exclusive (i.e., orthogonal) and collectively exhaustive set of sub-
spaces spanning the quantum state space. (For further discussion, see Dickson,
this vol., ch. 4, [Mackey, 1963], and [Bub, 1997].)

In quantum mechanics, and especially in the theory of quantum information
(where any read-out of the quantum information encoded in a quantum state
requires a quantum measurement), it is useful to consider a more general class
of measurements than the projective measurements associated with the deter-
mination of the value of an observable. It is common to speak of generalized
measurements and generalized observables. But in fact this terminology is more
misleading than illuminating, because a generalized measurement is not a proce-
dure that reveals whether or not a quantum system has some sort of generalized
property. Rather, the point of the generalization is to exploit the difference be-
tween quantum and classical states for new possibilities in the representation and
manipulation of information.

To clarify the idea, I will follow the excellent discussion by Nielsen and Chuang
[2000, §2.2.3–2.2.6]. A quantum measurement can be characterized, completely
generally, as a certain sort of interaction between two quantum systems, Q (the
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measured system) and M (the measuring system). We suppose that Q is initially
in a state |ψ〉 and that M is initially in some standard state |0〉, where |m〉 is an
orthonormal basis of ‘pointer’ eigenstates in HM . The interaction is defined by a
unitary transformation U on the Hilbert space HQ⊗HM that yields the transition:

|ψ〉|0〉 U−→
∑
m

Mm|ψ〉|m〉(41)

where {Mm} is a set of linear operators (the Kraus operators) defined on HQ
satisfying the completeness condition:∑

m

M†
mMm = I.(42)

(The symbol † denotes the adjoint or Hermitian conjugate.) The completeness
condition guarantees that this evolution is unitary, because it guarantees that U
preserves inner products, i.e.

〈φ|〈0|U†U |ψ〉|0〉 =
∑
m,m′
〈m|〈φ|M†

mMm′ |ψ〉|m′〉

=
∑
m

〈φ|M†M |ψ〉

= 〈φ|ψ〉(43)

from which it follows that U , defined as above by Eq. (41) for any product state
|ψ〉|0〉 (for any |ψ〉 ∈ HQ) can be extended to a unitary operator on the Hilbert
space HQ ⊗ HM . Accordingly, any set of linear operators {Mm} defined on the
Hilbert space of the system Q satisfying the completeness condition defines a
measurement in this general sense, with the index m labeling the possible outcomes
of the measurement, and any such set is referred to as a set of measurement
operators.

If we now perform a standard projective measurement on M to determine the
value m of the pointer observable, defined by the projection operator

Pm = IQ ⊗ |m〉〈m|
then the probability of obtaining the outcome m is, by (37)5:

p(m) = 〈0|〈ψ|U†PmU |ψ〉|0〉
=

∑
m′m′′

〈m′|〈ψ|M †
m′(IQ ⊗ |m〉〈m|)Mm′′ |ψ〉|m′′〉

=
∑
m′m′′

〈ψ|M†
m′〈m′|m〉〈m|m′′〉Mm′′ |ψ〉

= 〈ψ|M †
mMm|ψ〉;(44)

5The expected value of a projection operator, which is an idempotent observable with eigen-
values 0 and 1, is equal to the probability of obtaining the eigenvalue 1. Here the eigenvalue 1
corresponds to the outcome m.



Quantum Information and Computation 571

and, more generally, if the initial state of Q is a mixed state ρ, then

p(m) = TrQ(MρM†).(45)

The final state of QM after the projective measurement on M yielding the outcome
m is:

PmU |ψ〉|0〉√〈ψ|U†PU |ψ〉 =
Mm|ψ〉|m〉√
〈ψ|M†

mMm|ψ〉
.(46)

So the final state of M is |m〉 and the final state of Q is:

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
;

and, more generally, if the initial state of Q is a mixed state ρ, then the final state
of Q is:

MmρM†
m

TrQ(MmρM†
m)

.

Note that this general notion of measurement covers the case of standard projec-
tive measurements. In this case {Mm} = {Pm}, where {Pm} is the set of projection
operators defined by the spectral measure of a standard quantum observable rep-
resented by a self-adjoint operator. It also covers the measurement of ‘generalized
observables’ associated with positive operator valued measures (POVMs). Let

Em = M†
mMm(47)

then the set {Em} defines a set of positive operators (‘effects’) such that∑
Em = I(48)

A POVM can be regarded as a generalization of a projection valued measure
(PVM), in the sense that Eq. (48) defines a ‘resolution of the identity’ without
requiring the PVM orthogonality condition:

PmPm′ = δmm′Pm.(49)

Note that for a POVM:

p(m) = 〈ψ|Em|ψ〉.(50)

Given a set of positive operators {Em} such that
∑

Em = I, measurement
operators Mm can be defined via

Mm = U
√

Em,(51)
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where U is a unitary operator, from which it follows that∑
m

M†
mMm =

∑
Em = I(52)

As a special case, of course, we can take U = 1 and Mm =
√

Em. Conversely,
given a set of measurement operators {Mm}, there exist unitary operators Um
such that Mm = Um

√
Em, where {Em} is a POVM. (This follows immediately

from [Nielsen and Chuang, 2000, Theorem 2.3, p. 78]; see [Nielsen and Chuang,
2000, Exercise 2.63, p. 92].)

Except for the standard case of projective measurements, one might wonder
why it might be useful to single out such unitary transformations, and why in the
general case such a process should be called a measurement of Q. The following
example, taken from [Nielsen and Chuang, 2000, 92], is illuminating. Suppose we
know that a system with a 2-dimensional Hilbert space is in one of two nonorthog-
onal states:

|ψ1〉 = |0〉
|ψ2〉 =

1√
2
(|0〉+ |1〉)

It is impossible to reliably distinguish these states by a quantum measurement,
even in the above generalized sense. Here ‘reliably’ means that the state is iden-
tified correctly with zero probability of error.

To see this, suppose there is such a measurement, defined by two measurement
operators M1,M2 satisfying the completeness condition. Then we require

p(1) = 〈ψ1|M†
1M1|ψ1〉 = 1,(53)

to represent reliability if the state is |ψ1〉; and

p(2) = 〈ψ2|M†
2M2|ψ2〉 = 1(54)

to represent reliability if the state is |ψ2〉. By the completeness condition we must
have

〈ψ1|M†
1M1 + M†

2M2|ψ1〉 = 1(55)

from which it follows that 〈ψ1|M†
2M2|ψ1〉 = 0, i.e., M2|ψ1〉 = M2|0〉 = 0. Hence

M2|ψ2〉 = M2
1√
2
(|0〉+ |1〉) =

1√
2
M2|1〉(56)

and so

p(2) = 〈ψ2|M†
2M2|ψ2〉 =

1
2
〈1|M†

2M2|1〉.(57)

But by the completeness condition we also have

〈1|M†
2M2|1〉 ≤ 〈1|M†

1M1 + M†
2M2|1〉 = 〈1|1〉 = 1(58)
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from which it follows that

p(2) ≤ 1
2

(59)

which contradicts Eq. (54).
However, it is possible to perform a measurement in the generalized sense, with

three possible outcomes, that will allow us to correctly identify the state some of
the time, i.e., for two of the possible outcomes, while nothing about the identity
of the state can be inferred from the third outcome.

Here’s how: The three operators

E1 =
√

2
1 +
√

2
(|0〉 − |1〉)(〈0| − 〈1|)

2

E2 =
√

2
1 +
√

2
|1〉〈1|

E3 = I − E1 − E2(60)

are all positive operators and E1 + E2 + E3 = I, so they define a POVM. In fact,
E1, E2, E3 are each multiples of projection operators onto the states

|φ1〉 = |ψ2〉⊥
|φ2〉 = |ψ1〉⊥

|φ3〉 =
(1 +

√
2)|0〉+ |1〉√

2
√

2(1 +
√

2)
(61)

with coefficients
√

2
1+

√
2
,

√
2

1+
√

2
, 1

1+
√

2
respectively. The measurement involves a sys-

tem M with three orthogonal pointer states |1〉, |2〉, |3〉. The appropriate unitary
interaction U results in the transition, for an input state |ψ〉:

|ψ〉|0〉 U−→
∑
m

Mm|ψ〉|m〉(62)

where Mm =
√

Em.
If the input state is |ψ1〉 = |0〉, we have the transition:

|ψ1〉|0〉 U−→
√

E1|0〉|1〉+
√

E3|0〉|3〉
= α|φ1〉|1〉+ β|φ3〉|3〉(63)

(because
√

E2|ψ1〉 =
√

E2|0〉 = 0). And if the input state is |ψ2〉 = 1√
2
(|0〉+ |1〉),

we have the transition:

|ψ2〉|0〉 U−→
√

E2
|0〉+ |1〉√

2
|2〉+

√
E3
|0〉+ |1〉√

2
|3〉

= γ|φ2〉|2〉+ δ|φ3〉|3〉(64)
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(because
√

E1|ψ2〉 =
√

E1
|0〉+|1〉√

2
= 0), where α, β, γ, δ are real numerical coeffi-

cients.
We see that a projective measurement of the pointer of M that yields the

outcome m = 1 indicates, with certainty, that the input state was |ψ1〉 = |0〉. In
this case, the measurement leaves the system Q in the state |φ1〉. A measurement
outcome m = 2 indicates, with certainty, that the input state was |ψ2〉 = 1√

2
(|0〉+

|1〉), and in this case the measurement leaves the system Q in the state |φ2〉.
If the outcome is m = 3, the input state could have been either |ψ1〉 = |0〉 or
|ψ2〉 = 1√

2
(|0〉+ |1〉), and Q is left in the state |φ3〉.

Quantum Operations

When a closed system QE evolves under a unitary transformation, Q can be shown
to evolve under a quantum operation, i.e., a completely positive linear map:

E : ρ→ ρ′(65)

where

E(ρ) = TrE(Uρ⊗ ρEU†)(66)

(See [Nielsen and Chuang, 2000, 356 ff].) The map E is linear (or convex-linear) in
the sense that E(∑i piρi) =

∑
i piE(pi), positive in the sense that E maps positive

operators to positive operators, and completely positive in the sense that E ⊗ I is
a positive map on the extension of HQ to a Hilbert space HQ ⊗ HE , associated
with the addition of any ancilla system E to Q.

Every quantum operation (i.e., completely positive linear map) on a Hilbert
space HQ has a (non-unique) representation as a unitary evolution on an extended
Hilbert space HQ ⊗HE , i.e.,

E(ρ) = TrE(U(ρ⊗ ρE)U†)(67)

where ρE is an appropriately chosen initial state of an ancilla system E (which
we can think of as the environment of Q). It turns out that it suffices to take
ρE as a pure state, i.e., |0〉〈0|, since a mixed state of E can always be purified by
enlarging the Hilbert space (i.e., adding a further ancilla system). So the evolution
of a system Q described by a quantum operation can always be modeled as the
unitary evolution of a system QE, for an initial pure state of E.

Also, every quantum operation on a Hilbert space HQ has a (non-unique) op-
erator sum representation intrinsic to HQ:

E(ρ) =
∑
i

EiρE†
i(68)

where Ei = 〈i|U |0〉 for some orthonormal basis {|i〉} of E. (See [Nielsen and
Chuang, 2000, Theorem 8.1, p. 368].) If the operation is trace-preserving (or
nonselective), then

∑
i E

†
iEi = I. For operations that are not trace-preserving (or
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selective),
∑
i E

†
iEi ≤ I. This corresponds to the case where the outcome of a

measurement on QE is taken into account (selected) in the transition E → E(ρ).
If there is no interaction between Q and E, then ε(ρ) = UQρU†

Q, UQU†
Q = I,

i.e., there is only one operator in the sum. In this case, U = UQ ⊗ UE and

E(ρ) = TrE(UQ ⊗ UE(ρ⊗ |0〉〈0|)U†
Q ⊗ U†

E)(69)

= UQρU†
Q.(70)

So unitary evolution is a special case of the operator sum representation of a
quantum operation and, of course, another special case is the transition E →
E(ρ) that occurs in a quantum measurement process, where Ei = Mi. A trace-
preserving operation corresponds to a non-selective measurement:

E(ρ) =
∑
i

MiρM†
i ;(71)

while an operation that is not trace-preserving corresponds to a selective measure-
ment, where the state ‘collapses’ onto the corresponding measurement outcome:

MiρM†
i /Tr(MiρM†

i ).(72)

The operator sum representation applies to quantum operations between pos-
sibly different input and output Hilbert spaces, and characterizes the following
general situation: a quantum system in an unknown initial state ρ is allowed to
interact unitarily with other systems prepared in standard states, after which some
part of the composite system is discarded, leaving the final system in a state ρ′.
The transition ρ→ ρ′ is defined by a quantum operation. So a quantum operation
represents, quite generally, the unitary evolution of a closed quantum system, the
nonunitary evolution of an open quantum system in interaction with its environ-
ment, and evolutions that result from a combination of unitary interactions and
selective or nonselective measurements.

As we have seen, the creed of the Church of the Larger Hilbert Space is that
every state can be made pure, every measurement can be made ideal, and every
evolution can be made unitary – on a larger Hilbert space.6

3.2 Von Neumann Entropy

In this section, I define the von Neumann entropy of a mixture of quantum states
(von Neumann’s generalization of the Shannon entropy of a classical probability
distribution characterizing a classical information source) and the corresponding
notions of conditional entropy and mutual information.

Information in Shannon’s sense is a quantifiable resource associated with the
output of a (suitably idealized) stochastic source of symbolic states, where the
physical nature of the systems embodying these states is irrelevant to the amount

6The Creed originates with John Smolin. I owe this formulation to Ben Schumacher. See his
Lecture Notes on Quantum Information Theory [1998].
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of classical information associated with the source. The quantity of information
associated with a stochastic source is defined by its optimal compressibility, and
this is given by the Shannon entropy. The fact that some feature of the output of
a stochastic source can be optimally compressed is, ultimately, what justifies the
attribution of a quantifiable resource to the source.

Information is represented physically in the states of physical systems. The
essential difference between classical and quantum information arises because of
the different distinguishability properties of classical and quantum states. As we
will see below, only sets of orthogonal quantum states are reliably distinguishable
(i.e., with zero probability of error), as are sets of different classical states (which
are represented by disjoint singleton subsets in a phase space, and so are orthogonal
as subsets of phase space in a sense analogous to orthogonal subspaces of a Hilbert
space).

Classical information is that sort of information represented in a set of dis-
tinguishable states — states of classical systems, or orthogonal quantum states
— and so can be regarded as a subcategory of quantum information, where the
states may or may not be distinguishable. The idea behind quantum information
is to extend Shannon’s notion of compressibility to a stochastic source of quantum
states, which may or may not be distinguishable. For this we need to define a
suitable measure of information for probability distributions of quantum states —
mixtures — as a generalization of the notion of Shannon entropy.

Consider a system QE in an entangled state |Ψ〉. Then the subsystem Q is in
a mixed state ρ, which can always be expressed as:

ρ =
∑
i

pi|i〉〈i|(73)

where the pi are the eigenvalues of ρ and the pure states |i〉 are orthonormal
eigenstates of ρ. This is the spectral representation of ρ, and any density operator
— a positive (hence Hermitian) operator — can be expressed in this way. The
representation is unique if and only if the pi are all distinct. If some of the pi are
equal, there is a unique representation of ρ as a sum of projection operators with
the distinct values of the pi as coefficients, but some of the projection operators
will project onto multi-dimensional subspaces.

Since ρ has unit trace,
∑

pi = 1, and so the spectral representation of ρ repre-
sents a classical probability distribution of orthogonal, and hence distinguishable,
pure states. If we measure a Q-observable with eigenstates |i〉, then the outcomes
can be associated with the values of a random variable X, where Pr(X = i) = pi.
Then

H(X) = −
∑

pi log pi(74)

is the Shannon entropy of the probability distribution of measurement outcomes.
Now,

−Tr(ρ log ρ) = −
∑

pi log pi(75)
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(because the eigenvalues of ρ log ρ are pi log pi and the trace of an operator is the
sum of the eigenvalues), so a natural generalization of Shannon entropy for any
mixture of quantum states with density operator ρ is the von Neumann entropy7:

S := −Tr(ρ log ρ)(76)

which coincides with the Shannon entropy for measurements in the eigenbasis of
ρ. For a completely mixed state ρ = I/d, where dimHQ = d, the d eigenvalues
of ρ are all equal to 1/d and S = log d. This is the maximum value of S in a
d-dimensional Hilbert space. The von Neumann entropy S is zero, the minimum
value, if and only if ρ is a pure state, where the eigenvalues of ρ are 1 and 0. So
0 ≤ S ≤ log d, where d is the dimension of HQ.

Recall that we can think of the Shannon entropy as a measure of the aver-
age amount of information gained by identifying the state produced by a known
stochastic source. Alternatively, the Shannon entropy represents the optimal com-
pressibility of the information produced by an information source. The von Neu-
mann entropy does not, in general, represent the amount of information gained
by identifying the quantum state produced by a stochastic source characterized
as a mixed state, because nonorthogonal quantum states in a mixture cannot be
reliably identified. However, as we will see in §3.5, the von Neumann entropy can
be interpreted in terms of compressibility via Schumacher’s source coding theo-
rem Schumacher’s source coding theorem for quantum information [Schumacher,
1995], a generalization of Shannon’s source coding theorem for classical informa-
tion. For an elementary two-state quantum system with a 2-dimensional Hilbert
space considered as representing the output of an elementary quantum informa-
tion source, S = 1 for an equal weight distribution over two orthogonal states (i.e.,
for the density operator ρ = I/2), so Schumacher takes the basic unit of quantum
information as the ‘qubit.’ By analogy with the term ‘bit’, the term ‘qubit’ refers
to the basic unit of quantum information in terms of the von Neumann entropy,
and to an elementary two-state quantum system considered as representing the
possible outputs of an elementary quantum information source.

The difference between quantum information as measured by von Neumann
entropy S and classical information as measured by Shannon entropy H can be
brought out by considering the quantum notions of conditional entropy and mutual
information (cf. §2.2), and in particular the peculiar feature of inaccessibility
associated with quantum information.

For a composite system AB, conditional von Neumann entropy and mutual
information are defined in terms of the joint entropy S(AB) = −Tr(ρAB log ρAB)
by analogy with the corresponding notions for Shannon entropy (cf. Eqs. (19),

7Von Neumann first defined this quantity on the basis of a thermodynamic argument in [1955,
379].



578 Jeffrey Bub

(23), (24)):

S(A|B) = S(A,B)− S(B)(77)
S(A :B) = S(A)− S(A|B)(78)

= S(B)− S(B|A)(79)
= S(A) + S(B)− S(A,B)(80)

The joint entropy satisfies the subadditivity inequality:

S(A,B) ≤ S(A) + S(B)(81)

with equality if and only if A and B are uncorrelated, i.e., ρAB = ρA ⊗ ρB .
Now, S(A|B) can be negative, while the conditional Shannon entropy is always

positive or zero. Consider, for example, the entangled state |Ψ〉 = (|00〉+|11〉)/√2.
Since |Ψ〉 is a pure state, S(A,B) = 0. But S(A) = S(B) = 1. So S(A|B) =
S(A,B) − S(A) = −1. In fact, for a pure state |Ψ〉 of a composite system AB,
S(A|B) < 0 if and only if |Ψ〉 is entangled.

For a composite system AB in a product state ρ⊗σ, it follows from the definition
of joint entropy that:

S(A,B) = S(ρ⊗ σ) = S(ρ) + S(σ) = S(A) + S(B).(82)

If AB is in a pure state |Ψ〉, it follows from the Schmidt decomposition theorem
that |Ψ〉 can be expressed as

|Ψ〉 =
∑
i

√
pi|i〉〈i|(83)

from which it follows that

ρA = TrB(|ψ〉〈ψ|) =
∑
i |i〉〈i|

ρB = TrA(|ψ〉〈ψ|) =
∑
i |i〉〈i|;

(84)

and so:

S(A) = S(B) = −
∑
i

pi log pi.(85)

Consider a mixed state prepared as a mixture of states ρi with weights pi. It
can be shown that

S(
∑
i

piρi) ≤ H(pi) +
∑
i

piS(ρi)(86)

with equality if and only if the states ρi have support on orthogonal subspaces
(see [Nielsen and Chuang, 2000, Theorem 11.10, p. 518]). The entropy H(pi) is
referred to as the entropy of preparation of the mixture ρ.

If the states ρi are pure states, then S(ρ) ≤ H(pi). For example, suppose HQ
is 2-dimensional and p1 = p2 = 1/2, then H(pi) = 1. So if we had a classical
information source producing the symbols 1 and 2 with equal probabilities, no
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compression of the information would be possible. However, if the symbols 1 and
2 are encoded as nonorthogonal quantum states |r1〉 and |r2〉, then S(ρ) < 1.
As we will see in §3.5, according to Schumacher’s source coding theorem, since
S(ρ) < 1, quantum compression is possible, i.e., we can transmit long sequences
of qubits reliably using S < 1 qubits per quantum state produced by the source.

Note that if AB is prepared in a mixture of states ρi ⊗ |i〉〈i| with weights pi,
where the ρi are any density operators, not necessarily orthogonal, then it follows
from (86), (82), and the fact that S(|i〉〈i|) = 0 that

S(
∑
i

piρi ⊗ |i〉〈i|) = H(pi) +
∑
i

piS(ρi ⊗ |i〉〈i|)

= H(pi) +
∑
i

piS(ρi).(87)

The von Neumann entropy of a mixture of states ρi with weights pi,
∑

piρi, is
a concave function of the states in the distribution, i.e.,

S(
∑
i

piρi) ≥
∑
i

piS(ρi).(88)

To see this, consider a composite system AB in the state

ρAB =
∑

piρi ⊗ |i〉〈i|.(89)

We have

S(A) = S(
∑
i

piρi)(90)

S(B) = S(
∑
i

pi|i〉〈i|) = H(pi)(91)

and

S(A,B) = H(pi) +
∑
i

piS(ρi)(92)

by equation (87). By subadditivity S(A) + S(B) ≥ S(A,B), so:

S(
∑
i

piρi) ≥
∑
i

piS(ρi).(93)

It turns out that projective measurements always increase entropy, i.e., if ρ′ =∑
i PiρPi, then S(ρ′) ≥ S(ρ), but generalized measurements can decrease entropy.

Consider, for example, the generalized measurement on a qubit in the initial state
ρ defined by the measurement operators M1 = |0〉〈0| and M2 = |0〉〈1|. (Note that
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these operators do define a generalized measurement because M†
1M1 + M†

2M2 =
|0〉〈0|+ |1〉〈1| = I.) After the measurement

ρ′ = |0〉〈0|ρ|0〉〈0|+ |0〉〈1|ρ|1〉〈0|
= Tr(ρ)|1〉〈1|
= |1〉〈1|.(94)

So S(ρ′) = 0 ≤ S(ρ).

3.3 The ‘No Cloning’ Theorem

In § 3.1 we saw that two nonorthogonal quantum states cannot be reliably distin-
guished by any measurement. A ‘no cloning’ theorem establishes that nonorthog-
onal quantum states cannot be copied. To see this, suppose there were a device
D that could copy any input quantum state of a system Q with states in HQ.
Suppose the initial ready state of the device D is |0〉 ∈ HD. Then we require, for
any orthonormal set of input states {|i〉}:

|i〉|0〉 U−→ |i〉|i〉(95)

where U is the unitary transformation that implements the copying process. By
linearity, it then follows that for any input state

∑
i ci|i〉:

(
∑
i

ci|i〉)|0〉 U−→
∑
i

ci|i〉|i〉(96)

But for copying we require that:

(
∑
i

ci|i〉)|0〉 U−→ (
∑
i

ci|i〉)(
∑
i

ci|i〉)(97)

and ∑
i

ci|i〉|i〉 �= (
∑
i

ci|i〉)(
∑
i

ci|i〉) =
∑
ij

cicj |i〉|j〉(98)

unless cicj = δij , which means that the device could not copy any states that are
not in the orthonormal set |i〉.

Alternatively, one might note that if two states |ψ〉 and |φ〉 could be copied,
then

|ψ〉|0〉 U−→ |ψ〉|ψ〉(99)

|φ〉|0〉 U−→ |φ〉|φ〉(100)

Since unitary transformations preserve inner produces, we require that

〈ψ|φ〉 = 〈ψ|φ〉〈ψ|φ〉(101)
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which is possible if and only if if〈ψ|φ〉 = 1 or 0. That is: for cloning to be possible,
either the states are identical, or they are orthogonal.

The ‘no cloning’ theorem was proved independently by Dieks [1982] and Woot-
ters and Zurek [1982]. An important extension of this result to mixtures is due
to Barnum, Caves, Fuchs, Jozsa, and Schumacher [1996a]. In a cloning process,
a ready state σ of a system B and the state to be cloned ρ of a system A are
transformed into two copies of ρ. In a more general broadcasting process, a ready
state σ and the state to be broadcast ρ are transformed to a new state ω of AB,
where the marginal state ω with respect to both A and B is ρ, i.e.,

ρA = TrB(ω) = ρ(102)

ρB = TrA(ω) = ρ(103)

The ‘no cloning’ theorem states that a set of pure states can be cloned if and only
if the states are mutually orthogonal. The ‘no broadcasting’ theorem states that
an arbitrary set of states can be broadcast if and only if they are represented by
mutually commuting density operators. Classically, since all pure states are, in
a formal sense, orthogonal and all operators (representing real-valued functions
on phase space) commute, both cloning and broadcasting are possible. Note that
broadcasting reduces to cloning for pure states.

Of course, it is always possible to build a special-purpose device to clone a given
(known) quantum state |ψ〉, because this would simply be a device that prepares
the state |ψ〉. The ‘no cloning’ theorem, from another perspective, is just the
statement of the quantum measurement problem (see §7): measurements, in the
classical sense of reproducing in a second system a copy of the state of the first
system (or, more generally, a ‘pointer state’ that represents the state of the first
system), are impossible in quantum mechanics, except for measurements restricted
to orthogonal sets of input states.

A modification of the argument leading to Eqs. (99)–(101) shows that no in-
formation gain about the identity of nonorthogonal states is possible without dis-
turbing the states. Suppose the device D acts as a measuring device that records
some information about the identity of the input state, i.e., the output state of
the device is different for different input states |ψ〉, |φ〉; and that the device does
not disturb the input states. Then

|ψ〉|0〉 U−→ |ψ〉|ψ′〉(104)

|φ〉|0〉 U−→ |φ〉|φ′〉(105)

from which it follows that

〈ψ|φ〉 = 〈ψ|φ〉〈ψ′|φ′〉(106)

and so

〈ψ′|φ′〉 = 1(107)
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since 〈ψ|φ〉 �= 0 if |ψ〉 and |φ〉 are nonorthogonal. In other words, if there is no
disturbance to the nonorthogonal input states, there can be no information gain
about the identity of the states. So, for example, an eavesdropper, Eve, could gain
no information about the identity of nonorthogonal quantum states communicated
between Alice and Bob without disturbing the states, which means that passive
eavesdropping is impossible for quantum information.

The observation that a set of pure states can be cloned if and only if they are
mutually orthogonal is equivalent to the observation that a set of pure states can
be reliably distinguished if and only if they are mutually orthogonal. For if we
could distinguish a pair of states |ψ〉 and |φ〉, then we could copy them by simply
preparing the states with special-purpose preparation devices for |ψ〉 and |φ〉. And
if we could copy the states, then we could prepare as many copies as we liked of
each state. Because the product states |ψ〉⊗n and |φ〉⊗n become orthogonal in the
limit as n → ∞, these states are certainly distinguishable, and so the possibility
of cloning the states |ψ〉 and |φ〉 would provide a means of distinguishing them.

Note also that, by a similar argument, cloning would allow different mixtures
associated with the same density operator to be distinguished. The equal-weight
mixture of qubit states |↑z〉 = |0〉, |↓z〉 = |1〉 (the eigenstates of the spin observable
Z = σz) has the same density operator, I/2, as the equal-weight mixture of states
| ↑x〉 = 1√

2
(|0〉 + |1〉), | ↓x〉 = 1√

2
(|0〉 − |1〉) (the eigenstates of X = σx). Since

the cloned states | ↑x〉⊗n, | ↓x〉⊗n become distinguishable from the cloned states
|↑z〉⊗n, |↓z〉⊗n, cloning would allow the two mixtures to be distinguished.

This possibility would also allow superluminal signalling. For suppose Alice and
Bob shared the entangled state 1√

2
(|0〉|1〉 − |1〉|0〉). If Alice measured X or Z on

her qubit, she would steer Bob’s qubit into the mixture 1
2 | ↑x〉〈↑x | + 1

2 | ↓x〉〈↓x |
or the mixture 1

2 | ↑z〉〈↑z | + 1
2 | ↓z〉〈↓z |. If Bob could distinguish these mixtures

by cloning, in a shorter time than the time taken for light to travel between Alice
and Bob, he would be able to ascertain whether Alice measured X or Z, so 1 bit
of information would be transferred from Alice to Bob superluminally.

3.4 Accessible Information

The ability to exploit quantum states to perform new sorts of information-processing
tasks arises because quantum states have different distinguishability properties
than classical states. Of course, it is not the mere lack of distinguishability of
quantum states that is relevant here, but the different sort of distinguishability
enjoyed by quantum states. This indistinguishability is reflected in the limited
accessibility of quantum information.

To get a precise handle on this notion of accessibility, consider a classical in-
formation source in Shannon’s sense, with Shannon entropy H(X). Suppose the
source produces symbols represented as the values x (in an alphabet X ) of a
random variable X, with probabilities px, and that the symbols are encoded as
quantum states ρx, x ∈ X. The mutual information H(X : Y ) (as defined by
Eqs. (22), (23), (24)) is a measure of how much information one gains, on average,
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about the value of the random variable X on the basis of the outcome Y of a
measurement on a given quantum state. The accessible information is defined as:

Sup H(X :Y )(108)

over all possible measurements.
The Holevo bound on mutual information provides an important upper bound

to accessible information:

H(X :Y ) ≤ S(ρ)−
∑
x

pxS(ρx)(109)

where ρ =
∑
x pxρx and the measurement outcome Y is obtained from a measure-

ment defined by a POVM {Ey}. Since S(ρ) −∑x pxS(ρx) ≤ H(X) by Eq. (86),
with equality if and only if the states ρx have orthogonal support, we have:

H(X :Y ) ≤ H(X)(110)

Note that X can be distinguished from Y if and only if H(X :Y ) = H(X). If the
states ρx are orthogonal pure states, then in principle there exists a measurement
that will distinguish the states, and for such a measurement H(X : Y ) = H(X).
In this case, the accessible information is the same as the entropy of preparation
of the quantum states, H(X). But if the states are nonorthogonal, then H(X :
Y ) < H(X) and there is no measurement, even in the generalized sense, that will
enable the reliable identification of X.

Note, in particular, that if the values of X are encoded as the pure states
of a qubit, then H(X : Y ) ≤ S(ρ) and S(ρ) ≤ 1. It follows that at most 1
bit of information can be extracted from a qubit by measurement. If X has k
equiprobable values, H(X) = log k. Alice could encode these k values into a qubit
by preparing it in an equal-weight mixture of k nonorthogonal pure states, but Bob
could only extract at most 1 bit of information about the value of X. For an n-state
quantum system associated with an n-dimensional Hilbert space, S(ρ) ≤ log n. So
even though Alice could encode any amount of information into such an n-state
quantum system (by preparing the state as a mixture of nonorthogonal states),
the most information that Bob could extract from the state by measurement is
log n, which is the same as the maximum amount of information that could be
encoded into and extracted from an n-state classical system. It might seem, then,
that the inaccessibility of quantum information as quantified by the Holevo bound
would thwart any attempt to exploit quantum information to perform nonclassical
information-processing tasks. In the following sections, we shall see that this is
not the case: surprisingly, the inaccessibility of quantum information can actually
be exploited in information-processing tasks that transcend the scope of classical
information.

For an insightful derivation of the Holevo bound (essentially reproduced be-
low), see [Nielsen and Chuang, 2000, Theorem 12.1, p. 531]. The basic idea is
the following: Suppose Alice encodes the distinguishable symbols of a classical
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information source with entropy H(X) as quantum states ρx (not necessarily or-
thogonal). That is, Alice has a quantum system P , the preparation device, with
an orthonormal pointer basis |x〉 corresponding to the values of the random vari-
able X, which are produced by the source with probabilities px. The preparation
interaction correlates the pointer states |x〉 with the states ρx of a quantum system
Q, so that the final state of P and Q after the preparation interaction is:

ρPQ =
∑
x

px|x〉〈x| ⊗ ρx.(111)

Alice sends the system Q to Bob, who attempts to determine the value of the
random variable X by measuring the state of Q. The initial state of P,Q, and
Bob’s measuring instrument M is:

ρPQM =
∑
x

px|x〉〈x| ⊗ ρx ⊗ |0〉〈0|(112)

where |0〉〈0| is the initial ready state of M . Bob’s measurement can be described
by a quantum operation E on the Hilbert space HQ ⊗HM that stores a value of
y, associated with a POVM {Ey} on HQ, in the pointer state |y〉 of M , i.e., E is
defined for any state σ ∈ HQ and initial ready state |0〉 ∈ HM by:

σ ⊗ |0〉〈0| E−→
∑
y

√
Eyσ

√
Ey ⊗ |y〉〈y|.(113)

We have (recall the definition of quantum mutual information in Eqs. (78)–
(80)):

S(P :Q) = S(P :Q,M)8(114)

because M is initially uncorrelated with PQ and

S(P ′ :Q′,M ′) ≤ S(P :Q,M)(115)

because it can be shown ([Nielsen and Chuang, 2000, Theorem 11.15, p. 522])
that quantum operations never increase mutual information (primes here indicate
states after the application of E). Finally:

S(P ′ :Q′,M ′)(116)

because discarding systems never increases mutual information ([Nielsen and Chuang,
2000, Theorem 11.15, p. 522]), and so:

S(P ′ :M ′) ≤ S(P :Q)(117)

which (following some algebraic manipulation) is the statement of the Holevo
bound, i.e., (117) reduces to (109).

To see this, note (from (111)) that

ρPQ =
∑
x

px|x〉〈x| ⊗ ρx(118)
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So S(P ) = H(px)), S(Q) = S(
∑
x pxρx) = S(ρ) and, by (87),

S(P,Q) = H(px) +
∑
x

pxS(ρx)(119)

since the states |x〉〈x| ⊗ ρx have support on orthogonal subspaces in HP ⊗HQ. It
follows that

S(P :Q) = S(P ) + S(Q)− S(P,Q)

= S(ρ)−
∑
x

pxS(ρx)(120)

which is the right hand side of the Holevo bound.
For the left hand side:

ρP
′M ′ = TrQ′(ρP

′Q′M ′)(121)

= TrQ′(
∑
xy

px|x〉〈x| ⊗
√

Eyρx
√

Ey ⊗ |y〉〈y|)(122)

=
∑
xy

pxTr(EyρxEy)|x〉〈x| ⊗ |y〉〈y|(123)

=
∑
xy

p(x, y)|x〉〈x| ⊗ |y〉〈y|,(124)

since p(x, y) = pxp(y | x) = pxTr(ρxEy) = pxTr(
√

Eyρx
√

Ey), and so S(P ′ :
M ′) = H(X : Y ).

The Holevo bound limits the representation of classical bits by qubits. Putting it
another way, the Holevo bound characterizes the resource cost of encoding classical
bits as qubits: one qubit is necessary and sufficient. Can we represent qubits by
bits? If so, what is the cost of a qubit in terms of bits? This question is answered
by the following result [Barnum et al., 2001]: A quantum source of nonorthogonal
signal states can be compressed with arbitarily high fidelity to α qubits per signal
plus any number of classical bits per signal if and only if α is at least as large as the
von Neumann entropy S of the source. This means that a generic quantum source
cannot be separated into a classical and quantum part: quantum information
cannot be traded for any amount of classical information.

3.5 Quantum Information Compression

As pointed out in §3.2, Shannon’s source coding theorem (noiseless channel coding
theorem) and the core notion of a typical sequence can be generalized for quantum
sources. This was first shown by Jozsa and Schumacher [1994] and Schumacher
[1995]. See also [Barnum et al., 1996b].

For a classical information bit source, where the output of the source is given by
a random variable X with two possible values x1, x2 with probabilities p1, p2, the
Shannon entropy of the information produced by the source is H(X) = H(p1, p2).
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So by Shannon’s source coding theorem the information can be compressed and
communicated to a receiver with arbitrarily low probability of error by using H(X)
bits per signal, which is less than one bit if p1 �= p2.

Now suppose the source produces qubit states |ψ1〉, |ψ2〉 with probabilities p1, p2.
The Shannon entropy of the mixture ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| is S(ρ). Schu-
macher’s generalization of Shannon’s source coding theorem shows that the quan-
tum information encoded in the mixture ρ can be compressed and communicated
to a receiver with arbitrarily low probability of error by using S(ρ) qubits per
signal, and S(ρ) < 1 if the qubit states are nonorthogonal.

Note that the signals considered here are qubit states. What Schumacher’s
theorem shows is that we can reliably communicate the sequence of qubit states
produced by the source by sending less than one qubit per signal. Note also that
since S(ρ) < H(p1, p2) if the qubit states are nonorthogonal, the quantum infor-
mation represented by the sequence of qubit states can be compressed beyond the
classical limit of the classical information associated with the entropy of prepara-
tion of ρ (i.e., the Shannon entropy of the random variable whose values are the
labels of the qubit states).

Since the individual states in a mixture are not in general distinguishable, there
are two distinct sorts of compression applicable to quantum information that do
not apply to classical information. In blind compression, the sequence of quantum
states produced by a source is compressed via a compression scheme that depends
only on the identities of the quantum states and their probabilities, i.e., the input
to the compression scheme is the density operator associated with the distribution.
In visible compression, the identity of each individual quantum state produced by
the source is assumed to be known, i.e., the input to the compression scheme is
an individual quantum state in the sequence produced by the source, and the
compression of the state is based on the probability distribution of such states.

An example: an inefficient visible compression scheme of the above qubit source
(|ψ1〉, |ψ2〉 with probabilities p1, p2) would simply involve sending the classical in-
formation of the quantum state labels, compressed to H(p1, p2) bits per signal, to
the receiver, where the original qubit states could then be prepared after decom-
pression of the classical information. This scheme is not optimal by Schumacher’s
theorem (for nonorthogonal qubit states) because S(ρ) < H(p1, p2). Of course,
Schumacher’s theorem refers to a compression rate of S(ρ) qubits per quantum
signal, while the application of Shannon’s theorem here refers to H(p2, p2) bits
per classical signal. But note that the communication of one classical bit requires
the same physical resource as the communication of one qubit, prepared in one
of two orthogonal basis states. Note also that sending the (nonorthogonal) qubit
states themselves, which would require one qubit per signal, would not convey the
identity of the states in the sequence to the transmitter. So the classical informa-
tion about the individual state labels in the sequence (which would be bounded
by log n per signal if we considered a source producing n qubit states) is really
redundant if the aim is to communicate the quantum information associated with
the sequence of qubit states.
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Remarkably, Schumacher’s theorem shows that the optimal compressibility of
the quantum information associated with a sequence of quantum pure states is
S(ρ) qubits per signal, for blind or visible compression.

To see the general idea, consider a source of (possibly nonorthogonal) qubits
|ψ1〉, |ψ2〉 with probabilities p1, p2. The density operator of the probability distri-
bution is ρ = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|.

An n-sequence of states produced by the source is represented by a state

|Ψi1...in〉 = |ψi1〉 . . . |ψin〉(125)

in H⊗n
2 . Each such state has a probability pi1...in = pi1 . . . pin . The n-sequences

span the 2n-dimensional Hilbert space H⊗n
2 , but as n → ∞ it turns out that the

probability of finding an n-sequence in a ‘typical subspace’ (in a measurement,
on an n-sequence produced by the source, of the projection operator onto the
subspace ) tends to 1. That is, for any ε, δ > 0, there is a subspace T (n)

δ of
dimension between 2n(S(ρ)−δ) and 2n(S(ρ)+δ), with projection operator P

(n)
δ , such

that: ∑
all sequences

pi1...inTr(|Ψi1...in〉〈Ψi1...in |P (n)
δ ) = Tr(ρ⊗nP (n)

δ ) ≥ 1− ε.(126)

Here ρ⊗n = ρ ⊗ ρ . . . ρ, the n-fold tensor product of ρ with itself, is the density
operator of n-sequences of states produced by the source:

ρ⊗n =
∑

all n-sequences
pi1...in |Ψi1...in〉〈Ψi1...in |(127)

=
∑

all n-sequences
pi1 . . . pin |ψi1〉〈ψi1 | ⊗ . . .⊗ |ψin〉〈ψin |(128)

where each state |ψij 〉 is one of k possible states in a d-dimensional Hilbert space.
Recall that the statistical properties of such n-sequences of states, for all possible
measurements, is given by ρ⊗n and does not depend on the representation of ρ⊗n

as a particular mixture of states. Since S(ρ) ≤ 1 for a qubit source, the dimension
of T (n)

δ decreases exponentially in H⊗n
2 as n → ∞, i.e., the typical subspace is

exponentially small in H⊗n
2 for large n.

Note that this does not mean that almost all n-sequences of states produced
by the source lie in the typical subspace. Rather, almost all n-sequences produced
by the source are such that a measurement of P

(n)
δ on the sequence will yield

the value 1, i.e., almost all n-sequences produced by the source will answer ‘yes’
in a measurement of the projection operator onto the typical subspace. So, in
this sense, most sequences produced by the source will be found to lie in the
typical subspace on measurement, and for any subspace V of dimension less than
2n(S(ρ)−δ) it can be shown that the average probability of finding an n-sequence
produced by the source in V is less than any pre-assigned ε for sufficiently large n.
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Consider now the general case where the source produces k states |ψ1〉. . . . , |ψk〉 ∈
Hd (not necessarily orthogonal) with probabilities p1. . . . , pk. Here the density op-
erator associated with the source is ρ =

∑k
i=1 pi|ψi〉〈ψi|. Sequences of length n

span a subspace of dn = 2n log d dimensions and the typical subspace T (n)
δ has

dimension between 2n(s(ρ)−δ) and 2n(s(ρ)+δ), which is again exponentially small in
H⊗n
d because S(ρ) ≤ log d.
For comparison with Shannon’s theorem, we write ρ in the spectral representa-

tion as:

ρ =
∑
x

p(x)|x〉〈x|(129)

where {p(x)} is the set of non-zero eigenvalues of ρ and {|x〉} is an orthonormal
set of eigenstates of ρ. If ρ has eigenvalues p(x) and eigenstates |x〉, then ρ⊗n has
eigenvalues p(x1)p(x2) . . . p(xn) and eigenstates |x1〉|x2〉 . . . |xn〉.

A δ-typical state is defined as a state |x1〉|x2〉 . . . |xn〉 for which the sequence
x1, x2, . . . , xn is a δ-typical sequence, in the sense that (cf. Eq. (13)):

2−n(S(ρ)+δ) < p(x1 . . . xn) < 2−n(S(ρ)−δ).(130)

The δ-typical subspace T (n)
δ is the subspace spanned by all the δ-typical states.

Denote the projection operator onto T (n)
δ by:

P
(n)
δ =

∑
δ−typical states

|x1〉〈x1| ⊗ |x2〉〈x2| . . . |xn〉〈xn|(131)

Then, for a fixed δ > 0, it can be shown that for any ε > 0 and sufficiently large n

Tr(P (n)
δ ρ⊗n) ≥ 1− ε;(132)

and the dimension of T (n)
δ (= Tr(P (n)

δ )) satisfies

(1− ε)2n(S(ρ)−δ) ≤ dim T (n)
δ ≤ 2n(S(ρ)+δ).(133)

That is, the dimension of T (n)
δ is roughly 2nS(ρ), which is exponentially smaller

than the dimension of H⊗n, as n→∞.
It follows that the density operator ρ⊗n can be replaced with a density operator

ρ̃⊗n with support on the typical subspace (take ρ⊗n in the spectral representation,
where the matrix is diagonal with 2n log d eigenvalues p(x1 . . . xn) = p(x1) . . . p(xn),
and replace all p(x1 . . . xn) that do not correspond to typical sequences with zeros).

Before considering a compression/decompression scheme for quantum informa-
tion, we need a measure of the reliability of such a scheme in terms of the fidelity,
as in the case of classical information. The following definition generalizes the
classical notion of fidelity in §2 (see [Jozsa, 1998, 70]): If |ψ〉 is any pure quantum
state and ρ any mixed state, the fidelity between ρ and |ψ〉 is:

F (ρ, |ψ〉) = Tr((ρ|ψ〉〈ψ|)) = 〈ψ|ρ|ψ〉(134)
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which is the probability that a measurement of the projection operator |ψ〉〈ψ| in
the state ρ yields the outcome 1, i.e., it is the probability that ρ passes a test of
being found to be |ψ〉 on measurement. Note that for a pure state ρ = |ψ〉〈ψ|,
F (|φ〉, |ψ〉) = |〈ψ|φ〉|2. The fidelity between two mixed states ρ and σ is defined
as:9

F (ρ, σ) = max|〈ψ|φ〉|2 = (Tr(
√

ρ1/2σρ1/2))2.(135)

for all purifications |ψ〉 of ρ and |φ〉 of σ. Note that in spite of appearances, F (ρ, σ)
is symmetric in ρ and σ.

In the case of a source of n-sequences of quantum states |Ψi1...in〉 = |ψi1〉 . . . |ψin〉
with prior probabilities pi1...in = pi1 . . . pin , a compression/decompression scheme
will in general yield a mixed state ρi1...in . The average fidelity of a compression-
decompression scheme for an n-sequence of quantum states is defined as:

Fn =
∑

all n-sequences
pi1...inTr(ρi1...in |Ψi1...in〉〈Ψi1...in |)(136)

Schumacher’s quantum source coding theorem (or quantum noiseless channel
coding theorem) for a quantum source that produces quantum states |ψ1〉 . . . |ψn〉 ∈
Hd with probabilities p1 . . . pn (so the density operator corresponding to the output
of the source is ρ =

∑
pi|ψi〉〈ψi|), states that

for any ε, δ > 0: (i) there exists a compression/decompression scheme
using S(ρ)+ δ qubits per state for n-length sequences produced by the
source that can be decompressed by the receiver with fidelity Fn > 1−ε,
for sufficiently large n, and (ii) any compression/decompression scheme
using S(ρ)−δ qubits per state for n-length sequences will have a fidelity
Fn < ε, for sufficiently large n.

A compression/decompression scheme for such a quantum source would go as
follows: The transmitter applies a unitary transformation U in H⊗n

d (dimension
= dn = 2n log d) which maps any state in the typical subspace onto a linear su-
perposition of sequences of n log d qubits, where all but the first nS(ρ) qubits
are in the state |0〉, and then transmits the first nS(ρ) qubits to the receiver.
So the transmitter compresses n log d qubits to nS(ρ) qubits. The receiver adds
n log d−nS(ρ) qubits in the state |0〉 and applies the unitary transformation U−1.
Since the initial nS(ρ) qubits will in general be slightly entangled with the re-
maining n log d − nS(ρ) qubits, discarding these qubits amounts to tracing over
the associated dimensions, so replacing these qubits with the state |0〉 will pro-
duce a mixed state ρ̃n. The state U−1ρ̃n will pass a test of being found to be the
original state |Ψi1...in〉 with fidelity greater than 1− ε.

9Note that Nielsen and Chuang [2000, 409] define the fidelity F (ρ, σ) as the square root of
the quantity defined here. If ρ and σ commute, they can be diagonalized in the same basis.
The definition then reduces to their definition of the classical fidelity between two probablity
distributions defined by the eigenvalues of ρ and σ in footnote 3 in §2.1.
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4 ENTANGLEMENT ASSISTED QUANTUM COMMUNICATION

In this section I show how entanglement can be exploited as a channel for the
reliable transmission of quantum information. I discuss two related forms of en-
tanglement assisted communication: quantum teleportation in §4.1 and quantum
dense coding in §4.2.

4.1 Quantum Teleportation

As mentioned in §1, Schrödinger introduced the term ‘entanglement’ to describe
the peculiar nonlocal correlations of the EPR-state in an extended two-part com-
mentary [1935; 1936] on the Einstein-Podolsky-Rosen argument [Einstein et al.,
1935]. Schrödinger regarded entangled states as problematic because they allow
the possibility of what he called ‘remote steering’, which he regarded as a mathe-
matical artefact of the Hilbert space theory and discounted as a physical possibility.
As it turns out, quantum teleportation is an experimentally confirmed application
of remote steering between two separated systems. This was first pointed out
in a paper by Bennett, Brassard, Crépeau, Jozsa, Peres, and Wootters [1993]
and later experimentally confirmed by several groups using a variety of different
techniques [Bouwmeester et al., 1997; Boschi et al., 1998; Furasawa et al., 1998;
Nielsen et al., 1998].

In the 1935 paper, Schrödinger considered pure entangled states with a unique
biorthogonal decomposition, as well as cases like the EPR-state, where a biorthog-
onal decomposition is non-unique. He showed that suitable measurements on one
system can fix the (pure) state of the entangled distant system, and that this state
depends on what observable one chooses to measure, not merely on the outcome
of that measurement. In the second paper, he showed that a ‘sophisticated exper-
imenter’, by performing a suitable local measurement on one system, can ‘steer’
the distant system into any mixture of pure states represented by its reduced den-
sity operator. So the distant system can be steered (probabilistically, depending
on the outcome of the local measurement) into any pure state in the support of
the reduced density operator, with a nonzero probability that depends only on the
pure state. For a mixture of linearly independent states of the distant system, the
steering can be done by performing a local standard projection-valued measure-
ment in a suitable basis. If the states are linearly dependent, the experimenter
performs a generalized measurement (associated with a POVM), which amounts
to enlarging the experimenter’s Hilbert space by adding an ancilla, so that the
dimension of the enlarged Hilbert space is equal to the number of linearly inde-
pendent states. As indicated in §3.1, Schrödinger’s analysis anticipated the later
result by Hughston, Jozsa, and Wootters [1993].

Suppose Alice and Bob, the traditional protagonists in any two-party commu-
nication protocol, each holds one of a pair of qubits in the entangled state:

|Ψ〉 =
1√
2
(|0〉A|1〉B − |1〉A|0〉B)(137)
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Bob’s qubit separately is in the mixed state ρB = I/2, which can be interpreted
as an equal weight mixture of the orthogonal states |0〉B , |1〉B , or, equivalently,
as an infinity of other mixtures including, to take a specific example, the equal
weight mixture of the four nonorthogonal normalized states:

|φ1〉B = α|0〉B + β|1〉B
|φ2〉B = α|0〉B − β|1〉B
|φ3〉B = β|0〉B + α|1〉B
|φ4〉B = β|0〉B − α|1〉B

That is:

ρB = I/2 =
1
4
(|φ1〉〈φ1|+ |φ2〉〈φ2|+ |φ3〉〈φ3|+ |φ4〉〈φ4|)(138)

If Alice measures the observable with eigenstates |0〉A, |1〉A on her qubit A,
and Bob measures the corresponding observable on his qubit B, Alice’s outcomes
will be oppositely correlated with Bob’s outcomes (0 with 1, and 1 with 0). If,
instead, Alice prepares an ancilla qubit A′ in the state |φ1〉A′ = α|0〉A′ + β|1〉A′
and measures an observable on the pair of qubits A′ + A in her possession with
eigenstates:

|1〉 = (|0〉A′ |1〉A − |1〉A′ |0〉A)/
√

2(139)

|2〉 = (|0〉A′ |1〉A + |1〉A′ |0〉A)/
√

2(140)

|3〉 = (|0〉A′ |0〉A − |1〉A′ |1〉A)/
√

2(141)

|4〉 = (|0〉A′ |0〉A + |1〉A′ |1〉A)/
√

2(142)

(the Bell states defining the Bell basis in HA′ ⊗HA), she will obtain the outcomes
1, 2, 3, 4 with equal probability of 1/4, and these outcomes will be correlated with
Bob’s states |φ1〉B , |φ2〉B , |φ3〉B , |φ4〉B . That is, if Bob checks to see whether his
particle is in the state |φi〉B when Alice reports that she obtained the outcome i,
he will find that this is always in fact the case. This follows because

|φ1〉A′ |Ψ〉 =
1
2
(−|1〉|φ1〉B − |2〉|φ2〉B + |3〉|φ3〉B − |4〉|φ4〉B)(143)

In this sense, Alice can steer Bob’s particle into any mixture compatible with his
density operator ρB = I/2 by an appropriate local measurement.

What Schrödinger found problematic about entanglement was the possibility of
remote steering in the above sense [1935, 556]:

It is rather discomforting that the theory should allow a system to be
steered or piloted into one or the other type of state at the experi-
menter’s mercy in spite of his having no access to it.

Now, remote steering in this probabilistic sense is precisely what makes quantum
teleportation possible. Suppose Alice and Bob share a pair of qubits in the entan-
gled state (137) and Alice is given a qubit A′ in an unknown state |φ1〉 that she
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would like to send to Bob. There is no procedure by which Alice can determine
the identity of the unknown state, but even if she could, the amount of classical
information that Alice would have to send to Bob in order for him to prepare
the state |φ1〉 is potentially infinite, since the precise specification of a general
normalized qubit state α|0〉 + β|1〉 requires two real parameters ( the number of
independent parameters is reduced from four to two because |α|2+|β|2 = 1 and the
overall phase is irrelevant). Alice could send the qubit itself to Bob, but the quan-
tum information in the qubit state might be corrupted by transmission through a
possibly noisy environment.

Instead, for the cost of just two bits of classical information, Alice can succeed
in communicating the unknown quantum state |φ1〉 to Bob with perfect reliability.
What Alice does is to measure the 2-qubit system A′ + A in her possession in the
Bell basis. Depending on the outcome of her measurement, i = 1, 2, 3, or 4 with
equal probability, Bob’s qubit will be steered into one of the states |φ1〉B , |φ2〉B ,
|φ3〉B , |φ4〉B . If Alice communicates the outcome of her measurement to Bob
(requiring the transmission of two bits of classical information), Bob can apply
one of four local unitary transformations in his Hilbert space to obtain the state
|φ1〉B :

i = 1: do nothing, i.e., apply the identity transformation I

i = 2: apply the transformation σz

i = 3: apply the transformation σx

i = 4: apply the transformation iσy

where σx, σy, σz are the Pauli spin matrices.
The trick that results in the communication of the state |φ1〉 from Alice to Bob,

without the qubit A′ literally traveling from Alice to Bob, is the ability afforded
Alice by the shared entangled state to correlate one of four measurement outcomes
(each occurring with probability 1/4) with one of four states that together repre-
sent a particular decomposition of Bob’s mixed state. The communication of the
state of A′ is completed by Bob’s operation, which requires that Alice sends the
two bits of classical information about her measurement outcome to Bob. In the
teleportation protocol, the state of the particle A′ is destroyed by Alice’s mea-
surement and re-created as the state of Bob’s particle by Bob’s operation — in
fact, the systems A and A′ end up in an entangled state as the result of Alice’s
measurement. Note that if the state |φ1〉 of A′ were not destroyed there would be
two copies of the state, which would violate the quantum ‘no cloning’ theorem.
So neither Alice nor Bob, nor any other party, can gain any information about
the identity of the teleported state, because the recording of such information in
the state of another quantum system would amount to a partial copying of the
information in the teleported state.

Shared entanglement provides a secure and reliable channel for quantum com-
munication. This might be useful for the communication of quantum information
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between parties in a cryptographic protocol, or for the transmission of quantum
information between the processing components of a quantum computer. It is
a feature of an entangled state shared by two parties that the entanglement is
not affected by noise in the environment between them. So the reliability of the
communication of quantum information by teleportation depends on the reliabil-
ity of the required classical communication, which can be protected against noise
by well-known techniques of error-correcting codes. An entangled state shared by
two parties is also unaffected by changes in their relative spatial location. So Alice
could teleport a quantum state to Bob without even knowing Bob’s location, by
broadcasting the two bits of information.

4.2 Quantum Dense Coding

We know from the Holevo bound (see §3.4) that the maximum amount of classical
information that can be reliably communicated by encoding the information in the
quantum state of a qubit is one bit, even though an arbitrarily large amount of
classical information can be encoded in the state of a qubit (by encoding symbols
as nonorthogonal quantum states). Quantum dense coding is a procedure, first
pointed out by Bennett and Wiesner [1992], for exploiting entanglement to double
the amount of classical information that can be communicated by a qubit.

Consider again the Bell states:

|1〉 = (|0〉|1〉 − |1〉|0〉)/
√

2(144)

|2〉 = (|0〉|1〉+ |1〉|0〉)/
√

2(145)

|3〉 = (|0〉|0〉 − |1〉|1〉)/
√

2(146)

|4〉 = (|0〉|0〉+ |1〉|1〉)/
√

2(147)

Suppose Alice and Bob share a pair of qubits in the state

|1〉 = (|0〉A|1〉B − |1〉A|0〉B)/
√

2(148)

By performing one of four local operations on the qubit in her possession defined
by the unitary transformations in HA:

U1 = I(149)
U2 = σx(150)
U3 = σx(151)
U4 = iσy(152)

Alice can transform the state |1〉 of the qubit pair into any Bell state. For example:

I|1〉 = |1〉(153)
σz|1〉 = |2〉(154)
σx|1〉 = |3〉(155)
iσy|1〉 = |4〉(156)



594 Jeffrey Bub

So to communicate two classical bits to Bob, Alice applies one of the four
operations above to her qubit and sends the qubit to Bob. Bob then performs
a measurement on the two qubits in the Bell basis. Since these are orthogonal
states, he can distinguish the states and identify Alice’s operation.

5 QUANTUM CRYPTOGRAPHY

Over the past few years, quantum cryptography as emerged as perhaps the most
successful area of application of quantum information theoretic ideas. The main
results have been a variety of provably secure protocols for key distribution, fol-
lowing an original proposal by Bennett and Brassard [1984], and an important ‘no
go’ theorem by Mayers [1996b; 1997] and Lo and Chau [1998]: the impossibility
of unconditionally secure two-party quantum bit commitment. The quantum bit
commitment theorem generalizes previous results restricted to one-way commu-
nication protocols by Mayers [1996a] and by Lo and Chau [1997] and applies to
quantum, classical, and quantum-classical hybrid schemes (since classical informa-
tion, as we have seen, can be regarded as quantum information subject to certain
constraints). The restriction to two-party schemes excludes schemes that involve
a trusted third-party or trusted channel properties, and the restriction to schemes
based solely on the principles of quantum mechanics excludes schemes that ex-
ploit special relativistic signalling constraints, or schemes that might involve time
machines or the thermodynamics of black holes, etc.

In §5.1, I show how the security of quantum key distribution depends on features
of quantum information — no cloning, no information gain without disturbance,
entanglement — that prevent an eavesdropper from secretly gaining information
about the quantum communication between two parties, i.e., completely unde-
tectable eavesdropping is in principle impossible for quantum communication. In
§5.2, I dscuss quantum bit commitment and show why unconditionally secure
quantum bit commitment is impossible.

5.1 Key Distribution

Quantum Key Distribution Protocols

In a quantum key distribution protocol, the object is for two parties, Alice and
Bob, who initially share no information, to exchange information via quantum and
classical channels, so as to end up sharing a secret key which they can then use for
encryption, in such a way as to ensure that any attempt by an eavesdropper, Eve,
to gain information about the secret key will be detected with non-zero probability.

The one-time pad provides a perfectly secure way for Alice and Bob to com-
municate classical information, but this is also the only way that two parties
can achieve perfectly security classical communication. The one-time pad is, es-
sentially, a random sequence of bits. If Alice and Bob both have a copy of the
one-time pad, Alice can communicate a message to Bob securely by converting
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the message to an n-bit binary number (according to some scheme known to both
Alice and Bob), and adding (bitwise, modulo 2) the sequence of bits in the binary
number to an n-length sequence of bits from the top of the one-time pad. Alice
sends the encrypted sequence to Bob, which Bob can then decrypt using the same
sequence of bits from his copy of the one-time pad. Since the encrypted message
is random, it is impossible for Eve to decrypt the message without a copy of the
one-time pad. It is essential to the security of the scheme that the n random bits
used to encrypt the message are discarded once the message is transmitted and
decrypted, and that a unique random sequence is used for each distinct message
— hence the term ‘one-time pad.’

This procedure guarantees perfect privacy, so long as Alice and Bob, and only
Alice and Bob, can each be assumed to possess a copy of an arbitrarily long one-
time pad. But this means that in order for two parties to communicate secretly,
they must already share a secret: the random key. The key distribution problem
is the problem of how to distribute the key securely in the first place without
the key being secretly intercepted during transmission and copied, and the key
storage problem is the problem of how to store the key securely without it being
secretly copied. We would like a procedure that can be guaranteed to be secure
against passive eavesdropping, so that Alice and Bob can be confident that their
communications are in fact private.

The key idea in quantum cryptography is to exploit the indistinguishability of
nonorthogonal quantum states, which we saw in §3.3 entails that any information
gained by Eve about the identity of such states will introduce some disturbance of
the states that can be detected by Alice and Bob, and the ‘no cloning’ theorem,
which makes it impossible for Eve to copy quantum communications between Alice
and Bob and store them for later analysis (perhaps using, in addition, intercepted
classical communications between Alice and Bob).

A large variety of quantum key distribution schemes have been proposed follow-
ing the original Bennett and Brassard protocol [1984], now known as BB84. The
core idea there was for Alice to send Bob a sequence of qubits, prepared with equal
probability in one of the states |0〉, |1〉, |+〉, |−〉, where the pair of orthogonal states
|0〉, |1〉 are nonorthogonal to the pair of orthogonal states |+〉, |−〉. Bob measures
each qubit randomly in either the basis |0〉, |1〉 or the basis |+〉, |−〉. Following
his measurements, he publicly broadcasts the basis he used for each qubit in the
sequence, and Alice publicly broadcasts which of these bases is the same as the
basis she used to prepare the qubit. Alice and Bob then discard the qubits for
which their bases disagree. Since the outcome states of Bob’s measurements are
the same as the states Alice prepared, Alice and Bob share a random key on the
remaining qubits. They can then sacrifice a portion of these qubits to detect eaves-
dropping. Alice publicly announces the qubit state she prepared and Bob checks
his measurement outcome to confirm this. If they agree on a sufficient number of
qubit states (depending on the expected error rate), they conclude that there has
been no eavesdropping and use the remaining portion as the secret key. If they
don’t agree, they conclude that the qubits have been disturbed by eavesdropping,
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in which case they discard all the qubits and begin the procedure again. The
actual protocol involves further subtleties in which a perfectly secure secret key is
distilled from the ‘raw key’ obtained in this way by techniques of error correction
and privacy amplification.

The BB84 scheme solves the key distribution problem, in the sense that Alice
and Bob, who initially share no secrets, can end up sharing a secret key via a key
distribution protocol that excludes the possibility of eavesdropping, with arbitrar-
ily high reliability(since the length of the sequence of qubits sacrificed to detect
eavesdropping can be arbitrarily long). Clearly, it does not solve the key storage
problem, since the output of the key distribution protocol is stored as classical
information, which is subject to passive eavesdropping.

A scheme proposed by Ekert [1991] allows Alice and Bob to create a shared
random key by performing measurements on two entangled qubits. Suppose Alice
and Bob share many copies of an entangled pure state of two qubits, say the Bell
state 1√

2
(|0〉|1〉 − |1〉|0〉) (perhaps emitted by a common source of entangled pairs

between Alice and Bob). Alice and Bob agree on three observables that they each
measure on their qubits, where the measurements are chosen randomly and inde-
pendently for each qubit. After a sequence of measurements on an appropriate
number of pairs, Alice and Bob announce the directions of their measurements
publicly and divide the measurements into two groups: those in which they mea-
sured the spin in different directions, and those in which they measured the spin
in the same direction. They publicly reveal the outcomes of the first group of mea-
surements and use these to check that the singlet states have not been disturbed
by eavesdropping. Essentially, they calculate a correlation coefficient: any attempt
by an eavesdropper, Eve, to monitor the particles will disturb the entangled state
and result in a correlation coefficient that is bounded by Bell’s inequality and is
therefore distinguishable from the correlation coefficient for the entangled state.
If Alice and Bob are satisfied that no eavesdropping has occurred, they use the
second group of oppositely correlated measurement outcomes as the key.

Quantum Key Distribution via Pre- and Post-Selection

The Ekert scheme solves the key distribution problem as well as the key storage
problem, because a new key is generated for each message from the stored en-
tangled states, and there is no information about the key in the entangled states.
Here I describe a key distribution protocol that also involves entangled states (see
[Bub, 2001b]), but with a different type of test for eavesdropping. Instead of a
statistical test based on Bell’s theorem, the test exploits conditional statements
about measurement outcomes generated by pre- and post-selected quantum states.

The peculiar features of pre- and post-selected quantum states were first pointed
out by Aharonov, Bergmann, and Lebowitz [1964]. If:

(i) Alice prepares a system in a certain state |pre〉 at time t1,

(ii) Bob measures some observable M on the system at time t2,
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(iii) Alice measures an observable of which |post〉 is an eigenstate at time t3, and
post-selects for |post〉,

then Alice can assign probabilities to the outcomes of Bob’s M -measurement at
t2, conditional on the states |pre〉 and |post〉 at times t1 and t3, respectively, as
follows [Aharonov et al., 1964; Vaidman et al., 1987]:

prob(qk) =
|〈pre|Pk|post〉|2∑
i |〈pre|Pi|post〉|2(157)

where Pi is the projection operator onto the i’th eigenspace of M . Notice that
(157) — referred to as the ‘ABL-rule’ (Aharonov-Bergmann-Lebowitz rule) in the
following — is time-symmetric, in the sense that the states |pre〉 and |post〉 can
be interchanged.

If M is unknown to Alice, she can use the ABL-rule to assign probabilities to
the outcomes of various hypothetical M -measurements. The interesting peculiarity
of the ABL-rule, by contrast with the usual Born rule for pre-selected states, is
that it is possible — for an appropriate choice of observables M , M ′, . . . , and
states |pre〉 and |post〉 — to assign unit probability to the outcomes of a set of
mutually noncommuting observables. That is, Alice can be in a position to assert
a conjunction of conditional statements of the form: ‘If Bob measured M , then
the outcome must have been mi, with certainty, and if Bob measured M ′, then the
outcome must have been m′

j , with certainty, . . . ’, where M,M ′, . . . are mutually
noncommuting observables. Since Bob could only have measured at most one
of these noncommuting observables, Alice’s conditional information does not, of
course, contradict quantum mechanics: she only knows the eigenvalue mi of an
observable M if she knows that Bob in fact measured M .

Vaidman, Aharonov, and Albert [1987] discuss a case of this sort, where the
outcome of a measurement of any of the three spin observables X = σx, Y = σy,
Z = σz of a spin- 1

2 particle can be inferred from an appropriate pre- and post-
selection. Alice prepares the Bell state

|pre〉 =
1√
2
(| ↑z〉A| ↑z〉C + | ↓z〉A| ↓z〉C(158)

where | ↑z〉 and | ↓z〉 denote the σz-eigenstates. Alice sends one of the particles —
the channel particle, denoted by the subscript C — to Bob and keeps the ancilla,
denoted by A. Bob measures either X,Y , or Z on the channel particle and returns
the channel particle to Alice. Alice then measures an observable R on the pair of
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particles, where R has the eigenstates (the subscripts A and C are suppressed):

|r1〉 =
1√
2
| ↑z〉| ↑z〉+ 1

2
(| ↑z〉| ↓z〉eiπ/4 + | ↓z〉| ↑z〉e−iπ/4)(159)

|r2〉 =
1√
2
| ↑z〉| ↑z〉 − 1

2
(| ↑z〉| ↓z〉eiπ/4 + | ↓z〉| ↑z〉e−iπ/4)(160)

|r3〉 =
1√
2
| ↓z〉| ↓z〉+ 1

2
(| ↑z〉| ↓z〉e−iπ/4 + | ↓z〉| ↑z〉eiπ/4)(161)

|r4〉 =
1√
2
| ↓z〉| ↓z〉 − 1

2
(| ↑z〉| ↓z〉e−iπ/4 + | ↓z〉| ↑z〉eiπ/4)(162)

Note that:

|pre〉 =
1√
2
(| ↑z〉| ↑z〉+ | ↓z〉| ↓z〉(163)

=
1√
2
(| ↑x〉| ↑x〉+ | ↓x〉| ↓x〉(164)

=
1√
2
(| ↑y〉| ↓y〉+ | ↓y〉| ↑y〉(165)

=
1
2
(|r1〉+ |r2〉+ |r3〉+ |r4〉)(166)

Alice can now assign values to the outcomes of Bob’s spin measurements via the
ABL-rule, whether Bob measured X,Y , or Z, based on the post-selections |r1〉,
|r2〉, |r3〉, or |r4〉, according to Table 1 (where 0 represents the outcome ↑ and 1
represents the outcome ↓) [Vaidman et al., 1987]:

σx σy σz
r1 0 0 0
r2 1 1 0
r3 0 1 1
r4 1 0 1

Table 1. σx, σy, σz measurement outcomes correlated with eigenvalues of R

This case can be exploited to enable Alice and Bob to share a private random
key in the following way: Alice prepares a certain number of copies (depending on
the length of the key and the level of privacy desired) of the Bell state |pre〉 in Eq.
(158). She sends the channel particles to Bob in sequence and keeps the ancillas.
Bob measures X or Z randomly on the channel particles and returns the particles,
in sequence, to Alice. Alice then measures the observable R on the ancilla and
channel pairs and divides the sequence into two subsequences: the subsequence
S14 for which she obtained the outcomes r1 or r4, and the subsequence S23 for
which she obtained the outcomes r2 or r3. The sequence of operations can be
implemented on a quantum circuit; see [Metzger, 2000].
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To check that the channel particles have not been monitored by Eve, Alice now
publicly announces (broadcasts) the indices of the subsequence S23. As is evident
from Table 1, for this subsequence she can make conditional statements of the
form: ‘For channel particle i, if X was measured, the outcome was 1 (0), and if Z
was measured, the outcome was 0 (1)’, depending on whether the outcome of her
R-measurement was r2 or r3. She publicly announces these statements as well. If
one of these statements, for some index i, does not agree with Bob’s records, Eve
must have monitored the i’th channel particle. (Of course, agreement does not
entail that the particle was not monitored.)

For suppose Eve measures a different spin component observable than Bob on
a channel particle and Alice subsequently obtains one of the eigenvalues r2 or
r3 when she measures R. Bob’s measurement outcome, either 0 or 1, will be
compatible with just one of these eigenvalues, assuming no intervention by Eve.
But after Eve’s measurement, both of these eigenvalues will be possible outcomes
of Alice’s measurement. So Alice’s retrodictions of Bob’s measurement outcomes
for the subsequence S23 will not necessarily correspond to Bob’s records. In fact,
one can show that if Eve measures X or Z randomly on the channel particles,
or if she measures a particular one of the observables X, Y , or Z on the channel
particles (the same observable on each particle), the probability of detection in the
subsequence S23 is 3/8.

In the subsequence S14, the 0 and 1 outcomes of Bob’s measurements correspond
to the outcomes r1 and r4 of Alice’s R-measurements. If, following their public
communication about the subsequence S23, Alice and Bob agree that there has
been no monitoring of the channel particles by Eve, they use the subsequence S14

to define a shared raw key.
Note that even a single disagreement between Alice’s retrodictions and Bob’s

records is sufficient to reveal that the channel particles have been monitored by
Eve. This differs from the eavesdropping test in the Ekert protocol. Note also that
Eve only has access to the channel particles, not the particle pairs. So no strategy
is possible in which Eve replaces all the channel particles with her own particles
and entangles the original channel particles, treated as a single system, with an
ancilla by some unitary transformation, and then delays any measurements until
after Alice and Bob have communicated publicly. There is no way that Eve can
ensure agreement between Alice and Bob without having access to the particle
pairs, or without information about Bob’s measurements.

The key distribution protocol as outlined above solves the key distribution prob-
lem but not the key storage problem. If Bob actually makes the random choices,
measures X or Z, and records definite outcomes for the spin measurements be-
fore Alice measures R, as required by the protocol, Bob’s measurement records
— stored as classical information — could in principle be copied by Eve without
detection. In that case, Eve would know the raw key (which is contained in this
information), following the public communication between Alice and Bob to verify
the integrity of the quantum communication channel.

To solve the key storage problem, the protocol is modified in the following way:
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Instead of actually making the random choice for each channel particle, measuring
one of the spin observables, and recording the outcome of the measurement, Bob
keeps the random choices and the spin measurements ‘at the quantum level’ until
after Alice announces the indices of the subsequence S23 of her R measurements.
To do this, Bob enlarges the Hilbert space by entangling the quantum state of the
channel particle via a unitary transformation with the states of two ancilla particles
that he introduces. One particle is associated with a Hilbert space spanned by two
eigenstates, |dX〉 and |dZ〉, of a choice observable or ‘quantum die’ observable D.
The other particle is associated with a Hilbert space spanned by two eigenstates,
|p↑〉 and |p↓〉, of a pointer observable P . (See §5.2 for a discussion of how to
implement the unitary transformation on the enlarged Hilbert space.)

On the modified protocol (assuming the ability to store entangled states indef-
initely), Alice and Bob share a large number of copies of an entangled 4-particle
state. When they wish to establish a random key of a certain length, Alice mea-
sures R on an appropriate number of particle pairs in her possession and announces
the indices of the subsequence S23. Before Alice announces the indices of the sub-
sequence S23, neither Alice nor Bob have stored any classical information. So there
is nothing for Eve to copy. After Alice announces the indices of the subsequence
S23, Bob measures the observables D and P on his ancillas with these indices and
announces the eigenvalue |p↑〉 or |p↓〉 as the outcome of his X or Z measurement,
depending on the eigenvalue of D. If Alice and Bob decide that there has been no
eavesdropping by Eve, Bob measures C and P on his ancillas in the subsequence
S14. It is easy to see that the ABL-rule applies in this case, just as it applies in the
case where Bob actually makes the random choice and actually records definite
outcomes of his X or Z measurements before Alice measures R. In fact, if the two
cases were not equivalent for Alice — if Alice could tell from her R-measurements
whether Bob had actually made the random choice and actually performed the
spin measurements, or had merely implemented these actions ‘at the quantum
level’ — the difference could be exploited to signal superluminally.

5.2 Bit Commitment

Some History

In a bit commitment protocol, one party, Alice, supplies an encrypted bit to a
second party, Bob. The information available in the encrypted bit should be
insufficient for Bob to ascertain the value of the bit, but sufficient, together with
further information supplied by Alice at a subsequent stage when she is supposed
to reveal the value of the bit, for Bob to be convinced that the protocol does not
allow Alice to cheat by encrypting the bit in a way that leaves her free to reveal
either 0 or 1 at will.

To illustrate the idea, suppose Alice claims the ability to predict the outcomes
of elections. To substantiate her claim without revealing valuable information
(perhaps to a potential employer, Bob) she suggests the following demonstration:
She proposes to record her prediction about whether a certain candidate will win
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or lose by writing a 0 (for ‘lose’) or a 1 (for ‘win’) on a note a month before the
election. She will then lock the note in a safe and hand the safe to Bob, but keep
the key. After the election, she will announce the bit she chose and prove that she
in fact made the commitment at the earlier time by handing Bob the key. Bob
can then open the safe and read the note.

Obviously, the security of this procedure depends on the strength of the safe
walls or the ingenuity of the locksmith. More generally, Alice can send (encrypted)
information to Bob that guarantees the truth of an exclusive classical disjunction
(equivalent to her commitment to a 0 or a 1) only if the information is biased
towards one of the alternative disjuncts (because a classical exclusive disjunction
is true if and only if one of the disjuncts is true and the other false). No principle of
classical mechanics precludes Bob from extracting this information, so the security
of a classical bit commitment protocol can only be a matter of computational
complexity.

The question is whether there exists a quantum analogue of this procedure that
is unconditionally secure: provably secure as a matter of physical law (according
to quantum theory) against cheating by either Alice or Bob. Note that Bob can
cheat if he can obtain some information about Alice’s commitment before she
reveals it (which would give him an advantage in repetitions of the protocol with
Alice). Alice can cheat if she can delay actually making a commitment until the
final stage when she is required to reveal her commitment, or if she can change
her commitment at the final stage with a very low probability of detection.

Bennett and Brassard originally proposed a quantum bit commitment protocol
in [1984]. The basic idea was to associate the 0 and 1 commitments with two
different mixtures represented by the same density operator. As they showed in
the same paper, Alice can cheat by adopting an ‘EPR attack’ or cheating strategy:
she prepares entangled pairs of qubits, keeps one of each pair (the ancilla) and
sends the second qubit (the channel particle) to Bob. In this way she can fake
sending one of two equivalent mixtures to Bob and reveal either bit at will at the
opening stage by effectively steering Bob’s particle into the desired mixture by an
appropriate measurement. Bob cannot detect this cheating strategy.

In a later paper, Brassard, Crépeau, Josza, and Langlois [1993] proposed a
quantum bit commitment protocol that they claimed to be unconditionally secure.
The BCJL scheme was first shown to be insecure by Mayers [1996a]. Subsequently,
Mayers [1996b; 1997] and Lo and Chau [1997; 1998] independently showed that the
insight of Bennett and Brassard in [1984] can be extended to a proof that a gener-
alized version of the EPR cheating strategy can always be applied, if the Hilbert
space is enlarged in a suitable way by introducing additional ancilla particles.

The impossibility of unconditionally secure quantum bit commitment came as
something of a surprise to the community of quantum cryptologists and has pro-
found consequences. Indeed, it would not be an exaggeration to say that the
significance of the quantum bit commitment theorem for our understanding of
quantum mechanics is comparable to Bell’s theorem [Bell, 1964]. Brassard and
Fuchs have speculated ([Brassard, 2000; Fuchs, 1997; Fuchs, 2000; Fuchs and Ja-



602 Jeffrey Bub

cobs, 2002]) that quantum mechanics can be derived from two postulates about
quantum information: the possibility of secure key distribution and the impos-
sibility of secure bit commitment. We shall see in §7 what this means for the
foundations of quantum mechanics.

Perhaps because of the simplicity of the proof and the universality of the claim,
the quantum bit commitment theorem is continually challenged in the literature,
on the basis that the proof does not cover all possible procedures that might be
exploited to implement quantum bit commitment (see, e.g., Yuen [2005]). There
seems to be a general feeling that the theorem is ‘too good to be true’ and that
there must be a loophole.

In fact, there is no loophole. While Kent [1999a; 1999b] has shown how to imple-
ment a secure classical bit commitment protocol by exploiting relativistic signalling
constraints in a timed sequence of communications between verifiably separated
sites for both Alice and Bob, and Hardy and Kent [2004] and Aharonov, Ta-
Shma, Vazirani, and Yao [2005] have investigated the security of ‘cheat-sensitive’
or ‘weak’ versions of quantum bit commitment, these results are not in conflict
with the quantum bit commitment theorem. In a bit commitment protocol as
usually understood, there is a time interval of arbitrary length, where no infor-
mation is exchanged, between the end of the commitment stage of the protocol
and the opening or unveiling stage, when Alice reveals the value of the bit. Kent’s
ingenious scheme effectively involves a third stage between the commitment state
and the unveiling stage, in which information is exchanged between Bob’s sites
and Alice’s sites at regular intervals until one of Alice’s sites chooses to unveil
the originally committed bit. At this moment of unveiling the protocol is not yet
complete, because a further sequence of unveilings is required between Alice’s sites
and corresponding sites of Bob before Bob has all the information required to ver-
ify the commitment at a single site. If a bit commitment protocol is understood
to require an arbitrary amount of free time between the end of the commitment
stage and the opening stage (in which no step is to be executed in the protocol),
then the quantum bit commitment theorem covers protocols that exploit special
relativistic signalling constraints.10

A Key Observation

The crucial insight underlying the proof of the quantum bit commitment theorem
is that any step in a quantum bit commitment protocol that requires Alice or
Bob to make a definite choice (whether to perform one of a number of alternative
measurements, or whether to implement one of a number of alternative unitary
transformations) can always be replaced by an EPR cheating strategy in the gen-
eralized sense, assuming that Alice and Bob are both equipped with quantum
computers. That is, a classical disjunction over definite possibilities — this opera-
tion or that operation — can always be replaced by a quantum entanglement and
a subsequent measurement (perhaps at a more convenient time for the cheater)

10I am indebted to Dominic Mayers for clarifying this point.



Quantum Information and Computation 603

in which one of the possibilities becomes definite. Essentially, the classical dis-
junction is replaced by a quantum disjunction. This cheating strategy cannot be
detected. Similarly, a measurement can be ‘held at the quantum level’ without
detection: instead of performing the measurement and obtaining a definite out-
come as one of a number of possible outcomes, a suitable unitary transformation
can be performed on an enlarged Hilbert space, in which the system is entangled
with a ‘pointer’ ancilla in an appropriate way, and the procedure of obtaining a
definite outcome can be delayed. The key point is the possibility of keeping the
series of transactions between Alice and Bob at the quantum level by enlarging the
Hilbert space, until the final exchange of classical information when Alice reveals
her commitment.

Any quantum bit commitment scheme will involve a series of transactions be-
tween Alice and Bob, where a certain number, n, of quantum systems — the
‘channel particles’ — are passed between them and subjected to various quantum
operations (unitary transformations, measurements, etc.), possibly chosen ran-
domly. These operations can always be replaced, without detection, by entangling
a channel particle with one or more ancilla particles that function as ‘pointer’
particles for measurements or ‘die’ particles for random choices. In effect, this is
the (generalized) EPR cheating strategy.

To illustrate: Suppose, at a certain stage of a quantum bit commitment protocol,
that Bob is required to make a random choice between measuring one of two
observables, X or Y , on each channel particle he receives from Alice. For simplicity,
assume that X and Y each have two eigenvalues, x1, x2 and y1, y2. After recording
the outcome of the measurement, Bob is required to return the channel particle to
Alice. When Alice receives the i’th channel particle she sends Bob the next channel
particle in the sequence. We may suppose that the measurement outcomes that
Bob records form part of the information that enables him to confirm Alice’s
commitment, once she discloses it (together with further information), so he is not
required to report his measurement outcomes to Alice until the final stage of the
protocol when she reveals her commitment.

Instead of following the protocol, Bob can construct a device that entangles the
input state |ψ〉C of a channel particle with the initial states, |d0〉B and |p0〉B , of two
ancilla particles that he introduces, the first of which functions as a ‘quantum die’
for the random choice and the second as a ‘quantum pointer’ for the measurement.
It is assumed that Bob’s ability to construct such a device — in effect, a special
purpose quantum computer — is restricted only by the laws of quantum mechanics.

The entanglement is implemented by a unitary transformation in the following
way:11 Define two unitary transformations, UX and UY , that implement the X
and Y measurements ‘at the quantum level’ on the tensor product of the Hilbert
space of the channel particle, HC , and the Hilbert space of Bob’s pointer ancilla,

11Note that there is no loss of generality in assuming that the channel particle is in a pure state.
If the channel particle is entangled with Alice’s ancillas, the device implements the entanglement
via the transformation I ⊗ · · · , where I is the identity operator in the Hilbert space of Alice’s
ancillas.
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HBP
:

|x1〉C |p0〉B UX−→ |x1〉C |p1〉B
|x2〉C |p0〉B UX−→ |x2〉C |p2〉B(167)

and

|y1〉C |p0〉B UY−→ |y1〉C |p1〉B
|y2〉C ||p0〉B UY−→ |y2〉C |p2〉B(168)

so that

|ψ〉C |p0〉B UX−→ 〈x1|ψ〉|x1〉C |p1〉B + 〈x2|ψ〉|x2〉C |p2〉B(169)

and

|ψ〉C |p0〉B UY−→ 〈y1|ψ〉|y1〉C |p1〉B + 〈y2|ψ〉|y2〉C |p2〉B(170)

The random choice is defined similarly by a unitary transformation V on the
tensor product of the Hilbert space of Bob’s die ancilla, HBD

, and the Hilbert
space HC ⊗HBP

. Suppose |dX〉 and |dY 〉 are two orthogonal states in HBD
and

that |d0〉 = 1√
2
|dX〉 + 1√

2
|dY 〉. Then (suppressing the obvious subscripts) V is

defined by:

|dX〉 ⊗ |ψ〉|p0〉 V−→ |dX〉 ⊗ UX |ψ〉|p0〉
|dY 〉 ⊗ |ψ〉|p0〉 V−→ |dY 〉 ⊗ UY |ψ〉|p0〉(171)

so that

|d0〉 ⊗ |ψ〉|p0〉 V−→
1√
2
|dX〉 ⊗ UX |ψ〉|p0〉+ 1√

2
|dY 〉 ⊗ UY |ψ〉|p0〉(172)

where the tensor product symbol has been introduced selectively to indicate that
Ux and Uy are defined on HC ⊗HBP

.
If Bob were to actually choose the observable X or Y randomly, and actu-

ally perform the measurement and obtain a particular eigenvalue, Alice’s density
operator for the channel particle would be:

1
2
(| 〈x1|ψ〉 |2 |x1〉〈x1|+ | 〈x2|ψ〉 |2 |x2〉〈x2|)

+
1
2
(| 〈y1|ψ〉 |2 |y1〉〈y1|+ | 〈y2|ψ〉 |2 |y2〉〈y2|)(173)

assuming that Alice does not know what observable Bob chose to measure, nor
what outcome he obtained. But this is precisely the same density operator gen-
erated by tracing over Bob’s ancilla particles for the state produced in (172). In
other words, the density operator for the channel particle is the same for Alice,
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whether Bob randomly chooses which observable to measure and actually performs
the measurement, or whether he implements an EPR cheating strategy with his
two ancillas that produces the transition (172) on the enlarged Hilbert space.

If Bob is required to eventually report what measurement he performed and
what outcome he obtained, he can at that stage measure the die ancilla for the
eigenstate |dX〉 or |dY 〉, and then measure the pointer ancilla for the eigenstate
|p1〉 or |p2〉. In effect, if we consider the ensemble of possible outcomes for the
two measurements, Bob will have converted the ‘improper’ mixture generated by
tracing over his ancillas to a ‘proper’ mixture. But the difference between a proper
and improper mixture is undetectable by Alice since she has no access to Bob’s
ancillas, and it is only by measuring the composite system consisting of the channel
particle together with Bob’s ancillas that Alice could ascertain that the channel
particle is entangled with the ancillas.

In fact, if it were possible to distinguish between a proper and improper mixture,
it would be possible to signal superluminally: Alice could know instantaneously
whether or not Bob performed a measurement on his ancillas by monitoring the
channel particles in her possession. Note that it makes no difference whether
Bob or Alice measures first, since the measurements are of observables in different
Hilbert spaces, which therefore commute.

Clearly, a similar argument applies if Bob is required to choose between alter-
native unitary operations at some stage of a bit commitment protocol. Perhaps
less obviously, an EPR cheating strategy is also possible if Bob is required to per-
form a measurement or choose between alternative operations on channel particle
i + 1, conditional on the outcome of a prior measurement on channel particle i,
or conditional on a prior choice of some operation from among a set of alternative
operations. Of course, if Bob is in possession of all the channel particles at the
same time, he can perform an entanglement with ancillas on the entire sequence,
considered as a single composite system. But even if Bob only has access to one
channel particle at a time (which he is required to return to Alice after performing
a measurement or other operation before she sends him the next channel particle),
he can always entangle channel particle i + 1 with the ancillas he used to entangle
channel particle i.

For example, suppose Bob is presented with two channel particles in sequence.
He is supposed to decide randomly whether to measure X or Y on the first particle,
perform the measurement, and return the particle to Alice. After Alice receives
the first particle, she sends Bob the second particle. If Bob measured X on the
first particle and obtained the outcome x1, he is supposed to measure X on the
second particle; if he obtained the outcome x2, he is supposed to measure Y on the
second particle. If he measured Y on the first particle and obtained the outcome
y1, he is supposed to apply the unitary transformation U1 to the second particle;
if he obtained the outcome y2, he is supposed to apply the unitary transformation
U2. After performing the required operation, he is supposed to return the second
particle to Alice.

It would seem at first sight that Bob has to actually perform a measurement
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on the first channel particle and obtain a particular outcome before he can apply
the protocol to the second particle, given that he only has access to one channel
particle at a time, so an EPR cheating strategy is excluded. But this is not so.
Bob’s strategy is the following: He applies the EPR strategy discussed above for
two alternative measurements to the first channel particle. For the second channel
particle, he applies the following unitary transformation on the tensor product
of the Hilbert spaces of his ancillas and the channel particle, where the state of
the second channel particle is denoted by |φ〉, and the state of the pointer ancilla
for the second channel particle is denoted by |q0〉 (a second die particle is not
required):

|dX〉|p1〉|φ〉|q0〉 UC−→ |dX〉|p1〉 ⊗ UX |φ〉|q0〉
|dX〉|p2〉|φ〉|q0〉 UC−→ |dX〉|p2〉 ⊗ UY |φ〉|q0〉
|dY 〉|p1〉|φ〉|q0〉 UC−→ |dY 〉|p1〉 ⊗ U1|φ〉|q0〉
|dY 〉|p2〉|φ〉|q0〉 UC−→ |dY 〉|p2〉 ⊗ U2|φ〉|q0〉(174)

Proof of the Quantum Bit Commitment Theorem

Since an EPR cheating strategy can always be applied without detection, the
proof of the quantum bit commitment theorem assumes that at the end of the
commitment stage the composite system consisting of Alice’s ancillas, the n chan-
nel particles, and Bob’s ancillas will be represented by some composite entangled
state |0〉 or |1〉, depending on Alice’s commitment,12 on a Hilbert space HA⊗HB ,
where HA is the Hilbert space of the particles in Alice’s possession at that stage
(Alice’s ancillas and the channel particles retained by Alice, if any), and HB is
the Hilbert space of the particles in Bob’s possession at that stage (Bob’s ancillas
and the channel particles retained by Bob, if any).

Now, the density operators WB(0) and WB(1), characterizing the information
available to Bob for the two alternative commitments, are obtained by tracing the
states |0〉 and |1〉 over HA. If these density operators are the same, then Bob will
be unable to distinguish the 0-state from the 1-state without further information
from Alice. In this case, the protocol is said to be ‘concealing.’ What the proof
establishes, by an application of the biorthogonal decomposition theorem, is that if
WB(0) = WB(1) then there exists a unitary transformation in HA that will trans-
form |0〉 to |1〉. That is, if the protocol is ‘concealing’ then it cannot be ‘binding’
on Alice: she can always follow the protocol (with appropriate substitutions of an
EPR strategy) to establish the state |0〉. At the final stage when she is required
to reveal her commitment, she can choose to reveal the alternative commitment,
depending on circumstances, by applying a suitable unitary transformation in her
own Hilbert space to transform |0〉 to |1〉 without Bob being able to detect this

12More precisely, depending on whether Alice intends to reveal 0 or 1 — since we are assuming
that Alice will apply an EPR cheating strategy whenever this is relevant.
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move. So either Bob can cheat by obtaining some information about Alice’s choice
before she reveals her commitment, or Alice can cheat.

The essentials of the proof can be sketched as follows: In the Schmidt decom-
position, the states |0〉 and |1〉 can be expressed as:

|0〉 =
∑
i

√
pi|ai〉|bi〉

|1〉 =
∑
j

√
p′j |a′

j〉|b′j〉(175)

where {|ai〉}, {|a′
j〉} are two orthonormal sets of states in HA, and {|bi〉}, {|b′j〉}

are two orthonormal sets in HB .
The density operators WB(0) and WB(1) are defined by:

WB(0) = TrA|0〉〈0| =
∑
i

pi|bi〉〈bi|

WB(1) = TrA|1〉〈1| =
∑
j

p′j |b′j〉〈b′j |(176)

Bob can’t cheat if and only if WB(0) = WB(1). Now, by the spectral theorem,
the decompositions:

WB(0) =
∑
i

pi|bi〉〈bi|

WB(1) =
∑
j

p′j |b′j〉〈b′j |

are unique for the nondegenerate case, where the pi are all distinct and the p′j are
all distinct. The condition WB(0) = WB(1) implies that for all k:

pi = p′i
|bi〉 = |b′i〉(177)

and so

|0〉 =
∑
i

√
pi|ai〉|bi〉

|1〉 =
∑
i

√
pi|a′

i〉|bi〉(178)

It follows that there exists a unitary transformation U ∈ HA such that

{|ak〉} U−→ {|a′
k〉}(179)

and hence

|0〉 U−→ |1〉(180)
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As we shall see in §5.2, instead of transforming |0〉 to |1〉 by a unitary transforma-
tion, Alice could achieve the same effect by preparing the state |0〉 and measuring
in either of two bases, depending on whether she intends to reveal 0 or 1.

The degenerate case can be handled in a similar way. Suppose that p1 = p2 =
p′1 = p′2 = p. Then |b1〉, |b2〉 and |b′1〉, |b′2〉 span the same subspace H in HB , and
hence (assuming the coefficients are distinct for k > 2):

|0〉 =
√

p(|a1〉|b1〉+ |a2〉|b2〉) +
∑
k>2

√
pk|ak〉|bk〉

|1〉 =
√

p(|a′
1〉|b′1〉+ |a′

2〉|b′2〉) +
∑
k>2

√
pk|a′

k〉|bk〉

=
√

p(|a′′
1〉|b1〉+ |a′′

2〉|b2〉) +
∑
k>2

√
pk|a′

k〉|bk〉(181)

where |a′′
1〉, |a′′

2〉 are orthonormal states spanning H. Since {|a′′
1〉, |a′′

2〉, |a3〉, . . .}
is an orthonormal set in HA, there exists a unitary transformation in HA that
transforms {|ak〉; k = 1, 2, 3, . . .} to {|a′′

1〉, |a′′
2〉, |a′

3〉, . . . }, and hence |0〉 to |1〉.
The extension of the theorem to the nonideal case, where WB(0) ≈ WB(1),

so that there is a small probability that Bob could distinguish the alternative
commitments, shows that Alice has a correspondingly large probability of cheating
successfully: there exists a unitary transformation U in HA that will transform
WB(0) sufficiently close to WB(1)so that Alice can reveal whichever commitment
she chooses, with a corresponding small probability of Bob being able to detect
this move.

How the Theorem Works: An Example

The following example by Asher Peres (private communication) is a beautiful
illustration of how the theorem works. (My analysis of the example owes much to
correspondence with Adrian Kent and Dominic Mayers.)

Suppose Alice is required to send Bob a channel particle C in an equal weight
mixture of the qubit states:

|c0〉 = |0〉(182)

|c2〉 = −1
2
|0〉+

√
3

2
|1〉(183)

|c4〉 = −1
2
|0〉 −

√
3

2
|1〉(184)

if she commits to 0, and an equal weight mixture of the qubit states:

|c1〉 = |1〉(185)

|c3〉 =
√

3
2
|0〉 − 1

2
|1〉(186)

|c5〉 = −
√

3
2
|0〉 − 1

2
|1〉(187)
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if she commits to 1. Note that these two mixtures have the same density operator:

ρ0 = ρ1 = I/2(188)

Suppose Alice tries to implement an EPR cheating strategy by preparing the
entangled state of a system AC:

|0〉 =
1√
3
(|a0〉|c0〉+ |a2〉|c2〉+ |a4〉|c4〉)(189)

where {|a0〉, |a2〉, |a4〉} is an orthonormal basis in the 3-dimensional Hilbert space
HA of a suitable ancilla system A. If Alice could transform the state |0〉 to the
state:

|1〉 =
1√
3
(|a1〉|c1〉+ |a3〉|c3〉+ |a5〉|c5〉)(190)

where {|a1〉, |a3〉, |a5〉} is another orthonormal basis in HA, by a local unitary
transformation in HA, she could delay her commitment to the opening stage.
If, at that stage, she decides to commit to 0, she measures the observable with
eigenstates {|a0〉, |a2〉, |a4〉}. If she decides to commit to 1, she performs the local
unitary transformation taking the state |0〉 to the state |1〉 and measures the
observable with eigenstates {|a1〉, |a3〉, |a5〉}.

Now, |0〉 can be expressed as:

|0〉 =
1√
3

(
|a0〉 |c3〉 − |c5〉√

3
+ |a2〉 |c1〉 − |c3〉√

3
+ |a4〉 |c5〉 − |c1〉√

3

)
(191)

=
1√
3

( |a2〉 − |a4〉√
3

|c1〉+ |a0〉 − |a2〉√
3

|c3〉+ |a4〉 − |a0〉√
3

|c5〉
)

(192)

In this representation of |0〉, the factor states |a2〉−|a4〉√
3

, |a0〉−|a2〉√
3

, |a4〉−|a0〉√
3

in HA
are not orthogonal — in fact, they are coplanar:

|a0〉 − |a2〉 = −(|a2〉 − |a4〉)− (|a4〉 − |a0〉(193)

So it seems that there cannot be a suitable unitary transformation that will map
|0〉 to |1〉 and the EPR strategy is blocked!

Of course, this is not the case. To see that there is such a unitary transformation,
note that |0〉 and |1〉 can be expressed in the Schmidt decomposition as:

|0〉 =
1√
2

(
2|a0〉 − |a2〉 − |a4〉√

6
|c0〉+ |a2〉 − |a4〉√

2
|c1〉
)

(194)

|1〉 =
1√
2

( |a3〉 − |a5〉√
2

|c0〉+ −2|a1〉+ |a3〉+ |a5〉√
6

|c1〉
)

(195)

Clearly, now, there exists a unitary transformation U in HA such that:

|0〉 U−→ |1〉(196)
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It follows that:

{|a0〉, |a2〉, |a4〉} U−→ {|a′
0〉, |a′

2〉, |a′
4〉}(197)

where {|a′
0〉, |a′

2〉, |a′
4〉} is a basis in HA, and so

|1〉 =
1√
3
(|a′

0〉|c0〉+ |a′
2〉|c2〉+ |a′

4〉|c4〉)(198)

=
1√
3
(|a1〉|c1〉+ |a3〉|c3〉+ |a5〉|c5〉)(199)

So Alice could implement the EPR cheating strategy by preparing the state
|1〉 and measuring in the basis {|a′

0〉, |a′
2〉, |a′

4〉} for the 0-commitment, or in the
basis {|a1〉, |a3〉, |a5〉} for the 1-commitment. Equivalently, of course, she could
prepare the state |0〉 and measure in two different bases, since the unitary trans-
formation that takes |1〉 to |0〉 also takes the basis {|a1〉, |a3〉, |a5〉} to the basis
{|a′′

1〉, |a′′
3〉, |a′′

5〉}, and so:

|0〉 =
1√
3
(|a0〉|c0〉+ |a2〉|c2〉+ |a4〉|c4〉)(200)

=
1√
3
(|a′′

1〉|c1〉+ |a′′
3〉|c3〉+ |a′′

5〉|c5〉)(201)

A calculation shows that:

|a′′
1〉 =

1
3

(
|a0〉+ (1 +

√
3)|a2〉+ (1−

√
3)|a4〉

)
(202)

|a′′
3〉 =

1
3

(
(1 +

√
3)|a0〉+ (1−

√
3)|a2〉+ |a4〉

)
(203)

|a′′
5〉 =

1
3

(
1−
√

3)|a0〉+ |a2〉+ (1 +
√

3)|a4〉
)

(204)

In effect, if Alice prepares the entangled state |0〉 and measures the ancilla A in the
{|a0〉, |a2〉, |a4〉} basis, she steers the channel particle into a mixture of nonorthogo-
nal states {|c0〉, |c2〉, |c4〉}. If she measures in the {|a′′

1〉, |a′′
3〉, |a′′

5〉} basis, she steers
the channel particle into a mixture of nonorthogonal states {|c1〉, |c3〉, |c5〉}.

It follows that Alice can implement the EPR cheating strategy without perform-
ing any unitary transformation — she simply entangles the channel particle with
a suitable ancilla particle and performs one of two measurements at the opening
stage, depending on her commitment. This shows that the unitary transformation
required by the theorem is not in fact required. If a cheating strategy is possible
in which Alice, at the opening stage, either makes a measurement on an entan-
gled state for the 0-commitment, or transforms this entangled state to a different
state by a local unitary transformation in her Hilbert space and then makes a
measurement on the transformed state for the 1-commitment, then an equally
good cheating strategy is available in which Alice prepares one entangled state for
both commitments, and measures in two alternative bases at the opening stage,
depending on her commitment.
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A Final Worry Laid to Rest

The heart of the mathematical proof is the Schmidt decomposition theorem. But
the essential conceptual insight is the possibility of enlarging the Hilbert space and
implementing an EPR strategy without detection.

This raises the following question: Suppose Bob cannot cheat because WB(0) =
WB(1), so by the theorem there exists a unitary transformation U in HA that will
transform |0〉 to |1〉. Could there be a protocol in which Alice also cannot cheat
because, although there exists a suitable unitary transformation U , she cannot
know what unitary transformation to apply? This is indeed the case, but only
if U depends on Bob’s operations, which are unknown to Alice. But then Bob
would have to actually make a definite choice or obtain a definite outcome in a
measurement, and he could always avoid doing so without detection by applying
an EPR strategy.

This raises a further question: How do we know that following an EPR strategy
is never disadvantageous to the cheater? If so, Bob might choose to avoid an EPR
strategy in a certain situation because it would be disadvantageous to him. Could
there be a bit commitment protocol where the application of an EPR strategy
by Bob at a certain stage of the protocol would give Alice the advantage, rather
than Bob, while conforming to the protocol would ensure that neither party could
cheat? If there were such a protocol, then Bob would, in effect, be forced to
conform to the protocol and avoid the EPR strategy, and unconditionally secure
bit commitment would be possible.

In fact, the impossibility of such a protocol follows from the theorem (see [Bub,
2001a]. Suppose there were such a protocol. That is, suppose that if Bob applies
an EPR strategy then WB(0) = WB(1), so by the theorem there exists a unitary
transformation U in Alice’s Hilbert space that will transform |0〉 to |1〉. Alice
must know this U because it is uniquely determined by Bob’s deviation from the
protocol according to an EPR strategy that keeps all disjunctions at the quantum
level as linear superpositions. Suppose also that if, instead, Bob is honest and
follows the protocol (so that there is a definite choice for every disjunction over
possible operations or possible measurement outcomes), then WB(0) = WB(1), but
the unitary transformation in Alice’s Hilbert space that allows her to transform
|0〉 to |1〉 depends on Bob’s choices or measurement outcomes, which are unknown
to Alice.

The point to note is that the information available in Alice’s Hilbert space must
be the same whether Bob follows the protocol and makes determinate choices and
obtains determinate measurement outcomes before Alice applies the unitary trans-
formation U that transforms |0〉 to |1〉, or whether he deviates from the protocol via
an EPR strategy in which he implements corresponding entanglements with his an-
cillas to keep choices and measurement outcomes at the quantum level before Alice
applies the transformation U , and only makes these choices and measurement out-
comes definite at the final stage of the protocol by measuring his ancillas. There
can be no difference for Alice because Bob’s measurements on his ancillas and



612 Jeffrey Bub

any measurements or operations that Alice might perform take place in different
Hilbert spaces, so the operations commute. If Alice’s density operator (obtained
by tracing over Bob’s ancillas), which characterizes the statistics of measurements
that Alice can perform in her part of the universe, were different depending on
whether or not Bob actually carried out the required measurements, as opposed
to keeping the alternatives at the quantum level by implementing corresponding
entanglements with ancillas, then it would be possible to use this difference to
signal superluminally. Actual measurements by Bob on his ancillas that selected
alternatives in the entanglements as determinate would instantaneously alter the
information available in Alice’s part of the universe.

It follows that in the hypothetical bit commitment protocol we are considering,
the unitary transformation U in Alice’s Hilbert space that transforms |0〉 to |1〉
must be the same transformation in the honest scenario as in the cheating scenario.
But we are assuming that the transformation in the honest scenario is unknown
to Alice and depends on Bob’s measurement outcomes, while the transformation
in the cheating scenario is unique and known to Alice. So there can be no such
protocol: the deviation from the protocol by an EPR strategy can never place Bob
in a worse position than following the protocol honestly.

The argument can be put formally in terms of the theorem as follows: The
cheating scenario produces one of two alternative pure states |0〉c or |1〉c in HA ⊗
HB (‘c’ for ‘cheating strategy). Since the reduced density operators in HB :

W
(c)
B (0) = TrA|0〉〈0|c

W
(c)
B (1) = TrA|1〉〈1|c(205)

are required by assumption to be the same:

W
(c)
B (0) = W

(c)
B (1)(206)

the states |0〉c and |1〉c can be expressed in biorthogonal decomposition as:

|0〉c =
∑
i

√
pi|ai〉〈bi|

|1〉c =
∑
i

√
pi|a′

i〉〈bi|(207)

where the reduced density operators in HA:

W
(c)
A (0) = TrB |0〉〈0|c =

∑
i

pi|ai〉〈ai|

W
(c)
A (1) = TrB |1〉〈1|c =

∑
i

pi|a′
i〉〈a′

i|(208)

are different:

W
(c)
A (0) �= W

(c)
A (1)(209)
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It follows that there exists a unitary operator Uc ∈ HA defined by the spectral
representations of W

(c)
A (0) and W

(c)
A (1):

{|ai〉} Uc−→ {|a′
i〉}(210)

such that:

|0〉c Uc−→ |1〉c(211)

The honest scenario produces one of two alternative pure states |0〉h and |1〉h in
HA ⊗HB (‘h’ for ‘honest’), where the pair {|0〉h, |1〉h} depends on Bob’s choices
and the outcomes of his measurements.

By assumption, as in the cheating scenario, the reduced density operators
W

(h)
B (0) and W

(h)
B (1) in HB are the same:

W
(h)
B (0) = W

(h)
B (1)(212)

which entails the existence of a unitary operator Uh ∈ HA such that:

|0〉h Uh−→ |1〉h(213)

where Uh depends on Bob’s choices and measurement outcomes.
Now, the difference between the honest scenario and the cheating scenario is

undetectable in HA, which means that the reduced density operators in HA are
the same in the honest scenario as in the cheating scenario:

W
(h)
A (0) = W

(c)
A (0)

W
(h)
A (1) = W

(c)
A (1)(214)

Since Uh is defined by the spectral representations of W
(h)
A (0) and W

(h)
A (1), it

follows that Uh = Uc. But we are assuming that Uh depends on Bob’s choices
and measurement outcomes, while Uc is uniquely defined by Bob’s EPR strategy,
in which there are no determinate choices or measurement outcomes. Conclusion:
there can be no bit commitment protocol in which neither Alice nor Bob can cheat
if Bob honestly follows the protocol, but Alice can cheat if Bob deviates from the
protocol via an EPR strategy. If neither Bob nor Alice can cheat in the honest
scenario, then Bob and not Alice must be able to cheat in the cheating scenario.

A similar argument rules out a protocol in which neither party can cheat if
Bob is honest (as above), but if Bob follows an EPR strategy, then WB(0) ≈
WB(1), so Bob has some probability of cheating successfully, but Alice has a greater
probability of cheating successfully than Bob. Again, the unitary transformation
Uc that would allow Alice to cheat with a certain probability of success if Bob
followed an EPR strategy would also have to allow Alice to cheat successfully if
Bob were honest. But the supposition is that Alice cannot cheat if Bob is honest,
because the unitary transformation Uh in that case depends on Bob’s choices and
measurement outcomes, which are unknown to Alice. It follows that there can be
no such protocol.

So there is no loophole in the proof of the theorem. Unconditionally secure
quantum bit commitment (in the sense of the theorem) really is impossible.
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6 QUANTUM COMPUTATION

6.1 The Church-Turing Thesis and Computational Complexity

The classical theory of computation concerns the question of what can be com-
puted, and how efficiently.

Various formal notions of computability by Alonzo Church, Kurt Gödel, and
others can all be shown to be equivalent to Alan Turing’s notion of computabil-
ity by a Turing machine (see, e.g., [Lewis and Papadimitriou, 1981]). A Turing
machine is an abstract computational device that can be in one of a finite set
of possible states. It has a potentially infinite tape of consecutive cells to store
information (0, 1, or blank in each cell) and a movable tape head that reads the
information in a cell. Depending on the symbol in a cell and the state of the
machine, the tape overwrites the symbol, changes the state, and moves one cell
to the right or the left until it finally halts at the completion of the computation.
A program for a Turing machine T (e.g., a program that executes a particular
algorithm for finding the prime factors of an integer) is a finite string of symbols
— which can be expressed as a binary number b(T ) — indicating, for each state
and each symbol, a new state, new symbol, and head displacement. Turing showed
that there exists a universal Turing machine U that can simulate the program of
any Turing machine T with at most a polynomial slow-down, i.e., if we initialize
U with b(T ) and the input to T , then U performs the same computation as T ,
where the number of steps taken by U to simulate each step of T is a polynomial
function of b(T ). The Church-Turing thesis is the proposal to identify the class of
computable functions with the class of functions computable by a universal Turing
machine. Equivalently, one could formulate the Church-Turing thesis in terms of
decision problems, which have yes-or-no answers (e.g., the problem of determining
whether a given number is a prime number).

Intuitively, some computations are harder than others, and some algorithms
take more time than others. The computational complexity of an algorithm is
measured by the number of steps required by a Turing machine to run through
the algorithm. A decision problem is said to be in complexity class P, hence easy
or tractable if there exists an algorithm for solving the problem in polynomial time,
i.e., in a number of steps that is a polynomial function of the size n of the input
(the number of bits required to store the input). A problem is said to be hard
or intractable if there does not exist a polynomial-time algorithm for solving the
problem. A problem is in complexity class EXP if the most efficient algorithm
requires a number of steps that is an exponential function of the size n of the
input. The number of steps here refers to the worst-case running time, τ , which
is of the order O(nk) for a polynomial-time algorithm and of the order O(2n) for
an exponential-time algorithm.

Note that an exponential-time algorithm could be more efficient than a polynomial-
time algorithm for some range of input sizes, so the above terminology should be
understood with caution. Consider the following example (taken from [Barenco,



Quantum Information and Computation 615

1998, 145]): τP (n) = 10−23n1000 + 1023/n ≈ O(n1000) because, for sufficiently
large n, the polynomial term dominates (i.e., τP (n) < cn1000 for a fixed factor c),
and τE(n) = 1023n1000 + 10−232n ≈ O(2n) because, for sufficiently large n, the
exponential term dominates (i.e., τE(n) < c2n for a fixed factor c). But for small
enough values of n, τE(n) < τP (n).

A Turing machine as defined above is a deterministic machine. A nondeter-
ministic or probabilistic Turing machine makes a random choice between multiple
transitions (to a new symbol, new state, and head displacement) for each symbol
and each state. For each sequence of choices, the sequence of transitions corre-
sponds to a sequence of steps executed by a deterministic Turing machine. If any
of these machines halts, the computation is regarded as completed. Evidently,
a nondeterministic Turing machine cannot compute a function that is not com-
putable by a deterministic Turing machine, but it is believed (but not proved)
that certain problems can be solved more efficiently by nondeterministic Turing
machines than by any deterministic Turing machine. The complexity class NP is
the class of problems that can be solved in polynomial time by a nondeterministic
Turing machine. This is equivalent to the class of problems for which proposed
solutions can be verified in polynomial time by a deterministic Turing machine.
For example, it is believed (but not proved) that the problem of factoring an inte-
ger into its prime factors is a ‘hard’ problem: there is no known polynomial-time
algorithm for this problem. However, the problem of checking whether a candi-
date factor of an integer is indeed a factor can be solved in polynomial time, so
factorizability is an NP problem.

Clearly P ⊆ NP, but it is an open problem in complexity theory whether P
= NP. An NP problem is said to be NP-complete if every NP problem can be
shown to have a solution with a number of steps that is a polynomial function of
the number of steps required to solve the NP-complete problem. So if an NP-
complete problem can be solved in polynomial time, then all NP problems can
be solved in polynomial time, and P = NP. The problem of determining whether
a Boolean function f{0, 1}n → {0, 1} is satisfiable (i.e., whether there is a set
of input values for which the function takes the value 1, or equivalently whether
there is an assignment of truth values to the atomic sentences of a compound
sentence of Boolean logic under which the compound sentence comes out true) is
an NP-complete problem. Factorizability is an NP problem that is not known to
be NP-complete.

Since a Turing machine can simulate any classical computing device with at
most a polynomial slow-down, the complexity classes are the same for any model
of computation. For example, a circuit computer computes the value of a function
by transforming data stored in an input register, representing the input to the
function, via Boolean circuits constructed of elementary Boolean gates connected
by wires, to data in an output register representing the value of the function
computed. The elementary Boolean gates are 1-bit gates (such as the NOT gate,
which transforms 0 to 1, and conversely) and 2-bit gates (such as the AND gate,
which takes two input bits to 1 if and only if they are both 1, otherwise to 0),
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and it can be shown that a combination of such gates forms a ‘universal set’ that
suffices for any transformation of n bits. In fact, it turns out that one of the
sixteen possible 2-bit Boolean gates, the NAND gate (or NOT AND gate), which
takes two input bits to 0 of and only if they are both 1, forms a universal set by
itself.

In a circuit model of a quantum computer, the registers store qubits, which
are then manipulated by elementary unitary gates. It can be shown (see [Nielsen
and Chuang, 2000, 188]) that a set of single-qubit and two-qubit unitary gates —
the CNOT gate, the Hadamard gate, the phase gate, and the π/8 gate — forms
a universal set, in the sense that any unitary transformation of n qubits can be
approximated to arbitrary accuracy by a quantum circuit consisting of these gates
connected in some combination. The CNOT gate (‘C’ for ‘controlled) has two
input qubits, a ‘control’ qubit and a ‘target’ qubit. The gate functions so as to
flip the target qubit if and only if the control qubit is |1〉. The remaining three
gates are single-qubit gates. The Hadamard gate transforms |0〉 to (|0〉+ |1〉)/√2
and |1〉 to (|0〉− |1〉)/√2 and is sometimes referred to as the ‘square root of NOT’
gate because two successive applications transforms |0〉 to |1〉, and conversely. The
phase gate leaves |0〉 unchanged and transforms |1〉 to i|1〉. The π/8 gate leaves |0〉
unchanged and transforms |1〉 to eiπ/4|1〉. (See [Nielsen and Chuang, 2000, 174]
for a discussion and why the π/8 gate is so named.)

There are other models of quantum computation. In the ‘cluster state’ or ‘one-
way’ quantum computer of Raussendorf and Briegel [2001b; 2001a], a fixed multi-
qubit entangled state (called a ‘cluster state’), independent of the computation,
is prepared. Then a sequence of single-qubit measurements is performed on this
state, where the choice of what observables to measure depends on the outcomes
of the previous measurements. No unitary transformations are involved. Remark-
ably, it can be shown that any quantum circuit of unitary gates and measurements
can be simulated by a cluster state computer with similar resources of qubits and
time (see [Jozsa, 2005; Nielsen, 2003; Nielsen, 2005]).

The interesting question is whether a quantum computer can perform compu-
tational tasks that are not possible for a Turing machine, or perform such tasks
more efficiently than any Turing machine. Since a Turing machine is defined by
its program, and a program can be specified by a finite set of symbols, there are
only countably many Turing machines. There are uncountably many functions on
the natural numbers, so there are uncountably many uncomputable functions, i.e.,
functions that are not computable by any Turing machine. A quantum computer
cannot compute a function that is not Turing-computable, because a Turing ma-
chine can simulate (albeit inefficiently, with an exponential slow-down [Feynman,
1982]) the dynamical evolution of any system, classical or quantum, with arbi-
trary accuracy. But there are computational tasks that a quantum computer can
perform by exploiting entanglement that are impossible for any Turing machine.
Recall the discussion of Bell’s counterargument to the EPR argument in §3.1: a
quantum computer, but no classical computer, can perform the task of rapidly
producing pairs of values (0 or 1) for pairs of input angles at different locations,
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with correlations that violate Bell’s inequality, where the response time is less than
the time taken by light to travel between the locations.

The current interest in quantum computers concerns the question of whether
a quantum computer can compute certain Turing-computable functions more ef-
ficiently than any Turing machine. In the following section, I discuss quantum
algorithms that achieve an exponential speed-up over any classical algorithm, or
an exponential speed-up over any known classical algorithm. The most spectacu-
lar of these is Shor’s factorization algorithm, and a related algorithm for solving
the discrete log problem.13

The factorization algorithm has an important practical application to cryptog-
raphy. Public-key distribution protocols such as RSA [Rivest et al., 1978] (widely
used in commercial transactions over the internet, transactions between banks
and financial institutions, etc.) rely on factoring being a ‘hard’ problem. (Preskill
[2005] notes that currently the 65-digit factors of a 130-digit integer can be found
in about a month using a network of hundreds of work stations implementing
the best known classical factoring algorithm (the ‘number sieve algorithm’). He
estimates that factoring a 400-digit integer would take about 1010 years, which
is the age of the universe.) To see the idea behind the RSA protocol, suppose
Alice wishes to send a secret message to Bob. Bob’s public key consists of two
large integers, s and c. Alice encrypts the message m (in the form of a binary
number) as e = ms mod c and sends the encrypted message to Bob. Bob decrypts
the message as et mod c where t is an integer known only to Bob. The integer t
for which m = et mod c can easily be determined from s and the factors of c, but
since c = pq is the product of two large prime numbers known only to Bob, an
eavesdropper, Eve, can read the message only if she can factor c into its prime
factors. The cleverness of the scheme resides in the fact that no secret key needs
to be distributed between Alice and Bob: Bob’s key {s, c} is public and allows
anyone to send encrypted messages to Bob. If a quantum computer could be con-
structed that implemented Shor’s algorithm, key distribution protocols that rely
on the difficulty of factoring very large numbers would be insecure.

6.2 Quantum Algorithms

In the following three sections, I look at the information-processing involved in
Deutsch’s XOR algorithm [1985], Simon’s period-finding algorithm [1994; 1997],
and Shor’s factorization algorithm [1994; 1997] in terms of the difference between
the Boolean logic underlying a classical computation and the non-Boolean logic
represented by the projective geometry of Hilbert space, in which the subspace
structure of Hilbert space replaces the set-theoretic structure of classical logic.
The three algorithms all turn out to involve a similar geometric formulation.

Basically, all three algorithms involve the determination of a global property of
a function, i.e., a disjunctive property. The disjunction is represented as a sub-

13The discrete log of x with respect to a given prime integer p and an integer q coprime to p
is the integer r such that qr = x mod p. See [Nielsen and Chuang, 2000, 238] for a discussion.
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space in an appropriate Hilbert space, and alternative possible disjunctions turn
out to be represented as orthogonal subspaces, except for intersections or overlaps.
The true disjunction is determined as the subspace containing the state vector via
a measurement. The algorithm generally has to be run several times because the
state might be found in the overlap region. The essential feature of these quan-
tum computations is that the true disjunction is distinguished from alternative
disjunctions without determining the truth values of the disjuncts. In a classi-
cal computation, distinguishing the true disjunction would be impossible without
the prior determination of the truth values of the disjuncts. More generally, a
quantum computer computes a global property of a function without computing
information that is redundant quantum mechanically, but essential for a classical
computation of the global property.

There are other quantum algorithms besides these three, e.g., Grover’s sorting
algorithm [1997] which achieves a quadratic speed-up over any classical algorithm.
For a discussion, see [Nielsen and Chuang, 2000], [Jozsa, 1999].

Deutsch’s XOR Algorithm and the Deutsch-Jozsa Algorithm

Let B = {0, 1} be a Boolean algebra (or the additive group of integers mod 2). In
Deutsch’s XOR problem [1985], we are given a ‘black box’ or oracle that computes
a function f : B → B and we are required to determine whether the function is
‘constant’ (takes the same value for both inputs) or ‘’balanced’ (takes a different
value for each input). Classically, the only way to do this would be to consult the
oracle twice, for the input values 0 and 1, and compare the outputs.

In a quantum computation of the Boolean function, a unitary transformation
Uf : |x〉|y〉 → |x〉|y⊕f(x)〉 corresponding to the ‘black box’ correlates input values
with corresponding output values.14 The computation proceeds as follows: The
input and output registers are 1-qubit registers initialized to the state |0〉|0〉 in
a standard basis. A Hadamard transformation is applied to the input register,
yielding a linear superposition of states corresponding to the two possible input
values 0 and 1, and the transformation Uf is then applied to both registers, yielding
the transitions:

|0〉|0〉 H→ 1√
2
(|0〉+ |1〉)|0〉(215)

Uf→ 1√
2
(|0〉|f(0)〉+ |1〉|f(1)〉)(216)

If the function is constant, the final composite state of both registers is one of

14Note that two quantum registers are required to compute functions that are not 1-1 by
a unitary transformation. Different input values, x and y, to a function f are represented by
orthogonal states |x〉, |y〉. So if f(x) = f(y) for some x �= y, the transformation Wf : |x〉 → |f(x)〉
could not be unitary, because the orthogonal states |x〉, |y〉 would have to be mapped onto the
same state by Wf . The ability of unitary transformations, which are reversible, to compute
irreversible functions is achieved by keeping a record of the input for each output value of the
function.
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the two orthogonal states:

|c1〉 =
1√
2
(|0〉|0〉+ |1〉|0〉)(217)

|c2〉 =
1√
2
(|0〉|1〉+ |1〉|1〉)(218)

If the function is balanced, the final composite state is one of the two orthogonal
states:

|b1〉 =
1√
2
(|0〉|0〉+ |1〉|1〉)(219)

|b2〉 =
1√
2
(|0〉|1〉+ |1〉|0〉)(220)

The states |c1〉, |c2〉 and |b1〉, |b2〉 span two planes Pc, Pb in H2⊗H2, represented
by the projection operators:

Pc = P|c1〉 + P|c2〉(221)
Pb = P|b1〉 + P|b2〉(222)

These planes are orthogonal, except for an intersection, so their projection op-
erators commute. The intersection is the line (ray) spanned by the vector15:

1
2
(|00〉+ |01〉+ |10〉+ |11〉) =

1√
2
(|c1〉+ |c2〉) =

1√
2
(|b1〉+ |b2〉)(223)

In the ‘prime’ basis spanned by the states |0′〉 = H|0〉, |1′〉 = H|1〉 the inter-
section is the state |0′〉|0′〉, the ‘constant’ plane is spanned by |0′〉|0′〉, |0′〉|1′〉, and
the ‘balanced’ plane is spanned by |0′〉|0′〉, |1′〉|1′〉. Note that:

|0′〉|1′〉 =
1√
2
(|c1〉 − |c2〉)(224)

|1′〉|1′〉 =
1√
2
(|b1〉 − |b2〉)(225)

In the usual formulation of the algorithm, to decide whether the function f is
constant or balanced we measure the output register in the prime basis. If the
outcome is 0′ (which is obtained with probability 1/2, whether the state ends
up in the constant plane or the balanced plane), the computation is inconclusive,
yielding no information about the function f . If the outcome is 1′, then we measure
the input register. If the outcome of the measurement on the input register is 0′,
the function is constant; if it is 1′, the function is balanced.

Alternatively — and this will be relevant for the comparison with Simon’s algo-
rithm and Shor’s algorithm — we could measure the observable with eigenstates
|0′0′〉, |0′1′〉, |1′0′〉, |1′1′〉. The final state is in the 3-dimensional subspace or-
thogonal to the vector |1′0′〉, either in the constant plane or the balanced plane.

15Here |00〉 = |0〉|0〉, etc.
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If the state is in the constant plane, we will either obtain the outcome 0′0′ with
probability 1/2 (since the final state is at an angle π/4 to |0′0′〉), in which case the
computation is inconclusive, or the outcome 0′1′ with probability 1/2. If the state
is in the balanced plane, we will again obtain the outcome 0′0′ with probability
1/2, in which case the computation is inconclusive, or the outcome 1′1′ with prob-
ability 1/2. So in either case, with probability 1/2, we can distinguish in one run
of the algorithm between the two quantum disjunctions ‘constant’ and ‘balanced’
represented by the planes:

Pc = P|0′0′〉 ∨ P|0′1′〉(226)
Pb = P|0′0′〉 ∨ P|1′1′〉(227)

without finding out the truth values of the disjuncts in the computation (i.e.,
whether in the ‘constant’ case the function maps 0 to 0 and 1 to 0 or whether
the function maps 0 to 1 and 1 to 1, and similarly in the ‘balanced’ case). Note
that we could also apply a Hadamard transformation to the final states of both
registers and measure in the computational basis, since |0′0′〉 H−→ |00〉, etc.

Deutsch’s XOR algorithm was the first quantum algorithm with a demonstrated
speed-up over any classical algorithm performing the same computational task.
However, the algorithm has an even probability of failing, so the improvement in
efficiency over a classical computation is only achieved if the algorithm succeeds,
and even then is rather modest: one run of the quantum algorithm versus two runs
of a classical algorithm. The following variation of Deutsch’s algorithm avoids this
feature [Cleve et al., 1998].

We begin by initializing the two registers to |0〉 and |1〉, respectively (instead
of to |0〉 and |0〉) and apply a Hadamard transformation to both registers, which
yields the transition:

|0〉|1〉 H→ |0〉+ |1〉√
2
|0〉 − |1〉√

2
(228)

Since

Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉(229)

it follows that

Uf |x〉 |0〉 − |1〉√
2

=



|x〉 |0〉−|1〉√

2
if f(x) = 0

−|x〉 |0〉−|1〉√
2

if f(x) = 1
(230)

which can be expressed as

Uf |x〉 |0〉 − |1〉√
2

= (−1)f(x)|x〉 |0〉 − |1〉√
2

(231)
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Notice that the value of the function now appears as a phase of the final state of
the input register, a feature referred to as ‘phase kickback.’ For the input state
1/
√

2(|0〉+ |1〉), we have:

Uf
|0〉+ |1〉√

2
|0〉 − |1〉√

2
=

(−1)f(0)|0〉+ (−1)f(1)|1〉√
2

|0〉 − |1〉√
2

(232)

which can be expressed as:

Uf
|0〉+ |1〉√

2
|0〉 − |1〉√

2
=



± |0〉+|1〉√

2

|0〉−|1〉√
2

= ±|0′〉|1′〉 if f(0) = f(1)

± |0〉−|1〉√
2

|0〉−|1〉√
2

= ±|1′〉|1′〉 if f(0) �= f(1)
(233)

Instead of the final state of the two registers ending up as one of two orthogonal
states in the constant plane, or as one of two orthogonal states in the balanced
plane, the final state now ends up as ±|0′1′〉 in the constant plane, or as ±|1′1′〉
in the balanced plane, and these states can be distinguished because they are
orthogonal. So we can decide with certainty whether the function is constant or
balanced after only one run of the algorithm. In fact, we can distinguish these two
possibilities by simply measuring the input register in the prime basis. Note that
if we perform a final Hadamard transformation on the input register (which takes
|0′〉 to |0〉 and |1′〉 to |1〉), we can distinguish the two possibilities by measuring the
input register in the computational basis. Note also that the state of the output
register is unchanged: at the end of the process it is in the state |1′〉 = H|1〉 (as
in (228)) and is not measured.

Deutsch’s XOR problem can be generalized to the problem (‘Deutsch’s prob-
lem’) of determining whether a Boolean function f : Bn → B is constant or
whether it is balanced, where it is promised that the function is either constant
or balanced. ‘Balanced’ here means that the function takes the values 0 and 1 an
equal number of times, i.e., 2n−1 times each. The Deutsch-Jozsa algorithm [1992]
decides whether f is constant or balanced in one run.

We begin by setting the input n-qubit register to the state |0〉 (an abbreviation
for the state |0 · · · 0〉 = |0〉 · · · |0〉) and the output 1-qubit register to the state
|1〉. We apply an n-fold Hadamard transformation to the input register and a
Hadamard transformation to the output register, followed by the unitary trans-
formation Uf to both registers, and finally an n-fold Hadamard transformation to
the input register.

First note that

H|x〉 =
1√
2

∑
y∈{0,1}

(−1)xy|y〉(234)

so

H⊗n|x1, . . . , xn〉 =
1√
2n

∑
y1,··· ,yn

(−1)x1y1+···+xnyn |y1, . . . , yn〉(235)
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This can be expressed as:

H⊗n|x〉 =
1√
2n

∑
y∈{0,1}

(−1)x·y|y〉(236)

where x · y is the bitwise inner product of x and y, mod 2.
The unitary transformations (Hadamard transformation, Uf ) yield:

|0〉⊗n|1〉 H−→
∑

x∈{0,1}n

|x〉√
2n
|0〉 − |1〉√

2
(237)

Uf−→
∑
x

(−1)f(x)

√
2n

|x〉 |0〉 − |1〉√
2

(238)

H−→
∑
y

∑
x

(−1)x·y+f(x)

√
2n

|y〉√
2n
|0〉 − |1〉√

2
(239)

Now consider the state of the input register:

∑
y

∑
x

(−1)x·y+f(x)

2n
|y〉 =

∑
x

(−1)f(x)

2n
|0 . . . 0〉+ . . .(240)

Note that the coefficient (amplitude) of the state |0 . . . 0〉 in the linear superposition
(238) is

∑
x

(−1)f(x)

2n . If f is constant, this coefficient is ±1, so the coefficients of
the other terms must all be 0. If f is balanced, f(x) = 0 for half the values of x
and f(x) = 1 for the other half, so the positive and negative contributions to the
coefficient of |0 . . . 0〉 cancel to 0. In other words, if f is constant, the state of the
input register is ±|0 . . . 0〉; if f is balanced, the state is in the orthogonal subspace.

This is the usual way of describing how the algorithm works, which rather
obscures the geometric picture. Consider, for simplicity, the case n = 2. After the
transformation Uf , but before the final Hadamard transformation, the state of the
input register is:

±1
2
(|00〉+ |01〉+ |10〉+ |11〉)(241)

if the function is constant, or a state of the form:

1
2
(±|00〉 ± |01〉 ± |10〉 ± |11〉)(242)

if the function is balanced, where two of the coefficients are +1 and two of the
coefficients are −1. Evidently, there are three (distinct) mutually orthogonal such
balanced states, and they are all orthogonal to the constant state. So the three
balanced states lie in a 3-dimensional subspace orthogonal to the constant state
and can therefore be distinguished from the constant state. The final Hadamard
transformation transforms the constant state:

±1
2
(|00〉+ |01〉+ |10〉+ |11〉) H−→ ±|00〉(243)
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and the three balanced states to states in the 3-dimensional subspace orthogonal
to |00〉. So to decide whether the function is constant or balanced we need only
measure the input register and check whether it is in the state |00〉.

Simon’s Algorithm

The problem here is to find the period r of a periodic function f : Bn → Bn, i.e.,
a Boolean function for which

f(xi) = f(xj) if and only if xj = xi ⊕ r, for all xi, xj ∈ Bn(244)

Note that since x⊕ r ⊕ r = x, the function is 2-to-1.
Simon’s algorithm solves the problem efficiently, with an exponential speed-

up over any classical algorithm (see [Simon, 1994; Simon, 1997]). The algorithm
proceeds as in the Deutsch-Jozsa algorithm, starting with the input and output
registers in the state |0 . . . 0〉|0〉 in the computational basis:

|0 . . . 0〉|0〉 H−→ 1√
2n

2n−1∑
x=0

|x〉|0〉(245)

Uf−→ 1√
2n
∑
x

|x〉|f(x)〉(246)

=
1√

2n−1

∑
xi

|xi〉+ |xi ⊕ r〉√
2

|f(xi)〉(247)

where Uf is the unitary transformation implementing the Boolean function as:

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉(248)

The usual way to see how the algorithm works is to consider what happens if
we measure the output register and keep the state of the input register,16 which
will have the form:

|xi〉+ |xi ⊕ r〉√
2

(249)

This state contains the information r, but summed with an unwanted randomly
chosen offset xi that depends on the measurement outcome. A direct measurement
of the state label would yield any x ∈ Bn equiprobably, providing no information
about r.

16The measurement of the output register here is a pedagogical device for ease of conceptual-
ization. Only the input register is actually measured. The input register is in a mixture of states,
which we can think of as the mixture associated with the distribution of outcomes obtained by
measuring the output register.
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We now apply a Hadamard transform:

|xi〉+ |xi ⊕ r〉√
2

H−→
1√
2n

∑
y∈Bn

(−1)xi·y + (−1)(xi⊕r)·y
√

2
|y〉(250)

=
∑

y:r·y=0

(−1)xi·y
√

2n−1
|y〉(251)

where the last equality follows because terms interfere destructively if r · y = 1.
Finally, we measure the input register in the computational basis and obtain a
value y (equiprobably) such that r·y = 0. Then we repeat the algorithm sufficiently
many times to find enough values yi so that r can be determined by solving the
linear equations r · y1 = 0, . . . , r · yk = 0.

To see what is going on geometrically, consider the case n = 2. The possible
values of the period r are: 01, 10, 11, and the corresponding states of the input
and output registers after the unitary transformation Uf are:

r = 01 : 1
2 (|00〉+ |01〉)|f(00)〉+ 1

2 (|10〉+ |11〉)|f(10)〉
r = 10 : 1

2 (|00〉+ |10〉)|f(00)〉+ 1
2 (|01〉+ |11〉)|f(01)〉

r = 11 : 1
2 (|00〉+ |11〉)|f(00)〉+ 1

2 (|01〉+ |10〉)|f(01)〉
Notice that this case reduces to the same geometric construction as in Deutsch’s

XOR algorithm. For r = 10 the input register states are |c1〉 = 1√
2
(|00〉+ |10〉) or

|c2〉 = 1√
2
(|01〉+ |11〉), and for r = 11 the input register states are |b1〉 = 1√

2
(|00〉+

|11〉) or |b2〉 = 1√
2
(|01〉+|10〉), depending on the outcome of the measurement of the

output register. So the three possible periods are associated with three planes in
H2⊗H2, which correspond to the constant and balanced planes in Deutsch’s XOR
algorithm, and a third plane, all three planes intersecting in the line spanned by the
vector |00〉. In the prime basis obtained by applying the Hadamard transformation,
the planes are as follows:

r = 01 : plane spanned by |0′0′〉, |1′0′〉
r = 10 : plane spanned by |0′0′〉, |0′1′〉 (corresponds to ‘constant’ plane)

r = 11 : plane spanned by |0′0′〉, |1′1′〉 (corresponds to ‘balanced’ plane)

We could simply measure the input register in the prime basis to find the period.
Alternatively, we could apply a Hadamard transformation (which amounts to drop-
ping the primes in the above representation of the r-planes) and measure in the
computational basis. The three planes are orthogonal, except for their intersection
in the line spanned by the vector |00〉. The three possible periods can therefore
be distinguished by measuring the observable with eigenstates |00〉, |01〉, |10〉, |11〉,
except when the state of the register is projected by the measurement (‘collapses’)
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onto the intersection state |00〉 (which occurs with probability 1/2). So the al-
gorithm will generally have to be repeated until we find an outcome that is not
00.

The n = 2 case of Simon’s algorithm reduces to Deutsch’s XOR algorithm.
What about other cases? We can see what happens in the general case if we
consider the case n = 3. There are now seven possible periods: 001, 010, 011,
100, 101, 110, 111. For the period r = 001, the state of the two registers after the
unitary transformation Uf is:

1
2
√

2
(|000〉+ |001〉)|f(000)〉+ 1

2
√

2
(|010〉+ |011〉)|f(010)〉

+
1

2
√

2
(|100〉+ |101〉)|f(100)〉+ 1

2
√

2
(|110〉+ |111〉)|f(110)〉

If we measure the output register, the input register is left in one of four states,
depending on the outcome of the measurement:

1√
2
(|000〉+ |001〉) =

1
2
(|0′0′0′〉+ |0′1′0′〉+ |1′0′0′〉+ |1′1′0′〉)

1√
2
(|010〉+ |011〉) =

1
2
(|0′0′0′〉 − |0′1′0′〉+ |1′0′0′〉 − |1′1′0′〉)

1√
2
(|100〉+ |101〉) =

1
2
(|0′0′0′〉+ |0′1′0′〉 − |1′0′0′〉 − |1′1′0′〉)

1√
2
(|110〉+ |111〉) =

1
2
(|0′0′0′〉 − |0′1′0′〉 − |1′0′0′〉+ |1′1′0′〉)

Applying a Hadamard transformation amounts to dropping the primes. So if the
period is r = 001, the state of the input register ends up in the 4-dimensional
subspace of H2 ⊗H2 ⊗H2 spanned by the vectors: |000〉, |010〉, |100〉, |110〉.

A similar analysis applies to the other six possible periods. The corresponding
subspaces are spanned by the following vectors:

r = 001: |000〉, |010〉, |100〉, |110〉

r = 010: |000〉, |001〉, |100〉, |101〉

r = 011: |000〉, |011〉, |100〉, |111〉

r = 100: |000〉, |001〉, |010〉, |011〉

r = 101: |000〉, |010〉, |101〉, |111〉

r = 110: |000〉, |001〉, |110〉, |111〉

r = 111: |000〉, |011〉, |101〉, |110〉
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These subspaces are orthogonal except for intersections in 2-dimensional planes.
The period can be found by measuring in the computational basis. Repetitions
of the measurement will eventually yield sufficiently many distinct values to de-
termine in which subspace out of the seven possibilities the final state lies. In
this case (n = 3), it is clear by examining the above list that two values distinct
from 000 suffice to determine the subspace, and these are just the values yi for
which yi · r = 0. Note that the subspaces correspond to quantum disjunctions.
So determining the period of the function by Simon’s algorithm amounts to de-
termining which disjunction out of the seven alternative disjunctions is true, i.e.,
which subspace contains the state, without determining the truth values of the
disjuncts.

Shor’s Algorithm

Shor’s factorization algorithm exploits the fact that the two prime factors p, q of
a positive integer N = pq can be found by determining the period of a function
f(x) = ax mod N , for any a < N which is coprime to N , i.e., has no common
factors with N other than 1. The period r of f(x) depends on a and N . Once we
know the period, we can factor N if r is even and ar/2 �= −1 mod N , which will
be the case with probability greater than 1/2 if a is chosen randomly. (If not, we
choose another value of a.) The factors of N are the greatest common factors of
ar/2±1 and N , which can be found in polynomial time by the Euclidean algorithm.
(For these number-theoretic results, see [Nielsen and Chuang, 2000, Appendix 4].)
So the problem of factorizing a composite integer N that is the product of two
primes reduces to the problem of finding the period of a certain periodic function
f : Zs → ZN , where Zn is the additive group of integers mod n (rather than Bn,
the n-fold Cartesian product of a Boolean algebra B, as in Simon’s algorithm).
Note that f(x + r) = f(x) if x + r ≤ s. The function f is periodic if r divides s
exactly, otherwise it is almost periodic.

Consider first the general form of the algorithm, as it is usually formulated. We
begin by initializing the input register (s qubits) to the state |0〉 ∈ Hs and the
output register (N qubits) to the state |0〉 ∈ HN . An s-fold Hadamard transfor-
mation is applied to the input register, followed by the unitary transformation Uf
which implements the function f(x) = ax mod N :

|0〉|0〉 H−→ 1√
s

s−1∑
x=0

|x〉|0〉(252)

Uf−→ 1√
s

s−1∑
x=0

|x〉|x + ax mod N〉(253)

Then we measure the output register in the computational basis17 and obtain a

17As in the discussion of Simon’s algorithm, this measurement is purely hypothetical, intro-
duced to simplify the analysis. Only the input register is actually measured.
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state of the following form for the input register:

1√
s/r

s/r−1∑
j=0

|xi + jr〉(254)

This will be the case if r divides s exactly. The value xi is the offset, which depends
on the outcome i of the measurement of the output register. The sum is taken
over the values of j for which f(xi + jr) = i. When r does not divide s exactly,
the analysis is a little more complicated. For a discussion, see [Barenco, 1998,
164], [Jozsa, 1997b]. Since the state label contains the random offset, a direct
measurement of the label yields no information about the period.

A discrete Fourier transform for the integers mod s is now applied to the input
register, i.e., a unitary transformation:

|x〉 UDF Ts−→ 1√
s

s−1∑
y=0

e2πi xy
s |y〉, for x ∈ Zs(255)

This yields the transition:

1√
s
r

s
r −1∑
j=0

|xi + jr〉 UDF Ts−→ 1√
r

r−1∑
k=0

e2πi
xik

r |ks/r〉(256)

and so shifts the offset into a phase factor and inverts the period as a multiple
of s/r. A measurement of the input register in the computational basis yields
c = ks/r. The algorithm is run a number of times until a value of k coprime to r
is obtained. Cancelling c/s to lowest terms then yields k and r as k/r.

Since we don’t know the value of r in advance of applying the algorithm, we do
not, of course, recognize when a measurement outcome yields a value of k coprime
to r. The idea is to run the algorithm, cancel c/s to lowest terms to obtain a
candidate value for r and hence a candidate factor of N , which can then be tested
by division into N . Even when we do obtain a value of k coprime to r, some values
of a will yield a period for which the method fails to yield a factor of N , in which
case we randomly choose a new value of a and run the algorithm with this value.
The point is that all these steps are efficient, i.e., can be performed in polynomial
time, and since only a polynomial number of repetitions are required to determine
a factor with any given probability p < 1, the algorithm is a polynomial-time
algorithm, achieving an exponential speed-up over any known classical algorithm.

To see how the algorithm functions geometrically, consider the case N = 15, a =
7 and s = 64 discussed in [Barenco, 1998, 160]. In this case, the function f(x) =
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ax mod 15 is:

70 mod 15 = 1
71 mod 15 = 7
72 mod 15 = 4
73 mod 15 = 13
74 mod 15 = 1

...
763 mod 15 = 13

and the period is evidently r = 4.18 After the application of the unitary transfor-
mation Uf = ax mod N , the state of the two registers is:

1
8 (|0〉|1〉+ |1〉|7〉+ |2〉|4〉+ |3〉|13〉
+ |4〉|1〉+ |5〉|7〉+ |6〉|4〉+ |7〉|13〉

...
+ |60〉|1〉+ |61〉|7〉+ |62〉|4〉+ |63〉|13〉)(257)

This is the state (253) for s = 64, a = 7. This state can be expressed as:

1
4 (|0〉+ |4〉+ |8〉+ . . . + |60〉)|1〉

+ 1
4 (|1〉+ |5〉+ |9〉+ . . . + |61〉)|7〉

+ 1
4 (|2〉+ |6〉+ |10〉+ . . . + |62〉)|4〉

+ 1
4 (|3〉+ |7〉+ |11〉+ . . . + |63〉)|13〉)(258)

If we measure the output register, we obtain (equiprobably) one of four states
for the input register, depending on the outcome of the measurement: 1, 7, 4, or
13:

1
4 (|0〉+ |4〉+ |8〉+ . . . + |60〉)(259)
1
4 (|1〉+ |5〉+ |9〉+ . . . + |61〉)(260)
1
4 (|2〉+ |6〉+ |10〉+ . . . + |62〉)(261)
1
4 (|3〉+ |7〉+ |11〉+ . . . + |63〉)(262)

These are the states (254) for values of the offset x1 = 0, x7 = 1, x4 = 2, x13 = 3.
Application of the discrete Fourier transform yields:

x1 = 0 : 1
2 (|0〉+ |16〉+ |32〉+ |48〉)

x7 = 1 : 1
2 (|0〉+ i|16〉 − |32〉 − i|48〉)

x4 = 2 : 1
2 (|0〉 − |16〉+ |32〉 − |48〉)

x13 = 3 : 1
2 (|0〉 − i|16〉 − |32〉+ i|48〉)

18The factors 3 and 5 of 15 are derived as the greatest common factors of ar/2 − 1 = 48 and
15 and ar/2 + 1 = 50 and 15, respectively.
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which are the states in (256). (Here s = 64, r = 4;
√

s
r = 4, s

r − 1 = 15.) So
for the period r = 4, the state of the input register ends up in the 4-dimensional
subspace spanned by the vectors |0〉, |16〉, |32〉, |48〉.

Now consider all possible even periods r for which f(x) = ax mod 15, where a
is coprime to 15. The other possible values of a are 2, 4, 8, 11, 13, 14 and the
corresponding periods turn out to be 4, 2, 4, 2, 4, 2. So we need only consider
r = 2.19Note that different values of a with the same period affect only the labels
of the output register (e.g., for a = 2, the labels are |1〉, |2〉, |4〉, |8〉 instead of
|1〉, |7〉, |4〉, |13〉).

For r = 2, if we measure the output register, we will obtain (equiprobably) one
of two states for the input register, depending on the outcome of the measurement
(say, a or b):

|0〉+ |2〉+ |4〉+ . . . + |62〉(263)
|1〉+ |3〉+ |5〉+ . . . + |63〉(264)

After the discrete Fourier transform, these states are transformed to:

xa = 0 : |0〉+ |32〉
xb = 1 : |0〉 − |32〉
In this case, the 2-dimensional subspace Vr=2 spanned by |0〉, |32〉 for r = 2

is included in the 4-dimensional subspace Vr=4 for r = 4. A measurement can
distinguish r = 4 from r = 2 reliably, i.e., whether the final state of the input
register is in Vr=4 or Vr=2, only if the final state is in Vr=4 − Vr=2, the part of
Vr=4 orthogonal to Vr=2. What happens if the final state ends up in Vr=2?

Shor’s algorithm works as a randomized algorithm. As mentioned above, it
produces a candidate value for the period r and hence a candidate factor of N ,
which can be tested (in polynomial time) by division into N . A measurement of
the input register in the computational basis yields an outcome c = ks/r. The
value of k is chosen equiprobably by the measurement of the output register. The
procedure is to repeat the algorithm until the outcome yields a value of k coprime
to r, in which case canceling c/s to lowest terms yields k and r as k/r.

For example, suppose we choose a = 7, in which case (unknown to us) r = 4.
The values of k coprime to r are k = 1 and k = 3 (this is also unknown to us,
because k depends on the value of r). Then c/s cancelled to lowest terms is 1/4
and 3/4, respectively, both of which yield the correct period. From the geometrical
perspective, these values of k correspond to finding the state after measurement
in the computational basis to be |16〉 or |48〉, both of which do distinguish Vr=4

from Vr=2.
Suppose we choose a value of a with period r = 2 and find the value c = 32. The

only value of k coprime to r is k = 1. Then c/s cancelled to lowest terms is 1/2,
which yields the correct period, and hence the correct factors of N . But c = 32

19Every value of a except a = 14 yields the correct factors for 15. For a = 14, the method
fails: r = 2, so a

r
2 = −1 mod 15.
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could also be obtained for a = 7, r = 4, and k = 2, which does not yield the correct
period, and hence does not yield the correct factors of N . Putting it geometrically:
the value k = 1 for r = 2 corresponds to the same state, |32〉, as the value k = 2
for r = 4. Once we obtain the candidate period r = 2 (by cancelling c/s = 32/64
to lowest terms), we calculate the factors of N as the greatest common factors of
a ± 1 and N and test these by division into N . If a = 7, these calculated factors
will be incorrect. If a = 2, say, the factors calculated in this way will be correct.

We see that, with the added information provided by the outcome of a test
division of a candidate factor into N , Shor’s randomized algorithm again amounts
to determining which disjunction among alternative disjunctions is true, i.e., which
subspace contains the state, without determining the truth values of the disjuncts.

6.3 Where Does the Speed-Up Come From?

What, precisely, is the feature of a quantum computer responsible for the phe-
nomenal efficiency over a classical computer? In the case of Simon’s algorithm,
the speed-up is exponential over any classical algorithm; in the case of Shor’s
algorithm, the speed-up is exponential over any known classical algorithm.

Steane [1998] remarks:

The period finding algorithm appears at first sight like a conjuring trick: it is not quite clear how
the quantum computer managed to produce the period like a rabbit out of a hat. . . . I would

say that the most important features are contained in [|ψ〉 = 1
s

Ps−1
x=0 |x〉|f(x)〉]. They are not

only the quantum parallelism already mentioned, but also quantum entanglement, and, finally,
quantum interference. Each value of f(x) retains a link with the value of x which produced it,
through entanglement of the x and y registers in [|ψ〉]. The ‘magic’ happens when a measurement

of the y register produces the special state [ 1
s/r

Ps/r−1
j=0 |xi +jr〉] in the x-register, and it is quan-

tum entanglement which permits this (see also [Jozsa, 1997a]). The final Fourier transform can
be regarded as an interference between the various superposed states in the x-register (compare
with the action of a diffraction grating).

Interference effects can be used for computational purposes with classical light fields, or water
waves for that matter, so interference is not in itself the essentially quantum feature. Rather,
the exponentially large number of interfering states, and the entanglement, are features which
do not arise in classical systems.

Jozsa points out [1997a] that the state space (phase space) of a composite
classical system is the Cartesian product of the state spaces of its subsystems, while
the state space of a composite quantum system is the tensor product of the state
spaces of its subsystems. For n qubits, the quantum state space has 2n dimensions.
So the information required to represent a general state increases exponentially
with n: even if we restrict the specification of the amplitudes to numbers of finite
precision, a superposition will in general have O(2n) components. For a classical
composite system of n two-level subsystems, the number of possible states grows
exponentially with n, but the information required to represent a general state is
just n times the information required to represent a single two-level system, i.e.,
the information grows only linearly with n because the state of a composite system
is just a product state.
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More formally, Jozsa and Linden [2002] have shown that a quantum algorithm
operating on pure states can achieve an exponential speed-up over classical al-
gorithms only if the quantum algorithm involves multi-partite entanglement that
increases unboundedly with the input size. Similarly, Vidal [2003] has shown that a
classical computer can simulate the evolution of a pure state of n qubits with com-
putational resources that grow linearly with n and exponentially in multi-partite
entanglement.

The essential feature of the quantum computations discussed above in §6.2 is
the selection of a disjunction, representing a global property of a function, among
alternative possible disjunctions without computing the truth values of the dis-
juncts, which is redundant information in a quantum computation but essential
information classically. Note that a quantum disjunction is represented by a sub-
space of entangled states in the tensor product Hilbert space of the input and
output registers. This is analogous to the procedure involved in the key observa-
tion underlying the proof of the quantum bit commitment theorem discussed in
§5.2. The series of operations described by equations (167)–(172), in which the
channel particle is entangled with ancilla systems and the ancillas are subsequently
measured, effectively constitute a quantum computaton.

The first stage of a quantum algorithm involves the creation of a state in which
every input value to the function is correlated with a corresponding output value.
This is referred to as ‘quantum parallelism’ and is sometimes cited as the source of
the speed-up in a quantum computation. The idea is that a quantum computation
is something like a massively parallel classical computation, for all possible values
of a function. This appears to be Deutsch’s view, with the parallel computations
taking place in parallel universes. For a critique, see [Steane, 2003], who defends
a view similar to that presented here. Of course, all these different values are
inaccessible: a measurement in the computational basis will only yield (randomly)
one correlated input-output pair. Further processing is required, including the final
discrete Fourier transform for the three algorithms discussed in §6.2. It would be
incorrect to attribute the efficiency of these quantum algorithms to the interference
in the input register produced by the Fourier transform. The role of the Fourier
transform is simply to allow a measurement in the computational basis to reveal
which subspace representing the target disjunction contains the state.

One might wonder, then, why the discrete Fourier transform is even necessary.
We could, of course, simply perform an equivalent measurement in a different
basis. But note that a computation would have to be performed to determine
this basis. This raises the question of precisely how to assess the speed-up of a
quantum algorithm relative to a rival classical algorithm. What are the relevant
computational steps to be counted in making this assessment for a quantum com-
putation? Since any sequence of unitary transformations is equivalent to a single
unitary transformation, and a unitary transformation followed by a measurement
in a certain basis is equivalent to simply performing a measurement in a differ-
ent basis, any quantum computation can always be reduced to just one step: a
measurement in a particular basis!
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Of course, this observation is hardly illuminating, since a computation at least
as difficult as the original computation would have to be performed to determine
the required basis, but it does indicate that some convention is required about
what steps to count in a quantum computation. The accepted convention is to
require the unitary transformations in a quantum computation to be constructed
from elementary quantum gates that form a universal set (e.g., the CNOT gate,
the Hadamard gate, the phase gate, and the π/8 gate discussed in §6.1) and to
count each such gate as one step. In addition, all measurements are required to be
performed in the computational basis, and these are counted as additional steps.
The final discrete Fourier transforms in the Deutsch-Jozsa algorithm, Simon’s
algorithm, and Shor’s algorithm are indispensable in transforming the state so that
the algorithms can be completed by measurements in the computational basis,
and it is an important feature of these algorithms that the Fourier transform
can be implemented efficiently with elementary unitary gates. To claim that a
quantum algorithm is exponentially faster than a classical algorithm is to claim
that the number of steps counted in this way for the quantum algorithm is a
polynomial function of the size of the input (the number of qubits required to
store the input), while the classical algorithm involves a number of steps that
increases exponentially with the size of the input (the number of bits required to
store the input).

7 QUANTUM FOUNDATIONS FROM THE PERSPECTIVE OF
QUANTUM INFORMATION

Does the extension of the classical theory of information to quantum states shed
new light on the foundational problems of quantum mechanics underlying the
Bohr-Einstein debate mentioned in §1, in particular the measurement problem?
Researchers in the area of quantum information and quantum computation of-
ten suggest a positive answer to this question, with a promissory note for how
the story is supposed to go. More fully worked-out (generally, rather differ-
ent) positive responses have been proposed by various authors, notably Fuchs
[2001b; 2002a; 2002b; 2001a] and Brukner and Zeilinger [2001; 20002]. For a very
thorough analysis and critique of the Brukner-Zeilinger position, see [Timpson,
2004]. See also Hall [2000] and the response by Brukner and Zeilinger [2000]. Here
I shall limit my discussion to the significance of a characterization theorem for
quantum mechanics in terms of information-theoretic constraints by Clifton, Bub,
and Halvorson (CBH) [2003].

7.1 The CBH Characterization Theorem

CBH showed that one can derive the basic kinematic features of a quantum descrip-
tion of physical systems from three fundamental information-theoretic constraints:

• the impossibility of superluminal information transfer between two physical
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systems by performing measurements on one of them,

• the impossibility of perfectly broadcasting the information contained in an
unknown physical state (which, for pure states, amounts to ‘no cloning’),

• the impossibility of communicating information so as to implement a bit
commitment protocol with unconditional security (so that cheating is in
principle excluded by the theory).

More precisely, CBH formulate these information-theoretic constraints in the
general framework of C∗-algebras, which allows a mathematically abstract char-
acterization of a physical theory that includes, as special cases, all classical me-
chanical theories of both wave and particle varieties, and all variations on quantum
theory, including quantum field theories (plus any hybrids of these theories, such
as theories with superselection rules). Within this framework, CBH show that
the three information-theoretic constraints jointly entail three physical conditions
that they take as definitive of what it means to be a quantum theory in the most
general sense. Specifically, the information-theoretic constraints entail that:

• the algebras of observables pertaining to distinct physical systems commute
(a condition usually called microcausality or, to use Summers’ term [Sum-
mers, 1990], kinematic independence),

• any individual system’s algebra of observables is noncommutative,

• the physical world is nonlocal, in that spacelike separated systems can occupy
entangled states that persist as the systems separate.

CBH also partly demonstrated the converse derivation, leaving open a ques-
tion concerning nonlocality and bit commitment. This remaining issue was later
resolved by Hans Halvorson [2004], so the CBH theorem is a characterization the-
orem for quantum theory in terms of the three information-theoretic constraints.

Note that the C∗-algebraic framework is not restricted to the standard quan-
tum mechanics of a system represented on a single Hilbert space with a unitary
dynamics, but is general enough to cover cases of systems with an infinite number
of degrees of freedom that arise in quantum field theory and the thermodynamic
limit of quantum statistical mechanics (in which the number of microsystems and
the volume they occupy goes to infinity, while the density defined by their ratio
remains constant). The C∗-algebraic framework has even been applied to quantum
field theory on curved spacetime and so is applicable to the quantum theoretical
description of exotic phenomena such as Hawking radiation (black hole evapora-
tion); see [Wald, 1984]. The Stone-von Neumann theorem, which guarantees the
existence of a unique representation (up to unitary equivalence) of the canonical
commutation relations for systems with a finite number of degrees of freedom,
breaks down for such cases, and there will be many unitarily inequivalent repre-
sentations of the canonical commutation relations.
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One could, of course, consider weaker mathematical structures, but it seems that
the C∗-algebraic machinery suffices for all physical theories that have been found to
be empirically successful to date, including phase space theories and Hilbert space
theories [Landsman, 1998], and theories based on a manifold [Connes, 1994]. For
further discussion of this point, see Halvorson and Bub [2005]. See also Halvorson
(this vol., chap. 8), Emch (this vol., ch. 8), and Landsman (this vol., ch. 5).

A C∗-algebra is essentially an abstract generalization of the structure of the
algebra of operators on a Hilbert space. Technically, a (unital) C∗-algebra is a
Banach ∗-algebra over the complex numbers containing the identity, where the
involution operation ∗ and the norm are related by ‖A∗A‖ = ‖A‖2. So the algebra
B(H) of all bounded operators on a Hilbert space H is a C∗-algebra, with ∗ the
adjoint operation and ‖ · ‖ the standard operator norm.

In standard quantum theory, as discussed in §3.1, a state on B(H) is defined
by a density operator ρ on H in terms of an expectation-valued functional ρ̃(A) =
Tr(ρA) for all observables represented by self-adjoint operators A in B(H). This
definition of ρ̃(A) in terms of ρ yields a positive normalized linear functional. So
a state on a C∗-algebra C is defined, quite generally, as any positive normalized
linear functional ρ̃ : C → C on the algebra. Pure states can be defined by the
condition that if ρ̃ = λρ̃1 + (1 − λ)ρ̃2 with λ ∈ (0, 1), then ρ̃ = ρ̃1 = ρ̃2; other
states are mixed. In the following, we drop the ‘˜’ in ρ̃, but note that a C∗-
algebraic state ρ is a positive linear functional on C, while the density operator of
standard quantum mechanics is an element of C = B(H).

By Gleason’s theorem [Gleason, 1957], every C∗-algebraic state in this sense
on a C∗-algebra C = B(H) is given by a density operator on B(H). However,
because countable additivity is not presupposed by the C∗-algebraic notion of
state (and, therefore, Gleason’s theorem does not apply in general), there can be
pure states of B(H) that are not representable by vectors in H. In fact, if A is any
self-adjoint element of a C∗-algebra A, and a ∈ sp(A), then there always exists
a pure state ρ of A that assigns a dispersion-free value of a to A [Kadison and
Ringrose, 1997, Ex. 4.6.31]. Since this is true even when we consider a point in the
continuous spectrum of a self-adjoint operator A acting on a Hilbert space, without
any corresponding eigenvector, it follows that there are pure states of B(H) in the
C∗-algebraic sense that cannot be vector states (nor, in fact, representable by any
density operator H).

As we saw in §3.1, the general evolution of a quantum system resulting from
a combination of unitary interactions and selective or nonselective measurements
can be described by a quantum operation, i.e., a completely positive linear map.
Accordingly, a completely positive linear map T : C → C, where 0 ≤ T (I) ≤ I is
taken as describing the general evolution of a system represented by a C∗-algebra of
observables. The map or operation T is called selective if T (I) < I and nonselective
if T (I) = I. Recall that a yes-no measurement of some idempotent observable
represented by a projection operator P is an example of a selective operation. Here,
T (A) = PAP for all A in the C∗-algebra C, and ρT , the transformed (‘collapsed’)
state, is the final state obtained after measuring P in the state ρ and ignoring
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all elements of the ensemble that do not yield the eigenvalue 1 of P (so ρT (A) =
ρ(T (A))/ρ(T (I)) when ρ(T (I)) �= 0, and ρT = 0 otherwise). The time evolution
in the Heisenberg picture induced by a unitary operator U ∈ C is an example of a
nonselective operation. Here, T (A) = UAU−1. Similarly, the measurement of an
observable O with spectral measure {Pi}, without selecting a particular outcome,
is an example of a nonselective operation, with T (A) =

∑n
i=1 PiAPi. As in the

standard quantum theory of a system with a finite-dimensional Hilbert space (cf.
Eq. (67) of §3.1), any completely positive linear map can be regarded as the
restriction to a local system of a unitary map on a larger system.

A representation of a C∗-algebra C is any mapping π : C→ B(H) that preserves
the linear, product, and ∗ structure of C. The representation is faithful if π is one-
to-one, in which case π(C) is an isomorphic copy of C. The Gelfand-Naimark
theorem says that every abstract C∗-algebra has a concrete faithful representation
as a norm-closed ∗-subalgebra of B(H), for some appropriate Hilbert space H.
As indicated above, in the case of systems with an infinite number of degrees of
freedom (e.g., quantum field theory), there are inequivalent representations of the
C∗-algebra of observables defined by the commutation relations.

Every classical phase space theory defines a commutative C∗-algebra. For ex-
ample, the observables of a classical system of n particles — the real-valued con-
tinuous functions on the phase space R

6n — can be represented as the self-adjoint
elements of the C∗-algebra B(R6n) of all continuous complex-valued functions f
on R

6n. The phase space R
6n is locally compact and can be made compact by

adding just one point ‘at infinity’, or we can simply consider a bounded (and thus
compact) subset of R

6n. The statistical states of the system are given by proba-
bility measures µ on R

6n, and pure states, corresponding to maximally complete
information about the particles, are given by the individual points of R

6n. The
system’s state ρ in the C∗-algebraic sense is the expectation functional correspond-
ing to µ, defined by ρ(f) =

∫
R6n fdµ. Conversely [Kadison and Ringrose, 1997,

Thm. 4.4.3], every commutative C∗-algebra C is isomorphic to the set C(X) of
all continuous complex-valued functions on a locally compact Hausdorff space X
defined by the pure states of C. If C has a multiplicative identity, the ‘phase space’
X is compact. In this ‘function representation’ of C, the isomorphism maps an
element C ∈ C to the function Ĉ (the Gelfand transformation of C) whose value
at any ρ is just the (dispersion-free) value that ρ assigns to C. So ‘behind’ every
abstract commutative C∗-algebra there is a classical phase space theory defined
by its function representation on the phase space X. This representation theorem
(and its converse) justifies characterizing a C∗-algebraic theory as classical just in
case its algebra is commutative.

As we saw above, CBH identify quantum theories with a certain subclass of
noncommutative C∗-algebras, where the condition of kinematic independence is
satisfied by the algebras of observables of distinct systems and the states of space-
like separated systems are characterized by the sort of nonlocality associated with
entanglement.
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To clarify the rationale for this characterization and the significance of the
information-theoretic constraints, consider a composite quantum system AB, con-
sisting of two subsystems, A and B. For simplicity, assume the systems are in-
distinguishable, so their C∗-algebras A and B are isomorphic. The observables
of the component systems A and B are represented by the self-adjoint elements
of A and B, respectively. Let A ∨B denote the C∗-algebra generated by A and
B. The physical states of A, B, and AB, are given by positive normalized linear
functionals on their respective algebras that encode the expectation values of all
observables. To capture the idea that A and B are physically distinct systems,
CBH make the assumption that any state of A is compatible with any state of
B, i.e., for any state ρA of A and ρB of B, there is a state ρ of A ∨B such that
ρ|A = ρA and ρ|B = ρB .

The sense of the ‘no superluminal information transfer via measurement’ con-
straint is that when Alice and Bob, say, perform local measurements, Alice’s
measurements can have no influence on the statistics for the outcomes of Bob’s
measurements, and conversely. That is, merely performing a local measurement
cannot, in and of itself, convey any information to a physically distinct system, so
that everything ‘looks the same’ to that system after the measurement operation
as before, in terms of the expectation values for the outcomes of measurements.
CBH show [2003, Thm. 1] that it follows from this constraint that A and B
are kinematically independent systems if they are physically distinct in the above
sense, i.e., every element of A commutes pairwise with every element of B. (More
precisely, an operation T on A ∨ B conveys no information to Bob just in case
(T ∗ρ)|B = ρ|B for all states ρ of B, where T ∗ is the map on the states, i.e., the
positive linear functionals on A ∨B, induced by T. Clearly, the kinematic inde-
pendence of A and B entails that Alice’s local measurement operations cannot
convey any information to Bob, i.e., T (B) =

∑n
i=1 E

1/2
i BE

1/2
i = B for B ∈ B if

T is implemented by a POVM in A. CBH prove that if Alice cannot convey any
information to Bob by performing local measurement operations, then A and B
are kinematically independent.)

The ‘no broadcasting’ condition now ensures that the individual algebras A
and B are noncommutative. Recall that for pure states, broadcasting reduces to
cloning, and that in elementary quantum mechanics, neither cloning nor broad-
casting is possible in general (see section 3.2). CBH show that broadcasting and
cloning are always possible for classical systems, i.e., in the commutative case
there is a universal broadcasting map that clones any pair of input pure states
and broadcasts any pair of input mixed states [Clifton et al., 2003, Thm. 2]. Con-
versely, they show that if any two states can be (perfectly) broadcast, then any
two pure states can be cloned; and if two pure states of a C∗-algebra can be cloned,
then they must be orthogonal. So, if any two states can be broadcast, then all
pure states are orthogonal, from which it follows that the algebra is commutative.

The quantum mechanical phenomenon of interference is the physical manifes-
tation of the noncommutativity of quantum observables or, equivalently, the su-
perposition of quantum states. So the impossibility of perfectly broadcasting the
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information contained in an unknown physical state, or of cloning or copying the
information in an unknown pure state, is the information-theoretic counterpart of
interference.

Now, if A and B are noncommutative and mutually commuting, it can be shown
that there are nonlocal entangled states on the C∗-algebra A∨B they generate (see
[Landau, 1987; Summers, 1990; Bacciagaluppi, 1994], and — more relevantly here,
in terms of a specification of the range of entangled states that can be guaranteed
to exist — [Halvorson, 2004]). So it seems that entanglement — what Schrödinger
[1935, 555] identified as ‘the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought’, as we saw in §4.1 —
follows automatically in any theory with a noncommutative algebra of observables.
That is, it seems that once we assume ‘no superluminal information transfer via
measurement’, and ‘no broadcasting’, the class of allowable physical theories is
restricted to those theories in which physical systems manifest both interference
and nonlocal entanglement. But in terms of physical interpretation this conclusion
is a bit too quick, since the derivation of entangled states depends on formal
properties of the C∗-algebraic machinery. Moreover, we have no assurance that
two systems in an entangled state will maintain their entanglement indefinitely
as they separate in space, which is the case for quantum entanglement. But
this is precisely what is required by the cheating strategy that thwarts secure bit
commitment, since Alice will have to keep one system of such a pair and send the
other system to Bob, whose degree of spatial separation from Alice is irrelevant,
in principle, to the implementation of the protocol. In an information-theoretic
characterization of quantum theory, the fact that entangled states of composite
systems can be instantiated, and instantiated nonlocally so that the entanglement
of composite system is maintained as the subsystems separate in space, should be
shown to follow from some information-theoretic principle. The role of the ‘no
bit commitment’ constraint is to guarantee the persistence of entanglement over
distance, i.e., the existence of a certain class of nonlocal entangled states — hence
it gives us nonlocality, not merely ‘holism.’

As shown in §5.2, unconditionally secure quantum bit commitment is impossible
because a generalized version of the EPR cheating strategy can always be applied
by introducing additional ancilla particles and enlarging the Hilbert space in a
suitable way. That is, for a quantum mechanical system consisting of two (sepa-
rated) subsystems represented by the C∗-algebra B(H1)⊗B(H2), any mixture of
states on B(H2) can be generated from a distance by performing an appropriate
generalized measurement on the system represented by B(H1), for an appropriate
entangled state of the composite system. This is what Schrödinger called ‘remote
steering’ and found so physically counterintuitive that he speculated [1936, 451]
(wrongly, as it turned out) that experimental evidence would eventually show that
this was simply an artefact of the theory, not instantiated in our world. He sug-
gested that an entangled state of a composite system would almost instantaneously
decay to a mixture as the component systems separated.20 There would still be

20A similar possibility was raised and rejected by Furry [1936].
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correlations between the states of the component systems, but remote steering
would no longer be possible.

It seems worth noticing that the [EPR] paradox could be avoided by a
very simple assumption, namely if the situation after separating were
described by [the entangled state Ψ(x, y) =

∑
k akgk(x)fk(y)], but with

the additional statement that the knowledge of the phase relations
between the complex constants ak has been entirely lost in consequence
of the process of separation. This would mean that not only the parts,
but the whole system, would be in the situation of a mixture, not of
a pure state. It would not preclude the possibility of determining the
state of the first system by suitable measurements in the second one or
vice versa. But it would utterly eliminate the experimenters influence
on the state of that system which he does not touch.

Schrödinger regarded the phenomenon of interference associated with noncom-
mutativity in quantum mechanics as unproblematic, because he saw this as re-
flecting the fact that particles are wavelike. But he did not believe that we live
in a world in which physical systems can exist nonlocally in entangled states, be-
cause such states would allow Alice to steer Bob’s system into any mixture of
pure states compatible with Bob’s reduced density operator and he did not ex-
pect that experiments would bear this out. Of course, it was an experimental
question in 1935 whether Schrödinger’s conjecture was correct or not. We now
know that the conjecture is false. A wealth of experimental evidence, including
the confirmed violations of Bell’s inequality [Aspect et al., 1981; Aspect et al.,
1982] and the confirmations of quantum teleportation [Bouwmeester et al., 1997;
Boschi et al., 1998; Furasawa et al., 1998; Nielsen et al., 1998], testify to this.
The relevance of Schrödinger’s conjecture here is this: it raises the possibility of a
quantum-like world in which there is interference but no nonlocal entanglement.
Can we exclude this possibility on information-theoretic grounds?

Now although unconditionally secure bit commitment is no less impossible for
classical systems, in which the algebras of observables are commutative, than for
quantum systems, the insecurity of a bit commitment protocol in a noncommuta-
tive setting depends on considerations entirely different from those in a classical
commutative setting. As we saw in §5.2, the security of a classical bit commitment
protocol is a matter of computational complexity and cannot be unconditional.

By contrast, if, as Schrödinger speculated, we lived in a world in which the al-
gebras of observables are noncommutative but composite physical systems cannot
exist in nonlocal entangled states, if Alice sends Bob one of two mixtures associ-
ated with the same density operator to establish her commitment, then she is, in
effect, sending Bob evidence for the truth of an exclusive disjunction that is not
based on the selection of a particular disjunct. (Bob’s reduced density operator is
associated ambiguously with both mixtures, and hence with the truth of the ex-
clusive disjunction: ‘0 or 1’.) Noncommutativity allows the possibility of different
mixtures associated with the same density operator. What thwarts the possibility
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of using the ambiguity of mixtures in this way to implement an unconditionally se-
cure bit commitment protocol is the existence of nonlocal entangled states between
Alice and Bob. This allows Alice to cheat by preparing a suitable entangled state
instead of one of the mixtures, where the reduced density operator for Bob is the
same as that of the mixture. Alice is then able to steer Bob’s systems remotely
into either of the two mixtures associated with the alternative commitments at
will.

So what would allow unconditionally secure bit commitment in a noncommuta-
tive theory is the absence of physically occupied nonlocal entangled states, or the
spontaneous destruction of entanglement as systems separate. One can therefore
take Schrödinger’s remarks as relevant to the question of whether or not secure
bit commitment is possible in our world. In effect, Schrödinger raised the pos-
sibility that we live in a quantum-like world in which unconditionally secure bit
commitment is possible! It follows that the impossibility of unconditionally secure
bit commitment entails that, for any mixed state that Alice and Bob can prepare
by following some (bit commitment) protocol, there is a corresponding nonlocal
entangled state that can be physically occupied by Alice’s and Bob’s particles and
persists indefinitely as the particles move apart.

To sum up: the content of the CBH theorem is that a quantum theory — a
C∗-algebraic theory whose observables and states satisfy conditions of kinematic
independence, noncommutativity, and nonlocality — can be characterized by three
information-theoretic constraints: no superluminal communication of information
via measurement, no (perfect) broadcasting, and no (unconditionally secure) bit
commitment.

7.2 Quantum Mechanics as a Theory of Information

Consider Einstein’s view,21 mentioned in §1, that quantum mechanics is incom-
plete. Essentially, Einstein based his argument for this claim on the demand that a
complete physical theory should satisfy certain principles of realism (essentially, a
locality principle and a separability principle), which amounts to the demand that
statistical correlations between spatially separated systems should have a common
causal explanation in terms of causal factors obtaining at the common origin of
the systems. Roughly thirty years after the publication of the Einstein-Podolsky-
Rosen paper [1935], John Bell [1964] showed that the statistical correlations of the
entangled Einstein-Podolsky-Rosen state for spatially separated particles are in-
consistent with any explanation in terms of a classical probability distribution over
common causal factors originating at the source of the particles before they sep-
arate. But the fact that quantum mechanics allows the possibility of correlations
that are not reducible to common causes is a virtue of the theory. It is precisely
the nonclassical correlations of entangled states that underlie the possibility of
an exponential speed-up of quantum computation over classical computation, the

21The following discussion is adapted from [Bub, 2004] and [Bub, 2005], but the argument here
is developed somewhat differently.
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possibility of unconditionally secure key distribution but the impossibility of un-
conditionally secure quantum bit commitment, and phenomena such as quantum
teleportation and other nonclassical entanglement-assisted communication proto-
cols.

While Einstein’s argument for incompleteness fails, there is another sense, also
associated with entangled states, in which quantum mechanics might be said to be
incomplete. In a typical (idealized) quantum mechanical measurement interaction,
say an interaction in which the two possible values, 0 and 1, of an observable of
a qubit in a certain quantum state become correlated with the two possible posi-
tions of a macroscopic pointer observable, p0 and p1, the final state is an entangled
state, a linear superposition of the states |0〉|p0〉 and |1〉|p1〉 with coefficients de-
rived from the initial quantum state of the qubit. To dramatize the problem,
Schrödinger [1936] considered the case where |p0〉 and |p1〉 represent the states of
a cat being alive and a cat being dead in a closed box, which is only opened by
the observer some time after the measurement interaction. On the standard way
of relating the quantum state of a system to what propositions about the system
are determinately (definitely) true or false, and what propositions have no deter-
minate truth value, some correlational proposition about the composite system
(microsystem + cat) is true in this entangled state, but the propositions asserting
that the cat is alive (and the value of the qubit observable is 0), or that the cat is
dead (and the value of the qubit observable is 1), are assigned no determinate truth
value. Moreover, if we assume that the quantum propositions form an algebraic
structure isomorphic to the structure of subspaces of the Hilbert space of the com-
posite system — the representational space for quantum states and observables
— then it is easy to derive a formal contradiction from the assumption that the
correlational proposition corresponding to the entangled state is true, and that the
cat is either definitely alive or definitely dead.22 Schrödinger thought that it was
absurd to suppose that quantum mechanics requires us to say that the cat in such
a situation (a macrosystem) is neither alive nor dead (does not have a determinate
macroproperty of this sort) until an observer opens the box and looks, in which
case the entangled state ‘collapses’ nonlinearly and stochastically, with probabili-
ties given by the initial quantum state of the microsystem, onto a product of terms
representing a definite state of the cat and a definite state of the microsystem. Ein-
stein [1967, 39] concurred and remarked in a letter to Schrödinger: ‘If that were so
then physics could only claim the interest of shopkeepers and engineers; the whole
thing would be a wretched bungle.’

This is the standard ‘measurement problem’ of quantum mechanics. Admit-
tedly, the formulation of the problem is highly idealized, but the fundamental
problem arises from the way in which quantum mechanics represents correlations
via entangled states and does not disappear entirely in less idealized formulations
(even though the problem is somewhat altered by considering the macroscopic na-

22This also follows from the Bub-Clifton theorem discussed below. The sublattice of determi-
nate quantum propositions defined by the identity and the EPR state is maximal: adding any
proposition involves a contradiction.
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ture of the instrument, and the rôle of the environment). (See Dickson, this vol.,
ch. 4, and [Bub, 1997] for further discussion.) I shall refer to this problem —
the Schrödinger incompleteness of the theory — as Schrödinger’s problem. It is a
problem about truth (or the instantiation of properties), as opposed to a distinct
problem about probabilities.

Before formulating the probability problem, consider what was involved in the
transition from classical to quantum mechanics. Quantum mechanics first ap-
peared as Heisenberg’s matrix mechanics in 1925, following the ‘old quantum the-
ory’, a patchwork of ad hoc modifications of classical mechanics to accommodate
Planck’s quantum postulate. Essentially, Heisenberg modified the kinematics of
classical mechanics by replacing certain classical dynamical variables, like position
and momentum, with mathematical representatives — matrices — which do not
commute. Shortly afterwards, Schrödinger developed a wave mechanical version
of quantum mechanics and proved the formal equivalence of the two theories. It is
common to understand the significance of the transition from classical to quantum
mechanics in terms of ‘wave-particle duality’, the idea that a quantum system like
an electron, unlike a classical system like a stone, manifests itself as a wave under
certain circumstances and as a particle under other circumstances. This picture
obscures far more than it illuminates. We can see more clearly what is going on
conceptually if we consider the implications of Heisenberg’s move for the way we
think about objects and their properties in the most general sense.

Heisenberg replaced the commutative algebra of dynamical variables of classical
mechanics — position, momentum, angular momentum, energy, etc. — with a
noncommutative algebra. Some of these dynamical variables take the values 0 and
1 only and correspond to properties. For example, we can represent the property
of a particle being in a certain region of space by a dynamical variable that takes
the value 1 when the particle is in the region and 0 otherwise. A dynamical
variable like position corresponds to a set of such 2-valued dynamical variables or
physical properties. In the case of the position of a particle, these are the properties
associated with the particle being in region R, for all regions R. If, for all regions
R, you know whether or not the particle is in that region, you know the position of
the particle, and conversely. The 2-valued dynamical variables or properties of a
classical system form a Boolean algebra, a subalgebra of the commutative algebra
of dynamical variables.

Replacing the commutative algebra of dynamical variables with a noncommuta-
tive algebra is equivalent to replacing the Boolean algebra of 2-valued dynamical
variables or properties with a non-Boolean algebra. The really essential thing
about the classical mode of representation of physical systems in relation to quan-
tum mechanics is that the properties of classical systems are represented as having
the structure of a Boolean algebra or Boolean lattice. Every Boolean lattice is iso-
morphic to a lattice of subsets of a set.23 To say that the properties of a classical

23A lattice is a partially ordered set in which every pair of elements has a greatest lower
bound (or infimum) and least upper bound (or supremum) with respect to the ordering, a
minimum element (denoted by 0), and a maximum element (denoted by 1). A Boolean lattice is
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system form a Boolean lattice is to say that they can be represented as the sub-
sets of a set, the phase space or state space of classical mechanics. To say that a
physical system has a certain property is to associate the system with a certain
set in a representation space where the elements of the space — the points of the
set — represent all possible states of the system. A state picks out a collection of
sets, the sets to which the point representing the state belongs, as the properties
of the system in that state. The dynamics of classical mechanics is described in
terms of a law of motion describing how the state moves in the state space. As
the state changes with time, the set of properties selected by the state changes.
(For an elaboration, see [Hughes, 1995] and [Bub, 1997].)

So the transition from classical to quantum mechanics involves replacing the
representation of properties as a Boolean lattice, i.e., as the subsets of a set, with
the representation of properties as a certain sort of non-Boolean lattice. Dirac
and von Neumann developed Schrödinger’s equivalence proof into a representation
theory for the properties of quantum systems as subspaces in a linear vector space
over the complex numbers: Hilbert space. The non-Boolean lattice in question
is the lattice of subspaces of this space. Instead of representing properties as the
subsets of a set, quantum mechanics represents properties as the subspaces of a
linear space — as lines, or planes, or hyperplanes, i.e., as a projective geometry.
Algebraically, this is the central structural change in the transition from classical
to quantum mechanics — although there is more to it: notably the fact that the
state space for quantum systems is a Hilbert space over the complex numbers, not
the reals, which is reflected in physical phenomena associated with the possibility
of superposing states with different relative phases.

Instead of talking about properties, we can talk equivalently about propositions.
(We say that a given property is instantiated if and only if the corresponding
proposition is true.) In a Boolean propositional structure, there exist 2-valued
homomorphisms on the structure that correspond to truth-value assignments to
the propositions. In fact, each point in phase space — representing a classical state
— defines a truth-value assignment to the subsets representing the propositions:
each subset to which the point belongs represents a true proposition or a property
that is instantiated by the system, and each subset to which the point does not
belong represents a false proposition or a property that is not instantiated by the
system. So a classical state corresponds to a complete assignment of truth values
to the propositions, or a maximal consistent ‘list’ of properties of the system, and
all possible states correspond to all possible maximal consistent lists.

Probabilities can be introduced on such a classical property structure as mea-
sures on the subsets representing the properties. Since each phase space point

a complemented, distributive lattice, i.e., every element has a complement (the lattice analogue
of set-theoretic complementation) and the distributive law holds for the infimum and supremum.
The partial ordering in a Boolean lattice represented by the subsets of a set X corresponds to
the partial ordering defined by set inclusion, so the infimum corresponds to set intersection, the
supremum corresponds to set union, 0 corresponds to the null set, and 1 corresponds to the
set x. A Boolean algebra, defined in terms of algebraic sum (+) and product (.) operations, is
equivalent to a Boolean lattice defined as a partially ordered structure.
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defines a truth-value assignment, the probability of a property is the measure of
the set of truth-value assignments that assign a 1 (‘true’) to the property — in
effect, we ‘count’ (in the measure-theoretic sense) the relative number of state de-
scriptions in which the property is instantiated (or the corresponding proposition
is true), and this number represents the probability of the property. So it makes
sense to interpret the probability of a property as a measure of our ignorance as
to whether or not the property is instantiated. Probability distributions over clas-
sical states represented as phase space points are sometimes referred to as ‘mixed
states’, in which case states corresponding to phase space points are distinguished
as ‘pure states.’

The problem for a quantum property structure, represented by the lattice of
subspaces of a Hilbert space, arises because 2-valued homomorphisms do not exist
on these structures (except in the special case of a 2-dimensional Hilbert space).
If we take the subspace structure of Hilbert space seriously as the structural fea-
ture of quantum mechanics corresponding to the Boolean property structure or
propositional structure of classical mechanics, the non-existence of 2-valued ho-
momorphisms on the lattice of subspaces of a Hilbert space means that there is
no partition of the totality of properties of the assocated quantum system into
two sets: the properties that are instantiated by the system, and the properties
that are not instantiated by the system; i.e., there is no partition of the totality of
propositions into true propositions and false propositions. (Of course, other ways
of associating propositions with features of a Hilbert space are possible, and other
ways of assigning truth values, including multi-valued truth value assignments and
contextual truth value assignments. Ultimately, the issue here concerns what we
take as the salient structural change involved in the transition from classical to
quantum mechanics.)

It might appear that, on the standard interpretation, a pure quantum state rep-
resented by a 1-dimensional subspace in Hilbert space — a minimal element in the
subspace structure — defines a truth-value assignment on quantum propositions
in an analogous sense to the truth-value assignment on classical propositions de-
fined by a pure classical state. Specifically, on the standard interpretation, a pure
quantum state selects the propositions represented subspaces containing the state
as true, and the propositions represented by subspaces orthogonal to the state as
false. (Note that orthogonality is the analogue of set-complement, or negation,
in the subspace structure; the set-theoretical complement of a subspace is not in
general a subspace.)

There is, however, an important difference between the two situations. In the
case of a classical state, every possible property represented by a phase space
subset is selected as either instantiated by the system or not; equivalently, every
proposition is either true or false. In the case of a quantum state, the properties
represented by Hilbert space subspaces are not partitioned into two such mutu-
ally exclusive and collectively exhaustive sets: some propositions are assigned no
truth value. Only propositions represented by subspaces that contain the state
are assigned the value ‘true’, and only propositions represented by subspaces or-
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thogonal to the state are assigned the value ‘false.’ This means that propositions
represented by subspaces that are at some non-zero or non-orthogonal angle to the
ray representing the quantum state are not assigned any truth value in the state,
and the corresponding properties must be regarded as indeterminate or indefinite:
according to the theory, there can be no fact of the matter about whether these
properties are instantiated or not.

It turns out that there is only one way to assign (generalized) probabilities to
quantum properties, i.e., weights that satisfy the usual Kolmogorov axioms for a
probability measure on Boolean sublattices of the non-Boolean lattice of quantum
properties. This is the content of Gleason’s theorem [Gleason, 1957]. For a quan-
tum state ρ, a property p represented by a projection operator P is assigned the
probability Tr(ρP ). If ρ is a pure state ρ = |ψ〉〈ψ|, the probability of p is |〈ψp|ψ〉|2,
where |ψp〉 is the orthogonal projection of |ψ〉 onto the subspace P , i.e., the prob-
ability of p is the square of the cosine of the angle between the ray |ψ〉 and the
subspace P . This means that properties represented by subspaces containing the
state are assigned probability 1, properties represented by subspaces orthogonal
to the state are assigned probability 0, and all other properties, represented by
subspaces at a non-zero or non-orthogonal angle to the state are assigned a proba-
bility between 0 and 1. So quantum probabilities are not represented as measures
over truth-value assignments and cannot be given an ignorance interpretation in
the obvious way.

The question now is: what do these ‘angle probabilities’ or, perhaps better,
‘angle weights’ mean? The orthodox answer is that the probability assigned to a
property of a system by a quantum state is to be understood as the probability of
finding the property in a measurement process designed to ascertain whether or
not that property obtains. A little thought will reveal that this proposal is very
problematic. When the system is represented by a quantum state that assigns a
certain property the probability 1/2, say, this property is indeterminate. Physicists
would say that ascribing the property to the system in that state is ‘meaningless.’
But somehow it makes sense to design an experiment to ascertain whether or
not the property is instantiated by the system. And in such a measurement, the
probability is asserted to be 1/2 that the experiment will yield the answer ‘yes’, and
1/2 that the experiment will yield the answer ‘no.’ Clearly, a measurement process
in quantum mechanics is not simply a procedure for ascertaining whether or not
a property is instantiated in any straightforward sense. Somehow, a measurement
process enables an indeterminate property, that is neither instantiated nor not
instantiated by a system in a given quantum state, to either instantiate itself or
not with a certain probability; or equivalently, a proposition that is neither true nor
false can become true or false with a certain probability in a suitable measurement
process.

The probability problem (as opposed to the truth problem, Schrödinger’s prob-
lem) is the problem of interpreting the ‘angle weights’ as probabilities in some
sense (relative frequencies? propensities? subjective Bayesian betting probabili-
ties?) that does not reduce to a purely instrumentalist interpretation of quantum
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mechanics, according to which the theory is simply regarded as a remarkably
accurate instrument for prediction. (Recall Einstein’s remark about quantum me-
chanics being of interest only to shopkeepers and engineers on the Copenhagen in-
terpretation.) The problem arises because of the unique way in which probabilities
can be introduced in quantum mechanics, and because the notion of measurement
or observation is utterly mysterious on the Copenhagen interpretation.

In classical theories, we measure to find out what we don’t know, but in principle
a measurement does not change what is (and even if it does change what is, this
is simply a change or disturbance from one state of being to another that can
be derived on the basis of the classical theory itself). In quantum mechanics,
measurements apparently bring into being something that was indeterminate, not
merely unknown, before, i.e., a proposition that was neither true nor false becomes
true in a measurement process, and the way in which this happens according to
the theory is puzzling, given our deepest assumptions about objectivity, change,
and intervention.

Now, we know how to solve Schrödinger’s problem, i.e., we know all the possible
ways of modifying quantum mechanics to solve this problem. The problem arises
because of the linear dynamics of the theory, which yields a certain entangled
state as the outcome of a measurement interaction, and the interpretation of this
entangled state as representing a state of affairs that makes certain propositions
true, certain propositions false, and other propositions indeterminate. Either we
change the linear dynamics in some way, or we keep the linear dynamics and say
something non-orthodox about the relation between truth and indeterminateness
and the quantum state. Both options have been explored in various ways and in
great detail: we understand the solution space for Schrödinger’s problem, and the
consequences of adopting a particular solution.

‘Collapse’ theories, like the theory developed by Ghirardi, Rimini, and Weber
(GRW), and extended by Pearle [Ghirardi, 2002], solve the problem by modify-
ing the linear dynamics of quantum mechanics. (See Dickson, this vol., ch. 4,
for an account.) In the modified theory, there is a certain very small probability
that the wavefunction of a particle (the function defined by the components of
the quantum state with respect to the position basis in Hilbert space) will spon-
taneously ‘collapse’ after being multiplied by a peaked Gaussian of a specified
width. For a macroscopic system consisting of many particles, this probability can
be close to 1 for very short time intervals. In effect, this collapse solution modi-
fies the linear dynamics of standard quantum mechanics by adding uncontrollable
noise. When the stochastic terms of the modified dynamics become important at
the mesoscopic and macroscopic levels, they tend to localize the wave function
in space. So measurement interactions involving macroscopic pieces of equipment
(or cats) can be distinguished from elementary quantum processes, insofar as they
lead to the almost instantaneous collapse of the wave function and the correlation
of the measured observable with the position of a localized macroscopic pointer
observable.

‘No collapse’ solutions are constrained by certain ‘no go’ theorems that restrict
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the assignment of properties, or values to observables, under very general assump-
tions about the algebra of observables [Kochen and Specker, 1967], or restrict the
assignment of values to observables under certain assumptions about how distri-
butions of values are related to quantum probabilities [Bell, 1964]. A theorem by
Bub and Clifton [1996] shows that if you assume that the set of definite-valued
observables has a certain structure (essentially allowing quantum probabilities to
be recovered as classical measures over distributions defined by different possible
sets of values or properties), and the pointer observable in a measurement process
belongs to the set of definite-valued observables, then the class of such theories
— so-called ‘modal interpretations’ — is uniquely specified. More precisely, the
sublattice associated with any single observable R is a Boolean lattice, B, and a
quantum state |ψ〉 defines a classical probability measure on B, in the sense that
all the single and joint probabilities assigned by |ψ〉 to elements in B can be recov-
ered as measures on a Kolmogorov probability space defined on the ‘phase space’
X of 2-valued homomorphisms on B. The Bub-Clifton theorem characterizes the
maximal lattice extension, L, of any such Boolean sublattice associated with an
observable R and a given quantum state |ψ〉, under the assumption that L is an
ortholattice,24 invariant under lattice automorphisms that preserve R and |ψ〉, for
which the probabilities assigned by |ψ〉 to elements in L can be similarly recovered
as measures on a Kolmogorov probability space defined on the ‘phase space’ Y of
2-valued homomorphisms on L. In this sense, the theorem characterizes the limits
of classicality in a quantum propositional structure. It turns out that different
modal interpretations can be associated with different ‘determinate sublattices’ L,
i.e., with different choices of a ‘preferred observable’ R. For standard quantum
mechanics, R is the identity, and the determinate sublattice L consists of all quan-
tum propositions represented by subspaces containing the state |ψ〉 (propositions
assigned probability 1 by |ψ〉) and subspaces orthogonal to |ψ〉 (propositions as-
signed probability 0 by |ψ〉. Bohm’s hidden variable theory can be regarded as
a modal interpretation in which the preferred observable is position in configura-
tion space. (See Dickson, this vol., ch. 4, and [Goldstein, 2001] for an account of
Bohm’s theory.)

An alternative type of ‘no-collapse’ solution to the Schrödinger problem is pro-
vided by the Everett interpretation [Everett, 1957]. (See Dickson, this vol., ch.
4, for an account.) There are a variety of Everettian interpretations in the lit-
erature, the common theme being that all possible outcomes of a measurement
are regarded as actual in some indexical sense, relative to different terms in
the global entangled state (with respect to a certain preferred basis in Hilbert
space), which are understood to be associated with different worlds or different
minds, depending on the version. The most sophisticated formulation of Ev-
erett’s interpretation is probably the Saunders-Wallace version [Saunders, 1998;
Wallace, 2003]. Here the preferred basis is selected by decoherence (see below),
and probabilities are introduced as rational betting probabilities in the Bayesian
sense via a decision-theoretic argument originally due to Deutsch [1999].

24I.e., an orthogonal complement exists for every element of L.
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To sum up: any solution to Schrödinger’s measurement problem involves either
modifying the linear dynamics of the theory (‘collapse’ theories), or taking some
observable in addition to the identity as having a determinate value in every quan-
tum state, and modifying what the standard theory says about what propositions
are true, false, and indeterminate in a quantum state (modal interpretations, ‘no
collapse’ hidden variable theories), so that at the end of a measurement interaction
that correlates macroscopic pointer positions with possible values of a measured
observable, the pointer propositions and propositions referring to measured values
end up having determinate truth values. Alternatively (Everettian interpreta-
tions), we can interpret quantum mechanics so that every measurement outcome
becomes determinate in some indexical sense (with respect to different worlds, or
different minds, or different branches of the entangled state, etc.).

We know in considerable detail what these solutions look like, in terms of how
quantum mechanics is modified. It was a useful project to explore these solutions,
because we learnt something about quantum mechanics in the process, and perhaps
there is more to learn by exploring the solution space further. But the point to
note here is that all these solutions to the ‘truth problem’ of measurement distort
quantum mechanics in various ways by introducing additional structural features
that obscure rather than illuminate our understanding of the phenomena involved
in information-theoretic applications of entanglement, such as quantum teleporta-
tion, the possibility and impossibility of certain quantum cryptographic protocols
relative to classical protocols, the exponential speed-up of quantum computation
algorithms relative to classical algorithms, and so on.

Consider again the Bohr-Einstein dispute about the interpretation of quantum
mechanics. One might say that what separated Einstein (and Schrödinger) and
Bohr was their very different answers to what van Fraassen [1991, 4] has called
‘the foundational question par excellence: how could the world possibly be the way
quantum theory says it is? This would be misleading. Einstein answered this
question by arguing that the world couldn’t be the way quantum theory says it
is, unless the theory is not the whole story (so a ‘completion’ of the theory —
perhaps Einstein’s sought-after unified field theory — would presumably answer
the question). But Bohr’s complementarity interpretation is not intended to be
an answer to this question. Rather, complementarity should be understood as
suggesting an answer to a different question: why must the world be the way
quantum theory says it is?

To bring out the difference between these two questions, consider Einstein’s
distinction between what he called ‘principle’ versus ‘constructive’ theories. Ein-
stein introduced this distinction in an article on the significance of the special and
general theories of relativity that he wrote for the London Times, which appeared
in the issue of November 28, 1919 [1919]:

We can distinguish various kinds of theories in physics. Most of them
are constructive. They attempt to build up a picture of the more com-
plex phenomena out of the material of a relatively simple formal scheme
from which they start out. Thus the kinetic theory of gases seeks to
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reduce mechanical, thermal, and diffusional processes to movements of
molecules — i.e., to build them up out of the hypothesis of molecu-
lar motion. When we say that we have succeeded in understanding
a group of natural processes, we invariably mean that a constructive
theory has been found which covers the processes in question.

Along with this most important class of theories there exists a second,
which I will call ‘principle theories.’ These employ the analytic, not the
synthetic, method. The elements which form their basis and starting-
point are not hypothetically constructed but empirically discovered
ones, general characteristics of natural processes, principles that give
rise to mathematically formulated criteria which the separate processes
or the theoretical representations of them have to satisfy. Thus the sci-
ence of thermodynamics seeks by analytical means to deduce necessary
conditions, which separate events have to satisfy, from the universally
experienced fact that perpetual motion is impossible.

Einstein’s point was that relativity theory is to be understood as a principle
theory. He returns to this theme in his ‘Autobiographical Notes’ [1949, 51–52],
where he remarks that he first tried to find a constructive theory that would
account for the known properties of mater and radiation, but eventually became
convinced that the solution to the problem was to be found in a principle theory
that reconciled the constancy of the velocity of light in vacuo for all inertial frames
of reference, and the equivalence of inertial frames for all physical laws (mechanical
as well as electromagnetic):

Reflections of this type made it clear to me as long ago as shortly
after 1900, i.e., shortly after Planck’s trailblazing work, that neither
mechanics nor electrodynamics could (except in limiting cases) claim
exact validity. By and by I despaired of the possibility of discovering
the true laws by means of constructive efforts based on known facts.
The longer and the more despairingly I tried, the more I came to the
conviction that only the discovery of a universal formal principle could
lead us to assured results. The example I saw before me was thermo-
dynamics. The general principle was there given in the theorem: the
laws of nature are such that it is impossible to construct a perpetuum
mobile (of the first and second kind). How, then, could such a universal
principle be found?

A little later [1949, 57], he adds:

The universal principle of the special theory of relativity is contained
in the postulate: The laws of physics are invariant with respect to the
Lorentz-transformations (for the transition from one inertial system
to any other arbitrarily chosen system of inertia). This is a restrict-
ing principle for natural laws, comparable to the restricting principle
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for the non-existence of the perpetuum mobile which underlies ther-
modyamics.

According to Einstein, two very different sorts of theories should be distin-
guished in physics. One sort involves the reduction of a domain of relatively
complex phenomena to the properties of simpler elements, as in the kinetic the-
ory, which reduces the mechanical and thermal behavior of gases to the motion of
molecules, the elementary building blocks of the constructive theory. The other
sort of theory is formulated in terms of ‘no go’ principles that impose constraints
on physical processes or events, as in thermodynamics (‘no perpetual motion ma-
chines’). For an illuminating account of the role played by this distinction in
Einstein’s work, see the discussion by Martin Klein in [1967].

The special theory of relativity is a principle theory, formulated in terms of
two principles: the equivalence of inertial frames for all physical laws (the laws
of electromagnetic phenomena as well as the laws of mechanics), and the con-
stancy of the velocity of light in vacuo for all inertial frames. These principles
are irreconcilable in the geometry of Newtonian space-time, where inertial frames
are related by Galilean transformations. The required revision yields Minkowski
geometry, where inertial frames are related by Lorentz transformations. Einstein
characterizes the special principle of relativity, that the laws of physics are invari-
ant with respect to Lorentz transformations from one inertial system to another,
as ‘a restricting principle for natural laws, comparable to the restricting principle
for the non-existence of the perpetuum mobile which underlies thermodynamics.’
(In the case of the general theory of relativity, the group of allowable transforma-
tions includes all differentiable transformations of the space-time manifold onto
itself.) By contrast, the Lorentz theory [Lorentz, 1909], which derives the Lorentz
transformation from the electromagnetic properties of the aether, and assumptions
about the transmission of molecular forces through the aether, is a constructive
theory.

The question:

How could the world possibly be the way the quantum theory says it
is?

is motivated by a difficulty in interpreting quantum mechanics as a constructive
theory, and the appropriate response is some constructive repair to the theory
that resolves the difficulty, or the demonstration that the puzzling features of
quantum mechanics at the phenomenal level (the phenomena of interference and
entanglement) can be derived from a physically unproblematic constructive theory.

The question:

Why must the world be the way the quantum theory says it is?

does not ask for a ‘bottom-up’ explanation of quantum phenomena in terms of a
physical ontology and dynamical laws. Rather, the question concerns a ‘top-down’
derivation of quantum mechanics as a principle theory, in terms of operational
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constraints on the possibilities of manipulating phenomena. In the case of quantum
mechanics, the relevant phenomena concern information.

This shift in perspective between the two questions is highlighted in a remark
by Andrew Steane in his review article on ‘Quantum Computing’ [1998, 119]:

Historically, much of fundamental physics has been concerned with dis-
covering the fundamental particles of nature and the equations which
describe their motions and interactions. It now appears that a differ-
ent programme may be equally important: to discover the ways that
nature allows, and prevents, information to be expressed and manip-
ulated, rather than particles to move.

Steane concludes his review with the following proposal [1998, 171]:

To conclude with, I would like to propose a more wide-ranging theo-
retical task: to arrive at a set of principles like energy and momentum
conservation, but which apply to information, and from which much of
quantum mechanics could be derived. Two tests of such ideas would
be whether the EPR-Bell correlations thus became transparent, and
whether they rendered obvious the proper use of terms such as ‘mea-
surement’ and ‘knowledge.’

A similar shift in perspective is implicit in Wheeler’s question ‘Why the quan-
tum?’, one of Wheeler’s ‘Really Big Questions’ [1998]. Steane’s suggestion is to
answer the question by showing how quantum mechanics can be derived from
information-theoretic principles. A more specific proposal along these lines orig-
inates with Gilles Brassard and Chris Fuchs. As remarked in §5.2, Brassard and
Fuchs [Brassard, 2000; Fuchs, 1997; Fuchs, 2000; Fuchs and Jacobs, 2002] specu-
lated that quantum mechanics could be derived from information-theoretic con-
straints formulated in terms of certain primitive cryptographic protocols: specif-
ically, the possibility of unconditionally secure key distribution, and the impossi-
bility of unconditionally secure bit commitment.

The CBH theorem (motivated by the Brassard-Fuchs conjecture) shows that
quantum mechanics can be regarded as a principle theory in Einstein’s sense,
where the principles are information-theoretic constraints. So we have an answer
to the question: why must the world be the way quantum mechanics says it is?
The phenomena of interference and nonlocal entanglement are bound to occur in
a world in which there are certain constraints on the acquisition, communication,
and processing of information.

Consider, for comparison, relativity theory, the other pillar of modern physics.
A relativistic theory is a theory with certain symmetry or invariance properties,
defined in terms of a group of space-time transformations. Following Einstein’s
formulation of special relativity as a principle theory, we understand this invariance
to be a consequence of the fact that we live in a world in which natural processes
are subject to certain constraints: roughly (as Hermann Bondi [1980] puts it), ‘no
overtaking of light by light’, and ‘velocity doesn’t matter’ (for electromagnetic as
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well as mechanical phenomena). Recall Einstein’s characterization of the special
principle of relativity as ‘a restricting principle for natural laws, comparable to the
restricting principle of the non-existence of the perpetuum mobile which underlies
thermodynamics.’) Without Einstein’s analysis, the transformations of Minkowski
space-time would simply be a rather puzzling algorithm for relativistic kinematics
and the Lorentz transformation, which is incompatible with the kinematics of
Newtonian space-time. What Einstein’s analysis provides is a rationale for taking
the structure of space and time as Minkowskian: we see that this is required for
the consistency of the two principles of special relativity.

A quantum theory is a theory in which the observables and states have a cer-
tain characteristic algebraic structure. Unlike relativity theory, quantum mechan-
ics was born as a recipe or algorithm for caclulating the expectation values of
observables measured by macroscopic measuring instruments. A theory with a
commutative C∗-algebra has a phase space representation — not necessarily the
phase space of classical mechanics, but a theory in which the observables of the
C∗-algebra are replaced by ‘beables’ (Bell’s term, see [1987]), and the C∗-algebraic
states are replaced by beable-states representing complete lists of properties (idem-
potent quantities). In this case, it is possible to extend the theory to include the
measuring instruments that are the source of the C∗-algebraic statistics, so that
they are no longer ‘black boxes’ but constructed out of systems that are character-
ized by properties and states of the phase space theory. That is, the C∗-algebraic
theory can be replaced by a ‘detached observer’ theory of the physical processes
underlying the phenomena, to use Pauli’s term [Born, 1971, 218], including the
processes involved in the functioning of measuring instruments. Note that this
depends on a representation theorem. In the noncommutative case, we are guar-
anteed only the existence of a Hilbert space representation of the C∗-algebra, and
it is an open question whether a ‘detached observer’ description of the phenomena
is possible.

Solving Schrödinger’s problem — the truth problem — amounts to a proposal
to treat quantum mechanics as a failed or incomplete constructive theory in need
of constructive repair. In effect, the problem is how to account for quantum infor-
mation — the puzzling features of interference and nonlocal entanglement — in a
theoretical framework in which only classical information is meaningful in a funda-
mental sense. If we treat quantum mechanics as a principle theory of information,
the core foundational problem is the probability problem. From this perspective,
the problem is how to account for the appearance of classical information in a
quantum world characterized by information-theoretic constraints.

One might complain that treating quantum mechanics as a principle theory
amounts to simply postulating what is ultimately explained by a constructive
theory like the GRW theory or Bohm’s theory. This would amount to rejecting
the idea that a principle theory can be explanatory. From the perspective adopted
here, Bohm’s constructive theory in relation to quantum mechanics is like Lorentz’s
constructive theory of the electron in relation to special relativity. Cushing [1998,
204] quotes Lorentz (from the conclusion of the 1916 edition of The Theory of
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Electrons) as complaining similarly that ‘Einstein simply postulates what we have
deduced.’
I cannot speak here of the many highly interesting applications which Einstein has made of this
principle [of relativity]. His results concerning electromagnetic and optical phenomena ... agree
in the main with those which we have obtained in the preceding pages, the chief difference being
that Einstein simply postulates what we have deduced, with some difficulty and not altogether
satisfactorily, from the fundamental equations of the electromagnetic field. By doing so, he
may certainly take credit for making us see in the negative result of experiments like those
of Michelson, Rayleigh and Brace, not a fortuitous compensation of opposing effects, but the
manifestation of a general and fundamental principle.

Yet, I think, something may also be claimed in favour of the form in which I have presented the
theory. I cannot but regard the aether, which can be the seat of an electromagnetic field with its
energy and its vibrations, as endowed with a certain degree of substantiality, however different
it may be from all ordinary matter. In this line of thought, it seems natural not to assume at
starting that it can never make any difference whether a body moves through the aether or not,
and to measure distances and lengths of time by means of rods and clocks having a fixed position
relative to the aether.

Note that Lorentz’s theory is constrained by the principles of special relativity,
which means that the aether as a rest frame for electromagnetic phenomena must,
in principle, be undetectable. So such a theory can have no excess empirical
content over special relativity. Cushing [1998, 193] also quotes Maxwell as asking
whether ‘it is not more philosophical to admit the existence of a medium which
we cannot at present perceive, than to assert that a body can act at a place where
it is not.’ Yes, but not if we also have to admit that, in principle, as a matter
of physical law, if we live in a world in which events are constrained by the two
relativistic principles, the medium must remain undetectable.

You can, if you like, tell a constructive story about quantum phenomena, but
such an account, if constrained by the information-theoretic principles, will have
no excess empirical content over quantum mechanics. Putting this differently, a
solution to Schrödinger’s truth problem that has excess empirical content over
quantum mechanics must violate one or more of the CBH information-theoretic
constraints. So, e.g., a Bohmian theory of quantum phenomena is like an aether
theory for electromagnetic fields. Just as the aether theory attempts to make
sense of the behaviour of fields by proposing an aether that is a sort of sui generis
mechanical system different from all other mechanical systems, so Bohm’s theory
attempts to make sense of quantum phenomena by introducing a field (the quan-
tum potential or guiding field) that is a sort of sui generis field different from
other physical fields.

The crucial distinction here is between a constructive theory formulated in terms
of a physical ontology and dynamical laws (‘bottom-up’) and a principle theory for-
mulated in terms of operational constraints at the phenomenal level (‘top-down’).
A constructive theory introduces an algebra of beables and beable-states. A prin-
ciple theory introduces an algebra of observables and observable-states, which are
essentially probability measures.

It seems clear that the algebra of observables will be non-trivially distinct from
the algebra of beables if cloning is impossible. For if a constructive theory for a
certain domain of phenomena allows dynamical interactions in which a beable of
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one system, designated as the measuring instrument, can become correlated with a
beable of another system, designated as the measured system, without disturbing
the values of other beables of the measured system, we can take such an interaction
as identifying the value of the beable in question (in the sense that the value of
a beable of one system is recorded in the value of a beable of a second system).
If this is possible, then it will be possible to simultaneously measure any number
of beables of a system by concatenating measurement interactions, and so it will
be possible in principle to identify any arbitrary beable state. If we assume that
we can prepare any state, then the possibility of identifying an arbitrary state
means that we can construct a device that could copy any arbitrary state. So
if we cannot construct such a device, then measurement in this sense must also
be impossible. It follows that a ‘measurement’ in the constructive theory will be
something other than the mere identification of a beable value of a system, without
disturbance, and the question of what the observables are in such a theory will
require a non-trivial analysis.

Such an analysis is indeed given by Bohm in Part II of his two-part 1952 paper
on hidden variables [1952], and a more careful and sophisticated analysis is given
by [Dürr et al., 2003] for their ‘Bohmian mechanics’ version of Bohm’s theory. As
one would expect (given the equilibrium distribution assumption which ensures
that Bohm’s theory is empirically indistinguishable from quantum mechanics),
while the beables are functions of position in configuration space (and form a
commutative algebra), the observables of the theory are just the observables of
quantum theory and form a noncommutative algebra.

The CBH theorem assumes that, for the theories we are concerned with, the
observables form a C∗-algebra. The content of the CBH theorem is that, given
certain information-theoretic constraints, the C∗-algebra of observables and ob-
servable states takes a certain form characteristic of quantum theories. The the-
orem says nothing about beables and beable-states, and does not address the
measurement problem (Schrödinger’s truth problem), let alone solve it. But from
the perspective adopted here, the measurement problem is simply the observation
that cloning is impossible, and a ‘solution to the measurement problem’ is the
proposal of a physical ontology and dynamics and an analysis of measurement
that yields the observables and observable-states of standard quantum mechan-
ics. Such theories provide possible explanations for the impossibility of cloning.
But since there are now a variety of such explanations available, and — assuming
the CBH information-theoretic principles — there are no empirical constraints,
in principle, that could distinguish these explanations, there seems little point in
pursuing the question further. A constructive theory whose sole motivation is to
‘solve the measurement problem’ seems unlikely to survive fundamental advances
in physics driven by other theoretical or experimental problems

The probability problem — the core foundational problem for the interpreta-
tion of quantum mechanics as a principle theory of information — can be put this
way: From the information-theoretic constraints, we get a noncommutative (or
non-Boolean) theory of correlations for which there is no phase space representa-
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tion. One can define, in a unique way (according to Gleason’s theorem) generalized
‘transition probabilities’ or ‘transition weights’ associated with certain structural
features of the noncommutative structure: the angles between geometrical ele-
ments representing quantum ‘propositions.’ The problem is how to understand
these weights as representing probabilities, without reducing the problem to a so-
lution of the truth problem.

It seems clear that we need to take account of the phenomenon of decoher-
ence (see Landsmann, this vol., ch. 5; Dickson, this vol., ch. 4; [Zurek, 2003;
Olliver et al., 2004]): an extremely fast process that occurs in the spontaneous
interaction between a macrosystem and its environment that leads to the virtu-
ally instantaneous suppression of quantum interference. What happens, roughly,
is that a macrosystem like Schrödinger’s cat typically becomes correlated with
the environment — an enormous number of stray dust particles, air molecules,
photons, background radiation, etc. — in an entangled state that takes a certain
form with respect to a preferred set of basis states, which remain stable as the
interaction develops and includes more and more particles. It is as if the envi-
ronment is ‘monitoring’ the system via a measurement of properties associated
with the preferred states, in such a way that information about these properties
is stored redundantly in the environment. This stability, or robustness, of the
preferred basis, and the redundancy of the information in the environment, allows
one to identify certain emergent structures in the overall pattern of correlations
— such as macroscopic pointers and cats and information-gatherers in general —
as classical-like: the correlational information required to reveal quantum interfer-
ence for these structures is effectively lost in the environment. So it appears that
the information-theoretic constraints are consistent with both (i) the conditions
for the existence of measuring instruments as sources of classical information, and
(ii) the existence of information-gatherers with the ability to use measuring instru-
ments to apply and test quantum mechanics, given a characterization of part of the
overall system as the environment. That is, decoherence provides an explanation
for the emergence of classical information in a quantum correlational structure.

If something like the above account of decoherence is acceptable, then the prob-
ability problem reduces to showing that the probabilities assigned to measurement
outcomes by these information-gatherers, in the subjective Bayesian sense, are just
the Gleason generalized transition probabilities. That is, we need to show that,
while quantum theory, at the fundamental level, is a noncommutative theory of
correlations for which there is no phase space representation, it is also a theory of
the probabilistic behavior of information-gatherers, certain emergent structures in
the pattern of correlations when correlational information in their environment is
ignored. For an argument along these lines, see [Pitowsky, 2002].

On the view proposed here, no measurement outcomes are certified as deter-
minate by the theory. Rather, measuring instruments are sources of classical
information, where the individual occurrence of a particular distinguishable event
(‘symbol’) produced stochastically by the information source lies outside the the-
ory. In this sense, a measuring instrument, insofar as it functions as a classical
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information source, is still ultimately a ‘black box’ in the theory. So a quan-
tum description will have to introduce a ‘cut’ between what we take to be the
ultimate measuring instrument in a given measurement process and the quantum
phenomenon revealed by the instrument. But this ‘cut’ is no longer ad hoc, or mys-
terious, or in some other way problematic, as it is in the Copenhagen interpretation
(see Landsmann, this vol., ch. 5). For here the ‘cut’ just reflects the fundamental
interpretative claim: that quantum mechanics is a theory about the representation
and manipulation of information constrained by the possibilities and impossibili-
ties of information-transfer in our world, rather than a theory about the ways in
which nonclassical waves and particles move.
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THE CONCEPTUAL BASIS OF QUANTUM
FIELD THEORY

Gerard ’t Hooft

1 INTRODUCTION TO THE NOTION OF QUANTIZED FIELDS

Quantum Field Theory is one of those cherished scientific achievements that have
become considerably more successful than they should have, if one takes into
consideration the apparently shaky logic on which it is based. With awesome
accuracy, all known subatomic particles appear to obey the rules of one example
of a quantum field theory that goes under the uninspiring name of “The Standard
Model”. The creators of this model had hardly anticipated such a success, and
one can rightfully ask to what it can be attributed.

We have long been aware of the fact that, in spite of its successes, the Standard
Model cannot be exactly right. Most quantum field theories are not asymptoti-
cally free, which means that they cannot be extended to arbitrarily small distance
scales. We could try to cure the Standard Model, but this would not improve our
understanding at all, because we know that, at those extremely tiny distance scales
where the problems would become relevant, a force appears that we cannot yet
describe unambiguously: the gravitational force. It would have to be understood
first.

Perhaps this is the real strength of Quantum Field Theory: we know where its
limits are, and these limits are far away. The gravitational force acting between
two subatomic particles is tremendously weak. As long as we disregard that, the
theory is perfect. And, as I will explain, its internal logic is not shaky at all.

Subatomic particles all live in the domain of physics where spins and actions are
comparable to Planck’s constant � . One obviously needs Quantum Mechanics to
describe them. Since the energies available in sub-atomic interactions are compa-
rable to, and often larger than, the rest mass energy mc2 of these particles, they
often travel with velocities close to that of light, c , and so relativistic effects will
also be important. Thus, in the first half of the twentieth century, the question
was asked:

“How should one reconcile Quantum Mechanics with Einstein’s theory of Special
Relativity?”

As we shall explain, Quantum Field Theory is the answer to this question.

c
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Our first intuitions would be, and indeed were, quite different [Pais, 1986;
Crease and Mann, 1986]. One would set up abstract Hilbert spaces of states,
each containing fixed or variable numbers of particles. Subsequently, one would
postulate a consistent scheme of interactions. What would ‘consistent’ mean? In
Quantum Mechanics, we have learned how to describe a process where we start
with a certain number of particles that are all far apart but moving towards one
another. This is the ‘in’ state |ψ〉in . After the interaction has taken place, we
end up with particles all moving away from one another, a state |ψ′〉out . The
probability that a certain in-state evolves into a given out-state is described by a
quantum mechanical transition amplitude, out〈ψ′|ψ〉in . The set of all such ampli-
tudes in the vector spaces formed by all in- and out-states is called the scattering
matrix. One can ask how to construct the scattering matrix in such a way that
(i) it is invariant under Lorentz transformations, and (ii) obeys the strict laws of
quantum causality. By ‘quantum causality’ we mean that under no circumstance
a measurable effect may proceed with a velocity faster than that of light. In prac-
tice, this means that one must demand that any set of local operators Oi(x, t)
obeys commutation rules such that the commutators [Oi(x, t), Oj(x′, t′)] vanish
as soon as the vector (x− x′, t− t′) is space-like. One can show that this implies
that the scattering matrix must obey dispersion relations.

This is indeed how physicists started to think about their problem. But how
should one construct such a scattering matrix? Does any systematic procedure
exist?

A quantized field may seem to be something altogether different, yet it does
appear to allow for the construction of an interacting medium that does obey the
laws of Lorentz invariance and causality. The local operators can be constructed
from the fields. All we then have to do is to set up schemes of relativistically covari-
ant field equations, such as Maxwell’s laws. Even the introduction of non-linear
terms in these equations appears to be straightforward, and if we were to subject
such systems to a mathematically well-defined procedure called “quantization”,
we would have candidates for a solution to the aforementioned problem.

Realizing that the energy in a quantized field comes in quantized energy pack-
ages, which in all respects behave like elementary particles, and, conversely, re-
alizing that operators in the form of fields could be defined also when one starts
up with Hilbert spaces consisting of elementary particles, it was discovered that
quantized fields do indeed describe subatomic particles. Subsequently, it was dis-
covered that, in a quantized field, the number of ways in which interactions can be
introduced (basically by adding non-linear terms in the field equations), is quite
limited. Quantization requires that all interactions can be given in the form of
a Lagrange function L ; relativity requires this L to be Lorentz-invariant, and,
most strikingly, self-consistency of Quantum Field Theory then provides further
restrictions, which leads to the possibility of writing down a complete list of all
possible interactions. The Standard Model is just one element of this list.
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The scope of this concise treatise on Quantum Field Theory is too limited to
admit detailed descriptions of all technical details. Instead, special emphasis is put
on the conceptual issues that arise when addressing the numerous questions and
problems associated with this doctrine. One could use this text to learn Quantum
Field Theory, but for many technical details, more literature must be consulted
[de Wit and Smith, 1986; Aitchison and Hey, 1989; Ryder, 1985; Itzykson and
Zuber, 1980; Cheng and Li, 1984] We also limited ourselves to applications of
Quantum Field Theory in elementary particle physics. There are many examples
in low-temperature physics where these and similar techniques are useful, but they
will not be addressed here.

2 SCALAR FIELDS

2.1 Classical Theory: Feynman rules

A field is here taken to mean a physical variable that is a function of space-time
coordinates x = (x, t). In order for our theories to be in accordance with special
relativity, we will have to specify how a field transforms under a homogeneous
Lorentz transformation,

x′ = Lx .(1)

If a field φ transforms as

φ′(x) = φ(x′) ,(2)

then φ is called a scalar field. The improper Lorentz transformations, such as
parity reflection P and time reversal T , are of lesser importance since we know
that Nature is not exactly invariant under those.

Let us first restrict ourselves to real scalar fields; generalization to the case where
fields are denoted by complex numbers will be straightforward. Upon quantization,
scalar fields will come in energy packets that behave as spinless Bose-Einstein
particles, such as π0, π± and η0 . Conceptually, the scalar field is the easiest to
work with, but in section 9 we shall find reasons why other kinds of fields can
actually improve the internal consistency of our theories.

Lorentz-invariant field equations typically take the form1

(∂2
μ −m2

(i))φi = Fi(φ) ; ∂2
μ ≡ �∂ 2

x − ∂2
t .(3)

1We use summation convention: repeated indices that are not put between brackets are
automatically summed over. Greek indices μ are Lorentz indices taking 4 values, Latin indices
i, j, · · · run from 1 to 3. Our metric convention is gμν =diag(−1, 1, 1, 1) .
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Here, the index i labels different possible species of scalar fields, and Fi(φ) could
be any function of the field(s) φj(x). Usually, however, we assume that there
is a potential function V int(φ), such that Fi(φ) is the gradient of V int , and
furthermore we assume that V int is a polynomial whose degree is at most four:

V int(φ) = 1
6gijkφiφjφk + 1

24λijk� φiφjφkφ� ;

Fi(φ) =
∂V int(φ)

∂φi
= 1

2gijkφjφk + 1
6λijk� φjφkφ� ,(4)

where g and λ must be totally symmetric under all permutations of their indices.1

This is actually a limitation on the forms that Fi(φ) can take. Without this
limitation, we would not have a conserved energy, and quantization of the theory
would not be possible. Later, we will see why higher terms in the polynomial are
not permitted (section 7).

In order to understand the general structure of the classical solutions to this set
of equations, we temporarily add a function −Ji(x) to Fi(φ) in Eq. (3). Subse-
quently, we expand the solution in powers of Ji(x):

(m2
(i) − ∂2

μ)φi(x) = Ji(x)− ∂

∂φi
V int(φ(x));

φi(x) = φ
(1)
i (x) + φ

(2)
i (x) + ψ

(3)
i (x) + · · ·

=
∫

d4y Gij(x− y)
(

Jj(y)− Fj

(
φ(1)(y) + φ(2)(y) + φ(3)(y) + · · ·

))
. (5)

The function Gij(x− y) is a solution to the equation

(m2
i − ∂2

μ)Gij(x− y) = δijδ(x− y) ,(6)

while φ
(2)
i (x) is quadratic in Jj(y) and φ(3)(x) is cubic, and so on. Assembling

terms of equal order in Jj(y) we find a recursive procedure to solve the field
equations (2.1). At the end of our calculation, we might set Ji(x) equal to zero,
or better, have J non-vanishing only in the far-away region where the particles
originated, so that the J interaction is a simplified model for the machine that
produced the particles in the far past. Indeed, in the quantum theory it will also
turn out to be convenient to use J as a model for the particle detector at the end
of the experiment.

We see that the solution to Eq. (2.1) can be written as the sum of a large number
of terms. Each of these terms can be written in the form of a diagram, called a
Feynman diagram. In these diagrams, we represent a space-time point as a dot,
and the function Gij(x− y) as a line connecting x with y . The index i may be
indicated at each line. A dot may either be associated with a term Ji(y), or it is a
three-point vertex associated with a coefficient gijk or a four-point vertex, going
with a coefficient λijk� . A typical Feynman diagram is sketched in Fig. 1.
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φ1(x) g123

λ2456

x′

J4(x′′)

J5(x′′′)

J6(x′ν)

J3(xν)

G33(x′−xν)

6

5

4

21

Figure 1. Example of a Feynman diagram for classical scalar fields

Observe the general structure of these diagrams. There are factors 1
2 , 1

6 , etc.,
which can easily be read off from the symmetries of the diagram. By construction,
there are no closed loops: the diagram is simply connected. This will be different
in the quantized theory.

One important issue is to be addressed: the Green function, Gij(x− y) is not
completely determined by the equation (6): one may add arbitrary combinations
of the solutions of the homogeneous equation

(m2
i − ∂2

μ)Gij(x− y) = 0 .(7)

In Fourier space, this ambiguity is reflected in the fact that one has some freedom
in choosing the integration curve C in the solution2

Gij(x− y) = (2π)−4

∫
C

d4k eik·(x−y)
δij

k2 + m2
i

.(8)

Our choice can be indicated by shifting the pole by an infinitesimal imaginary
number, after which we choose the contour C to be along the real axis of all
integrands. A reasonable choice is

G+
ij(x− y) = (2π)−4

∫
d4k eik·(x−y)

δij
k2 − (k0 + iε)2 + m2

(i)

,(9)

where ε is an infinitesimal, positive number. With this choice, the integration
contour in the complex k0 plane can be shifted such that the imaginary part of
k0 can be given an arbitrarily large positive value, and from this one deduces that

2An inner product k · x stands for �k · �x− k0x0 .
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the Green function will vanish as soon as the time difference, x0− y0 , is negative.
This Green function, called the forward Green function, gives our expressions
the desired causality structure: There are obviously no effects that propagate
backwards in time, or indeed faster than light.

The converse choice, G−(x−y), gives us the backward solution. However, in the
quantized theory, we will often be interested in yet another choice, the Feynman
propagator, defined as

GF
ij(x− y) = (2π)−4

∫
d4k eik·(x−y)

δij

k2 − k02 + m2
i − iε

,(10)

where, again, the infinitesimal number ε > 0.

The rules to obtain the complete expansion of the solution can now be summa-
rized as follows:

1) Each term can be depicted as a diagram consisting of points (vertices) con-
nected by lines (called propagators). One end-point, , corresponds
to a point x where we want to know the field φ ; the other end points,

, refer to factors J(y(i)) for the corresponding points y(i) , see Fig. 1.

2) There are no “closed loops”. i.e. the diagrams must be simply connected
(this will be different in the quantum theory).

3) There are vertices with three prongs (3-vertices),
k

ji , each being asso-

ciated with a factor gijk , and vertices with four prongs (4-vertices), k
l

j
i ,

each giving a factor λijk� .

4) Each line connecting two points x(1) and x(2) , x(1) x(2)
k ji

, is asso-
ciated with a factor Gij(x(1) − x(2)) when we work in ordinary space-time
(configuration space), or a factor

δij
k2 + m2

i − iε
,(11)

in momentum space (the reason for this iε choice will only become apparent
in the quantized theory).

5) If we work in configuration space, we must integrate over all x values at each
vertex except the one where φ was defined; if we work in momentum space,
we must integrate over the k values, subject to the restriction of momentum
conservation at each vertex: kout =

∑
in kin .

6) A ‘combinatorial factor’. For the classical theories it is 1/N , where N is
the number of permutations of the source vertices that leave the diagram
unaltered.
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It is not difficult to generalize the rules for the case of higher polynomials in the
interactions, but this will not be needed for the time being.

2.2 Spontaneous symmetry breaking: Goldstone modes

In the classical theory, the Hamilton density is

H(x, t) = 1
2 φ̇2

i + 1
2 (�∂φi)2 + V (φ) ; V (φ) = 1

2m2
iφ

2
i + V int(φ) .(12)

The theory is invariant under the group of transformations

φ′
i(x) = Aijφj(x) ,(13)

if A is orthogonal and the potential function V (φ) is invariant under that group.
The simplest example is the transformation φ↔ −φ :

A = ±1 ; V = V (φ2) = 1
2aφ2 +

λ

24
φ4 .(14)

There are two cases to consider:

i) a > 0. In this case, φ = 0 is the absolute minimum of V . We write

a = m2 ,(15)

and find that m indeed describes the mass of the particle. All Feynman
diagrams have an even number of external lines. Since, in the quantum
theory, these lines will be associated with particles, we find that states with
an odd number of particles can never evolve into states with an even number
of particles, and vice versa. If we define the quantum number PC = (−1)N ,
where N is the number of φ particles, then we find that PC is conserved
during interactions.

ii) a < 0. In this case, we see that:

— trying to identify the mass of the particle using Eq. (15) yields the
strange result that the mass would be purely imaginary. Such objects
(“tachyons”) are not known to exist and probably difficult to reconcile
with causality, and furthermore:

— the configuration φ = 0 does not correspond to the lowest energy
configuration of the system. The lowest energy is achieved when

φ = ±F ; F 2 = −6a/λ .(16)
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It is now convenient to rewrite the potential V as

V =
λ

24
(φ2 − F 2)2 − C ,(17)

where we did not bother to write down the value of the constant C , since it
does not occur in the evolution equations (2.1). There are now two equivalent
vacuum states, the minima of V . Choosing one of them, we introduce a new
field variable φ̃ to write

φ ≡ F + φ̃ ;

V =
λ

24
φ̃2(2F + φ̃)2 =

λF 2

6
φ̃2 +

λF

6
φ̃3 +

λ

24
φ̃4 ,(18)

and we see that

a) for the new field φ̃ , the mass-squared m̃2 = λF 2/3 is positive, and

b) a three-prong vertex appeared, with associated factor λF . The quan-
tum number PC is no longer apparently conserved.

This phenomenon is called ‘spontaneous symmetry breaking’, and it plays an im-
portant role in Quantum Field Theory.

Next, let us consider the case of a continuous symmetry. The prototype example
is the U(1) symmetry of a complex field. The symmetry group consists of the
transformations A(θ) , where θ is an angle:

Φ ≡ 1√
2
(φ1 + iφ2) ; Φ′ = A(θ)Φ = eiθΦ ,(19)

Again, the most general potential3 invariant under these transformations is

V (Φ,Φ∗) = aΦ∗Φ + 1
2λ(Φ∗Φ)2 − C ,(20)

In the case where the U(1) symmetry is apparent, one can rewrite the Feynman
rules to apply directly to the complex field Φ, noticing that one can write the
potential V as a real function of the two independent variables Φ and Φ∗ . With

∂2
μΦ =

∂V (Φ,Φ∗)
∂Φ∗ ,(21)

one notices that the Feynman propagators can be written with an arrow in them:
an arrow points towards a point x where the function Φ(x) is called for, and away
from a point x′ where a factor Φ∗(x′) is extracted from the potential V . At every

3Observe how we adjusted the combinatorial factors. The choices made here are the most
natural ones to keep these coefficients as predictable as possible in future calculations.
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vertex, as many arrows enter as they leave, and so, during an interaction, the
total number of lines pointing forward in time minus the number of lines pointing
backward is conserved. This is an additively conserved quantum number, to be
interpreted as a ‘charge’ Q . According to Noether’s theorem, every symmetry is
associated to such a conservation law.

However, if a < 0, this U(1) symmetry is spontaneously broken. Then we write

V = 1
2λ(Φ∗Φ− F 2)2 − C , F 2 ≡ −a/λ .(22)

This time, the stable vacuum states form a closed circle in the complex plane of
Φ values. Let us write

Φ ≡ F + Φ̃ ; Φ̃ ≡ 1√
2
(φ̃1 + iφ̃2) ;

V = 1
2λ
(
F (Φ̃ + Φ̃∗) + Φ∗Φ

)2

= λF φ̃2
1 +

λF√
2
φ̃1(φ̃2

1 + φ̃2
2) +

λ

8
(φ̃2

1 + φ̃2
2)

2 .(23)

The striking thing about this potential is that the mass term for the field φ̃2 is
missing. The mass squared for the φ̃1 field is m̃2

1 = 2λF . The fact that one of
the effective fields is massless is a fundamental consequence of the fact that we
have spontaneous breakdown of a continuous symmetry. Quite generally, there is
a theorem, called the Goldstone theorem:

If a continuous symmetry whose symmetry group has N independent genera-
tors, is broken down spontaneously into a (residual) symmetry whose group has
N1 independent generators, then N −N1 massless effective fields emerge.

The propagators for massless fields obey Eq. (6) without the m2 term, which
gives these expressions an ‘infinite range’: such a Green’s function drops off only
slowly for large spatial or timelike separations. These massless oscillating modes
are called ‘Goldstone modes’.

2.3 Quantization of a classical theory

How does one “quantize” a field theory? In the old days of Quantum Mechanics,
it was taught that “you take the Poisson brackets of the classical system, and
replace these by commutators.” Here and there, one had to readjust the order in
which classical expressions emerge, when they are replaced by operators, but the
rules appeared to leave no essential ambiguities. Indeed, if such a procedure is
possible, one may get a quantum theory which reproduces the original classical
system in the limit of vanishing � . Also, the group of symmetry transformations
under which the classical system was invariant, often re-emerges in the quantum
system.
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A field theory, however, has a strictly infinite set of physical degrees of freedom
(the field values at every point in 3-space, or, the complete set of Fourier modes).
More often than not, upon “quantization”, this leads to infinities that render the
theory ill-defined. One has to formulate the notion of “quantization” much more
carefully, going through several intermediate steps. Since, today, the answers to
our questions are so well known, it is often forgotten how these answers can be
derived rigorously and why they take the form they have. What is the strictly
logical sequence of arguments?

First of all, it is unreasonable to expect that every classical field theory should
have a quantum mechanical counterpart. What we wish to do, is construct some
quantum system, its Hilbert space and its Hamiltonian, such that in one or more
special limits, it reproduces a known classical theory. We demand certain prop-
erties of the theory, such as Lorentz invariance and causality, but most of all we
demand that it be internally logically impeccable, allowing us to calculate how
in such a system particles interact, under all imaginable circumstances. We will,
however, continue to use the phrase ‘quantization’, meaning that we attempt to
construct a quantum theory with a given classical field theory as its �→ 0 limit.

Often, authors forget to mention the first, very important, step in this logical
procedure: replace the classical field theory one wishes to quantize by a strictly
finite theory. Assuming that physical structures smaller than a certain size will not
be important for our considerations, we replace the continuum of three-dimensional
space by a discrete but dense lattice of points. In the differential equations, we
replace all derivatives ∂/∂xi by finite ratios of differences: Δ/Δxi , where Δφ

stands for φ(x + Δx)− φ(x) . In Fourier space, this means that wave numbers �k

are limited to a finite range (the Brillouin zone), so that integrations over �k can
never diverge.

If this lattice is sufficiently dense, the solutions we are interested in will hardly
depend on the details of this lattice, and so, the classical system will resume
Lorentz invariance and the speed of light will be the practical limit for the velocity
of perturbances. If necessary, we can also impose periodic boundary conditions in
3-space, and in that case our system is completely finite. Finite systems of this sort
allow for ‘quantization’ in the old-fashioned sense: replace the Poisson brackets by
commutators. Note that we did not (yet) discretize time, so the Hamiltonian of
our theory has the form

H = T + V

=
∑
xa

3∏
a=1

(Δxa)
(

1
2

∑
i

(∂φi/∂t)2 + 1
2

∑
i,a

(Δφi
Δxa

)2

+ V (φ)
)

. (24)

The canonical momenta associated to the fields φi(x) are

pi(x) = (∂φi/∂t)
3∏
a=1

(Δxa) ,(25)
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and so, we will assume these to be operators obeying:

[φi(x), φj(x′)] = 0 [pi(x), pj(x′)] = 0 ; [φi(x), pj(x′)] = iδji δx, x′ .(26)

Now, we have to wait and see what happens in the limit of an infinitely dense
space-lattice. Will, like the classical theory, our quantum concoction turn out to
be Lorentz-invariant? How do we perform Lorentz transformations on physical
states? This question turns out to be far from trivial to answer, but the answer is
known. We first need some useful technical tools.

2.4 The Feynman path integral

The Feynman path integral is often introduced as an “infinite dimensional” inte-
gral. Again, we insist on at first keeping everything finite. Label the generalized
coordinates (here the φi fields) as qi . The momenta are pi . The Hamiltonian (2.3)
is of the conventional type (the volume elements

∏ 3
a=1(Δxa) act as masses). For

future use, we need a slightly more general one, a Hamiltonian that also contains
pieces linear in the momenta pi :

H = T + V ; T =
∑
i

(
pi −Ai(q)

)2

2m(i)
; V = V (q) .(27)

In principle, we keep the number n of coordinates and momenta finite, in which
case there is no doubt that the differential equations in question have unique, finite
solutions (assuming the functions Ai and V to be sufficiently smooth; indeed we
will mostly work with polynomials). Consider the configuration states |q〉 and the
momentum states |p〉 . We have

〈q|q′〉 = δn(q− q′) , 〈p|p′〉 = δn(p− p′) ; 〈q|p〉 = (2π)−n/2eipiqi .(28)

Taking the order of the operators into account, we write for the kinetic energy

T =
∑
i

p2
i − 2Aipi + A2

i

2m(i)
+ iW (q) ;

W (q) =
∑
i

[Ai(q), pi]
2im(i)

=
∑
i

∂iAi(q)
2m(i)

.(29)

This enables us to compute swiftly the matrix elements

〈q|H|p〉 = 〈q|p〉(h(q,p) + iW (q)) ;(30)
〈p|H|q〉 = 〈p|q〉(h(q,p)− iW (q)) ,(31)
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where h(q,p) is the classical Hamiltonian as a function of the two sets of variables
q and p .

The evolution operator U(t, δt) for a short time interval δt is

U(t, δt) = e−iH(t)δt = II− iH δt +O(δt)2 .(32)

Its matrix elements between states 〈p| and |q〉 are easy to derive now:

〈p|U(t, δt)|q〉 = 〈p|q〉 − iδt〈p|H|q〉+O(δt)2

= (2π)−n/2e−ipiqi

(
1− iδt{h(q,p)− iW (q)}+O(δt)2

)

= (2π)−n/2 exp
(
− ip · q− iδt{h(q,p)− iW (q)}+O(δt)2

)
. (33)

What makes this expression very useful is the fact that it does not become singular
in the limit δt ↓ 0. The momentum-momentum and the coordinate-coordinate
matrix elements do become singular in that limit.

Next, let us consider a finite time interval T . The evolution operator over that
time interval can formally be viewed as a sequence of many evolution operators
over short time intervals δt , with T = N δt . Using closure, both in p space and
in q space, at all time intervals,

II =
∫

dnq |q〉〈q| =
∫

dnp |p〉〈p| ,(34)

we can write

|ψ(qN , T )〉 = 〈qN |U(0, T )|ψ(0)〉 =
∫

dnq0

∫
dnp0 · · ·

∫
dnqN−1

∫
dnpN−1

〈qN |pN−1〉 〈pN−1|U(tN−1, δt)|qN−1〉 〈qN−1|pN−2〉
〈pN−2|U(tN−2, δt)|qN−2〉 · · · 〈p0|U(0, δt)|q0〉 〈q0|ψ(0)〉 . (35)

Plugging in Eq. (2.4), we see that

|ψ(qN , T )〉 =
(N−1∏
τ=0

∫
dnqτ

∫
dnpτ

e−W (qτ )δt

(2π)n

)
×

exp i
N−1∑
τ=0

δt
(
pτ

qτ+1 − qτ
δt

− h(qτ ,pτ , tτ )
)
〈q0|ψ(0)〉 .(36)

Define

q̇τ ≡ qτ+1 − qτ
δt

,(37)
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and

L(p, q, q̇, t) = p · q̇− h(q, p, t) ,(38)

and the measure

N−1∏
τ=0

∫
dnqτ

∫
dnpτ

e−W (qτ )δt

(2π)n
≡
∫
DqDp ,(39)

then we obtain an expression that seems to be easy to extend to infinitely fine
grids in the time variable:

〈qN |ψ(T )〉 =
∫
DqDp

(
exp i

N−1∑
τ=0

δt L(p, q, q̇, t)
)
〈q0|ψ(0)〉 .(40)

In these expressions, we actually allowed the parameters in the Hamiltonian H
and the Lagrangian L to depend explicitly on time t , so as to expose the physical
structure of these expressions. Note that

L(p, q, q̇, t) = −
∑
i

(pi −Ai −m(i)q̇i)2

2m(i)
− V (q) +

∑
i

(Aiq̇i + 1
2m(i)q̇

2
i ) ,

(41)

and the integrals over all momentum variables are easy to perform, giving some
constant that only depends on the masses m(i) :

〈qN |ψ(T )〉 =
∫
Dq exp

(
i

M−1∑
τ=0

δt L(q, q̇, t)
)
〈q0|ψ(0)〉 ,(42)

with

L(q, q̇, t) = T − V ; T =
∑
i

( 1
2m(i)q̇

2
i + Aiq̇i) ;

Dq = e−
P

τ W (qτ ) δt
N−1∏
τ=0

(
dnqτ

∏
i

(m(i)

2π δt

) 1
2
)

.(43)

Actually, L(q, q̇, t) is obtained from L(p,q, q̇, t) by extremizing the latter with
respect to p :

∂

∂pi
L(p,q, q̇, t) = 0 ; q̇i =

∂h(q,p, t)
∂pi

.(44)
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This is exactly the standard relation between Lagrangian and Hamiltonian of the
classical theory. So, L is indeed the Lagrangian.

If the continuum limit exists, the exponent in Eq. (42) is exactly i times the
classical action,

S =
∫

dtL(q, q̇, t) .(45)

It is tempting to assume that the O(δt)2 terms in Eq. (32) disappear in the limit;
after all, they are only multiplied by factors N ≈ C/δt . In that case, the evolution
operator in Eq. (42) clearly takes the form of an integral over all paths going from
q0 to qN . This is Feynman’s path integral. In the case of a field theory, one
considers the field defined on a lattice in space, and since the path integral starts
with a lattice in the time variable, we end up dealing with a lattice in space and
time. In conclusion:

The evolution operator in a field theory is described by first rephrasing
the theory on a dense lattice in space-time. Replacing partial deriva-
tives by the corresponding finite difference ratios, one writes an expres-
sion for the action S of the theory. Normally, it can be written as an
integral over a Lagrange density, L(φ, ∂μφ). The evolution operator
of the theory is obtained by integrating eiS over all field configurations
φ(x, t) in a given space-time patch. The integration measure is defined
from Eq. (43).

The Ai terms, linear in the time derivatives, do not play a role in scalar field
theories but they do in vector theories, and the fact that they occur in the measure
(43) is usually ignored. Indeed, in most cases, W (q) vanishes, but we must be
aware that it might cause problems in some special cases. We ignore the W term
for the time being.

2.5 Feynman rules for the quantized theory

The Feynman rules for quantized field theories were first derived by careful analysis
of perturbation theory. Writing the quantum Hamiltonian H as H = H0 + H int ,
one assembles all terms bilinear in the fields and their derivatives in H0 and
performs the perturbation expansion for small values of H int . This leads to a
set of calculation rules very similar to the rules derived for a classical theory, see
subsection 2.1. Most of these rules (but not everything) can now most elegantly
be derived from the path integral.

Let us first derive these rules for computing a finite dimensional integral of the
type (42). Although often our action will not contain terms linear in the variables
qi(t), we do need such terms now, so, if necessary, we add them by hand, only to
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remove them at the end of the calculations. There is no need to indicate the time
variable t explicitly; we absorb it in the indices i . The action is then

S(q) =
∑
x,t

L(x, t)

= Jiqi − 1
2Mijqiqj − 1

6Aijkqiqjqk − 1
24Bijk�qiqjqkq� . (46)

To calculate
∫

dNq eiS(q) , we keep only the bilinear part (the term with the
coefficients Mij ) inside the exponent, and expand the exponent of all other terms:

out〈0|0〉in = C

∫
dNq

(
exp

(
− 1

2 iMijqiqj

)) ∞∑
k=0

∞∑
�=0

∞∑
m=0

1
k!�!m!

×

(iJi1qi1) · · · (iJikqik ) (− i
6Ai1j1k1

qi1qj1qk1) · · · (− i
6Ai�j�k�

qi�qj�qk�)

(− i
24Bi1j1k1�1

qi1qj1qk1q�1) · · · (− i
24Bimjmkm�m

qimqjmqkmq�m) .(47)

(C is a constant not depending on the coefficients, but only on their dimension-
ality).

We can calculate all of these integrals if we know how to do the J terms. These
however can be done to all orders since we know exactly how to do the Gaussian
integral

∫
dNq exp i(− 1

2Mijqiqj + Jiqi) =
(2π)

N
2

(det(M))
1
2

exp
(

1
2 iJiM

−1
ij Jj

)
=

C
∞∑
k=0

1
k!

(
1
2 iJi1M−1

i1j1
Jj1

)
· · ·
(

1
2 iJikM

−1
ikjk

Jjk

)
.(48)

This expression tells us how to do the integrals in Eq. (47) by collecting terms that
go with given powers of Ji . The outcome of this calculation can be summarized
in a concise way:

1) Each term can be depicted as a diagram consisting of points (vertices) con-
nected by lines (propagators). The lines may end at points i , ,
which refer to factors Ji .

2) There are vertices with three prongs (3-vertices),
k

ji , each being asso-

ciated with a factor Aijk , and vertices with four prongs (4-vertices), k
l

j
i ,

each giving a factor Bijk� .

3) Each line connecting two points i and j , is associated with a factor M−1
ij .
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4) In contrast with the classical theory, however, the diagrams may contain
disconnected pieces, or multiply connected parts: closed loops. See Fig. 2.

5) There are combinatorial factors arising from the coefficients such as k! in
Eq. (47). One can gain experience in deriving these factors; they follow
directly from the symmetry structure of a diagram. This technical detail
will not be further addressed here.

Apparently nothing changes if one re-inserts the (x, t) dependence of these
coefficients, when the variables qi are replaced by the fields φi(x, t), and the
action by that of a field theory:

S =
∫

d4xL(x, t) ;

L(x, t) = −1
2 (∂μφi)2 − 1

2m2
(i)φ

2
i − V (φ) + Ji(x)φi(x) .(49)

The rules are as in Subsection 2.1, with the only real distinction that, in the
quantum theory, diagrams with closed loops in them contribute. These diagrams
may be regarded as the “quantum corrections” to the classical field theory. The
disconnected diagrams mentioned under point (4), arise for technical reasons that
we will not further elaborate; in practical calculations they may usually be ignored.

Figure 2. Example of a Feynman diagram for quantized scalar fields

At one point, however, we made an omission: the overall constant C was not
computed. It comes from the cancellation of two coefficients (the one in the mea-
sure and the one coming from the Gaussian integrals) each of which tend to infinity
in the limit of an infinitely dense grid. In most cases, we are not interested in this
coefficient (it refers to vacuum-energy), but this does imply that more is needed
to extract relevant physical information from these Feynman diagrams. Fortu-
nately, this deficit is easy to cure. The “source insertions”, Ji(x)φi(x) can serve
as a model both for the production and for the detection of particles. Let both
|0〉in and |0〉out be the vacuum, or ground state of the theory. At early times,
the insertion −J(x, t)φ in the Hamiltonian acts on this vacuum state to excite it
into the initial state we are interested in. By differentiating with respect to J ,
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we can reach any initial state we want to consider. Similarly, at the end of the
experiment, at late times, Jφ can link the particle state that we wish to detect
to the final vacuum state. In short, differentiating with respect to J(x, t) gives us
any matrix element that we wish to study. This is easier than one might think: Ji
refers to particles of type i , and if we give it the same space-time dependence as
the wave function of the particle we want to see (put it on the ‘mass shell’ of that
particle), then we can be sure that there will be no contamination from unwanted
particle states. One only has to check the normalization, but also that is not hard:
we adjust the 1-particle to 1-particle amplitude to be one; a single particle cannot
scatter (it could be unstable, but that is another matter). The constant C always
drops out of these calculations.

An important point is the ambiguity of the inverse matrix M−1 . As in the
classical case, there are homogeneous solutions, so, if we work in momentum space,
there will be the question how to integrate around the poles of the propagator. The
iε prescription mentioned in subsection 2.1 is now imperative. This is explained as
follows. Consider the propagator in position space, and choose its poles situated
as follows:

∫
d4k

eik·x−ik
0t

m2 + k2 − k02 − iε
; ε ↓ 0 .(50)

The poles are at k0 = ±(
√

m2 + k2 − iε). Now consider this propagator at time
t = −T + iβ with both T and β large. Since β is large, the choice of the contour
at negative k0 is immaterial, since the exponential there is very small. At positive
k0 , we choose the contour to go above the pole, so the imaginary part of k0 is
chosen positive. We see that then the exponential vanishes rapidly at negative
time. In short, our propagator tends to zero if the time t tends to −T + iβ when
both T and β are large and positive. The same holds for t→ +T − iβ . Indeed,
we want our evolution operator to be dominated by the empty diagram in these
two limits. Write:

〈ψ|U(0, +T − iβ)|ψ′〉 =
∑
E

〈ψ|E〉 exp(−iET − βE) 〈E|ψ′〉 ,(51)

where |E〉 are the energy eigenstates. At large β , the vacuum state should dom-
inate. Conversely, if we consider evolution backwards in time, the other iε pre-
scription is needed. One then works with the Feynman rules for the inverse, or
the complex conjugate, of the scattering matrix.

Now, we are in a position to add the prescription how to identify the external
lines (the lines sticking out of the diagram) with in- and out-going particles. For an
ingoing particle, we use a source function J(x) whose Fourier components emit a
positive amount of energy k0 . For an out-going particle the source emits a negative
k0 . According to the rules formulated above, these sources would be connected to
the rest of the diagram by propagators, in Fourier space (k2

μ + m2 − iε)−1 . Since
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the in- and out-going particles have k2
μ + m2 = 0 , we must take the residue of

the pole. In practice, this means that we have to remove the external propagators,
a procedure called ‘amputation’. One then still has to establish a normalization
factor. This factor is most easily obtained by checking unitarity of the scattering
matrix, using the optical theorem. At first sight, this seems to be just a simple
numerical coefficient, but there is a slight complication at higher orders, when self-
energy corrections affect the propagator. These corrections also remove unstable
particles from the physical scattering matrix. We return to this in Section 6. The
complete Feynman rules are listed in subsection 4.5.

3 SPINOR FIELDS

3.1 The Dirac equation

The fields introduced in the previous section can only be used to describe particles
with spin 0. In a quantum theory, particles can come in any representation of
the little group, which is the subgroup of the inhomogeneous Lorentz group that
leaves the 4-momentum of a particle unaffected. For massive particles in ordinary
space, this is the group of rotations of a three-vector, SO(3). Its representations
are labelled by either an integer ≥ 0, or an integer +1

2 , representing the total spin
of a particle. So, next in line are the particles with spin 1

2 . The wave function
for such a particle has two components, one for spin up and one for spin down.
Therefore, to describe a relativistic theory with such particles, we should use a
two-component field obeying a relativistically covariant field equation. Paul Dirac
was the first to find an appropriate relativistically covariant equation for a free
particle with spin 1

2 :

(m +
∑
μ

γμ∂μ)ψ(x) = 0 ,(52)

but the field ψ(x, t) has four complex components. Here, γμ, μ = 0, 1, 2, 3, are
four 4× 4 matrices, obeying

{γμ, γν} = γμγν + γνγμ = 2gμν ; γ†
μ = gμνγ

ν .(53)

In contrast to the scalar case, the Dirac equation is first order in the space- and
time-derivatives, and furthermore, one could impose a ‘reality condition’ (Majo-
rana condition) on the fields, of the form

ψ(x) = Cψ∗(x) , γμC = C(γμ)∗ , μ = 0, 1, 2, 3.(54)

These two features combined give the Dirac field the same multiplicity as two
scalar fields. Usually, we do not impose the Majorana condition, so that the Dirac
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field is truly complex, having a conserved U(1) charge much like two complex
scalar fields.

We briefly recapitulate the most salient features of the Dirac equation. The
4 × 4 Dirac matrices can conveniently be expressed in terms of two commuting
sets of Pauli matrices, σa and τa . Define

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,(55)

and similarly for the τ matrices, except that they act in different spaces: a Dirac
index is then viewed as a pair (iα) of indices i and α , such that the matrices σa
act on the first index i , and the matrices τA act on the indices α . We have:

σaσb = δab + iεabcσc , τAτB = δAB + iεABCτC , [σa, τB] = 0 .(56)

Define (with the convention gμν =diag(−1, 1, 1, 1))

γ1 = σ1τ1 , γ2 = σ2τ1 , γ3 = σ3τ1 , γ0 = −iτ3 .(57)

The matrix C in Eq. (54) is then:

C = γ2γ4 .(58)

In the non-relativistic limit, the Dirac equation reads

(m + iγμkμ)ψ ≈ (m− iγ0k0)ψ ≈ m(1− τ3)ψ = 0 ,(59)

so that only two of the four field components survive (those with τ3|ψ〉= |ψ〉 ).
This continues to be the case for relativistic particles, simply because of Lorentz-
invariance.

3.2 Fermi-Dirac statistics

At this point, we could now attempt to pursue our fundamental quantization pro-
gram: produce the Poisson brackets of the system, replace these by commutators,
rewrite the Hamiltonian of the system in operator form, and solve the resulting
Schrödinger equation.

Unfortunately, if one uses ordinary (commuting) numbers, this does not work.
The Lagrangian associated to the Dirac equation will read

L =
∫

d3�xL(x) ; L(x) = −ψ(x)(m +
4∑

μ=0

γμ∂μ)ψ(x) ,(60)
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and the canonical procedure would give as momentum fields:

pψ(�x) =
∂L

∂
(
∂0ψ(�x)

) = ψ(�x)γ0 , pψ̄(�x) = 0 .(61)

From this, one finds the Hamiltonian:

H =
∫

d3�xH(�x) ; H(�x) = pψ ψ̇ − L(�x) = ψ(x)(m +
3∑
i=1

γi∂i)ψ(x) .(62)

Here, the index i is a spatial one, running from 1 to 3. This, however, is not
bounded from below! Such a quantum theory would not possess a vacuum state,
and hence be unsuitable as a model for Nature.

For a better understanding of the situation, we strip the Dirac equation to
its bare bones. After diagonalizing it, we find that the Lagrangian consists of
elementary units of the form

L = ψ(i∂tψ −Mψ) ; pψ = iψ ; H = ψMψ .(63)

If we were using ordinary numbers, the only way to obtain a lower bound on
H would be by identifying ψ with ψ . Then, however, the kinetic part of the
Lagrangian would become a time-derivative:

ψ∂tψ → 1
2∂t(ψ ψ) ,(64)

so that it could not contribute to the action. One concludes that, only in the
space of anticommuting numbers, can the Lagrangian (63) make sense. Thus, one
replaces the Poisson brackets for ψ and ψ by anticommutators:

{ψ, ψ} ≡ ψ ψ + ψ ψ = 1 ; {ψ, ψ} = 0 ; {ψ, ψ} = 0 .(65)

The elementary representation of this algebra is in a ‘Hilbert space’ consisting of
just two states (the empty state and the one-particle state), in which the operators
ψ and ψ act as annihilators and creators:

ψ =
(

0 1
0 0

)
; ψ =

(
0 0
1 0

)
; H =

(
0 0
0 M

)
.(66)

Returning to the non-diagonalized case, we can keep the Lagrangian (60) and
Hamiltonian (62) when the commutation rules (65) are replaced by

{ψi(x), ψj(x′)} = δij δ(x− x′) ;

{ψi(x), ψj(x′)} = 0 ; {ψi(x), ψ
j
(x′)} = 0 .(67)
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The commutation rules (67) turn Dirac particles into fermions. It appears to be a
condition for any Lorentz-invariant quantum theory to be consistent, that integer
spin particles must be bosons and particles whose spin is an integer + 1

2 must be
fermions.

3.3 The path integral for anticommuting fields

Let us now extend the notion of path integrals to include Dirac fields. This means
we have to integrate over anticommuting numbers, to be called θi , where i is some
index (possibly including x). They are numbers, not operators, so all anticommu-
tators vanish. Consider the Taylor expansion of a function of a variable θ . Since
θ2 = 0, this expansion has only two coefficients:

f(θ) = f(0) + f ′(0)θ .(68)

So, this is the most general function of θ that one can have. It is generally agreed
that one should define integrals for anticommuting numbers θ by postulating

∫
dθ 1 ≡ 0 ; dθ θ ≡ 1 .(69)

The reason for this definition is that one can manipulate these expressions in the
same way as integrals over ordinary numbers:

∫
dθ f(θ + α) =

∫
dθ f(θ) ;

∫
dθ

∂f(θ)
∂θ

= 0 ,(70)

etc.

Now, consider the Hamiltonian for just one fermionic degree of freedom, (66),
which we write as

H = M b†b ; {b, b†} = 1 ; b2 = (b†)2 = 0 ,(71)

and a wave function ψ =
(

ψ0

ψ1

)
. Define the following function of θ :

ψ(θ) ≡ ψ0θ + ψ1 ,(72)

This now serves as our wave function. It is not hard to derive how the annihilation
operator b and the creation operator b† act on these wave functions:

if φ = b ψ then φ(θ) = θ ψ(θ) ,(73)
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or:

b = θ ; b† =
∂

∂θ
.(74)

We now wish to express the evolution of a fermionic wave function in terms of a
path integral, just as in subsection 2.4. Consider a short time interval δt . Then,
ignoring all terms of order (δt)2 , one derives

e−iδtHψ(θ1) = ψ0 θ1 + (1− iM δt)ψ1

=
∫

dθ0(−θ1 + θ0 − iMδtθ0)(ψ0θ0 + ψ1)

=
∫

dθ0

∫
dθ
(
1 + θ(−θ1 + θ0 − iMδtθ0)

)
ψ(θ0)

=
∫

dθ0

∫
dθ eθ(−θ1+θ0−iMδtθ0)ψ(θ0) .(75)

Repeating this procedure over many infinitesimal time intervals, with T = N δt ,
one arrives at the formal expression

ψ(θT ) =
∫

dθT−1dθT−1 · · · dθ0dθ0

exp
N−1∑
τ=0

δt
(
θτ (
−θτ+1 + θτ

δt
− iMθτ )

)
ψ(θ0) . (76)

The exponential tends to

i

∫
dt L(t) .(77)

Thus, as in the bosonic case, the evolution operator is formally the path integral
of eiS over all (anticommuting) fields ψi(x, t), where the action S is the time
integral of the Lagrangian L , and indeed the space-time integral of the Lagrange
density L(x, t).

In some applications, careful considerations of the boundary conditions for
Dirac’s equation, require an extra boundary term to be added to the action (77).
In our present treatment this is of no consequence.

3.4 The Feynman rules for Dirac fields

Let Mij be any matrix that can be diagonalized. Using Eqs. (69), we find the
integral

∏
i

∫
dθi

∫
dθi e

θiMijθj = det
ij

(M) ,(78)



The Conceptual Basis of Quantum Field Theory 683

which can be easily checked by diagonalizing M , and writing

∫
dθ

∫
dθ eθMθ =

∫
dθ

∫
dθ (1 + θMθ) = M .(79)

Thus, a Gaussian integral over anticommuting numbers gives a result very sim-
ilar to that over commuting numbers, except that we get det(M) rather than
C/det(M). Writing

M = M0 + δM ;
det(M) = eTr(logM))

= 1 + Tr (log M) + 1
2 (Tr log M)2 + · · ·

Tr log(M) = Tr log(M0) + Tr log(1 + M−1
0 δM) ,(80)

we see that this can be obtained from det(M−1) by switching the signs of all odd
terms in this expansion. Since the N th term corresponds to a Feynman diagram
with N closed fermionic loops, one derives that the Feynman rules can be read
off from the ones for ordinary commuting fields, by switching a sign whenever a
closed fermionic loop is encountered.

We have

−Tr log M = −Tr log M0 +
∞∑
n=1

(−1)n

n
Tr (M−1

0 δM)n .(81)

Here, as in the bosonic case, −M0 is the propagator of the theory, and δM repre-
sents the contribution from any perturbation. Thus, if our Lagrangian, including
possible interaction terms, is

L = −ψi(m(i) + γμ∂μ)ψi + ψigij(φ)ψj ,(82)

then the propagator, in Fourier space, is

(m(i) + iγμkμ)−1 =
m(i) − iγμkμ

m2
(i) + k2 − iε

,(83)

while gij(φ) generates the interaction vertices of a Feynman diagram. The iε
term is chosen as in bosonic theories, for the same reason as there: the vacuum
state must be the state with lowest energy.

The poles in the propagator can be used to define in- and out-going particles,
by adding source terms to the Lagrangian:

δL = η(x)ψ + ψη(x) ,(84)
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where η(x) and η(x) are kept fixed, as anticommuting numbers. We could proceed
to derive the precise rules for in- and out-going particles with spin up or down,
but it is more convenient to postpone this until we discuss the unitarity property
of the S -matrix, where these rules are required explicitly, and where we find the
precise prescription for the normalization of these states (section 6).

Note that our Lagrangian is always kept to be bilinear in the anticommuting
fields. This is because we insist that L itself must be a commuting number and,
furthermore, terms that are quartic in the fermionic fields have too high a dimen-
sion. We will see in the following section why such terms have to be avoided.

4 GAUGE FIELDS

4.1 Renormalizability

We continue to search for elementary fields, whose Lorentz covariant field equations
can be subject to our quantization program. In principle, such fields could come
as any arbitrary representation of the Poincaré algebra, that is, we might consider
any kind of tensor field, Aμνλ···(x, t). It turns out, however, that tensors with more
than one Lorentz index cannot be used. This is because we wish the energy density
of a field to be bounded from below, and in addition, we wish the dimensionality of
the interactions to be sufficiently low, such that all coupling strengths have mass
dimension zero or positive.

A theory is called “renormalizable” if all of its interaction parameters λi (that
is, all parameters with respect to which we need to make a perturbation expansion)
have a mass-dimensionality that is positive or zero. In practice, the dimensionality
of coupling coefficients is easy to establish; this is further explained in Section 7,
Renormalization. Coupling strengths with mass dimension less than zero give rise
to unacceptably divergent expressions for the contributions of the interactions at
short scales. A prime example of a field one would like to include is the gravita-
tional field described by the metric gμν(x), but its only possible interaction is the
gravitational one, whose coupling strength, Newton’s constant GN , has the wrong
dimension. The non-renormalizable theories one then obtains are the subject of
intense investigations but fall outside the scope of this paper (see C. Rovelli’s
contribution in this book).

So, only spin-one fields Aa
μ(x) are left for consideration. Here, μ is a Lorentz

index, while the number of field types is counted by the index a = 1, · · · , NV .
These fields should describe the creation and annihilation of spin-one particles.
When at rest, such a particle will be in one of three possible spin states. Yet, to
be Lorentz-invariant, a vector field Aμ should have four components. One of these,
at least, should therefore be unphysical, although one might think of accepting an
extra, spinless particle to be associated to the vector particles. More important
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therefore is the consideration that, in the corresponding classical theory, the energy
should be bounded from below.

This then rules out the treatment of a four-vector field as if we had four scalar
fields, because the Lorentz-invariant product has an indefinite metric. Can we
construct a Lagrangian for a vector field that gives a Hamiltonian that is bounded
from below?

Let us look at the high-momentum limit for one of these vector fields. The only
two terms in a Lagrangian that can survive there are:

L = − 1
2α (∂μAν)2 + 1

2β ∂μAμ ∂νAν ,(85)

since other terms of this dimensionality can be reduced to these ones by partial
integration of the action, while mass terms (terms without partial derivatives)
become insignificant. We have for the canonical momentum fields

Ei =
∂L

∂∂0Ai
= α ∂0Ai (i = 1, 2, 3);

E0 =
∂L

∂∂0A0
= (β − α) ∂0A0 − β ∂iAi .(86)

Now, consider the Hamiltonian density H = Eμ ∂0Aμ − L . It must be bounded
from below for all field configurations Aμ(x, t). Let us first consider the case
when the spacelike components Ai and all spacelike derivatives ∂i are negligible
compared to ∂0A0 :

H → 1
2 (β − α)(∂0A0)2 ,(87)

then, when A0 and all time-derivatives are negligible:

H → 1
2α(∂iAj)2 − 1

2β(∂iAi)2 .(88)

These must all be bounded from below. Eq. (87) dictates that β ≥ α , while
Eq. (88) dictates that α ≥ β . We conclude that α = β , which we can both
normalize to one. Since total derivatives in the Lagrangian do not count, we can
then rewrite the original Lagrangian (85) as

L → − 1
4F a

μνF
a
μν , F a

μν = ∂μA
a
ν − ∂νA

a
μ .(89)

Realizing that this is the Lagrangian for ordinary QED, we know that its energy-
density is properly bounded from below. We conclude that every vector field
theory must have a Lagrangian that approaches Eq. (89) at high energies and
momenta.

We do note, that with the choice α = β , both (87) and (88) tend to zero. Indeed,
any field Aa

μ that can be written as a space-time gradient, Aa
μ = ∂μΛa(x, t), has
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F a
μν = 0, and hence contributes neither to the Lagrangian nor to the Hamiltonian.

Such fields could be arbitrarily strong, yet carry zero energy. They would represent
particles and forces without energy. This is unacceptable in a decent Quantum
Field Theory. How do we protect our theory against such features?

There is exactly one way to do this. We must make sure that field replacements
of the type

Aa
μ → Aa

μ + ∂μΛa(x) + · · · ,(90)

do not affect at all the physical state that we are describing. This is what we call
a local gauge transformation. We must insist that our theory is invariant under
local gauge transformations. The ellipses in Eq. (90) indicate that we allow extra
terms that do not contribute to the bilinear part of the Lagrangian (89). Thus,
we arrive at Yang-Mills field theory.

4.2 The Yang-Mills equations

Our conclusion from the above is that every vector field is associated to a local
gauge symmetry. The dimensionality of the local gauge group must be equal
to NV , the number of vector fields present. Besides the vector fields, the local
symmetry transformations may also affect the scalar and spinor fields. In short,
the vector fields must be Yang-Mills fields. We here give a brief summary of
Yang-Mills theory [Yang and Mills, 1954].

We have a local Lie group with elements Ω(x) at the point x . Let the matrices
T a, a = 1, · · · , NV be its infinitesimal generators:

Ω(x) = II + i
∑
a

Λa(x)T a ; T a = (T a)† .(91)

Characteristic for the group are its structure constants fabc :

[T a, T b] = ifabcT
c .(92)

As is well-known in group theory, one can choose the normalization of T a in such
a way that the fabc are totally antisymmetric:

fabc = −fbac = fbca .(93)

Usually, the spinor fields ψ(x) and scalar fields φ(x) are introduced in such a way
that they transform as (sets of irreducible) representations of the gauge group. A
local gauge transformation is then:

ψ′(x) = Ω(x)ψ(x) ; φ′(x) = Ω(x)φ(x) ,(94)
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and in infinitesimal form:

ψ′(x) = ψ(x) + iΛa(x)T aψ(x) +O(Λ)2 ,(95)

and similarly for φ(x). The dimension of the irreducible representation can be
different for different field types. So, scalar and spinor fields usually form gauge-
vectors of various dimensionalities. In these, and in the subsequent expressions,
the indices labelling the various components of the fields ψ , Ω and T a have been
suppressed.

Our vector fields Aa
μ(x) are most conveniently introduced by demanding the

possibility of constructing gauge-covariant gradients of these fields:

Dμψ(x) ≡ (∂μ + igAa
μ(x)T a)ψ(x) ,(96)

where g is a freely adjustable coupling parameter. The repeated indices a , denot-
ing the different species of vector fields, are to be summed over. By demanding
the transformation rule

(Dμψ(x))′ = Ω(x)Dμψ(x) = Dμψ(x) + iΛa(x)T aDμψ(x) +O(Λ)2 ,(97)

one easily derives the transformation rule for the vector fields Aa
μ(x):

igAa
μ
′(x)T a = Ω(x)

(
∂μ + igAa

μ(x)T a
)
Ω−1(x)

= igAa
μ(x)T a − i∂μΛa(x)T a + g[T a, T b]Λa(x)Ab

μ(x) (98)

(omitting the O(Λ)2 terms). With Eq. (92), this becomes

Aa
μ
′(x) = Aa

μ(x)− 1
g∂μΛ

a(x) + fabcΛb(x)Ac
μ(x) .(99)

If we ensure that all gradients used are covariant gradients, we can directly
construct the general expressions for Lagrangians for scalar and spinor fields that
are locally gauge-invariant:

Linv
scalar(x) = − 1

2 (Dμφ)2 − V (φ2) ;(100)

Linv
Dirac(x) = −ψ(γμDμ + m)ψ ,(101)

and in addition other possible invariant local interaction terms without derivatives.

The commutator of two covariant derivatives is

[Dμ, Dν ]ψ(x) = igF a
μν(x)T aψ(x) ;

F a
μν(x) = ∂μA

a
ν − ∂νA

a
μ + gfabcA

b
μA

c
ν .(102)
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Unlike Aa
μ(x) or the direct gradients of Aa

μ(x), this Yang-Mills field F a
μν trans-

forms as a true adjoint representation of the local gauge group:

F a
μν

′(x) = F a
μν(x) + fabcΛb(x)F c

μν(x) .(103)

This allows us to construct a locally gauge invariant Lagrangian for the vector
field:

Linv
YM(x) = −1

4F a
μν(x)F a

μν(x) .(104)

The structure constants fabc in the definition 102 of the field Fμν implies the
presence of interaction terms in the Yang-Mills Lagrangian 104. If fabc is non-
vanishing, we talk of a non-Abelian gauge theory.

There is one important complication in the case of fermions: the Dirac matrix
γ5 ≡ γ1γ2γ3γ4 can be used to project out the chiral sectors:

ψ ≡ ψL + ψR ; ψL = 1
2 (1 + γ5)ψ ; ψR = 1

2 (1− γ5)ψ .(105)

Since the kinetic part of a Dirac Lagrangian can be split according to

LDirac = −ψL(γD)ψL − ψR(γD)ψR ,(106)

we may choose the left-handed fields ψL to be in representations different from
the right-handed ones, ψR . However, since a mass term joins left to right:

−mψ ψ = −mψLψR −mψRψL ,(107)

such terms would then be forbidden, hence such chiral fields must be massless. Sec-
ondly, not all combinations of chiral fermions are allowed. An important restriction
is discussed in section 8. The fields ψL turn out to describe spin- 1

2 massless parti-
cles with only the left-rotating helicity, while their antiparticles, described by ψL ,
have only the right-rotating helicity.

4.3 The need for local gauge-invariance

In the early days of Gauge Theory, it was thought that local gauge-invariance could
be an ‘approximate’ symmetry. Perhaps one could add mass terms for the vector
field that violate local symmetry, but make the model look more like the observed
situation in particle physics. We now know, however, that such models suffer from
a serious defect: they are non-renormalizable. The reason is that renormalizability
requires our theory to be consistent up to the very tiniest distance scales. A mass
term would, at least in principle, turn the field configurations described by the
Λ(x) contributions in Eq. (99) into physically observable fields (the Lagrangian
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now does depend on Λ(x)). But, since the kinetic term for Λ(x) is lacking,
violently oscillating Λ fields carry no sizeable amount of energy, so they would
not be properly suppressed by energy conservation. Uncontrolled short distance
oscillations are the real, physical cause for a theory being non-renormalizable.

It is similar uncontrolled short-distance fluctuations of the space-time metric
that cause the quantized version of General Relativity (“Quantum Gravity”) to
be non-renormalizable. Drastic measures (String Theory?) are needed to repair
such a theory.

Since renormalizability provides the required coherence of our theories, local
gauge symmetry, described by Eqs. (94) and (99), must be an exact, not an ap-
proximate symmetry of any Quantum Field Theory.4 Obviously, the fact that
most vector particles in the sub-atomic world do carry mass must be explained in
some other way. It is here that the Brout-Englert-Higgs mechanism comes to the
rescue, see Section 5.

4.4 Gauge fixing

The longitudinal parts of the vector fields do not occur directly in the Yang-Mills
Lagrangian (104), exactly because of its invariance under transformations of the
form (99). Yet if we wish to describe solutions, we need to choose a longitudinal
component. This is why we wish to impose some additional constraint, the so-
called gauge condition, on our description of the solutions, both in the classical
and in the quantized theory. In electrodynamics, we usually impose a constraint
such as ∂μAμ(x) = 0 or A0 = 0. In a Yang-Mills theory, such a constraint is
needed for each value of the index a . A gauge fixing term is indicated by a field
Ca(x) which is put equal to zero:

Ca(x) = 0 ; a = 1, · · · , NV ; where(108)
either Ca(x) = ∂μA

a
μ(x) (Feynman gauge),(109)

or Ca(x) = Aa
0(x) (timelike gauge),(110)

or other possible gauge choices. It is always possible to find a Λa(x) that obeys
one of such conditions. For instance, to obtain the Feynman gauge (109), all one
has to do is extremize an integral under variations of the gauge group:

δ

∫
d4x

(
Aa
μ(x)

)2

= 0 → ∂μA
a
μ(x) = 0 .(111)

For the classical theory, the most elegant way to impose such a gauge condition
4One apparent exception could be the case where the longitudinal component decouples com-

pletely, which happens in massive QED. But even in that case, it is better to view the longitudinal
photon as a Higgs field, see section 5.
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is by adding a Lagrange multiplier term to the Lagrangian:

L(x) = Linv(x) + λa(x)Ca(x) ,(112)

where Ca(x) is any of the possible gauge fixing terms and λa(x) a free kinematical
variable. Here, Linv stands for the collection of all gauge-invariant terms in the
Lagrangian. The Euler-Lagrange equations of the theory then automatically yield
the Yang-Mills field equations plus the constraint, apart from a minor detail: the
boundary condition. Varying the gauge transformations, one finds, since Linv does
not vary, Dμλ

a(x) = 0. We need to impose the stricter equation λa(x) = 0, which
is obtained by imposing λa(x) = 0 at the boundaries of our system.

Alternatively, one can replace the invariant Lagrangian by

L(x) = Linv(x)− 1
2

(
Ca(x)

)2

,(113)

which has the advantage that, after partial integration, the bilinear part becomes
very simple: L = − 1

4FμνFμν − 1
2 (∂μAμ)2 → − 1

2 (∂μAν)2 , so that the vector field
can be treated as if it were just 4 scalars. Again, varying the gauge transformation
Λa(x) , one finds DμC

a(x) = 0, which must be replaced by the more stringent
condition Ca(x) = 0 by adding the appropriate boundary condition.

Note that the Lagrange-Hamilton formalism could give the wrong sign to the
energy of some field components; we should continue to use the energy deduced
before imposing the gauge constraint. If we use the timelike gauge (110), the
energy is correct, but the theory appears to lack Lorentz invariance. Lorentz
transformations must now be accompanied by gauge transformations.

How is the gauge constraint to be handled in the quantized theory? This prob-
lem was solved by B.S. DeWitt [1964; 1967a; 1967b] and by Faddeev and Popov
[1967; 1969; 1984]. The gauge constraint is to be imposed in the integrand of the
functional integral:

Z =
∫
DA(x)

∫
Dφ(x) · · · ei

R
d4xLinv(x)

∏
a,x

δ(Ca(x))Δ{A,φ} .(114)

Thus, we integrate only over those field configurations that obey the gauge con-
dition. Δ{A,φ} is a Jacobian factor, which we will discuss in a moment. The
formal delta function can be replaced by a Lagrange multiplier:∫

Dλa(x)ei
R

d4xλa(x)Ca(x) ,(115)

and indeed, if λa(x) is simply added to the list of dynamical field variables of
the theory, the Feynman rules can be derived unambiguously as they were for the
scalar and the spinor case.
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There is, however, a problem. It appears to be difficult to prove gauge-invariance.
More precisely: we need to ascertain that, if we make the transition to a different
gauge fixing function Ca(x), the physical contents of the theory, in particular the
scattering matrix, remains the same. The difficulty has to do with the measure of
the integral. It is not gauge-invariant, unless we add the extra term Δ{A,φ} in
Eq. (114). This term is associated to the volume of an infinitesimal gauge trans-
formation. Suppose that the field combination Ca(x) transforms under a gauge
transformation as

Ca′(x) = Ca(x) +
∂Ca(x)
∂Λb(x′)

Λb(x′) ,(116)

then the required volume term is the Jacobian

Δ{A,φ} = det
( ∂Ca(x)

∂Λb(x′)

)
.(117)

The determinant is computed elegantly by using the observation in subsection 3.4
that a Gaussian integral over anticommuting variables gives a determinant (Eq. (78)).
So, we introduce anticommuting scalar fields η and η , and then write

(117) =
∫
Dηa(x)

∫
Dηa(x) exp

(
ηa(x)

∂Ca(x)
∂Λb(x′)

ηb(x′)
)

.(118)

This is called the Faddeev-Popov term in the action. Taking everything together,
we arrive at the following action for a Yang-Mills theory:

L(x) = Linv(x) + λa(x)Ca(x) + ηa(x)
∂Ca(x)
∂Λb(x′)

ηb(x′) .(119)

It is also possible to find the quantum analogue for the classical Lagrangian
(113). First, replace Ca(x) by Ca(x) − F a(x) , where F a(x) is a fixed but x -
dependent quantity in the functional integral (119). Physical effects should be
completely independent of F a(x). Therefore, we can functionally integrate over

F a(x), using any weight factor we like. Choose the weight factor e−
1
2

R
d4x(Fa(x))2 .

The Lagrange multiplier λa(x) now simply forces Ca(x) to be equal to F a(x).
We end up with the effective Lagrangian5

L(x) = Linv(x)− 1
2

(
Ca(x)

)2

+ ηa(x)
∂Ca(x)
∂Λb(x′)

ηb(x′) .(120)

This is the most frequently used Lagrangian for gauge theories. In contrast to
the Lagrangians for scalar and spinor fields, not all fields here represent physical
particles. The longitudunal part of the vector fields, and the fermionic yet scalar
fields η and η are “ghosts”.

5One usually absorbs the factor 1/g of Eq. (99) into the definition of the η field.
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4.5 Feynman rules

The Feynman rules, needed for the computation of the scattering matrix elements
using perturbation theory, can be read off directly from the gauge-fixed Lagrangian
(119) or (120). In both cases, we first split off the bilinear parts6, writing the
Lagrangian as

L = −Aα(x)M̂αβAβ(x)− ψα(x)D̂αβψβ(x) + Lint ,(121)

where Lint contains all trilinear and quadrilinear terms. Here, Aα(x) is short for
all bosonic (scalar and vector) fields, and ψ and ψ for both the Dirac fermions
and the Faddeev-Popov fermions. The coefficients M̂αβ , D̂αβ and the trilinear
coefficients may contain the gradient operator ∂/∂xμ . After Fourier expansion,
this will turn into a factor ikμ .

— The propagators P̂αβ and P̂ ferm
αβ will be the inverse of the coefficients M̂−iε

and D̂ − iε , so, for instance

if M̂αβ = (m(α) − ∂2
μ)δαβ then P̂αβ =

δαβ
m2

(α) + k2 − iε
;

if D̂αβ = (m(α) + γμ∂μ)δαβ then P̂ ferm
αβ =

(m(α) − iγμkμ)δαβ
m2

(α) + k2 − iε
. (122)

— The vertices are generated by the trilinear and quadrilinear terms of Lint ,
just as in subsection 2.5. If we have source terms such as Ja(x)φa(x), ηi(x)ψi(x)
or ψ

i
(x)ηi(x), then these correspond to propagators ending into points,

where the momentum k has to match a given Fourier component of the
source. All this can be read off neatly from formal expansions of the func-
tional integral such as (47).

— There is an overall minus sign for every fermionic closed loop.

— Every diagram comes with canonical coefficients such as 1/k! and (2π)−4N

where k! is the dimension of the diagram’s internal symmetry group, and N
counts the number of loop integrations. These coefficients can be obtained
by comparing functional integrals with ordinary integrals.

— There is a normalization coefficient for every external line, depending on the
wave function chosen for the in- and out-going particles. We return to this
in section 6.

6One may decide to leave small corrections to the bilinear parts of the Lagrangian to be
treated together with the higher order terms as if they were ‘two-point vertices’.



The Conceptual Basis of Quantum Field Theory 693

Note that any terms in the Lagrangian that can be written as a gradient of some
(locally defined) field configuration can be replaced by zero. This is because (under
sufficiently carefully chosen boundary conditions) such terms do not contribute to
the total action S =

∫
d4xL(x).

4.6 BRST symmetry

As the reader may have noted, we departed from our original intention, to keep
space and time on a lattice and only turn to the continuum limit at the very end
of a calculation. We have not even started doing calculations, and already the
Feynman rules were formulated as if the fields lived on a space-time continuum.
Indeed, we should have kept space and time discrete, so that the functional integral
is nothing but an ordinary integral in a space with very many, but still a finite
number of, dimensions. In practice, however, the continuum is a lot easier to
handle, so, often we do not explicitly mention the finite size meshes of space and
time.

Our first attempt to formulate the continuum limit will be in section 7. We
will then see that the coefficients in the Lagrangian (120) have to be renormalized.
The following question then comes up:

If we see a Lagrangian that looks like (120), how can we check that its coefficients
are those of a genuine gauge theory?

The answer to this question is that the gauge-fixed Lagrangians (4.35) and (4.36)
possess a symmetry. The first attempts to identify the symmetry in question gave
negative results, because the ghost field is fermionic while the gauge fixing terms
are bosonic. In the early days we thought that the required relation between the
gauge fixing terms and the ghost terms had to be checked by inspection [’t Hooft
and Veltman, 1972a]. But the complete answer was discovered by Becchi, Rouet
and Stora [1975; 1976], and independently by Tyutin [Tyutin, 1975]. The symme-
try, called BRST symmetry, is a supersymmetry. For the Lagrangian (120), which
is slightly more general than (119), the transformation rules are

A′
α(x) = Aα(x) + ε ∂Aα(x)

∂Λb(x′) ηb(x′) ; (a)

ηa′(x) = ηa(x) + 1
2ε fabcη

b(x)ηc(x) ; (b)

η a′(x) = η a(x) + ε Ca(x) , (c)

(123)

where the anticommuting number ε is the infinitesimal generator of this (global)
supersymmetry transformation.

The invariance of the Lagrangian (120) under this supersymmetry transforma-
tion is easy to check, except perhaps the cancellation of the variation of the last
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term against the contribution of (123 b):

η a
∂Ca

∂Λb
1
2ε fbcdη

cηd + η a%,
∂

∂Λc
∂Ca

∂Λd
ηcηd = · · · .(124)

Substituting some practical examples for the gauge constraint function Ca , one
discovers that these terms always cancel out. The reason for (124) to vanish is the
fact that gauge transformations form a group, implying the Jacobi identity:

fasbfscd + fascfsdb + fasdfsbc = 0 .(125)

The converse is more difficult to prove: If a theory is invariant under a transfor-
mation of the form (123) (BRST invariance), then it is a gauge-fixed local gauge
theory. What is really needed in practice, is to show that the ghost particles do not
contribute to the S -matrix. This indeed follows from BRST invariance, via the
so-called Slavnov-Taylor identities [Slavnov, 1972; Taylor, 1971], relations between
amplitudes that follow from this symmetry.

5 THE BROUT-ENGLERT-HIGGS MECHANISM

The way it is described above, Yang-Mills gauge theory does not appear to be
suitable to describe massive particles with spin one. However, in our approach we
concentrated only on the high-energy, high-momentum limit of theories for vector
particles, by assuming the Lagrangian to take the form (85) there. Mass terms
dominate in the infra-red, or low energy domain. Here, one may note that we have
not yet exploited all possibilities.

We need to impose exact local gauge-invariance, as explained in subsection 4.3.
So our theory must be constructed along the lines expounded in subsection 4.2.
All scalar and spinor fields must come as representations of the gauge group. So,
what did we overlook?

In our description of the most general, locally gauge-invariant Lagrangian, it
was tacitly assumed that the minimum of the scalar potential function V (φ) occurs
at φ = 0, so that, as one may have in global symmetries, the symmetry is evident
in the particle spectrum: physical particles come as representations of the full
local symmetry group. But, as we have seen in the case of a global symmetry, in
subsection 2.2, the minimum of the potential may occur at other values of φ . If
these values are not invariant under the gauge group, then they form a non-trivial
representation of the group, invariant only under a subgroup of the gauge group.
It is the invariant subgroup, if at all non-trivial, of which the physical particles
will form representations, but the rest of the symmetry is hidden. Indeed, if we
switch off the coupling to the vector fields, we obtain again the situation described
in subsection 2.2. As was emphasized there, the particle spectrum then contains
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massless particles, the Goldstone bosons. These Goldstone bosons represent the
field excitations associated to a global symmetry transformation, which does not
affect the energy: hence the absence of mass.

But, global gauge Goldstone bosons do carry a kinetic term. Therefore, they
do carry away energy when moving with the speed of light. This is because a
global symmetry only dictates the Goldstone field to carry no energy if the field
is space-time independent.

In contrast, local gauge symmetries demand that Goldstone fields also carry no
energy when they do depend on space and time. In the case of a local symmetry,
therefore, Goldstone modes are entirely in the ghost sector of the theory; Goldstone
particles then are unphysical. Let us see how this happens in an example.

5.1 The SO(3) case

As a prototype, we take the group SO(3) as our local gauge group, and for sim-
plicity we ignore the contributions of loop diagrams, which represent the higher
order quantum corrections to the field equations. Let the scalar field φa be in the
3-representation. The invariant part of the Lagrangian is then:

Linv = − 1
4 (F a

μν)
2 − 1

2 (Dμφa)2 − V (φ) ; V (φ) = 1
8λ
(
(φa)2 − F 2

)2

.(126)

Here, Dμ stands for the covariant derivative: Dμφa = ∂μφa + gεabcA
b
μφc . As in

section 2.2, Eq. (18), we define shifted fields φ̃a by

φa ≡ φ̃a +

⎛
⎝0

0
F

⎞
⎠ ; V (φ̃) = 1

2λF 2φ̃2
3 + 1

2λF φ̃2φ̃3 + 1
8λ(φ̃2)2 .(127)

The shift must also be carried out in the kinetic term for φ :

Dμφa = Dμφ̃a + gF

(
A2
μ

−A1
μ

)
; −1

2 (Dμφa)2 =

− 1
2 (Dμφ̃a)2 − gF

(
A2
μDμφ̃1 −A1

μDμφ̃2

)
− 1

2g2F 2
(
A1
μ
2

+ A2
μ
2
)

.(128)

Defining the complex fields

Φ̃ = 1√
2
(φ̃1 + iφ̃2) ; Aμ = 1√

2
(A1

μ + iA2
μ) ;

DμΦ̃ = (∂μ + iA3
μ)Φ̃− iAμφ̃3 ,(129)
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we see that the Lagrangian (126) becomes

Linv = − 1
4 (F a

μν)
2 − 1

2 (Dμφ̃3)2 −DμΦ̃∗DμΦ̃

− 1
2M2

H φ̃2
3 −M2

VA∗
μAμ + MV �(A∗

μDμΦ̃)− V int(φ̃) ,

where MH =
√

λF ; MV = gF ,(130)

and V int is the remainder of the potential term. � stands for imaginary part.

Thus, the ‘neutral’ component of the scalar field, the Higgs particle, gets a
mass MH (see Eq. 127) and the ‘charged’ components of the vector field receive a
mass term with mass MV . The mechanism that removes (some of) the Goldstone
bosons and generates mass for the vector particles, is called the Brout-Englert-
Higgs (BEH) mechanism [Englert and Brout, 1964; Higgs, 1964b; Higgs, 1964a;
Higgs, 1966]. In every respect, the neutral, massless component of the vector field
behaves like an electromagnetic vector potential, and the complex vector particle
is electrically charged.

5.2 Fixing the gauge

If one would try to use the rules of Subsection 4.5 to derive the Feynman rules
directly from Linv , one would find that the matrix M̂ describing the bilinear
part of the Lagrangian has no inverse. This is because the gauge must first be
fixed. Choosing ∂μA

a
μ(x) = 0 has the advantage that the somewhat awkward term

�(A∗
μ∂μΦ̃) can be put equal to zero by partial integration. The vector propagator

(in momentum space) is then easily computed to be

P ab
μν(k) =

δμν − kμkμ/(k2 − iε)
k2 + m2

(a) − iε
δab ,(131)

where m(a) = MV for the charged vector field and 0 for the neutral one.

This indeed appears to describe a vector particle with mass m(a) and an addi-
tional transversality constraint. One can do something smarter, though. If, in the
gauge-fixed lagrangian (120), we choose

C3 = ∂μA
3
μ ; C1 = ∂μA

1
μ −MV φ̃2 ; C2 = ∂μA

2
μ + MV φ̃1 ,(132)

then we find that the scalar-vector mixing terms cancel out, but now also the
(∂μAμ)2 term cancels out, so that the vector propagator looses its kμkν term.
The vector propagator is then

P ab
μν(k) =

δμνδab
k2 + m2

(a) − iε
,(133)
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and the charged scalar ghost gets a mass MV . The physical field φ̃3 is unaffected.

It is instructive to compute the Faddeev-Popov ghost Lagrangian in this gauge.
One easily finds it to be

Lghost = ηa∂2ηa −M2
V (η1η1 + η2η2) + interaction terms .(134)

As can be confirmed by more explicit calculations, the theory has physical,
charged vector particles with masses MV , a neutral (massless) photon and a neu-
tral scalar particle with mass MH . The latter is called the Higgs particle of this
theory. All other fields in the Lagrangian describe ghost fields. Apparently, in the
gauge described above, all ‘unphysical’ charged particles, the ghosts, the timelike
components of the vector fields, as well as the Goldstone bosons, have the same
mass MV . The unphysical neutral particles all have mass zero.

One concludes that the symmetry pattern of this example is as follows: the
local gauge group, SO(3), is broken by the Brout-Englert-Higgs mechanism into
its subgroup SO(2) (the rotations about a fixed axis, formed by the vacuum value
of φa ), or equivalently, U(1). Therefore two of the three vector bosons obtain
a mass, while one massless U(1) photon remains. At the same time, two of the
three scalars turn into ghosts, the third into a Higgs particle.

The Brout-Englert-Higgs mechanism does not alter the total number of inde-
pendent physical states in the particle spectrum. In our example, two of the three
scalar particles disappeared, but the two massive spin-1 particles now each have
three spin helicities, whereas the massless photons only had two.

5.3 Coupling to other fields

The shift (127) in the definition of the fields, gives all interactions an asymmetric
appearance. This is why, in the literature, one talks of “spontaneous breaking of
the local symmetry”. Actually, this is something of a misnomer. In the case of a
global symmetry, spontaneous breakdown means that the vacuum state is degen-
erate. After a global symmetry transformation, the vacuum state is transformed
into a physically inequivalent vacuum state, which is not realized in the system.
The existence of a massless Goldstone boson testifies to that. In the case of a local
symmetry, nothing of the sort happens. There is only one vacuum state, and it
is invariant under the local symmetry, always. This is why the Goldstone boson
became unphysical. In fact, all physical states are formally invariant under local
gauge transformations. Apparent exceptions to this rule are, of course, the charged
particles in QED, but this is because we usually wish to ignore their interactions
with the vector potential at infinity. In reality a full discussion of charged particles
is obscured by their long-range interactions.

In view of all of this, it is better not to say that a local symmetry is sponta-
neously broken, but, rather, to talk of the Brout-Englert-Higgs mechanism [Englert
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and Brout, 1964; Higgs, 1964b], which is the phenomenon that the spectrum of
physical particles do not form a representation of the local symmetry group. The
local symmetry can only be recognized by shifting the scalar fields back to their
symmetric notation, the original fields φ . Local symmetry must not be regarded as
a property of the physical states, but rather as a property of our way of describing
the physical states.

If, however, we perform a perturbation expansion for small values of the gauge
field coupling, we find that at vanishing gauge coupling a local symmetry is sponta-
neously broken. Therefore, it is still quite useful to characterize our perturbative
description by listing the gauge groups and the subgroups into which they are
broken.

Now, let us assume that there are other fields present, such as the Dirac
fermions, ψi . In the symmetric notation, they must form a representation of
the local gauge group. So, we have

LDirac = −ψ
i
(γμDμ + m(i))ψi − ψ

i
gY taijφaψj ,(135)

where Dμ is the appropriate covariant derivative, containing those matrices T a

that are appropriate for the given representation (see 95 and 96), and gY stands
for one or more Yukawa coupling parameters. The mass terms m(i) and coupling
coefficients taij are invariant tensors of the gauge group (masses are only allowed
if the fermions are not chiral, see the discussion following Eq. (106)).

Here, again, we started with the more transparent symmetric fields φa , but the
physical fields φ̃ are obtained by the shift φa = Fa + φ̃a . Thus, the lowest order
bilinear part of the Dirac Lagrangian becomes

LDirac → −ψ
i
(
(γμ∂μ + m(i))δij + gY taijFa

)
ψj ,(136)

In particular, if the symmetry acts distinctly on the chiral parts of the fermion
fields, the mass term m(i) is forbidden, but the less symmetric second term may
generate masses and in any case mass differences for the fermions. Thus, not only
do the vector and scalar particles no longer form representations of the original
local gauge group, but neither do the fermions.

5.4 The Standard Model

What is presently called the ‘Standard Model’ is just an example of a Higgs theory.
The gauge group is SU(3) × SU(2) × U(1). This means that the set of vector
fields falls apart into three groups: 8 associated to SU(3), then 3 for SU(2),
and finally one for U(1). The scalar fields φi form one two-dimensional, complex
representation of two of the three groups: it is a doublet under SU(2) and rotates
as a particle with charge 1

2 under U(1).
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Representing the Higgs scalar in terms of four real field components, the Brout-
Englert-Higgs mechanism is found to remove three of them, leaving only one neu-
tral, physical Higgs particle. SU(2) × U(1) is broken into a diagonal subgroup
U(1). Three of the four gauge fields gain a mass. The one surviving photon field
is obtained after re-diagonalizing the vector fields; it is a linear composition of the
original U(1) field and one of the three components of the SU(2) gauge fields.

The SU(3) group is not affected by the Brout-Englert-Higgs mechanism, so
one would expect all ‘physical’ particles to come in representations of SU(3).
What happens instead is further explained in section 11: only gauge-invariant
combinations of fields are observable as particles in our detectors.

The fermions in the Standard Model form three ‘families’. In each family, we
see the same pattern. The left handed fields, ψL , all form doublets under SU(2),
and a combination of a triplet (‘quarks’) and singlets (‘leptons’) under SU(3).
The right handed components, ψR , form the same representations under SU(3),
but form a pair of two singlets under SU(2); so they do not couple to the SU(2)
vector fields. The U(1) charges of the left-handed SU(2) doublets are − 1

2 for the
leptons and 1

6 for the quarks; the U(1) charges of the right-handed singlets are
−1 and 0 (for the leptons) or − 1

3 and 2
3 (for the quarks).

The Standard Model owes its structure to the various possible Yukawa interac-
tion terms with the Higgs scalars. They are all of the form ψ φ ψ , and invariant
under the entire gauge group, but since there are three families of fermions, each
having left and right handed chiral components, there are still a fairly large num-
ber of such terms, each of which describes an interaction strength whose value is
not dictated by the principles of our theory [Hoddeson et al., 1997].

6 UNITARITY

As we saw in subsection 4.5, the Feynman rules unambiguously follow from the
expression one has for the Lagrangian of the theory. More precisely, what was
derived there was the set of rules for the vacuum-to-vacuum amplitude in the pres-
ence of possible source insertions Ji(x), including anticommuting sources ηi, ηi .
The overall multiplicative constant C in our Gaussian integrals such as (47) is
completely fixed by the demand that, in the absence of sources, the vacuum-to-
vacuum amplitude should be 1. By construction then, the resulting scattering
matrix should turn out to be unitary.

In practice, however, things are not quite that simple. In actual calculations,
one often encounters divergent, hence meaningless expressions. This happens when
one makes the transition to the continuum limit too soon — remember that we
insisted that space and time are first kept discrete. Unitarity of the S -matrix
turns out to be a sensitive criterion to check whether we are performing the con-
tinuum limit correctly. It was one of our primary demands when we initiated the
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program of constructing workable models for relativistic, quantized particles. An-
other demand, the validity of dispersion relations, can be handled the same way
as unitarity; these two concepts will be shown to be closely related. The formal-
ism described below is based on work by Cutkosky and others, but was greatly
simplified by Veltman [’t Hooft and Veltman, 1994].

Parts of this section are fairly technical and could be skipped at first reading.

6.1 The largest time equation

Let us start with the elementary Feynman propagator, (k2 + m2 − iε)−1 , and
its Fourier transform back to configuration space (omitting for simplicity a factor
(2π)4 ):

ΔF (x) = −i

∫
d4k

eikx

k2 + m2 − iε
, x = x(1) − x(2) .(137)

In addition, we define the on-shell propagators

Δ±(x) = 2π
∫

d4k eikxδ(k2 + m2)θ(±k0) ; k x = �k · �x− k0x0 ,(138)

and θ is the Heaviside step function, θ(x) = 1 for x ≥ 0 and = 0 otherwise.
The integrals are over Minkowski variables �k, k0 . The operators (138) propagate
particles on mass shell with the given sign of the energy from x(2) to x(1) , or back
with the opposite sign. We have

Δ+(x) = (Δ−(x))∗ ; Δ+(x) = Δ−(−x) .(139)

Our starting point is the decomposition of the propagator into forward and back-
ward parts:

ΔF (x) = θ(x0)Δ+(x) + θ(−x0)Δ−(x) .(140)

Obviously:

ΔF ∗
(x) = θ(x0)Δ−(x) + θ(−x0)Δ+(x) .(141)

One easily proves this by deforming the contour integration in the complex k0

plane.

Consider now a Feynman diagram with n vertices, where lines are attached
with a given topological structure, which will be kept fixed. The external lines
are assumed to be ‘amputated’: there are no propagators attached to them. The
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Feynman rules are applied as described in Subsections 2.5 and 4.5. The diagram is
then part of our calculation of an S -matrix element. We consider the diagram in
momentum representation and in the coordinate representation. The expression
we get in coordinate representation is called F (x(1), x(2), · · · , x(n)).

Next, we introduce an expression associated to the same diagram, but where
some of the vertices are underlined:

F (x(1), x(2), · · · , x(i), · · · , x(j), · · · , x(n)) ,

where x(i) refer to the coordinates that must be integrated over when one elab-
orates the Feynman rules. The rules for computing this new amplitude are as
follows:

i) A propagator ΔF (x(i)−x(j)) is used if neither x(i) nor x(j) are underlined.

ii) A propagator Δ+(x(i) − x(j)) is used if x(i) but not x(j) is underlined.

iii) A propagator Δ−(x(i) − x(j)) is used if x(j) but not x(i) is underlined.

iv ) A propagator ΔF ∗(x(i) − x(j)) is used if both x(i) and x(j) are underlined.

v ) A minus sign is added for every underlined vertex.

In all other respects, the rules for the calculation of the amplitude are unchanged.

Figure 3. Diagram with underlined vertices, which are indicated by little circles

One now derives the largest time equation:

Let x(k) be the coordinate with the largest time:

x(k)0 ≥ x(i)0 , ∀i .

Then,
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F (x(1), x(2), · · · , x(k), · · · , x(n)) = −F (x(1), x(2), · · · , x(k), · · · , x(n)),(142)

where in both terms the points other than x(k) are underlined or not
in identical ways.

One easily proves this using Eqs. (140) and (141). One consequence of this theorem
is

∑
all 2n possible underlinings

F ({x(i)}) = 0 .(143)

We now show that these are the diagrams contributing to the unitarity equation,
or ‘optical theorem’:

∑
n

S|n〉〈n|S† = II .(144)

The diagrams for the matrix S are as described earlier. The diagrams for S†

contain the complex conjugates of the propagators. Since also the vertices in
the functional integral are all multiplied by i , they must all change sign in S† .
Also the momenta k in eikx switch sign. In short, the diagrams needed for the
computation of S† indeed are the underlined Green functions. Note that, in
momentum space, the largest time equation (142) cannot be applied to individual
vertices, since, while being integrated over, the vertex with largest time switches
position. However, the summed equation (143) is valid. The identity II on the
r.h.s. of Eq. (144) comes from the one structure that survives: the diagram with
no vertices at all.

We observe that unitarity may follow if we add all possible ways in which a
diagram with given topology can be cut in two, as depicted in Fig. 3. The shaded
line separates S from S† .

The lines joining S to S† represent the intermediate states |n〉 in Eq. (144).
They are on mass shell and have positive energies, which is why we need the factors
δ(k2 + m2)θ(k0) there. If a propagator is equipped with some extra coefficients
Rij :

Pij(k) =
−i Rij(k)

k2 + m2 − iε
,(145)

then we can still use the same decomposition (140), provided Rij is local : it must
be a finite polynomial in k . Writing

Rij =
∑
k

fi(k)f∗
j (k) ,(146)
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we can absorb the factors fi(k) into the definition of S , provided that all eigen-
values of Rij are non-negative. Indeed, kinetic terms in the Lagrangian must all
have the same sign.

Note that we are not allowed to replace the terms in the Lagrangian by their
complex conjugates. This implies that, for the unitarity proof, it is mandatory
that the Lagrange density is a real function of the fields.

An important feature of these equations is the theta functions for k0 . They
guarantee that the intermediate states contribute only if their total energy does
not exceed the energy available in the given channel.

6.2 Dressed propagators

In the previous subsection, not all diagrams that contribute to S S† have yet been
handled correctly. There is a complication when self-energy diagrams occur. If
one of the lines at both sides of a self-energy blob is replaced by Δ± , then the
other propagator ΔF places a pole on top of that Dirac delta. In this case, we
have to use a more sophisticated prescription. To see what happens, we must first
sum the geometric series of propagator insertions, see Fig. 4(a). We obtain what is
called the dressed propagator. In momentum space, let us write the contribution
of a single blob in Fig. 4(a) as −iδM(k). It represents the summed contribution
of all irreducible diagrams, which are the diagrams with two external lines that
cannot fall apart if one cuts one internal line. We need its real and imaginary
parts: δM(k) ≡ δm2(k)− iΓ(k). Write the full propagator as

P dr(k) = P 0(k)− P 0(k)iδM(k)P 0(k) + · · ·

= P 0(k)
∞∑
n=0

(
− iδM(k)P 0(k)

)n

=
P 0(k)

1 + iδM(k)P 0(k)
; (147)

if P 0(k) = −i(M(k)− iε)−1

then P dr(k) = −i(M(k) + δM(k)− iε)−1 , (148)

where P 0(k) is the unperturbed (‘bare’) propagator.

If we define the real part of the dressed propagator (in momentum space) to be

(P dr(k)) =
Γ(k)

(k2 + M + δm2)2 + Γ2
= π�(−k2) ,(149)

then, by contour integration,

P dr(k) =
∫ ∞

0

dm2 �(m2)
k2 + m2 − iε

;(150)
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we call this the Källen-Lehmann representation of the propagator. Later, it will
be assured that �(m2) = 0 if m2 < 0 .

= + + +  ⋅⋅⋅ (a)

= (b)

Figure 4. (a) The dressed propagator as a geometric series;
(b) Cutting the dressed propagator

The best strategy now is to apply a largest time equation to the entire dressed
propagator. Write, instead of Eqs. (140) and (141),

P dr(x) = θ(x0)Δ+
dr(x) + θ(−x0)Δ−

dr(x) ;

P dr(x)∗ = θ(x0)Δ−
dr(x) + θ(−x0)Δ+

dr(x) .(151)

Then,

Δ±
dr(k) = 2π

∫
d4k eikx�(−k2)θ(±k0) .(152)

The imaginary part Γ(k) of the irreducible diagrams can itself again be found by
applying the cutting rules. Writing S = II + iT , we find that unitarity for all
non-trivial diagrams corresponds to i(T − T †) + T T † = 0, and the diagrams for
T T † are depicted in Fig. 4b. They are exactly the diagrams needed for unitarity
of the entire scattering matrix involving a single virtual particle in the channel of
two external ones.

One observes that the function �(−k2) must be non-negative, and only nonvan-
ishing for timelike k . The latter is guaranteed by the theta functions in k0 . Only
the delta peaks in � are associated to stable particles that occur in the initial and
final states of the scattering matrix. Resonances with finite widths contribute to
the unitarity of the scattering matrix via their stable decay products.

6.3 Wave functions for in- and out-going particles

Many technical details would require too much space for a full discussion, so we
have to keep this sketchy. In case we are dealing with vector or spinor particles,
the residues Rij of the propagators represent the summed absolute squares of the
particle wave functions. We have seen in Eq. (145) how this comes about. If, for
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example, a vector particle is described by a propagator

Pμν = −i
δμν + kμkν/M

2

k2 + M2 − iε
,(153)

then we see that, first of all, the numerator is a polynomial in k , as was required,
and, if we go on mass shell, k2 = −M2 , then we see that the field component
proportional to kμ is projected out. In particular, if we put k = (0, 0, 0, iM),
then Rij = δij and its timelike components disappear, so indeed there are three
independent states for the particle described.

For the fermions, the bare propagator is

PDirac = −i
m− iγk

k2 + m2 − iε
.(154)

Before relating this to the renormalization of the wave functions, we must note
that all γμ are hermitean, while ki are real and k4 is imaginary. We observe that
the Feynman rules for S† are like those of S , but with γ4 replaced by −γ4 . Next,
the arrows in the propagators must be reversed. This leads to an extra minus sign
for every vector kμ , while γμ are replaced by γμ† . All together, one requires
that γi → −γi while γ4 remains unchanged. This amounts to the replacement
γμ → γ4γμγ4 . One concludes that the rules for S† are like those for S if all
fermion lines enter or leave the diagram with an extra factor γ4 . This means that
the wave functions for external fermions in a diagram are to be normalized as

(m− iγik
i + γ4k0)γ4 =

2∑
i=1

|ψi(k)〉〈ψi(k)| , (k0 > 0) ;(155)

while for the anti-fermions, we must demand

γ4(m− iγik
i − γ4k0) = −

4∑
i=3

|ψi(k)〉〈ψi(k)| , (k0 > 0) .(156)

The minus sign is necessary because the operator in (156) has two negative eigen-
values. One concludes that unitarity requires spin- 1

2 particles to carry one extra
minus sign for each closed loop of these particles. This leads to the necessity of
Fermi-Dirac statistics. Again, it is important that none of the higher order correc-
tions ever affect the signs of the eigenvalues for these projection operators, since
these can never be accommodated for by a renormalization of the particle wave
function.

The conclusion of this section, that the scattering matrix is unitary in the space
of physical particle states, should not come as a surprise because our theory has
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been constructed to be that way. Yet it is important that we see here in what way
the Feynman diagrams intertwine to produce unitarity explicitly.

We also see that unitarity is much more difficult to control when we have ghosts
due to the gauge fixing procedure. Our vector particles then have propagators
where Eq. (153) is replaced by expressions such as

P ren
μν =

−i gμν
k2 + M2 − iε

.(157)

We write here gμν rather than δμν in order to emphasize that our arguments are
applied in Minkowski space, where clearly the time components ‘carry the wrong
sign’. The field components associated to that would correspond to particles that
contribute negatively to the scattering probabilities. To correct this, one would
have to replace |n〉〈n| by −|n〉〈n| , which cannot be achieved by renormalizing the
states |n〉 . Here, we use the BRST relations to show that all unphysical states
can be transformed away. In practice, we use the fact that the scattering matrix
does not depend on the choice of the gauge fixing function Ca(x), so we choose it
such that all ghost particles have a mass exceeding some critical value Λ. In the
intermediate states, their projector operators Δ±(k) then only contribute if the
total energy in the given channel exceeds Λ . This then means that there are no
ghosts in the intermediate states, so the scattering matrix is unitary in the space
of physical particles only — an absolutely essential step in the argument that these
theories are internally consistent. The required gauge fixing functions Ca(x) are
not difficult to construct, but their existence is only needed to complete this formal
argument. They are rather cumbersome to use in practical calculations.

6.4 Dispersion relations

The largest time equation can also be employed to derive very important dispersion
relations for the diagrams. These imply that any diagram D can be regarded as
a combination of two sets of diagrams Di and D†

i :

D =
∑
i

∫ ∞

0

dk0

−k0 − iε
Di(k0)D†

i (k
0) .(158)

Here, Di(k0) and D†
i (k

0) stand for amplitudes depending on various external mo-
menta k , where one of the timelike components, k0 , is integrated over. This, one
derives by singling out two points, x(1) and x(2) in a diagram, and time-ordering
them. The details of the derivation go beyond the scope of this paper (although
they are not more difficult than the previous derivations in this section). Eq. (158)
can be used to express diagrams with closed loops in terms of diagrams with fewer
closed loops, and discuss the subtraction procedures needed for renormalization.



The Conceptual Basis of Quantum Field Theory 707

7 RENORMALIZATION

For a proper discussion of the renormalization concept, we must emphasize what
our starting point was: first, replace the continuum of space by a dense lattice
of points, and only at the very end of all calculations do we make an attempt to
take the continuum limit. The path integral procedure, illuminated in subsection
2.4, implies that time, also, can be replaced by a lattice. In Fourier space, the
space-time lattice leads to finite domains for the values of energies and momenta
(the Brillouin zones), so that all ultra-violet divergences disappear. If we also wish
to ensure the absence of infra-red divergences, we must replace the infinite volume
of space and time by a finite box. This is often required if complications arise
due to divergent contributions of soft virtual particles, typically photons. Nasty
infra-red divergences occur in theories with confinement, to be discussed in section
11.

The instruments that we shall use for the ultra-violet divergences of a theory
are as follows. We assume that all freely adjustable physical constants of the
theory, referred to as the ‘bare’ parameters, such as the ’bare’ mass and charge
of a particle, should be carefully tuned to agree with observation, but the tuning
process may depend critically on the mesh size a of the space-time lattice. Thus,
while we vary a , we allow all bare parameters, λ say, in the theories to depend
on a , often tending either to infinity or to zero as a → 0. If this procedure is
combined with a perturbation expansion, say in terms of a small coupling g , we
expect to find that observable features depend minimally on a provided that the
bare couplings g(a) remain small in the limit a ↓ 0.

This will be an important condition for our theories to make sense at all. How
do we know whether g(a) tends to zero or not? The simplest thing to look at, is
the dimensionality of g . All parameters of a field theory have a dimension of a
length to some power. These dimensions usually depend on the dimensionality n
of space-time. The rules to compute them are easy to obtain:

- An action S =
∫

dnxL(x) is dimensionless;

- The dimension of a Lagrange density L is therefore (length)−n = mn ,
where m is a mass.

- The dimension of the fields can be read off from the kinetic terms in the
Lagrangian, because they contain no further parameters. A scalar field φ
has dimension m(n−2)/2 , a fermionic field ψ has dimension m(n−1)/2 .

- A gauge coupling constant g has dimension m(4−n)/2 and the coupling pa-
rameter λ in an interaction term of the form λφk has dimension mn+k−nk/2 ,

and so on.
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A theory is called power-counting renormalizable, if all expansion pa-
rameters have mass-dimension positive or zero.

This is why, in 4 space-time dimensions, we cannot accept higher than quartic
interactions among scalars. In practice, in 4 space-time dimensions, most expan-
sion parameters have dimension zero. In Section 9, we will see that dimensionless
coupling parameters nevertheless depend on the size of a , but only logarithmically:

λ(a) ≈ λ0 + Cλ2
0 log(a) + higher orders.(159)

Regardless of whether this tends to zero or to infinity in the continuum limit,
one finds that, in the continuum theory, the perturbative corrections to the bare
parameters λ diverge. This is nothing to be alarmed about. However, if λ itself
is also a small parameter in terms of which we wish to perform a perturbation
expansion, then clearly trouble is to be expected if its bare value tends to infinity.
Indeed, we shall argue that, in general, such theories are inconsistent.

There are two very important remarks to be made:

— Theories can be constructed where all couplings really tend to zero in the
continuum limit. These theories are called asymptotically free (Section 9),
and they allow for accurate approximations in the ultra-violet. It is generally
believed that such theories can be defined in a completely unambiguous
fashion through their perturbation expansions in the ultra-violet; in any
case, they allow for very accurate calculation of all their physical properties.
QCD is the prime example.

— If a theory is not asymptotically free, but has only small coupling parame-
ters, the perturbation expansion formally diverges, and the continuum limit
formally does not exist. But the first N terms of perturbation expansion do
make sense, where N = O(1/g). This means that uncontrollable margins of
error are exponentially small, of order e−C/g or e−C/g

2
, which in practice

is much smaller than other uncertainties in the theory, so they are of hardly
any practical consequence. Thus, in such a case, our theory does have in-
trinsic inaccuracies, but these are exponentially suppressed. In practice, such
theories are still highly valuable. The Standard Model is an example.

A useful approach is to substitute all numbers in a theory by formal series expan-
sions, where the expansion parameter, a factor common to all coupling parameters
of the theory, is formally kept infinitesimal. In that case, all perturbation coeffi-
cients are uniquely defined, though one has little direct knowledge concerning the
convergence or divergence of the expansions.

In both the cases mentioned above, our theories are defined from their perturba-
tion expansion; clearly, the perturbation expansion is not only a convenient device
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for calculations, it is an essential ingredient in our theories. Let us therefore study
how renormalization works, order-by-order in perturbation theory.

In a connected diagram, let the number of external lines be E , the number
of propagators be P , and let Vn be the number of vertices with n prongs. By
drawing two dots on each propagator and one on each external line, one finds that
the number of dots is

2P + E =
∑
n

nVn = 3V3 + 4V4.(160)

For tree diagrams (simply connected diagrams), one finds by induction, with V
the number of vertices, V =

∑
n Vn ,

V = P + 1 .(161)

A diagram with L closed loops (an L-fold connected diagram) turns into a tree
by cutting away L propagators. Therefore, one has

P = V − 1 + L .(162)

Combining Eqs. (160) and (162), one has

E + 2L− 2 =
∑
n

(n− 2)Vn = V3 + 2V4 .(163)

Consequently, if every 3-vertex comes with a factor g and every 4-vertex with a
factor λ , and if a diagram with a given number E of external lines, behaves as
g2nλk , it must have L = n + k + 1− 1

2E closed loops. Perturbation expansion is
therefore often regarded as an expansion in terms of the number of closed loops.

7.1 Regularization schemes

In a tree diagram, in momentum space, no integrations are needed to be done
— the momentum flowing through every propagator is fixed by the momenta of
the in- and out-going particles. But if there are L loops, one has to perform 4L
integrations in momentum space. It is these integrations that often tend to diverge
at large momenta.

Of course, these divergences are stopped if momentum space is cut off, as is the
case in a finite lattice. However, since our lattice is not Lorentz-invariant and may
lack other symmetries such as gauge-invariance, it is useful to find other ways to
modify our theory so that UV divergences disappear. This is called ‘regularization’.
We give two examples.
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Pauli-Villars regularization

Assume that a propagator of the form shown is replaced as follows:

A(k)
k2 + m2 − iε

→
∑
i

ei
A(k)

k2 + Λ2
i − iε

;
∑
i

ei = 0 ,
∑
i

eiΛ2
i = 0 .(164)

If we take e1 = 1, Λ1 = m , while all other Λi tend to +∞ , we get back the original
propagator. With finite Λi , however, we can make all momentum integrations
converge at infinity. Our theory is then finite. This is (a somewhat simplified
version of) Pauli-Villars regularization.

However, the new propagators cannot describe ordinary particles. The ones
with ei < 0 contribute to the unitarity relation with the wrong sign! On the other
hand, the iε prescription is as usual, so that these particles do carry positive
energy. In any channel where the total energy is less than Λi , the ‘Pauli-Villars
ghosts’ do not contribute to the unitarity relation at all. So, in a theory where we
put a limit to the total energy considered, Pauli-Villars regularization is physically
acceptable. In practice, we will try to send all ghost masses Λi to infinity.

Dimensional regularization

Dimensional regularization [’t Hooft and Veltman, 1972b] consists of formally per-
forming all loop integrations in 4− ε dimensions, where ε may be any (possibly
complex) number. As long as ε is irrational, all integrations can be replaced by
finite expressions following an unambiguous prescription, to be explained below.
If ε = 0, one can also subtract the integrals, but the prescription is then often
not unambiguous, so that anomalies might arise. This is why dimensional regu-
larization will be particularly important whenever the emergence of anomalies is
a problem one wishes to understand and control.

It is important to realize that also when ε �= 0, integrals may be divergent,
but that, for irrational ε , unambiguous subtractions may be made. This needs
to be explained, but first, one needs to define what it means to have non-integral
dimensions. Such a definition is only well understood within the frame of the
perturbation-, or loop-, expansion. Consider an irreducible diagram with L loops
and N external lines, where we keep the external momenta p(1), · · · , p(N) fixed.
It is obvious from the construction of the theory that the integrand is a purely
rational function in L(4−ε) variables. Observing that the external momenta span
some N − 1 dimensional space, we now employ the fact that the integration in
the remaining dimensions is rotationally invariant. There, we write the formula
for the � -dimensional (Euclidean) sphere of radius r as

∫
d�kδ(k2 − r2) =

π�/2

Γ(�/2)
r�−2 .(165)
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Here, Γ stands for the Euler gamma function, Γ(z) = (z − 1)! for integral z .

It is at this point where we can decide that this expression defines the integral
for any, possibly complex, value for � . It converges towards the usual values
whenever � happens to be a positive integer. After having used Eq. (165), one
ends up with an integral over s variables kμ of a function f(k) , where s is an
integer, but f(k) contains ε -dependent powers of polynomials in k .

Convergence or divergence of an integral can be read off from simple power
counting arguments, and, at first sight, one sees hardly any improvement when ε
is close to zero. However, what is achieved is that infra-red divergences (kμ → 0)
are separated from the ultra-violet divergences (kμ → ∞), and this allows us to
define the “finite parts” of the integrals unambiguously:

• All integrals
∫

dskf(k) are replaced by functionals I({f(k)}) that obey the
same combinatorial rules as ordinary integrals:

I(αf1 + βf2) = αI(f1) + βI(f2) ,

I({f(k + q)}) = I({f(k)}) ,(166)

• I(f) =
∫

dskf(k) if this converges.

• I(f) = 0 if f(k) = (k2)p when 2p + s is not an integer.

This latter condition is usually fulfilled, if we started with ε not integer.

These rules are sufficient to replace any integral one encounters in a Feynman
diagram by some finite expression. Note, however, that complications arise if one
wants to use these rules when 2p + s is an integer, particularly when it is zero.
In that case, the expression diverges in the ultra-violet and in the infra-red, so, in
this case, it cannot be used to remove all divergences — it can only replace one
by another. Consequently, our finite expressions tend to infinity as ε→ 0.

It is important to verify that dimensional regularization fully respects unitar-
ity and the dispersion relations discussed above. Therefore, the ‘dimensionally
regularized’ diagrams correspond to solutions of the dispersion relations and the
unitarity relations, providing some ‘natural’ subtraction.

Equivalence of regularization schemes

The subtractions provided by the various regularization schemes discussed above,
in general, are not the same. At any given order, they do all obey the same
dispersion relations of the form (158). If we ask, which amplitudes can be added
to one scheme to reproduce the other, or, what is the amplitude of the difference
between the two schemes (after having eliminated these differences at the order
where the subdiagrams Di(k0) had been computed), we find the following. This
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difference must be a Lorentz-covariant expression; and it can only come from the
dimensionally regularized contributions of the unphysical Pauli-Villars ghosts in
Eq. (158). Because of their large masses, only very large values of k0 in this
equation contribute. The p0 -dependence then must reduce to being a polynomial
one (p being the momenta of the fixed external lines), and because of Lorentz-
invariance, the expression must be polynomial in all components of pμ . This is
exactly what can be achieved by putting a counter term inside the bare Lagrangian
of the theory. This way, one derives that the various regulators differ from one
another by different effective couplings in the bare Lagrangian.

It is then a question of taste which regulator one prefers. Since dimensional
regularization often completely respects local gauge-invariance7, and also because
it turned out to be very convenient and efficient in practice, one often prefers
that. It should always be kept in mind, however, that dimensional regularization
is something of a mathematical trick, and the physical expressions only make sense
in the limit ε→ 0.

7.2 Renormalization of gauge theories

Using the results from the previous Sections, we decide to treat quantum field
theories in general, and gauge theories in particular, as follows: first, we regularize
the theory, by using a ‘lattice cut-off’, or a Pauli-Villars cut-off, or by turning
towards n = 4− ε dimensions. All these procedures are characterized by a small
parameter, such as ε , such that the physical theory is formally obtained in the
limit ε→ 0. These procedures are all equivalent, in the sense that by adding local
interaction terms to the Lagrangian, one can map the results of one scheme onto
those of another. Subsequently, we renormalize the theory. This means that all
parameters in the Lagrangian are modified by finite corrections, which however
may diverge in the limit ε→ 0. If these counter terms have been chosen well, the
theory may stay finite and well defined in this limit. In particular, we should have
a unitary, causal theory.

Unitarity is only guaranteed if the theory is gauge-invariant. Therefore, one
prefers regulator schemes that preserve gauge-invariance throughout. This is what
dimensional regularization often does. In that case, the renormalization procedure
respects BRST-invariance, see Subsect. 4.6.

8 ANOMALIES

The Sections that follow will (again) be too brief to form a complete text for
learning Quantum Field Theory. Our aim is here to give a summary of the features

7Only in one case, there is a complication, namely, when there are Adler-Bell-Jackiw anoma-
lies; see Section 8.
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that are all extremely important to understand the general structure of relativistic
Quantum Field Theories.

If, for a given theory, no obviously gauge-invariant regularization procedure
appears to exist, this might be for a reason: such a theory might not be renormal-
izable at all. In principle, this could be checked, as follows. One may always decide
to use a regularization procedure that does not respect the symmetries one wants,
provided that the symmetry can be restored in the limit where the physically ob-
servable effects of the regulator go away, such as ε → 0, or Λi → ∞, i > 0. If a
gauge-invariant regulator does exist, but it hasn’t yet been explicitly constructed,
then we know that it differs from any other regulator by a bunch of finite counter
terms. To find such counter terms is not hard, in practice; just add all terms
needed to restore BRST invariance of the amplitudes.

But, in case that regulator is not known, how can we then be sure that such
terms exist at all? BRST invariance requires the validity of the Slavnov-Taylor
identities, but they appear to overdetermine the subtraction terms. This is the
way we originally phrased the problem in [’t Hooft, 1971]. In fact, indeed there
may be a clash. If this happens, it is called an anomaly [Jackiw, 1995, Ch.1].

Actually, the incidence of such anomalies is limited, fortunately. This is because
for most theories completely gauge-invariant regulator techniques were found. Di-
mensional regularization often works. The one case where it does not is when
there are chiral fermions. Classically, one may separate any fermionic field into a
left-handed and a right handed part, as was mentioned in Subsection 4.2:

ψ(x) = P+ψL(x) + P−ψR(x) ; P± = 1
2 (1± γ5) ;

γ5 = 1
24εμναβγ

μγνγαγβ .(167)

Indeed, since (γ5)2 = 1, the operators P± are genuine projection operators: P 2
± =

P± .

The left- and right sectors of the fermions, see Eq. (106), may be separately
gauge-invariant, transforming differently under gauge transformations. This, how-
ever, requires γ5 to anti-commute with all other γμ, μ = 1, · · · , n . But, as we
see from their definition, Eq. (167), γ5 only anti-commutes with four of the γμ ,
not all n . This is why the contributions from the −ε remaining dimensions will
not be gauge-invariant.

It was discovered by Bell and Jackiw [Bell and Jackiw, 1969], and indepen-
dently by Adler [Adler, 1969; Adler and Bardeen, 1969; Bardeen, 1969], that no
local counter term exists that obeys all symmetry conditions and has the desired
dimensionality; Bell and Jackiw tried to use unconventional regulators, but those
turned out not to be admissible. The basic culprit is the triangle diagram, Fig. 5(a),
representing the matrix element of the axial vector current ψ γμγ5 ψ in the field
of two photons, each being coupled to the vector current ψ γα ψ .

For simplicity, we assume here the fermions to be massless. Let us call this
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(b)(a)

k, μ

p, α

q, β

Figure 5. (a) The anomalous triangle diagram. μ, α and β are the polarizations,
k, p and q = k − p are the external momenta. (b) An anomalous diagram in
non-Abelian theories

amplitude then Γα,βμ (p, q). It is linearly divergent. Upon regularization, there are
two counter terms, or subtraction terms, whose coefficients should be determined,
in a correct combination with the finite parts of the amplitude. Limiting ourselves
to the correct quantum numbers and dimensions, we find the two quantities,

δ1Γα,βμ (p, q) = εμαβγpγ ;

δ2Γα,βμ (p, q) = εμαβγqγ .(168)

We can determine their coefficients by applying the condition that the total am-
plitude be invariant under gauge transformations of the photon field. This implies
that the expression must vanish when any of the two photons are longitudinal:
Aμ = ∂μΛ, which means

pαΓα,βμ (p, q) = 0 ; qβΓα,βμ (p, q) = 0 .(169)

Since

pαδ1Γα,βμ (p, q) = 0 ; qβδ1Γα,βμ (p, q) = Aμ,α ;

pαδ2Γα,βμ (p, q) = Aμ,β ; qβδ2Γα,βμ (p, q) = 0 ;(170)
Aμ,α = εμαβγpγqβ ,

this fixes the coefficients in front of δ1Γ and δ2Γ.

When now we investigate whether this amplitude is also transversal with respect
to the axial vector current, we are struck by a surprise. The counter terms, fixed
by condition (170), also contribute here:

kμδ1Γα,βμ (p, q) = −kμδ2Γα,βμ (p, q) = Aα,β ,(171)

but they do not cancel against the contribution of the finite part. After imposing
gauge-invariance with respect to the two vector insertions, one finds (in the case



The Conceptual Basis of Quantum Field Theory 715

of a single chiral fermion)

kμΓα,βμ (p, q) = (4π2)−1εμαβγpμqγ ,(172)

and this can be rewritten as an effective divergence property of a vector current:

∂μJ
5
μ = − iLe2

8π2
FμνF̃μν ,(173)

where F̃μν = 1
2εμναβFαβ , L is the dumber of left-handed minus the number of

right-handed fermions, and it was assumed that the photons couple with charges
e .

What is surprising about this is, that the triangle diagram itself, Fig. 5a, appears
to be totally symmetric under all permutations, since γ5 can be permuted to any
of the other end-points. Imposing gauge-invariance at two of its three end-points
implies breaking of the invariance at the third.

This result is very important. It implies an induced violation of a conservation
law, apparently to be attributed to the regularization procedure. It also means that
it is not possible to couple three gauge bosons to such a triangle graph, because
this cannot be done in a gauge-invariant way. In most theories, however, we have
couplings both to left-handed and to right-handed fermions. Their contributions
are of opposite sign, which means that they can cancel out. Therefore, one derives
an important constraint on gauge theories with chiral fermions: The triangle
anomalies must cancel out.

Let the left handed chiral fermions be in representations of the total set of gauge
groups that transform as

ψiL → ψiL + iΛaT aL
i
jψ

j
L ,(174)

where Λ is infinitesimal, and T aL are the gauge generators for the left-handed
fermions. Similarly for the right-handed ψiR . Define

dabcL = Tr(T aLT bLT cL + T bLT aLT cL) ,(175)

and similarly dabcR . The anomaly constraint is then

∑
dabcL =

∑
dabcR ,(176)

where the sum is over all fermion species in the theory. In the Standard Model, the
only contributions could come if either one or all three indices of dabc refer to the
U(1) group. One quickly verifies that indeed the U(1) charges of the quarks and
leptons are distributed in such a way that (176) is completely verified, but only if
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the number of quark generations and lepton generations are equal. In Subsection
10.3, we will see the physical significance of this observation.

Note, that in the non-Abelian case, there are also anomalies in diagrams with
4 external legs, see Fig. 5(b). They arise from the trilinear terms in FμνF̃μν (the
quadrilinear terms cancel). These are the only cases where the regularization
procedure may violate gauge invariance. In diagrams with more loops, or sub
diagrams with more external lines, regularization procedures could be found that
preserve gauge invariance.

9 ASYMPTOTIC FREEDOM

9.1 The Renormalization group

It was observed by Stueckelberg and Peterman [Stueckelberg and Peterman, 1953]
in 1953, that, although the perturbative expansion of a theory depends on how
one splits up the bare parameters in the Lagrangian into lowest order parameters,
and counter terms required for the renormalization, the entire theory should not
depend on this. This they interpreted as an invariance, and the action of replacing
parameters from lowest order to higher order corrections as a group operation. One
obtains the ‘Renormalization Group’.

There is only one instance where such transformtions really matter, and that
is when one compares a theory at one mass- or distance-scale to the same theory
at a different scale. A scale transformation must be associated with a replace-
ment of counter terms. Thus, physicists began to identify the notion of a scale
transformation as a ‘renormalization group transformation’.

Gell-Mann and Low [Gell-Mann and Low, 1954] observed that this procedure
can be used to derive the small-distance behavior of QED. One finds that the
effective fine-structure constant depends on the scale μ , described by the equation

μ2d
dμ2

α(μ) = β(α) =
α2 N

3π
+O(α3) ,(177)

where N is the number of charged fermion types. As long as α(μ) stays small, so
that the O(α3) terms can be neglected, we see that its μ -dependence is

α(μ) =
α0

1− (α0N/3π) log(μ2/μ2
0)

, if α(μ0) = α0 .(178)

Things run out of control when μ reaches values comparable to exp(3π/2Nα0),
but, at least in the case of QED, where α0 ≈ 1/137, this mass scale is so large that
in practice no problems are expected. The pole in Eq. (178) is called the Landau
pole; Landau concluded that quantum field theories such as QED have no true
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continuum limit because of this pole. Gell-Mann and Low suspected, however,
that β(α) might have a zero at some large value of α , so that, at high values of
μ , α approaches this value, but does not exceed this stationary point.

What exactly happens at or near the Landau pole, cannot be established using
perturbation expansion alone, since this will depend on all higher order terms in
Eq. (177); in fact, it is not even known whether Quantum Field Theory can be
reformulated accurately enough to decide. The question, however, might be not as
important as it seems, since the Landau pole will be way beyond the Planck mass,
where we know that gravitational terms will take over; it will be more important
to solve Quantum Gravity first.

An entirely different situation emerges in theories where the function β(λ) is
negative. It was long thought that this situation can never arise, unless the cou-
pling strength λ itself is given the wrong sign (the sign that would render the
energy density of the classical theory unbounded from below), but this turns out
only to be the case in theories that only contain scalar and spinor fields. If there is
a non-Abelian Yang-Mills component in the theory, negative β functions do occur.
In the simplest case, an SU(2) gauge theory with Nf fermions in the elementary
doublet representation, the beta function is

μ2d
dμ2

g2(μ) = β(g2) =
Nf − 11

24π2
g4(μ) +O(g6) ,(179)

so, as long as Nf < 11 we have that the coupling strength g(μ) tends to zero,
logarithmically, as μ → ∞ . This feature is called asymptotic freedom. In an
SU(Nc) gauge theory, the β function is proportional to Nf − 11

2 Nc , so, with the
present number of Nf = 6 quark flavors, QCD (Nc = 3) is asymptotically free. In
line with a notation often used, the subscript c here stands for ”colour”; in QCD,
the number of colours is Nc = 3.

9.2 An algebra for the beta functions

In theories with gauge fields, fermions, and scalars, the situation is more complex.
A general algorithm for the beta functions has been worked out. The most compact
notation for the general result can be given by writing how the entire Lagrange
density L scales under a scale transformation. Let the Lagrangian L be

L = − 1
4Ga

μνG
a
μν − 1

2 (Dμφi)2 − V (φ)− ψiγμDμψi

−ψi

(
Sij(φ) + iγ5Pij(φ)

)
ψj ,(180)

where the covariant derivatives are defined as follows:8

Dμφi ≡ ∂μφi + iT aijA
a
μφj ; Dμψi = ∂μψi + iUa

ijA
a
μψj ,(181)

8 T and U are hermitean, but since φ is real, the elements of T must be imaginary.
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and the structure constants fabc are defined by

[T a, T b] = −ifabcTc ,(182)

so that

Ga
μν = ∂μA

a
ν − ∂νA

a
μ + fabcAb

μA
c
ν .(183)

We split the fermions into right- and left-handed representations, so that

Ua = Ua
LPL + Ua

RPR ; PL =
1 + γ5

2
, PR =

1− γ5

2
.(184)

The functions S(φ) and P (φ) are at most linear in φ and V (φ) is at most quartic.
The Lagrangian (180) is the gauge-invariant part; we do not write the gauge-fixing
part or the ghost; the final result will not depend on those details.

The result of an algebraical calculation is that

16π2 μ2dL
dμ2

=

Ga
μνG

b
μν [−

11
12

Cab
1 +

1
24

Cab
2 +

1
6
Cab

3 ]−ΔV − ψ(ΔS + iγ5ΔP )ψ , (185)

in which

Cab
1 = fapqf bpq ,(186)

Cab
2 = Tr (T aT b) ,(187)

Cab
3 = Tr (Ua

LU b
L + Ua

RU b
R) ,(188)

ΔV = 1
4V 2

ij − 3
2Vi(T 2φ)i + 3

4 (φT aT bφ)2

+φiVjTr (S,iS,j + P,iP,j)− Tr (S2 + P 2)2 + Tr [S, P ]2 ,(189)

where

Vi ≡ ∂V (φ)
∂φi

; S,i ≡ ∂S

∂φi
, etc.,(190)

and writing S + iP = W , one finds ΔS and ΔP from

ΔW = 1
4WiW

∗
i W + 1

4WW ∗
i Wi + WiW

∗Wi

− 3
2 (U2

RW )− 3
2W (UL)2 + WiφjTr (SiSj + PiPj) .(191)

This expression does not include information on how fields φi and ψi transform
under scaling. The fields are not directly observable.
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This algebraic expression can be used to find how, in general, coupling strengths
run under rescalings of the momenta. It is an interesting exercise to work out what
the conditions are for asymptotic freedom, that is, for all coupling strengths to run
to zero at infinite momentum. In general, one finds that scalar fields can only exist
if there are also gauge fields and fermions present; the latter must be in sufficiently
high representations of the gauge group.

10 TOPOLOGICAL TWISTS

The Lagrangian (180) is the most general one allowed if we wish to limit ourselves
to coupling strengths that run logarithmically under rescalings of the momenta,
see for instance Eq. (178). Such theories have a domain of validity that range over
exponentially large values of the momenta (in principle over all momenta if the
theory is asymptotically free). The most striking feature of this general Lagrangian
is that it is topologically highly non-trivial. Locally stable field configurations may
exist that have some topological twist in them. In particular, this can be made
explicit in the case of a Brout-Englert-Higgs mechanism. Here, these twists can
already be seen at the classical level (i.e., ignoring quantum effects).

If we say that a scalar field φi has a vacuum expectation value, then this means
that we perform our perturbation expansion starting with a field value of the form
φi = (F, 0, · · · ) in the vacuum, after which field fluctuations δφ around this value
are assumed to be small. One assumes that the potential V (φ) has its minimum
there. This may appear to violate gauge-invariance, if φi transform into each other
under local gauge transformations, but strictly speaking the phrase “spontaneous
breakdown of local gauge symmetry” is inappropriate, because it may also simply
mean that we choose a gauge condition. It is however a fact that the spectrum of
physical particles comes out to be altogether different if we perturb around φi = 0,
so this ‘Higgs mode’ is an important notion in any case.

10.1 Vortices

If the Higgs field has only two real components (such as when U(1) is broken into
the identity group), one may consider a configuration where this field makes a full
twist over 360◦ when following a closed curve. Inside the curve there must be a
zero. The zeros must form a curve themselves, and they cost energy. This is the
Abrikosov vortex. Away from its center, one may transform φi back to a constant
value, but this generates a vector potential Aμ(x), obeying

∮
Aμdxμ =

2π

e
,(192)
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which means that this vortex carries an amount of magnetic flux, of magnitude
exactly 2π/e . Apparently, in this model, magnetic field lines condense into locally
stable vortices [Nielsen and Olesen, 1973]. This is also what happens to magnetic
fields inside a superconductor.

10.2 Magnetic Monopoles

Something similar may happen if the Higgs field has three real components. In
that case, one can map the S2 sphere of minima of V (φ), onto a sphere in 3-
space. There will be isolated zeros inside this sphere. These objects behave as
locally stable particles. If one tries to transform the field locally to a constant
value, one finds that a vector potential again may emerge.

If, for example, in an SU(2) theory, a Higgs in the adjoint representation (which
has 3 real components) breaks the gauge group down to U(1), then one finds the
vector potential of an isolated magnetic source inside the sphere. This means that
the source is a magnetic monopole with magnetic charge gm = 4π

e , where e is
the original coupling strength of the SU(2) theory. Indeed, Dirac [1931; 1948] has
derived, back in 1931, that magnetic charges gm and electric charges q must obey
the Dirac quantization condition

q gm = 2πn .(193)

Apparently, for the monopole in this model, n = 2. However, it is easy to introduce
particles in the elementary representation, which have q = 1

2e ; these then saturate
the Dirac condition (193).

Dirac could not say much about the mass of his magnetic monopoles. In
the present theories, however, the mass is calculable. In general, the magnetic
monopole mass turns out to be the mass of an ordinary particle divided by a
number of the order of the gauge coupling strength squared.

Careful analysis of the existing Lie groups and the way they may be broken
spontaneously into one or more subgroups U(1), reveals a general feature: Only
if the underlying gauge group is compact, and has a compact covering group, must
electric charges in the U(1) gauge groups be quantized (otherwise, it would not
be forbidden to add arbitrary real numbers to the U(1) charges), and whenever
the covering group of the underlying gauge group is compact, magnetic monopole
solutions can be constructed. Apparently, whenever the gauge group structure
provides for a compelling reason for electric charges to be quantized, the existence
of magnetic monopole solutions is guaranteed. Thus, assuming that Nature has
compelling reasons for the charge units of electrons and protons to be equal, and
quantized into multiples of e , we must assume that magnetic monopole solutions
must exist. However, in most ‘Grand Unification Schemes’, the relevant mass scale
is many orders of magnitude higher than the mass scale of particles studied today,
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so the monopoles, whose mass is that divided by a coupling strength squared, are
even heavier.

From the structure of the Higgs field of a monopole, one derives that the system
is invariant under rotations provided that rotations are associated with gauge
rotations. A consequence of this is, that elementary particles with half-odd isospin,
when bound to a monopole, produce bound states with half-odd integer orbital
angular momentum [Hasenfratz and ’t Hooft, 1976]. What is strange about this,
is that such particles should develop Dirac statistics. Indeed, one can derive that
both the spin and the statistics of bound states of electric and magnetic charges,
flip from Bose-Einstein to Fermi-Dirac or back [Goldhaber, 1976] if they form odd
values of the Dirac quantum n (Eq. 193).

10.3 Instantons

A Higgs field with two real components gives rise to vortices, a Higgs with three
components gives magnetic monopoles, so what do we get if a Higgs field has four
real components? This is the case if, for instance, SU(2) is broken spontaneously
into the identity by a Higgs in the fundamental representation (two complex =
4 real components). The topologically stable objects one finds are stable points
in four-dimensional space-time. They represent events, and, referring to their
particle-like appearance, the resulting solutions (in Euclidean space) were called
‘instantons’. Because this Higgs field, in the case of SU(2), breaks the gauge
symmetry completely, one can argue that this solution is also topologically stable
in pure gauge theories, without a Higgs mechanism at all. Far from the origin, the
vector potential field is described as a local gauge rotation of the value Aa

μ(x) = 0.
The gauge rotation in question, Ω(x), is described by noting that the SU(2)
matrices form an S3 space, i.e., the three dimensional surface of a sphere in four
dimensions. Mapping this S3 one-to-one onto the boundary of some large region
in (Euclidean) space-time, gives the field configuration of an instanton.

It was noted by Belavin, Polyakov, Schwarz and Tyupkin [Belavin et al., 1975]
(who also were the first to write down this solution) that this solution has a non-
vanishing value of

∫
d4x F a

μνF̃
a
μν =

32π2

g2
.(194)

The integrand is the divergence of a current:

F a
μνF̃

a
μν = ∂μKμ ; Kμ = 2εμναβA

a
ν(∂αAa

β + 1
3gfabcAb

αAc
β) ,(195)

the so-called Chern-Simons current. This current, however, is not gauge-invariant,
which is why it does not vanish at infinity. It does vanish after the gauge trans-
formation Ω(x) that replaces Aa

μ at infinity by 0. Eq. (194) is most easily derived
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by using this Chern-Simons current. It so happens that the instanton is also a
solution of the equation

Fμν = F̃μν ,(196)

so that we also find the action to be given by −8π2/g2 .

In a pure gauge theory (one without fermions), instantons can be interpreted
as representing tunneling transitions. In ordinary Quantum Mechanics, tunneling
is an exponentially suppressed transition. The exponential suppression is turned
into an oscillating expression if we replace time t by an imaginary quantity iτ .
The oscillating exponent is the action of a classical transition in imaginary time.
One may also say that a tunneling transition can be described by a classical me-
chanical transition if the potential V (�q) is replaced by 2E−V (�q) , where E is the
energy. The classical action then represents the quantity in the exponent of the
(exponentially suppressed) tunneling transition.

The above substitution is exactly what one gets by replacing time t by iτ .
In relativistic Quantum Field Theory, this is also exactly the Wick rotation from
Minkowski space-time into Euclidean space-time. In short, instantons represent
tunneling that is associated with the suppression factor e−8π2/g2 .

The transition can be further understood by formulating a gauge theory in the
temporal gauge, A0 = 0. In this gauge, there is a residual invariance under gauge
transformations Λ(x) that are time-independent. All ‘physical states’, therefore,
come as representations of this local gauge group. Normally, however, we restrict

ourselves to the trivial representation, Ω|ψ〉 = |ψ〉 , where Ω = ei
R

Λ(x)d3x , because
this configuration is conserved in time, and because any other choice would violate
Lorentz invariance. However, closer analysis shows that one only has to impose
this constraint for those gauge transformations that can be continuously reached
from the identity transformation. This is not the case for transformations obtained
by mapping the S3 space of the SU(2) transformations non-trivially onto three-
space RR3 . These transformations form a discrete set, characterized by the integers
k = 0, ±1, ±2, . . . . Writing

Ωk(x) = Ω1(x)k , Ωk|ψ〉 = eiθk|ψ〉 ,(197)

we find that the tunneling transitions described by instantons cause an exponen-
tially suppressed θ dependence of physical phenomena in the theory. Since, under
parity transformations P , the angle θ turns into −θ , a non-vanishing θ also
implies an explicit parity (eventually, PC ) violation of the strong interactions.

In the presence of fermions, the situation is altogether different. Due to the
chiral anomaly, we have for the current of chiral fermions J5

μ(x), the equation
(173). The total number of chiral fermions, Q5 =

∫
d3xJ5

0 (x) changes by one unit
due to an instanton: ΔQ5 = ±1. This can be understood by noting that the Dirac
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equation for massless, chiral fermions has one localized solution in the Euclidean
space of an instanton. In Minkowski space-time, this solution turns into a state
that describes a chiral fermion either disappearing into the Dirac sea, or emerging
from it, so that, indeed, the number of particles minus anti-particles changes by
one unit for every chiral fermion species. If left- and right handed fermions are
coupled the same way to the gauge field, as in QCD, the instanton removes a
left-handed fermion and creates a right-handed one, or, in other words, it flips the
chirality. This ΔQ5 = ±2 event has exactly the quantum numbers of a mass term
for the Goldstone boson that would be associated to the conservation of chiral
charge, the η particle. This explains why the η particle is considerably heavier
than the pions, which have lost most of their mass due to chiral symmetry of the
quarks [’t Hooft, 1986].

What one concludes from the study of instantons is that QCD, the theory for the
strong interactions, neatly explains the observed symmetry structure of the hadron
spectrum, including the violation of chiral charge conservation that accounts for
the η mass.

In the electro-weak sector, one also has instantons. We now see that the can-
cellation of the anomalies in the quark and the lepton sector implies an important
property of the electro-weak theory: since the anomalies do not respect gauge-
invariance of the quark sector alone, quarks can be shown not to be exactly con-
served. One finds that instantons induce baryon number violating events: three
baryons (nine different quarks all together) may transmute into three anti-leptons,
or vice versa.

11 CONFINEMENT

An important element in the Standard Model is the gauge theory for the strong
interactions, based on the gauge group SU(3). Quarks are fermions in the ele-
mentary representation of SU(3). The observed hadronic particles all are bound
states of quarks and/or anti-quarks, in combinations that are gauge-invariant un-
der SU(3). An important question is: what is the nature of the forces that binds
these quarks together? We have seen that vortex solutions can be written down
that would cause an interesting force pattern among magnetic monopoles: in a
Higgs theory with magnetic monopoles, these monopoles could be bound together
with Abrikosov vortices.

Indeed, this would be a confining force: every magnetic monopole must be the
end point of a vortex, whose other end point is a monopole of opposite magnetic
charge. Indeed, the confinement would be absolute: isolated monopoles cannot
exist. It was once thought that, therefore, quarks must be magnetic monopoles.
This, however, would be incompatible with the finding that quarks only interact
weakly at small distances, magnetic charges being always quite strong. A more
elegant idea is that the binding force forms electric rather than magnetic vortices.
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An electric vortex can be understood as the dual transformation of a magnetic
vortex. It comes about when the Brout-Englert-Higgs mechanism affects freely
moving magnetically charged particles. Further analytic arguments, as well as
numerical investigations, have revealed that indeed such objects are present in
QCD, and that the Higgs mechanism may occur in this sector. Let us briefly
explain the situation in words.

11.1 The maximally Abelian gauge

A feature that distinguishes non-Abelian gauge theories from Abelian ones, is that
a reference frame for the gauge choice, the gauge condition, can partly be fixed
locally in terms of the pure gauge fields alone; noticing that the covariant field
strengths Gμν transform as the adjoint representation, one may choose the gauge
such that one of these components, say G12 , is diagonal. This then removes the
non-Abelian part of the gauge group, but the diagonal part, called the Cartan
subgroup, remains. In this way, a non-Abelian gauge theory turns into an Abelian
one. A slightly smarter, but non-local gauge that does the same is the condition
that

∑
i�=j(A

i
μ j)

2 is minimized. It is called the maximally Abelian gauge.

However, such a gauge choice does produce singularities. These typically occur
when two eigenvalues of G12 coincide. It is not difficult to convince oneself that
these singularities behave as particles, and that these particles carry magnetic
charges with respect to the Cartan subgroup. Absolute confinement occurs as soon
as these magnetically charged particles undergo a Brout-Englert-Higgs mechanism.

Although this still is the preferred picture explaining the absolute nature of
the quark confining force, it may be noted that the magnetically charged particles
do not have to be directly involved with the confinement mechanism. Rather,
they are indicators. This, we deduce from the fact that confinement also occurs in
theories with a very large number Nc of colors; in the limit Nc →∞ , magnetically
charged particles appear to be suppressed in the perturbative regime, but the
electric vortices are nevertheless stable. The strength of a vortex is determined
by its finite width, and this width is controlled by the lightest gluonic state, the
‘glueball’. At distance scales large compared to the inverse mass of the lightest
glueball, an electric vortex cannot break.

Confinement is a condensation phase that is a logical alternative of the Brout-
Englert-Higgs phase. In some cases, however, these two phases may coexist. An
example of such a coexistence is the SU(2) sector of the Standard Model. Con-
ventionally, this sector is viewed as a prototype of the Higgs mechanism, but it so
happens that the SU(2) sector of the Standard Model can be treated exactly like
the colour SU(3) sector: as if there is confinement. To see this, one must observe
that the Higgs doublet field can be used to fix the SU(2) sector of the gauge group
unambiguously. This means that all physical particles can be connected to gauge-
invariant sources by viewing them as gauge-invariant bound states of the Higgs
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particle with the other elementary doublets of the model. For instance, writing
the Higgs doublet as φa =

(
F
0

)
+ φ̃a , and the lepton doublet as ψa , the electron

is seen to be associated to the ‘baryonic’ field εabφaψb , the neutrino is φ∗aψa , the
Z0 boson is φ∗aDμφa , and so on.

Theories in which the confinement phase is truly distinct from the Higgs phase
are those where the Higgs field is not a one-to-one representation of the gauge
group, such as the adjoint representation of SU(2).

12 OUTLOOK

Quantum Field Theory has reached a respectable status as an accurate and well-
studied description of sub-atomic particles. From a purely mathematical point
of view, there are some inherent limitations to the accuracy by which it defines
the desired amplitudes, but in nearly all conceivable circumstances, its intrinsic
accuracy is much higher than what can be reached in experiments. This does
not mean that we can reach such accuracy in real calculations, which more often
than not suffer from technical limitations, particularly where the interactions are
strong, as in QCD. In this domain, there is still a need for considerable technical
advances.

12.1 Naturalness

When the Standard Model, as known today, is extrapolated to energy domains
beyond approximately 1 TeV, a difficulty is encountered that is not of a mathe-
matical nature, but rather a physical one: it becomes difficult to believe that it
represents the real world. The bare Lagrangian, when considered on a very fine
lattice, is required to have parameters that must be tuned very precisely in order
to produce particles such as the Higgs particle and the weak vector bosons, whose
masses are much less than 1 TeV. This fine-tuning is considered to be unnatural.
In a respectable physical theory, such a coincidence is not expected. With some
certainty, one can state that the fundamental laws of Nature must allow for a more
elegant description at high energies than a lattice with such fine-tuning. What is
generally expected is either a new symmetry principle or possibly a new regime
with an altogether different set of physical fields.

A candidate for a radically different regime is the so-called technicolour theory,
a repetition of QCD but with a typical energy scale of a TeV rather than a GeV.
The quarks, leptons and Higgs particles of the Standard Model would then all turn
out to be the hadrons of this technicolour theory. Different gauge groups could
replace SU(3) here. However, according to this scheme, a new strong interaction
regime would be reached, where perturbation expansions used in the weak sector
of the Standard Model would have to break down. As precision measurements and
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calculations continue to confirm the reliability of these perturbation expansions,
the technicolour scenario is considered to be unlikely.

12.2 Supersymmetry

A preferred scenario is a simple but beautiful enhancement of the symmetries of
the Standard Model: supersymmetry. This symmetry, which puts fermions and
bosons into single multiplets, does not really modify the fundamental aspects of
the theory. But it does bring about considerable simplifications in the expressions
for the amplitudes, not only in the perturbative sector, but also, in many cases, it
allows us to look deeper into the non-perturbative domains of the theories. There
is a vast amount of literature on supersymmetry, but some aspects of it are still
somewhat obscure. We would like to know more about the physical origin and
meaning of supersymmetry, as well as the mechanism(s) causing it to be broken
— and made almost invisible — at the domain of the Standard Model that is
today accessible to experimental observation.

12.3 Resummation of the Perturbation Expansion

The perturbation expansion in Quantum Field Theory is almost certain to be
divergent for any value of the coupling parameter(s). A simple argument for its
divergence has been put forward by Dyson [Dyson, 1952]: imagine that in the
theory of QED there were a bound ε such that, whenever |α| < ε , where α is the
fine-structure constant, perturbation expansions would converge. Then it would
converge for some negative real value of α . However, one can easily ascertain that
for any negative value of α , the vacuum would be unstable: vacuum fluctuations
would allow large numbers of electrons to be pair-created, and since like charges
attract, highly charged clouds of electrons could have negative energies.

Theories with asymptotic freedom may allow for a natural way to re-sum the
perturbation series, by first solving the theory at high energy with extreme pre-
cision, after which one has to integrate the Schrödinger equation to obtain the
physical amplitudes at lower energy. Such a program has not yet been carried out,
because integrating these Schrödinger equations is beyond our present capabilities,
but one may suspect that, as a matter of principle, it should be possible. Theories
that are not asymptotically free may perhaps allow for more precise treatments if
an ultra-violet fixed point can be established.

The extent of the divergence of the perturbation expansion can be studied or
predicted. This one does using the Borel resummation technique. An amplitude

Γ(λ) =
∞∑
n=1

anλ
n ,(198)
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can be rewritten as

Γ(λ) =
∫ ∞

0

B(z)e−z/λdz ,

B(z) =
∞∑
k=0

ak+1z
k/k! .(199)

The series for B(z) is generally expected to have a finite radius of convergence.
If B(z) can be analytically extended to the domain 0 ≤ z < ∞ , then that (re-)
defines our amplitude. In general, however, one can derive that B(z) must have
singularities on the real axis, for instance where z corresponds to the action of
instantons or instanton pairs. In addition, singularities associated to the infrared
and/or ultraviolet divergences of the theory are expected. Sometimes, these dif-
ferent singularities interfere.

12.4 General Relativity and Superstring Theory

It is dubious, however, whether the issue of convergence or divergence of the per-
turbation expansion is of physical relevance. We know that Quantum Field Theory
cannot contain the entire truth concerning the sub-atomic world; the gravitational
force is guaranteed not to be renormalizable, so at those scales where this force
becomes comparable to the other forces, the so-called Planck scale, a radically new
theory is called for. Superstring Theory is presently holding the best promise to
evolve into such a theory. With this theory, physicists are opening a new chapter,
where we leave conventional Quantum Field Theory, as described in this paper,
behind. In its present form, Superstring Theory appears to have turned into a
collection of wild ideas called M -theory, whose foundations are still extremely
shaky. Some of the best minds of the world are competing to turn this theory
into something that can be used to provide for reliable predictions and that can
be taught in a text book, but this has not yet been achieved.

BIBLIOGRAPHY

[Adler, 1969] S. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177:
2426–2438, 1969.

[Adler and Bardeen, 1969] S. Adler and W. Bardeen. Absence of higher-order corrections in the
anomalous axial-vector divergence equation. Physical Review, 182: 1517–1536, 1969.

[Aitchison and Hey, 1989] I. Aitchison and A. Hey. Gauge Theories in Particle Physics. Adam
Hilger, 1989.

[Bardeen, 1969] W. Bardeen. Anomalous Ward identities in spinor field theories. Physical
Review, 184: 1848–1859, 1969.

[Becchi et al., 1975] C. Becchi, A. Rouet, and R. Stora. Renormalization of the Abelian Higgs-
Kibble model. Communications in Mathematical Physics, 42: 127–162, 1975.

[Becchi et al., 1976] C. Becchi, A. Rouet, and R. Stora. Renormalization of gauge theories.
Annals of Physics, 98: 287–321, 1976.



728 Gerard ’t Hooft

[Belavin et al., 1975] A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin. Pseudoparticle
solutions of the Yang-Mills equations. Physics Letters, 59 B: 85–87, 1975.

[Bell and Jackiw, 1969] J. Bell and R. Jackiw. A pcac puzzle: pi /sup 0/ to gamma gamma in
the sigma-model. Il Nuovo Cimento, 60A: 47–61, v.

[Cheng and Li, 1984] T. Cheng and L. Li. Gauge theory of elementary particle physics. Claren-
don Press, Oxford, 1984.

[Crease and Mann, 1986] R. Crease and C. Mann. The Second Creation: makers of the revolu-
tion in twentieth-century physics. Macmillan, New York, 1986.

[de Wit and Smith, 1986] B. de Wit and J. Smith. Field Theory in Particle Physics. North
Holland, 1986.

[DeWitt, 1964] B. DeWitt. Theory of radiative corrections for non-Abelian gauge fields. Physical
Review Letters, 12: 742–746, 1964.

[DeWitt, 1967a] B. DeWitt. Quantum theory of granvity. I. The canoncial theory. Physical
Review, 160: 1113–1148, 1967a.

[DeWitt, 1967b] B. DeWitt. Quantum theory of granvity. II. The manifestly covariant theory.
Physical Review, 162: 1195–1239, 1967b.

[Dirac, 1931] P. Dirac. Quantised singularities in the electromagnetic field. Proceedings of the
Royal Society, A133: 60–72, 1931.

[Dirac, 1948] P. Dirac. The theory of magnetic poles. Physical Review, 74: 817–830, 1948.
[Dyson, 1952] F. Dyson. Divergence of perturbation theory in quantum electrodynamics. Phys-

ical Review, 85: 631–632, 1952.
[Englert and Brout, 1964] F. Englert and R. Brout. Broken symmetry and the mass of gauge

vector mesons. Physical Review Letters, 13: 321–323, 1964.
[Faddeev, 1969] L. Faddeev. The Feynman integral for singular Lagrangians. Theoretical and

Mathematical Physics, 1:3–18, 1969. Russian. English summary.
[Faddeev and Popov, 1967] L. Faddeev and V. Popov.. Feynman diagrams for the Yang-Mills

field. Physics Letters, 25B: 27–29, 1967.
[Faddeev and Takhtajan, 1984] L. Faddeev and L. Takhtajan. Soviet Journal of Mathematics,

24: 241, 1984.
[Gell-Mann and Low, 1954] M. Gell-Mann and F. Low. Quantum electrodynamics at small

distances. Physical Review, 95: 1300–1312, 1954.
[Goldhaber, 1976] A. Goldhaber. Connection fo spin and statistics for charge-monopole com-

posites. Physical Review Letters, 36: 1122–1125, 1976.
[Hasenfratz and ’t Hooft, 1976] P. Hasenfratz and G. ’t Hooft. Fermion-boson puzzle in a gauge

theory. Physical Review Letters, 36: 1119–1122, 1976.
[Higgs, 1964a] P. Higgs. Broken symmetries and the masses of gauge bosons. Physical Review

Letters, 13: 508–509, 1964a.
[Higgs, 1964b] P. Higgs. Broken symmetries, massless particles and gauge fields. Physics Letters,

12: 132–133, 1964b.
[Higgs, 1966] P. Higgs. Spontaneous symmetry breakdown without massless bosons. Physical

Review, 145: 1156–1163, 1966.
[Hoddeson et al., 1997] L. Hoddeson, L. Brown, M. Riordan, and M. Dresden (eds.). The Rise

of the Standard Model, Particle Physics in the 1960s and 1970s. Cambridge University Press,
1997.

[Itzykson and Zuber, 1980] C. Itzykson and B. Zuber. Quantum Field Theory. McGraw Hill,
New York, 1980.

[Jackiw, 1995] R. Jackiw. Diverse topics in Theoretical and Mathematical Physics. World
Scientific, 1995.

[Nielsen and Olesen, 1973] H. Nielsen and P. Olesen. Vortex-line models for dual strings. Nu-
clear Physics B, 61: 45–61, 1973.

[Pais, 1986] A. Pais. Inward bound: of matter and forces in the physical world. Oxford Univer-
sity Press, 1986.

[Ryder, 1985] L. Ryder. Quantum Field Theory. Cambridge Univ. Press, 1985.
[Slavnov, 1972] A. Slavnov. Ward identities in gauge theories. Theoretical and Mathematical

Physics, 10: 99-107, 1972.
[Stueckelberg and Peterman, 1953] E. Stueckelberg and A. Peterman. Helvetica Physica Acta,

26: 499–, 1953.
[’t Hooft, 1971] G. ’t Hooft. Renormalization of massless Yang-Mills fields. Nuclear Physics B,

33: 173–199, 1971.



The Conceptual Basis of Quantum Field Theory 729

[’t Hooft, 1986] G. ’t Hooft. How instantons solve the U(1) problem. Physics Reports, 142:
357–387, 1986.

[’t Hooft and Veltman, 1972a] G. ’t Hooft and M. Veltman.. Combinatorics of gauge fields.
Nuclear Physics B, 50: 318–353, 1972a.

[’t Hooft and Veltman, 1972b] G. ’t Hooft and M. Veltman. Regularization and renormalization
of gauge fields. Nuclear Physics B, 44: 189–213, 1972b.

[’t Hooft and Veltman, 1994] G. ’t Hooft and M. Veltman. Under the Spell of the Gauge Prin-
ciple, volume 19 of Advanced Series in Mathematical Physics. World Scientific, Singapore,
1994.

[Taylor, 1971] J. Taylor. Ward identities and charge renormalization of the Yang-Mills field.
Nuclear Physics B, 33: 436–444, 1971.

[Tyutin, 1975] I. Tyutin. Lebedev Preprint. FIAN 39. unpublished, 1975.
[Yang and Mills, 1954] C. Yang and R. Mills. Conservation of isotopic spin and isotopic gauge

invariance. Physical Review, 96: 191–195, 1954.



This page intentionally left blank



ALGEBRAIC QUANTUM FIELD THEORY

Hans Halvorson (with an appendix by Michael Müger)

INTRODUCTION

From the title of this Chapter, one might suspect that the subject is some idiosyn-
cratic approach to quantum field theory (QFT). The approach is indeed idiosyn-
cratic in the sense of demographics: only a small proportion of those who work on
QFT work on algebraic QFT (AQFT). However, there are particular reasons why
philosophers, and others interested in foundational issues, will want to study the
“algebraic” approach.

In philosophy of science in the analytic tradition, studying the foundations of
a theory T has been thought to presuppose some minimal level of clarity about
the referent of T . (Moreover, to distinguish philosophy from sociology and his-
tory, T is not taken to refer to the activities of some group of people.) In the
early twentieth century, it was thought that the referent of T must be a set of ax-
ioms of some formal, preferably first-order, language. It was quickly realized that
not many interesting physical theories can be formalized in this way. But in any
case, we are no longer in the grip of axiomania, as Feyerabend called it. So, the
standards were loosened somewhat — but only to the extent that the standards
were simultaneously loosened within the community of professional mathemati-
cians. There remains an implicit working assumption among many philosophers
that studying the foundations of a theory requires that the theory has a mathe-
matical description. (The philosopher’s working assumption is certainly satisfied
in the case of statistical mechanics, special and general relativity, and nonrela-
tivistic quantum mechanics.) In any case, whether or not having a mathematical
description is mandatory, having such a description greatly facilitates our ability
to draw inferences securely and efficiently.

So, philosophers of physics have taken their object of study to be theories, where
theories correspond to mathematical objects (perhaps sets of models). But it is
not so clear where “quantum field theory” can be located in the mathematical
universe. In the absence of some sort of mathematically intelligible description
of QFT, the philosopher of physics has two options: either find a new way to
understand the task of interpretation, or remain silent about the interpretation of
quantum field theory.1

It is for this reason that AQFT is of particular interest for the foundations of
quantum field theory. In short, AQFT is our best story about where QFT lives

1For the first option, see [Wallace, forthcoming].
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in the mathematical universe, and so is a natural starting point for foundational
inquiries.

1 ALGEBRAIC PROLEGOMENA

This first section provides a minimal overview of the mathematical prerequisites
of the remainder of the Chapter.

1.1 von Neumann algebras

The standard definition of a von Neumann algebra involves reference to a topol-
ogy, and it is then shown (by von Neumann’s double commutant theorem) that
this topological condition coincides with an algebraic condition (condition 2 in
the Definition 2). But for present purposes, it will suffice to take the algebraic
condition as basic.

DEFINITION 1. Let H be a Hilbert space. Let B(H) be the set of bounded
linear operators on H in the sense that for each A ∈ B(H) there is a smallest
nonnegative number ‖A‖ such that 〈Ax,Ax〉1/2 ≤ ‖A‖ for all unit vectors x ∈ H.
[Subsequently we use ‖ · ‖ ambiguously for the norm on H and the norm on
B(H).] We use juxtaposition AB to denote the composition of two elements A,B
of B(H). For each A ∈ B(H) we let A∗ denote the unique element of B(H) such
that 〈A∗x, y〉 = 〈x,Ay〉, for all x, y ∈ R.

DEFINITION 2. Let R be a ∗-subalgebra of B(H), the bounded operators on the
Hilbert space H. Then R is a von Neumann algebra if

1. I ∈ R,

2. (R′)′ = R,

where R′ = {B ∈ B(H) : [B,A] = 0,∀A ∈ R}.
DEFINITION 3. We will need four standard topologies on the set B(H) of bounded
linear operators on H. Each of these topologies is defined in terms of a family of
seminorms — see [Kadison and Ringrose, 1997, Chaps. 1,5] for more details.

• The uniform topology on B(H) is defined in terms of a single norm:

‖A‖ = sup{‖Av‖ : v ∈ H, ‖v‖ ≤ 1},

where the norm on the right is the given vector norm on H. Hence, an
operator A is a limit point of the sequence (Ai)i∈N iff (‖Ai−A‖)i∈N converges
to 0.

• The weak topology on B(H) is defined in terms of the family {pu,v : u, v ∈ H}
of seminorms where

pu,v(A) = 〈u,Av〉.



Algebraic Quantum Field Theory 733

The resulting topology is not generally first countable, and so the closure
of a subset S of B(H) is generally larger than the set of all limit points
of sequences in S. Rather, the closure of S is the set of limit points of
generalized sequences (nets) in S — see [Kadison and Ringrose, 1997, Chap.
1] for more details. A net (Ai)i∈I in B(H) converges weakly to A just in
case (pu,v(Ai))i∈I converges to pu,v(A) for all u, v ∈ H.

• The strong topology on B(H) is defined in terms of the family {pv : v ∈ H}
of seminorms where

pv(A) = ‖Av‖.
Thus, a net (Ai)i∈I converges strongly to A iff (pv(Ai))i∈I converges to
pv(A), for all v ∈ H.

• The ultraweak topology on B(H) is defined in terms of the family {pρ :
ρ ∈ T (H)} where T (H) is the set of positive, trace 1 operators (“density
operators”) on H and

pρ(A) = Tr(ρA).

Thus a net (Ai)i∈I converges ultraweakly to A just in case (Tr(ρAi))i∈I
converges to Tr(ρA), for all ρ ∈ T (H).

FACT 4. The topologies are ordered as follows:

norm
⊆ ⊇

ultraweak strong
⊇ ⊆

weak

Since closed sets are just the complements of open sets, this means that a weakly
closed set is ultraweakly closed, and an ultraweakly closed subset is norm closed.
Furthermore, the four topologies on B(H) coincide iff H is finite dimensional.

FACT 5. If S is a bounded, convex subset of B(H), then the weak, ultraweak,
and strong closures of S are the same.

FACT 6. For a ∗-algebra R on H that contains I, the following are equivalent:
(i) R is weakly closed; (ii) R′′ = R. This is von Neumann’s double commutant
theorem.

DEFINITION 7. Let R be a subset of B(H). A vector x ∈ H is said to be cyclic
for R just in case [Rx] = H, where Rx = {Ax : A ∈ R}, and [Rx] is the closed
linear span of Rx. A vector x ∈ H is said to be separating for R just in case
Ax = 0 and A ∈ R entails A = 0.

FACT 8. Let R be a von Neumann algebra on H, and let x ∈ H. Then x is cyclic
for R iff x is separating for R′.
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DEFINITION 9. A normal state of a von Neumann algebra R is an ultraweakly
continuous state. We let R∗ denote the normal state space of R.

1.2 C∗-algebras and their representations

DEFINITION 10. A C∗-algebra is a pair consisting of a ∗-algebra A and a norm
‖ · ‖ : A → R such that

‖AB‖ ≤ ‖A‖ · ‖B‖, ‖A∗A‖ = ‖A‖2,
for all A,B ∈ A. We usually use A to denote the algebra and its norm.

In this Chapter, we will only use C∗-algebras that contain a multiplicative
identity I.

DEFINITION 11. A state ω on A is a linear functional such that ω(A∗A) ≥ 0 for
all A ∈ A, and ω(I) = 1.

DEFINITION 12. A state ω of A is said to be mixed if ω = 1
2 (ω1 + ω2) with

ω1 �= ω2. Otherwise ω is said to be pure.

DEFINITION 13. Let A be a C∗-algebra. A representation of A is a pair (H, π),
where H is a Hilbert space and π is a ∗-homomorphism of A into B(H). A
representation (H, π) is said to be irreducible if π(A) is weakly dense in B(H). A
representation (H, π) is said to be faithful if π is an isomorphism.

DEFINITION 14. Let (H, π) and (K, φ) be representations of a C∗-algebra A.
Then (H, π) and (K, φ) are said to be:

1. unitarily equivalent if there is a unitary U : H → K such that Uπ(A) =
φ(A)U for all A ∈ A.

2. quasiequivalent if the von Neumann algebras π(A)′′ and φ(A)′′ are ∗-isomorphic.

3. disjoint if they are not quasiequivalent.

DEFINITION 15. A representation (K, φ) is said to be a subrepresentation of
(H, π) just in case there is an isometry V : K → H such that π(A)V = V φ(A) for
all A ∈ A.

FACT 16. Two representations are quasiequivalent iff they have unitarily equiva-
lent subrepresentations.

The famous Gelfand-Naimark-Segal (GNS) theorem shows that every C∗-algebraic
state can be represented by a vector in a Hilbert space.

THEOREM 17 (GNS). Let ω be a state of A. Then there is a representation
(H, π) of A, and a unit vector Ω ∈ H such that:

1. ω(A) = 〈Ω, π(A)Ω〉, for all A ∈ A;

2. π(A)Ω is dense in H.
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Furthermore, the representation (H, π) is the unique one (up to unitarily equiva-
lence) satisfying the two conditions.

Since we will later need to invoke the details of the GNS construction, we sketch
the outlines of its proof here.

Sketch of proof. We construct the Hilbert space H from equivalence classes of
elements in A, and the representation π is given by the action of left multiplication.
In particular, define a bounded sesquilinear form on A by setting

〈A,B〉ω = ω(A∗B), A,B ∈ A.

Let H0 be the quotient of A induced by the norm ‖A‖ω = 〈A,A〉1/2ω . Let H be
the unique completion of the pre-Hilbert space H0. Thus there is an inclusion
mapping j : A → H with j(A) dense in H. Define the operator π(A) on H by
setting

π(A)j(B) = j(AB), B ∈ A.

One must verify that π(A) is well-defined, and extends uniquely to a bounded
linear operator on H. One must also then verify that π is a ∗-homomorphism.
Finally, if we let Ω = j(I), then Ω is obviously cyclic for π(A). �

PROPOSITION 18. Let ω be a state of A. The GNS representation (H, π) of A
induced by ω is irreducible iff ω is pure.

Notes: Standard references on C∗-algebras include [Kadison and Ringrose, 1997] and
[Takesaki, 2002].

1.3 Type classification of von Neumann algebras

DEFINITION 19. Two projections E,F in a von Neumann algebra R are said to
be equivalent, written E ∼ F just in case there is a V ∈ R such that V ∗V = E
and V V ∗ = F .

NOTE 20. If we were being really careful, we would replace “equivalent” in the
previous definition with “equivalence modulo R”, and similarly “∼” with “∼R.”
But we will not run into trouble by omitting the reference to R. The operator V
in the previous definition is called a partial isometry with initial projection E and
final projection F .

DEFINITION 21. For von Neumann algebras R1 and R2, we let R1 ∧ R2 =
R1 ∩R2. We let R1 ∨R2 denote the von Neumann algebra generated by R1 and
R2, i.e. the intersection of all von Neumann algebras containing R1 and R2.

DEFINITION 22. Z(R) = R ∧ R′ is called the center of the von Neumann al-
gebra R. A von Neumann algebra R is called a factor just in case Z(R) = CI,
equivalently, R∨R′ = B(H). A projection E ∈ Z(R) is called a central projection
in R.
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DEFINITION 23. Let E ∈ R be a projection, and let ERE = {EAE : A ∈ R}.
Then clearly, ERE is a linear subspace of R. Furthermore, since for A,B ∈ R,
AEB ∈ R and A∗ ∈ R, it follows that ERE is closed under products, as well as
under ∗. It is also not difficult to see that ERE is weakly closed, and hence is a
von Neumann algebra on EH.

DEFINITION 24. Let R be a von Neumann algebra. A projection E ∈ R is said
to be:

1. minimal just in case R contains no proper subprojection of E.

2. abelian just in case the algebra ERE is abelian.

3. infinite just in case there is a projection E0 ∈ R such that E0 < E and
E ∼ E0.

4. finite just in case it is not infinite.

5. properly infinite just in case E is infinite and for each central projection P
of R, either PE = 0 or PE is infinite.

FACT 25. We have the following relations for projections:

minimal =⇒ abelian =⇒ finite
properly infinite =⇒ infinite ⇐⇒ ¬finite

For factors, the first arrows on both lines can be reversed.

We now give the Murray-von Neumann type classification of factors (for more
on this, see [Kadison and Ringrose, 1997, Chap. 7] or [Sunder, 1987, Chap. 1]).

DEFINITION 26. A von Neumann factor R is said to be:

1. type I if it contains an abelian projection;

2. type II if it contains a finite projection, but no abelian projection;

3. type III if it is neither type I nor type II.

The type I factors were already completely classified by Murray and von Neu-
mann: for each cardinal number κ there is a unique (up to isomorphism) type Iκ
factor, namely B(H) where H is a Hilbert space of dimension κ. The type II fac-
tors can be further subdivided according to whether or not the identity projection
I is finite (type II1) or infinite (type II∞). The type III factors can be subdivided
into types IIIλ with λ ∈ [0, 1], although the basis for this subclassification depends
on Tomita-Takesaki modular theory (see Section 1.4).

For general von Neumann algebras, the type classification must be just a bit
more sophisticated: a type I algebra is defined as an algebra that has an abelian
projection E such that no nontrivial projection in Z(R) majorizes E. Similarly, a
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type II algebra is defined as an algebra having a finite projection E such that no
nontrivial projection in Z(R) majorizes E. Thus we have:

PROPOSITION 27. Let R be a von Neumann algebra. Then R = RI⊕RII⊕RIII,
where RX is type X for X=I,II,III.

Proof. See [Kadison and Ringrose, 1997, Thm. 6.5.2]. �

We will soon see that the local algebras in QFT are “typically” type III, and
this has many interesting implications. The fact that type III algebras do not
have abelian projections is connected to questions of locality in Section 3.3. The
fact that the state space of type III1 factors is homogeneous is also connected to
questions of locality in Section 3.3. The fact that type III algebras do not contain
representatives of their states (i.e. density operators) is connected to the modal
interpretation of QFT in Section 5.

The following classification of von Neumann algebras is also natural, but it cuts
across the Murray-von Neumann classification.

DEFINITION 28. A von Neumann algebra R is said to be:

• of infinite type if I is infinite in R;

• properly infinite if I is properly infinite in R.

• semi-finite if the central projection EIII in R (defined in Prop. 27) is zero.

The finite factors include the type In and type II1 factors. The infinite factors
include the type I∞ factors as well as the type II∞ and III factors. The distinction
between finite and infinite factors coincides with the existence of a tracial state.

DEFINITION 29. A faithful normalized trace on a von Neumann algebra R is a
state ρ on R such that:

1. ρ is tracial; i.e. ρ(AB) = ρ(BA), for all A,B ∈ R,

2. ρ is faithful; i.e. ρ(A∗A) = 0 only if A = 0.

FACT 30. A von Neumann factor R is finite iff there is a faithful normal tracial
state ρ on R. A von Neumann factor R is semifinite iff there is a “faithful normal
semifinite trace” on R; but we do not pause here to define this notion.

1.4 Modular theory

We state here without proof some of the basic facts about Tomita-Takesaki mod-
ular theory. These facts are necessary in order to understand the classification of
type III von Neumann algebras, which in turn is essential to understanding the
mathematical structure of AQFT.
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DEFINITION 31. Let R be a von Neumann algebra acting on a Hilbert space H,
and suppose that Ω ∈ H is cyclic and separating for R. In such a case, we say
that (R,Ω) is in standard form. Define an operator S0 on H by setting

S0AΩ = A∗Ω, A ∈ R.

Then S0 extends to a closed anti-linear operator S on H. Let S = J∆1/2 be the
polar decomposition of S, so that ∆ is positive (but generally unbounded), and
J is anti-unitary. (Recall that a positive operator has spectrum in R

+.) We call
∆ the modular operator and J the modular conjugation associated with the pair
(R,Ω).

THEOREM 32. Let R be a von Neumann algebra with cyclic and separating vector
Ω. Then JΩ = Ω = ∆Ω and

∆itR∆−it = R, ∀t ∈ R,

JRJ = R′.

Proof. See [Kadison and Ringrose, 1997, Thm. 9.2.9], or [Sunder, 1987, Thm.
2.3.3]. �

DEFINITION 33. Let (R,Ω) be in standard form, and let ω be the state of R
induced by Ω. For each t ∈ R, define the modular automorphism σωt of R by

σωt (A) = ∆itA∆−it, A ∈ R,

for all A ∈ R. Define a ∗ anti-isomorphism γ : R → R′ by setting γ(A) = JA∗J ,
for all A ∈ R.

DEFINITION 34. If A is a C∗-algebra, we let InnA denote the group of inner
automorphisms of A; i.e. α ∈ InnA just in case there is a unitary U ∈ A such that
α(A) = UAU∗ for all A ∈ A.

The spectrum of the modular operator ∆ gives a rough measure of the period-
icity of the modular automorphism group (σωt )t∈R; i.e. the smaller the spectrum
of ∆, the closer the automorphism σωt is to the identity ι : R → R. In the extreme
case, if sp∆ = {1}, then σωt = ι for all t ∈ R. Conversely, as ∆ goes up to R

+, the
group (σωt )t∈R tends toward being ergodic (i.e. having no fixed points).

DEFINITION 35. Define the modular spectrum S(R) of R by

S(R) =
⋂
ω

sp(∆ω),

where ω runs over the family of faithful normal states of R, and ∆ω are the
corresponding modular operators.

PROPOSITION 36. Let R be a von Neumann factor with cyclic and separating
vector Ω. Then the following are equivalent:
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1. R is semifinite.

2. For all t ∈ R, the modular automorphism σωt is inner; i.e. there is a unitary
U ∈ R such that σωt (A) = UAU∗ for all A ∈ R.

3. S(R) = {1}.

Proof. See [Takesaki, 2003, p. 122] and [Sunder, 1987, p. 111]. �

We now proceed to Connes’ subclassification of the type III factors. This sub-
classification uses the notion of the “period of the flow of weights” (where a weight
is a generalization of the notion of a state). However, in order to bypass some
background material, we use the following (provably equivalent) definition.

DEFINITION 37. A factor R of type III is said to be:

1. Type III0 if S(R) = {0, 1}.
2. Type IIIλ, λ ∈ (0, 1), if S(R) = {λn : n ∈ Z} ∪ {0}.
3. Type III1 if S(R) = R

+.

The conditions in Defn. 37 do not bear their physical interpretation on their
sleeve. That is, it is not immediately clear how the physics of type IIIλ algebras
differs (if at all) from that of type IIIµ algebras, for λ �= µ. However, a result of
Connes and Størmer [1978] cashes out some of the significance of the distinctions
between different types of factors.

DEFINITION 38. Let R be a von Neumann algebra, and let R∗ be its normal
state space. We define the diameter of the state orbit space d(R) by

d(R) = sup
{

inf
{‖(ω1 ◦ α)− ω2‖ : α ∈ InnR

}
: ω1, ω2 ∈ R∗

}
.

Alternatively, let [ω] denote the norm closure of {ω ◦ α : α ∈ InnR} (the orbit
of the state under inner automorphisms), and let K denote the quotient of the
normal state space R∗. Then d(R) is the diameter of K relative to the induced
metric

d([ω1], [ω2]) = inf{‖ω′
1 − ω′

2‖ : ω′
i ∈ [ωi]}.

Clearly d(R) ∈ [0, 2], with d(R) = 0 iff the orbit of every state is dense in
the normal state space. If R is not a factor, then there are states ω1, ω2 such
that ‖ω1 ◦ α − ω2‖ = 2 for all α ∈ InnR, and so d(R) = 2. For type In factors,
the distance between normal states is the same as the trace norm distance of the
corresponding density operators. In this case, we have

d(R) = 2
(
1− 1

n

)
= ‖τ − ω‖,
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where τ is the trace and ω is any pure state. We also have d(R) = 2 for factors of
type I∞ and of type II [Takesaki, 2003, p. 430].

If d(R) gives some sort of measure of “how noncommutative” the algebra R is,
then type III1 factors are the most noncommutative.

DEFINITION 39. A von Neumann algebra R is said to be countably decompos-
able just in case any family of mutually orthogonal projection operators in R is
countable.

PROPOSITION 40. If R is a countably decomposable factor of type IIIλ, then

d(R) = 2
1− λ1/2

1 + λ1/2
.

Proof. See [Connes and Størmer, 1978] and [Takesaki, 2003, p. 427]. �

The function f(λ) = 2(1−λ1/2)/(1+λ1/2) is monotonically decreasing on [0, 1].
In particular, f(1) = 0 so that, for type III1 factors, the orbit of any normal
state ω is norm dense in the state space. According to Connes [1994, p. 473] this
means that “one cannot distinguish between two states of a factor of type III1 by
means of a property that is closed and invariant under inner automorphisms.” In
particular, since two unitarily equivalent states must be considered to be “equally
mixed,” there are no distinctions to be drawn in terms of the mixedness of states
of a type III1 factor.

Notes: For an overview of modular theory, see [Summers, ND] or [Connes, 1994]. For a

full treatment, see [Takesaki, 2003]. For a detailed exposition of applications of modular

theory in QFT, see [Borchers, 2000].

2 STRUCTURE OF THE NET OF OBSERVABLE ALGEBRAS

2.1 Nets of algebras, basic properties

AQFT proceeds by isolating some structural assumptions that hold in most known
QFT models. It formalizes these structural assumptions, and then uses “abstract
but efficient nonsense” to derive consequences of these assumptions.

The basic formalism of AQFT is a “net of local observable algebras” over space-
time. Although this formalism can be applied to a very wide class of spacetimes,
we restrict attention in this Chapter mostly to Minkowski spacetime.

An open double cone in Minkowski spacetime is the intersection of the causal
future of a point x with the causal past of a point y to the future of x. Let K
be the set of open double cones in Minkowski spacetime, and let O �→ A(O) be a
mapping from K to C∗-algebras. We assume that all our C∗-algebras are unital,
i.e. have a multiplicative identity. We assume that the set {A(O) : O ∈ K} of
C∗-algebras (called a net of observable algebras over Minkowski spacetime) is an
inductive system in the sense that:
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If O1 ⊆ O2, then there is an embedding (i.e. an isometric ∗-homomorphism)
α12 : A(O1) → A(O2).

ASSUMPTION 41 (Isotony). The mapping O �→ A(O) is an inductive system.

The isotony assumption is sometimes motivated by the idea that an observable
measurable in a region O1 is a fortiori measurable in any region O2 containing
O1. But the isotony axiom is also justified by its utility: for, if {A(O) : O ∈ K}
is an inductive system, then there is an inductive limit C∗-algebra A generated
by all the local algebras. We call A the quasilocal algebra, because it contains
observables that can be uniformly approximated by local observables.

NOTE 42. In some spacetimes, the set of double cones is not directed. In many
such cases, it is still possible to define the quasilocal algebra by means of more
sophisticated techniques [Fredenhagen, 1993].

Now we turn to the main relativistic assumption of AQFT.

ASSUMPTION 43 (Microcausality). A net A of C∗-algebras is said to satisfy
microcausality just in case if O1, O2 are spacelike separated double cones, then
[A(O1),A(O2)] = {0}.

This assumption is thought to reflect the constraints on spacetime structure
imposed by the theory of relativity.

NOTE 44. It is not a tenet of AQFT that quantities that are associated to space-
like separated regions must be represented by commuting operators. In fact,
Fermi field operators assigned to spacelike separated regions will anticommute.
So, AQFT has need of a distinction between observable (represented by elements
of A(O)) and unobservable quantities (represented by “field operators”). For more
on this distinction, see Sections 7.2 and following on DHR superselection theory.

In this Chapter, we will not attempt to justify or to dispute the microcausality
assumption. However, we will briefly discuss its connection to issues of locality in
Section 3.

2.2 Existence/uniqueness of vacuum states/representations

The existence of translation-invariant states

In this section, we inquire concerning the existence and uniqueness of vacuum
states and representation. For this, recall that an affine space (e.g. Minkowski
spacetime) is a triple consisting of a set S, a vector space V , and a map + :
S × V → S satisfying certain properties. In this case, V is called the translation
group.

ASSUMPTION 45 (Translation Covariance). If A is a net of operator algebras on
an affine space, then we assume that there is a faithful, continuous representation
x �→ αx of the translation group in the group AutA of automorphisms of A, and

αx(A(O)) = A(O + x),
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for any double cone O, and translation x.

NOTE 46. For the case of Minkowski spacetime, the translation group is a sub-
group of the Poincaré group. In many cases of physical interest, x → αx extends
to a representation of the full Poincaré group in the group AutA of automorphisms
of A. But we will only need that fact for one result (Prop. 132).

Translation invariance has traditionally been thought to be a necessary condi-
tion on a vacuum state.

FACT 47. If there is an action α of the translation group on A, then translation-
invariant states of A exist. Indeed, since the translation group is abelian, it has
an invariant mean µ — i.e. a translation invariant, positive linear functional on
the algebra L∞(G) of essentially bounded measurable (with respect to the Haar
measure) functions on the group G. Given a state ω of A, we can then define an
averaged state ρ by

ρ(A) :=
∫

ω(αxA)dµ(x).

The state ρ is translation invariant. (See Emch, this volume, Section 3.5.)

NOTE 48. The preceding argument cannot be used to show the existence of
Lorentz invariant states. The Lorentz group is not amenable, and so does not
admit an invariant mean. Hence, we cannot use these general methods to prove
the existence of Lorentz invariant states. Of course, in concrete models (e.g. free
Bose and Fermi fields) there are other way to establish the existence of such states.

Let G be a group acting by automorphisms on A. A generalization of the GNS
theorem shows that a G-invariant state ω of A gives rise to a GNS Hilbert space
H that carries a unitary representation U of G, and the GNS vector Ω is invariant
under the G-action on H.

FACT 49. Let α be a strongly continuous action of the group G by automorphisms
of A. If ω is a G-invariant state of A, then the GNS representation (H, π) of
A induced by ω is G-covariant in the sense that there is a strongly continuous
representation U of G in the unitary group of B(H) such that

1. U(g)π(A)U(g)∗ = π(αg(A)), for all A ∈ A,

2. U(g)Ω = Ω for all g ∈ G.

Only one vacuum per Hilbert space

NOTE 50. When considering the group AutA of automorphisms of a C∗-algebra,
we take as our standard topology the strong topology on the set L(A) of bounded
linear mappings on A (considered as a Banach space). That is, αi converges to α
just in case for each A ∈ A, αi(A) converges to α(A) in the norm on A.
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DEFINITION 51. We use the GNS representation theorem (Thm. 17) to transfer
terminology about representations (Defn. 14) to terminology about states. So,
e.g., we say that two states are disjoint if their GNS representations are disjoint.

A vacuum state should be at least translation invariant. Furthermore, the
microcausality assumption on the net A entails that any two observables commute
“in the limit” where one is translated out to spacelike infinity. That is, for any
A,B ∈ A, and for any spacelike vector x,

lim
t→∞ ‖[αtx(A), B]‖ = 0.

This in turn entails that G acts on A as a large group of automorphisms in the
following sense:

If ω is a G-invariant state and (H, π) is the GNS representation of A
induced by ω, then for any A ∈ A,

conv
{
π(αg(A)) : g ∈ G

}
,

has nonempty intersection with π(A)′.

Here we use convS to denote the weakly closed convex hull of S. (See [Størmer,
1970] for the relevant proofs.) Note however that we would also expect the same
to be true in a non-relativistic setting, because we would expect observables asso-
ciated with disjoint regions of space to commute. (We have not invoked the fact
that any vector in Minkowski spacetime is the sum of two spacelike vectors.)

Thanks to extensive research on “C∗-dynamical systems,” much is known about
G-invariant states when G acts as a large group of automorphisms of A. In par-
ticular, the set of G-invariant states is convex and closed (in the weak* topology),
hence the set has extreme points, called extremal invariant states. (Obviously if
a pure state of A is G-invariant, then it is extremal invariant.) Furthermore, we
also have the following result concerning the disjointness of G-invariant states.

PROPOSITION 52. Let ω be a G-invariant state of A, let H be its GNS Hilbert
space, and let Ω be the GNS vector. Then the following are equivalent:

1. ω is clustering in the sense that

lim
t→∞ω(αtx(A)B) = ω(A)ω(B).

2. ω is extremal invariant.

3. If a G-invariant state ρ is quasiequivalent to ω, then ρ = ω. In other words,
no other G-invariant state is quasiequivalent to ω.

4. The ray spanned by Ω is the unique (up to scalar multiples) G-invariant
subspace of H.
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Proof. See [Størmer, 1970]. For related details, see also [Emch, 1972, pp. 183,
287] and Emch, this volume, Section 3. �

So, if a (vacuum) state is clustering, then no other translation invariant state
is in its folium (i.e. the set of states that are quasiequivalent to that state). Simi-
larly, if a state is extremal invariant (a fortiori if it is pure) then it is the unique
translation invariant state in its folium.

NOTE 53. The existence of disjoint vacua is related to spontaneous symmetry
breaking. See Section 10.7.

NOTE 54. Prop. 52 plays a central role in the proof of “Haag’s theorem” given in
[Emch, 1972, p. 248]. In particular, the uniqueness of extremal G-invariant states
is equated with the nonexistence of “vacuum polarization.”

2.3 The Reeh-Schlieder Theorem

We have assumed that a vacuum state is translation invariant. But we expect a
vacuum state to obey a stronger constraint that reflects the relativistic nature of
the theory. In particular, the unitary representation defined in Fact 49 is generated
infinitesimally by the four momentum operator P. (The idea of a four momentum
operator can be made precise in the “SNAG [Stone-Naimark-Ambrose-Gelfand]
Theorem,” which generalizes Stone’s theorem on the existence of self-adjoint op-
erators generating one-parameter unitary groups.) We require that the energy is
positive in every Lorentz frame, equivalently, that the spectrum of P lies in the
forward light cone.

We now generalize this requirement by abstracting away from the details of the
forward lightcone. The forward lightcone G+ has the following property: G+ ∩
(−G+) = {0} where −G+ = {−g : g ∈ G+}. So, the spectrum condition only
requires that the unitary representation of the translation group has spectrum in
a set that is asymmetric under taking additive inverses.

ASSUMPTION 55 (Spectrum Condition). Let G be the translation group, and let
ω be a G-invariant state of A. We say that the pair (A, ω) satisfies the spectrum
condition just in case: there is a subset G+ of G such that G+ ∩ (−G+) = {0},
and in the GNS representation (H, π) of A induced by ω, the spectrum sp(U) of
the induced unitary representation of G, is contained in G+.

The Reeh-Schlieder Theorem shows that the spectrum condition entails that the
vacuum vector Ω is cyclic for every local algebra. For this theorem, we suppose
that a translation invariant vacuum state ω on A has been chosen, and that (H, π)
is the GNS representation of A induced by ω. We then define a corresponding net
R of von Neumann algebras on H by

O �→ R(O) ≡ π(A(O))′′.

If the net A satisfies microcausality, then so will R. Since Ω is cyclic for π(A), the
set {R(O)Ω : O ∈ K} is dense in H.
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To prove the theorem, we need one additional assumption.

ASSUMPTION 56. The net O �→ R(O) is said to satisfy additivity just in case
for any double cone O, the set {R(O + x) : x ∈ G} generates R as a C∗-algebra.
(Here again, G denotes the translation group.)

The additivity assumption is sometimes justified on the grounds that there
should be no smallest length scale in the theory — i.e. any observable is generated
by taking products, sums, etc. of observables from arbitrarily small regions.

THEOREM 57 (Reeh-Schlieder). Suppose that the net O �→ R(O) satisfies the
spectrum condition and additivity. Then for all double cones O, Ω is cyclic for
R(O). If the net R also satisfies microcausality, then Ω is separating for every
local algebra.

The Reeh-Schlieder (RS) Theorem has been one of the more intensely studied
issues in the foundations of relativistic QFT. In a pair of articles [Redhead, 1995a;
Redhead, 1995b], Redhead shows that the RS Theorem entails that the vacuum
state displays nonlocal correlations. (See also [Halvorson and Clifton, 2000]). Red-
head also points out since the vacuum is separating for each local algebra, every
local event has a nonzero probability of occurring in the vacuum state; in partic-
ular, there can be no local number operators (since they would have the vacuum
state as an eigenvector). Finally, [Fleming, 2000] argues that RS Theorem entails
a pernicious sort of nonlocality, worse than the nonlocality in non-relativistic QM,
and so indicates a need to revise the standard formulation of AQFT. (For one
possible reply, see [Halvorson, 2001].)

Due to the use of the spectrum condition, it would seem that RS Theorem is a
“purely relativistic result,” without analogue in non-relativistic QM or QFT (see
[Saunders, 1992]). Furthermore, we might expect that many other results of rela-
tivistic QFT that are derived from RS Theorem would fail for non-relativistic the-
ories. Indeed, non-relativistic QFT does admit local number operators. However,
a version of the spectrum condition, and consequently a version of RS Theorem
has been shown to hold for non-relativistic theories [Requardt, 1986].

Notes: The original Reeh-Schlieder Theorem was formulated in the axiomatic approach

to QFT, and can be found in [Reeh and Schlieder, 1961]. More up-to-date presentations of

the theorem can be found in [Horuzhy, 1990; D’Antoni, 1990; Baumgärtel and Wollenberg,

1992], and [Araki, 1999].

2.4 The funnel property

DEFINITION 58. Let R1,R2 be von Neumann algebras on H such that R1 ⊆ R2.
If there is a vector Ω ∈ H that is cyclic and separating for R1,R2, and R′

1 ∩R2,
then the pair (R1,R2) is said to be a standard inclusion of von Neumann algebras.

NOTE 59. Let O �→ R(O) be a net of von Neumann algebras on Minkowski
spacetime. Suppose that the Reeh-Schlieder property holds for Ω, i.e. for each



746 Hans Halvorson and Michael Müger

double cone O, Ω is cyclic and separating for R(O). Then if O1, O2 are double cones
such that the closure O1 of O1 is contained in O2, then the pair (R(O1),R(O2))
is a standard inclusion of von Neumann algebras.

DEFINITION 60. Let R1,R2 be von Neumann algebras on H such that R1 ⊆ R2.
The pair (R1,R2) is said to be a split inclusion if there is a type I factor N such
that R1 ⊆ N ⊆ R2.

ASSUMPTION 61 (Funnel Property). The net O �→ R(O) of von Neumann alge-
bras is said to satisfy the funnel property if for any double cones O1, O2 with O1

contained in O2, the pair (R(O1),R(O2)) is a split inclusion.

NOTE 62. A type I factor N is countably decomposable iff N is isomorphic to
B(H) with H separable iff N is separable in the ultraweak topology (see [Kadison
and Ringrose, 1997, Exercise 5.7.7]).

In our discussion of superselection theory (Sections 7.2–11), at one crucial junc-
ture (Prop. 243, p. 813) we will have to invoke the assumption that the vacuum
Hilbert space is separable. This will be the only place in the Chapter where we
need to assume that a Hilbert space is separable. In particular, the separabil-
ity assumption is needed to establish the correspondence between two notions of
superselection sectors, one of which is physically motivated, and one of which is
mathematically useful. The following result is the only attempt we will make to
connect the separability assumption to something with (perhaps) more clear phys-
ical significance. (In general, we are highly suspicious of the physical warrant for
the separability assumption; compare with Section 6, and with [Halvorson, 2004].)

PROPOSITION 63. Let R be a net of von Neumann algebras on H, and suppose
that Ω ∈ H is cyclic and separating for all local algebras. If the net satisfies the
funnel property, then H is separable.

Proof. (Compare with Prop. 1.6 of [Doplicher and Longo, 1984].) Let O1, O2 be
double cones with O1 ⊆ O2. Let N be a type I factor such that R(O1) ⊆ N ⊆
R(O2), and let ω be the state of N induced by Ω. Recall that N is isomorphic to
B(K) for some Hilbert space K. Since N ⊆ R(O2) and Ω is separating for R(O2),
ω is faithful and normal. Hence K is separable, and there is a countable set N0

that is ultraweakly dense in N. Since R(O1) ⊆ N, and Ω is cyclic for R(O1) it
follows that [N0Ω] = [NΩ] = H. Hence H is separable. �

If one wanted to justify an assumption that the vacuum Hilbert space is sepa-
rable, Prop. 63 shows that it is enough to justify the funnel property. There are
concrete models where the funnel property demonstrably does not hold [Horuzhy,
1990, p. 23]. But the physical significance of these models is not clear, and there
are a couple of other considerations that might favor the funnel property: (i): In
Section 3.3, we show that connection of the funnel property with issues about
nonlocality. (ii): Buchholz and Wichmann [1986] argue that the funnel property
is a sufficient condition for a particle interpretation of QFT. Of course, the inter-
preter of QFT will want to critically examine Buchholz and Wichmann’s notion
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of a “particle interpretation.” (Compare with Section 4.5, where particle inter-
pretations are discussed further. Compare also with Section 6.2, which hints at
connections between nonseparable Hilbert space and field interpretations of QFT.)

NOTE 64. The funnel property for free fields is shown in [Buchholz, 1974].

2.5 Type of local algebras

We now collect the currently known information on the type of local algebras in
physically relevant representations of the net of local observable algebras.

DEFINITION 65. Let R1 and R2 be nets of von Neumann algebras on a Hilbert
space H. We say that R1 and R2 are locally quasiequivalent just in case for each
double cone O there is an isomorphism ϕO : R1(O) → R2(O).

NOTE 66. Although it is not an “axiom” of AQFT, there are good reasons to
believe that representations of physical interest (in particular for elementary par-
ticle physics) are locally quasiequivalent to some vacuum representation, where a
vacuum representation is the GNS representation of some privileged (e.g. perhaps
translation invariant) state. For example local quasi-equivalence holds between
any two physical representations according to the selection criterion of Doplicher-
Haag-Roberts (see Section 7.2 and following), and according to the more liberal
selection criterion of [Buchholz and Fredenhagen, 1982]. Thus, any conclusion we
draw concerning the structure of local algebras in a vacuum representation can be
inferred to hold as well for these other representations.

Local algebras are properly infinite

Some relatively simple results narrow down the possible options for the type of
local algebras. For this, we define the important “property B,” because it is a
consequence of plausible assumptions (viz. additivity and the spectrum condition),
because it also makes sense in situations where there is no translation group (unlike
the spectrum condition), and because it is all we need to infer various results, in
particular that local algebras are properly infinite.

DEFINITION 67. Let O → R(O) be a net of von Neumann algebras on some
Hilbert space H. We say that the net R satisfies property B just in case for any
two double cones O1 and O2 such that O1 ⊆ O2, if E ∈ R(O1) is a nonzero
projection, then E is equivalent in R(O2) to the identity projection I; i.e. there is
an isometry V ∈ R(O2) such that V V ∗ = E.

NOTE 68. If for each O, the algebra R(O) is type III, then the net R satisfies
property B.

We expect property B to hold for a net of observable algebras because it follows
from the physically motivated postulates of weak additivity and the spectrum
condition.
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PROPOSITION 69. Let O �→ R(O) be a net of von Neumann algebras satisfying
microcausality, the spectrum condition, and weak additivity. Then the net O �→
R(O) satisfies property B.

Proof. For the original proof, see [Borchers, 1967]. For a recent exposition, see
[D’Antoni, 1990]. �

ASSUMPTION 70 (Nontriviality). A net O �→ A(O) of C∗-algebras is said to
satisfy non-triviality just in case for each double cone O, A(O) �= CI.

PROPOSITION 71. Let O → R(O) be a net of von Neumann algebras that satis-
fies microcausality, property B, and non-triviality. Then for every double cone O,
the von Neumann algebras R(O) and R(O′)′ are properly infinite.

Proof. We first show that R(O) is properly infinite; that is, that every central
projection in R(O) is infinite. Let C be a central projection in R(O). Choose a
nontrivial double cone O1 whose closure is contained in O. Then by property B,
for each nonzero projection E ∈ R(O1), E is equivalent to I modulo R(O). Since
R(O1) �= CI, there is a projection E ∈ R(O1) such that E ∼ (I −E) ∼ I modulo
R(O). It then follows that EC ∼ (I − E)C ∼ C modulo R(O). It is clear that
EC = CEC ≤ C. If EC = C then (I − E)C = 0, a contradiction. Therefore
EC < C and EC ∼ C modulo R(O). That is, C is an infinite projection in
R(O), and R(O) is properly infinite. By microcausality, R(O1) ⊆ R(O′)′; thus
the preceding argument also shows that R(O′)′ is properly infinite. �

In particular, the preceding proposition rules out the cases of type In and type
II1 von Neumann algebras. Already this result has implications for questions about
nonlocality; see Prop. 102 in Section 3.3. However, the previous proposition leaves
open the possibility that local algebras might be type I∞ factors, and it also leaves
open the case that local algebras might be direct sums of heterogeneous types of
von Neumann algebras.

Local algebras are hyperfinite

We will shortly see that the best results we have point toward the fact that local
algebras are type III, which were originally thought to be unruly anomalies with no
relevance for physics. However, we first show that under some physically plausible
conditions, local algebras are approximated by finite-dimensional algebras (i.e.
they are “hyperfinite”), which shows that after all they are not so unruly.

DEFINITION 72. Let R be a von Neumann algebra. Then R is said to be hy-
perfinite just in case there is a family (Ra)a∈A of finite dimensional von Neumann
algebras in R such that R = (∪a∈ARa)′′.

Hyperfiniteness turns out to be an extremely useful condition for mathematical
purposes. Indeed, hyperfiniteness is intimately linked to the existence of normal
conditional expectations (see [Kadison and Ringrose, 1997, Chap. 8]), and there
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is a unique type II1 hyperfinite factor, and a unique type III1 hyperfinite factor.
From a physical/foundational point of view, one might also think that a failure of
hyperfiniteness for R might make it difficult to find a correspondence between ele-
ments of the algebra R and real-life laboratory procedures which can only involve
a finite number of tasks.

FACT 73. Every type I von Neumann algebra is hyperfinite. See [Kadison and
Ringrose, 1997, Exercise 8.7.26].

ASSUMPTION 74 (Inner/Outer Continuity). A net O �→ R(O) of von Neumann
algebras is said to be inner continuous if for any monotonically increasing net
(Oa)a∈A with least upper bound O, we have

∨
a∈A

R(Oa) = R(O),

where R1∨R2 denotes the von Neumann algebra generated by R1 and R2. Outer
continuity is defined by taking a decreasing net of regions, and the intersection of
the corresponding von Neumann algebras.

NOTE 75. The condition that the net R be continuous from the inside is satisfied
whenever R is the “minimal” net constructed in the standard way from underlying
Wightman fields. See [Buchholz et al., 1987]. Similarly, the maximal net satisfies
outer continuity.

PROPOSITION 76. Suppose that the net O �→ R(O) satisfies the funnel property
and either inner or outer continuity. Then for each double cone O, R(O) is
hyperfinite.

Sketch of proof. (Compare [Buchholz et al., 1987, p. 134].) We just look at
the case where the net is inner continuous. By the funnel property there is a type
I factor Ni interpolating between R(Oi) and R(O). It then follows that the union
of the ascending sequence Ni of hyperfinite factors is dense in R(O), hence R(O)
is hyperfinite. �

Local algebras are type III1 factors

A series of results, accumulated over a period of more than thirty years, indicates
that the local algebras of relativistic QFT are type III von Neumann algebras, and
more specifically, hyperfinite type III1 factors. We gather some of these results
in this section. The first result, due to Longo [1979], improved on some earlier
results by Driessler.

PROPOSITION 77. Let R be a von Neumann algebra acting on H, Ω ∈ H a
separating unit vector for R, G a locally compact abelian group with dual Γ, and
U a continuous unitary representation of G on H such that UΩ = Ω and the ray
C Ω is the unique U(G) invariant subspace of H. Suppose that there exist subsets
G+ ⊆ G and Γ+ ⊆ Γ such that
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1. G+ ∪ (−G+) = G and U(g)RU(g)∗ ⊆ R, for all g ∈ G+.

2. Γ+ ∩ (−Γ+) = {0} and sp(U) ⊆ Γ+.

Then either R = CI or R is a type III1 factor.

Sketch of proof. (See [Longo, 1979, p. 203] for details.) Let ω be the state
of R given by ω(A) = 〈Ω, AΩ〉. The proof of this result proceeds by showing that
Rω = CI, where Rω is the centralizer of the state ω. In particular, let E be a
projection in Rω, and define the function f : G → C by

f(g) = 〈Ω, EU(g)EΩ〉 = 〈Ω, EU(g)EU(−g)Ω〉.
Using the constraint on sp(U), it can be shown that f is constant, and hence
U(g)EΩ = EΩ for all g ∈ G. Since C Ω is the unique invariant subspace under
U(G), it follows that EΩ = Ω, and since Ω is separating for R, E = 0 or E = I.

�

The preceding proposition applies to algebras of the form π(A(W ))′′, where W
is a wedge region, and π is a vacuum representation of the quasilocal algebra A.
Indeed, we can take G+ to be a one-parameter semi-group of lightlike translations
with origin at the apex of W , in which case R = G+∪(−G+). Let ω be a translation
invariant state on A such that (A, ω) satisfies that spectrum condition (Assumption
55). We then have that the dual group Γ of G in R

4 is also a lightlike line, and
hence the spectrum condition entails that there is a subset Γ+ of Γ, namely those
vectors that point toward the future, such that Γ+ ∩ (−Γ+) = {0}. Finally, we
saw in Section 2.2 that when ω is extremal invariant, the ray C Ω is the unique
U(G) invariant subspace of H.

For results relevant to local algebras, we must impose one further condition
on the net R. The first result ([Buchholz et al., 1987]) requires reference to ax-
iomatic QFT with unbounded operators smeared by test-functions (see [Streater
and Wightman, 1964]). That is, we must assume that the net R arises from an
underlying Wightman field theory that satisfies a certain condition — asymptotic
scale invariance.

Recall that in the axiomatic approach, fields are essentially self-adjoint operators
of the form Φ(f), where f is a test-function on spacetime. The presence of these
test-functions allows the definition of a notion of asymptotic scale invariance.

DEFINITION 78. Let N : R
+ → R

+ be a monotone function. Then a scal-
ing transformation of the test-functions is given by f �→ fλ, where fλ(x) =
N(λ)f(λ−1x). Let Φα be a set of Wightman fields generating the net O �→ R(O).
We say that the fields satisfy asymptotic scale invariance just in case there is some
field Φ with vanishing vacuum expectation values:〈

Ω,Φ(f)Ω〉 = 0,

and for a suitable choice of N(λ), the scaled field operators Φ(fλ) have the following
properties:



Algebraic Quantum Field Theory 751

1. The expectation values 〈Ω,Φ(fλ)∗Φ(fλ)Ω〉 converge for all test-functions in
the limit λ → 0, and are nonzero for some f ;

2. The norms ‖Φ(fλ)∗Φ(fλ)Ω‖ and ‖Φ(fλ)Φ(fλ)∗Ω‖ stay bounded in this limit.

When a net of von Neumann algebras arises from a Wightman theory with
asymptotic scale invariance, it follows that local algebras are hyperfinite type III1
factors.

PROPOSITION 79 ([Buchholz et al., 1987]). Let R be a net of von Neumann
algebras that satisfies microcausality, the spectrum condition, and the funnel prop-
erty. Suppose also that R can be constructed from an underlying Wightman
theory that satisfies asymptotic scale invariance. Then for each double cone O,
R(O) = M⊗Z, where M is the unique type III1 hyperfinite factor and Z is the
center of R(O).

NOTE 80. In [Buchholz et al., 1987], the funnel property is derived from a more
basic postulate called “nuclearity,” which imposes bounds on the number of local
degrees of freedom.

Of course, one wishes for a result that is more intrinsic to AQFT. Such a result
is provided in [Buchholz and Verch, 1995], using the method of scaling algebras
that allows the computation of the short distance (scaling) limit of a net A of
local observables. (For a short exposition of scaling algebras, we refer the reader
to [Buchholz, 1998].) In summary, besides the basic assumptions on the net, the
only additional assumption needed to derive the type III1 property is that the net
has a nontrivial scaling limit.

NOTE 81. In some concrete models, it can be shown directly that local algebras
are the unique type III1 hyperfinite factor. For example, for the free Bose field
of mass m = 0 (in the Minkowski vacuum representation), local algebras are
isomorphic to algebras for wedge regions. Thus Prop. 77 shows that local algebras
are type III1 factors. Furthermore, the free Bose field of mass m > 0 is locally
quasiequivalent to the case of m = 0, and so its local algebras are also type III1
hyperfinite factors. See [Horuzhy, 1990, p. 254].

The derivation of the type III1 property is one of the most surprising and inter-
esting results of contemporary mathematical physics. But what is the foundational
significance of the result? How would the world be different if local algebras were,
say, type III1/2, or even more radically different, if they were type II∞? For one,
there is a crucial difference between the structure of states on familiar type I al-
gebras, and the structure of states on type III algebras: since type III algebras
have no atomic projections, and the support projection of a pure normal state is
atomic, it follows that type III algebras have no pure normal states. (But of course
the same is true for type II algebras.) As pointed out in [Clifton and Halvorson,
2001b] and [Ruetsche, 2004], this absence of pure states is a further obstacle to an
ignorance interpretation of quantum probabilities. (See also Section 3.4.)
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Yngvason [2005] makes several interesting claims about the conceptual impor-
tance of type III algebras, especially in relation to questions of nonlocality. First,
according to Yngvason, “type I intuitions” can lead to paradoxes, such as that en-
countered in Fermi’s famous two-atom system. However, claims Yngvason, these
paradoxes disappear if we model these situation appropriately with type III al-
gebras. Second, Yngvason claims that the homogeneity of the state space of a
type III1 factor R can be interpreted as saying that for any two states ω1, ω2 on
R, ω2 can be prepared from ω1 (within arbitrarily good accuracy) via a unitary
operation. Such an operation is, of course, nonselective, and so does not change
the statistics of measurements of observables in R′. So, in one sense, an observer
with a type III algebra has more control over his state space than an observer with
a type I algebra.

3 NONLOCALITY AND OPEN SYSTEMS IN AQFT

NOTE 82. For this section, we use the following notational conventions: uppercase
roman letters for algebras, lowercase roman letters for operators, and for the
multiplicative identity in an algebra.

It is a basic assumption of AQFT that the observable algebras A(O1) and A(O2)
are mutually commuting when O1 and O2 are spacelike separated. This require-
ment — which we have called “microcausality” — is sometimes also called “Ein-
stein causality,” because of a suggested connection between the commutativity of
the algebras A(O1), A(O2) and the relativistic prohibition on “superluminal sig-
naling.” Implicit in this connection is a claim that if [a, b] �= 0 for a ∈ A(O1) and
b ∈ A(O2), then a measurement of a could change the statistics of a measurement
of b.

Despite the fact that nonrelativistic QM makes no reference to spacetime, it has
a footprint of the relativistic prohibition of superluminal signalling. In particular,
the state space of two distinct objects is a tensor product H1 ⊗ H2, and their
joint algebra of observables is B(H1)⊗B(H2). In this tensor product construction
we represent observables for system A as simple tensors a⊗ and observables of
system B as ⊗ b. Thus, we have a version of microcausality. But we also have
stronger independence properties. For example, for every state ϕ1 of system A
and state ϕ2 of system B, there is a state ϕ of A ⊗ B such that ϕ|A = ϕ1 and
ϕ|B = ϕ2.

In this section, we investigate the extent to which two local algebras A(O1), A(O2)
can be thought to represent distinct, independent parts of reality. In Sections 3.1
and 3.2, we discuss the relations between microcausality and other independence
assumptions for the algebras A(O1), A(O2). In Section 3.3, we summarize some
results concerning violation of Bell’s inequality in AQFT. Finally, in Section 3.4
we ask whether a local algebra A(O) can be isolated from the influences of its
environment.
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3.1 Independence of C∗ and von Neumann algebras

We first consider notions of independence between a general pair of von Neumann
or C∗-algebras.

DEFINITION 83. If e, f are projection operators on a Hilbert space H, then we
let e ∧ f denote the projection onto the closed subspace e(H) ∩ f(H).

FACT 84. Let R be a von Neumann algebra acting on H. If e, f ∈ R then
e ∧ f ∈ R.

DEFINITION 85 (Schlieder Property). Let R1, R2 be von Neumann algebras act-
ing on the Hilbert space H. We say that the pair (R1, R2) satisfies the Schlieder
property just in case if e ∈ R1 and f ∈ R2 are nonzero projections, then e∧ f �= 0.

The Schlieder property entails that for e ∈ R1, f ∈ R2, if e, f �= 0 and e, f �=
then:

e ∧ f �= 0, ¬e ∧ ¬f �= 0, e ∧ ¬f �= 0, ¬e ∧ f �= 0,

where ¬x = − x is the projection onto the orthogonal complement of x(H).
Hence if “∧” is the analogue of conjunction in classical logic, then the Schlieder
property is the analogue of logical independence.

DEFINITION 86. If A,B are C∗-subalgebras of some C∗-algebra C, we let A∨B
denote the C∗-algebra generated by A ∪B.

DEFINITION 87 (C∗-Independence). Let A,B be C∗-algebras. We say that the
pair (A,B) is C∗-independent just in case for any state ω1 of A and any state ω2

of B, there is a state ω of A ∨ B such that ω|A = ω1 and ω|B = ω2. In other
words, each state of A is compatible with each state of B.

The C∗-independence assumption has an obvious operationalist motivation: if
Alice is an observer at O1 and Bob is an observer at O2, then C∗-independence
amounts to the claim that Alice’s choice to prepare a state cannot in any way
obstruct Bob’s ability to prepare a state. Indeed, [Summers and Buchholz, 2005]
claim that a failure of C∗-independence could be detected by local observers. On
the other hand, C∗-independence could also be regarded as an explication of the
notion of the independence of objects:

Two objects A,B are truly independent just in case any state of A
is compatible with any state of B; i.e. there are no logical relations
between predications of states to A and B.

Unfortunately, C∗-independence does not imply microcausality.

EXAMPLE 88. We show that C∗-independence does not entail microcausality.
(Compare with [Napiórkowski, 1972].) Consider the finite dimensional ∗-algebra
C(Z4)⊕M2, where C(Z4) is the abelian ∗-algebra of dimension 4, and M2 is the
2×2 matrices over C. The projection lattice of C(Z4) is the Boolean algebra with
two atoms; hence it contains logically independent elements e1, e2. Now choose
two projections f1, f2 ∈ M2 such that [f1, f2] �= 0, and let Ri be the abelian
∗-subalgebra of C(Z4)⊕M2 generated by the projection ei ⊕ fi.
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To see that (R1, R2) is C∗-independent, let ωi be states on the Ri, and let
λi = ωi(ei ⊕ fi). By the logical independence of e1, e2, there is a state ρ of C(Z4)
such that ρ(ei) = λi. Then the state ρ⊕ 0 on C(Z4)⊕M2 is a common extension
of the ωi since

(ρ⊕ 0)(ei + fi) = ρ(ei) = λi,

and a state’s value on ei ⊕ fi determines its value on Ri. Therefore, (R1, R2)
is C∗-independent. On the other hand, [e1 + f1, e2 + f2] = [f1, f2] �= 0, whence
(R1, R2) does not satisfy microcausality.

In the previous example, the algebras R1 and R2 share a common superselection
sector: each commutes with the projection p = ⊕ 0. However, the reduced
algebras pRip are not C∗-independent. In fact, the diagnosis of this example can
be generalized into the following result.

PROPOSITION 89. Let R1 and R2 be von Neumann algebras acting on a Hilbert
space H. If for every projection e ∈ Z(R1 ∨ R2), the pair (eR1e, eR2e) is C∗-
independent, then [R1, R2] = {0}.

Proof. See [Summers and Buchholz, 2005]. �

DEFINITION 90 (Split Property). Let R1 and R2 be von Neumann algebras on
H such that R1 ⊆ R′

2. Then the pair (R1, R2) is said to satisfy the split property
just in case there is a type I factor M such that R1 ⊆ M ⊆ R′

2.

REMARK 91. (i): It is clear that the previous definition is equivalent to saying
that (R1, R

′
2) is a ‘split inclusion’ as per Definition 60.

(ii): If (R1, R2) satisfies the split property, then under some fairly standard
conditions (e.g. R1 or R2 is type III), there is a natural ∗-isomorphism α between
R1 ∨R2 and the von Neumann algebra tensor product R1⊗R2; by saying that α
is ‘natural’, we mean that it extends the map AB �→ A⊗B. Furthermore, the ∗-
isomorphism α is spatial, i.e. there is a unitary operator u such that α(x) = uxu∗.
See [Summers, 1990, p. 212].

(iii): On the other hand, suppose that R is a factor, so that R ∪ R′ generates
B(H) as a von Neumann algebra, i.e. R ∨R′ = B(H). Then R′ is of the same
type (I, II, or III) as R [Kadison and Ringrose, 1997, Thm. 9.1.3], and so the von
Neumann algebra tensor product R⊗R′ is of the same type as R [Kadison and
Ringrose, 1997, p. 830]. So if R is type II or III, then R ∨R′ is strictly larger
than, and not isomorphic to R⊗R′.

DEFINITION 92 (W ∗-Independence). Let R1 and R2 be von Neumann algebras
acting on H. The pair (R1, R2) is said to be W ∗-independent just in case for every
normal state ϕ1 of R1 and for every normal state ϕ2 of R2, there is a normal state
ϕ of R1 ∨R2 such that ϕ|Ri

= ϕi.

With the assumption of the mutual commutativity of R1 and R2 (i.e. micro-
causality), we have the following implications (see [Summers, 1990, p. 222]):
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Split property
⇓

W ∗-independence
⇓

C∗-independence ⇐⇒ Schlieder property

3.2 Independence of local algebras

We now consider which independence properties hold between pairs of algebras
associated with spacelike separated regions. In general, not much can be said
about the independence of such algebras. In order to get such results off the
ground, we need a stronger notion of spacelike separation.

DEFINITION 93. Two double cones O1, O2 are said to be strictly spacelike sepa-
rated just in case there is a neighborhood N of zero such that O1 + x is spacelike
separated from O2 for all x ∈ N .

PROPOSITION 94. Suppose that the net O �→ R(O) satisfies microcausality, weak
additivity, and the spectrum condition. If O1 and O2 are strictly spacelike sepa-
rated, then (R(O1), R(O2)) satisfies the Schlieder property.

Proof. See [Schlieder, 1969]. �

In terms of logical strength, the following concept lies between spacelike sepa-
ration and strict spacelike separation; furthermore, this concept makes sense for
spacetimes without a translation group.

DEFINITION 95. Two double cones O1 and O2 are said to be strongly spacelike
separated just in case there are double cones Õi such that Oi ⊆ Õi, and Õ1, Õ2

are spacelike.

FACT 96. If O1 and O2 are strictly spacelike separated, then they are strongly
spacelike separated.

Of course, the assumptions of Proposition 94 (microcausality, additivity, spec-
trum) are precisely what is used to derive property B for the net (Proposition 69).
So, it is perhaps illustrative to give a simple derivation of the Schlieder property
from property B. (Such a result also applies in contexts — e.g. QFT on curved
spacetime — where the spectrum condition does not make sense.)

PROPOSITION 97. Suppose that the net O �→ R(O) of von Neumann algebras
satisfies microcausality and property B. If O1 and O2 are strongly spacelike sepa-
rated, then (R(O1), R(O2)) satisfies the Schlieder property.

Proof. Let O1 and O2 be strongly spacelike separated, and let ei ∈ R(Oi) be
projections. Then there are regions Õi such that Oi ⊆ Õi, and Õ1 is spacelike
to Õ2. By property B, there are isometries vi ∈ R(Õi) such that viv

∗
i = ei.
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Furthermore, [v1, v2] = 0 and hence e1e2 = v1v2(v1v2)∗. But v1v2 is an isometry,
and so v1v2(v1v2)∗ �= 0. �

The split property clearly does not hold for (R(W ), R(W ′)) where W is a wedge
region and W ′ is its causal complement. Indeed, since R(W ) and R(W ′) are
type III1 factors, there can be no ∗-isomorphism between R(W )⊗R(W ′) and
R(W ) ∨R(W )′ = B(H). However, if the funnel property holds for the net
O �→ R(O), then (R(O1), R(O2)) satisfies the split property when O1 and O2

are strictly spacelike separated double cones.

3.3 Bell correlation between von Neumann algebras

We first define a generalized notion of Bell type measurements for a pair of von
Neumann algebras.

DEFINITION 98. Let A and B be mutually commuting C∗-subalgebras of some
C∗-algebra C. Then we set

B(A,B) ≡
{

(1/2)[a1(b1 + b2) + a2(b1 − b2)] : ai = a∗
i ∈ A, bi = b∗i ∈ B,

− ≤ ai, bi ≤
}

.

Elements of B(A,B) are called Bell operators for (A,B).

Let r be a Bell operator for (A,B). It can be shown that |ϕ(r)| ≤ √2 for each
state ϕ on C [Summers and Werner, 1987]. It is also straightforward to check that
if ϕ is a separable state (i.e. a mixture of product states) then |ϕ(r)| ≤ 1. Indeed,
the Bell measurement correlations in the state ϕ can be reproduced by a local
hidden variable model iff |ϕ(r)| ≤ 1 [Summers and Werner, 1987; Baez, 1987].

DEFINITION 99. Define the Bell correlation coefficient of a state ϕ of A ∨B by

β(ϕ,A,B) = sup{ |ϕ(r)| : r ∈ B(A,B) }.

If |β(ϕ,A,B)| > 1, then ϕ is said to violate a Bell inequality, or to be Bell corre-
lated.

It is a straightforward exercise to show that if R1 is an abelian von Neumann
algebra and R1 ⊆ R′

2, then for any state ϕ, β(ϕ,R1, R2) ≤ 1. For a sort of
converse, Landau [1987] shows that if R1 and R2 are nonabelian von Neumann
algebras such that R1 ⊆ R′

2, and if (R1, R2) satisfies the Schlieder property, then
there is some state ϕ that violates Bell’s inequality maximally relative to (R1, R2).
Similarly, Bacciagaluppi [1994] shows that if A and B are C∗-algebras, then some
state violates a Bell inequality for A⊗B iff both A and B are nonabelian.

When A and B have further properties, we can derive even stronger results.
For present purposes, we will simply apply a couple of the known results to the
case of AQFT. (See [Summers, 1990] for many more details.)
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PROPOSITION 100. Let R be a type III1 factor acting on a separable Hilbert
space H. Then every normal state ϕ of B(H) is maximally Bell correlated across
(R,R′), that is β(ϕ,R,R′) =

√
2.

Proof. See [Summers and Werner, 1988; Summers and Werner, 1995]. �

NOTE 101. Prop. 77 tells us that under quite generic conditions, the wedge alge-
bra R(W ) is a type III1 factor. In this case, Prop. 100 tells us that the vacuum is
maximally Bell correlated across (R(W ), R(W )′).

PROPOSITION 102. Suppose that R1 and R2 are von Neumann algebras on H
such that R1 ⊆ R′

2, and (R1, R2) satisfies the Schlieder property. If R1 and R2

are properly infinite, then there is a dense set of vectors in H that induce Bell
correlated states across (R1, R2).

Proof. See [Halvorson and Clifton, 2000]. �

NOTE 103. If a net O �→ R(O) of von Neumann algebras on H satisfies property
B and nontriviality, then the hypotheses of Prop. 102 apply to algebras R(O1) and
R(O2) when O1 and O2 are strongly spacelike separated.

Notes: For a comprehensive review of pre-1990 results on independence of local algebras

in AQFT, see [Summers, 1990]. For some more recent results, see [Summers, 1997;

Florig and Summers, 1997; Rédei, 1998; Halvorson and Clifton, 2000; Summers and

Buchholz, 2005].

3.4 Intrinsically entangled states

According to Clifton and Halvorson [2001b], the type III property of local alge-
bras in AQFT shows that it is impossible to disentangle local systems from their
environment. To see the argument, recall that it is a standard (perhaps some-
what justified) assumption that the general form of a dynamical evolution T of
observables, represented by self-adjoint elements of a C∗-algebra A is given by a
completely positive (CP) linear mapping T of A such that T ( ) = . (Such an
assumption is certainly commonplace in, say, quantum information theory.) Here
we recall the pertinent definition.

DEFINITION 104. Let A be a C∗-algebra. A linear map T of A is said to be
positive if T (a∗a) ≥ 0 for each a ∈ A. T is said to be completely positive if for
each n ∈ N, the map T ⊗ idn : A⊗Mn → A⊗Mn defined on elementary tensors
by

(T ⊗ idn)(a⊗ b) = T (a)⊗ b,

is positive. Here Mn is the C∗-algebra of n× n matrices over C.

NOTE 105. If T : A → A is positive and T ( ) = , then for each state ω of A,
we define T ∗(ω) by T ∗(ω)(a) = ω(T (a)). It follows that T ∗ is an affine mapping
of the state space into itself.
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For type I factors, Kraus’ theorem [Kraus, 1983] shows that CP maps are “in-
ner.”

THEOREM 106 (Kraus Representation). If R is a type In factor then the following
are equivalent for a linear map T : R → R.

1. T is completely positive and T ( ) = .

2. T is the restriction of an automorphism x �→ uxu∗ on an algebra of the form
R⊗B(H).

3. There are positive operators a1, . . . , an ∈ R such that
∑n
i=1 ai = and

T (x) =
∑
i=1

a
1/2
i xa

1/2
i .(1)

One special case of Eqn. (1) is the Lüders rule with projection operators e and
− e:

Te(x) = exe + ( − e)x( − e).

Furthermore, if the algebra R is type I, we can choose e ∈ R to be an abelian
projection. We have the following result:

If the local algebra R is a type I factor, then there is a universal
disentangling operation Te. That is, no matter what the initial state,
the outcome of applying Te is that the final state is separable.

However, suppose that R has no abelian projections (e.g. R is type III). Then for
each nonzero projection e ∈ R, the algebras eRe and eR′e are nonabelian, and
hence there is some entangled state ϕ for the pair (eRe, eR′e). This entangled
state is the image under the operation (Te)∗ of some state on R ∨R′. Hence, the
operation Te does not disentangle all states.

This heuristic argument can be tightened up into a “proof” that no operation
on R can disentangle the states of R ∨R′. See [Clifton and Halvorson, 2001b] for
details.

NOTE 107. (i): The Kraus representation theorem is not valid as it stands for
type III algebras. Indeed, the Kraus representation theorem is a special case of
the Stinespring decomposition theorem [Stinespring, 1955].

(ii): A CP operation on a von Neumann algebra is typically also assumed to
be ultraweakly continuous. The continuity of T might be justified on the grounds
that it is necessary if T ∗ is to map normal states to normal states. For objections
to the continuity requirement, see [Srinivas, 1980].

4 PROSPECTS FOR PARTICLES

The main application of relativistic QFT is to fundamental particle physics. But it
is not completely clear that fundamental particle physics is really about particles.
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Indeed, despite initial signs that QFT permits a particle interpretation (via Fock
space), there are many negative signs concerning the possibility of particle ontology
of relativistic QFT. This section is devoted to assessing the status of particles from
the point of view of AQFT.

4.1 Particles from Fock space

We begin our investigation of particles with the “story from mother’s knee” about
how to give QFT a particle interpretation. (See [Teller, 1995] for one philosopher’s
interpretation of this story.) The story begins with a special Hilbert space, called
Fock space. Now Fock space is just another separable infinite dimensional Hilbert
space (and so isomorphic to all its separable infinite dimensional brothers). But
the key is writing it down in a fashion that suggests a particle interpretation. In
particular, suppose that H is the one-particle Hilbert space, i.e. the state space for
a single particle. Now depending on whether our particle is a Boson or a Fermion,
the state space of a pair of these particles is either Es(H ⊗ H) or Ea(H ⊗ H),
where Es is the projection onto the vectors invariant under the permutation ΣH,H
on H ⊗H, and Ea is the projection onto vectors that change signs under ΣH,H .
For present purposes, we ignore these differences, and simply use H⊗H to denote
one possibility or the other. Now, proceeding down the line, for n particles, we
have the Hilbert space Hn ≡ H ⊗ · · · ⊗H, etc..

A state in Hn is definitely a state of n particles. To get disjunctive states, we
make use of the direct sum operation “⊕” on Hilbert spaces. So we define the
Fock space F(H) over H as the infinite direct sum:

F(H) = C⊕H ⊕ (H ⊗H)⊕ (H ⊗H ⊗H)⊕ · · · .

So, the state vectors in Fock space include a state where the are no particles (the
vector lies in the first summand), a state where there is one particle, a state where
there are two particles, etc.. Furthermore, there are states that are superpositions
of different numbers of particles.

One can spend time worrying about what it means to say that particle numbers
can be superposed. But that is the “half empty cup” point of view. From the
“half full cup” point of view, it makes sense to count particles. Indeed, the positive
(unbounded) operator

N = 0⊕ 1⊕ 2⊕ 3⊕ 4⊕ · · · ,

is the formal element of our model that permits us to talk about the number of
particles.

NOTE 108. In the category of Hilbert spaces, all separable Hilbert spaces are
isomorphic — there is no difference between Fock space and the single particle
space. If we are not careful, we could become confused about the bearer of the
name “Fock space.”
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The confusion goes away when we move to the appropriate category. According
to Wigner’s analysis [Wigner, 1939], a particle corresponds to an irreducible uni-
tary representation of the identity component P of the Poincaré group. Then the
single particle space and Fock space are distinct objects in the category of repre-
sentations of P. The underlying Hilbert spaces of the two representations are both
separable (and hence isomorphic as Hilbert spaces); but the two representations
are most certainly not equivalent (one is irreducible, the other reducible).

4.2 Fock space from the algebra of observables

The Fock space story is not completely abandoned within the algebraic approach
to QFT. In fact, when conditions are good, Fock space emerges as the GNS Hilbert
space for some privileged vacuum state of the algebra of observables. We briefly
describe how this emergence occurs before proceeding to raise some problems for
the naive Fock space story. (We look here only at the symmetric — Bosonic —
case. A similar treatment applies to the antisymmetric — Fermionic — case.)

The algebraic reconstruction of Fock space arises from the algebraic version
of canonical quantization. Suppose that S is a real vector space (equipped with
some suitable topology), and that σ is a symplectic form on S. So, S represents
a classical phase space (see Butterfield, this volume). The Weyl algebra A[S, σ] is
a specific C∗-algebra generated by elements of the form W (f), with f ∈ S and
satisfying the canonical commutation relations in the Weyl-Segal form:

W (f)W (g) = e−iσ(f,g)/2W (f + g).

Suppose that there is also some notion of spacetime localization for elements of S,
i.e. a mapping O �→ S(O) from double cones in Minkowski spacetime to subspaces
of S. Then, if certain constraints are satisfied, the pair of mappings

O �→ S(O) �→ A(O) ≡ C∗{W (f) : f ∈ S(O)},
can be composed to give a net of C∗-algebras over Minkowski spacetime. (Here
C∗X is the C∗-algebra generated by the set X.)

Now if we are given some dynamics on S, then we can — again, if certain
criteria are satisfied — define a corresponding dynamical automorphism group αt
on A[S, σ]. There is then a unique dynamically stable pure state ω0 of A[S, σ],
and we consider the GNS representation (H, π) of A[S, σ] induced by ω0. To our
delight, we find that the infinitesimal generators Φ(f) of the one-parameter groups
{π(W (f))}t∈R behave just like the field operators in the old-fashioned Fock space
approach. Furthermore (now speaking non-rigorously), if we define operators

a(f) = 2−1/2 (Φ(f) + iΦ(Jf)) ,

a∗(f) = 2−1/2 (Φ(f)− iΦ(Jf)) ,

we find that they behave like creation and annihilation operators of particles. (Here
J is the unique “complex structure” on S that is compatible with the dynamics.)
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In particular, by applying them to the vacuum state Ω, we get the entire GNS
Hilbert space H. Finally, if we take an orthonormal basis {fi} of S, then the sum

∞∑
i=1

a∗(fi)a(fi),

is the number operator N . Thus, the traditional Fock space formalism emerges as
one special case of the GNS representation of a state of the Weyl algebra.

NOTE 109. The Minkowski vacuum representation (H0, π0) of A is Poincaré co-
variant, i.e. the action α(a,Λ) of the Poincaré group by automorphisms on A is
implemented by unitary operators U(a,Λ) on H. When we say that H is isomor-
phic to Fock space F(H), we do not mean the trivial fact that H and F(H) have
the same dimension. Rather, we mean that the unitary representation (H, U) of
the Poincaré group is a Fock representation.

Notes: See [Bratteli and Robinson, 1997, Section 5.2] for a detailed account of the recon-

struction of Fock space from the Weyl algebra. See also [Clifton and Halvorson, 2001a]

and [Halvorson, 2001] for shorter expositions.

4.3 Nonuniqueness of particle interpretations

If we have a representation (H, π) of the quasilocal algebra A such thatH is isomor-
phic to Fock space, then we can make sense of talk about particles. Furthermore,
such representations exist, e.g., the GNS representation of the Minkowski vacuum
state ω0 of the free Bose field. So, in the most simple cases (e.g. free fields on flat
spacetime), there is no problem concerning the existence of particle interpretations
of the theory.

But there is a problem about uniqueness: there are unitarily inequivalent repre-
sentations of A, each of which is isomorphic to Fock space. Furthermore, a result
from [Chaiken, 1967; Chaiken, 1968] shows that two inequivalent Fock representa-
tions correspond to two number operators that cannot be thought of as notational
variants of the same description of reality. Indeed, there are no states of A that
assign sharp values to both number operators. Hence, the particle interpretations
provided by the two Fock representations are mutually exclusive.

The issue of inequivalent Fock representations is treated in depth in [Clifton and
Halvorson, 2001a]. For present purposes, we simply note that this worry about
nonuniqueness is tied in to a more general worry about inequivalent representations
of the quasilocal C∗-algebra A. But this more general issue cannot be resolved
without reference to recent developments in the theory of superselection sectors
(see Sections 7.2 and following). We return to this question in Section 7.

4.4 Problems for localized particles

Suppose that we have settled the uniqueness problem that is raised in the previous
subsection — e.g. we have found a good reason for preferring a particular Fock
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representation (H, π) of A, and so we have a preferred global number operator N
onH. The next question is whether relativistic QFT is consistent with an ontology
of localized particles — that is, whether it makes sense to talk about the number
of particles in a bounded region O of space.

As pointed out in Section 2.3, the Reeh-Schlieder (RS) Theorem entails that
the local algebras of AQFT do not contain operators that annihilate the vacuum.
Hence if a number operator has the vacuum as an eigenstate, then there are no
local number operators. That is perhaps enough to convince most readers that
localized particles are not possible in relativistic QFT. Nonetheless, there have
been attempts to bypass the RS Theorem, most notably the proposal of Newton
and Wigner (recently resurrected in [Fleming, 2000]). It has been argued that
such attempts are not promising [Halvorson, 2001]. Furthermore, it can be shown
independently of the full framework of AQFT, and without the RS Theorem, that
a positive energy condition combined with microcausality rules out local number
operators [Halvorson and Clifton, 2002].

Despite the various No Go results for localized particles in relativistic QFT, the
interpretation of experiments in high energy physics seems to require a notion of
something causing clicks in detectors, and that a “detector” is fairly well localized
in some bounded region of spacetime. A detector corresponds to a positive operator
C in A, and is “completely reliable” only if it registers 0 identically in the vacuum
state, i.e. CΩ = 0. Hence the Reeh-Schlieder Theorem entails that C is not
contained in any local algebra. Nonetheless, a notion of approximate localization
of C can be salvaged: choose some A ∈ A(O) with 0 ≤ A ≤ I, and set

C =
∫

f(x)αx(A)dx,

where f is a smooth function whose Fourier transform has support in the com-
plement of the forward light cone. (The function f automatically has unbounded
support.) Then CΩ = 0, and the function f can also be chosen so that C is “close”
in the norm topology to an operator in A(O).

The notion of approximately localized detectors is employed extensively in
Haag-Ruelle scattering theory and recent developments thereof, to which we now
turn.

4.5 Particle interpretations generalized: Scattering theory and be-
yond

It is not true that a representation (K, π) of A must be a Fock representation in
order for states in the Hilbert space K to have an interpretation as particle states.
Indeed, one of the central tasks of “scattering theory,” is to provide criteria —
in the absence of full Fock space structure — for defining particle states. These
criteria are needed in order to describe scattering experiments which cannot be
described in a Fock representation, but which need particle states to describe the
input and output states.
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Haag and Swieca [1965] propose to pick out the n-particle states by means of
localized detectors; we call this the detector criterion:

A state with at least n-particles is a state that would trigger n detectors
that are far separated in space.

Philosophers might worry that the detector criterion is too operationalist. Indeed,
some might claim that detectors themselves are made out of particles, and so
defining a particle in terms of a detector would be viciously circular.

If we were trying to give an analysis of the concept of a particle, then we would
need to address such worries. However, scattering theory does not end with the
detector criterion. Indeed, the goal is to tie the detector criterion back to some
other more intrinsic definition of particle states. The traditional intrinsic definition
of particle states is in terms of Wigner’s symmetry criterion:

A state of n particles (of spins si and masses mi) is a state in the tensor
product of the corresponding representations of the Poincaré group.

Thus, scattering theory — as originally conceived — needs to show that the states
satisfying the detector criterion correspond to an appropriate representation of
the Poincaré group. In particular, the goal is to show that there are isometries
Ωin,Ωout that embed Fock space F(H) into K, and that intertwine the given
representations of the Poincaré group on F(H) and K.

Based on these ideas, detailed models have been worked out for the case where
there is a mass gap. Unfortunately, as of yet, there is no model in which Hin =
Hout, which is a necessary condition for the theory to have an S-matrix, and to
define transition probabilities between incoming and outgoing states. (Here Hin

is the image of Fock space in K under the isometry Ωin, and similarly for Hout.)
Recently, Buchholz and collaborators have claimed that Wigner’s symmetry

criterion is too stringent — i.e. there is a more general definition of particle states.
They claim that it is only by means of this more general criterion that we can solve
the “infraparticles” problem, where massive particles carry a cloud of photons (see
[Buchholz et al., 1991]).

Note: For a review of progress in scattering theory in AQFT, see [Haag, 1996, Chapter

6] and [Buchholz and Summers, ND].

5 THE PROBLEM OF VALUE-DEFINITENESS IN AQFT

The “measurement problem” of nonrelativistic QM shows that the standard ap-
proach to the theory is impaled on the horns of a dilemma: either (i) one must
make ad hoc adjustments to the dynamics (“collapse”) when needed to explain the
results of measurements, or (ii) measurements do not, contrary to appearances,
have outcomes (see Dickson, this volume, Section 5).

There are two main responses to the dilemma: On the one hand, some suggest
that we abandon the unitary dynamics of QM in favor of stochastic dynamics that
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accurately predicts our experience of measurement outcomes. On the other hand,
some suggest that we maintain the unitary dynamics of the quantum state, but
that certain quantities (e.g. position of particles) have values even though these
values are not specified by the quantum state. (See Dickson, this volume, Section
5.5 for a more nuanced discussion of the possible responses.)

Both approaches — the approach that alters the dynamics, and the approach
with additional values — are completely successful as responses to the measure-
ment problem in nonrelativistic QM. But both approaches run into obstacles when
it comes to synthesizing quantum mechanics with relativity. In particular, the ad-
ditional values approach (e.g. the de Broglie–Bohm pilot-wave theory) appears to
require a preferred frame of reference to define the dynamics of the additional val-
ues (see [Cushing, 1994, pp. 188–191, 196–198], [Holland, 1995], and [Bohm and
Hiley, 1995, Chaps. 11 & 12]), and in this case it would fail the test of Lorentz
invariance.

The “modal” interpretation of quantum mechanics is similar in spirit to the de
Broglie–Bohm theory, but begins from a more abstract perspective on the ques-
tion of assigning definite values to some observables. (Following [Bell, 1987], we
might call these the “beables” of the theory.) Rather than making an intuitively
physically motivated choice of the determinate values (e.g. particle positions), the
modal interpretation makes the mathematically motivated choice of the spectral
decomposition of the quantum state (i.e. the density operator) as determinate.
(See [Dieks and Vermaas, 1998; Vermaas, 1999] for reviews of the modal interpre-
tation; see [Clifton, 1995] for motivation.)

Unlike the de Broglie–Bohm theory, it is not obvious that the modal inter-
pretation must violate the spirit or letter of relativistic constraints, e.g. Lorentz
invariance [Dickson and Clifton, 1998, p. 9]. So, it seems that there should be some
hope of developing a modal interpretation within the framework of AQFT. This is
the starting point for Dieks’ [2000] proposal for a modal interpretation of AQFT.
Rather than expound Dieks’ original proposal, we move directly to the criticism
in [Clifton, 2000], to which we also refer the reader for further elaboration.

5.1 Clifton-Kitajima classification of modal algebras

Clifton’s critique of the modal interpretation of AQFT is based on a remarkable
theorem which classifies all possible “modal subalgebras” of a local von Neumann
algebra R(O) relative to a state ρ. According to Clifton — and the modal inter-
preters seem to agree on this point — the algebra D, D ⊆ R(O) of definite local
observables should satisfy the following constraints relative to a given state ρ of
R(O):

DEFINITION 110. Let R be a von Neumann algebra, and let ρ be a state of R.
Then a von Neumann subalgebra D of R is said to be a modal algebra for (R, ρ)
just in case:

1. (Value definiteness) The restricted state ρ|D is a mixture of dispersion-free
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states. (Definition: A state is dispersion free iff it assigns each projection
operator either 0 or 1.)

2. (Definability) D is left invariant under all symmetries of R that leave the
state ρ invariant.

3. (Maximality) D is maximal, subject to the first two conditions.

The last requirement is imposed simply to rule out trivial counterexamples to
uniqueness — e.g. one could always pick the algebra CI of scalar multiples of
the identity. The second requirement is supposed to explicate the idea that D is
“picked out by” (i.e. is definable in terms of) the state ρ. We have left the notion
of a “symmetry” vague (and we will return to this question in the next subsection),
but Clifton takes the symmetries to coincide with the ∗-automorphisms of R, and
this is needed for the main result (Theorem 114).

To state this result, we need to define the notion of the centralizer of a state.
The following proposition establishes the equivalence of two possible definitions of
the centralizer.

PROPOSITION 111. Let R be a von Neumann algebra, let ω be a faithful normal
state of R, and let σωt be the modular automorphism group of R. Then the following
two sets are coextensive:

1. {A ∈ R : σωt (A) = A,∀t ∈ R}
2. {A ∈ R : ω(AB) = ω(BA),∀B ∈ R}

The proof of Prop. 111 depends on the full apparatus of modular theory. We
refer the reader to [Takesaki, 2003, Chap. 8] for details.

DEFINITION 112. It is clear that the set defined in the previous proposition is
in fact a von Neumann subalgebra of R. We call this subalgebra the centralizer
of ω in R, and we denote it by Rω.

EXAMPLE 113. Let R = B(H), and let ω be a faithful normal state of R. Then
ω has the form

ω(A) = Tr(DA), A ∈ R,

for some density operator D ∈ R. Then Rω = {D}′, and Z(Rω) is the abelian
von Neumann algebra {D}′′. In particular, if ω is the maximally mixed state of a
type In factor, then Rω = B(H), and Z(Rω) = CI.

The Clifton-Kitajima Theorem shows that there is a unique modal algebra for
(R, ω), and in the case that the state ω is faithful, it is Z(Rω), the center of the
centralizer of ω.

THEOREM 114 (Clifton-Kitajima). Let R be a von Neumann algebra acting on
a Hilbert space H, and let ω be a normal state of R.

1. If ω is faithful then Z(Rω) is the unique modal algebra for (R, ω).
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2. Generally, the unique modal algebra for (R, ω) is N⊕ Z(Rω)E, where E is
the smallest projection in R such that ω(E) = 1, and N is the algebra of all
bounded operators on (I − E)(H).

The result is proven for the case where ω is faithful in [Clifton, 2000], and for the
general case in [Kitajima, 2004].

As pointed out by Clifton [2000], Thm. 114 spells trouble for a modal interpre-
tation of AQFT, because there are many cases where the algebra Z(Rω) is trivial.
(See [Ruetsche and Earman, 2005] for further development of this point.)

1. Let W be a wedge region in Minkowski spacetime, and let Ω be the vacuum
state. Then there are no fixed points in R(W ) of the modular automorphism
group σωt (see the proof of Proposition 77, and also [Driessler, 1975]). Hence,
Rω = CI, and Z(Rω) = CI.

2. In relativistic QFT, local algebras are the type III1 hyperfinite factor R (see
Section 2.5). But R has a dense set of ergodic states — states with trivial
centralizer. For all these states, Z(Rω) = CI.

Thus, it makes an enormous difference — at least for the feasibility of the modal
interpretation — that local algebras are type III1. For if local algebras were either
type I∞ or III0, then there would be good news for the modal interpretation.

PROPOSITION 115. Let R be a type I∞ factor. Then for every normal state ω
of R, the unique modal algebra Dω is nontrivial.

Proof. We have Dω = Z(Rω) = {D}′′, where D is the density operator, i.e.
the positive operator in R that implements the state ω via the trace formula.
Furthermore, when R is type I∞, D cannot be a multiple of the identity. �

PROPOSITION 116. Let R be a type III0 factor. Then for every faithful normal
state ω of R, the unique modal algebra Dω is nontrivial.

Proof. Prop. 3.15 in [Takesaki, 2003, p. 402] entails that Dω has no atomic
projections, and hence is infinite dimensional. �

5.2 What is a symmetry in AQFT?

We note here just one problem with application of the Clifton-Kitajima theorem to
AQFT: the notion of symmetry invoked might be too liberal for the setting where
we have a net of algebras over spacetime, as opposed to a single von Neumann
algebra. Clifton’s application of the theorem assumes that any automorphism
of R is a symmetry. However, if R = R(O) is just one algebra of an entire net
O �→ R(O), then it is not clear that every automorphism of R is a symmetry of the
relevant system. What we need is a notion of a symmetry of the net O �→ R(O).

NOTE 117. A partially ordered set K can be regarded as a category where for
x, y ∈ K, Hom(x, y) = {(x, y)} if x ≤ y, and otherwise Hom(x, y) = ∅. Let C∗
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be the category with C∗-algebras as objects and ∗-homomorphisms as arrows. On
this conception, a net of C∗-algebras on Minkowski spacetime is a functor A : K →
C∗ where K is the category of double cones in Minkowski spacetime, ordered by
inclusion, and such that A(Hom(O1, O2)) is an isometry when Hom(O1, O2) is not
empty. (For definitions of functors and natural transformations, see p. 866.)

DEFINITION 118. Let K be a partially ordered set (e.g. regions in some manifold
ordered by inclusion). Let O �→ A(O) and O �→ B(O) be nets of C∗-algebras over
K. A net morphism α : A → B is a natural transformation between the functors.
That is, α consists of a collection of morphisms{

αO : A(O) → B(O) : O ∈ K}
,

that is natural in O. In other words, for each f ∈ Hom(O1, O2), αO2 ◦ A(f) =
B(f) ◦ αO1 , which just means that the following diagram commutes

A(O1)
αO1� B(O1)

A(O2)

A(f)

�

αO2

� B(O2)

B(f)

�

FACT 119. Net automorphisms correspond to automorphisms of the quasilocal
algebra that leave each local subalgebra globally invariant. To state this precisely,
let A denote the functor from K into C∗, and let B denote the inductive limit of
A. We identify A(O) with its image in B. Then α is a net automorphism of A iff
there is an automorphism β of B such that

β|A(O) = αO.

Now, given a net A with inductive limit B, what should we consider as a
symmetry of B?

PROPOSAL 120. A symmetry of the net A corresponds to a net automorphism
α; i.e. a natural transformation of A. That is, a symmetry of A corresponds to an
automorphism of the quasilocal algebra that leaves each local subalgebra globally
invariant.

This first proposal is surely too strict, because it excludes the case of symmetries
induced by underlying symmetries of the spacetime. But if K consists of an ap-
propriate set of regions of spacetime M (i.e. a set that is closed under symmetries
of the spacetime), then a symmetry of M will induce an order-preserving bijection
F on K. Note that since F is a functor, A ◦F is also a functor. Thus, we consider
the following liberalized definition.
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PROPOSAL 121. A symmetry of the net A consists of a pair (F, α) where F is an
order-preserving bijection of K, and α is a net morphism (natural transformation)
from A to A ◦ F .

If we accept this proposal, then we must replace Clifton’s definability condition
with the following modified condition:

Definability-2: Given O ∈ K, let K0 be the full subcategory of K with
objects {O0 : O0 ≤ O}, and let RO denote the restriction of the von
Neumann algebra valued functor R to K0. Then the algebra D must
be left invariant by all symmetries of RO that preserve the state ρ on
R(O).

Since not all automorphisms of R(O) are symmetries of the net RO, the new
definability condition is weaker than the old one: there will typically be more
candidates for the role of D.

The Clifton-Kitajima Theorem does not apply under the revised definition of
symmetries of R(O). On the other hand, we are not aware of a positive result
showing the existence and uniqueness of subalgebras of R(O) that are definite in
the state ω and invariant under all net automorphisms that preserve ω. There are
suggestive hints such as the result in [Doplicher and Longo, 1984]:

PROPOSITION 122. Let (R1 ⊆ R2, ω) be a standard split inclusion of von Neu-
mann algebras. Then there is a unique type I factor N such that: (i) R1 ⊆ N ⊆
R2, and (ii) N is invariant under all automorphisms of R2 that preserve both R1

and the state ω.

Of course, the algebra N itself does not have dispersion-free states, and so cannot
be the algebra of definite observables. However, the state ω|N is normal, and since
N is a type I factor, there is a density operator D ∈ N that induces the state in
the sense that ω(A) = Tr(DA), for all A ∈ N. Then assuming that R1 must for
some reason be left invariant under symmetries of R2, the algebra D = {D}′′ looks
like a good candidate for the modal interpreter’s set of definite-value observables
in R2 in the state ω.

To apply Prop. 122 to AQFT with Ri = R(Oi), and O1 ⊆ O2, we would have to
assume that the split property holds. Although the split property does not hold in
every model, failure of the split property implies a sort of pathology, and it might
not be too surprising if there were certain physically pathological cases where the
modal interpretation yields a trivial set of definite quantities.

Notes: For recent discussions of adapting the modal interpretation to a relativistic set-

ting, see [Myrvold, 2002; Ruetsche and Earman, 2005].

6 QUANTUM FIELDS AND SPACETIME POINTS

In standard/heuristic presentations of QFT, the fundamental physical quantities
(observables, or more generally quantum fields) are operators indexed by space-
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time points: Φ(x) (see t’Hooft, this volume). Based on this fact, at least one
philosopher ([Teller, 1995]) describes the ontology of QFT in terms of the idea a
field of operators and their expectation values. On the other hand, the mathemat-
ical approach to QFT (e.g. the Wightman approach) eschews the use of operators
at points in favor of operators smeared over space(time) by test-functions: Φ(f).
According to Arnteznius [2003], this fact supports the view that spacetime has no
pointlike events, and a fortiori that there are no field values at spacetime points.

As QFT became more mathematically rigorous, an intuition developed that it
is not only difficult to define the value of a field at a point, but that it is impossible
to do so — such quantities simply do not exist. (Compare von Neumann’s critique
of Dirac’s delta functions and the notion of pointlike localized particles.) This
intuition has sometimes been buttressed by heuristic and operationalist arguments
— e.g. Bohr and Petersen’s [1950] argument that it is impossible to measure field
strengths at a point. For example, Haag [1996, p. 58] claims that, “a quantum field
Φ(x) at a point cannot be a proper observable.” Even philosophers can be found
claiming that, “field operators need to be ‘smeared’ in space” [Huggett, 2000, p.
631, fn. 8].

But the arguments against field operators at a point often confuse questions of
measurability with questions of existence, and rarely rise to a level of rigor that is
acceptable for drawing metaphysical conclusions. In this section, we review some
of the rigorous arguments that exist for and against field quantities at points. We
will see that these results do not decisively rule out field quantities at points, but
they clarify the interpretive tradeoffs that must be made.

6.1 No Go theorems

In the following three subsections, we review No Go theorems for field operators
at spacetime points.

Translation covariance rules out operators at a point

The first no go theorem shows that if there is a continuous unitary representation of
the translation group, then for any fixed time t, the field configuration operators
φ(x, t) commute with the field momentum operators π(x′, t), even when these
operators are associated with the same point. This result is a serious problem,
because φ(x, t) and π(x, t) are supposed to be canonically conjugate (see [Ryder,
1996, p. 131], [Huggett, 1999]):

[φ(x, t), π(x′, t)] = iδ(x− x′).(2)

Moreover, this bad outcome cannot be blamed on any sort of “conflict” between
quantum mechanics and relativity, because the bad outcome also holds for non-
relativistic theories.
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THEOREM 123. Let φ(x, t) and π(y, t) be fields of operators, either bounded or
unbounded and self-adjoint, such that

[φ(x, t), π(y, t)] = 0,

when x �= y. (In the unbounded case, we mean that φ(x, t) and π(y, t) are defined
on a common dense set D, and they commute on this set.) If y �→ U(y) is a
continuous representation of the translation group such that U(y)π(x, t)U(y)∗ =
π(x + y, t), for all x, y ∈ R

3, then

[φ(x, t), π(x, t)] = 0,

for all x ∈ R
3.

Proof. Since this proof only uses field operators on the same time slice, we will
suppress reference to t. Suppose first that φ(x) and π(y) are bounded operators.
In this case, the mapping:

f(y) := [φ(x), π(x + y)] = [φ(x), U(y)π(x)U(y)∗],(3)

is a weak-operator continuous function from R
3 into the bounded operators on

H. Choose a sequence (yn)n∈N of nonzero vectors that converges to 0. Since f is
continuous, and f(yn) = 0 for all n ∈ N,

[φ(x), π(x)] = f(0) = lim
n→∞ f(yn) = 0.(4)

Now suppose that φ(x) and π(y) are unbounded but self-adjoint. Then replace
π(x) with one of its spectral projections ES(x), where S is a Borel subset of R, and
replace π(x) with one of its spectral projections FS′(y), where S′ is a Borel subset
of R. By the preceding argument, ES(x) and FS′(y) commute. Since this is true
for all such pairs of spectral projections, it follows that the spectral projections
of φ(x) commute pairwise with the spectral projections of π(x). Hence φ(x) and
π(x) are defined on a common dense set D in H, and they commute on this dense
set. �

Poincaré covariance rules out operators at a point

For our next two no go theorems, we will need to gather a couple of classic results.

DEFINITION 124. A function f : R
n → C is said to be of positive type just in

case for each c1, . . . , cn ∈ C, and each x1, . . . , xn ∈ R
n, we have

n∑
i=1

n∑
j=1

cjcif(xi − xj) ≥ 0.

THEOREM 125 (Bochner). Let f : R
n → C be a continuous function of positive

type. Then the Fourier transform of f is a bounded measure on R
n.
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Proof. For a proof of Bochner’s theorem, see [Rudin, 1991, p. 303] and [Folland,
1995, p. 95]. �

NOTE 126. Only the group structure of R
n is really needed for Bochner’s theorem.

So, we are not making any mistake by thinking of Minkowski spacetime as R
4 in

this context.

We will need the following key lemma in all of our subsequent results.

LEMMA 127. Let f be a continuous positive definite function on R
n. Then f is

the constant 1 function iff the Fourier transform of f is the probability measure
with support {0}.

The proof of the above lemma is trivial: the Fourier transform of the measure
µ with support {0} is the function f defined by

f(x) =
∫

Rn

ei(x·p)dµ(p) = ei(x·0) = 1.

But the Fourier transformation is a bijection between complex Radon measures
on R

n and bounded continuous functions on R
n.

DEFINITION 128. We say that a measure µ on Minkowski spacetime is Lorentz
invariant just in case µ(Λ(S)) = µ(S) for each Borel subset S of M , and each
homogeneous Lorentz transformation Λ, where Λ(S) = {Λ(x) : x ∈ S}.

Clearly, the only Lorentz invariant probability measure on Minkowski spacetime
is the measure supported on {0} (the unique fixed point of the homogeneous
Lorentz group). The following result is the “Fourier transformed” version of that
fact.

LEMMA 129. Let M be Minkowski spacetime. If f : M → C is a continuous
function of positive type such that f(Λx) = f(x) for each Lorentz transformation
Λ, then f is constant.

Sketch of proof. By Bochner’s theorem, if f : M → C is a continuous function
of positive type, then f is the Fourier transform of a bounded measure µ on M .
It is straightforward to verify that if f is Lorentz invariant then so is µ. But a
bounded, Lorentz invariant measure is supported on {0}. By Lemma 127, the
Fourier transform of µ is a constant function. Therefore, f = 1 is constant. �

FACT 130. Let U be a unitary representation of the translation group on a Hilbert
space H. Then the following are equivalent:

1. The spectrum of the representation U is ∆;

2. For every u, v ∈ H, the function f : R
n → C given by

f(x) = 〈u,U(x)v〉, x ∈ R
n,

has Fourier transform with support in ∆.
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Finally, the following is our core lemma for the next two results.

LEMMA 131. Let A : M → B(H) be an operator valued function, and let U be a
unitary representation of the translation group on H such that U(x)A(0)U(x)∗ =
A(−x) for all x ∈ M . Define a function f : M → C by

f(x) = 〈Ω, A(x)A(0)Ω〉 = 〈Ω, U(x)∗A(0)U(x)A(0)Ω〉.
If f is constant, then there is a c ∈ C such that A(x)Ω = cΩ for each x ∈ M .

Proof. Let ψ = A(0)Ω. Then f(x) = f(0) is expressed as

〈ψ,U(x)ψ〉 = 〈ψ,ψ〉 = ‖ψ‖2.
But we also have ‖ψ‖ = ‖U(x)ψ‖ since U(x) is unitary. Hence

〈ψ,U(x)ψ〉 = ‖ψ‖ · ‖U(x)ψ‖,
and the Cauchy-Schwartz inequality entails that U(x)ψ = ψ for all x. That is,
U(x)A(0)Ω = A(0)Ω. Note in addition that U(x)A(y)Ω = U(x + y)A(0)Ω =
A(0)Ω. Hence all vectors A(x)Ω are invariant under the translation group. �

Now, the second no go theorem (due to [Wizimirski, 1966]) shows that there is no
nontrivial Poincaré covariant field of bounded operators on Minkowski spacetime.

THEOREM 132. Suppose that A : M → B(H) is an operator-valued function,
and U is a continuous unitary representation of the Poincaré group on H such
that:

1. U(y,Λ)A(x)U(y,Λ)∗ = A((Λx)− y), for all (y,Λ) ∈ P and x ∈M ;

2. There is a unique (up to scalar multiples) translation-invariant vector Ω ∈ H.

Then there is a c ∈ C such that A(x)Ω = cΩ for all x ∈ M .

NOTE 133. (i): The assumption of the uniqueness of Ω might seem unwarranted.
But under some fairly standard conditions, this assumption can be derived. See
Section 2.2. (ii): This theorem makes no assumption about commutation relations
between operators A(x) and A(y).

Proof [of Theorem 132.] Define a function f : M → C by

f(x) =
〈
Ω, A(x)∗A(0)Ω

〉
, x ∈ M.

By condition 2 we have U(x)Ω = Ω. Hence by condition 1 we have A(x)∗ =
U(x)A(0)∗U(x)∗, and hence

f(x) =
〈
A(0)Ω, U(x)∗A(0)Ω

〉
,

which is obviously positive definite. Furthermore, since x �→ U(x)∗ is weakly
continuous, f is continuous.
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Now we establish that f(Λ(x)) = f(x) for all x ∈ M and all Lorentz transfor-
mations Λ. We have

f(Λx) =
〈
Ω, A(Λx)∗A(0)Ω

〉
=

〈
Ω, U(0,Λ)A∗(x)U(0,Λ)−1A(0)Ω

〉
=

〈
U(0,Λ)−1Ω, A(x)∗U(0,Λ)−1A(0)U(0,Λ)Ω

〉
=

〈
Ω, A(x)∗A(Λ(0))Ω

〉
=

〈
Ω, A(x)∗A(0)Ω

〉
= f(x).

Thus, Lemma 129 entails that f is constant, and Lemma 131 entails that there is
a c ∈ C such that A(x)Ω = cΩ for all x ∈M . �

Microcausality and Spectrum Condition rule out operators at a point

The final no go theorem, originally by Wightman [1964] invokes both microcausal-
ity and the spectrum condition. (See [Horuzhy, 1990, p. 46] and [Baumgärtel and
Wollenberg, 1992, p. 115] for alternative proofs.)

THEOREM 134. Suppose that A : M → B(H) is an operator valued function,
and U is a continuous unitary representation of the translation group on H such
that:

1. [A(x), A(y)] = 0 when x and y are spacelike separated;

2. U(x)A(y)U(x)∗ = A(y − x), for all x, y ∈M ;

3. U satisfies the spectrum condition.

4. There is a unique translation invariant vector Ω ∈ H.

Then there is a c ∈ C such that A(x)Ω = cΩ for all x ∈M .

Proof. As above, define f : M → C by

f(x) =
〈
Ω, A(x)A(0)Ω

〉
, x ∈ M.

Fix a nonzero spacelike vector x. Then by condition 1,

U(x)∗A(0)U(x)A(0) = A(x)A(0) = A(0)A(x) = A(0)U(x)∗A(0)U(x).

Therefore,

f(x) = 〈Ω, U(x)∗A(0)U(x)A(0)Ω〉 = 〈Ω, A(0)U(x)∗A(0)Ω〉
= 〈Ω, A(0)U(−x)A(0)Ω〉 = f(−x).

Now consider the function F : R → C given by F (t) = f(tx), so that F (t) =
F (−t). By condition 3, the Fourier transform of f is supported in the forward
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light cone. Hence, the Fourier transform of F is supported in [0,+∞). But since
F (t) = F (−t), the Fourier transform of F is also supported in (−∞, 0]. Therefore,
the Fourier transform of F is the point mass at {0}. By Lemma 129, F is constant.
Finally, since any two points in M can be connected by two spacelike vectors, we
can apply the previous procedure twice to show that f is constant. Therefore, by
Lemma 131, there is a c ∈ C such that A(x)Ω = cΩ for all x ∈ M . �

COROLLARY 135. Let O �→ R(O) be a net of von Neumann algebras acting irre-
ducibly on a Hilbert space H, and let U be a strongly continuous unitary represen-
tation that implements the action of the translation group on the net R. Suppose
that the net satisfies microcausality (assumption 43). Suppose that U satisfies the
spectrum condition, and that there is a translation invariant vector Ω ∈ H. Then
for each point x ∈ M , ⋂

{O∈K : x∈O}
R(O) = CI.

Proof. Fix x ∈ M , and fix a double cone x ∈ O. Choose an arbitrary operator,
denoted by A(x), in ⋂

{O∈K :x∈O}
R(O).

Now for general y ∈ M , define

A(y) = U(x− y)A(x)U(x− y)∗,

so that the mapping A : M → B(H) automatically satisfies condition 2 of Theorem
134. Furthermore, since the net R satisfies microcausality, and the unitary group U
implements the translations on R, the mapping A satisfies condition 1 of Theorem
134. It then follows that there is a c ∈ C such that A(x) = cI. Since x was an
arbitrary element of M , the result is proven. �

6.2 Go theorems

Why should we care if Φ(x) cannot be taken to denote any non-trivial operator
on Hilbert space? Does this have any implications for the interpretation of QFT?
After all, for any neighborhood O of x, we can find a test-function f that is sup-
ported in O, and we can replace the non-denoting term “Φ(x)” with the denoting
term “Φ(f)”. In fact, couldn’t we think of “Φ(x)” as a name for the sequence
{Φ(fn)}∞n=1, where {fn}∞n=1 is a sequence of test-functions that converges to the
delta-function at x? More precisely, it seems that we could even attempt to define
an expectation value for the pseudo-operator Φ(x) as follows: If ρ is a state of the
quantum field, define:

ρ(Φ(x)) := lim
n→∞ ρ(Φ(fn)).(5)
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In this section, we make this idea precise in two Go Theorems for field quantities
at points. The first result we report from the work of Rehberg and Wollenberg
[Rehberg and Wollenberg, 1986; Wollenberg, 1986] (see also [Fredenhagen and
Hertel, 1981], [Bostelmann, 2000; Bostelmann, 2004]). This result shows that
within the Wightman framework, a quantum field at a point can be represented
by a sesquilinear form. The second result shows that if we drop the requirement
of continuity on our representation of the translation group, then quantum fields
at points can be represented by self-adjoint operators.

Quantum fields as sesquilinear forms

DEFINITION 136. Let H be a Hilbert space. A sesquilinear form on H is a linear
subspace D(t) of H and a mapping t : D(t) ×D(t) → C that is antilinear in the
first argument, and linear in the second argument. The form t is said to be densely
defined just in case D(t) is dense in H. The form t said to be symmetric just in
case t(ϕ,ψ) = t(ψ,ϕ) for all ϕ,ψ ∈ D(t). The form t is said to be positive just in
case t(ψ,ψ) ≥ 0 for all ψ ∈ D(t).

DEFINITION 137. If t is a sesquilinear form on H then we define the associated
quadratic form by t(ψ) = t(ψ,ψ) for all ψ ∈ D(t). A positive quadratic form t is
said to be closed just in case for any sequences (ψn)n∈N in D(t) if ψn → ψ and
t(ψn − ψm) → 0, then ψ ∈ D(t) and t(ψn − ψ)→ 0.

NOTE 138. A densely defined, symmetric sesquilinear form is a prima facie can-
didate to represent a physical quantity or an observable. Since t is symmetric, the
corresponding quadratic form is real-valued. Hence, for each unit vector ψ ∈ D(t),
we might say that the “expectation value” of t in state ψ is t(ψ). Indeed, at
first glance, the expectation value mapping t �→ t(ψ) seems to have all the same
properties as the corresponding expectation mapping for operators.

THEOREM 139. Let Φ(·) be a Wightman field on the Hilbert space H. That is, Φ
maps elements of a test-function space S(R4) to unbounded operators on H with
some common dense domain D. Let (δn)n∈N be a sequence of test-functions whose
support shrinks to the point x. Then for each u, v ∈ D, the sequence

〈u,Φ(δ1)v〉, 〈u,Φ(δ2)v〉, 〈u,Φ(δ3)v〉, . . . ,

converges to a finite complex number, which we denote by 〈u,Φ(x)v〉. The map
u, v �→ 〈u,Φ(x)v〉 is a sesquilinear form with domain D, which we denote by Φ(x).

Proof. See [Baumgärtel and Wollenberg, 1992, p. 332] and [Rehberg and Wollen-
berg, 1986; Wollenberg, 1986]. �

NOTE 140. One naturally wishes to have a version of this theorem in a more
purely algebraic setting. Such a result might be available in the context of the
scaling algebras of [Buchholz and Verch, 1995; Buchholz, 1998].
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The result is surprising for a couple of reasons. We might have thought that the
reason Φ(x) is not an operator is because the expectation values 〈u,Φ(δn)u〉 grow
without bound as the test-functions δn shrink to a point — i.e. there is some sort of
divergence. But Theorem 139 shows that conjecture to be false. The obstruction
to Φ(x)’s becoming an operator must lie somewhere else.

So, we have several No Go Theorems against quantum fields as operators (even
unbounded operators), and one Go Theorem for quantum fields as sesquilinear
forms. What should we conclude from these apparently conflicting results? Should
we say that there is a field quantity at the point x, or not?

To answer this question we need to think harder about the relation between
operators on a Hilbert space and physical quantities. Why was it that we thought
that physical quantities correspond to operators? If we suppose that an unbounded
operator can represent a quantity, then must that operator be self-adjoint (i.e.
must A coincide with A∗ on a common dense domain), or does it suffice to satisfy
some weaker condition? Does any symmetric sesquilinear form have all the features
necessary to represent a physical quantity? In order to get clear on these questions,
it might help to get clear on the mathematical details of the relationship between
sesquilinear forms and operators. Fortunately, there are quite a few results in this
direction.

Clearly, every linear (possibly unbounded) operator T on H defines a sesquilin-
ear form with domain D(T ) via the equation

t(ψ,ϕ) = 〈ψ, Tϕ〉.(6)

On the other hand, it is less clear when an arbitrary form t corresponds an operator
via Eqn. (6).

DEFINITION 141. A sesquilinear form t on H is said to be bounded just in case
there is a n ∈ N such that |t(ϕ,ψ)| ≤ n whenever ϕ,ψ ∈ D(t) with ‖ϕ‖, ‖ψ‖ ≤ 1.

PROPOSITION 142. There is a one-to-one correspondence between densely de-
fined, bounded sesquilinear forms on H and elements of B(H). In particular, if
t is bounded sesquilinear form on H then there is a unique operator T ∈ B(H)
such that t(ϕ,ψ) = 〈ϕ, Tψ〉 for all ϕ,ψ ∈ H. Furthermore, t is symmetric iff T is
self-adjoint.

Proof. See [Kadison and Ringrose, 1997, Theorem 2.4.1]. �

PROPOSITION 143. If t is a densely defined, positive, closed, quadratic form,
then there exists a unique positive operator T on H such that the domain of T 1/2

is D(t) and
t(ϕ,ψ) = 〈T 1/2ϕ, T 1/2ψ〉,

for all ϕ,ψ ∈ D(t). In particular, t(ϕ,ψ) = 〈ϕ, Tψ〉 for all ϕ,ψ ∈ D(t).

NOTE 144. The previous Proposition is useful in showing when a number operator
N can be defined in a representation of the Weyl algebra A[S, σ]. For details, see
[Clifton and Halvorson, 2001a] and [Bratteli and Robinson, 1997, p. 27].
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The previous two propositions do not apply to the sesquilinear form Φ(x) be-
cause it is neither bounded nor positive. Furthermore, there is no known (to the
author) characterization of when a symmetric sesquilinear form admits a represen-
tation as an operator — although there are some partial results in this direction
(see [McIntosh, 1970]). It is clear that Φ(x) is not an operator; it is unclear what
features operators have that Φ(x) lacks, and whether these features are neces-
sary for a mathematical object to represent a quantity. Accordingly, it is unclear
whether or not Φ(x) represents an element of reality.

Quantum fields as operators on non-separable Hilbert space

Our second Go result for quantum field operators at a point is really just a sketch
of an example. We take a nonseparable Hilbert space H that can represent states
of particles with point positions (compare with [Halvorson, 2004]). We then apply
the standard second quantization procedure — which does not depend on the one-
particle space being separable — to obtain a Fock space F(H), and self-adjoint
field operators φ(x), π(x) indexed by points in R.

Let H = l2(R) be the Hilbert space of square-summable sequences over R; i.e.
an element f of l2(R) is a mapping from R into C such that f vanishes at all but
countably many points, and

∑
x∈R

|f(x)|2 < ∞. The inner product on l2(R) is
given by

〈f, g〉 =
∑
x∈R

f(x)g(x).(7)

Let F(H) be the Fock space over H. For each x ∈ R, we let δx ∈ l2(R) denote
the characteristic function of {x}; the set {δx : x ∈ R} is an (uncountably infinite)
orthonormal basis for l2(R). For any x ∈ R, we define the creation operator a(x)
by:

a(x)(f1 ⊗ · · · ⊗ fn) := δx ⊗ f1 ⊗ · · · ⊗ fn.(8)

As in the standard case, we verify that a−(x) + ia+(x) and a+(x) − ia−(x) are
preclosed, i.e. that the closure of the graphs of these operators are graphs of linear
operators (see [Kadison and Ringrose, 1997, p. 155]), which we denote by

φ(x) = a−(x) + ia+(x),(9)
π(x) = a+(x)− ia−(x).(10)

It then follows that φ(x) and π(x) are self-adjoint, and on a dense domain D in
F(H), we have

[π(x), φ(x′)] = i 〈δx, δ′x〉 = i δ0(x− x′),(11)

where now δ0 is a completely legitimate mathematical object — viz. the probability
measure supported on {0}.
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Consider the (discontinuous) representation x �→ V (x) of the translation group
on l2(R) defined on the basis elements {δy : y ∈ R} by

V (x)δy = δy−x.(12)

Let Γ be the ‘Fock functor’; i.e. Γ maps a unitary operator V on the single particle
space H to the corresponding operator

I ⊕ V ⊕ (V ⊗ V )⊕ · · · ,

on F(H). Then x �→ U(x) := Γ(V (x)) is a discontinuous representation of the
translation group on F(H), and

U(x)∗φ(y)U(x) = Φ(y − x).(13)

Thus, (φ(·), π(·),F(H), U) is a field system over l2(R), where x �→ U(x) is a
discontinuous unitary representation. We could then use the field system to define
a net O �→ R(O) of von Neumann algebras on F(H). But this net of course fails
the spectrum condition, because the representation of the translation group is not
continuous.

The model just described is probably too unwieldy to be of much use in describ-
ing real physical situations. Furthermore, there is no good reason to think that
the procedure we followed generalizes to the case of interacting theories, where
pointlike localized operators are needed to make sense of products of field opera-
tors. However, we hoped to show that it is conceivable that we can get by without
some of the technical assumptions of the No Go Theorems. So, we should think
very carefully before we try to use these theorems to draw conclusions about how
QFT must be interpreted.

6.3 Field interpretations of QFT

In Section 4, we saw that there are severe obstacles to a particle interpretation of
QFT. One might argue then, by a process of elimination, that we should adopt
a “field interpretation” of QFT (see e.g. [Teller, 1995; Huggett, 2000]). But if we
examine the field interpretation on its own merits, its not clear that it is better
off than the particle interpretation.

In constructing canonical free theories (e.g. the free Bose and Fermi fields), one
begins with a Hilbert space H which can be interpreted either as a “single particle
space” (i.e. space of wavefunctions of a single quantum mechanical particle) or as
a space of configurations of a classical field. Corresponding to these two interpre-
tations, there are two ways to construct the Hilbert space of the quantum field
theory:

1. Second quantization: the Hilbert space of the quantum field is the Fock space
F(H) over H. (See Section 4.1).
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2. Field quantization: the Hilbert space of the quantum field is is space L2(H, d)
of ‘square integrable’ functions from H into C relative to the isonormal dis-
tribution d on H.

(In a rigorous treatment, elements of L2(H, d) are not really functions. See [Baez
et al., 1992, Section 1.3] for details.) The free field theories constructed by these
two methods are known to be unitarily equivalent. However, the field quantiza-
tion approach lends itself more naturally to a field interpretation. Indeed, in a
recent survey of the foundations of QFT [Huggett, 2000], one finds the suggestive
notation:

Ψ(φ), φ ∈ L2(R3n),

for a function on the space H := L2(R3n) of wavefunctions. Thus, it seems that a
quantum field state can be interpreted as a superposition of classical field config-
urations in the same sense that a wavefunction of n particles can be interpreted
as a superpositions of classical configurations of n particles.

However, there are difficulties with this approach. First, the field operators Φ(x)
on L2(H, d) are the precise analogues of the position operators Qi for a system of
particles. That is, there is a natural interpretation of a function Ψ ∈ L2(H, d) as
a probability distribution over the family {Φ(x) : x ∈ M} of mutually commuting
operators. But the No Go theorems for the operators Φ(x) militate against in-
terpreting Ψ as a probability distribution over classical field configurations. More
directly, since d assigns zero measure to points in H (i.e. to individual field con-
figurations), characteristic functions of singleton subsets of H — i.e. determinate
field configurations — are identified with the zero vector in L2(H, d). That is,
there is no state of the quantum field in which it is in a definite configuration.

It follows from the preceeding considerations that the No Go theorems for fields
operators at a point undermine the field interpretation of QFT in the same way
that No Go theorems for number operators undermine the particle interpretation.
Thus, we should be wary of arguments for field interpretations based on problems
with particle interpretations.

6.4 Points of time?

The preceding results were aimed at answering the question of whether there can
be field operators at a spacetime point. Suppose that we concede that there cannot
be, and we proceed with the standard mathematically rigorous approach to, say,
the free Bose field, where field operators are smeared over space by test functions
(see e.g. [Araki, 1963]). In this case, quantities are not tied to spacetime points,
but they are tied to pointlike times. However, some claim that in general, the
quantities will also have to be fuzzy in time. For example, according to Haag,

Renormalization theory suggests that it is essential to smear out Φ
both in space and time, in contrast to the case of free fields, where an
averaging over 3-dimensional space at a fixed time is sufficient. Due to
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the stronger singularities, one cannot assume well-defined commutation
relations of fields at equal time. [Haag, 1996, p. 59]

But such claims are speculative — we know of no theorems that prove that in-
teracting fields must be smeared out in time. So, at the present time we have no
particularly good reason to conclude that time is pointless.

7 THE PROBLEM OF INEQUIVALENT REPRESENTATIONS

The philosophy of local quantum physics (in Haag’s terminology) is that the the-
oretical parts of QFT (e.g. unobservable fields, gauge group) should not count as
part of the given data. Instead, the abstract net A of observable algebras should
be taken as the primitive. Following the terminology in [Ruetsche, 2002], we define
‘Algebraic Imperialism’ as the position that:

The physical content of a quantum field theory is encoded in the net
O �→ A(O), the subgroup of Aut(A) corresponding to physical symme-
tries (including dynamics), and the states on the quasilocal algebra A.
A representation (H, π) of A may be an aid to calculation, but has no
ontological significance.

Such an attitude might seem incomprehensible to those steeped in the traditional
Hilbert space formalism of QM. Indeed, where is the Hamiltonian, where are the
transition probabilities, and how do we describe measurements? The very ab-
stractness and generality of the algebraic formalism seems to empty it of a great
deal of the content we expect in a physical theory.

However, some of these worries about lack of content of the abstract algebraic
formalism are ill founded. Indeed, the GNS theorem (Thm. 17) shows that all
the Hilbert spaces we will ever need are hidden inside the algebra itself. Fur-
thermore, much of the vocabulary one learns to speak in elementary QM can be
defined within this purely abstract setting. For example, for a definition of tran-
sition probabilities between states, see [Roberts and Roepstorff, 1968]; and for a
definition of measurement probabilities, see [Wald, 1994].

But it is not true — at least on the face of it — that all pieces the traditional
vocabulary of QFT can be reproduced in the algebraic setting. For example, the
quasilocal algebra does not contain a number operator, and probability distribu-
tions over the spectrum of the number operator cannot be defined in terms of
expectation values on A (see [Clifton and Halvorson, 2001a]). What is perhaps
even worse is that by beginning with a net O �→ A(O) of observable algebras, we
have effectively closed our eyes to the existence of unobservable fields, which do
not generally commute with each other at spacelike separation. Thus, we seem to
have no way to account for deep theoretical facts of QFT such as the connection
between spin (commutation relations of field operators) and statistics.

Worries such as these might push us towards the second main position on the
issue of representations, which Ruetsche [2002] calls Hilbert Space Conservatism:
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The theory is not the net O �→ A(O), but the net plus one specific
representation (H, π).

In fact, Hilbert Space Conservatism might be thought of as the default view of
most workers in mainstream (Lagrangian) QFT, since the abstract algebra (and
its representations) do not play a central role there.

But as with many realist views, the Conservative view faces epistemological
difficulties: How do we decide which is the correct representation? In this case, the
difficulty is particularly severe, because it can be proven mathematically that the
predictions of states within any one representation can be reproduced to arbitrarily
high accuracy by the states in any other representation.2 (This is due to the fact
that since A is simple, Fell’s theorem implies that the states in any folium are
weak* dense in the state space.)

Nonetheless, it is tempting to think that the algebraic formalism is creating
an interpretive problem. That is, it is tempting to think that if we stick to the
old-fashioned way of doing QFT, the issue of inequivalent representations does
not arise, and so neither does this interpretive dilemma. So, are inequivalent
representations telling us something of foundational importance, or are they just
mathematical playthings?

The motivating arguments for the algebraic approach have included the exis-
tence of inequivalent representations of the canonical commutation relations, as
well as physical effects associated with Rindler-Fulling quanta. Nonetheless, these
arguments have been resisted for various reasons, e.g. there is a suspicion that
the Rindler vacuum representation is inferior, as a description of reality, to the
Minkowski vacuum representation. So, in the following sections, we discuss an-
other motivating argument for the algebraic approach — viz. superselection rules.
It is in the analysis of superselection rules that the algebraic approach most clearly
displays its beauty, utility, and foundational importance.

7.1 Superselection rules

In a now famous paper, Wick, Wightman, and Wigner [1952] argue that there is
a physical system with state space H, and state vectors ψ1, ψ2 ∈ H such that the
linear combinations

2−1/2(ψ1 + eiθψ2), θ ∈ [0, 2π),(14)

give rise to ‘empirically indistinguishable’ states. When this occurs, Wick et al.
say that there is a ‘superselection rule’ between ψ1 and ψ2; alternatively, ψ1 and
ψ2 lie in different ‘superselection sectors.’ We put ‘empirically indistinguishable’ in
scare quotes, because the literature has been anything but clear about the nature

2This way of stating the problem is biased, and depends on taking “predictions of a repre-
sentation” to mean expectation values of observables in the abstract algebra. If we also include
expectation values of observables in the weak closure π(A)−, and expectation values of un-
bounded operators on H, then the story becomes more complicated. Compare with [Clifton and
Halvorson, 2001b].
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of the relation between the states in Eqn. (14). Are the states in Eqn. (14) merely
empirically indistinguishable, or is there a stronger sense in which these two states
are equivalent? If the indistinguishability is empirical, how strong is the modal
force? Do these states predict the same empirical phenomena in all physically
possible worlds, or is their indistinguishability due to some special features (e.g.
initial conditions) in our world? In this paper, we will not attempt to resolve
these important questions about the nature of superselection rules.3 Rather, we
will content ourselves with explaining the proposal of Doplicher, Haag, and Roberts
(DHR) for making Wick et al.’s notion precise within the context of AQFT.

The first approaches to superselection rules involved an ad hoc butchery of the
state space and of the algebra of observables, with a resulting confusion about what
should count as the states and observables (or quantities) of the resulting theory.
One begins with a Hilbert space H with unit vectors giving pure states, and with
self-adjoint elements of B(H) as observables (or quantities). One then gives a
heuristic argument for the claim that a superselection rule holds between the state
vectors in some subspace H1 and the state vectors in the complementary subspace
H2 := (H1)⊥. On the basis of this argument, the state space H is reduced to the
union of H1 and H2; that is, a linear combination of a vector in H1 and H2 is no
longer thought to be a possible (pure state) of the theory; the pure state vectors
lie in either H1 or H2. Equivalently, the algebra of observables B(H) is reduced
to B(H1)⊕B(H2). The operators in B(H1 ⊕H2) that could distinguish between
the states in Eqn. (14) are demoted to the status of “unobservable.” Thus, the
algebra of observables is actually B(H1)⊕B(H2), and not B(H1 ⊕H2).

Now, the algebraic approach provides two inversely related approaches to su-
perselection rules.

1. First, we can follow the original “state space butchery” approach in a slightly
more principled fashion: suppose that we are given some fields acting as
operators on some big Hilbert space H. Let F denote the algebra of field
operators. [Here F is the analogue of the algebra B(H1 ⊕H2), and H is the
analogue of H1 ⊕ H2. In this case, however, we are not given an a priori
decomposition of H into a direct sum.] Suppose that we are also given a
gauge group G that acts on the fields. We then define the observables as
the gauge invariant fields. Let A denote the algebra of observables. We
also define the physical pure states as those vectors in H that transform
irreducibly under the gauge group. A series of mathematical results (partially
described in Section 9) shows then that H decomposes into a direct sum⊕Hξ of subspaces that transform irreducibly under the gauge group; and
each subspace Hξ corresponds to an irreducible representation of the algebra
of observables A. We sketch this “top down” approach to superselection rules

3Superselection rules are also of foundational interest because they have been thought to help
with the measurement problem — see e.g. [Beltrametti and Cassinelli, 1981, p. 74], [Landsman,
1995], [van Fraassen, 1991, pp. 264–272] — and more generally because of their connection with
the emergence of a classical realm [Giulini, 2003]. However, we do not take up those specific
issues in this Chapter.



Algebraic Quantum Field Theory 783

in Section 9.

2. Instead of beginning with the field algebra F and deriving the superselection
structure (i.e. the set of physically interesting representations of the algebra
A of observables), we can begin with A and consider its set of physical
representations. What is a ‘physical’ representation of A? According to
the criterion proposed by Doplicher, Haag, and Roberts (the DHR selection
criterion), the physical representations are those that differ observably from
the vacuum representation only in local regions. In this case, we still have the
notion of superselection sectors, but we do not yet have a notion of fields or
of a gauge group. It is not immediately clear that we have enough structure
to explain the phenomena.

However, it is at this point that the deep mathematical analysis begins. First,
one proves that the category of DHR representations corresponds precisely
to the set ∆ of localized transportable endomorphisms of the observable
algebra A (see Section 8.2). Second, one proves that the set ∆ naturally
has the structure of a symmetric tensor ∗-category (see Section 8). Finally,
the Doplicher-Roberts Reconstruction Theorem shows that the unobservable
fields F and gauge group G can be uniquely reconstructed from the category
∆.

The following sections outline some of the most important insights that have
been gained in the study of superselection rules, and how this analysis bears on
the foundational questions about the role of inequivalent representations. In short,
our conclusion is that inequivalent representations are not irrelevant, and nor are
they a problem. Rather, it is the structure of the category of representations that
provides the really interesting theoretical content of QFT.

7.2 Minimal assumptions about the algebra of observables

For our discussion of superselection theory we need only a considerably pared down
set of assumptions about the net of observable algebras. So, we now effectively
cancel all assumptions we made about the net in Section 2. We begin with a tabula
rasa, and add only those assumptions that we will need in the following sections.

By calling A a “net,” we are assuming that if O1 ⊆ O2 then A(O1) ⊆ A(O2).
But we do not promote this to the status of an Assumption.
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ASSUMPTION 145 (Microcauality). If O1 and O2 are spacelike separated
then [A(O1),A(O2)] = {0}.
ASSUMPTION 146 (Property B). The net O → R0(O) ≡ π0(A(O))′′ of
von Neumann algebras satisfies property B, where (H0, π0) is the GNS
representation of A induced by ω0.

ASSUMPTION 147 (Duality). The pair (A, ω0) satisfies Haag duality, i.e.

π0(A(O′))′ = π0(A(O))′′,

for each double cone O, where (H0, π0) is the GNS representation of A
induced by ω0.

ASSUMPTION 148 (Separability). The vacuum Hilbert space H0 is sep-
arable.

ASSUMPTION 149 (Nontriviality). For each double cone O, π0(A(O))
contains an operator that is not a multiple of the identity; i.e. π0(A(O)) �=
CI.

A few remarks on these assumptions: (i) The first assumption is about the
net A, but the remaining assumptions apply to a pair (A, ω0), where A is the
quasilocal algebra and ω0 is some fixed state. (ii) The duality assumption states
that not only are the observables in R0(O′) compatible with the observables in
R0(O), but that R0(O′) contains all observables that are compatible with the
collection of observables in R0(O). We will assume in the following two sections
(on DHR superselection theory) that the net A satisfies duality relative to some
privileged vacuum state ω0. But, it does not follow from this that the net satisfies
duality relative to every physical representation. In fact, a representation satisfies
duality iff that sector has normal (Bose/Fermi) statistics; and every representation
satisfies duality iff the gauge group is abelian. (iii) Duality in the vacuum sector
is equivalent to the non-existence of spontaneously broken gauge symmetries. For
the case of broken symmetries, we would impose a weaker requirement: essential
duality. cf. Section 10.7. (iv) The separability assumption will only be invoked
once — to show all superselection sectors induced by local fields are strongly locally
equivalent (Prop. 243).

To be clear, note that we are now making no assumptions about the following:
(i) No assumptions about the action of spacetime symmetries (e.g. translation sym-
metries, Lorentz symmetries) on the algebra A; (ii) No assumptions to the effect
that the vacuum state ω0 is translation invariant; (iii) No assumptions about the
action of spacetime symmetries on the vacuum Hilbert space; (iv) No assumptions
about the spectrum condition.



Algebraic Quantum Field Theory 785

8 THE CATEGORY ∆ OF LOCALIZED TRANSPORTABLE
ENDOMORPHISMS

In this Section we study the category ∆(A) of localized transportable endomor-
phisms of the observable algebra A. Since the physical motivation for this study
might not be initially clear, we pause to note the relation between endomorphisms
and representations.

Suppose that π0 is a fixed representation of A of some physical significance —
e.g. the vacuum representation. Then for any endomorphism ρ of A, the compo-
sition π0 ◦ ρ is also a representation of A. Thus, endomorphisms of A correspond
naturally to representations of A, and we can hope to gain insight into the structure
of the representations of A by studying the endomorphisms of A. However, the
set EndA of endomorphisms of A has more intrinsic structure than the set RepA
of representations of A — e.g., there is a product (viz. composition) operation
on EndA, and some endomorphisms have inverses. Thus, besides the traditional
notions of equivalence and disjointness of representations, there are additional re-
lations of physical importance on the set of representations of the form π0 ◦ρ with
ρ ∈ EndA.

If the problem of Lagrangian QFT is that there is only one Hilbert space, the
problem of AQFT is that there are too many Hilbert spaces! Surely, not all of
the representations of A are physical. In Section 9, we look at the problem from
a more traditional point of view. In particular, we begin with a field algebra F of
operators acting on a Hilbert spaceH, and a gauge group G of unitary operators on
H. (We may suppose that G is the image of some representation of a fundamental
symmetry group, e.g. SU(2).) We also suppose that H contains a vacuum state Ω.
We then define the observable algebra A as the gauge invariant fields. But then we
are again in the domain of AQFT: we have a reducible representation π of A on H,
and the irreducible subrepresentations of π are the superselection sectors that can
be reached from the vacuum sector by the action of local (unobservable) fields. Not
all representations of A appear in the decomposition of π — those that do not are
surplus structure. However, all representations that appear in the decomposition
of π are of the form π0 ◦ ρ, with ρ an endomorphism from the category ∆(A)!
So, the motivation for studying these endomorphisms is that they correspond to
representations that arise in this traditional, physically motivated way by acting
on the vacuum representation with (unobservable) fields.4

There is yet another motivation for studying the DHR category: we want to
understand the nature of gauge symmetries, and the DR Reconstruction Theorem
provides crucial insight. In particular, the Theorem shows that DHR categories are
in duality (in a mathematically precise sense) with compact groups. So, wherever
there is a compact group, there is a DHR category, and vice versa. The study

4The DHR representations do not include those that can be reached from the vacuum by
nonlocal fields, and so the domain of DHR superselection theory does not include theories with
long range forces. But the case of local fields is already complicated enough, and is good training
for the more general case.
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of DHR categories and the study of compact gauge groups are one and the same;
or, to take a more controversial stance, the structure of the category of physical
representations of A explains why there is a compact gauge group (see [Roberts,
1975]).

We now define the category ∆ = ∆(A) and uncover some of its natural struc-
tures. As stated above, the objects of our category ∆ will be a subset of the set
EndA of ∗-endomorphisms of A.

DEFINITION 150. Let ρ be a ∗-endomorphism of A, i.e. ρ : A → A is a ∗-
homomorphism (not necessarily surjective). Let O be a double cone in (Minkowski)
spacetime. Then ρ is said to be localized in O just in case ρ(A) = A, for all
A ∈ A(O′), where O′ is the spacelike complement of O. We say that ρ is localized
just in case there is a double cone O in which it is localized.

NOTE 151. By definition, a localized endomorphism satisfies ρ(I) = I, where I
is the identity in A.

DEFINITION 152. If ρ is localized in O then ρ is said to be transportable just in
case for any other double cone O1, there is a morphism ρ1 localized in O1 and a
unitary operator U ∈ A such that Uρ(A) = ρ1(A)U for all A ∈ A.

DEFINITION 153. For each double cone O ∈ K, we let ∆(O) denote the set of
transportable morphisms that are localized in O, and we let ∆ =

⋃
O∈K ∆(O).

Elements of ∆ are the objects of the DHR category.

We must now define arrows between the objects.

DEFINITION 154. Let ρ, ρ′ ∈ ∆. We define the set Hom(ρ, ρ′) of arrows between
ρ and ρ′ as follows:

Hom(ρ, ρ′) := {T ∈ A : Tρ(A) = ρ′(A)T, ∀A ∈ A}.

If T ∈ Hom(ρ, ρ′) and S ∈ Hom(ρ′, σ) then we define S ◦ T = ST , which is
obviously in Hom(ρ, σ).

Obviously, the identity I ∈ A functions as the identity arrow for all objects; i.e.
I = idρ ∈ End(ρ) for all ρ ∈ Obj(∆). Occasionally, we will write Iρ to indicate
that we are considering I as the identity of End(ρ).

LEMMA 155. Suppose that ρi ∈ ∆(Oi) for i = 1, 2, and that T ∈ Hom(ρ1, ρ2).
Then for any double cone O containing O1 ∪O2, we have T ∈ A(O).

Proof. Let B ∈ A(O′). Then

TB = Tρ1(B) = ρ2(B)T = BT.

Hence T ∈ A(O′)′. By duality in the vacuum sector, T ∈ A(O). �

PROPOSITION 156. With the definition of hom-sets given above, ∆ is a category.

Proof. Completely straightforward. �
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So, we have shown that ∆ is a category. In the remainder of this Section, we
uncover more structure on ∆. We first show that ∆ is a C∗-category; this involves
showing that ∆ has direct sums (an ⊕ operation), subobjects, and the hom-sets
of ∆ are vector spaces with a ∗-operation and norm ‖ ·‖ that obey the appropriate
analogue of the C∗-algebra norm property. We then drop reference to the norms
on the hom-sets, and show that there is a product operation ⊗ on ∆ such that
(∆,⊗, ι) is a tensor ∗-category.

DEFINITION 157. A category C is said to be a linear category over the complex
field C, or a C-linear category, just in case for all X,Y ∈ Obj(C), Hom(X,Y ) is
a complex vector space, and the composition ◦ of morphisms is bilinear. When
speaking of C-linear categories, we stipulate that all functors should be C-linear.

DEFINITION 158. A ∗-operation on a C-linear category C is a map which assigns
to an arrow s ∈ Hom(X,Y ) another arrow s∗ ∈ Hom(Y,X). This map has to
be antilinear, involutive (s∗∗ = s), and contravariant ((s ◦ t)∗ = t∗ ◦ s∗). A
∗-operation is positive iff s∗ ◦ s = 0 implies s = 0. A ∗-category is a C-linear
category with a positive ∗-operation.

NOTE 159. If C is a ∗-category, then for each X ∈ Obj(C), End(X) is a ∗-algebra.

DEFINITION 160. A ∗-category is called a C∗-category if for all X,Y ∈ Obj(C),
there is a norm ‖·‖X,Y on Hom(X,Y ) such that 〈Hom(X,Y ), ‖·‖X,Y 〉 is a Banach
space and

‖s ◦ t‖X,Z ≤ ‖s‖Y,Z · ‖t‖X,Y , ∀s ∈ Hom(Y,Z),∀t ∈ Hom(X,Y )
‖s∗ ◦ s‖X,X = ‖s‖2X,Y , ∀s ∈ Hom(X,Y ).

We borrow some definitions from the theory of ∗-algebras.

DEFINITION 161. Let C be a ∗-category. An arrow f ∈ Hom(X,Y ) is said to
be an isometry just in case f∗ ◦ f = idX . An arrow f ∈ Hom(X,Y ) is said to be
unitary just in case f and f∗ are isometries. An arrow p ∈ End(Y ) = Hom(Y, Y )
is said to be a projection if p = p∗ and p ◦ p = p.

NOTE 162. If s ∈ Hom(Y,X) is an isometry then the arrow p ≡ s ◦ s∗ ∈ End(X)
is a projection.

DEFINITION 163. Let C be a ∗-category. If X,Y ∈ Obj(C), then X is said to
be a subobject of Y just in case there is an isometry f ∈ Hom(X,Y ). (Roughly
speaking, there is an isometric embedding of X into Y .) The ∗-category C is said
to have subobjects just in case for each Y ∈ Obj(C) and projection g ∈ End(Y ),
there is an X ∈ Obj(C) and an isometry f ∈ Hom(X,Y ) such that f ◦f∗ = g. The
∗-category C is said to have direct sums just in case for any two objects X,Y in
C, there is an object Z in C and isometries f ∈ Hom(X,Z), g ∈ Hom(Y,Z) such
that f ◦ f∗ + g ◦ g∗ = idZ .

We begin by verifying that the DHR category ∆ is a ∗-category, i.e. the hom
sets are vector spaces over C, and there is a positive ∗-operation.
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LEMMA 164. The DHR category ∆ is a ∗-category. That is, if ρ, σ ∈ Obj(∆),
then Hom(ρ, σ) is a vector space over C with the operations inherited from A
(which is a vector space over C), and the composition of arrows is bilinear. Fur-
thermore, the ∗-operation inherited from A is antilinear, involutive, contravariant,
and positive.

Proof. Completely straightforward. �

PROPOSITION 165. The DHR category ∆ has direct sums.

Proof. Let ρ1 ∈ ∆(O1), and let ρ2 ∈ ∆(O2). Choose a double cone O such that
(O1 ∪ O2)− ⊆ O. Let E be a projection in A(O1). By property B, there are
isometries V1, V2 ∈ A(O) such that V1V

∗
1 + V2V

∗
2 = I. Define ρ : A → A by

ρ(A) = V1ρ1(A)V ∗
1 + V2ρ2(A)V ∗

2 , ∀A ∈ A.

Since ViVj = δijI, and
∑
i ViV

∗
i = I, it follows that ρ is a morphism. Since ρ1, ρ2

are localized in O, and V1, V2 ∈ A(O), it follows that ρ is localized in O.
To see that ρ is transportable, let Õ be another double cone. Since the ρi are

transportable, there are endomorphisms ρ′i localized in Õ, and unitary operators
Ui ∈ Hom(ρi, ρ′i). As before, choose isometries V ′

1 , V ′
2 in A(Õ), and set ρ′ =

V ′
1ρ′1V

′
1
∗ + V ′

2ρ′2V
′
2
∗. Then ρ′ is localized in Õ and

V ′
1U1V

∗
1 ∈ Hom(ρ, ρ′), V ′

2U2V
∗
2 ∈ Hom(ρ, ρ′).

If we set W = V ′
1U1V

∗
1 + V ′

2U2V
∗
2 , then W ∈ Hom(ρ, ρ′) since it is a vector space.

Furthermore,

W ∗W = [V ′
1U1V

∗
1 + V ′

2U2V
∗
2 ]∗[V ′

1U1V
∗
1 + V ′

2U2V
∗
2 ]

= [V1U
∗
1 V ′

1
∗ + V2U

∗
2 V ′

2
∗][V ′

1U1V
∗
1 + V ′

2U2V
∗
2 ]

= V1V
∗
1 + V2V

∗
2 = I,

and similarly for WW ∗. Therefore W is a unitary operator in Hom(ρ, ρ′), showing
that ρ is transportable. �

DEFINITION 166. If ρ1, ρ2 ∈ ∆, we denote their direct sum by ρ1 ⊕ ρ2.

PROPOSITION 167. The DHR category ∆ has subobjects.

Proof. Let ρ ∈ ∆(O), and let E be a projection in End(ρ); i.e. Eρ(A) = ρ(A)E,
for all A ∈ A. Then for all A ∈ A(O′),

EA = Eρ(A) = ρ(A)E = AE.

Therefore, by duality in the vacuum sector E ∈ A(O). Choose O1 such that
O− ⊆ O1. By property B, there is an isometry V ∈ A(O1) such that V V ∗ = E.
Now define ρ′ : A→ A by

ρ′(A) = V ∗ρ(A)V, ∀A ∈ A.
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The isometry V embeds ρ′ into ρ. Indeed,

ρ′(A)V ∗ = V ∗ρ(A)V V ∗ = V ∗ρ(A)E = V ∗ρ(A).

and V is an isometry in Hom(ρ′, ρ) such that V V ∗ = E ∈ End(ρ).
To see that ρ′ is transportable, suppose that O2 is an arbitrary double cone.

Choose a double cone O3 such that O−
3 ⊆ O2. Since ρ is transportable, there is

a morphism σ localized in O3 and a unitary U ∈ Hom(ρ, σ). It then follows that
UEnd(ρ)U∗ = End(σ), thus E′ = UEU∗ is a projection in End(σ). Using property
B, there is an isometry V ′ ∈ A(O1) such that V ′V ′∗ = E′. Let σ′ = V ′∗σV ′.
Clearly σ′ is localized in O1, and W = V ′∗UV ∈ Hom(ρ′, σ′). Finally, W is
unitary:

W ∗W = V ∗U∗V ′V ′∗UV = V ∗U∗E′UV

= V ∗EV = V ∗V V ∗V = I,

and similarly for WW ∗. Thus σ′ is equivalent to ρ′. Since O2 was an arbitrary
double cone, ρ′ ∈ ∆. �

DEFINITION 168. Suppose that C is a C-linear category. An object X in C is
said to be irreducible if it is nonzero and End(X) = CidX .

NOTE 169. Let ι be the identity endomorphism of A. Then ι ∈ Obj(∆), and
since the vacuum representation of A is irreducible, ι is an irreducible object.

We now define a bifunctor ⊗ = (⊗,×) on the DHR category ∆, and verify that
(∆,⊗, ι) is a tensor ∗-category. But first we recall the pertinent definitions.

DEFINITION 170. A bifunctor on a category C consists of two mappings F :
Obj(C) × Obj(C) → Obj(C) and F : Hom(C) × Hom(C) → Hom(C), such that for
s ∈ Hom(X,Y ) and t ∈ Hom(X ′, Y ′), F (s, t) ∈ Hom(F (X,X ′), F (Y, Y ′)), and

F (s1 ◦ s2, t) = F (s1, t) ◦ F (s2, t),
F (s, t1 ◦ t2) = F (s, t1) ◦ F (s, t2),

F (idX , idX′) = idF (X,X′).

If C is a ∗-category, then a bifunctor F is also required to be bilinear and to
commute with the ∗-operation. That is, for si ∈ Hom(X,X ′), ti ∈ Hom(Y, Y ′)
and c ∈ C, we have

F (s1 + s2, t) = F (s1, t) + F (s2, t),
F (s, t1 + t2) = F (s, t1) + F (s, t2),

F (cs, t) = cF (s, t) = F (s, ct),

and

F (s, t)∗ = F (s∗, t∗).
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DEFINITION 171. Let ⊗ = (⊗,×) be a bifunctor on the category C, and let
1 ∈ Obj(C). Then (C,⊗,1) is said to be a tensor category just in case ⊗ is
associative up to a natural isomorphisms, and 1 is a two sided identity up to
natural isomorphisms. The object 1 is called the monoidal unit. To be precise,
to say that ⊗ is ‘associative up to a natural isomorphisms’ means that for each
X,Y,Z ∈ Obj(C), there is an isomorphism αX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z
that is ‘natural’ for all X,Y,Z; i.e. if s : X → X ′ then

((s⊗ idY )⊗ idZ) ◦ αX,Y,Z = αX′,Y,Z ◦ (s⊗ (idY ⊗ idZ)),(15)

and similarly for Y and Z. Furthermore, α is required to make the pentagonal
diagram commute:

(X ⊗ Y )⊗ (Z ⊗ Z ′)

X ⊗ (Y ⊗ (Z ⊗ Z ′))

α

�

((X ⊗ Y )⊗ Z)⊗ Z ′

α

�

X ⊗ ((Y ⊗ Z)⊗ Z ′)
α�

id
X
⊗

α

�

(X ⊗ (Y ⊗ Z))⊗ Z ′

α
⊗

id
Z
′

�

To say that 1 ∈ C is a two sided identity up to natural isomorphisms means
that for each object X ∈ Obj(C), there are isomorphisms λX ∈ Hom(1 ⊗ X,X)
and ρX ∈ Hom(X ⊗ 1,X) such that:

1. λX and ρX are natural in X; i.e. for any s : X → Y ,

s ◦ λX = λY ◦ (id1 ⊗ s),(16)
s ◦ ρX = ρY ◦ (s⊗ id1).(17)

In other words, the following two diagrams commute:
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1⊗X
λX � X

1⊗ Y

id1 ⊗ s

�

λY
� Y

s

�

X ⊗ 1
ρX � X

Y ⊗ 1

s⊗ id1

�

ρY
� Y

s

�

2. λX and ρX make the triangular diagram commute:

X ⊗ (1⊗ Y )
α � (X ⊗ 1)⊗ Y

X ⊗ Y

ρX ⊗ idY

�

id
X ⊗ λ

Y �

If C is also a ∗-category, there are two further requirements: (a.) the bifunctor ⊗
must be compatible with the operations of + and ∗ (as required in the definition of
bifunctor), and (b.) the monoidal unit 1 must be irreducible, i.e. End(1) = Cid1.
For a C∗-category C we require in addition that ‖s × t‖X⊗Y,X′⊗Y ′ ≤ ‖s‖X,X′ ·
‖t‖Y,Y ′ .

Mac Lane’s coherence theorem shows that we can without danger ignore the
natural isomorphisms α, λ, and ρ. That is, we can treat X⊗(Y ⊗Z) and (X⊗Y )⊗Z
as the same object, and we can treat X, 1 ⊗ X, and X ⊗ 1 as the same object.
To be more precise, we define:

DEFINITION 172. A tensor category C is said to be strict if αX,Y,Z , λX , ρX are
identity morphisms for all X,Y,Z ∈ Obj(C).

For example, the tensor category (Vect,⊗, C) of vector spaces is not strict,
since e.g. V ⊗ C is not literally the same vector space as V . On the other hand,
a commutative monoid M can be thought of as a strict tensor category with one
object and with arrows corresponding to elements of M . The coherence theorem
can then be formulated as follows.

THEOREM 173 (Coherence Theorem). Every tensor category is equivalent to a
strict tensor category.

Proof. See [Mac Lane, 1998]. �

DEFINITION 174. If C is a tensor category, then we let Cst denote its strictifica-
tion.

With these definitions in hand, we proceed now to define a bifunctor on ∆, and
to verify that it satisfies all of the relevant properties. Our product ⊗ of objects
in ∆ will be just the composition of endomorphisms.

PROPOSITION 175. If ρ, σ ∈ Obj(∆) then ρσ ∈ Obj(∆).



792 Hans Halvorson and Michael Müger

Proof. It is clear that if ρ is localized in O1 and σ is localized in O2, then ρσ is
localized in any double cone that contains O1 ∪O2.

To see that ρσ is transportable, let O3 be an arbitrary double cone. Since ρ
and σ are transportable, there are ρ′, σ′ ∈ ∆(O3) and unitaries U ∈ Hom(ρ, ρ′)
and V ∈ Hom(σ, σ′). Then ρ′σ′ is localized in O3 and Uρ(V ) is a unitary in
Hom(ρσ, ρ′σ′). Therefore, ρσ is transportable. �

DEFINITION 176. Define ⊗ : Obj(∆)×Obj(∆) → Obj(∆) by ρ⊗ σ = ρσ.

The product × of arrows is slightly more complicated.

PROPOSITION 177. If S ∈ Hom(ρ, ρ′) and T ∈ Hom(σ, σ′) then Sρ(T ) ∈ Hom(ρ⊗
σ, ρ′ ⊗ σ′).

Proof. Since Sρ(T ) = ρ′(T )S, it follows that for any A ∈ A,

(Sρ(T ))ρσ(A) = Sρ(Tσ(A)) = ρ′(Tσ(A))S = ρ′(σ′(A)T )S
= ρ′σ′(A)(ρ′(T )S) = ρ′σ′(A)(Sρ(T )).

Therefore Sρ(T ) ∈ Hom(ρσ, ρ′σ′). �

DEFINITION 178. Define × : Hom(∆) × Hom(∆) → Hom(∆) by: for S ∈
Hom(ρ, ρ′) and T ∈ Hom(σ, σ′), we set S × T = Sρ(T ) ∈ Hom(ρ⊗ σ, ρ′ ⊗ σ′).

In the remainder of this section, we verify that (∆,⊗, ι) is a tensor ∗-category.

⊗ is a bifunctor on ∆

PROPOSITION 179. For S1, S2, T1, T2 ∈ Obj(∆), if the source of Ti is the target
of Si (so that Ti ◦ Si is defined) then

(T1 × T2) ◦ (S1 × S2) = (T1 ◦ S1)× (T2 ◦ S2).

Proof. Straightforward calculation. �

We must now check that × is compatible with ∗
PROPOSITION 180. For all S, T ∈ Hom(∆),

(S × T )∗ = S∗ × T ∗.

Proof. Straightforward calculation. �

ι is a monoidal unit
For each ρ ∈ Obj(∆), ι⊗ ρ must be naturally isomorphic to ρ⊗ ι and to ρ (as

expressed in the monoidal unit diagrams). But in the present case, ι⊗ρ = ρ⊗ι = ρ,
so this natural isomorphism holds trivially.
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Natural associativity of ⊗
Next, the product operation ⊗ = (⊗,×) must be associative up to natural

isomorphisms, as expressed by the pentagonal diagram. But this is trivial in the
present case, because associativity holds strictly; that is:

PROPOSITION 181. For all ρ1, ρ2, ρ3 ∈ Obj(∆),

ρ1 ⊗ (ρ2 ⊗ ρ3) = (ρ1 ⊗ ρ2)⊗ ρ3,

and for all T1, T2, T3 ∈ Hom(∆),

T1 × (T2 × T3) = (T1 × T2)× T3.

Proof. The first claim follows trivially from the fact that composition of endo-
morphisms is associative. The second claim can be verified by a straightforward
calculation. �

LEMMA 182. (∆,⊗, ι) is a C∗-tensor category with the norms inherited from A.

Proof. We must verify that Hom(ρ, σ) is closed in the norm on A. But this follows
immediately from the fact that

Hom(ρ, σ) = {T ∈ A : Tρ(A) = σ(A)T, ∀A ∈ A}.

It’s clear that ‖s ◦ t‖ ≤ ‖s‖‖t‖. Furthermore,

‖S × T‖ = ‖Sρ(T )‖ ≤ ‖S‖ · ‖ρ(T )‖ ≤ ‖S‖ · ‖T‖.

�

To this point we have shown that (i): ∆ is a C∗-category, and (ii): ∆ is a
tensor ∗-category. The following five Subsections are not linearly ordered. Subec-
tion 8.1 shows how to define the canonical braiding ερ1,ρ2 on (∆,⊗, ι) such that
it is a ‘braided’ tensor ∗-category. Then in Subsection 8.2 we make good our
claims about the motivation for studying the category ∆: we prove that there is
a functoral correspondence between ∆ and the category of representations that
satisfy the DHR selection criterion. We then pick up some technical information
about tensor ∗-categories that is essential for the physical interpretation of the
corresponding representations. In Subsection 8.3 we see how to define a notion of
the ‘dimension’ of an object in a tensor ∗-category, and we define the notion of
‘conjugate’ objects. In Subsection 8.4 we take a detour to talk about the relation
of spacetime symmetries to the DHR representations. Finally, in Subsection 8.5
we give the intrinsic statistical classification of objects of ∆f that corresponds to
the intuitive distinction between Bosons and Fermions, or Bose fields and Fermi
fields.
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8.1 ∆ is a braided tensor ∗-category
In this Subsection we define the canonical braiding on ∆; this gives us a grasp on
what happens if we change the order in products, say ρ⊗ σ versus σ ⊗ ρ. We will
also see that there is a remarkable connection between spacetime dimension and
the properties of this braiding: if the spacetime has three or more dimensions, the
braiding is a symmetry. We first recall the pertinent definitions.

DEFINITION 183. If (C,⊗,1) is a tensor category then a braiding on C is a family
of isomorphisms {

cX,Y ∈ Hom(X ⊗ Y, Y ⊗X) : X,Y ∈ Obj(C)},

satisfying the following two conditions:

1. cX,Y is natural in X and Y ; i.e. for any f ∈ Hom(X,X ′) and g ∈ Hom(Y, Y ′),

(g × f) ◦ cX,Y = cX′,Y ′ ◦ (f × g).(18)

2. cX,Y makes the following two hexagonal diagrams commute:

(X ⊗ Y )⊗ Z
cX⊗Y,Z� Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z)

α−1

�
(Z ⊗X)⊗ Y

α

�

X ⊗ (Z ⊗ Y )

idX ⊗ cY,Z

�

α
� (X ⊗ Z)⊗ Y

cZ,X ⊗ idY

�

X ⊗ (Y ⊗ Z)
cX,Y⊗Z� (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z

α

�
Y ⊗ (Z ⊗X)

α−1

�

(Y ⊗X)⊗ Z

cX,Y ⊗ idZ

�

α−1
� Y ⊗ (X ⊗ Z)

idY ⊗ cZ,X

�
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That is, suppressing the associativity isomorphisms, cX⊗Y,Z is expressed in
terms of cX,Y and cX,Z as:

cX⊗Y,Z = (idY ⊗ cZ,X)−1 ◦ (idX ⊗ cY,Z),

and cX,Y⊗Z is expressed in terms of cX,Y and cZ,X as:

cX,Y⊗Z = (idY ⊗ cZ,X)−1 ◦ (cX,Y ⊗ idZ).

DEFINITION 184. A braiding cX,Y is called a symmetry if (cX,Y )−1 = cY,X for
all X,Y ∈ Obj(C).
DEFINITION 185. A tensor category with a privileged braiding (symmetry) is
called a braided (symmetric) tensor category.

In order to find our braiding on ∆, we will need the following technical lemma.

LEMMA 186. If ρ ∈ ∆(O1) and σ ∈ ∆(O2) where O1 and O2 are spacelike sepa-
rated, then ρσ = σρ.

Proof. Since the union of {A(O) : O1 ∪O2 ⊆ O} is dense in A, it suffices to show
that ρσ(A) = σρ(A) whenever A ∈ A(O) with O1 ∪ O2 ⊆ O. Choose O3, O4 that
are spacelike to O and such that O1∪O3 is spacelike to O2∪O4. (This may always
be done, even in two dimensional spacetime.) Since ρ, σ are transportable, there
are ρ′, σ′ localized in O3 and O4 respectively and unitary operators U1 ∈ Hom(ρ, ρ′)
and U2 ∈ Hom(σ, σ′). Then

σ(A) = U2σ
′(A)U∗

2 = U∗
2 AU2.

Furthermore, U2 ∈ A(O′
1) by duality in the vacuum sector. Hence ρ(U2) = U2,

and
ρσ(A) = U2U1AU∗

1 U∗
2 .

Since U2U1 = U1U2, it follows that ρσ(A) = σρ(A). �

We will not be able to define the braiding ερ1,ρ2 in one shot. Rather, we first
define arrows

ερ1,ρ2(U1, U2) ∈ Hom(ρ1 ⊗ ρ2, ρ2 ⊗ ρ1),

that depend on the choice of “spectator morphisms” ρ̃1, ρ̃2, and unitary inter-
twiners Ui ∈ Hom(ρi, ρ̃i). We will then show that this definition is independent
of the spectator morphisms and unitary intertwiners. (But, interestingly, when
spacetime is two dimensional, the definition depends on the choice of a spatial
orientation.)

DEFINITION 187. Suppose that ρ1 ∈ ∆(O1) and ρ2 ∈ ∆(O2). Let Õ1 and Õ2

be spacelike separated double cones. Since ρ1 and ρ2 are transportable, there are
ρ̃i ∈ ∆(Õi) and unitary operators Ui ∈ Hom(ρi, ρ̃i). Thus U1 × U2 ∈ Hom(ρ1 ⊗
ρ2, ρ̃1 ⊗ ρ̃2), and U∗

2 × U∗
1 ∈ Hom(ρ̃2 ⊗ ρ̃1, ρ2 ⊗ ρ1). Since Õ1 is spacelike to Õ2,



796 Hans Halvorson and Michael Müger

Lemma 186 entails that ρ̃1 ⊗ ρ̃2 = ρ̃2 ⊗ ρ̃1. Thus, we may define ερ1,ρ2(U1, U2) ∈
Hom(ρ1 ⊗ ρ2, ρ2 ⊗ ρ1) by

ερ1,ρ2(U1, U2) := (U2 × U1)∗ ◦ (U1 × U2) = ρ2(U∗
1 )U∗

2 U1ρ1(U2).(19)

NOTE 188. Since endomorphisms preserve unitarity, ερ1,ρ2(U1, U2) is unitary.

To show that ερ1,ρ2(U1, U2) is independent of U1 and U2, we need the following
Lemma, which shows that ερ1,ρ2(U1, U2) does not change under certain “pertur-
bations” of U1 and U2.

LEMMA 189. For i = 1, 2, let ρi ∈ ∆(Oi), let Õ1 and Õ2 be spacelike separated,
let ρ̃i ∈ ∆(Õi), and let Ui ∈ Hom(ρi, ρ̃i). Then ερ1,ρ2(U1, U2) depends only on
neighborhoods of U1, U2 in the following sense: if W1,W2 are unitaries such that
W1 ∈ A(Õ′

2), W2 ∈ A(Õ′
1), and W1W2 = W2W1, then

ερ1,ρ2(W1U1,W2U2) = ερ1,ρ2(U1, U2).

Proof. We must show that

(W2U2 ×W1U1)∗ ◦ (W1U1 ×W2U2) = (U∗
2 × U∗

1 ) ◦ (U1 × U2).(20)

For any two unitary operators, W1,W2 ∈ A, we have

WiUi ×WjUj = WiUiρi(Wj)ρi(Uj) = Wiρ
′
i(Wj)(Ui × Uj).

Since W1 ∈ A(Õ′
2) and ρ̃2 is localized in Õ2, ρ̃2(W1) = W1; and similarly, ρ̃1(W2) =

W2. Hence, the left hand side of Eqn. 20 becomes

[(U2 × U1)∗ρ̃2(W ∗
1 )W ∗

2 ] [W1ρ̃1(W2)(U1 × U2)] = (U2 × U1)∗W ∗
1 W ∗

2 W1W2(U1 × U2)
= (U2 × U1)∗(U1 × U2),

where we used W1W2 = W2W1 for the second equality. �

LEMMA 190. Let ρi ∈ ∆(Oi), i = 1, 2, and let T ∈ Hom(ρ1, ρ2). Then T ∈ A(O)
for any double cone containing O1 ∪O2.

Proof. Let O be a double cone containing O1 ∪ O2, and let A ∈ A(O′). Then
ρ1(A) = ρ2(A) = A, and so

TA = Tρ1(A) = ρ2(A)T = AT.

Hence T ∈ A(O′)′, and by duality in the vacuum sector, T ∈ A(O). �

Now we can show that ερ1,ρ2(U1, U2) depends only on the localization regions
of the spectator morphisms.

PROPOSITION 191. ερ1,ρ2(U1, U2) is definable in terms of ρ1, ρ2, and the regions

Õ1, Õ2; and does not change if the latter are replaced by double cones ˜̃O1,
˜̃O2 such

that Õ1 ⊆ ˜̃O1 and Õ2 ⊆ ˜̃O2.
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Proof. (1.) We show first that for a given pair (Õ1, Õ2) of spacelike separated
double cones, the definition ερ1,ρ2(U1, U2) is independent of spectator morphisms
(ρ̃1, ρ̃2), and unitary intertwiners (U1, U2). So, suppose that ˜̃ρi ∈ ∆(Õi), and
U ′
i ∈ Hom(ρi, ˜̃ρi). Let Wi = U ′

iU
∗
i ∈ Hom(ρ̃i, ˜̃ρi), so that U ′

i = WiUi. Since Wi has
left and right support in Õi, Wi ∈ A(Õi) ⊆ A(Õj)′. Thus, W1W2 = W2W1, and the
hypotheses of Lemma 189 are satisfied. Therefore ερ1,ρ2(U1, U2) = ερ1,ρ2(U

′
1, U

′
2).

(2.) Now let ˜̃O1 and ˜̃O2 be double cones such that ˜̃O1 ⊥ ˜̃O2, and Õi ⊆ ˜̃Oi, for
i = 1, 2. Choose ˜̃ρi ∈ ∆( ˜̃Oi), and unitaries U ′

i ∈ Hom(ρi, ˜̃ρi). But we also have
ρ̃i ∈ ∆(Õi) ⊆ ∆( ˜̃Oi). And the first part of the proof shows that for fixed support
regions ( ˜̃O1,

˜̃O2), the definition of ερ1,ρ2 is independent of the choice of spectator
morphisms and unitary intertwiners. Therefore ερ1,ρ2(U1, U2) = ερ1,ρ2(U

′
1, U

′
2). �

NOTE 192. We can always choose the spectator morphisms to be localized in
strictly spacelike separated regions. Indeed, given Õ1 and Õ2 that are spacelike
separated, choose ˜̃O1 such that ( ˜̃O1)− ⊆ Õ1. But then the Lemma implies (by
switching ˜̃O1 with Õ1, and setting ˜̃O2 = Õ2) that we get the same definition from
using ˜̃O1 or Õ1. More generally, since ρ1 is transportable, the regions Õi can be
chosen arbitrarily small.

NOTE 193. The previous note shows that a definition of ερ1,ρ2(U1, U2) is always
equivalent to a definition using spectator morphisms localized in strictly spacelike
separated regions. That is, there is a neighborhood N of zero such that Õ1+x ⊆ Õ′

2

for all x ∈ N . Again, since Õ1 and Õ1 +x are contained in a double cone ˜̃O1 ⊆ Õ′
2,

the previous Lemma (applied twice) entails that the pairs (Õ1, Õ2) and (Õ1+x, Õ2)
yield the same definition of ερ1,ρ2 .

By also shrinking Õ2 if necessary, and repeating the above construction, we
see that for any vector x, the pairs (Õ1 + x, Õ2 + x) and (Õ1, Õ2) yield the same
definition of ερ1,ρ2 .

NOTE 194. In what follows, by “one dimensional spacetime”, we mean one di-
mensional space with zero dimensional time. In this case, a double cone is just an
open interval, and “spacelike separated” means disjoint.

PROPOSITION 195. For spacetime of dimension two or less, ερ1,ρ2(U1, U2) is
definable in terms of ρ1, ρ2 and the spatial orientation of Õ1 with respect to Õ2.
That is, ερ1,ρ2(U1, U2) is independent of the choice of (Õ1, Õ2), subject to the
constraint of having the same spatial orientation.

Proof. Let Õi,
˜̃Oi be given such that Õ1 ⊥ Õ2,

˜̃O1 ⊥ ˜̃O2, and Õ1 is oriented with
respect to Õ2 as ˜̃O1 is with respect to ˜̃O2. Recall that translations of (Õ1, Õ2) do
not change ερ1,ρ2(U1, U2); nor does replacement of Õi with a double cone either
containing it or contained in it, and spacelike to Õj . But (Õ1, Õ2) can be replaced

by ( ˜̃O1,
˜̃O2) in a series of such moves. �
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DEFINITION 196. For spacetime of two dimensions or less, fix a spatial orienta-
tion, and use O1 < O2 to indicate that O1 is to the left of O2.

LEMMA 197. For spacetimes of dimension two or less, if the spatial orientation
of Õ1 with respect to Õ2 is the opposite of the spatial orientation of ˜̃O1 with respect
to ˜̃O2, then

ερ1,ρ2(U1, U2) = [ερ2,ρ1(U
′
2, U

′
1)]

∗.

Proof. For defining ερ1,ρ2(U1, U2), we can choose Õ1 = O1, Õ2 < O1, ρ̃1 = ρ1,
and U1 = Iρ1 = I ∈ Hom(ρ1, ρ1). In this case, the definition simplifies to

ερ1,ρ2(I, U2) = U∗
2 ρ1(U2), (Õ2 < Õ1).

Using the same spectator morphisms, we have

ερ2,ρ1(U2, I) = ρ1(U∗
2 )U2, (Õ2 < Õ1).

This latter expression uses the opposite spatial orientation. By the definability of
ερ1,ρ2(U1, U2) in terms of spatial orientation (Prop. 195), we see that ερ1,ρ2(U1,
U2) = [ερ2,ρ1(U

′
2, U

′
1)]

∗ when the opposite spatial orientations are used for the two
definitions. �

DEFINITION 198 (The Canonical Braiding on ∆). For spacetimes of
dimension two or less, we implement the convention that ερ1,ρ2 =
ερ1,ρ2(U1, U2) with Õ2 < Õ1. The previous Lemma shows that if we
define ερ1,ρ2 with the opposite convention, then ερ1,ρ2 = (ερ2,ρ1)

∗. For
spacetimes of dimension three or more, we define ερ1,ρ2 = ερ1,ρ2(U1, U2)
with Õ1 and Õ2 spacelike separated.

We now verify that ερ1,ρ2 is a braiding on (∆,⊗, ι).

PROPOSITION 199. ερ,σ is a braiding on the DHR category (∆,⊗, ι).

Proof. (1) We first show that ερ,σ is natural in ρ and σ. For this it suffices to
show that if T ∈ Hom(ρ, ρ′) then

(Iσ × T ) ◦ ερ,σ = ερ′,σ ◦ (T × Iσ),(21)
εσ,ρ ◦ (Iσ × T ∗) = (T ∗ × Iσ) ◦ εσ,ρ′ .(22)

Let O1, O2, O3 be double cones such that ρ ∈ ∆(O1), σ ∈ ∆(O2), and ρ′ ∈ ∆(O3).
Choose a double cone O4 that is spacelike to Oi, i = 1, 2, 3; and if the spacetime
dimension is less than three, choose O4 to the left of all three. Choose σ′ ∈ ∆(O4),
and U ∈ Hom(σ, σ′). Then ε(ρ, σ) = U∗ρ(U) and ε(ρ′, σ) = U∗ρ′(U). Since
T ∈ Hom(ρ, ρ′) ⊆ A(O′

4), it follows that σ′(T ) = T . Thus,

σ(T )U∗ρ(U) = U∗σ′(T )ρ(U) = U∗Tρ(U) = U∗ρ′(U)T.
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This establishes Eqn. 21. The second equation can be established by a similar
calculation.

(2) Now we show that ερ,σ makes the hexagonal diagrams commute. Since ∆
is strict monoidal, we can omit the associativity isomorphisms. That is, it suffices
to show that

ερ⊗σ,τ =
(
ερ,τ × Iσ

) ◦ (Iρ × εσ,τ
)
,(23)

ερ,σ⊗τ =
(
Iσ × ερ,τ

) ◦ (ερ,σ × Iτ
)
.(24)

Choose τ ′ ∈ ∆ such τ ′ is supported in a region that is spacelike to the support
regions of ρ, σ, τ ; for spacetimes of one or two dimensions, choose the support
region of τ ′ to the left. Let U ∈ Hom(τ, τ ′). Then ερ,τ = U∗ρ(U), εσ,τ = U∗σ(U),
and ερ⊗σ,τ = U∗ρσ(U). Furthermore,

U∗ρ(U)ρ[U∗σ(U)] = U∗ρ[UU∗σ(U)] = U∗ρσ(U),

establishing Eqn. 23. The second equation is proven analogously. �

PROPOSITION 200. For spacetimes of dimension two or less, ερ1,ρ2 is the unique
braiding on (∆,⊗, ι) such that ερ1,ρ2 = I when ρi ∈ ∆(Oi) with O2 < O1. For
spacetimes of dimension three or more, ερ1,ρ2 is the unique braiding on (∆,⊗, ι)
such that ερ1,ρ2 = I when ρi ∈ ∆(Oi) with O1 and O2 spacelike separated.

Proof. Choosing Õ2 to the left of O1 we can set ερ1,ρ2 = ερ1,ρ2(I, U2) = U∗
2 ρ1(U2)

where U2 ∈ Hom(ρ2, ρ
′
2). Now let cσ1,σ2 be another braiding on (∆,⊗, ι) such

that cσ1,σ2 = I whenever σ1 is localized in a region to the right of the localization
region of σ2. Then since cρ1,ρ2 is natural in ρ1 and ρ2 and cρ1,ρ′2 = I,

cρ1,ρ2 = (U∗
2 × Iρ1) ◦ cρ1,ρ′2 ◦ (Iρ1 × U2) = U∗

2 ρ1(U2) = ερ1,ρ2 .

The proof for the higher dimensional case is structurally identical. �

PROPOSITION 201. For spacetime of dimension three or more, ερ1,ρ2 = (ερ2,ρ1)
−1,

hence ερ1,ρ2 is a symmetry on (∆,⊗, ι).

Proof. We first show that ερ1,ρ2(U1, U2) is independent of the choice (Õ1, Õ2) of
supports for the spectator morphisms. (Compare the proof of Prop. 195.) Since
the spacetime has at least three dimensions, there is a sequence of double cones
Oi, i = 1, . . . , n, such that: O1 = Õ2, for each i, Oi∪Oi+1 is contained in a double
cone spacelike to Õ1, and On has the opposite spatial orientation to Õ1 as did Õ2.
Applying Prop. 191 repeatedly, we conclude that ερ1,ρ2(U1, U2) = ερ1,ρ2(U1, U

′
2),

where ˜̃ρ2 ∈ ∆(On) and U ′
2 ∈ Hom(ρ2, ˜̃ρ2). Thus, ερ1,ρ2 does not depend on the

relative spatial orientation of Õ1 and Õ2. Prop. 195 shows that ερ1,ρ2(U1, U2)
can depend on (Õ1, Õ2) only through their relative spatial orientation. Therefore,
ερ1,ρ2(U1, U2) is independent of (Õ1, Õ2).
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We can choose Õ1 = O1, Õ2 ⊥ O1, ρ̃1 = ρ1, and U1 = Iρ1 = I ∈ Hom(ρ1, ρ1) so
that

ερ1,ρ2 = U∗ρ1(U2).

But given the independence of ερ1,ρ2 from the orientation of (Õ1, Õ2), we also have

ερ2,ρ1 = ρ1(U2)∗U2 = (ερ1,ρ2)
∗.

Since ερ1,ρ2 is unitary, ερ1,ρ2 = (ερ2,ρ1)
−1. �

NOTE 202. The preceding Proposition is the first place where we invoked the
dimension of the underlying spacetime. We will be clear when subsequent results
depend on assumptions about dimension.

DEFINITION 203. Let ερ := ε(ρ, ρ) ∈ End(ρ⊗ ρ).

8.2 Relation between localized endomorphisms and representations

While the categories ∆ and ∆f defined in this section have very remarkable prop-
erties, their physical and philosophical relevance is certainly not obvious. We
therefore relate the category ∆ to a certain category of representations of the net
A:

DEFINITION 204. Let O �→ A(O) be a net of observables and π0 : A → B(H0)
a vacuum representation. Then a DHR-representation (w.r.t. the vacuum repre-
sentation π0) is a ∗-representation π : A → B(H) such that π|A(O′) ∼= π0|A(O′)
for any double cone O. I.e., upon restriction to A(O′), the representations π and
π0 are unitarily equivalent. The category whose objects are DHR-representations
of A with bounded intertwining operators is denoted by DHR(A). It clearly is a
C∗-category.

DEFINITION 205. Let A be a net that is Poincaré covariant w.r.t. the positive
energy representation U0 : P → U(H0). A representation (H,π) of A is called
covariant (with positive energy) if it is equipped with a strongly continuous unitary
representation Uπ : P̂ → U(H) (with specPµ ⊂ V+) of the universal covering of
the Poincaré group such that AdUπ(h) ◦π = π ◦αh for all h ∈ P̂, where, omitting
the covering map P̂ → P from the notation, αh = Ad U0(h).

Note that the definition implies that the representation space H of a DHR
representation must have the same dimension as the vacuum Hilbert space H0.

PROPOSITION 206. There is a functor F : ∆ → DHR(A) of C∗-categories such
that F (ρ) = π0 ◦ ρ for the objects and F (s) = π0(s) for s ∈ Hom∆(ρ, σ) for
morphisms. This functor is an equivalence.

Proof. We first note that these definitions make sense: ρ ∈ Obj(∆) maps A into
itself and can therefore be composed with the representation π0, defining a new
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representation. Furthermore, if S is an arrow in ∆, then Lemma 155 gives S ∈ A,
thus F (S) = π0(S) makes sense. With S ∈ Hom∆(ρ, ρ′) we have

F (S)F (ρ)(A) = π0(S)π0(ρ(A)) = π0(Sρ(A)) =
π0(ρ′(A)S) = F (ρ′)(A)F (S) ∀A ∈ A,

thus F (S) ∈ Hom(F (ρ), F (ρ′)). Since idρ is the unit of A we have F (idρ) = IH0 =
idF (ρ). The property F (S ◦ T ) = F (S) ◦ F (T ) is obvious. Since π0 is faithful,
F is faithful. We must show that the representation F (ρ) = π0 ◦ ρ satisfies the
DHR criterion. Since ρ ∈ ∆ is transportable, for every double cone O there
exist ρO ∈ ∆ localized in O and a unitary UO : ρ → ρO. Since ρO is localized
in O, the representation F (ρO) = π0 ◦ ρO coincides with π0 on A(O′). Since
F (UO) : F (ρ)→ F (ρO) is unitary, we have

F (ρ)|A(O′) ∼= F (ρ′)|A(O′) = π0|A(O′),

implying F (ρ) = π0 ◦ ρ ∈ DHR(A). Now let ρ, ρ′ ∈ Obj(∆) and S̃ ∈ Hom(F (ρ),
F (ρ′)). If O is a double cone containing the localization regions of ρ, ρ′,

S̃π0(A) = S̃π0(ρ(A)) = S̃F (ρ)(A) = F (ρ′)(A)S = π0(ρ′(A))S̃ = π0(A)S̃

for all A ∈ A(O′). Therefore, by Haag duality for π0, S̃ ∈ π0(A(O′))′ = π0(A(O)).
Thus there exists S ∈ Hom∆(ρ, ρ′) such that S̃ = F (S). This proves that the
functor F is full. Finally, let π ∈ DHR(A) be a DHR representation on a Hilbert
space H. Choose any double cone O. Then the DHR criterion implies the existence
of a unitary U : H → H0 such that Uπ(A) = π0(A)U for all A ∈ A(O′). Define a
new representation π′ of A on the vacuum Hilbert space H0 by π′(·) = Uπ(·)U∗.
By the very definition, we have π′(A) = π0(A) for all A ∈ A(O′). If now Ô is any
double cone containing O, and A ∈ A(Ô′) and B ∈ A(Ô) then

π′(B)π0(A) = π′(BA) = π′(AB) = π′(A)π′(B) = π0(A)π′(B),

implying π′(A(Ô)) ⊂ π0(A(Ô′))′ = π0(A(O)) by Haag duality for π0. Thus π′

maps the quasilocal algebra A into π0(A). Since π0 is injective, we can define an
endomorphism ρ of A by ρ = π−1

0 ◦ π′. By construction, ρ is localized in O, and
we have π′ = π0 ◦ ρ = F (ρ). Repeating the argument with a different double cone
Õ, we see that ρ is transportable, thus ρ ∈ ∆. Since π ∼= π′ = F (ρ), we have
proven that every DHR representation is unitarily equivalent to one of the form
F (ρ) where ρ ∈ ∆. Thus the functor F is essentially surjective, and therefore, cf.
Appendix A an equivalence of categories. �

NOTE 207. The significance of Proposition 206 is twofold. On the one hand, it
provides an interpretation of the category ∆ in terms of a class of representations of
A. If one accepts for a moment that the category DHR(A) is worth studying, the
above equivalence is a powerful tool. Namely, it permits us to pull the symmetric
monoidal structure on ∆ over to DHR(A) – which as defined initially is just a
category – such as to make the functor F : ∆ → DHR(A) an equivalence of
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symmetric tensor C∗-categories. But once this is understood, it is much more
convenient to work just with the category ∆ rather than with DHR(A), since the
tensor structure on DHR(A) will not be strict.

As to the physical motivation of the DHR condition, we give three arguments:

1. By an increasing sequence of double cones we mean a sequence O1 ⊂ O2 ⊂
· · · of double cones such that ∪iOi = R

d (typically d = 4). In the appendix of
[Doplicher et al., 1971], the following result (the converse of which is trivial)
is proven:

THEOREM 208. Let ω be a state on A such that

lim
n→∞ ‖(ω − ω0)|A(O′

n)‖ = 0

and the GNS-representation πω associated with ω satisfies property B. Then
there is a double cone O such that πω|A(O′) ∼= π0|A(O′).

2. In Section 9 we will show that the DHR criterion is satisfied by superselec-
tion sectors that are connected to the vacuum sector by a field net satisfying
Bose-Fermi commutation relations. (See Section 9 for precise definitions
and statements.) Conversely, in Section 10 we will prove that every DHR
representation with finite dimension arises in this way. Together these re-
sults imply that DHR superselection sectors are precisely those induced by
(graded) local fields. We refer to Sections 9-10 for further discussion.

3. Let (H,π) be a Poincaré covariant representation (in the sense of Definition
205) of A such that H is separable and the spectrum sp Pµ ⊂ R

d of the mo-
mentum operator Pµ has an isolated mass shell {p | p2 = m2} at its bottom,
where m > 0. (Such a representation is called a massive one-particle repre-
sentation.) Then, as proven in [Buchholz and Fredenhagen, 1982], for every
‘spacelike cone’ C one has a unitary equivalence π|A(C′) ∼= π0|A(C′). (For
the definition of spacelike cones cf. [Buchholz and Fredenhagen, 1982].) De-
spite the fact that this localization property is weaker than the one imposed
by the DHR criterion, the category of representations that are localized in
spacelike cones still can be equipped with a braided monoidal structure, cf.
[Buchholz and Fredenhagen, 1982]. (The purely representation theoretic part
of this theory was considerably simplified in [Doplicher and Roberts, 1990,
Section 4].) In this theory, the dimension of spacetime must be ≥ 3 + 1 in
order for the braiding to be a symmetry! On the technical side the math-
ematical treatment is more complicated for the following reason: If π is
a representation such that π|A(C′) = π0|A(C′), then Haag duality implies
π(A(C)) ⊂ π(A(C))′′, but due to the weak closure the right hand side is not
contained in the algebra A. The construction of a field net that we discuss in
Section 10 can nevertheless be generalized to charges localized in spacelike
cones, cf. [Doplicher and Roberts, 1990, Section 5]. On the grounds of the
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cited results it seems evident that the cone-localized superselection sectors
are physically better motivated than the more restrictive DHR sectors. The
D(H)R theory expounded in Sections 7-10 remains useful as a technically
easier ‘mathematical laboratory’.

8.3 Dimension theory in tensor ∗-categories
For any tensor ∗-category, we can define a notion of “conjugates.” The following
is a simplified version of this definition for the case of a strict tensor ∗-category.

DEFINITION 209. Let C be a strict tensor ∗-category and X ∈ Obj(C). A solution
of the conjugate equations is a triple (X, r, r), where X ∈ Obj(C) and r : 1 →
X ⊗X, r : 1→ X ⊗X satisfy

(r∗ ⊗ idX) ◦ (idX ⊗ r) = idX ,

(r∗ ⊗ idX) ◦ (idX ⊗ r) = idX .

A strict tensor ∗-category C has conjugates if there is a solution of the conjugate
equations for every X ∈ C.
EXAMPLE 210. The definition of conjugates is exemplified in the (strictification
of the) category RepfG of finite dimensional representations of a compact group.
In particular, it is well known that for each representation (H,π) of G, there is a
conjugate representation (H,π) of G. (There are several different constructions of
this conjugate representation; see e.g. [Simon, 1996, p. 30].) In terms of universal
properties, (H,π) is the unique irreducible representation of G such that (H ⊗
H,π ⊗ π) contains a copy of the trivial representation of G.

NOTE 211. Suppose that (X, r, r) is a conjugate for X, and that the tensor unit 1
is irreducible. Then r∗ ◦ r ∈ End(1) = Cid1. Thus up to a scalar, r is an isometry,
and therefore 1 is a direct summand of X ⊗ X. Furthermore, as can be shown
using the conjugate equations, the map End(X) → Hom(1,X ⊗ X), defined by
s �→ (idX⊗s)◦r, is an isomorphism of vector spaces. Therefore, if X is irreducible,
the direct summand 1 appears with multiplicity 1 in X ⊗X.

DEFINITION 212. Let C be a tensor ∗-category and X ∈ Obj(C). A solution
(X, r, r) of the conjugate equations relative to X is called normalized if

r∗ ◦ r = r∗ ◦ r,

and standard if

r∗ ◦ (idX ⊗ a) ◦ r = r∗ ◦ (a⊗ idX) ◦ r,

for all a ∈ End(X).

NOTE 213. If X,Y have (standard) conjugates, then X ⊗ Y and X ⊕ Y also
have (standard) conjugates. If an object has a conjugate, then it has a standard
conjugate. For more details, see the appendix.
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DEFINITION 214. If an object X ∈ Obj(C) has a standard conjugate (X, r, r),
we define its dimension d(X) by

d(X)id1 = r∗ ◦ r.

If an object X does not have a conjugate, we formally say d(X) = +∞.

NOTE 215. For all X ∈ Obj(C), d(X) ≥ 0. Furthermore, if X,Y ∈ Obj(C) have
conjugates then

d(X) = d(X), d(X ⊗ Y ) = d(X) · d(Y ), d(X ⊕ Y ) = d(X) + d(Y ),

and d(1) = 1. (See the appendix for the discussion of these facts.)

DEFINITION 216. Let ∆ be the DHR category. We define the full subcategory
∆f of objects with finite dimension:

Obj(∆f ) = {ρ ∈ Obj(∆) : d(ρ) < +∞}.

NOTE 217. By definition, ∆f is a category with conjugates. It is closed under
tensor products, direct sums and subobjects. In any C∗-tensor category with
conjugates, the dimension of any object takes values in [1,∞), and in the interval
[1, 2] only values of the form 2 cos(π/n), n ≥ 3 can appear, cf. [Longo and Roberts,
1997]. In a symmetric C∗-tensor category, all dimensions are integers, as is proven
in the Appendix.

PROPOSITION 218. For each X,Y ∈ Obj(∆f ), Hom(X,Y ) is a finite dimen-
sional vector space. Every object X ∈ Obj(∆f ) is a finite direct sum of irreducible
objects; i.e. the category ∆f is semisimple.

Proof. See the appendix. �

NOTE 219. There is an important connection, discovered by Longo [1989] and
explored further in [Longo and Roberts, 1997], between the dimension of a DHR
sector ρ ∈ ∆ and subfactor theory. Among many other things, the latter associates
to any inclusion N ⊂M of factors an index [M : N ] ∈ [1,∞]. In order to apply this
theory to AQFT we need to assume (or prove) that the local von Neumann algebras
A(O) are factors. (This is automatic, e.g., in conformally covariant theories.) If
ρ ∈ ∆ is localized in O, it restricts to a normal ∗-homomorphism of A(O) into
itself, giving rise to an inclusion ρ(A(O)) ⊂ A(O). The index of this subfactor is
related to the categorically defined dimension d(ρ) by

[A(O) : ρ(A(O))] = d(ρ)2.(25)

Longo’s result allows to give a very direct formula for the dimension of (the
localized endomorphisms associated to) a DHR representation. Namely, all en-
domorphisms ρ ∈ ∆ for which π ∼= π0 ◦ ρ have the same categorical dimension,
justifying to write d(π), and for any double cone O we have

d(π) = [π(A(O′))′ : π(A(O))]1/2.
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This is seen as follows: π is unitarily equivalent to a representation π′ = π0 ◦ ρ,
where ρ ∈ ∆ is localized in O. Then the inclusion π(A(O)) ⊂ π(A(O′))′ is unitarily
equivalent to π′(A(O)) ⊂ π(A(O′))′, which equals π0(ρ(A(O))) ⊂ π0(A(O)). Now
the claim follows by Eqn. (25) and the fact that the index is invariant under unitary
transformations: [UMU∗ : UNU∗] = [M : N ].

Another comment seems in order: The categorical definition of dimension of an
object requires the existence of a conjugate object. On the other hand, assuming
factoriality of the local algebras, the expressions [A(O) : ρ(A(O))] (for an endo-
morphism localized in O) and [π(A(O′))′ : π(A(O))] (whose independence of O
follows from mild additional axioms) do not presuppose the existence of a conju-
gate. In fact, one can show that finiteness of these subfactor indices implies the
existence of a conjugate DHR representation, cf. [Guido and Longo, 1992].

8.4 Covariant representations

Since we decided to work with the category ∆ of localized transportable endomor-
phisms rather than directly with DHR representations, we need the following

DEFINITION 220. Let A be a Poincaré covariant net with covariant vacuum
representation (H0, π0). An endomorphism ρ ∈ ∆(A) is called covariant if there
exists a strongly continuous positive energy representation πρ : P̂ → U(H0) such
that

AdUρ(h) ◦ π0 ◦ ρ = π0 ◦ ρ ◦ βh ∀h ∈ P̂.(26)

The full subcategory of ∆(A) consisting of the covariant morphisms is denoted by
∆c(A).

NOTE 221. For ρ ∈ ∆, h ∈ P we define ρh = βh ◦ ρ ◦ β−1
h . If ρ is localized in

the double cone O then ρh is localized in hO. If ρ ∈ ∆c then Eqn. (26) can be
restated as

Ad(U(h)Uρ(h)∗) ◦ π0 ◦ ρ = π0 ◦ βh ◦ ρ ◦ β−1
h = π0 ◦ ρh ∀h ∈ P̂.

Since ρ and ρh are both localized, it follows that Xρ(h) ≡ U(h)Uρ(h)∗ ∈ Hom(ρ, ρh),
thus Xρ(h) ∈ A. This A-valued cocycle is very convenient since expressions like
ρ(U(h)) don’t make sense, whereas ρ(Xσ(h)) does. It satisfies the following cocycle
equation:

Xρ(gh) = U(gh)Uρ(gh)∗ = U(g)U(h)Uρ(h)∗Uρ(g)∗

= βg(U(h)Uρ(h)∗)U(g)Uρ(g)∗ = βg(Xρ(h))Xρ(g).

The same computation implies that, if ρ ∈ ∆ and h �→ Xρ(h) ∈ A satisfies
Xρ(gh) = βg(Xρ(h))Xρ(g) for all g, h ∈ P, then Uρ(h) := Xρ(h)∗U(h) is a repre-
sentation of P and Eqn. 26 holds, i.e. ρ ∈ ∆c.

PROPOSITION 222. ∆c is closed under tensor products, direct sums and subob-
jects.
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Proof. Let ρ, ρ′ ∈ ∆c with associated cocycles Xρ,Xρ′ . Then

Xρρ′(h) = Xρ(h)⊗Xρ′(h) = Xρ(h)ρ(Xρ′(h)) ∈ Hom(ρ⊗ ρ′, ρh ⊗ ρ′h)(27)

clearly satisfies the cocycle equation, thus ρρ′ is covariant. The proof for direct
sums and subobjects is omitted, cf. [Roberts, 1990]. �

If T ∈ Hom(ρ, ρ′) then

βh(T )ρh(A) = βh(Tρβ−1
h (A)) = βh(ρ′β−1

h (A)T ) = ρ′h(A)βh(T ),

thus βh(T ) ∈ Hom(ρh, ρ′h).
Now we explore some consequences of finite dimensionality:

PROPOSITION 223. Let ρ, ρ′ ∈ ∆fc := ∆f ∩∆c. Then

(i) If T ∈ Hom(ρ, ρ′) then TUρ(h) = Uρ′(h)T for all h ∈ P̂.

(ii) Every ρ ∈ ∆fc is covariant w.r.t. a unique representation Uρ.

(iii) If ρ, ρ′ ∈ ∆fc and T ∈ Hom(ρ, ρ′) then

βh(T )Xρ(h) = Xρ′(h)T ∀h ∈ P̂.(28)

(iv) ∆fc is closed under conjugates.

Proof. (i) For h ∈ P̂ define Th = Uρ′(h)TUρ(h)∗. For any A ∈ A we have

Thρ(A) = Uρ′(h)TUρ(h)∗ρ(A) = Uρ′(h)Tρ(β−1
h (A))Uρ(h)∗

= Uρ′(h)ρ′(β−1
h (A))TUρ(h)∗ = ρ′(A)Uρ′(h)TUρ(h)∗ = Thρ

′(A),

thus Th ∈ Hom(ρ, ρ′). By assumption, ρ, ρ′ have conjugates and thus Hom(ρ, ρ′)
is finite dimensional by Proposition 218. Thus (h, T ) �→ Th is a finite dimensional
representation of the Poincaré group P. The claim TUρ(h) = Uρ′(h)T is equivalent
to triviality of this representation. This triviality follows from the non-existence of
finite dimensional unitary representations of P̂ as soon as one produces a positive
definite P̂-invariant inner product on Hom(ρ, ρ′). For this last step we refer, e.g.,
to [Roberts, 1990].

(ii) Apply (i) to ρ′ = ρ, Uρ′(h) = Ũρ(h), T = idρ = 1H0 to conclude Uρ = Ũρ.
(iii) Using (i) we compute

βh(T )Xρ(h) = (U(h)TU(h)∗)(U(h)Uρ(h)∗) = U(h)TUρ(h−1)
= U(h)Uρ′(h−1)T = Xρ′(h)T,

(iv) See [Roberts, 1990]. �

NOTE 224. Under weak additional assumptions on the net A, it is shown in
[Guido and Longo, 1992, Theorem 5.2] that every localized endomorphism of finite
dimension is automatically covariant with positive energy! Equivalently, ∆f ⊂ ∆c,
and therefore ∆fc = ∆f .
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8.5 Statistics in braided tensor ∗-categories
DEFINITION 225. Let (C,⊗,1) be a tensor ∗-category with unitary braiding
cX,Y , and suppose that each X ∈ Obj(C) has a conjugate. For each X ∈ Obj(C),
we define the twist of X, ΘX ∈ End(X), by

ΘX = (r∗ ⊗ idX) ◦ (idX ⊗ cX,X) ◦ (r ⊗ idX),

where (X, r, r) is a standard conjugate for X.

NOTE 226. For each X ∈ Obj(C), ΘX is unitary. When X is irreducible, End(X) =
CidX , and so ΘX = ωX idX , where ωX is a complex number of unit modulus (called
the statistics phase). In the case that cX,Y is a symmetry, then (cX,X)∗ = cX,X ,
and so (ΘX)∗ = ΘX . Together with unitarity, this implies that (ΘX)2 = idX .

DEFINITION 227. Let (C,⊗,1) be a tensor ∗-category with unitary symmetry
cX,Y . If X ∈ Obj(C) is irreducible, we say that X is a Bosonic object if ωX = 1,
and we say that X is a Fermionic object if ωX = −1.

NOTE 228. We give a number of justifications for our focus on the category ∆f

of DHR representations with finite dimension.
(i): In the heuristic interpretation of the (unitary equivalence classes) of irre-

ducible DHR representations as corresponding to the types of particles in a QFT,
the conjugate ρ of a DHR representation ρ corresponds to the antiparticle. It
may happen that a particle is its own antiparticle, i.e. ρ ∼= ρ; but the existence of
antiparticles seems to be an integral part of relativistic quantum field theories.

(ii): The DHR sectors admitting a conjugate in the above sense are (rough)
analogues in the operator algebraic approach to AQFT of Wightman fields with
finitely many components. In the Wightman framework [Streater and Wightman,
1964] it is well known that infinite components behave ‘pathologically’ in that
the PCT and spin-statistics theorems do not apply to them, and can in fact be
violated. In algebraic QFT, these results are reflected in the fact that we cannot
even define Bosonic and Fermionic objects that have dimension ∞, in the sense
that they have no conjugates.

(iii): In [Fredenhagen, 1981] it was shown that every massive one-particle rep-
resentation (cf. Note 207(iii)), which by the mentioned result of [Buchholz and
Fredenhagen, 1982] is localizable in space-like cones, has a conjugate in the C∗-
tensor category of cone-localizable representations. It therefore seems natural to
require existence of conjugates also in the more restrictive setting of double cone
localizable representations.

(iv): As pointed out in Note 224, DHR endomorphisms of finite dimension are
automatically covariant, provided one accepts the additional conditions on the net
A needed for this result. Even if one doesn’t wish to appeal to this result, finite
dimensionality of the objects is needed (via finite dimensionality of the hom-sets)
for the proof of Proposition 223. The latter will be crucial for lifting the Poincaré
action from A to the field theory F in Section 10.
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9 FROM FIELDS TO REPRESENTATIONS

In the current section we take the ‘top down’ approach to superselection rules.
That is, we are given a field algebra F and a gauge group G acting concretely on a
Hilbert space H. We then define the observables as the gauge invariant elements
of F. The representation of F on H then gives us a preferred set of representations
of A; viz. those that can be ‘created from the vacuum representation by the action
of local fields.’ Our main mathematical objective in the current section is to
show that these representations satisfy the DHR selection criterion. Thus, all
superselection sectors that arise in the traditional way — viz. by acting on the
vacuum with fields — fall within the purview of DHR superselection theory. (But
note: We are restricting attention to local fields.)

DEFINITION 229. Let ω0 be a state on A, and let (H0, π0) be the cor-
responding GNS representation. A field system with gauge symmetry for
(A, ω0) is a quadruple (π,H,F, (G, k)), where (H, π) is a representation of
A, O �→ F(O) is a net of von Neumann algebras acting irreducibly on H,
G is a strongly compact group of unitary operators on H, k is a central
element of G such that k2 = e, and such that:

α) (H0, π0) is a subrepresentation of (H, π), i.e. there is an isometry
V : H0 → H such that V π0 = πV ;

β) V maps H0 into the subspace of G-invariant vectors of H;

γ) the U ∈ G induce automorphisms that leave each F(O) globally
fixed, and π(A(O))′′ ⊆ F(O) is the set of fixed points under the
action of G on F(O);

δ) for each O ∈ K, V (H0) is cyclic for F(O);

ε) the fields are local relative to the observables, i.e. F(O1) and
π(A(O2)) commute elementwise whenever O1 and O2 are spacelike
separated.

A few remarks on the definition of a field system: the fact that F is generated
by local algebras {F(O) : O ∈ K} means that elements of F represent local fields —
i.e., fields whose excitations can be localized within a bounded spacetime region.
Furthermore:

δ) is the Reeh-Schlieder Condition: it states that each local region O carries
a full set of fields in the sense that these local fields can reach each sector
from the vacuum sector. [But note that Condition (δ) only guarantees that
sectors in H can be reached from the vacuum sector. A stronger notion of
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completeness would rely on some intrinsic criterion for physical sectors of A,
and would require that all these sectors be contained in H; see Definition
246.]

γ) can be interpreted as saying that the group G is an internal symmetry group
of the field: it does not change the spacetime localization region of field
operators.

ε) is the Relative Locality Condition. Since fields need not be observable, the
field algebra is not required to satisfy microcausality. However, in the typical
situation (i.e. normal commutation relations), field operators localized in
one spacetime region either commute or anticommute with field operators
localized in a spacelike separated region. Condition (ε) is a weakening of the
requirement of normal (Bose/Fermi) commutation relations.

Since G is a compact group of unitary operators acting on H, we can apply all
of the apparatus of the theory of unitary representations of compact groups (see
e.g. [Folland, 1995]). In particular, H decomposes into a direct sum of orthogonal
subspaces Hξ which reduce the action of G. Thus the reduced unitary represen-
tation Uξ of G on Hξ is factorial, i.e. the von Neumann algebra generated by the
operators {g|Hξ

: g ∈ G} is a factor. The representation Uξ decomposes into a
direct sum of unitarily equivalent irreducible representations of G. So, there is a
privileged direct sum decomposition of H:

H =
⊕
ξ

Hξ,

where the subspace Hξ is generated by the vectors in H that transform according
to the character ξ (unitary equivalence class of irreducible representations) of G.

In the present section our primary objectives are:

1. Show that the subspaces Hξ reduce the action of the observable algebra A.
So, the representation of A on H decomposes into a direct sum

⊕
ξ πξ of

representations on the subspaces Hξ.
2. Show that each representation (Hξ, πξ) of A is factorial, so that the irre-

ducible subrepresentations of (Hξ, πξ) are mutually equivalent. (Hence each
character ξ of G labels an equivalence class of irreducible representations of
A.)

3. Show that V (H0) is precisely the subspace of G-invariant vectors in H.
(Hence the character 1 of G labels the equivalence class of the vacuum rep-
resentation of A.)

4. Show that each subrepresentation of (H, π) is a DHR representation. In
slogan form, the sectors that can be reached from the vacuum by application
of local fields correspond to DHR representations (i.e. representations that
are equivalent, modulo any local region, to the vacuum representation).
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Regarding objectives (1) and (2), it will suffice to show that π(A)′′ = G′, because
then the von Neumann algebras π(A)′′ and G′′ share the same central projections.

PROPOSITION 230. If (π,H,F, (G, k)) is a field system with gauge symmetry for
(A, ω0) then π(A)′ = G′′.

Our notation will henceforth be simplified if we use g and U(g) ambiguously to
denote elements of the unitary group G on H. That is, we think of g → U(g) as
the identity representation of G on H.

Proof. Define M : B(H)→ G′ by

M(A) =
∫
G

U(g)AU(g)∗ dµ(g),

where µ is the Haar measure on G. Then M is a faithful, normal projection of
norm one from B(H) onto G′. Since M is weakly continuous on the unit ball of
B(H), we have

G′ = M(B(H)) = M(F) = M(F) = π(A).(29)

Thus, G′′ = π(A)′. �

It follows then that the factorial subrepresentations of the representation (H, π)
of A are in one to one correspondence with the factorial subrepresentations of the
action of G on H.

NOTE 231. Since G is compact each irreducible representation of G is finite di-
mensional. Let Ĝ be the set of characters (equivalence class of irreducible repre-
sentations) of G, and for ξ ∈ Ĝ, let d(ξ) be the dimension of the underlying Hilbert
space. Then the previous result gives a nice intuitive picture of the representation
(H, π) of A. For each ξ ∈ Ĝ, select an irreducible subrepresentation (Hρ, πρ) of
the factorial representation (Hξ, πξ). Then we have

π(A) =
⊕
ξ∈Ĝ

d(ξ)πρ(A) =
⊕
ξ∈Ĝ

(πρ(A)⊗ Iρ),

where d(ξ)πρ(A) = πρ(A) ⊕ · · · ⊕ πρ(A), d(ξ) times, and Iρ is the identity on an
d(ξ)-dimensional Hilbert space.

LEMMA 232. Let (π,H,F, (G, k)) be a field system with gauge symmetry for
(A, ω0). Then H0 is separating for F.

Proof. Let F ∈ F. If FH0 = {0} then E (F ∗F )H0 = {0}. Since E (F ∗F ) ∈ π(A)
and π0 is faithful, E (F ∗F ) = 0. Since E is faithful, F = 0. Therefore, H0 is
separating for F. �

To obtain further information about the field system (π,H,F, (G, k)), we iden-
tify “tensors under the action of G” in the field algebra F. To make sense of this
idea, forget momentarily that F has a product operation, and consider it merely
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as a Banach space. The map U �→ AdU is a (strongly) continuous representation
of the compact group G in AutF, which is of course a subset of the invertible
linear operators on F. As in the case of a representation of a compact group on
a Hilbert space H, the representation of G on F decomposes into a direct sum
of disjoint representations. An operator F ∈ F is said to transform according to
a representation ρ of G just in case it is contained in a linear subspace Hρ of F
carrying the corresponding representation of G. In fact, we will show that the
irreducible subspaces in F have a special algebraic property: they have support I.

LEMMA 233. Let (π,H,F, (G, k)) be a field system with gauge symmetry for
(A, ω0), and suppose that A satisfies property B relative to ω0. Then the net
O �→ π(A(O))′′ satisfies property B.

Proof. We first establish that π0|A(O′) is quasiequivalent to π|A(O′) for each double
cone O.

By the Relative Locality Condition (ε), F(O) ⊆ π(A(O′))′. By the Reeh-
Schlieder Condition (δ), H0 is a cyclic subspace for F(O). Thus,

H = [F(O)H0] ⊆ [π(A(O′))′H0].

Let E0 be the orthogonal projection onto H0. The central support of E0 in
π(A(O′))′ is the projection onto [π(A(O′))′E0(H)] [Kadison and Ringrose, 1997,
Prop. 5.5.2]. Thus E0 has central support I in π(A(O′))′, and therefore (π0|A(O′),H0)
and (π|A(O′),H) are quasiequivalent [Kadison and Ringrose, 1997, Thm. 10.3.3].

Let O1 be a double cone whose closure is contained in O, and let E be a
nonzero projection in π(A(O1))′′. Choose a double cone O2 that is spacelike sep-
arated from O. The preceding argument shows that there is a ∗-isomorphism ϕ
from π0(A(O′

2))
′′ to π(A(O′

2))
′′ such that ϕ(π0(A)) = π(A) for all A ∈ A. This

isomorphism ϕ preserves the net structure: ϕ[π0(A(O3))] = π(A(O3)) for any
double cone O3 contained in O′

2. Further, since ϕ is ultraweakly continuous [Kadi-
son and Ringrose, 1997, Cor. 7.1.16], ϕ[π0(A(O3))′′] = π(A(O3))′′. In particular,
ϕ(E) is a projection in π0(A(O1))′′. By property B for π0, there is an isometry
V ∈ π0(A(O))′′ such that V V ∗ = ϕ(E). Thus, W := ϕ−1(V ) ∈ π(A(O))′′ is an
isometry such that WW ∗ = E. Therefore the net O �→ π(A(O))′′ satisfies property
B. �

DEFINITION 234. Consider the ordered n-tuple (F1, . . . , Fn) of elements in F.
We say that this n-tuple transforms under the action of G according to character
ξ just in case:

1. F ∗
i Fj = 0 if i �= j; and

2. αg(Fi) =
∑n
j=1 uξij(g)Fj , where uξij is a set of matrix elements for ξ. That

is, for some representation (H, ρ) of G of class ξ, and orthonormal basis
{e1, . . . , en} for H, uij(g) := 〈ei, ρ(g)ej〉H .
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NOTE 235. If (F1, . . . , Fn) is a tensor in F transforming according to ξ, then
we can always replace the Fi’s with partial isometries Vi with orthogonal ranges.
Indeed, let Vi|Fi| be the polar decomposition of Fi. When i �= j, F ∗

i Fj = 0, and so
F ∗
i and F ∗

j have orthogonal ranges. Recall that if F = V |F |, then V annihilates
the orthogonal complement of r(F ∗) = r(|F |) (see [Kadison and Ringrose, 1997,
Thm. 6.1.2]). Thus Vj |Fi| = δijFj , and(∑

j

uξij(g)Vj
)
|Fi| =

∑
j

uξij(g)Vj |Fj | =
∑
j

uξij(g)Fj = Fi.

By the uniqueness of the polar decomposition,
∑
j uξij(g)Vj = Vi. Hence (V1, . . . , Vn)

is a tensor transforming according to ξ.

DEFINITION 236. Given ϕ,ψ ∈ Hξ, define a map M ξ
ϕ,ψ : F → F by

M ξ
ϕ,ψ(F ) =

∫
G

〈ϕ,U(g)ψ〉αg(F ) dµ(g),

where µ is the Haar measure on G.

FACT 237. Due to the invariance of µ we have αg ◦M ξ
ϕ,ψ(F ) = Mξ

U(g)ϕ,ψ(F ).

LEMMA 238. Let (F1, . . . , Fn) be a tensor in F(O) transforming as a unitary
representation of class ξ. Then Fi(H0) ⊆ Hξ, where Hξ is the subspace of vectors
of H that transform according to ξ.

Sketch of proof. Let ϕ ∈ H0, and let g ∈ G. Then

U(g)[M ξ
ϕ,ψ(F )ϕ] = U(g)Mξ

ϕ,ψ(F )U(g)∗ϕ = M ξ
U(g)ϕ,ψ(F )ϕ.

Then a straightforward calculation using matrix elements for ξ establishes the
result. �

LEMMA 239. Let ξ be a character of G that occurs nontrivially in the decompo-
sition of the action of G on H. Then for each double cone O, there is a tensor
(F1, . . . , Fn) in F(O) that transforms as a unitary representation of class ξ.

Sketch of proof. Let (ψ1, . . . , ψn) be an orthonormal basis from a G-irreducible
subspace of Hξ. Let ϕ be a unit vector in this same subspace. Since H0 is cyclic
for F(O), and F(O) is a von Neumann algebra, there is an F ∈ F(O) and a
vector ϕ0 ∈ H0 such that Fϕ0 = ϕ. Let Fi = Mξ

ψi,ϕ
(F ). One verifies then that

(F1, . . . , Fn) is the required tensor. �

LEMMA 240. Let F1, . . . , Fn ∈ F(O) such that (F1, . . . , Fn) transforms according
to the character ξ. Then if O ⊆ O1, there are X1, . . . , Xn ∈ A(O1) such that
(X1, . . . , Xn) transforms according to ξ and

n∑
i=1

X∗
i Xi = I.
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Proof. First replace F1, . . . , Fn with partial isometries V1, . . . , Vn, then let V =∑n
i=1 Vi. Since the Vi have orthogonal ranges, V is a partial isometry, and V ∗V =∑n
i=1 V ∗

i Vi. A straightforward calculation shows that αg(V ∗V ) = V ∗V for all
g ∈ G. Thus, E = V ∗V is a projection in F(O)∩G′ = π(A(O))′′. By Lemma 233,
O �→ π(A(O))′′ satisfies property B. Thus, there is an isometry W ∈ π(A(O1))′′

with WW ∗ = E. For i = 1, . . . , n, let Xi = ViW . Then the tensor (X1, . . . , Xn)
transforms according to ξ, and

n∑
i=1

X∗
i Xi = W ∗

( n∑
i=1

V ∗
i Vi

)
W = I.

�

LEMMA 241. Let Hξ ⊆ H be the range of a central projection in π(A)′′. Then
for each double cone O, Hξ is cyclic for F(O).

Proof. Let O1 be a double cone such that O1 ⊆ O. By the Reeh-Schlieder
Condition, H0 is cyclic for F(O1). By Lemma 239, there is a tensor (F1, . . . Fn)
in F(O1) that transforms according to the representation (H, ρ) of G. By Lemma
240, there is a tensor (X1, . . . , Xn) in F(O) that transforms that same way, and
such that

∑n
i=1 X∗

i Xi = I. Then

F(O)H0 = F(O)
n∑
i=1

X∗
i XiH0 ⊆ F(O)Hξ ,

where the final inclusion follows by Lemma 238. Therefore Hξ is cyclic for F(O).
�

DEFINITION 242. Let RepFA be the category of subrepresentations of the rep-
resentation (H, π) of A. We mean to take RepFA as a full subcategory of the
category of all representations of A, i.e. the hom-sets between representations in
RepFA are the same as the hom-sets in the larger category.

PROPOSITION 243. Let (π,H,F, (G, k)) be a field system with gauge symmetry
for (A, ω0). Then there is a faithful functor F : RepFA → DHR(A).

Proof. Suppose that (H′, π′) is an object of RepFA. That is, there is an isometry
V : H′ → H such that V π′ = πV . We subsequently identify H′ with its image
in H, and treat π′ as mapping into B(H). We must show that (H′, π′) is in
DHR(A); that is, for any double cone O, (H′, π′|A(O′)) is unitarily equivalent to
(H0, π0|A(O′)).

Let π = π|A(O′). Since Eι, Eξ ∈ π(A)′ ⊆ π(A(O′))′, Eι and Eξ reduce π. We
first establish that Eι and Eξ have the same central support in π(A(O′))−, from
which it follows that Eιπ and Eξπ are quasiequivalent [Kadison and Ringrose,
1997, Thm. 10.3.3].
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By the Relative Locality Condition (ε), F(O) ⊆ π(A(O′))′. By the Reeh-
Schlieder Condition (δ), EιH is a cyclic subspace for F(O). Thus,

H = [F(O)Eι(H)] ⊆ [π(A(O′))′Eι(H)].

Similarly, Lemma 241 entails that EξH is a cyclic subspace for F(O), and so
[π(A(O′))′Eξ(H)] = H. However, the central support of Eι in π(A(O′))′ is the pro-
jection onto [π(A(O′))′E0(H)], and similarly for Eξ [Kadison and Ringrose, 1997,
Prop. 5.5.2]. Thus, Eι and Eξ have central support I in π(A(O′))′. Therefore,
(π0|A(O′),H0) and (πξ|A(O′),Hξ) are quasiequivalent, i.e. there is a ∗-isomorphism
ϕ : π0(A(O′)) → πξ(A(O′)) such that ϕ(π0(A)) = πξ(A) for all A ∈ A(O′).

The previous reasoning also shows (by replacing O with a spacelike separated
double cone) that for each double cone O, (π0|A(O),H0) is quasiequivalent to
(πξ|A(O),Hξ). Thus, in particular, since the net O → π0(A(O))′′ of von Neumann
algebras satisfies property B (by assumption), so does the net O → πξ(A(O))′′.

To establish that (π0|A(O′),H0) and (πξ|A(O′),Hξ) are unitarily equivalent, we
will use the following result ([Kadison and Ringrose, 1997, Theorem 7.2.9]):

Let Rj, j = 1, 2, be von Neumann algebras acting on Hilbert spaces Hj
respectively. Suppose that for j = 1, 2, there is a vector xj ∈ Hj that
is cyclic and separating for Rj. If α : R1 → R2 is a ∗ isomorphism
then there is a unitary operator U from H1 to H2 that implements α.

in conjunction with the fact ([Kadison and Ringrose, 1997, Exercise 9.6.32]):

If R is a von Neumann algebra acting on a separable Hilbert space H,
and if R′ is properly infinite, then there is vector x ∈ H that is cyclic
and separating for R.

By Proposition 71, π0(A(O′))′ and πξ(A(O′))′ are properly infinite. By assump-
tion, H0 is separable. Thus, it will suffice to show that Hξ is separable. Since πξ
is irreducible, each non-zero vector x ∈ Hξ is cyclic for πξ(A). Thus, Hξ is the
closure of the union of πξ(A(On))x for an increasing sequence On of double cones.
Hence it suffices to show that πξ(A(O))x is separable for each O ∈ K. Since H0 is
separable, the unit ball of B(H0) is compact metrizable [Kadison and Ringrose,
1997, Thm. 5.1.3; Exercise 5.7.7]. Since the unit ball of π0(A(O))′′ is a closed sub-
set of the unit ball of B(H0), it is also compact metrizable. But πξ(A(O))′′ is ∗
isomorphic, hence ultraweakly homeomorphic, to π0(A(O))′′. Therefore, the unit
ball of πξ(A(O))′′ is compact metrizable, hence separable, in the weak operator
topology. It follows that πξ(A(O))′′x is separable. �

In Proposition 206 it was shown that there is a faithful, essentially surjective
functor F ′ from the category DHR(A) of DHR representations to the category ∆
of localized transportable morphisms of A. So, the previous Proposition entails
that F ′ ◦ F is a faithful functor from RepFA into ∆. We subsequently replace
F ′ ◦ F with just F .
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Recall that ∆f is the full subcategory of ∆ of objects with conjugates. The
final thing we need to show in this Section is that the image of each object in
RepFA under F is isomorphic to an object in ∆f . That is, we need to show that
the image object has a conjugate.

Sketch of proof. One shows that the subrepresentations of G on H are
closed under taking conjugates. This can be proven by noting a correspondence
between the action of G on H and the action of G on F. Then use the fact that
F is a ∗-algebra. Thus, for each irreducible subrepresentation πρ of π, there is an
irreducible subrepresentation πρ of π. Verify that (F ′ ◦ F )(πρ) is a conjugate for
(F ′ ◦ F )(πρ). �

Therefore, F ′ ◦ F is a faithful functor from RepFA into ∆f . So we have shown:

Each representation of A that arises from its being taken as the gauge
invariant part of a field algebra is a representation of the form π0 ◦ ρ
with ρ ∈ Obj(∆f ).

Thus, the study of ∆f encompasses the study of representations that arise from
the approach that begins with a field algebra.

We said above that in the “normal” situation, field operators in F(O1) with
either commute or anticommute with field operators in F(O2) when O1 and O2 are
spacelike separated. To be more precise, we would expect for a Bose field operator
to commute both with other Bose field operators, as well as with Fermi field
operators; and we would expect for a pair of Fermi field operators to anticommute.
But what are Bose and Fermi field operators? The distinction between the two is
defined in terms of the privileged element k of the gauge group G.

DEFINITION 244. If αk(F ) = F then F is said to be a Bose field operator ; and
if αk(F ) = −F then F is said to be a Fermi field operator.

We define a Bosonic sector in H to be a subspace Hξ such that U(k)|Hξ
= I,

and a Fermionic sector in H to be a subspace Hξ such that U(k)|Hξ
= −I. It then

follows that Bosonic field operators create Bosonic sectors from the vacuum, and
Fermionic field operators create Fermionic sectors from the vacuum.

We can now make sense of the notion of normal commutation relations: Bose
field operators should commute with each other and commute with Fermionic field
operators. Fermionic field operators should anticommute with each other.

DEFINITION 245. A local operator algebra system of fields (π, (G, k),F)
is said to satisfy normal commutation relations just in case the local field
algebras satisfy graded local commutativity: If O1 and O2 are spacelike, and
Fσ ∈ F(O1), F ′

σ ∈ F(O2) are such that αk(Fσ) = σFσ and αk(F ′
σ) = σFσ,

(σ = ±), then

F+F ′
+ = F ′

+F+, F+F ′
− = F ′

−F+, F−F ′
− = −F ′

−F−.
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10 FROM REPRESENTATIONS TO FIELDS

The preceding section derives properties of representations of A, given that these
representations are created from the vacuum representation by the action of local
fields on the vacuum. But such an approach will seem at best heuristic to the
Algebraic Imperialist. From the Imperialist’s point of view, the entire content of
the theory is contained in the abstract net A of observable algebras.

On the one hand, the Imperialist might be an eliminativist about fields and
gauge group. On the other hand, the Imperialist might claim that the fields and
gauge group are physically significant, but only because they can be ‘reconstructed’
from the net of observable algebras. In order to justify this latter stance, the
Imperialist would need to accomplish the following:

Task: Try to reconstruct, in a mathematically rigorous fashion, the
entire apparatus of QFT — fields, gauge groups, etc. — from the net
of observable algebras.

A quixotic task indeed! For one, philosophers seemed to have settled that theory
is always underdetermined by data; and so we should not expect to be able to find
the full theoretical apparatus hidden within the net of observable algebras. But
there is a surprise in store: the Task was undertaken, and was achieved. The DR
Reconstruction Theorem shows in a fully rigorous and precise way that the DHR
category encodes all the information needed to reconstruct, uniquely, the fields
and the gauge group. This section provides the details of the reconstruction.

DEFINITION 246. A field system with gauge symmetry (π,H,F, (G, k))
for (A, ω0) is said to be complete if the representation π of A contains
copies of all representations in the DHR category DHR(A) of A.

DEFINITION 247. Two field systems with gauge symmetry
(π1,H1,F1, G1) and (π2,H2,F2, G2) for (A, ω0) are said to be equivalent
if there exists a unitary operator W : H1 → H2 such that:

Wπ1(A) = π2(A)W, ∀A ∈ A,

WU(G1) = U(G2)W,

WF1(O) = F2(O)W, for each double cone O.
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Doplicher-Roberts Reconstruction Theorem. Let (A, ω0) be a net
of observable algebras satisfying duality and property B relative to a priv-
ileged ‘vacuum’ state ω0. Then there exists a field system with gauge
symmetry (π,H,F, (G, k)) for (A, ω0) that is complete, and that has nor-
mal commutation relations. Any complete, normal field system for (A, ω0)
is equivalent to (π,H,F, (G, k)).

The proof of the reconstruction theorem is contained in [Doplicher and Roberts,
1989] and [Doplicher and Roberts, 1990]. In this article, we give an alternative
proof, based on Deligne’s embedding theorem [Deligne, 1990], and results obtained
by Roberts [Roberts, ND] prior to obtaining the full proof of the reconstruction
theorem.

In outline, the theorem shows first — as was essentially established in [Doplicher
et al., 1971] — that the DHR superselection sectors naturally have the structure
of a braided tensor ∗-category with conjugates — and when the spacetime dimen-
sion is three or greater, we can replace “braided” with “symmetric.” Now, until
the late 1980’s, this first result was merely suggestive: it is known that the cate-
gory RepfG of representations of a compact group G on finite dimensional (super)
Hilbert spaces is a symmetric tensor ∗-category with conjugates. Hence, the cat-
egory of DHR superselection sectors seems to have all the structure of RepfG for
some compact G. By the classical Tannaka-Krein duality theorem, it is possi-
ble to reconstruct G from RepfG. Furthermore, Roberts [Roberts, ND] proved
the conditional claim that if the category of superselection sectors was equivalent
to the category RepfG for some compact G, then the field algebra F could be
reconstructed.

But there is a crucial difference between the category of superselection sectors
and the category RepfG. The category RepfG is “concrete” — it comes with
an embedding into the category of Hilbert spaces, namely the forgetful functor,
and hence its objects can be regarded as structured sets. It is also precisely the
existence of such an embedding that is needed to construct a field algebra, because
one needs the objects in the category to have “internal structure,” as, for example,
an object in the category H of Hilbert spaces is a structured set. Before we state
the embedding theorem, whose proof is given in the Appendix, we need some
preparatory definitions concerning ‘supermathematics’.

10.1 Supermathematics and the embedding theorem

DEFINITION 248. A super vector space, alternatively a Z2-graded vector space, is
a vector space V with a distinguished decomposition V = V+⊕V−. The subspace
V+ is called the even subspace, and V− is called the odd subspace. Elements
of V+ ∪ V− =: Vh are called homogeneous. Define the parity function ω on the



818 Hans Halvorson and Michael Müger

homogeneous elements by setting ω(v) = ±1 if v ∈ V±. A morphism between two
super vector spaces is a linear mapping T : V → W such that T (V±) ⊆ W±. We
let SVect denote the category of super vector spaces. A super Hilbert space is a
super vector space V with a positive definite inner product such that V− ⊥ V+.
We use SH to denote the category of super Hilbert spaces.

We now define operations that make SVect into a symmetric tensor category.
It is straightforward to verify that the set Mor(V,W ) of morphisms between two
super vector spaces is a linear subspace of B(V,W ). Thus, SVect is a linear
category.

If V and W are super vector spaces, then their direct sum is the vector space
V ⊕ W with even subspace V+ ⊕ W+ and odd subspace V− ⊕ W−. We define
the monoidal product in SVect as the vector space V ⊗W whose even and odd
subspaces are defined by

(V ⊗W )σ =
⊕

σ′σ′′=σ

Vσ′ ⊗Wσ′′ ,

where σ = ±. Thus,

(V ⊗W )+ = (V+ ⊗W+)⊕ (V− ⊗W−),
(V ⊗W )− = (V+ ⊗W−)⊕ (V− ⊗W+).

The monoidal unit is C, with even subspace C.

DEFINITION 249. For two super vector spaces V,W , we define the symmetry
isomorphism

cV,W : V ⊗W →W ⊗ V,

by setting

cV,W (v ⊗ w) = (−1)(1−ω(v))(1−ω(w))/4w ⊗ v, ∀v ∈ Vh,∀w ∈Wh.

on homogeneous simple tensors, and then by extending linearly.

PROPOSITION 250. Both (SVect,⊗, C, cV,W ) and (SH,⊗, C, cV,W ) are symmet-
ric tensor ∗-categories.
NOTE 251. By the coherence theorem SH is equivalent to a strict symmetric
tensor ∗-category, which we will also denote by SH.

DEFINITION 252. A supergroup is a pair (G, k) where G is a group and k is a
central element in G such that k · k = e. A morphism between two supergroups
(G1, k1) and (G2, k2) is a group homomorphism ϕ : G1 → G2 such that ϕ(k1) = k2.

DEFINITION 253. A (unitary) representation π of a supergroup (G, k) is a super
Hilbert space V = V+ ⊕ V− together with a (unitary) representation π of G on
V such that π(k)|V± = ±idV± . The representations Rep(G, k) of (G, k) form a
symmetric tensor ∗-category with tensor product and symmetry inherited from
SH, and monoidal unit the trivial representation of (G, k) on C.
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NOTE 254. Let SHf be the full subcategory of finite dimensional super Hilbert
spaces. For a supergroup (G, k) we denote by Repf (G, k) the full subcategory of fi-
nite dimensional representations of (G, k). The categories SHf and Repf (G, k) are
semisimple and have conjugates (see the Appendix for more on this terminology).
Also, there is a canonical forgetful functor K : Repf (G, k) → SHf .

We now move on to the statement of the Embedding Theorem, which will be
required for the reconstruction of the field algebra and gauge group. For more
on supermathematics, we refer the reader to [Varadarajan, 2004; Deligne and
Morgan, 1999]. (But note that DHR superselection theory is not concerned with
supersymmetry in the sense of a symmetry transforming Bosonic and Fermionic
fields into each other. Also, our definition of a supergroup is idiosyncratic.)

The Embedding Theorem. Let SHf be the category of finite-
dimensional super Hilbert spaces over C. Let (C,⊗,1, cX,Y ) be a tensor
C∗-category with unitary symmetry cX,Y , conjugates, direct sums, sub-
objects, and irreducible monoidal unit 1. (Such a category is called an
STC∗ in the Appendix.) Then

1. There is a faithful symmetric tensor ∗-functor E : C → SHf .
2. There is a compact supergroup (G, k), where G is the group of uni-

tary natural monoidal transformations of E, and an equivalence
F : C → Repf (G, k) of symmetric tensor ∗-categories such that
E = F ◦K, where K : Repf (G, k) → SHf is the forgetful functor.

NOTE 255. The embedding theorem is proven in Appendix B. In its proof we
assume the tensor category C to be strict and we will work with the strictification
SH of the category of super Hilbert spaces. In view of the coherence theorem for
symmetric tensor categories the strictness assumptions do not limit the generality
of the result. The tensor functor F : C → SHf that we construct will, however,
not be a strict tensor functor. In the construction of the field net below we do
pretend for notational simplicity that F is strict. We will comment on this issue
again at the end of this section.

10.2 Construction of the field net, algebraic aspects

We now apply the Embedding Theorem to the case of the DHR category ∆f of
localized transportable morphisms with finite dimension. In particular, we show
that given an embedding E : ∆f → SHf , it is possible to construct a local
system of field algebras (π,H,F, (G, k)). This strategy of reconstruction is based
on the unpublished manuscript [Roberts, ND], which assumes the existence of an
embedding (or fiber) functor. The actual existence theorem for the embedding
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functor — which is based on the work of Tannaka and Deligne, but incorporates
more recent simplifications — can be found in the Appendix.

DEFINITION 256. As a set, the field algebra F0 consists of equivalence classes of
triples (A, ρ, ψ), with A ∈ A, ρ ∈ Obj(∆f ), and ψ ∈ E(ρ), modulo the equivalence
relation

(AT, ρ, ψ) = (A, ρ′, E(T )ψ),

for T ∈ Hom(ρ, ρ′). Since E(λidρ) = λidE(ρ) we have (λA, ρ, ψ) = (A, ρ, λψ).
Subsequently, we do not distinguish notationally between a triple (A, ρ, ψ) and its
equivalence class.

PROPOSITION 257. F0 is a complex vector space under the operations:

λ(A, ρ, ψ) := (λA, ρ, ψ), λ ∈ C,(30)

and

(A1, ρ1, ψ1) + (A2, ρ2, ψ2) := (A1W
∗
1 + A2W

∗
2 , ρ, E(W1)ψ1 + E(W2)ψ2),(31)

where ψi ∈ E(ρi) and Wi ∈ Hom(ρi, ρ) are isometries with

W1W
∗
1 + W2W

∗
2 = idρ.(32)

In addition,

(A1, ρ, ψ) + (A2, ρ, ψ) = (A1 + A2, ρ, ψ)
(A, ρ, ψ1) + (A, ρ, ψ2) = (A, ρ, ψ1 + ψ2).

Therefore, identifying A with {(A, ι, 1) : A ∈ A, 1 ∈ C ≡ E(ι)}, A becomes a linear
subspace of F0; and identifying E(ρ) with {(I, ρ, ψ) : ψ ∈ E(ρ)}, E(ρ) becomes a
linear subspace of F0.

Proof. We first verify that the operations are well defined. Scalar multiplication
is well defined since for any T ∈ Hom(ρ, ρ′), (λA, ρ′, E(T )ψ) = ((λA)T, ρ, ψ) =
(λ(AT ), ρ, ψ). To show that addition is well defined, we first establish that Eqn.
(31) is independent of the choice of W1 and W2. If W ′

i ∈ Hom(ρi, ρ′) is another
such choice then(

A1W
′∗
1 + A2W

′∗
2 , ρ′, E(W ′

1)ψ1 + E(W ′
2)ψ2

)
=

(
A1W

∗
1 + A2W

∗
2 (W1W

′∗
1 + W2W

′∗
2 ), ρ′, E(W ′

1)ψ1 + E(W ′
2)ψ2

)
=

(
A1W

∗
1 + A2W

∗
2 , ρ, E(W1W

′∗
1 + W2W

′∗
2 )E(W ′

1)ψ1 + E(W ′
2)ψ2

)
=

(
A1W

∗
1 + A2W

∗
2 , ρ, E(W1)ψ1 + E(W2)ψ2

)
.
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To see that addition is independent of equivalence classes, let Ti ∈ Hom(ρi, ρ′i),
Wi isometries in Hom(ρi, ρ), and W ′

i isometries in Hom(ρ′i, ρ). Then,

(A1T1, ρ1, ψ1) + (A2T2, ρ2, ψ2)

=
(
A1T1W

∗
1 + A2T2W

∗
2 , ρ, E(W1)ψ1 + E(W2)ψ2

)
=

(
(A1W

′
1
∗ + A2W

′
2
∗)(W ′

1T1W
∗
1 + W ′

2T2W
∗
2 ), ρ, E(W1)ψ1 + E(W2)ψ2

)
=

(
A1W

′
1
∗ + A2W

′
2
∗
, ρ, E(W ′

1)E(T1)ψ1 + E(W ′
2)E(T2)ψ2

)
= (A1, ρ

′
1, E(T1)ψ1) + (A2, ρ

′
2, E(T2)ψ2).

To prove additivity in the first argument, choose σ = ρ⊕ ρ, and Wi ∈ Hom(ρ, σ)
the corresponding isometries. Then

(A1, ρ, ψ) + (A2, ρ, ψ) = (A1W
∗
1 + A2W

∗
2 , σ, (E(W1) + E(W2))ψ)

= (A1W
∗
1 + A2W

∗
2 , σ, E(W1 + W2)ψ)

= ((A1W
∗
1 + A2W

∗
2 )(W1 + W2), ρ, ψ)

= (A1 + A2, ρ, ψ).

Finally, to prove additivity in the second argument, choose σ = ρ ⊕ ρ, and Wi ∈
Hom(ρ, σ) the corresponding isometries. Then

(A, ρ, ψ1) + (A, ρ, ψ2) = (AW ∗
1 + AW ∗

2 , σ, E(W1)ψ1 + E(W2)ψ2)
= (A(W ∗

1 + W ∗
2 ), σ, E(W1)ψ1 + E(W2)ψ2)

= (A, ρ,E(W ∗
1 + W ∗

2 )(E(W1)ψ1 + E(W2)ψ2))
= (A, ρ, ψ1 + ψ2).

�
PROPOSITION 258. The complex linear space F0 becomes an algebra if we define

(A1, ρ1, ψ1)(A2, ρ2, ψ2) :=
(
A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2

)
,(33)

where ψi ∈ E(ρi), i = 1, 2. Furthermore, A is a subalgebra of F0, and the equiv-
alence class of (I, ι, 1) is a multiplicative identity, where I is the multiplicative
identity of A, and 1 ∈ E(ι) = C.

Proof. We first verify that Eqn. (33) is well-defined on F0. Let Ti ∈ Hom(ρi, ρ′i).
Recalling that T1 × T2 = ρ′1(T2)T1, we have

(A1T1, ρ1, ψ1)(A2T2, ρ2, ψ2) = (A1T1ρ1(A2T2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)
= (A1ρ

′
1(A2T2)T1, ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1ρ
′
1(A2)ρ′1(T2)T1, ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1ρ
′
1(A2)(T1 × T2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1ρ
′
1(A2), ρ′1 ⊗ ρ′2, E(T1 × T2)(ψ1 ⊗ ψ2))

= (A1ρ
′
1(A2), ρ′1 ⊗ ρ′2, E(T1)ψ1 ⊗ E(T2)ψ2)

= (A1, ρ
′
1, E(T1)ψ1)(A2, ρ

′
2, E(T2)ψ2).
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A straightforward calculation shows that multiplication is associative. For dis-
tributivity, let Wi ∈ Hom(ρi, ρ). Then,[
(A1, ρ1, ψ1) + (A2, ρ2, ψ2)

]
(A3, ρ3, ψ3)

=
(
(A1W

∗
1 + A2W

∗
2 )ρ(A3), ρ⊗ ρ3, (E(W1)ψ1 + E(W2)ψ2)⊗ ψ3

)
=

(
A1ρ1(A3)W ∗

1 + A2ρ2(A3)W ∗
2 , ρ⊗ ρ3, (E(W1)ψ1)⊗ ψ3 + (E(W2)ψ2)⊗ ψ3

)
=

(
A1ρ1(A3)(W ∗

1 × Iρ3) + A2ρ2(A3)(W ∗
2 × Iρ3), ρ⊗ ρ3, (E(W1)ψ1)⊗ ψ3+

+(E(W2)ψ2)⊗ ψ3)
)

= (A1, ρ1, ψ1)(A3, ρ3, ψ3) + (A2, ρ2, ψ2)(A3, ρ3, ψ3).

�

We will need the following basic lemma from linear algebra.

DEFINITION 259. If H,H ′ are Hilbert spaces and S ∈ Hom(H⊗H ′, C), then we
define an antilinear mapping J S : H → H ′ by setting

((J S)x, x′) = S(x⊗ x′), ∀x ∈ H,∀x′ ∈ H ′.

LEMMA 260.

1. J is antilinear: J (λS) = λ(J S), and J (S1 + S2) = J S1 + J S2.

2. If T ∈ Hom(H ′,H) then

T ◦ (J S) = J (S ◦ (IH ⊗ T ∗)),
(J S) ◦ T = J (S ◦ (T ⊗ IH′)).

3. If S′ ∈ Hom(H ′ ⊗H ′′, C) then (J S′) ◦ (J S) = (S ⊗ IH′′) ◦ (IH ⊗ S′∗).

4. Let S1 ∈ End(H1 ⊗H ′
1, C) and S2 ∈ End(H2 ⊗H ′

2, C). Then

(J S2 ⊗ J S1) ◦ ΣH1,H2 = J [S1 ◦ (IH1 ⊗ S2 ⊗ IH′1)].

Proof. Straightforward. A nice exercise in basic linear algebra. �

NOTE 261. We will apply the previous Lemma to super Hilbert spaces. But
we will take ΣH,H′ to be the ordinary symmetry on the category Hf of finite
dimensional Hilbert spaces.

LEMMA 262. Let T ∈ Hom(ρ, ρ′) and pick solutions (ρ,R,R) and (ρ′, R′, R
′
)

of the conjugate equations with respect to ρ and ρ′; that is, R ∈ Hom(ι, ρ ⊗ ρ),
R ∈ Hom(ι, ρ⊗ ρ) such that (R

∗ × Iρ) ◦ (Iρ ×R) = Iρ, (R∗ × Iρ) ◦ (Iρ ×R) = Iρ,
and analogously for R′ and R

′
. Set

T := (Iρ ×R
′∗

) ◦ (Iρ × T × 1ρ′) ◦ (R× Iρ′) = ρ(R
′∗

T )R.
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Then T ∈ Hom(ρ′, ρ) and

(Iρ × T ) ◦R = (T × Iρ′) ◦R′,(34)

(Iρ × T
∗
) ◦R = (T ∗ × Iρ′) ◦R

′
.(35)

Proof. For Eqn. (34), we have

(T × Iρ′) ◦R′ = TR′ = ρ(R
′∗

T )RR′ = ρ(R
′∗

Tρ(R′))R

= ρ(R
′∗

ρ′(R′)T )R,

where we used the definition of × for the first equality, the definition of T for the
second equality, R ∈ Hom(ι, ρ ⊗ ρ) for the third equality, and T ∈ Hom(ρ, ρ′) for
the fourth equality. But by the conjugate equations, R

′∗
ρ′(R′) = (R

′∗ × Iρ′) ◦
(Iρ′ × R′) = Iρ′ = I, and hence (T × Iρ′) ◦ R′ = ρ(T )R = (Iρ × T ) ◦ R. For Eqn.
(35), we have

(Iρ × T
∗
) ◦R = ρ(T

∗
)R = ρ(R∗)ρρ(T ∗R

′
)R = ρ(R∗)RT ∗R

′
,(36)

where we used the definition of T for the second equality, and R ∈ Hom(ι, ρ⊗ρ) for
the third equality. But by the conjugate equations ρ(R∗)R = (Iρ×R∗)◦(R×Iρ) =
Iρ, and hence (Iρ × T

∗
) ◦R = T ∗R

′
= (T ∗ × Iρ′) ◦R

′
. �

PROPOSITION 263. The algebra F0 becomes a ∗-algebra if we define

(A, ρ, ψ)∗ := (R∗ρ(A)∗, ρ,JE(R
∗
)ψ),(37)

where ψ ∈ E(ρ), and (ρ,R,R) is a conjugate to ρ.

Proof. We first show that the definition of ∗ is independent of the choice of con-
jugate to ρ. For this, let (ρ1, R1, R1) be any other choice. Define W ∈ Hom(ρ, ρ1)
by

W := (R∗ × Iρ1) ◦ (Iρ ×R1) = R∗ρ(R1)(38)

we have by the conjugate equations

W−1 := (R∗
1 × Iρ) ◦ (Iρ1 ×R) = R∗

1ρ1(R).

Moreover,

(R∗
1ρ1(A)∗, ρ1,JE(R

∗
1)ψ) = (R∗W−1ρ1(A)∗, ρ1,JE(R

∗
(Iρ ×W ∗))ψ)

= (R∗ρ(A)∗, ρ, E(W−1)JE(R
∗
(Iρ ×W ∗))ψ)

= (R∗ρ(A)∗, ρ,JE(R
∗
)ψ),

where we used Lemma 260.3 for the final equality.
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To see that the definition of ∗ is independent of equivalence classes, suppose
that T ∈ Hom(ρ, ρ′) and ψ ∈ E(ρ). Then

(AT, ρ, ψ)∗ = (R∗ρ(T ∗A∗), ρ,JE(R
∗
)ψ)

= (R′∗T
∗
ρ(A∗), ρ,JE(R

∗
)ψ)

= (R′∗ρ′(A∗)T
∗
, ρ,JE(R

∗
)ψ)

= (R′∗ρ′(A∗), ρ′, E(T
∗
)JE(R

∗
)ψ)

= (R′∗ρ′(A∗), ρ′,JE(R
∗ ◦ (Iρ × T ))ψ)

= (R′∗ρ′(A∗), ρ′,JE(R
′∗ ◦ (T × Iρ′))ψ)

= (R′∗ρ′(A∗), ρ′,JE(R
′∗

)E(T )ψ)
= (A, ρ′, E(T )ψ)∗,

where we used Eqn. (34) for the second equality, the fact that T
∗ ∈ Hom(ρ, ρ′) for

the third equality, Lemma 260.2 for the fifth equality, and Eqn. (35) for the sixth
equality.

We verify that ∗ is involutive:

(A, ρ, ψ)∗∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)ψ)∗

= (R
∗
ρ(ρ(A)R), ρ,JE(R∗)JE(R

∗
)ψ)

= (AR
∗
ρ(R), ρ,JE(R∗)JE(R

∗
)ψ)

= (A, ρ,E((R∗ × Iρ)(Iρ ×R))ψ)
= (A, ρ, ψ),

where we used Lemma 260.3 for the penultimate equality, and the conjugate equa-
tions for the final equality.

To verify that ∗ is antilinear, let Wi ∈ Hom(ρi, ρ). Then,[
(A1, ρ1, ψ1) + (A2, ρ2, ψ2)

]∗ =
(
A1W

∗
1 + A2W

∗
2 , ρ, E(W1)ψ1 + E(W2)ψ2

)∗
= (R∗ρ(W1A

∗
1 + W2A

∗
2), ρ,JE(R

∗
)(E(W1)ψ1 + E(W2)ψ2)).(39)

But we may take R = (W 1 ×W1) ◦R1 + (W 2 ×W2) ◦R2, R = (W1 ×W 1) ◦R1 +
(W2 ×W 2) ◦ R2, where W i ∈ Hom(ρi, ρ) are isometries, W 1W

∗
1 + W 2W

∗
2 = Iρ.

Then Eqn. (39) becomes

[(A1, ρ1, ψ1) + (A2, ρ2, ψ2)]
∗

= (R∗
1ρ1(A∗

1)W
∗
1 + R∗

2ρ2(A∗
2)W

∗
2, ρ,JE(R

∗
1(Iρ1 ×W

∗
1))ψ1+

JE(R
∗
2(Iρ2 ×W

∗
2))ψ2)

= (R∗
1ρ1(A∗

1)W
∗
1 + R∗

2ρ2(A∗
2)W

∗
2, ρ, E(W 1)JE(R

∗
1)ψ1 + E(W 2)JE(R

∗
2)ψ2)

= (A1, ρ1, ψ1)∗ + (A2, ρ2, ψ2)∗,

using Lemma 260 for the second equality.



Algebraic Quantum Field Theory 825

Finally, we show that [(A1, ρ1, ψ1)(A2, ρ2, ψ2)]∗ = (A2, ρ2, ψ2)∗(A1, ρ2, ψ1)∗. If
ρ = ρ1 ⊗ ρ2 and ρ′ = ρ′1 ⊗ ρ′2 then we may take R = (Iρ2 × R1 × Iρ2) ◦ R2 and
R = (Iρ1 ×R2 × Iρ1) ◦R1. Thus,

[(A1, ρ1, ψ1)(A2, ρ2, ψ2)]
∗ = (A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)∗

= (R∗
2ρ2(R∗

1)ρ2ρ1(ρ1(A∗
2)A

∗
1), ρ2 ⊗ ρ1,JE(R

∗
1 ◦ (Iρ1 ×R

∗
2 × Iρ1))ψ1 ⊗ ψ2)

= (R∗
2ρ2(A∗

2)ρ2(R∗
1ρ1(A∗

1)), ρ2 ⊗ ρ1,JE(R
∗
1 ◦ (Iρ1 ×R

∗
2 × Iρ1))ψ1 ⊗ ψ2)

= (R∗
2ρ2(A∗

2)ρ2(R∗
1ρ1(A∗

1)), ρ2 ⊗ ρ1,JE(R
∗
2)ψ2 ⊗ JE(R

∗
1)ψ1)

= (R∗
2ρ2(A∗

2), ρ2,JE(R
∗
2)ψ2)(R∗

1ρ1(A∗
1), ρ1,JE(R

∗
1)ψ1)

= (A2, ρ2, ψ2)∗(A1, ρ1, ψ1)∗,

where the third equality follows from the fact that R∗
1 ∈ Hom(ρ1 ⊗ ρ1, ι), and the

fourth equality follows by Lemma 260.4. �

PROPOSITION 264. Let E : ∆f → SHf be the embedding functor from the DHR
category ∆f into the strictified category SHf of finite dimensional super Hilbert
spaces. Then the formula

αg(A, ρ, ψ) = (A, ρ, gρψ), A ∈ A, ψ ∈ E(ρ).(40)

defines a group isomorphism g �→ αg from the intrinsic group G of E into AutAF0,
the group of ∗-automorphisms of F0 leaving A pointwise fixed.

Proof. Since g is a natural monoidal transformation, gι = idE(ι) = idC. For any
g ∈ G, αg is well defined on F0 since for S ∈ Hom(ρ, ρ′),

αg(AS, ρ, ψ) = (AS, ρ, gρψ) = (A, ρ′, E(S)gρψ)
= (A, ρ′, g(ρ′)E(S)ψ) = αg(A, ρ′, E(S)ψ).

Since gι = idC, αg leaves A ⊂ F0 pointwise fixed. Each gρ is linear so αg is linear.

(A1, ρ1, gρ1ψ1)(A2, ρ2, gρ2ψ2) =
(
A1ρ1(A2), ρ1 ⊗ ρ2, (gρ1 ⊗ gρ2)(ψ1 ⊗ ψ2)

)
,

but gρ1⊗ρ2 = gρ1 ⊗ gρ2 so

(A1, ρ1, gρ1ψ1)(A2, ρ2, gρ2ψ2) =
(
A1ρ1(A2), ρ1 ⊗ ρ2, gρ1⊗ρ2(ψ1 ⊗ ψ2)

)
.

Thus,

αg(F1)αg(F2) = αg(F1F2).(41)

To show that αg is a ∗-homomorphism, recall that

(A, ρ, gρψ)∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)gρψ).(42)

If ψ ∈ E(ρ) then E(R
∗
)(gρψ ⊗ gρψ) = E(R

∗
)((gρ ⊗ gρ)(ψ ⊗ ψ)). Furthermore,

E(R
∗
)(gρψ ⊗ gρψ) = gιE(R

∗
)(ψ ⊗ ψ) = E(R

∗
)(ψ ⊗ ψ).
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Hence g∗ρJE(R
∗
)gρ = JE(R

∗
) and since gρ is unitary we get from (42),

(A, ρ, gρψ)∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)gρψ) = (R∗ρ(A)∗, ρ, gρJE(R

∗
)ψ),

so

αg(F ∗) = αg(F )∗, F ∈ F.(43)

Equations (41), (43) show that αg is a ∗-homomorphism, its inverse is clearly
αg−1 so αg defined by Eqn. (40) is an element of AutAF. The mapping g �→ αg is
clearly a homomorphism.

Since G is a compact group, for every g �= e, there exists a (H,π) ∈ RepfG such
that π(g) �= idH . Since the functor E is an equivalence, in particular essentially
surjective, there exists a ρ ∈ Obj(∆f ) such that E(ρ) is isomorphic to (H,π).
Thus there exists ψ ∈ E(ρ) such that

π(g)ψ = gρψ �= ψ.

Defining F = (I, ρ, ψ), we have αg(F ) �= F . This proves injectivity of g �→ αg.
It remains to show that G �→ AutAF0 is onto. Let α ∈ AutAF0, A ∈ A and

ψ ∈ E(ρ) ⊂ F0. Let Ψ = (I, ρ, ψ). Then

(α(Ψ))A = α(ΨA) = α(ρ(A)Ψ) = ρ(A)α(Ψ).

It is easily checked that this implies that α(Ψ) is of the form (I, ρ, ψ′) with ψ′ ∈
E(ρ). Thus ψ �→ ψ′ is a linear map of E(ρ) into E(ρ) which we denote by gρ, and
it remains to show that g = (gρ)ρ∈∆f

is monoidal natural transformation of E.
For S ∈ Hom(ρ, ρ′), we have

(S, ρ, gρψ) = α(S, ρ, ψ) = α(I, ρ′, E(S)ψ) = (I, ρ′, gρ′E(S)ψ).

Hence
E(S)gρψ = gρ′E(S)ψ, ψ ∈ E(ρ).

That is,
E(S)gρ = gρ′E(S),

and g ∈ NatE. To check monoidality, choose arbitrary ψi ∈ E(ρi) and let Ψi =
(I, ρi, ψi). Then,

gρ1⊗ρ2(ψ1 ⊗ ψ2) = α(Ψ1Ψ2) = α(Ψ1)α(Ψ2) = (gρ1 ⊗ gρ2)(ψ1ψ2).

Thus, g ∈ Nat⊗E. It remains to show that g is unitary. For ψ,ψ′ ∈ E(ρ) and
Ψ = (I, ρ, ψ),Ψ′ = (I, ρ, ψ′) we have〈

gρψ, gρψ
′〉
E(ρ)

I = α(Ψ)∗α(Ψ′) = α(Ψ∗Ψ′) =
〈
ψ,ψ′〉

E(ρ)
I,

where the first and last equalities follow from Prop. 270. Hence gρ is unitary
for each ρ ∈ Obj(∆f ). Therefore every α ∈ AutAF0 is of the form αg with
g ∈ G = Nat⊗E. �
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DEFINITION 265. Given a double cone O, we define F0(O) to consist of those
elements F in F0 such that there exists A ∈ A(O), ρ ∈ Obj(∆f ) localized in O,
and ψ ∈ E(ρ) with F = (A, ρ, ψ).

PROPOSITION 266. F0(O) is a ∗-subalgebra of F0.

Proof. Let F1 = (A1, ρ1, ψ1) and F2 = (A2, ρ2, ψ2) be in F0(O). Thus, the
Ai can be chosen from A(O) and the ρi can be chosen localized in O. Since
ρ1(A(O)) ⊆ A(O), it follows that

F1F2 = (A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2),

is also in F0(O). By transportability, ρ can be chosen localized in O, and in this
case ρ⊗ ρ is localized in O. By Lemma 155, R ∈ A(O). Hence,

F ∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)ψ),

is in F0(O). Similarly, F0(O) is closed under the addition defined in Prop. 257
since ρ can also be chosen localized in O, and then the isometries W1,W2 are in
A(O) (by Lemma 155). �

PROPOSITION 267. The action of G on F0 leaves F0(O) globally fixed.

Proof. If F ∈ F0(O) then F = (A, ρ, ψ) for some A ∈ A(O) and ρ localized in O.
Then clearly αg(F ) = (A, ρ, gρψ) is in F0(O). �

NOTE 268. Having defined an action of the supergroup (G, k), the element k ∈ G
induces a Z2 grading on F0 and on the local algebras F0(O).

PROPOSITION 269. The field net F0 satisfies normal commutation relations.
That is, if O1 and O2 are spacelike, and Fi ∈ F(Oi) are such that

αk(Fi) = σiFi,

then
F1F2 = (−1)(1−σ1)(1−σ2)/4F2F1.

Proof. Choose Fi = (Ai, ρi, ψi) with Ai ∈ A(Oi) and ρi localized in Oi. Then
A1A2 = A2A1, ρ1(A2) = A2, ρ2(A1) = A1, and ερ1,ρ2 = idρ1⊗ρ2 . In view of the
way G acts on F0 we have

σi(Ai, ρi, ψi) = αk(Ai, ρi, ψi) = (Ai, ρi, kρi
ψi),

and hence kρi
ψi = σiψi. That is, ψi is homogeneous and ω(ψi) = σi. Further-

more, since E is a symmetric functor E(ερ1,ρ2) = ΣE(ρ1),E(ρ2), where ΣH,H′ is the
symmetry on SHf and therefore

ΣH,H′(ψ1 ⊗ ψ2) = (−1)(1−σ1)(1−σ2)/4(ψ2 ⊗ ψ1).
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Hence

F1F2 = (A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)
= (A1A2ερ2,ρ1 , ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)
= (A1A2, ρ2 ⊗ ρ1, E(ερ2,ρ1)(ψ1 ⊗ ψ2))
= (A2ρ2(A1), ρ2 ⊗ ρ1, E(ερ2,ρ1)(ψ1 ⊗ ψ2))
= (A2ρ2(A1), ρ2 ⊗ ρ1,ΣE(ρ2),E(ρ1)(ψ1 ⊗ ψ2))

= (−1)(1−σ1)(1−σ2)/4(A2ρ2(A1), ρ2 ⊗ ρ1, ψ2 ⊗ ψ1)
= (−1)(1−σ1)(1−σ2)/4F2F1.

�

PROPOSITION 270. For all Ψ = (I, ρ, ψ),Ψ′ = (I, ρ, ψ′) with ψ,ψ′ ∈ E(ρ) we
have

ΨA = ρ(A)Ψ,(44)
Ψ∗Ψ′ = 〈ψ,ψ′〉E(p).(45)

For any orthonormal basis {ψi : i = 1, . . . , n} of E(ρ), we have

n∑
i=1

ΨiΨ∗
i = I.(46)

Proof.
(I, ρ, ψ)(A, ι, 1) = (ρ(A), ρ, ψ) = (ρ(A), ι, 1)(I, ρ, ψ),

whence (44). For (45), we check:

(I, ρ, ψ)∗(I, ρ, ψ′) = (R∗, ρ⊗ ρ, (JE(R
∗
)ψ)⊗ ψ′)

= (I, ι, E(R∗)((JE(R
∗
)ψ)⊗ ψ′)).

Since JE(R
∗
) : E(ρ) → E(ρ) and E(R∗) : E(ρ) ⊗ E(ρ) → C, it follows that

E(R∗)((JE(R
∗
)ψ)⊗ψ′) is a complex number. In fact, by the definition of J and

Lemma 260.3,

E(R∗)((JE(R
∗
)ψ)⊗ ψ′) =

〈JE(R∗) ◦ JE(R
∗
)ψ,ψ′〉

E(ρ)

=
〈JE((R∗ × Iρ) ◦ (Iρ ×R

∗
))ψ,ψ′〉

E(ρ)

=
〈
ψ,ψ′〉

E(ρ)
,

where the final equality follows by the conjugate equations. So, combining the
previous two equations we have

(I, ρ, ψ)∗(I, ρ, ψ′) =
(
I, ι, 〈ψ,ψ′〉E(ρ)) = 〈ψ,ψ′〉E(ρ)

(
I, ι, 1

)
.
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For Eqn. (46), we have∑
i

(I, ρ, ψi)(I, ρ, ψi)∗ =
(
ρ(R)∗, ρ⊗ ρ,

∑
ψi ⊗ JE(R

∗
)ψi

)
= (ρ(R)∗, ρ⊗ ρ,E(R)1) = (ρ(R)∗R, ι, 1) = (I, ι, 1),

where the second equality follows from the definition of J and the final equality
follows by the conjugate equations. �

10.3 Completion of the field net

We now construct a representation (H, π) of the ∗-algebra F0, and show that π|A
has a nontrivial subrepresentation equivalent to the GNS representation induced
by the vacuum state ω0. We do so by extending the state ω0 from A to F0, and
then by taking the GNS representation. In order to extend the state ω0 from A
to F0, it suffices to show that there is a positive linear map m : F0 → A.

NOTE 271. Let ρ ∈ Obj(∆f ). Since ∆f is semisimple (see Prop. 218), ρ is a
finite direct sum ρ = ρ1 ⊕ · · · ⊕ ρn of irreducible objects in Obj(∆f ). Therefore,
there is a projection P ρ

ι ∈ End(ρ) onto the direct sum of those irreducibles in this
decomposition that are isomorphic to ι.

PROPOSITION 272. Given (A, ρ, ψ) ∈ F0, define

m(A, ρ, ψ) := (AP ρ
ι , ρ, ψ).(47)

Then m : F0 → A is a faithful positive linear projection from F0 onto A. Further,

m(AF ) = Am(F ), A ∈ A, F ∈ F0.(48)

Proof. We first show that m is well defined. If T ∈ Hom(ρ, ρ′) then TP ρ
ι =

P ρ′
ι TP ρ

ι = P ρ′
ι T , hence

m(AT, ρ, ψ) = (ATP ρ
ι , ρ, ψ) = (AP ρ′

ι T, ρ, ψ) = (AP ρ′
ι , ρ′, E(T )ψ) = m(A, ρ′, E(T )ψ),

as required. m is clearly linear and satisfies Eqn. (48). We now show that m
is positive. First, since ρ has finite dimension, ρ contains at most finitely many
copies of the vacuum representation. Thus, P ρ

ι =
∑
i SiS

∗
i where Si ∈ Hom(ι, ρ)

and S∗
i Sj = δij idι. Thus,

m(A, ρ, ψ) = (AP ρ
ι , ρ, ψ) =

∑
i

(ASi, ι, E(S∗
i )ψ).

However, E(S∗
i )ψ = λi1 so that

m(A, ρ, ψ) =
∑
i

λi(ASi, ι, 1) ∈ A.
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Since each ρ ∈ Obj(∆f ) is a finite direct sum of irreducible objects (Prop. 218),
any F ∈ F0 may be written as a finite sum F =

∑
i Fi, Fi = (Ai, ρi, ψi), where

ψi ∈ E(ρi) with ρi irreducible and pairwise inequivalent. Thus,

m(F ∗F ) =
∑
i,j

m(F ∗
i Fj) =

∑
i

m(F ∗
i Fi).

Hence, to show that m is positive and faithful, it suffices to consider m(F ∗F ) with
F = (A, ρ, ψ), ψ ∈ E(ρ) and ρ irreducible. In this case,

(A, ρ, ψ)∗(A, ρ, ψ) =
(
R∗ρ(A∗A), ρ⊗ ρ,JE(R

∗
)(ψ ⊗ ψ)

)
.

Using P ρ⊗ρ
ι = ‖RR∗‖−1RR∗ = d(ρ)−1RR∗, we have

d(ρ)m(F ∗F ) = (R∗ρ(A∗A)RR∗, ρ⊗ ρ,JE(R
∗
)ψ ⊗ ψ)

= (R∗ρ(A∗A)R, ι, E(R∗)JE(R
∗
)ψ ⊗ ψ).

Now,
E(R∗)JE(R

∗
)(ψ ⊗ ψ) =

〈JE(R∗)JE(R
∗
)ψ,ψ

〉
E(ρ)

,

hence by Lemma 260,

d(ρ)m(F ∗F ) = R∗ρ(A∗A)R
〈
E((R

∗ × Iρ) ◦ (Iρ ×R))ψ,ψ
〉
E(ρ)

= R∗ρ(A∗A)R
〈
ψ,ψ

〉
E(ρ)

.

Thus, m(F ∗F ) ≥ 0 and m(F ∗F ) = 0 implies ψ = 0 or ρ(A)R = 0. But ρ(A)R = 0
only if

0 = R
∗
ρρ(A)ρ(R) = AR

∗
ρ(R) = A.

Thus m(F ∗F ) = 0 implies F = 0, and m is a faithful positive linear projection
from F0 onto A. �

LEMMA 273. Let P ρ
0 be the projection in End(E(ρ)) onto the subspace of G in-

variant vectors with respect to the action πρ(g) = gρ. Then E(P ρ
ι ) = P ρ

0 . Further-
more, the conditional expectation m is G-invariant, i.e. m(αg(F )) = m(F ) for all
g ∈ G and F ∈ F0.

Proof. Recall that if (H,π) is an irreducible representation of a compact group
G and π is not the trivial representation, then H contains no G-invariant vectors.
If ρ =

⊕
ρi with ρi irreducible, then the previous observation implies that the

G-invariant vectors in E(ρ) are precisely those in the image of E(P ρ
ι ). Thus

E(P ρ
ι ) = P ρ

0 , implying m(F ) = αg(m(F )). Furthermore,

mαg(A, ρ, ψ) = m(A, ρ, gρψ) = (AP ρ
ι , ρ, gρψ) = (A, ρ, P ρ

0 gρψ)
= (A, ρ, gρP

ρ
0 ψ) = (A, ρ, P ρ

0 ψ)
= (AP ρ

ι , ρ, ψ) = m(A, ρ, ψ).

�
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In view of Prop. 272, ω0◦m is a faithful state on the ∗-algebra F0. Let (H, π) be
the GNS representation of F induced by ω0 ◦m, let F be the norm closure of π(F0),
and let F(O) be the weak closure of π(F0(O)). It is clear that F is the C∗-inductive
limit of the net O �→ F(O). Since ω0 ◦m is G-invariant by Lemma 273, there is a
unitary representation U of G on H implementing the automorphisms αg of F0:

π(αg(F )) = U(g)π(F )U(g)∗, g ∈ G,F ∈ F0,

and therefore it extends to F. Since g �→ αg is injective, U is injective.

DEFINITION 274. Let σ ∈ Ĝ be an irreducible character of G. Define a map Eσ
on B(H) by

Eσ(A) =
∫
G

σ(g)U(g)AU(g)∗ dµ(g),

where µ is the Haar measure on U(G).

NOTE 275. Let F = (A, ρ, ψ) ∈ F0. Since the U(g) implements αg we have

Eσ(π(F )) =
∫
G

σ(g)
(
π(αg(A, ρ, ψ))

)
dµ(g) =

∫
G

σ(g)π(A, ρ, gρψ)dµ(g)

= π(A, ρ, P ρ
σψ),(49)

where P ρ
σ ∈ End(E(ρ)) is the orthogonal projection onto the subspace trans-

forming according to the irreducible representation σ. Since G is compact, Eσ is
strongly continuous. Note that E0(π(F )) = π[m(A, ρ, ψ)].

LEMMA 276. F0(O)A = F0.

Proof. Let (A, ρ, ψ) ∈ F0. Since ρ is transportable, there is a unitary T ∈
Hom(ρ, ρ′) with ρ′ localized in O. Then

(A, ρ, ψ) = (AT ∗, ρ′, E(T )ψ) = (AT ∗, ι, 1)(I, ρ′, E(T )ψ) = BF,

where B ∈ A and F ∈ F0(O). Hence AF0(O) = F0. Since A,F0(O) and F0 are
∗-algebras, F0(O)A = F0. �

THEOREM 277. (π,H,F, (G, k)) is a field system with gauge symmetry for (A, ω0)
with normal commutation relations (in the sense of Definitions 229 and 245).

Proof. It is obvious that F(O) is a G-stable von Neumann subalgebra of F. Also
the net O �→ F(O) satisfies normal commutation relations. We now run through
the individual conditions in Definition 229.

(γ) We need to show that the fixed point algebra of F(O) under the G action is
π(A(O)). First note that E (π(F0(O))) = π(m(F0(O))). Thus,

F(O)G = E (F(O)) = E
(
π(F0(O))

)
= E (π(F0(O))) = π(m(F0(O))) = π(A(O)).

The third equality follows by the normality of E , and the last equality is due
to the fact that m is a conditional expectation from F0 to A.
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(δ) Let j : F0 → H be the inclusion mapping derived from the GNS representa-
tion of ω0 ◦m. Since j(A) = H0 we have

F(O)H0 = π(F0(O))H0 = π(F0(O))j(A) = j(F0(O)A) = j(F0) = H.

(ε) Let O1 and O2 be spacelike separated. The subalgebra A(O1) of F0 is point-
wise invariant under the gauge transformations. In particular, αk(A) = A for
all A ∈ A(O), i.e. elements of A(O1) are purely Bosonic. Therefore relative
locality follows by normality of the commutation relations (Prop. 269).

Now we claim that AutAF = G. By Eqn. (49), Eσ(π(F0)) is isomorphic as a
Banach space to A⊗ P ρ

σE(ρ), and so is a closed subspace of F, and so

Eσ(F) = Eσ(π(F0)) = Eσ(π(F0)) = Eσ(π(F0)).

Since for any F ∈ F we have F =
∑
σ∈Ĝ Eσ(F ), and Eσ(F ) ∈ π(F0), it follows

that an element F ∈ F is in π(F0) if and only if Eσ(F ) �= 0 for only finitely many
σ ∈ Ĝ. Together with linearity of α, this implies that α(π(F0)) ⊆ π(F0). Thus
there exists a g ∈ G such that α|π(F0) = αg (by Prop. 264). Since αg is continuous
and π(F0) is dense in F, α is the unique extension of αg to F. �

10.4 Poincaré covariance of the field net

Covariance considerations have played no prominent role in the DHR theory of
Section 7 or in the above reconstruction of a field net F. We now show that
the latter is Poincaré covariant if the underlying DHR sectors are. (Recall from
Remark 224 that under favorable circumstances we have ∆fc = ∆f .)

THEOREM 278. If in the construction of the field net F we start from the category
∆fc instead of ∆f , the field net constructed above is covariant under an automor-
phic action of P̂ . This action is implemented by a positive energy representation
on the GNS representation space of F corresponding to the state ω0 ◦m.

Proof. Let βh = AdU(h) be the action of P on A. Recall from Note 221 that
ρh = βh ◦ ρ ◦ β−1

h and Xρ(h) ≡ U(h)Uρ(h)∗ ∈ Hom(ρ, ρh) for all h ∈ P̂. We define
an action β̂ of P̂ on F0 by

β̂h((A, ρ, ψ)) ≡ (βh(A), ρh, E(Xρ(h))ψ)
= (βh(A)Xρ(h), ρ, ψ) = (U(h)AUρ(h)∗, ρ, ψ).(50)

Let ρ, ρ′ ∈ ∆fc and T ∈ Hom(ρ, ρ′). Then βh(T ) ∈ Hom(ρh, ρ′h), and TUρ(h) =
Uρ′(h)T , cf. Section 8.4. Thus,

βh(T )Xρ(h) = (U(h)TU(h)∗)(U(h)Uρ(h)∗) = U(h)TUρ(h)∗

= U(h)Uρ′(h)T = Xρ′(h)T,
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Using this equation, we compute

β̂h((AT, ρ, ψ)) = (βh(AT ), ρh, E(Xρ(h))ψ) = (βh(A), ρ′h, E(βh(T )Xρ(h))ψ)

= (βh(A), ρ′h, E(Xρ′(h)T )ψ) = β̂h((A, ρ′, E(T )ψ)),

thus β̂g is well defined. Let i : A �→ (A, ι,1) be the inclusion of A in F. Then
β̂h ◦ i = i ◦ βg, thus β̂g extends βg. If F ∈ F(O) then there exists a representation
F = (A, ρ, ψ) with A ∈ A(O) and ρ ∈ ∆(O). Now it is evident from the definition
that β̂h(F ) ∈ F(hO). That g �→ β̂g is a group homomorphism is obvious from the
r.h.s. of Eqn. (50). Now,

β̂g((A1, ρ1, ψ1)(A2, ρ2, ψ2)) = β̂g((A1ρ1(A2), ρ1ρ2, ψ1 ⊗ ψ2))
= (U(h)A1ρ1(A2)Uρ1ρ2(h)∗, ρ1ρ2, ψ1 ⊗ ψ2)
= (βh(A1)ρ1,h(βh(A2))U(h)Uρ1ρ2(h)∗, ρ1ρ2, ψ1 ⊗ ψ2)
= (βh(A1)ρ1,h(βh(A2))Xρ1ρ2(h), ρ1ρ2, ψ1 ⊗ ψ2)
= (βh(A1)ρ1,h(βh(A2))Xρ1(h)ρ1(Xρ2(h)), ρ1ρ2, ψ1 ⊗ ψ2)
= (βh(A1)Xρ1(h)ρ1(βh(A2)Xρ2(h)), ρ1ρ2, ψ1 ⊗ ψ2)
= (U(h)A1Uρ1(h)∗ρ1(U(h)A2Uρ2(h)∗), ρ1ρ2, ψ1 ⊗ ψ2)
= (U(h)A1Uρ1(h)∗, ρ1, ψ1)(U(h)A2Uρ2(h)∗, ρ2, ψ2)

= β̂g((A1, ρ1, ψ1))β̂g((A2, ρ2, ψ2)),

where the fifth equality is due to Eqn. (27). Thus β̂g is an algebra homomorphism.
Let ρ ∈ ∆fc and choose a conjugate (ρ,R,R). Since the trivial morphism ι is

covariant with Xι = idι, applying Eqn. (50) with T = R∗ ∈ Hom(ρρ, ι) we get
R∗ = βh(R∗)Xρρ(h) = βh(R∗)Xρ(h)ρ(Xρ(h)), where we used Eqn. (27) again.
This is equivalent to

R∗ρ(Xρ(h)∗) = βh(R∗)Xρ(h),(51)

which will be used below. Now we compute

(β̂h(A, ρ, ψ))∗ = (U(h)AUρ(h)∗, ρ, ψ)∗

= (R∗ρ(U(h)AUρ(h)∗)∗, ρ,JE(R
∗
)ψ)

= (R∗ρ(Uρ(h)A∗U(h)∗), ρ,JE(R
∗
)ψ)

= (R∗ρ(Uρ(h)U(h)∗βh(A∗)), ρ,JE(R
∗
)ψ)

= (R∗ρ(Xρ(h)∗βh(A∗)), ρ,JE(R
∗
)ψ)

= (βh(R∗)Xρ(h)ρ(βh(A))∗, ρ,JE(R
∗
)ψ)

= (U(h)R∗Uρ(h)∗ρ(βh(A))∗, ρ,JE(R
∗
)ψ)

= (U(h)R∗ρ(A)∗Uρ(h)∗, ρ,JE(R
∗
)ψ)

= β̂h((R∗ρ(A)∗, ρ,JE(R
∗
)ψ))

= β̂h((A, ρ, ψ)∗),
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thus β̂h is a ∗-homomorphism. (In the sixth equality we used Eqn. (51).)
In view of

β̂h((A, ρ, ψ)) = (U(h)AUρ(h)∗, ρ, ψ)
αg((A, ρ, ψ)) = (A, ρ, πE(ρ)(g)ψ)

it is clear that β̂h ◦ αg = αg ◦ β̂h for all g ∈ G,h ∈ P̂. In view of π ◦m = E0 ◦ π,
we have ω0 ◦ βh ◦m = ω0 ◦m. Thus the vacuum state of F is P̂-invariant, and P̂
is unitarily implemented in the GNS representation. �

10.5 Uniqueness of the field net

In the present section we have shown that, given a fiber functor E : ∆f (A) → SH,
there exists a field net with normal commutation relations that is complete, i.e.
creates all representations in ∆f (A) from the vacuum. We call this the Roberts
field net and denote it by FRE . We first consider the dependence of this construction
on the functor E.

PROPOSITION 279. Let E1, E2 : ∆f → H be two fiber functors. Then the
Roberts field nets FRE1

,FRE2
constructed from them are unitarily equivalent.

Proof. By Theorem 373 from the appendix, there exists a unitary monoidal
natural isomorphism α : E1 → E2. Based on this we define a map γ : FR0,1 → FR0,2
by γ : (A, ρ, ψ) �→ (A, ρ, αρψ). This makes sense since ψ ∈ E1(ρ) and α ∈
Hom(E1(ρ), E2(ρ)). γ is well defined since, for T ∈ Hom(ρ, ρ′), we have

γ(AT, ρ, ψ) = (AT, ρ, αρψ)
= (A, ρ′, E2(T ) ◦ αρψ)
= (A, ρ′, αρ ◦ E1(T )ψ))
= γ(A, ρ′, E1(T )ψ).

That γ is an algebra homomorphism follows from

γ((A1, ρ1, ψ1))γ((A2, ρ2, ψ2)) = (A1, ρ1, αρ1ψ1)(A2, ρ2, αρ2ψ2)
= (A1ρ1(A2), ρ1 ⊗ ρ2, αρ1ψ1 ⊗ αρ2ψ2)
= (A1ρ1(A2), ρ1 ⊗ ρ2, αρ1⊗ρ2(ψ1 ⊗ ψ2))
= γ((A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2))
= γ((A1, ρ1, ψ1)(A2, ρ2, ψ2)),

where we have used monoidality αρ1⊗ρ2 = αρ1 ⊗αρ2 of α. Since an inverse can be
obtained using the natural isomorphism α∗, γ is an isomorphism between the field
algebras FR0,1 and FR0,2. It clearly respects the local structure, i.e. maps FR0,1(O) to
FR0,2(O).

Next we claim that m2 ◦ γ = γ ◦m1, where m1,m2 are the projections defined
earlier. Namely,

m2 ◦ γ((A, ρ, ψ)) = m2((A, ρ, αρψ)) = (AP ρ
ι , ρ, αρψ) =

γ((AP ρ
ι , ρ, ψ)) = γ ◦m1((A, ρ, ψ)).
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This implies that the states ω0 ◦m1 and ω0 ◦m2 ◦γ on FR0,1 coincide, and therefore
the isomorphism γ : FR0,1 → FR0,2 extends to a unitary equivalence of the norm
completions in the GNS representations. �

In order to study an arbitrary complete normal field net F, not a priori of the

form FR
‖·‖

, we use the following

PROPOSITION 280. Let F be a complete normal field net for the observable net
A. Then there exists a strict tensor functor EF : ∆f (A) → SHf to the category of
finite dimensional super Hilbert spaces. On the objects, EF is given by the vector
space

EF(ρ) := {F ∈ F | Fπ0(A) = π0(ρ(A))F ∀A ∈ A}.
The inner product is given by 〈F, F ′〉1 = F ∗F ′ and the Z2-grading by the action of
k ∈ G. For irreducible ρ, ρ′ ∈ ∆f , we have E(ε(ρ, ρ′)) = ±∑

i,j ψ′
iψjψ

′
i
∗
ψ∗
j , where

{ψi, i = 1, . . . , d(ρ)} and {ψ′
i, i = 1, . . . , d(ρ′)} are orthonormal bases of E(ρ) and

E(ρ′), respectively, and the minus sign appears iff ρ and ρ are both fermionic.

Proof. (In this proof we write E instead of EF.) For s ∈ Hom(ρ, ρ′) we define
E(s) = π0(s) ∈ F. For F ∈ E(ρ) we have π0(s)Fπ0(A) = π0(s)π0(ρ(A))F =
π0(sρ(A))F = π0(ρ′(A)s)F = π0(ρ′(A))π0(s)F for all A ∈ A, thus π0(s)F ∈ E(ρ′)
and E is a functor. If F, F ′ ∈ E(ρ) then F ∗F ′ ∈ F∩A′ = C1, allowing us to define
〈F, F ′〉1 = F ∗F ′. Let s ∈ Hom(ρ, ρ′) and F ∈ E(ρ), F ′ ∈ E(ρ′). Then

〈F ′, E(s)F 〉 = 〈F ′, π0(s)F 〉 = F ′∗π0(s)F = (π0(s)∗F ′)∗F =
〈π0(s∗)F ′, F 〉 = 〈E(s∗)F ′, F 〉,

where we have used that π0 is ∗-preserving, shows that E is ∗-preserving. By
Section 9 we have E(ρ)E(ρ′) = E(ρ⊗ ρ′). If Si ∈ Hom(ρi, ρ′i), Fi ∈ E(ρi) then

E(S1 × S2)F1F2 = π0(S1ρ1(S2))F1F2 = π0(S1)F1π0(S2)F2 ∈ E(ρ′1 ⊗ ρ′2),

thus E(S1×S2) = E(S1)⊗E(S2), thus E is a strict tensor functor. Completeness
of the field net together with the discussion in Section 9 implies that E is faithful
and satisfies dim E(ρ) = d(ρ). (The latter follows also by Proposition 344 of the
appendix.) Finally, let F ∈ E(ρ), F ′ ∈ E(ρ′) be of norm one. Now let ρ, ρ′ ∈ ∆f ,
and let ψi, i = 1, . . . , d(ρ) and ψ′

i, i = 1, . . . , d(ρ′) be orthonormal bases of E(ρ)
and E(ρ′), respectively. Then

c̃(ρ, ρ′) =
∑
i,j

ψ′
iψjψ

′
i
∗
ψ∗
j

is in FG and independent of the chosen bases. Furthermore, c̃(ρ, ρ′) ∈ Hom(ρ ⊗
ρ′, ρ′ ⊗ ρ). The functoriality of E that was proven above implies that c̃(ρ, ρ′) is
natural in both arguments. If now {ρ′′ ∈ ∆f} and ψ′′

k , k = 1, . . . , d(ρ′′) is an
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orthonormal basis in E(ρ′′), then {ψ′
jψ

′′
k} is an orthonormal basis in E(ρ′ ⊗ ρ′′),

thus

c̃(ρ, ρ′ ⊗ ρ′′) =
∑
i,j,k

ψ′
jψ

′′
kψjψ

′′
k
∗
ψ′
j
∗
ψ∗
i

=
∑

i,j,m,k,l

ψ′
m(ψ′′

i ψjψ
′′
i
∗
ψ∗
j )ψ

′
m

∗(ψ′
kψlψ

′
k
∗
ψ∗
l )

= idρ′ ⊗ c̃(ρ, ρ′′) ◦ c̃(ρ, ρ′)⊗ idρ′′ ,

which is one of the braid relations. One easily sees that c̃(ρ, ρ′)c̃(ρ′, ρ) = 1, thus
c̃(·, ·) is a symmetry for the tensor category ∆f . If ρ and ρ′ are irreducible and
localized spacelike to each other, the normal commutation relations of the corre-
sponding fields imply that c̃(ρ, ρ) = ±1, where the minus sign occurs iff ρ and ρ′′

are fermionic. Now, for irreducible ρ, ρ′ define c(ρ, ρ′) = ±c(ρ, ρ′), where we take
the minus sign iff ρ and ρ′ are fermionic, and extend c to reducible objects by
naturality. Then c(ρ, ρ′) = 1 whenever ρ, ρ′ are localized spacelike. Now it follows
from the uniqueness result Proposition 200 that E(ε(ρ, ρ′)) = c(ρ, ρ′). Thus EF

is a symmetric tensor functor in the sense that it maps the symmetry ε of ∆f to
the symmetry c of the category H of Hilbert spaces. Equivalently, E is a sym-
metric tensor functor into the category of super Hilbert spaces equipped with the
symmetry c̃. �

Thus every complete normal field net F gives rise to a strict symmetric ∗-
preserving fiber functor EF. Denoting by FREF

the Roberts field net associated to
the latter, our aim is to construct an isomorphism F ∼= FREF

.

THEOREM 281. Let F be a complete normal field net for A and EF : ∆f → SH
the fiber functor from Proposition 280. Then there is a unitary equivalence FEF

→
F of field nets.

Proof. By Proposition 280, there is a symmetric ∗-preserving fiber functor EF :
∆f → SH. By the concrete Tannaka theorem (Theorem 377 of the appendix), the
compact group GEF

of unitary monoidal natural transformations of E is unitarily
represented on the spaces EF(ρ). On the other hand, the compact group G coming
with our field net F also acts on these spaces, providing a homomorphism G →
GEF

. This homomorphism is injective since G is concretely given as a group
of unitaries on the Hilbert space H where F lives. It is also surjective, since
otherwise π|A would contain representations that are not in ∆f , contradicting the
assumption that F is a complete field net. Thus the given group G can be identified
with the one reconstructed from the fiber functor EF. For every σ ∈ F̂ we define
a projection Eσ on F as in Definition 274. We denote by F0 the algebraic direct
sum ⊕σ∈ bGEσ(F), which is the same as {F ∈ F | Eσ(F ) = 0 for almost all σ ∈ Ĝ}.

We now define a map γ : FREF,0
→ F by γ : (A, ρ, ψ) �→ π0(A)ψ. At first

sight, this formula looks strange, but it makes perfect sense since ψ ∈ EF(ρ),
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where EF(ρ) by definition is a subspace of F. As usual, γ is well defined since, for
T ∈ Hom(ρ, ρ′),

γ((AT, ρ, ψ)) = π0(AT )ψ = π0(A)EF(T )ψ = γ((A, ρ′, EF(T )ψ)).

Furthermore,

γ((A1, ρ1, ψ1)(A2, ρ2, ψ2)) = γ((A1ρ1(A2), ρ1ρ2, ψ1 ⊗ ψ2)) = π0(A1ρ1(A2))ψ1ψ2

= π0(A1)ψ1π0(A2)ψ2 = γ((A1, ρ1, ψ1))γ((A2, ρ2, ψ2)),

where we have used ψ1 ∈ EF(ρ1) = {F ∈ F | Fπ0(A) = π0(ρ(A))F}. Thus γ is an
algebra homomorphism. This, together with (A, ρ, ψ) = (A, ι, 1)(1, ρ, ψ) implies
that γ is a ∗-homomorphism provided γ(F ∗) = γ(F )∗ for F = (1, ρ, ψ). Now,
using the ∗-operation on FR defined in Proposition 263, we have

γ((1, ρ, ψ)∗) = γ((R∗, ρ, (JE(R
∗
))ψ)) = π0(R∗)(JE(R

∗
)ψ).

On the other hand, γ((1, ρ, ψ))∗ = ψ∗, thus γ is a ∗-homomorphism provided
ψ∗ = R∗(JE(R

∗
))ψ holds for all ψ ∈ E(ρ).

Now, for any ψ ∈ E(ρ), we have R∗ψρ(A) = R∗ρρ(A)ψ = AR∗ψ, thus (R∗ψ)∗ ∈
E(ρ). Applying this to ψ = JE(R

∗
)ψ ∈ E(ρ), we see that ψ∗ = R∗(JE(R

∗
))ψ

holds iff ψ∗ψ′ = R∗(JE(R
∗
)ψ)ψ′ for all ψ′ ∈ E(ρ).

By Proposition 344 of the Appendix, (E(ρ), E(R), E(R)) is a conjugate of E(ρ)
in the category of Hilbert spaces. (Or super Hilbert spaces. This doesn’t matter
since we don’t use the symmetry.) Thus there are bases {ei}, {fi} of E(ρ) and
E(ρ), respectively, with dual bases {êi}, {f̂i} in Ê(ρ), Ê(ρ) such that

E(R) =
∑
i

fi⊗ei, E(R) =
∑
i

ei⊗fi, E(R)∗ =
∑
i

î i
∗ =

∑
i

êi⊗f̂i.

Thus, for ψ ∈ E(ρ), ψ ∈ E(ρ), we have

〈JE(R
∗
)ψ,ψ〉 =

(∑
i

êi ⊗ f̂i

)
(ψ ⊗ ψ) =

∑
i

êi(ψ)f̂i(ψ)

and therefore JE(R
∗
)ψ =

∑
i êi(ψ)fi. Thus

E(R)∗((JE(R
∗
)ψ)⊗ψ′) = (

∑
i

f̂i⊗êi)(
∑
j

êj(ψ)fj⊗ψ′) =
∑
i

êi(ψ)êi(ψ′) = 〈ψ,ψ′〉.

Now, in F, the left hand side equals R∗(JE(R
∗
)ψ)ψ′ and the right hand side

equals ψ∗ψ′, proving the desired identity ψ∗ = R∗(JE(R
∗
))ψ.

Now, for (A, ρ, ψ) ∈ FREF,0
is is clear that γ((A, ρ, ψ)) is contained in a finite

dimensional G-stable subspace of F and thus in F0. Every F ∈ F0 is a sum
of finitely many terms of the form Eσ(F ) with σ ∈ Ĝ. Picking an irreducible

f ⊗ê , E(R)
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subspace Hσ of isometries in F0 transforming according to the class σ, there is an
endomorphism ρ ∈ ∆f induced by the subspace Hσ. Since every F ∈ Eσ(F) is a
linear combination

∑
i Aiψi with Ai ∈ A, ψi ∈ Hσ, we have F = γ(

∑
i(A, ρ, ψi),

proving γ(FREF,0
) = F0.

Let (A, ρ, ψ) ∈ FR0 . By construction of F0, we have a finite sum representa-
tion (A, ρ, ψ) =

∑
i(Ai, ρi, ψi), where the ρi are irreducible and mutually non-

isomorphic. Now γ((A, ρ, ψ)) =
∑
i Aiψi, where the spaces E(ρi) ⊂ F transform

under mutually inequivalent irreducible representations of G. Thus γ((A, ρ, ψ)) =
0 iff Aiψi = 0 for all i. isometries transforming according to a representation in
the class σ. Since by harmonic analysis, every F ∈ F has a unique representation
of the form F =

∑
σ Aσ,iψ

σ
i , this implies that for each i we have (Ai, ρi, ψi) = 0.

Thus γ is injective.
We have thus proven that γ : FREF,0

→ F0 is an isomorphism. Since the vacuum
state ωF

0 = (Ω0, ·Ω) of F is by assumption gauge invariant, the states ωF
0 ◦ γ and

ωA
0 ◦m on FREF,0

coincide, implying that the completed nets are unitarily equivalent
in their GNS representations. �

COROLLARY 282. Every complete normal field net F is unitarily equivalent to a
Roberts field net FRE, where it doesn’t matter which fiber functor E we use.

NOTE 283. As promised, we return to the issue of strictness of the functor F :
C → SHf that was assumed in the construction of the field net, but not proven in
the appendix. In the latter, we constructed a non-strict fiber functor, i.e. a functor
E : C → SHf together with natural isomorphisms dEρ,ρ′ : E(ρ)⊗E(ρ′) → E(ρ⊗ρ′)
and eE : 1SH → E(ι∆) satisfying Eqns. (56), (57). The construction of the
(algebraic) field algebra F0 in Subsection 10.2 can easily be generalized to this
situation: The product of fields is defined by

(A1, ρ1, ψ1)(A2, ρ2, ψ2) :=
(
A1ρ1(A2), ρ1 ⊗ ρ2, d

E
ρ1,ρ2(ψ1 ⊗ ψ2)

)
and the unit is (1, ι, eE1C). Now associativity and the unit property are obvious
consequences of Eqns. (56), (57). The rest of the constructions and proofs goes
through as before, just carrying the unitaries dE , eE along. An interesting con-
sequence of this and of Proposition 280 is that we can prove the existence of a
strict fiber functor E′ : ∆f → SH′, where SH′

f is a strictification of the category
of finite dimensional super Hilbert spaces. This is consistent with strictification
results in category theory. (Strictification of tensor categories is nicely treated in
[Kassel, 1995, Chap. XI], but for strictification of tensor functors the best reference
remains [Joyal and Street, 1993a, Sect. 1].)

10.6 Further relations between A and F, and a Galois interpretation

In Section 9 we have discussed at length the structure of the superselection sectors
of a net A of observables in relation to the harmonic analysis of the action of
a (global) gauge group on a field net F. Note that we did not claim that all
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DHR representations of the fixed point net A = FG are connected to the vacuum
representation by the fields in F. In order to see that this is in general false,
consider a theory A with non-trivial DHR-category and take F := A as ‘field net’,
acted upon by the trivial group G = {e}. Obviously, all DHR representations
of A are not created by the action of F on H0. In the special case where F is
Bosonic and itself satisfies all the requirements on an observable net, it may have
non-trivial DHR sectors. Restricting a DHR representation π of F with d(π) <
∞ to A, one obtains a DHR representation of A of the same dimension, which
therefore decomposes into a finite direct sum of irreducibles. If π is irreducible
and inequivalent to the vacuum representation π0 of F, then all the irreducible
representations of A obtained in this way are disjoint from those contained in
π0|A. We refrain from a further analysis of this issue. We do, however, wish
to point out that one can specify conditions on a net F implying that all DHR
representations of A are contained in π0|A. This involves the net-cohomology or
local 1-cohomology developed by J.E. Roberts and reviewed, e.g., in [Roberts,
1990, §3.4]. We refrain from even attempting to give precise statements and only
say the following: If F has ‘quasi-trivial 1-cohomology’ and is acted upon by a
compact group G of global gauge symmetries, then the equivalent (by Proposition
206) categories DHRf (A) � ∆f (A) are equivalent, as symmetric tensor categories
to RepfG. In [Buchholz et al., 1992] it is shown, e.g., that the theory of a free
massive scalar field has quasi-trivial 1-cohomology. Thus, if one takes F to be the
direct product of N copies of such fields (of the same mass) then SO(N) acts on
F. Therefore, ∆f (A) � RepfG whenever G ⊂ SO(N) is a closed subgroup and
A = FG. In [Doplicher and Piacitelli, 2002] this observation is combined with a
limit construction to prove that every (second countable) compact group arises as
a DHR gauge group. In a similar fashion, one shows that if F is the theory of a
massive Fermion with its canonical Z/2-symmetry, then ∆f (FZ/2) � RepfZ/2.

There are results in the opposite direction, i.e. from the superselection structure
of A to that of F. By [Doplicher and Roberts, 1990, Theorem 3.6], which we
have not covered entirely in Section 9, the field net reconstructed in [Doplicher
and Roberts, 1990] and in Section 10 above satisfies ‘twisted Haag duality’. In
particular, if A has no Fermionic representations then F satisfies Haag duality. In
this case, one can study the categories DHR(F) or ∆(F). In [Conti et al., 2001],
the following has been proven:

THEOREM 284. Let A be a net of observables such that there are at most count-
ably many DHR representations of finite dimension, all of which are Bosonic.
Then the complete field net F has no non-trivial DHR representations of finite
dimension.

Rather than trying to comment on the many other known results related to
those treated in the preceding sections, we close this section by commenting on
a very satisfactory mathematical interpretation of DHR/DR theory. We are re-
ferring to the evident analogy between this theory and the Galois theory of al-
gebraic field extensions. (It should be clear that in the latter context, by ‘field’
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we mean the algebraic structure of which Q, R, C are examples, not the theory of
classical or quantum fields.) A field F in the latter sense is called algebraically
closed if every polynomial P (x) with coefficients in F has a zero in F. (P then
is a product of linear factors x − a.) Every field F is a subfield of an essentially
unique algebraically closed field F that is an algebraic extension of F. The latter
means that F is obtained by adjoining, typically transfinitely, solutions of poly-
nomial equations to F. The group GF = AutF(F) is compact, and one has a
bijective correspondence between intermediate fields F

′ ⊂ F, F′ ⊃ F and closed
subgroups H ⊂ G. (The correspondence is given by H �→ F

H
, F

′ �→ AutF′(F).)
A similar Galois correspondence holds in AQFT, cf. e.g. [Conti et al., 2001;
Carpi and Conti, 2001]. In view of Theorem 284, the construction of the com-
plete DR field net is entirely analogous to that of the algebraic closure and can
be considered as the passage to a simpler or better behaved theory. Conversely,
just as taking the fixed field of an algebraically closed field F under the action
of a closed subgroup G ⊂ AutF will result in an algebraically non-closed field
F
G, taking the G-fixed subnet of a net F with trivial category ∆f (F) (more pre-

cisely, quasi-trivial 1-cohomology) will result in a net with non-trivial category
∆f (A). Thus the ‘complication’ manifested by a non-trivial DHR-category ∆f (A)
indicates that the theory A ‘really’ is just a subtheory of a simpler one.

Physically, however, it is not at all clear whether the ‘observable’ net A = FG

with its non-trivial representation category ∆f (A) or the ‘field net’ F with trivial
∆f (F) but non-trivial global symmetry group G is more fundamental – at least
when F is Bosonic. In [Haag, 1996] it is argued that the ‘right’ description of the
physical situation should be in terms of a net without any global symmetries. (On
the other hand, in [Haag, 1996, Section III.4.2] one finds a tentative postulate
on a ‘good’ net A of observables that implies triviality of ∆f (A). As the above
discussion shows, it will be very hard to find a theory that has both a trivial
DHR category ∆f and trivial global symmetry group! The theory of a single free
massive Bose field is one of the rare examples.) Whether or not one subscribes
to these views, from a mathematical point of view, both nets A and F contain
the same amount of information. This equivalence is in fact a useful tool, since it
permits to view many problems from different angles. For example, while a spin
statistics theorem can be proven in a ‘field’ framework, its physical interpretation
may be clearer in the ‘observable’ setting.

10.7 Spontaneous symmetry breaking

So far, our entire analysis has presupposed the axiom of Haag duality for the the-
ory A. Haag duality played an important rôle in our analysis of the category ∆(A),
but is needed also to establish the equivalence between the ∆(A) and the repre-
sentations satisfying the a priori physically motivated DHR criterion (Definition
204). Thus, while it seems that the study of DHR representations is physically
motivated also for non-Haag dual nets, our mathematical analysis soon gets stuck.
We will therefore briefly comment on an approach to resolve this issue, which turns
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out to have a profound physical interpretation.

DEFINITION 285. Let O �→ R(O) be a net of von Neumann algebras on a vacuum
Hilbert space H0. The dual net Rd of R is the assignment O �→ R(O′)′.

If we have O1 ⊂ O2 then O′
2 ⊂ O′

1, thus R(O′
2) ⊂ R(O′

1), and therefore
Rd(O1) ⊂ Rd(O2). Thus the dual net really satisfies isotony. Microcausality
of R is equivalent to R(O) ⊂ R(O′)′ = Rd(O), or briefly R ⊂ Rd, and Haag
duality of R is equivalent to R = Rd. If A1 ⊂ A2 (in the sense of an inclusion for
every O) then Ad2 ⊂ Ad1, thus A ⊂ Add, and a standard argument shows Ad = Addd.
Note, however, that microcausality of R does not imply microcausality of Rd! This
motivates the following

DEFINITION 286. A net O �→ R(O) ⊂ B(H0) satisfies essential duality if both
R and the dual net Rd (both indexed by double cones) satisfy microcausality.

LEMMA 287. If R satisfies essential duality then Rd = Rdd, i.e. Rd satisfies
Haag duality.

NOTE 288. Essential duality can be difficult to verify. Fortunately, essential
duality follows from wedge duality, to wit R(W ′)′ = R(W ) for all wedge regions
(the regions obtained from the standard wedge W0 = {x ∈ R

1+s | x0 ≥ |x1|}
by Poincaré transformations). Besides being much easier to verify than essential
duality, wedge duality is a very fundamental property that might well be required
of any ‘reasonable’ QFT.

Assuming that R satisfies essential duality, Rd satisfies Haag duality and the
D(H)R analysis applies to it. Thus we obtain a symmetric tensor ∗-category
with conjugates ∆d

f (R) := ∆f (Rd) � DHRf (Rd), and we can construct the
complete DR field net F associated with (Rd,∆f (Rd)). One thus has an inclusion
R ⊂ Rd ⊂ F of nets. The DR gauge group acts on F and we have FG = Rd and
also G = AutRd(F). Since the group G is implemented by unitaries that leave the
vacuum vector fixed, G consists of ‘unbroken symmetries’. One can now define a
larger group

Ĝ = AutR(F)

and topologize it suitably. Now G ⊂ Ĝ consists precisely of the elements of Ĝ that
are unitarily implemented. The point is that the net R acts irreducibly on H0,
thus a unitary whose adjoint action leaves all algebras R(O) pointwise fixed must
be a multiple of the identity also on Rd.

Concerning the categories associated with R, little can be said about the cate-
gory ∆(R), but Roberts proved the existence of an extension functor K : DHR(R) →
DHR(Rd) such that K(π)|R = π for every π ∈ DHR(R), cf. [Roberts, 1990, §3.4].
(Again, a crucial rôle is played by the theory of local 1-cohomology. Furthermore,
this result breaks down in less than three spacetime dimensions due to the phe-
nomenon of solitonic representations.) This functor actually is an equivalence,
thus spontaneous symmetry breakdown doesn’t manifest itself in the superselec-
tion structure.
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For the detailed analysis we refer to [Roberts, 1974; Roberts, 1990] and the
remarkable paper [Buchholz et al., 1992], in which the Goldstone phenomenon is
analyzed in the context of algebraic QFT.

Notes: DHR superselection theory originates in a four-paper series: [Doplicher et al.,

1969a] starts with a field algebra and gauge group and then derives properties of the

superselection sectors. [Doplicher et al., 1969b] reconstructs the field algebra and gauge

group from the category of representations in the special case where the objects are all

one dimensional (i.e. the equivalence classes of objects of ∆f form an abelian group with

the monoidal product and conjugates as inverses). [Doplicher et al., 1971] defines the

symmetry ερ1,ρ2 , and uses it to give the statistical classification of objects of ∆.

For surveys of DHR theory in general, see [Roberts, 1970; Roberts, 1990; Roberts,

2004; Fredenhagen, 1992; Fredenhagen, 1994], [Araki, 1999, Ch. 6], and [Haag, 1996, Ch.

IV.2].

The full proof of the DR reconstruction theorem is distributed over [Doplicher et al.,

1974; Doplicher and Roberts, 1972; Doplicher and Roberts, 1989] and [Doplicher and

Roberts, 1990]. The alternative approach to the reconstruction theorem that we use in

this paper is based on [Roberts, ND] and [Deligne, 1990], incorporating simplifications

of the latter due to [Bichon, 1998] and ourselves.

For informal expositions of the DR reconstruction theorem, see [Doplicher and Roberts,

1987; Doplicher, 1991; Doplicher, 1992; Doplicher, 1993; Doplicher, 1995]. For an inter-

esting description of the goal of reconstructing fields and a gauge group, written before

a solution was obtained, see [Roberts, 1975].

11 FOUNDATIONAL IMPLICATIONS OF THE RECONSTRUCTION
THEOREM

We now return to the foundational questions (Section 7) that motivated our inves-
tigation. We also point out a few other cases where discussions in the philosophical
literature (e.g. about permutation symmetry and the identity of particles) might
benefit from the study of superselection theory.

11.1 Algebraic Imperialism and Hilbert Space Conservatism

DHR superselection theory sheds light on some questions that philosophers have
asked about the role of inequivalent representations of the algebra of observables.
But it will not answer all of our questions. We first bracket off those questions for
which DHR theory provides little help, and then we proceed to develop a case for
the relevance of DHR theory to foundational questions.

The DHR analysis requires that we fix a vacuum state ω0, and hence a base
representation (H0, π0). Inequivalent DHR representations do not correspond to
different vacuua; rather, they correspond to different local excitations of one and
the same vacuum state. So, DHR theory effectively ignores the question of how to
choose a vacuum representation. (But note that the power of the DHR analysis
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strongly suggests — against the Algebraic Imperialist — that representations are
essential components of the physical content of the theory.)

Second, in some of the most familiar cases — e.g., the free Boson field — the
DHR category is trivial. That is, DHR(A) = {π0}, and so F = A. In this case, the
vacuum representation is the only DHR representation (relative to itself). Thus,
in such cases, the elaborate apparatus of DHR superselection theory seems to
provide little insight into the physical importance of inequivalent representations.
(However, if we are able to find a physical reason for choosing a preferred vacuum
representation, then the DHR analysis suggests that no other representations are
relevant for explaining the phenomena.)

Finally, even in cases where DHR(A) is nontrivial, the field algebra itself has
inequivalent representations. (After all, it’s just another large C∗-algebra.) And
one might worry that the same Conservative versus Imperialist debate will arise
with respect to the field algebra.

But DHR theory has something to say about inequivalent DHR representations,
and about representations of the field algebra. First, the field algebra F is con-
structed concretely as operators on a Hilbert space H; i.e. F comes with a preferred
representation. (Recall that the preferred representation of F is on a Hilbert space
H that decomposes into a direct sum of superselection sectors for A.) Of course,
we could consider other representations of F. But in other representations of F, we
no longer have the intuitive interpretation of elements of F as intertwiners between
the DHR sectors of A. If the physically meaningful quantities have to have some
connection to observable phenomena, then the interpretation of elements of F in
terms of A might be thought to be a necessary condition for interpretation; and
so the given representation of F might be preferred for these reasons.

So, DHR theory suggests that the issue of inequivalent representations does not
come up for the field algebra. Regarding the issue of inequivalent representation
of the observable algebra, we can divide the problem into several questions:

1. Is there a physically privileged vacuum state/representation? What features
pick it out?

2. Are all physical representations in the DHR category of some vacuum state?
(We are ignoring for the time being theories with long range forces (see
[Buchholz and Fredenhagen, 1982]). In more general settings, we expect the
form of the question to remain the same: do we require physical states to
be reachable from a fixed vacuum state by the action of an appropriate set
of fields?)

3. If the answer to the second question is No, then how should we compare
representations that are not connected to a vacuum representation by fields
to representations that are?

Let’s suppose that the first question has been answered in the affirmative, and
that the vacuum representation (H0, π0) is fixed. Suppose also that DHR(A) is
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nontrivial. Then how should we think about the inequivalent representations in
DHR(A)? A naive transcription of Hilbert Space Conservatism to the current
context would tell us the following: the representations in DHR(A) are analogous
to competing theories: one is correct, and the others are surplus structure. The
naive transcription of Algebraic Imperialism to the current context would say:
the representations in DHR(A) are surplus structure; the physical content of the
theory is in A, the abstract algebra of observables.

Both Conservatism and Imperialism are based on an oversimplified view of the
formalism: it is supposed that the elements of reality correspond to operators
in the abstract algebra or in some Hilbert space representation thereof, and that
the possible states are either all states on the abstract algebra or some particular
folium of states. But the fundamental insight of DHR theory is that the set of rep-
resentations itself has structure, and it is this structure that explains phenomena.
So, a more adequate position would take all the representations more seriously.
Hence, we propose that according to Representation Realism, the content of the
theory is given by: (i) the net O �→ A(O), (ii) the dynamics on the quasilocal
algebra (i.e. the representation of the translation group in AutA), and (iii) the
symmetric tensor ∗-category DHR(A) of DHR representations.

Recall that the Conservative claims to have the advantage in terms of explana-
tory power: more structure (provided by choosing a representation) provides more
elements of reality, and so more satisfying explanations. But DHR superselection
theory shows that this claimed advantage is misleading: the focus on one rep-
resentation ignores the most interesting structure, namely the relations between
representations. Indeed, if we committed ourselves to one representation, and ig-
nored others, we would have no field operators, no gauge group, no definition of
Bose and Fermi fields, no definition of antiparticles, etc..

And yet there is a strong prima facie objection to Representation Realism:
since the Hamiltonian is always an observable, no possible dynamical evolution
can take us from a state in one representation to a state in an inequivalent rep-
resentation. So, inequivalent representations are dynamically isolated from each
other, and abstract relations between them cannot explain the features of states
in the representation that best describes our universe.

The fact that the Hamiltonian is an observable — hence cannot map states from
one sector to states in another — raises a further problem for our interpretation
of field operators. Recall that we speak of “creating” states in a sector Hρ by
acting on the vacuum with elements from the field algebra. That is, we can choose
F ∈ Hρ ⊆ F such that FΩ ∈ Hρ, where (Hρ, πρ) is disjoint from the vacuum
representation (H0, π0). The talk of “creation” here suggests that we are talking
about some sort of dynamical process. On the one hand, F ∈ F can be chosen
unitary, so structurally the map Ω �→ FΩ looks like dynamics. But since the
Hamiltonian is an observable, the transition Ω �→ FΩ is not dynamically allowable.
So, in what sense are states in Hρ accessible from the vacuum? Is the key insight
behind superselection rules that there are two notions of dynamic accessibility? If
so, then how are we to understand the differences between these two notions?
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11.2 Explanatory relations between representations

If we consider a C∗-algebra A with no further structure, then the mathematically
definable relations between representations (and hence, between states in the folia
of these representations) are exhausted by the following table:

π1 and π2 are equivalent
π1 and π2 are quasiequivalent
π1 and π2 are disjoint
π1 and π2 are weakly equivalent

Table 1. Relations Between Representations of A

Outside of the fourth relation (which makes special reference to the topology of
the state space), these relations are precisely those that can be defined in an
arbitrary ∗-category C with subobjects. Two objects X,Y in C are equivalent
if there is a unitary u ∈ Hom(X,Y ); are quasiequivalent if there is an isometry
v ∈ Hom(X,Y ); and are disjoint just in case they are not quasiequivalent.

Consider now the normal state space K of a C∗-algebra A. The GNS theorem
provides a map ω �→ (Hω, πω) from K into the representation category of A. We
then use this map to induce relations corresponding to those in Table 1 on K:
we talk about equivalent, quasiequivalent, and disjoint states. Furthermore, the
individual folia (sets of states whose GNS representations are quasiequivalent) have
a rich geometrical structure which corresponds exactly to the normal state space
of B(H) for some Hilbert space H. Thus, within a folium we have a notion of
“transition probability” between pure states (corresponding to rays in H), and a
three place relation “ω is a superposition of ω1 and ω2.” However, if two states lie
in disjoint folia, then these relations trivialize. The transition probability between
disjoint states is zero, and no state can be a superposition of states from a different
folia. It seems that the only physically suggestive thing we can say about states
from different folia is that they are “orthogonal.”

It is precisely the preceding considerations that have lead philosophers to worry
about inequivalent representations. The worry is based on the fact that disjoint
representations seem to be competitors, and nothing more. In order to alleviate
worries about the competition between representations, some philosophers [Clifton
and Halvorson, 2001a; Halvorson, 2004] go so far as to claim that these representa-
tions are “complementary” descriptions of the phenomena (in the sense of Bohr).
The word “complementarity” is of course meant to suggest that the representa-
tions are not merely competitors, and the choice of one does not need to be seen
as completely ruling out the relevance of another.

We wish to replace suggestive — and possibly misleading — terminology with
some real facts about the relationships between inequivalent representations. To
illustrate what we mean by this, consider the case of group representations: let
RepfG be the category of unitary representations of a compact group G. RepfG is
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not only a ∗-category, but it has a monoidal product and conjugates. That is, for
objects X,Y in RepfG, there is a product object X ⊗ Y , and a conjugate object
X. For our purposes, this is the crucial difference between group representations
and the representations of an arbitrary C∗-algebra A. For an arbitrary C∗-algebra
A, there is no product of representations, or conjugate of a representation.

In the case of compact group representations, typically X ∈ RepfG will be
disjoint from both X ⊗ Y and X. But in this case, we are not tempted to see
X is merely as a competitor of X ⊗ Y , or of X; there are some interesting re-
lations between these representations. Roughly speaking, information about X
gives us information about X ⊗ Y and X. Thus, although these representations
are technically “disjoint,” they are not completely unrelated to each other.5

One of the main accomplishments of the DHR analysis and DR reconstruction
theorem is to show that the category ∆f of physical representations is a tensor
∗-category with conjugates; indeed the Embedding Theorem (see the Appendix)
shows that ∆f is equivalent to the category RepfG for some compact group G.
The obvious question then is whether these additional relations on the category
of representations can help us get past the idea that disjoint representations are
merely competing descriptions.

An analogy to states might be helpful. Consider a pair H1,H2 of Hilbert spaces,
and let ψi ∈ Hi be unit vectors. Now consider the following two “descriptions of
reality”:

1. The state is ψ1.

2. The state is ψ1 ⊗ ψ2.

What do we say here: are these competing descriptions? In one sense, (1) and (2)
are competitors, because they cannot both be fully adequate descriptions of reality
at the same time. However, (1) and (2) are not competitors in the same sense that,
say, two orthogonal vectors in a single Hilbert space are competitors. The two state
descriptions are not merely competitors, because there is an interesting sense in
which ψ1 is a “part” of ψ1 ⊗ ψ2. Indeed, information about ψ1 (e.g. expectation
values it assigns to observables) does in fact give us information about ψ1 ⊗ ψ2

because of the canonical mappings between H1 and H1 ⊗H2.
Now let π1, π2 be objects in the DHR category ∆f , and suppose (as will often be

the case) that the representations π1 and π1⊗π2 are disjoint. Are these competing
descriptions? Again, π1 and π1 ⊗ π2 are competitors in the sense that if the state
of an object (or of the universe?) is in H(π1⊗π2) then it is not in Hπ1 . Nonetheless,
π1 and π1 ⊗ π2 are not merely competitors, because in one sense π1 is “part” of
π1 ⊗ π2.

5But note also: Philosophers of physics have so far not worried about inequivalent group
representations as competing descriptions of reality. And for good reason, because group elements
are not observables, and groups do not have states. Another insight of DHR theory is to show
that physicist’s intuitions about group representations are not totally baseless, because in fact
the interesting (DHR) representations of the observable algebra correspond to representations of
a compact group.
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But two words of caution should be issued here. First, we must be cautious
with the use of the “part” metaphor. For example, ∆f can have a nontrivial rep-
resentation π such that π⊗ π is equivalent to the vacuum representation. Then it
is not so clear that we should say that “π is part of π ⊗ π.” Second, there is one
significant disanalogy between the case of states ψ1 and ψ1 ⊗ ψ2 and the case of
representations π1 and π1 ⊗ π2: the two representations are GNS representations
of states on a single C∗-algebra A. Hence we can directly compare the expectation
values that these states assign to observables in A, and they will disagree signifi-
cantly (indeed, for any ε > 0 there is an observable A ∈ A such that ‖A‖ ≤ 1 and
‖ω1(A) − ω2(A)‖ > 2 − ε). Thus, there is a clear, empirically verifiable sense in
which states in π1 are competitors with states in π1 ⊗ π2.

Finally, there is an interesting physical relation between a DHR representation π
and its conjugate π, even though π and π are typically disjoint. In short, π is like an
inverse of π: if π is irreducible, then π is the unique irreducible representation such
that π⊗ π contains a copy of the vacuum representation. In fact, when π = π0 ◦ ρ
where ρ is a dimension 1 element of ∆f , d(ρ) = 1, then this is the exact relation:
ρ is an automorphism and ρ = ρ−1. In terms of field operators, if F creates the
charge ξ, then F annihilates the charge ξ. Furthermore, when π admits a particle
interpretation, then the states in the folium of π are the antiparticle states of the
states in the folium of π [Doplicher et al., 1969b].

11.3 Fields as theoretical entities, as surplus structure

From the standpoint of superselection theory, there is a sharp distinction between
observable and unobservable fields, namely, a field operator is an observable iff it
is invariant under all gauge transformations. To what extent does this distinction
between fields and observables match up with the philosopher of science’s distinc-
tion between theoretical and observational components of a theory? Even if the
two notions are not exactly the same, the connection is suggestive. In particular,
it seems interesting to ask about the extent to which the field plus gauge part of
QFT is fixed by the observable algebra.

First, the notion of equivalent systems of field operators seems a fairly close
analogue of the philosopher’s notion of “theoretical equivalence.”

DEFINITION 289. Let F1 = (F1,H1, G1) and F2 = (F2,H2, G2) be local field
systems with gauge symmetry for (A, ω). (See Defn. 247 on p. 808.) Then F1 and
F2 are theoretically equivalent just in case they are unitarily equivalent as systems
of local field operators. (See Defn. 10 on p. 816.)

REMARK 290. (i) This definition is not fully adequate, because it does not make
reference to dynamics. For example, this definition entails that the free Bose field
nets for different positive masses are theoretically equivalent. For a fully adequate
definition, it would probably be necessary to require that the unitary mapping
W : H1 → H2 also intertwines the dynamical groups on the two Hilbert spaces. (ii)
If F1 and F2 are theoretically equivalent, then they are equivalent in all physically
relevant senses (modulo dynamics): they have the same type of commutation



848 Hans Halvorson and Michael Müger

relations (either both have normal or abnormal commutation relations), they have
isomorphic gauge groups, etc..

The working analogy also suggests that we define “observational equivalence”
between two theories in terms of some equivalence between their nets of observ-
able algebras. There are a myriad number of ways we could explicate the notion
of observational equivalence in this setting; philosophers have their work cut out
for them. The following two definitions give extremely weak notions of observa-
tional equivalence that do not take into account a representation of the algebra of
observables.

DEFINITION 291. Let F1 and F2 be two local field systems with gauge symmetry,
and let A1 and A2 be the fixed point algebras; i.e.,

Ai = {A ∈ Fi : αg(A) = A, for all g ∈ Gi}.
Then we say that F1 and F2 are weakly observationally equivalent just in case there
is a ∗-isomorphism α from the algebra A1 onto the algebra A2.

DEFINITION 292. Let F1 and F2 be two local field systems with gauge symmetry,
and let A1 and A2 be their fixed point nets; i.e. for each double cone O,

Ai(O) = {A ∈ Fi(O) : αg(A) = A, for all g ∈ Gi}.
Then we say that F1 and F2 are observationally equivalent just in case there is a
net isomorphism α : A1 → A2 (see Defn. 118 on p. 767).

REMARK 293. The first definition is weaker because it does not require that the
net structure be preserved by the ∗-isomorphism α.

Again, the definitions omit reference to dynamics, which would be an important
component of a fully adequate treatment of observational equivalence. Nonethe-
less, even with these definitions, we can make some sense of remarks about un-
derdetermination of fields by observables, or about the physical equivalence of
different field theories.

1. (Construction of observationally equivalent theories) The DR reconstruction
theorem provides a general, nontrivial recipe for constructing non-equivalent
theories that are observationally equivalent: If (A, ω0) has nontrivial DHR
superselection sectors, then it can be embedded into two nonequivalent field
algebras F1 and F2. Indeed, A is always a field algebra over itself (but
incomplete), but the field algebra F from the DR reconstruction theorem is
complete.

2. (Elimination of parafields) It has long been thought that parafields are a
theoretical artifact. More precisely, it has been claimed that every parafield
theory is “physically equivalent” to a theory with normal commutation rela-
tions (see [Araki, 1961]). The DR reconstruction theorem partially validates
this claim by showing that every parafield theory is observationally equiva-
lent to a theory with normal commutation relations. Indeed, suppose that
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F1 is a parafield theory. Then we can extract the observable algebra A con-
tained in F1, and apply the DR reconstruction theorem to construct a field
algebra F2 with normal commutation relations. Since F1 and F2 have the
same net of local observable algebras, they are observationally equivalent.

3. Some have claimed that the relation between quantum fields (the field alge-
bra F) and observables (the observable algebra A) is analogous to relation
between coordinates and a manifold in differential geometry. However, the
DR reconstruction theorem shows that (subject to normal commutation re-
lations), there is a unique field net F and gauge group G compatible with the
observable algebra (A, ω0). Thus, there is a strong disanalogy between the
two cases, since there seems to be no sense in which one coordinate system
of a manifold is a better representation of reality than another coordinate
system.

Finally, we are in a position to get a clear picture of the interrelations between
questions about inequivalent representations and questions about gauge invariance.

According to a common interpretive stance, if two states of a physical system
can be identified under a gauge symmetry, then those two states are different
descriptions of the same underlying reality. So, for the purposes of counting states,
we should look to the quotient of the state space under gauge orbits. Similarly, it
is thought that the “real” quantities of a theory are the gauge invariant quantities
(see [Earman, 2004]).

In the setting of DHR superselection theory, the algebra of observables A is
precisely the gauge invariant part of the field algebra F, that is,

A = {A ∈ F : αg(A) = A, for all g ∈ G},

where G is the gauge group. This of course means that for any observable A ∈ A,
there is no difference between a state ψ and the gauge transformed state U(g)ψ.
(Of course, if ψ is a state vector in the vacuum representation, then U(g)ψ = ψ,
since the representation of the gauge group there is trivial.) So, if the common
interpretive stance is correct, the physical content of the theory is in the observable
algebra A; the fields are “descriptive fluff.”

So suppose that we ignore the field algebra F, and just look to the observable
algebra A to provide the physical content of the theory. But what should we
say about the representations of A? Are they just descriptive fluff? If not, then
is there one correct representation of A, or do we somehow need inequivalent
representations in order to account for all of the physical facts?

The DR reconstruction theorem shows that the preceding two sets of questions
— regarding the status of gauge variant quantities on the one hand, and repre-
sentations on the other hand — are tightly intertwined. The full structure of the
theory, field algebra F and gauge group G, is uniquely recoverable (modulo com-
pleteness, and normal commutation relations) from the structure of the category
DHR(A) of representations. The ontological significance of the gauge variant fields
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is closely aligned with the ontological significance of inequivalent representations.
(We will revisit this question in the next section when we discuss permutation
symmetry.)

Of course, there is a crucial disanalogy between the global gauge symmetries in
DHR superselection theory, and the local gauge symmetries of electromagnetism
or general relativity. But it is not clear that this disanalogy makes the DR re-
construction theorem any less interesting for understanding the relation between
gauge symmetry and superselection rules.

11.4 Statistics, permutation symmetry, and identical particles

Philosophers have taken an active interest in the differences between the Maxwell-
Boltzmann statistics of classical physics, and the Bose-Fermi statistics of quantum
physics. Indeed, it has been provocatively claimed that Bose-Fermi statistics is
explained by permutation invariance — i.e. there are no physical differences be-
tween states with permuted particle labels — and that this entails that quantum
particles are not “individuals” in the same sense that classical particles are. (See
[French, 2000; French and Rickles, 2003] for an account of the argument.)

But such discussions can be hampered by an overly simplistic formalism. In
particular, states are usually identified with unit vectors (or at best with rays) in
a single Hilbert space, and no account is given of the status of non-permutation
invariant operators. It might be helpful then to look at the issue from the per-
spective of a more flexible formalism that allows a distinction between fields and
observables, and in which states can be represented by vectors in inequivalent
representations of the algebra of observables.

There is another reason why the issue of permutation invariance should be
revisited within the context of QFT. Some of the literature suggests that the
metaphysical problem about the individuality of particles is aufgehoben in the
transition to QFT, because: (i) QFT is about fields and not particles, and (ii) the
Fock space formalism of QFT already identifies permuted states, and so rules out
a notion of particles as individuals. We have already noted that it is not so clear
how to make sense of the idea that QFT is about fields as opposed to particles.
Furthermore, the DR reconstruction theorem shows precisely how to make sense
of non-permutation invariant quantities and states in a theory that is manifestly
permutation invariant.

It is not surprising that DHR theory is relevant for the issue of permutation
invariance and statistics: one of the original goals of DHR was to clarify the role
of statistics in QFT. Riding the crest of a wave of mathematical success, Roberts
made the following bold claim about the DHR analysis of statistics:

One of the insights provided by the study of superselection sectors con-
cerns the origin of what is termed the ‘statistics’ of a particle. . . . Now
just as a theory should determine its particle states so should it de-
termine the statistics of these particles. Ordinary quantum mechanics
ignores this challenge saying in effect that the statistics of particles is
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one of the parameters determining the theory, the one telling you what
symmetry the n-particle states have. QFT does a little better: it says
that the statistics of the particles in the theory is determined by the
commutation relations of fields at spacelike separations. . . . In adopt-
ing the philosophy that the local observables determine the theory, we
are forced to meet this challenge in full. [Roberts, 1976, p. 203]

In the remainder of the paper from which the quote is taken, Roberts shows how
Bose-Fermi particle statistics emerges naturally from the DHR analysis of physical
representations of the algebra of observables.

Roberts’ claim is of crucial relevance to the philosophical debate about statistics
and identical particles. The philosophers have asked, “what explains Bose-Fermi
statistics?” Roberts’ answer is that the explanation comes from the structure of
the category of representations of the observable algebra.

Let us recall then how the Bose-Fermi distinction is supposed to emerge from
the DHR analysis. In Section 8.3, an object ρ of the category ∆ is shown to
have an intrinsic dimension d(ρ). The dimension is finite iff ρ has a conjugate; in
this case we define a unitary operator Θρ ∈ End(ρ) called the twist of ρ. If ρ is
irreducible, then Θρ = ωρidρ where ωρ = ±1. We then stipulate that a “Bosonic”
object is one with ωρ = 1 and a “Fermionic” object is one with ωρ = −1.

Of course, ρ is not the sort of thing that the philosophers have been calling
Bosonic or Fermionic — it is not a wavefunction. To connect the two pieces of
formalism, recall that an object of ∆f (endomorphisms of the algebra of observ-
ables) corresponds to a representation π0 ◦ ρ of the algebra of observables. So,
we call the representation π0 ◦ ρ Bosonic when ρ is Bosonic, and Fermionic when
ρ is Fermionic. Finally, we then call a state (“wavefunction”) Bosonic if it is in
the folium of a Bosonic representation, and Fermionic if it is in the folium of a
Fermionic representation. The claims to be assessed are: (i) does this stipulative
definition adequately reproduce the distinction between Bosonic and Fermionic
wavefunctions made in elementary nonrelativistic QM; and if so, (ii) what does
this tell us about permutation invariance?

The Bose-Fermi distinction in nonrelativistic QM

In nonrelativistic QM, the state space of n identical particles is the tensor product
H ⊗ · · · ⊗H of n copies of a Hilbert space H. The Hilbert space H ⊗ · · · ⊗H is
spanned by product states, i.e. states of the form

ψ1 ⊗ · · · ⊗ ψn,

with ψ1, . . . , ψn ∈ H.

DEFINITION 294. We define the natural action of the permutation group Sn on
H ⊗ · · · ⊗ H as follows. Let {ψ1, . . . , ψm} be an orthonormal basis for H, and
define for each permutation σ,

U(σ)(ψi1 ⊗ · · · ⊗ ψim) = ψσ(i1) ⊗ · · · ⊗ ψσ(im),
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and extend U(σ) by linearity to all of H.

If dimH > 1, then the representation U of Sn is reducible. It contains copies of
the two one-dimensional representations of Sn, namely the identity representation
Sn → 1, and the alternating representation. The subspace of vectors of H ⊗ · · · ⊗
H transforming according to the identity representation is called the symmetric
subspace, and the subspace of vectors transforming according to the alternating
representation is called the antisymmetric subspace. Vectors in the symmetric
subspace are called Bosonic, and vectors in the antisymmetric subspace are called
Fermionic. These traditional definitions have served as the basis of discussions of
permutation invariance in the philosophical literature.

In QM, states of n particles that differ only by permuting labels — for example,
ψ1 ⊗ ψ2 versus ψ2 ⊗ ψ1 — should not be counted separately. For the purposes of
statistical weighting, these two symbols represent one state. This has been stated
as the principle of Permutation Invariance.

Permutation Invariance (PI): Let A be the observables for the
n particle system. Then for each state ψ, and for each permutation
σ ∈ Sn, we have

〈U(σ)ψ,AU(σ)ψ〉 = 〈ψ,Aψ〉.

Permutation Invariance is sometimes also called the Indistinguishability Postulate:
two states that differ by a permutation are indistinguishable (i.e. there is no mea-
surement that can distinguish between the two). It has been claimed that PI
entails that state has Bose or Fermi statistics, no states with “parastatistics” are
allowed.

Dichotomy: For each state vector ψ and permutation σ, we have
U(σ)ψ = ±ψ.

(See [van Fraassen, 1991, pp. 389ff] for an account of attempts to prove Dichotomy
from PI. See [Butterfield, 1993] for further details.) In other words, the states that
are not in the symmetric or antisymmetric subspaces are surplus structure.

This leaves us with a number of puzzles. First, what do we say about the vectors
in H ⊗ · · · ⊗ H that are not in the symmetric or antisymmetric subspaces? Are
they surplus structure? Are they possibilities that are contingently not realized in
nature? More generally, not all vectors in H ⊗ · · · ⊗H are of a definite symmetry
type; and even among those that are of a definite symmetry type, not all are
totally symmetric or totally antisymmetric. For any irreducible representation ξ
of Sn we say that a wavefunction ψ in H ⊗ · · · ⊗H is of symmetry type ξ just in
case ψ is contained in the subspace corresponding to the representation ξ. Then
H ⊗ · · · ⊗ H is the direct sum of subspaces of definite symmetry type vectors.
But now the principle of plenitude suggests that there should be particles of every
symmetry type. Why do we not see them?
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An intrinsic characterization of symmetric and antisymmetric subspaces

We began with the full n-particle Hilbert space H ⊗ · · ·⊗H, and then we reduced
to the symmetric and antisymmetric subspaces. We were then left wondering what
to do with the remaining elements of H ⊗ · · · ⊗H.

The intrinsic description of the symmetric and antisymmetric subspaces is that
they are representations of the group Sn. (In fact, they are quasiequivalent to the
one dimensional irreducible representations of Sn.) So we can also work backwards.
That is, if we are given a representation (H,π) of Sn, we can ask after the intrinsic
characterization of this representation. Recall that the irreducible representations
of Sn are in one-to-one correspondence with Young tableaux with n boxes (see
[Simon, 1996]). There is a natural grouping of representations of Sn into para-
Bose and para-Fermi categories: we specify the representation (H,π) by a pair of
numbers (d(π), ωπ), with d(π) ∈ {1, 2, . . . , n} and ωπ = ±1.

1. For (d,+1), all Young tableaux whose columns have length less than or equal
d. (In this case, we say that π has Para-Bose statistics of order d.)

2. For (d,−1), all Young tableaux whose rows have length less than or equal d.
(In this case, we say that π has para-Fermi statistics of order d.)

Clearly the division of representations into para-Bose and para-Fermi is mutually
exclusive, but not exhaustive. (e.g., there are representations of Sn that contain
copies of both the 1 representation and the alternating representation.)

Now suppose that we are in the following position (described vividly by Roberts
in the opening quote): we are given a pure state ω of the algebra of observables A
and we asked whether its “intrinsic” statistics of its states is Bosonic or Fermionic.
What can we do? First we construct the GNS representation (H, π) induced by ω.
At least this makes things more concrete. But the Hilbert space H is not itself a
tensor product, and so there is no natural representation of Sn on H. Nor would
it help to construct tensor products of elements of H in the normal way, because
for ψ⊗ · · ·⊗ψ is trivially Bosonic. So, the obvious approach does not seem to tell
us anything about the intrinsic symmetry type of elements of H.

The key insight again comes from the DHR analysis: the representation (H, π)
is naturally isomorphic to an object ρ of a symmetric tensor ∗-category, namely
the category ∆f of localized transportable endomorphisms. Since ∆f has products
we can construct ρ⊗ ρ, and the symmetry ερ,ρ gives us notion of permuting ρ⊗ ρ.
[Recall that ερ,ρ ∈ Hom(ρ⊗ ρ).] As we will see in the following section, this gives
us a natural representation u of Sn in End(ρ⊗ρ). Furthermore, the pair (d(ρ), ωρ),
where d(ρ) is the dimension of ρ, and ωρ is the statistical phase of ρ, coincide with
the classification of u as a para-Bose or para-Fermi representation of Sn. We will
also see that this natural representation u of Sn corresponds to a permutation of
wavefunctions in the “larger” Hilbert space of the field algebra F.
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Representations of Sn in a symmetric tensor ∗-category
Unitary representations of the permutation group Sn arise naturally in tensor ∗-
categories with a unitary symmetry. Let (C,⊗,1) be a tensor ∗-category with
unitary symmetry cX,Y . Fix an object X ∈ Obj(C), and define a map u : S2 →
End(X ⊗X) by setting

u((1)) = idX⊗X , u((1, 2)) = cX,X .

Since (cX,X)2 = idX⊗X , u is a unitary representation of S2 in End(X ⊗X). This
construction can be iterated: define a map u : Sn → End(X ⊗ · · · ⊗X) by setting

u((i, i + 1)) = idX ⊗ · · · ⊗ cX,X ⊗ · · · ⊗ idX .

It is easy to verify that u extends uniquely to a unitary representation of Sn in
End(X ⊗ · · · ⊗X).

FACT 295. Let C be a tensor ∗-category with unitary symmetry and conjugates.
Then for each irreducible object X ∈ Obj(C) the induced unitary representation
u of Sn in End(X ⊗ · · · ⊗ X) is para-Bose of order d(X) if ωX = +1, and is
para-Fermi of order d(X) if ωX = −1. Furthermore, the statistical phase ωX is
the trace of u((1, 2)) = cX,X . (See Appendix B for more details.)

The physical interpretation becomes more clear in the presence of field opera-
tors. (Of course, the point of the Reconstruction Theorem is to show that such
field operators are always available.) Let (H,F, (G, k)) be a field system with
gauge symmetry for the observable algebra A and vacuum state ω. Let O1, . . . , On

be mutually spacelike separated regions. Let ρ be an irreducible object in ∆f .
Then using the transportability of ρ we can choose Fi ∈ F(Oi) such that FiΩ is in
the sector Hρ̂. (Recall that sectors are labeled by unitary equivalent classes ρ̂ of
objects in ∆f .) In other words, Fi creates the charge ρ̂ in the region Oi. Let σ be
a permutation of {1, . . . , n} and consider the following two state vectors in H:

ψ1 × ψ2 × · · · × ψn ≡ F1F2 · · ·FnΩ,(52)
ψσ(1) × ψσ(2) × · · · × ψσ(n) ≡ Fσ(1)Fσ(2) · · ·Fσ(n)Ω.(53)

These two vectors are typically distinct. In fact, if the field net has normal com-
mutation relations then we can compute the difference between the two vectors.
Supposing that σ only permutes two numbers, the two vectors will be the same if
ρ is Bosonic, and the two vectors will differ by a sign if ρ is Fermionic. However,
the two vectors always induce the same state on the algebra of observables π(A).
Indeed, if ρi ∈ ∆f (Oi) are the corresponding morphisms, then the states induced
by the two vectors, respectively, are

ω ◦ (ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn) = ω ◦ (ρ1ρ2 · · · ρn),(54)
ω ◦ (ρσ(1) ⊗ ρσ(2) ⊗ · · · ⊗ ρσ(n)

)
= ω ◦ (ρσ(1)ρσ(2) · · · ρσ(n)).(55)

Since endomorphisms that are localized in spacelike separated regions commute,
these two states are equal. Thus, permutation invariance holds for the observables,
but not for the fields.
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The interpretive upshot of the the DHR treatment of statistics is as follows:
permutation invariance is a gauge symmetry in the sense that it leaves all observ-
ables’ values invariant, but changes the values assigned to field operators. Are two
states related by a permutation the same or different? Of course, the answer to
the mathematical question is clear: the states of the observable algebra are the
same, the states of the field algebra are different. So, whether or not we take per-
mutations to correspond to “real” changes depends on what we think about the
status of the field operators. So the issue of permutation invariance is just a special
version of the issue of gauge invariance, and accordingly is tightly connected to
the question of the status of inequivalent representations.

Parastatistics and nonabelian gauge groups

The abstract Tannaka Theorem (Appendix B) shows that each symmetric tensor
∗-category (STC∗) C is equivalent to the representation category Repf (G, k) of
a compact supergroup (G, k). Applied to our current topic, the theorem shows
that the category ∆f of localized transportable morphisms is equivalent to the
representation category of the gauge group. Furthermore, Section B.9 shows that
each object X of an STC∗ gives rise naturally to a unitary representation of the
symmetric group Sn in End(X ⊗ · · · ⊗X), and this representation corresponds to
the intrinsic statistical characterization of X. Now, we know that the categorical
dimension of a representation (H,π) of (G, k) corresponds to the dimension of the
underlying Hilbert space H. Hence:

LEMMA 296. The category Repf (G, k) has irreducible objects of dimension greater
than 1 iff G is nonabelian.

Sketch of proof. The set of irreducible representations of G separates the
elements of G. Hence for gh �= hg, there is an irreducible representation (H,π)
such that π(g)π(h) �= π(h)π(g). Therefore dim H ≥ 2. �

It immediately follows from Fact 295, in conjunction with the fact that the em-
bedding functor preserves dimension, that:

PROPOSITION 297. There is an irreducible object X of C � Repf (G, k) with
parastatistics iff the corresponding group G is nonabelian.

Applied to our current case, this means that there are representations and states
with parastatistics iff the gauge group G is nonabelian.6 But we have good reasons
to think that the case of nonabelian gauge groups is physically relevant. So, the
DHR approach ignores worries about the supposed nonexistence of paraparticle
states, and undermines claims that there is a proof of Dichotomy.

6But there is an ambiguity in “parastatistics.” We mean para-Bose or para-Fermi statistics,
not mixtures of Bose and Fermi statistics.
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Braid group statistics

Recall from Section 8.1 that when spacetime is dimension 2, then ερ1,ρ2 is not
necessarily a symmetry on ∆f , but only a braiding. In this case, objects in ∆f

are not classified according to representations of the symmetric group Sn; rather,
objects in ∆f are classified in terms of representations of the braid group Bn. In
physical terms, states might not be permutation invariant, but satisfy the more
general braid group statistics.

DEFINITION 298. The braid group Bn on n strands is the group generated by
the set {σ1, . . . , σn−1} satisfying the equations

(1) σiσj = σjσi, |i− j| ≥ 2,

(2) σi+1σiσi+1 = σiσi+1σi.

The braid group on n strands can be given the following heuristic, geometric de-
scription: a braid consists of two sets {a1, . . . , an} and {b1, . . . , bn} of base points,
and n strands of yarn, where each yarn strand has one end attached to ai, and
the other end attached to bj , and each base point touches only one strand of yarn.
We identify two configurations if one can be transformed into the other without
disconnecting the strands from the base points. In this picture, the identity braid
has ai connected to bi, and no twists. The generating element σi can be thought
of as the simple braid where: ai is connected to bi+1, ai+1 is connected to bi, and
these two strands are twisted only once. (Otherwise, the σi braid looks just like
the identity braid.) Under this interpretation, the product gh of two braids is the
braid formed by attaching the ending points of g to the beginning points of h.

PROPOSITION 299. For each n ∈ N, the mapping

ε(n)
ρ (σi) = ρi−1(ερ) = Iρ × · · · × Iρ × ερ × Iρ × · · · × Iρ,

defines a unitary representation of the braid group Bn in End (ρ⊗ · · · ⊗ ρ). For
each i, j ∈ N with i ≤ j we have

ε(i)
ρ (g) = ε(j)

ρ (ϕij(g)), ∀g ∈ Si.

(A proof of this Proposition can be found in [Rehren et al., 1990]. Alternatively,
it is obvious given the considerations in Appendix B.) In other words, the product
object ρ ⊗ · · · ⊗ ρ carries a unitary representation of the braid group, which is
induced by the unitary operators of the form:

Iρ × · · · × ερ,ρ × · · · × Iρ.

This represents an elementary permutation of the i-th and (i + 1)-st copy of ρ.
There is a natural homomorphism of the braid group onto the symmetric group.

This is obvious when we recall that the definition of the symmetric group is exactly
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the same as the definition of the braid group with the additional condition that
each generator is its own inverse. Hence, van Dyck’s theorem [Hungerford, 1980,
p. 78] entails that the obvious map f on generators extends uniquely to a group
homomorphism f : Bn → Sn. So, each representation π of Sn yields a representa-
tion π ◦ f of Bn. In slogan form: a system that obeys permutation statistics also
obeys braid statistics.

Recall now the worrisome argument for the existence of paraparticles: There
should be particles corresponding to all irreducible representations of Sn. For
n ≥ 3, there are non Bose or Fermi representations of Sn, so there should be
paraparticles.

Now we can see that either something is wrong with this argument, or the
problem is much more severe than we thought. Since any system that has Sn as
a symmetry group also has Bn as a symmetry group, the argument commits us
to predicting the existence of particles corresponding to all irreducible represen-
tations of Bn. But Bn has infinitely many irreducible representations. (Indeed,
its representations have so far resisted classification.) Furthermore, we could now
repeat the argument for any group K that can be mapped homomorphically onto
Bn, and there is an infinite chain of larger groups with this property. Therefore,
the principle of plenitude applied to group representations predicts more particles
than we could ever possibly describe.

Notes: For discussions of statistics of DHR representations, see [Roberts, 1976; Doplicher,

1975].
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de France, 90:323–448, 1962.

[Giulini, 2003] D. Giulini. Superselection rules and symmetries. In Decoherence and the appear-
ance of a classical world in quantum theory. Springer, NY, 2nd edition, 2003.



Algebraic Quantum Field Theory 861

[Guido and Longo, 1992] Daniele Guido and Roberto Longo. Relativistic invariance and charge
conjugation in quantum field theory. Communications in Mathematical Physics, 148:521–551,
1992.

[Haag and Swieca, 1965] R. Haag and J. A. Swieca. When does a quantum field theory describe
particles? Communications in Mathematical Physics, 1:308–320, 1965.

[Haag, 1996] Rudolf Haag. Local quantum physics. Springer-Verlag, Berlin, second edition,
1996.
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[Müger and Tuset, 2006] Michael Müger and Lars Tuset. Monoids, embedding functors and

quantum groups. math.QA/0604065, 2006.



862 Hans Halvorson and Michael Müger
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Appendix.

Abstract Duality Theory for Symmetric Tensor ∗-
Categories

(by Michael Müger)

The aim of this appendix is to give a proof of Theorem 389, first proved by S.
Doplicher and J. E. Roberts in 1989, according to which every symmetric tensor
∗-category with conjugates, direct sums, subobjects and End1 = C is equivalent to
the category of finite dimensional unitary representations of a uniquely determined
compact supergroup. Not much of this material is new, but Theorem 403 probably
is, and see Remark 434. However, this seems to be the first exposition of the
reconstruction theorem for symmetric tensor categories that gives complete and
streamlined proofs, including a short and transparent proof of Tannaka’s classical
theorem. In the first section we provide the necessary concepts and results of
category theory to the extent that they don’t involve the notion of fiber functor,
whereas the second section is concerned with the Tannaka theory proper. Our main
reference for category theory is [Mac Lane, 1998], preferably the second edition.
The reader having some experience with categories is advised to skip directly to
Section B, using Section A as a reference when needed.

A CATEGORICAL PRELIMINARIES

A.1 Basics

DEFINITION 300. A category C consists of:

• A class Obj C of Objects. We denote the objects by capital letters X,Y, . . ..

• For any two objects X,Y a set HomC(X,Y ) of arrows (or morphisms); we
write f : X → Y to indicate that f ∈ HomC(X,Y ), and we omit the subscript
C whenever there is no risk of confusion.

• For any object X a distinguished arrow idX ∈ End(X) = Hom(X,X).

• For each X,Y,Z ∈ Obj C, a function ◦ : Hom(Y,Z)×Hom(X,Y ) → Hom(X,Z)
such that:

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

and

idY ◦ f = f, g ◦ idY = g,

whenever f ∈ Hom(X,Y ), g ∈ Hom(Y,Z), and h ∈ Hom(Z,W ).
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DEFINITION 301. A morphism f ∈ Hom(X,Y ) is an isomorphism iff it is in-
vertible, i.e. there is a g ∈ Hom(Y,X) such that g ◦ f = idX and f ◦ g = idY . If
an isomorphism X → Y exists, we write X ∼= Y .

DEFINITION 302. If C is a category, then a subcategory D ⊂ C is defined by a
subclass ObjD ⊂ Obj C and, for every X,Y ∈ ObjD, a subset HomD(X,Y ) ⊂
HomC(X,Y ) such that idX ∈ HomD(X,X) for all X ∈ ObjD and the morphisms
in D is closed under the composition ◦ of C. A subcategory D ⊂ C is full if
HomD(X,Y ) = HomC(X,Y ) for all X,Y ∈ ObjD.

DEFINITION 303. A (covariant) functor F from category C to category D maps
objects of C to objects of D and arrows of C to arrows of D such that F (g ◦ f) =
F (g)◦F (f), and F (idX) = idF (X). A contravariant functor is just like a covariant
functor except that it reverses the order of arrows.

DEFINITION 304. A functor F : C → D is faithful, respectively full, if the map

FX,Y : HomC(X,Y ) → HomD(F (X), F (Y ))

is injective, respectively surjective, for all X,Y ∈ Obj C.
DEFINITION 305. A functor F : C → D is essentially surjective if for every
Y ∈ ObjD there is an X ∈ Obj C such that F (X) ∼= Y .

DEFINITION 306. If F : C → D and G : C → D are functors, then a natural
transformation η from F to G associates to every X ∈ Obj C a morphism ηX ∈
HomD(F (X), G(X)) such that

F (X)
F (s)� F (Y )

G(X)

ηX

�

G(s)
� G(Y )

ηY

�

commutes for every arrow s ∈ HomC(X,Y ). If ηX is an isomorphism for every
X ∈ Obj C, then η is said to be a natural isomorphism.

DEFINITION 307. A functor F : C → D is an equivalence of categories if
there exist a functor G : D → C and natural isomorphisms η : FG → idD and
ε : idC → GF . Two categories are equivalent, denoted F � G, if there exists an
equivalence F : C → D.

DEFINITION 308. A category is small if Obj C is a set (rather than just a class).
A category is essentially small if it is equivalent to a small one, i.e. Obj C/ ∼= is a
set.

REMARK 309. Without wanting to go into foundational technicalities we point
out that the category of a ‘all representations’ of a group is a huge object. However,
considered modulo equivalence the representations are of reasonable cardinality,
i.e. are a set.
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A.2 Tensor categories and braidings

DEFINITION 310. Given two categories C,D, the product category C × D is
defined by

Obj(C × D) = Obj C ×ObjD,

HomC×D(X × Y,Z ×W ) = HomC(X,Z)×HomD(Y,W ),
idX×Y = idX × idY

with the obvious composition (a× b) ◦ (c× d) := (a ◦ c)× (b ◦ d).

DEFINITION 311. A strict tensor category (or strict monoidal category) is a
category C equipped with a distinguished object 1, the tensor unit, and a functor
⊗ : C × C → C such that:

1. ⊗ is associative on objects and morphisms, i.e. (X ⊗ Y )⊗Z = X ⊗ (Y ⊗Z)
and (s ⊗ t) ⊗ u = s ⊗ (t ⊗ u) for all X,Y,Z,X ′, Y ′, Z ′ ∈ Obj C and all
s : X → X ′, t : Y → Y ′, u : Z → Z ′.

2. The unit object behaves as it should: X ⊗ 1 = X = 1 ⊗ X and s ⊗ id1 =
s = id1 ⊗ s for all s : X → Y .

3. The interchange law

(a⊗ b) ◦ (c⊗ d) = (a ◦ c)⊗ (b ◦ d)

holds whenever a ◦ c and b ◦ d are defined.

REMARK 312. Many categories with tensor product are not strict in the above
sense. A tensor category is a category equipped with a functor ⊗ : C × C →
C, a unit 1 and natural isomorphisms αX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z),
λX : 1 ⊗ X → X, ρX : X ⊗ 1 → X satisfying certain identities. The notions of
braiding, monoidal functor and monoidal natural transformation generalize to such
categories. The generality achieved by considering non-strict categories is only
apparent: By the coherence theorems, every (braided/symmetric) tensor category
is monoidally naturally equivalent to a strict one. See [Mac Lane, 1998; Joyal and
Street, 1993a] for all this.

Strictly speaking (pun intended) the categories of vector spaces and Hilbert
spaces are not strict. However, the coherence theorems allow us to pretend that
they are, simplifying the formulae considerably. The reader who feels uncomfort-
able with this is invited to insert the isomorphisms α, λ, ρ wherever they should
appear.

DEFINITION 313. A (full) tensor subcategory of a tensor category C is a (full)
subcategory D ⊂ C such that ObjD contains the unit object 1 and is closed under
the tensor product ⊗.
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DEFINITION 314. Let C,D be strict tensor categories. A tensor functor (or
a monoidal functor) is a functor F : C → D together with isomorphisms dFX,Y :
F (X) ⊗ F (Y ) → F (X ⊗ Y ) for all X,Y ∈ C and a morphism eF : 1D → F (1C)
such that

1. The morphisms dFX,Y are natural w.r.t. both arguments.

2. For all X,Y,Z ∈ C the following diagram commutes:

F (X)⊗ F (Y )⊗ F (Z)
dFX,Y ⊗ idF (Z)� F (X ⊗ Y )⊗ F (Z)

F (X)⊗ F (Y ⊗ Z)

idF (X) ⊗ dFY,Z

�

dFX,Y⊗Z
� F (X ⊗ Y ⊗ Z)

dFX⊗Y,Z

�

(56)

3. The following compositions are the identity morphisms of F (X)

(57)
F (X) ≡ F (X)⊗ 1D

idF (X) ⊗ eF� F (X)⊗ F (1C)
dX,1� F (X ⊗ 1C) ≡ F (X)r

F (X) ≡ 1D ⊗ F (X)
eF ⊗ idF (X)� F (1C)⊗ F (X)

d1,X� F (1C ⊗X) ≡ F (X)
for all X ∈ C.

If C,D are tensor ∗-categories and F is ∗-preserving, the isomorphisms e, dX,Y are
required to be unitary.

DEFINITION 315. Let C,D be strict tensor categories and F,G : C → D tensor
functors. A natural transformation α : C → D is monoidal if

F (X)⊗ F (Y )
dFX,Y� F (X ⊗ Y )

G(X)⊗G(Y )

αX ⊗ αY

�

dGX,Y

� G(X ⊗ Y )

αX⊗Y

�

commutes for all X,Y ∈ C and the composite 1D
eF

−→ F (1) α1−→ G(1) coincides
with eG.

REMARK 316. A tensor functor between strict tensor categories is called strict if
all the isomorphisms dX,Y and e are identities. However, it is not true that every
tensor functor is equivalent to a strict one!

DEFINITION 317. A tensor functor F : C → D is an equivalence (of tensor
categories) if there exist a tensor functor G : D → C and monoidal natural isomor-
phisms GF → idC and FG → idC .
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PROPOSITION 318. A functor F : C → D is an equivalence iff F is faithful, full
and essentially surjective. A tensor functor F : C → D of (strict) tensor categories
is an equivalence of tensor categories iff F is faithful, full and essentially surjective.

Proof. For the first statement see [Mac Lane, 1998, Theorem 1, p. 91] and for
the second [Saavedra Rivano, 1972]. �

DEFINITION 319. A braiding for a strict tensor category C is a family of
isomorphisms cX,Y : X ⊗ Y → Y ⊗X for all X,Y ∈ Obj C satisfying

1. Naturality: For every s : X → X ′, t : Y → Y ′, the diagram

X ⊗ Y
cX,Y� Y ⊗X

X ′ ⊗ Y ′

s⊗ t

� cX′,Y ′� Y ′ ⊗X ′

t⊗ s

�

commutes.

2. The ‘braid equations’ hold, i.e. the diagrams

X ⊗ Y ⊗ Z
cX,Y ⊗ idZ� Y ⊗X ⊗ Z

Y ⊗ Z ⊗X

idY ⊗ cX,Z

�

cX,Y⊗Z �

X ⊗ Y ⊗ Z
idX ⊗ cY,Z� X ⊗ Z ⊗ Y

Z ⊗X ⊗ Y

cX,Z ⊗ idY

�

cX⊗Y,Z �

commute for all X,Y,Z ∈ Obj C.
If, in addition, cY,X ◦ cX,Y = idX⊗Y holds for all X,Y , the braiding is called a
symmetry.

A strict braided (symmetric) tensor category is a strict tensor category equipped
with a braiding (symmetry).

DEFINITION 320. If C,D are strict braided (symmetric) tensor categories, a
tensor functor F : C → D is braided (symmetric) if

F (cX,Y ) = cF (X),F (Y ) ∀X,Y ∈ Obj C.
(Note that on the l.h.s., respectively r.h.s, c is the braiding of C, respectively D.

There is no additional condition for a monoidal natural transformation to be
braided/symmetric.



870 Hans Halvorson and Michael Müger

A.3 Graphical notation for tensor categories

We will on some occasions use the so-called ‘tangle diagrams’ for computations
in strict (braided) tensor categories, hoping that the reader has seen them before.
By way of explanation (for much more detail see e.g. [Kassel, 1995]) we just say
that identity morphisms (equivalently, objects) are denoted by vertical lines, a
morphism s : X → Y by a box with lines corresponding to X and Y entering from
below and above, respectively. Compositions and tensor products of morphisms are
denoted by vertical and horizontal juxtaposition, respectively. Braiding morphisms
are represented by a crossing and the duality morphisms r, r by arcs:

Hom(X,Y ) ! s ≡

Y

s

X

cX,Y ≡
Y X
��

�
�

�

��
X Y

c−1
Y,X ≡

Y X
�

�
���

��

X Y

rX ≡
X X

� �rX ≡
X X

� �

(If c is a symmetry, both lines in the braiding are drawn unbroken.) The reason for
using this diagrammatic representation is that even relatively simple formulae in
tensor categories become utterly unintelligible as soon as morphisms with ‘different
numbers of in- and outputs’ are involved, like s : A→ B ⊗C ⊗D. This gets even
worse when braidings and duality morphisms are involved. Just one example of a
complete formula: The interchange law s ⊗ idW ◦ idX ⊗ t = idY ⊗ t ◦ s ⊗ idZ for
s : X → Y, t : Z →W is drawn as

Y W

s

t

X Z

=

Y W

t

s

X Z

The diagram (correctly!) suggests that we have may pull morphisms alongside
each other.

A.4 Additive, C-linear and ∗-categories
DEFINITION 321. A category is an Ab-category if all hom-sets are abelian
groups and the composition ◦ is bi-additive.

DEFINITION 322. Let X,Y,Z be objects in a Ab-category. Then Z is called
a direct sum of X and Y , denoted Z ∼= X ⊕ Y , if there are morphisms u : X →
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Z, u′ : Z → X, v : Y → Z, v′ : Z → Y such that u′ ◦ u = idX , v′ ◦ v = idY and
u ◦ u′ + v ◦ v′ = idZ . (Note that every Z ′ ∼= Z also is a direct sum of X and Y .
Thus direct sums are defined only up to isomorphism, which is why we don’t write
Z = X⊕Y .) We say that C has direct sums if there exists a direct sum Z ∼= X⊕Y
for any two object X,Y .

DEFINITION 323. An object 0 in a category C is called a zero object if, for every
X ∈ C, the sets Hom(X,0) and Hom(0,X) both contain precisely one element. A
morphism to or from a zero object is called a zero morphism.

It is immediate from the definition that any two zero objects are isomorphic.
If a category doesn’t have a zero object it is straightforward to add one. If z is
a zero morphism and f is any morphism, then z ◦ f, f ◦ z, z ⊗ f, f ⊗ z are zero
morphisms (provided they make sense).

DEFINITION 324. An additive category is an Ab-category that has a zero object
and direct sums.

EXAMPLE 325. The category of abelian groups (with the trivial group as zero).

DEFINITION 326. A category C is called C-linear if Hom(X,Y ) is a C-vector
space for all X,Y ∈ Obj C and the composition map ◦ : (f, g) �→ g ◦ f is bilinear.
If C is a tensor category we require that also ⊗ : (f, g) �→ g⊗f is bilinear. Functors
between C-linear category are always assumed to be C-linear, i.e. HomC(X,Y )→
HomD(F (X), F (Y )) must be C-linear.

DEFINITION 327. A positive ∗-operation on a C-linear category is a family
of maps that to every morphism s ∈ Hom(X,Y ) associates a morphism s∗ ∈
Hom(Y,X). This map must be antilinear, involutive ((s∗)∗ = s) and positive
in the sense that s∗ ◦ s = 0 implies s = 0. A ∗-category is a C-linear category
equipped with a positive ∗-operation. A tensor ∗-category is a tensor category
with a positive ∗-operation such that (s ⊗ t)∗ = s∗ ⊗ t∗ for all s, t. We consider
only unitary braidings (symmetries) of tensor ∗-categories.

DEFINITION 328. A morphism v : X → Y in a ∗-category is called an isometry
if v∗ ◦ v = idX . An isometry v is called a unitary if it satisfies v ◦ v∗ = idY . A
morphism p ∈ EndX is called a projector if p = p ◦ p = p∗. We say that C has
subobjects if for every projector p ∈ EndX there exists an isometry v : Y → X
such that v ◦ v∗ = p. In a ∗-category we strengthen Definition 322 by requiring
that u′ = u∗, v′ = v∗, i.e. u, v must be isometries.

DEFINITION 329. A functor F between ∗-categories is ∗-preserving if F (s∗) =
F (s)∗ for every morphism s. The isomorphisms dX,Y , e coming with a functor be-
tween tensor ∗-categories coming with a functor of tensor ∗-categories are required
to be unitaries.

DEFINITION 330. Let C be a tensor ∗-category and X ∈ Obj C. An object
X ∈ Obj C is called a conjugate object of X if there exist morphisms r : 1→ X⊗X
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and r : 1→ X ⊗X satisfying the ‘conjugate equations’

idX ⊗ r∗ ◦ r ⊗ idX = idX ,

idX ⊗ r∗ ◦ r ⊗ idX = idX .

We say that (X, r, r) is a conjugate of X. If every non-zero object of C has a
conjugate then we say that C has conjugates.

Note also that a zero object cannot have a conjugate. If (X, r, r), (X
′
, r′, r′) both

are conjugates of X then one easily verifies that idX′ ⊗ r∗ ◦ r′ ⊗ idX : X → X
′
is

unitary. Thus the conjugate is unique up to unitary equivalence.

DEFINITION 331. An object X in a C-linear category is irreducible if EndX =
CidX .

DEFINITION 332. A TC∗ is a tensor ∗-category with finite dimensional hom-
sets, with conjugates, direct sums, subobjects and irreducible unit 1. A BTC∗ is
a TC∗ with a unitary braiding. An STC∗ is a TC∗ with a unitary symmetry.

EXAMPLE 333. The tensor ∗-category H of finite dimensional Hilbert spaces is a
STC∗. The symmetry cH,H′ : H ⊗H ′ → H ′ ⊗H is given by the flip isomorphism
Σ : x ⊗ y �→ y ⊗ x. The conjugate of an object H is the Hilbert space dual H.
Picking a basis {ei} of H with dual basis {fi}, the conjugation morphisms are
given by

r =
∑
i

fi ⊗ ei, r =
∑
i

ei ⊗ fi.

In the same way one sees that the category RepfG of finite dimensional unitary
representations of a compact group G is an STC∗.

LEMMA 334. A TC∗ is semisimple, i.e. every object is a finite direct sum of
irreducible objects.

Proof. For every X ∈ C, EndX is a finite dimensional C-algebra with a positive
involution. Such an algebra is semisimple, to wit a multi matrix algebra. Thus
idX is a sum of projections pi that are minimal in the sense that piEndXpi ∼= C.
Since C has subobjects, there are objects Xi corresponding to the pi, which are
irreducible by minimality of the pi. Clearly, X ∼= ⊕iXi. �

DEFINITION 335. A solution (X, r, r) of the conjugate equations is called stan-
dard if

r∗ ◦ idX ⊗ s ◦ r = r∗ ◦ s⊗ idX ◦ r

for all s ∈ EndX. In this case, (X, r, r) is called a standard conjugate.

LEMMA 336. Let C be a TC∗ and (X, r, r) a conjugate for X ∈ C. Let vi : Xi →
X, wi : Xi → X be isometries effecting the direct sum decomposition of X,X into
irreducibles. Then (X, r, r) is a standard conjugate iff (Xi, w

∗
i ⊗ v∗

i ◦ r, v∗
i ⊗w∗

i ◦ r)
is a standard conjugate for Xi for all i. Every object admits a standard conjugate.
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Proof. For the equivalence claim, see [Longo and Roberts, 1997], in particular
Lemma 3.9. (Note that in [Longo and Roberts, 1997], standardness is defined by
the property in the statement above.) We use this to prove that every objects ad-
mits a standard conjugate. If X is irreducible, we have EndX = CidX . Therefore
the standardness condition reduces to r∗ ◦ r = r∗ ◦ r, thus a conjugate (X, r, r)
can be made standard by rescaling r, r. In the general case, we use semisimplicity
to find a direct sum decomposition of X into irreducibles Xi. Let (Xi, ri, ri) be
standard conjugates of the Xi and put X = ⊕Xi. Let vi : Xi → X, wi : Xi → X
be the isometries effecting the direct sums. Defining r =

∑
i wi ⊗ vi ◦ ri and

r =
∑
i vi ⊗ wi ◦ ri, the criterion in the first part of the lemma applies and gives

standardness of (X, r, r). �

LEMMA 337. Let (X, r, r) be a (standard) conjugate of X, let p ∈ EndX a
projection and define p = r∗ ⊗ idX ◦ idX ⊗ p ⊗ idX ◦ idX ⊗ r ∈ EndX. If
v : Y → X, w : Y → X are isometries such that v ◦ v∗ = p, w ◦ w∗ = p then
(Y ,w∗ ⊗ v∗ ◦ r, v∗ ⊗ w∗ ◦ r) is a (standard) conjugate for Y .

Proof. Omitted. For the easy proof see [Longo and Roberts, 1997] or [Müger,
2000]. �

LEMMA 338. If (X, r, r), (Y , r′, r′) are (standard) conjugates of X,Y , respec-
tively, then (Y ⊗X, r′′, r′′), where r′′ = idY ⊗ r⊗ idY ◦ r′, r′′ = idX ⊗ r′⊗ idX ◦ r)
is a (standard) conjugate for X ⊗ Y .

Proof. That (Y ⊗X, r′′, r′′) is a conjugate is an easy computation. Standardness
is less obvious since the map End X⊗EndY → EndX⊗Y need not be surjective.
However, it follows using the alternative characterization of standardness given in
Lemma 336. �

PROPOSITION 339. Let C be a TC∗. Let X ∈ C and let (X, r, r) be a standard
conjugate. Then the map

TrX : End X → C, s �→ r∗ ◦ idX ⊗ s ◦ r

is well defined, i.e. independent of the choice of (X, r, r). It is called the trace. It
satisfies

TrX(s ◦ t) = TrY (t ◦ s) ∀s : Y → X, t : X → Y,

TrX⊗Y (s⊗ t) = TrX(s)TrY (t) ∀s ∈ EndX, t ∈ EndY.

Proof. Easy exercise. �

DEFINITION 340. Let C be a TC∗ and X ∈ C. The dimension of X is defined
by d(X) = TrX(idX), i.e. d(X) = r∗ ◦ r for any standard conjugate (X, r, r).

LEMMA 341. The dimension is additive (d(X ⊕ Y ) = d(X) + d(Y )) and mul-
tiplicative (d(X ⊗ Y ) = d(X)d(Y )). Furthermore, d(X) = d(X) ≥ 1 for every
object, and d(X) = 1 implies that X ⊗X ∼= 1, i.e. X is invertible.
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Proof. Additivity is immediate by the discussion of standard conjugates. Multi-
plicativity of the dimension follows from Lemma 338.

If (X, r, r) is a standard conjugate for X, then (X, r, r) is a standard conjugate
for X, implying d(X) = d(X). The positivity of the ∗-operation implies that
d(X) = r∗ ◦ r > 0. Since X ⊗ X contains 1 as a direct summand, we have
d(X)2 ≥ 1, thus d(X) ≥ 1. Finally, if d(X) = 1, 1 is the only direct summand of
X ⊗X, to wit X ⊗X ∼= 1. Similarly, X ⊗X ∼= 1. �

DEFINITION 342. Let C be a BTC∗ and X ∈ C. The twist Θ(X) ∈ EndX is
defined by

Θ(X) = r∗ ⊗ idX ◦ idX ⊗ cX,X ◦ r ⊗ idX ,

where (X, r, r) is a standard solution of the conjugate equations.

LEMMA 343. Let C be a BTC∗. Then

(i) Θ(X) is well defined, i.e. does not depend on the choice of (X, r, r).

(ii) For every morphism s : X → Y we have Θ(Y ) ◦ s = s ◦Θ(X). (I.e., Θ is a
natural transformation of the identity functor of C.)

(iii) Θ(X) is unitary.

(iv) Θ(X ⊗ Y ) = Θ(X)⊗Θ(Y ) ◦ cY,X ◦ cX,Y for all X,Y .

(v) If C is an STC∗, this simplifies to Θ(X)2 = idX and Θ(X ⊗ Y ) = Θ(X) ⊗
Θ(Y ) for all X,Y ∈ C (i.e., Θ is a monoidal natural transformation of the
identity functor of C). If X,Y are irreducible, we have ω(X) = ±1 and
ωZ = ωXωY for all irreducible direct summands Z ≺ X ⊗ Y .

Proof. (i) is proven as Proposition 339. The other verifications are not-too-
difficult computations, for which we refer to [Longo and Roberts, 1997] or [Müger,
2000]. We just comment on (v): In an STC∗ we have c∗X,X = c−1

X,X = cX,X ,
implying Θ(X)∗ = Θ(X). Together with unitarity this gives Θ(X)2 = idX . Multi-
plicativity of Θ in an STC∗ follows from cY,X ◦ cX,Y = id. If X,Y are irreducible,
we have Θ(X) = ωX idX ,Θ(Y ) = ωY idY and thus Θ(X⊗Y ) = ωXωY idX⊗Y . Now
ω(Z) = ωXωY for irreducible Z ≺ X ⊗ Y follows by naturality of Θ. �

The following is a reworking of Propositions 4.4 and 4.5 in [Longo and Roberts,
1997].

PROPOSITION 344. Let C,D be BTC∗s and E : C → D a ∗-preserving braided
tensor functor. If (X, r, r) is a standard conjugate of X ∈ C, then (E(X), (dE

X,X
)−1◦

E(r) ◦ eE , (dE
X,X

)−1 ◦E(r) ◦ eE) is a standard conjugate for E(X). In particular,

d(E(X)) = d(X), Θ(E(X)) = E(Θ(X)) ∀X ∈ C.
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Proof. We assume for a while that the functor E is strict and that X is irreducible.
Let (X, r, r) be a standard conjugate. Since E preserves the conjugate equations,
(E(X), E(r), E(r)) is a conjugate for E(X), but if E is not full, standardness
requires proof. We begin with

X X

�
�
���

��

� �r

=

X X

� �r∗

�
�
���

��

� �r
� �r

=

X X
� �r∗

�
�
���

��

�
�
���

��

��

�
�
�

��
� �r

� �r

=

X X

� �r∗

��

�
�
�

��
� �r

� �r

= ωX

X X

� �r

Thus c∗
X,X

◦ r = ωX · r, which is equivalent to cX,X ◦ r = ωXr. Now we let
s ∈ EndE(X) and compute

E(r∗) ◦ idE(X) ⊗ s ◦ E(r) =

= E(r∗) ◦ c∗
E(X),E(X)

◦ cE(X),E(X) ◦ idE(X) ⊗ s ◦ E(r)

= (cE(X),E(X) ◦ E(r))∗ ◦ cE(X),E(X) ◦ idE(X) ⊗ s ◦ E(r)

= (cE(X),E(X) ◦ E(r))∗ ◦ s⊗ idE(X) ◦ cE(X),E(X) ◦ E(r)

= E(cX,X ◦ r)∗ ◦ s⊗ idE(X) ◦ E(cX,X ◦ r)

= E(ωXr)∗ ◦ s⊗ idE(X) ◦ E(ωXr)

= E(r)∗ ◦ s⊗ idE(X) ◦ E(r),

which means that (E(X), E(r), E(r)) is a standard conjugate for E(X). (We
have used unitarity of the braiding, the fact that E is ∗-preserving and braided,
cX,X ◦ r = ωXr and |ωX | = 1.)

Now let X be reducible, (X, r, r) a standard conjugate and let vi : Xi → X,
wi : Xi → X be isometries effecting the decompositions into irreducibles. Defining
ri = w∗

i ⊗ v∗
i ◦ r, ri = v∗

i ⊗ w∗
i ◦ r), (Xi, ri, ri) is standard by Lemma 336. Thus

(E(Xi), E(ri), E(ri)) is standard by the first half of this proof. In view of E(r) =
E(

∑
i wi⊗vi ◦ ri) =

∑
i E(wi)⊗E(vi) ◦E(ri) and similarly for E(r), it follows that

(E(X), E(r), E(r)) is standard (since it is a direct sum of standard conjugates).
If E is not strict, we have to insert the unitaries dEX,Y : E(X)⊗E(Y ) → E(X⊗

Y ), eE : 1 → E(1) at the obvious places in the above computations, but nothing
else changes. That E preserves dimensions follows since the dimension is defined
in terms of a standard conjugate. Finally, standardness of (E(X), E(r), E(r))
together with E(cX,Y ) = cE(X),E(Y ) imply Θ(E(X)) = E(Θ(X)). �
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We close this subsection by commenting on the relation of ∗-categories with
the more general notion of C∗-tensor categories of [Doplicher and Roberts, 1989;
Longo and Roberts, 1997].

DEFINITION 345. A C∗-category is a C-linear category with a positive ∗-
operation, where Hom(X,Y ) is a Banach space for all X,Y and ‖s ◦ t‖Hom(X,Z) ≤
‖s‖Hom(X,Y ) · ‖t‖Hom(Y,Z) for all s : X → Y, t : Y → Z and ‖s∗ ◦ s‖EndX =
‖s‖2Hom(X,Y ) for all s : X → Y . (Thus each End X is a C∗-algebra.) A C∗-tensor
category is a C∗-category and a tensor category such that ‖s ⊗ t‖ ≤ ‖s‖ · ‖t‖ for
all s, t.

PROPOSITION 346. [Longo and Roberts, 1997] Let C be a C∗-tensor category
with direct sums and irreducible unit. Whenever X,Y ∈ C admit conjugates then
dim Hom(X,Y ) < ∞. Thus a C∗-tensor category with direct sums, subobjects,
conjugates and irreducible unit is a TC∗. Conversely, given a TC∗, there are
unique norms on the spaces Hom(X,Y ) rendering C a C∗-tensor category.

Proof. Assume that X ∈ C has a conjugate (X, r, r). Then the map EndX →
Hom(1,X ⊗ X), s �→ idX ⊗ s ◦ r is an isomorphism of vector spaces since t �→
r∗⊗ idX ◦ idX ⊗ t is its inverse, as is verified using the conjugate equations. Now,
Hom(1,X ⊗X) is a pre-Hilbert space w.r.t. the inner product 〈a, b〉id1 = a∗ ◦ b,
and it is complete because C is a C∗-tensor category. Choose an orthogonal basis
(ei)i∈I in Hom(1,X⊗X). Then each ei : 1→ X⊗X is an isometry and e∗i ◦ej = 0
for i �= j, implying that X⊗X contains #I copies of 1 as direct summands. Since
X has a conjugate, so does X ⊗X, but this is impossible if #I is infinite. Thus
Hom(1,X ⊗X) and therefore EndX is finite dimensional.

Given arbitrary X,Y having conjugates, pick a direct sum Z ∼= X ⊕ Y with
isometries u : X → Z, v : Y → Z. Then also Z has a conjugate, cf. Lemma
336, and therefore dim EndZ < ∞. Now, the map Hom(X,Y ) → EndZ given
by s �→ v ◦ s ◦ u∗ is injective since it has t �→ v∗ ◦ t ◦ u as inverse. This implies
dim Hom(X,Y ) < ∞.

We omit the proof of the implication TC∗ ⇒ C∗-tensor category, since it will
not be used in the sequel. It can be found in [Müger, 2000]. �

This result shows that the assumptions made in Appendix B are equivalent to
those of [Doplicher and Roberts, 1989], formulated in terms of C∗-tensor categories.

A.5 Abelian categories

In the second half of Appendix B, which is of a purely algebraic nature, we will
need some basic facts from the theory of abelian categories. Good references are,
e.g., [Gabriel, 1962] and [Mac Lane, 1998, Chapter VIII].

DEFINITION 347. A morphism s : X → Y is called monic if s ◦ t1 = s ◦ t2
implies t1 = t2, whenever t1, t2 are morphisms with target X and the same source.
A morphism s : X → Y is called epi if t1 ◦ s = t2 ◦ s implies t1 = t2, whenever
t1, t2 are morphisms with source Y and the same target.
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DEFINITION 348. Let C be an additive category. Given a morphism f : X → Y ,
a morphism k : Z → X is a kernel of f if f ◦ k = 0 and given any morphism
k′ : Z ′ → X such that f ◦ k′ = 0, there is a unique morphism l : Z ′ → Z such that
k′ = k ◦ l.

A cokernel of f : X → Y is a morphism c : Y → Z if c ◦ f = 0 and given any
morphism c′ : Y → Z ′ such that c′ ◦ f = 0, there is a unique d : Z → Z ′ such that
c′ = d ◦ c.

It is an easy consequence of the definition that every kernel is monic and every
cokernel is epic.

DEFINITION 349. An additive category C is abelian if

1. Every morphism has a kernel and a cokernel.

2. Every monic morphism is the kernel of some morphism.

3. Every epic morphism is the cokernel of some morphism.

PROPOSITION 350. Let C be an abelian category. Then

(i) Every monic is the kernel of its cokernel and every epi is the cokernel of its
kernel.

(ii) A morphism is an isomorphism iff it is monic and epic.

(iii) Every morphism f : X → Y in an abelian category admits a factorization
f = m ◦ e, where e : X → Z is epi and m : Z → Y is monic. Given another
epi e′ : X → Z ′ and monic m′ : Z ′ → Y such that f = m′ ◦ e′, there exists
an isomorphism u : Z → Z ′ such that e′ = u ◦ e and m = m′ ◦ u.

Proof. See [Mac Lane, 1998, Chapter VIII] for detailed proofs. The ‘only if’ of
(ii) is trivial. Concerning (iii): Defining m = ker(coker(f)), m is monic. In view
of (coker f) ◦ f = 0, f factors as f = m ◦ e for a unique e. Next one proves that e
is epi and e = coker(ker(f)). �

DEFINITION 351. The image of a morphism f : X → Y in an abelian category is
the monic m : Z → Y (unique up to isomorphism) in the monic-epic factorization
X

e→ Z
m→ Y of f .

In a concrete abelian category, the object Z is isomorphic to the usual image of
f , which is a subset of Y , whence the terminology.

DEFINITION 352. An object P in an abelian category is projective if, given
any epimorphism p : A → B and any morphism b : P → B there is a morphism
a : P → A such that b = p ◦ a.

LEMMA 353. Any TC∗ C that has a zero object is abelian.

Proof. It is clear that C is additive. The other requirements of Definition 349
follow with a little work from semisimplicity, cf. Lemma 334. �
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A.6 Commutative algebra in abelian symmetric tensor categories

A considerable part of the well known algebra of commutative rings, their ideals
and modules (living in the category Ab of abelian groups) can be generalized to
other abelian symmetric or even braided tensor categories. We state just those
facts that will be needed, some of which might be new.

DEFINITION 354. Let D be a strict tensor category. Then a monoid in D is a
triple (Q,m, η), where Q ∈ D and m : Q⊗Q → Q and η : 1 → Q are morphisms
satisfying

m ◦ (m⊗ idQ) = m ◦ (idQ ⊗m), m ◦ η ⊗ idQ = idQ = m ◦ idQ ⊗ η.

If D is braided then the monoid is called commutative if m ◦ cQ,Q = m.

DEFINITION 355. Let (Q,m, η) be a monoid in the strict tensor category D.
Then a Q-module (in D) is a pair (M,µ), where M ∈ D and µ : Q ⊗M → M
satisfy

µ ◦ idQ ⊗ µ = µ ◦m⊗ idM , µ ◦ η ⊗ idM = idM .

A morphism s : (M,µ) → (R, ρ) of Q-modules is a morphism s ∈ HomD(M,R)
satisfying s ◦ µ = ρ ◦ idQ ⊗ s. The Q-modules in D and their morphisms form a
category Q−ModD. If D is k-linear then Q−ModD is k-linear. The hom-sets in
the category Q−Mod are denoted by HomQ(·, ·).
REMARK 356.

1. The preceding definitions, which are obvious generalizations of the corre-
sponding notions in Vect, generalize in a straightforward way to non-strict
tensor categories.

2. If (M,µ) is a Q-module and X ∈ D then (Q⊗X,µ⊗ idX) is a Q-module.

3. If D has direct sums, we can define the direct sum (R, ρ) of two Q-modules
(M1, µ1), (M2, µ2). Concretely, if vi : Mi → R, i = 1, 2 are the isometries
corresponding to R ∼= M1⊕M2 then ρ = v1 ◦µ1 ◦ idQ⊗v∗

1 +v2 ◦µ2 ◦ idQ⊗v∗
2

provides a Q-module structure.

4. Given a monoid (Q,m, η) in D, we have an obvious Q-module (Q,m), and
for any n ∈ N we can consider n · (Q,m), the direct sum of n copies of the
Q-module (Q,m).

DEFINITION 357. Let D be a strict tensor category with unit 1 and let (Q,m, η)
be a monoid in D. We define a monoid ΓQ in the category of sets by ΓQ =
Hom(1, Q), the multiplication being given by s • t = m ◦ t⊗ s and the unit by η.
If D is braided and (Q,m, η) commutative then ΓQ is commutative.
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LEMMA 358. Let D be a strict tensor category and (Q,m, η) a monoid in D.
Then there is an isomorphism of monoids γ : EndQ((Q,m)) → (ΓQ, •, η) given by

γ : EndQ((Q,m)) → Hom(1, Q), u �→ u ◦ η,
γ−1 : Hom(1, Q) → EndQ((Q,m)), s �→ m ◦ idQ ⊗ s.

If D (and thus Q−ModD) is k-linear then γ is an isomorphism of k-algebras. If
D is braided and the monoid (Q,m, η) is commutative then the monoid (k-algebra)
(ΓQ, •, η), and therefore also EndQ((Q,m)), is commutative.

Proof. That (ΓQ, •, η) is a monoid (resp. associative k-algebra) is immediate since
(Q,m, η) is a monoid. For s ∈ Hom(1, Q) we have γ(γ−1(s)) = m ◦ idQ⊗ s ◦ η = s
by the monoid axioms. On the other hand, for u ∈ EndQ((Q,m)) we have

γ−1(γ(u)) = m ◦ idQ ⊗ (u ◦ η) = m ◦ idQ ⊗ u ◦ idQ ⊗ η = u ◦m ◦ idQ ⊗ η = u,

where the third equality is due to the fact that s is a Q-module map (cf. Definition
355). Clearly γ(idQ) = η. Furthermore,

γ−1(s) ◦ γ−1(t) = (m ◦ idQ ⊗ s) ◦ (m ◦ idQ ⊗ t) = m ◦m⊗ idQ ◦ idQ ⊗ t⊗ s
= m ◦ idQ ⊗m ◦ idQ ⊗ t⊗ s = γ−1(s • t).

If D is braided and the monoid (Q,m, η) is commutative then

s • t = m ◦ t⊗ s = m ◦ cQ,Q ◦ s⊗ t = m ◦ s⊗ t = t • s,

where we used naturality of the braiding and commutativity of the monoid. �

REMARK 359. 1. We have seen that a monoid (Q,m, η) in any abstract tensor
category gives rise to a monoid (ΓQ, •, η) that is concrete, i.e. lives in the category
Sets. The latter has the cartesian product as a tensor product and any one-
element set is a tensor unit 1. Thus for any X ∈ Sets, Hom(1,X) is in bijective
correspondence to the elements of X. Therefore, if D = Sets then the monoids
(Q,m, η) and (ΓQ, •, η) are isomorphic. For this reason, we call ΓQ the monoid of
elements of Q even when D is an abstract category.

2. The commutativity of EndQ((Q,m)) in the case of a commutative monoid
(Q,m, η) in a braided tensor category D has a very natural interpretation: If D has
coequalizers, which holds in any abelian category, then the category Q−ModD is
again a tensor category and the Q-module (Q,m) is its unit object. In any tensor
category with unit 1, End1 is a commutative monoid (commutative k-algebra if
D is k-linear). This is the real reason why EndQ((Q,m)) is commutative. More
is known: If D is symmetric and Q abelian, then the tensor category Q −ModD
is again symmetric. (In the braided case this need not be true, but Q −ModD
always has a distinguished full subcategory that is braided.)

We now specialize to abelian categories.

PROPOSITION 360. Let (Q,m, η) be a monoid in an abelian strict tensor cate-
gory D. Then the category Q−ModD is abelian.
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Proof. Omitted. (This is a nice exercise on abelian categories.) �

DEFINITION 361. Let D be an abelian strict symmetric tensor category. An
ideal in a commutative monoid (Q,m, η) is a monic j : (J, µJ ) → (Q,m) in the
category Q −Mod. An ideal j : (J, µJ ) → (Q,m) is called proper if j is not an
isomorphism (i.e. not epi). If j : (J, µJ ) → (Q,m)) and j′ : (J ′, µJ ′) → (Q,m) are
ideals then j : (J, µJ ) → (Q,m) is contained in j′ : (J ′, µJ ′) → (Q,m), denoted
j ≺ j′, if there exists a monic i ∈ HomQ((J, µJ ), (J ′, µJ ′) such that j′ ◦ i = j. A
proper ideal j : (J, µJ ) → (Q,m) in (Q,m, η) is called maximal if every proper
ideal j′ : (J ′, µJ ′) → (Q,m) containing j : (J, µJ ) → (Q,m) is isomorphic to
j : (J, µJ ) → (Q,m).

LEMMA 362. Let D be an essentially small abelian strict symmetric tensor cate-
gory, (Q,m, η) a commutative monoid in D. Then every proper ideal j : (J, µJ ) →
(Q,m) in (Q,m, η) is contained in a maximal ideal j̃ : (J̃ , µ̃)→ (Q,m).

Proof. The ideals in (Q,m, η) do not necessarily form a set, but the isomorphism
classes do, since D is assumed essentially small. The relation ≺ on the ideals in
(Q,m, η) gives rise to a partial ordering of the set of isomorphism classes of ide-
als. The maximal elements w.r.t. this partial order are precisely the isomorphism
classes of maximal ideals. Now we can apply Zorn’s Lemma to complete the proof
as in commutative algebra. �

As in the category R-mod, we can quotient a commutative monoid by an ideal:

LEMMA 363. Let D be an abelian strict symmetric tensor category, (Q,m, η) a
commutative monoid and j : (J, µJ ) → (Q,m) an ideal. Let p = coker j : (Q,m) →
(B,µB). Then there exist unique morphisms mB : B ⊗ B → B and ηB : 1 → B
such that

1. (B,mB , ηB) is a commutative monoid,

2. p ◦ m = mB ◦ p⊗ p,

3. p ◦ η = ηB.

The monoid (B,mB , ηB) is called the quotient of (Q,m, η) by the ideal j : (J, µJ ) →
(Q,m). It is nontrivial (B is not a zero object) iff the ideal is proper.

Furthermore, the map pΓ : Γ : ΓQ → ΓB given by s �→ p ◦ s is a homomorphism
of commutative algebras, which is surjective if the unit 1 ∈ D is a projective object.

Proof. The construction of mB , ηB proceeds essentially as in commutative al-
gebra, despite the fact that the absence of elements makes it somewhat more
abstract. Since p : (Q,m) → (B,µB) is the cokernel of j, B is non-zero iff j is
not epi, to wit if the ideal is proper. The equations p ◦ m = mB ◦ p ⊗ p and
p ◦ η = ηB imply that pΓ is a unital homomorphism. If 1 is projective then the
very Definition 352 implies that for every s : 1 → B there is t : 1 → Q such that
s = p ◦ t, thus pΓ is surjective. �
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LEMMA 364. Let D be an essentially small abelian strict symmetric tensor cat-
egory. Let (Q,m, η) be a commutative monoid in D and j : (J, µ) → (Q,m) an
ideal. Let (B,mB , ηB) be the quotient monoid. Then there is a bijective correspon-
dence between equivalence classes of ideals in (B,mB , ηB) and equivalence classes
of ideals j′ : (J ′, µ′) → (Q,m) in (Q,µ, η) that contain j : (J, µ) → (Q,m).

In particular, if j is a maximal ideal then all ideals in (B,mB , ηB) are either
zero or isomorphic to (B,mB).

Proof. As in ordinary commutative algebra. �

LEMMA 365. Let k be a field and (Q,m, η) a commutative monoid in the strict
symmetric abelian k-linear category D. If every non-zero ideal in (Q,m, η) is
isomorphic to (Q,m) then the commutative unital k-algebra EndQ((Q,m)) is a
field.

Proof. Let s ∈ EndQ((Q,m)) be non-zero. Then im s �= 0 is a non-zero ideal
in (Q,m), thus must be isomorphic to (Q,m). Therefore im s and in turn s are
epi. Since s �= 0, the kernel ker s is not isomorphic to (Q,m) and therefore it
must be zero, thus s is monic. By Proposition 350, s is an isomorphism. Thus the
commutative k-algebra EndQ((Q,m)) is a field extending k. �

The following lemma is borrowed from [Bichon, 1998]:

LEMMA 366. Let D be an abelian strict symmetric tensor category and (Q,m, η)
a commutative monoid in it. Then every epimorphism in EndQ((Q,m)) is an
isomorphism.

Proof. Let g ∈ EndQ((Q,m)) be an epimorphism and let j : (J, µJ ) → (Q,m) be
an ideal in (Q,m, η). Now, Q −Mod is a tensor category whose unit is (Q,m),
thus there is an isomorphism s ∈ HomQ((J, µJ ), (Q ⊗Q J, µQ⊗QJ )). Let h ∈
EndQ((J, µJ )) be the composition

(J, µJ )
s� (Q⊗Q J, µQ⊗QJ)

g ⊗ idJ� (Q⊗Q J, µQ⊗QJ)
s−1

� (J, µJ ).

Since the tensor product ⊗Q of Q − Mod is right-exact, g ⊗ idJ is epi. Now,
j ◦ h = g ◦ j, and if we put (j : (J, µJ ) → (Q,m)) = ker g we have j ◦ h = 0 and
thus j = 0 since h is epi. Thus g is monic and therefore an isomorphism. �

A.7 Inductive limits and the Ind-category

We need the categorical version of the concept of an inductive limit. For our
purposes, inductive limits over N will do, but in order to appeal to existing theories
we need some definitions.

DEFINITION 367. If I, C are categories and F : I → C a functor, then a colimit
(or inductive limit) of F consists of an object Z ∈ C and, for every X ∈ I, of a
morphism iX : F (X) → Z in C such that
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1. iY ◦ F (s) = iX for every morphism s : X → Y in I.

2. Given Z ′ ∈ C and a family of morphisms jX : F (X) → Z ′ in C such that
jY ◦ F (s) = jX for every morphism s : X → Y in I, there is a unique
morphism ι : Z → Z ′ such that jX = ι ◦ iX for all X ∈ I.

The second property required above is the universal property. It implies that
any two colimits of F are isomorphic. Thus the colimit is essentially unique,
provided it exists.

DEFINITION 368. A category I is filtered if it is non-empty and

1. For any two objects X,Y ∈ I there is an Z ∈ Z and morphisms i : X →
Z, j : Y → Z.

2. For any two morphisms u, v : X → Y in I there is a morphism w : Y → Z
such that w ◦ u = w ◦ v.

Note that any directed partially ordered set (I,≤) is a filtered category if we take
the objects to be the elements of I, and the arrows are ordered pairs {(i, j) : i ≤ j}.
DEFINITION 369. Let C be a category. Then the category Ind C is defined as
the functor category whose objects are all functors F : I → C, where I is a small
filtered category. For F : I → C, F ′ : I ′ → C, the hom-set is defined by

HomInd C(F, F ′) = lim←−
X

lim−→
Y

HomC(F (X), F ′(Y )).

(An element of the r.h.s. consists of a family (fX,Y : F (X) → F ′(Y ))X∈I,Y ∈I′
satisfying F ′(s) ◦ fX,Y = fX,Y ′ for every s : Y → Y ′ in I ′ and fX′,Y ◦F (t) = fX,Y
for every t : X → X ′ in I.) We leave it as an exercise to work out the composition
of morphisms.

Some properties of Ind C are almost obvious. It contains C as a subcategory:
To every X ∈ C we assign the functor F : I → C, where I has only one object ∗
and F (∗) = X. This embedding clearly is full and faithful. If C is an Ab-category
/ additive / C-linear then so is Ind C. If C is a strict (symmetric) tensor category
then so is Ind C: The tensor product of F : I → C and F : I ′ → C is defined by
I ′′ = I×I ′ (which is a filtered category) and F⊗F ′ : I ′′ ! X×Y �→ F (X)⊗F ′(Y ).
For the remaining results that we need, we just cite [SGA, 1972], to which we also
refer for the proof:

THEOREM 370. Ind C has colimits for all small filtered index categories I. If C
is an abelian category C then Ind C is abelian.

Thus every abelian (symmetric monoidal) category is a full subcategory of an
abelian (symmetric monoidal) category that is complete under filtered colimits.
For us this means that in Ind C we can make sense of infinite direct sums indexed
by N, defining

⊕
i∈N

Xi as the colimit of the functor F : I → C, where I is the
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poset N interpreted as a filtered category, and F (n) =
⊕n

i=1 Xi together with the
obvious morphisms F (n)→ F (m) when n ≤ m.

LEMMA 371. If C is a TC∗ then every object X ∈ C is projective as an object of
Ind C.

Proof. First assume that X is irreducible and consider s : X → B. Given an
epi p : A → B in Ind C, we have A = lim−→ Ai with Ai ∈ C and similarly for
B. Furthermore, Hom(A,B) = lim←− lim−→ HomC(Ai, Bj) and Hom(X,B) =
lim−→ HomC(X,Bj). Since X is irreducible and C is semisimple, X is a direct
summand of Bj whenever sj : X → Bj is non-zero. Since p : A → B is epi, the
component Ai → Bj is epi for i sufficiently big. By semisimplicity of C, sj then
lifts to a morphism X → Ai. Putting everything together this gives a morphism
ŝ : X → A such that p ◦ ŝ = s.

Now let X be a finite direct sum of irreducible Xi with isometries vi : Xi → X
and s : X → B. Defining si = s ◦ vi : Xi → B, the first half of the proof provides
ŝi : Xi → A such that p ◦ ŝi = si. Now define ŝ =

∑
i ŝi ◦ v∗

i : X → A. We have

p ◦ ŝ =
∑
i

p ◦ ŝi ◦ v∗
i =

∑
i

si ◦ v∗
i =

∑
i

s ◦ vi ◦ v∗
i = s,

proving projectivity of X. �

B ABSTRACT DUALITY THEORY FOR SYMMETRIC TENSOR
∗-CATEGORIES

In the first two subsections we give self-contained statements of the results needed
for the reconstructions in AQFT. Some of the proofs are deferred to the rest of
this appendix, which hurried (or less ambitious) or readers may safely skip.

B.1 Fiber functors and the concrete Tannaka theorem. Part I

Let VectC denote the C-linear symmetric tensor category of finite dimensional C-
vector spaces and H denote the STC∗ of finite dimensional Hilbert spaces. We
pretend that both tensor categories are strict, which amounts to suppressing the
associativity and unit isomorphisms α, λ, ρ from the notation. Both categories
have a canonical symmetry Σ, the flip isomorphism ΣV,V ′ : V ⊗ V ′ → V ′ ⊗ V .

DEFINITION 372. Let C be an STC∗. A fiber functor for C is a faithful C-
linear tensor functor E : C → VectC. A ∗-preserving fiber functor for C is a
faithful functor E : C → H of tensor ∗-categories. E is symmetric if E(cX,Y ) =
ΣE(X),E(Y ), i.e. the symmetry of C is mapped to the canonical symmetry of VectC

or H, respectively.

An STC∗ equipped with a symmetric ∗-preserving fiber functor is called con-
crete, since it is equivalent to a (non-full!) tensor subcategory of the category H
of Hilbert spaces. Our main concern in this appendix are (1) Consequences of the
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existence of a fiber functor, (2) Uniqueness of fiber functors, and (3) Existence of
fiber functors. As to (2) we will prove:

THEOREM 373. Let C be an STC∗ and let E1, E2 : C → H be ∗-preserving
symmetric fiber functors. Then E1

∼= E2, i.e. there exists a unitary monoidal
natural isomorphism α : E1 → E2.

We now assume a symmetric ∗-preserving fiber functor for the STC∗ C to be
given. Let GE ⊂ Nat⊗E denote the set of unitary monoidal natural transforma-
tions of E (to itself). This clearly is a group with the identical natural trans-
formation as unit. GE can be identified with a subset of

∏
X∈C U(E(X)), where

U(E(X)) is the compact group of unitaries on the finite dimensional Hilbert space
E(X). The product of these groups is compact by Tychonov’s theorem, cf. e.g.
[Pedersen, 1989, Theorem 1.6.10], and since GE is a closed subset, it is itself
compact. The product and inverse maps are continuous, thus GE is a compact
topological group. By its very definition, the group GE acts on the Hilbert spaces
E(X),X ∈ C by unitary representations πX , namely πX(g) = gX where gX is the
component at X of the natural transformation g ∈ GE .

PROPOSITION 374. There is a faithful symmetric tensor ∗-functor F : C →
RepfGE such that K ◦ F = E, where K : RepfGE → H is the forgetful functor
(H,π) �→ H.

Proof. We define F (X) = (E(X), πX) ∈ RepfGE for all X ∈ C and F (s) = E(s)
for all s ∈ Hom(X,Y ). For s : X → Y we have

F (s)πX(g) = F (s)gX = gY F (s) = πY (g)F (s),

since g : E → E is a natural transformation. Thus F is a functor, which is
obviously ∗-preserving and faithful. In view of g1 = idE(1) for every g ∈ GE ,
we have F (1C) = (C, π0) = 1RepfGE

, where π0 is the trivial representation. In
order to see that F is a functor of tensor ∗-categories we must produce unitaries
dFX,Y : F (X)⊗ F (Y ) → F (X ⊗ Y ), X, Y ∈ C and e : 1RepfGE

→ F (1C) satisfying
(56) and (57), respectively. We claim that the choice eF = eE , dFX,Y = dEX,Y does
the job, where the eE and dEX,Y are the unitaries coming with the tensor functor
E : C → H. It is obvious that eE and dEX,Y satisfy (56) and (57), but we must show
that they are morphisms in RepfGE . For dEX,Y this follows from the computation

dFX,Y ◦ (πX(g)⊗ πY (g)) = dEX,Y ◦ gX ⊗ gY = gX⊗Y ◦ dEX,Y = πX⊗Y (g) ◦ dFX,Y ,

where we have used that g is a monoidal natural transformation. Now, by the
definition of a natural monoidal transformation we have g1 = idE(1) for all g ∈ GE ,
i.e. F (1) = (E(1), π1) is the trivial representation. If the strict unit 1H = C is in
the image of E then, by naturality, it also carries the trivial representation, thus
eF in fact is a morphism of representations. (In case 1H �∈ E(C), we equip 1H
with the trivial representation by hand.) Since the symmetry of RepfGE is by
definition given by c((H,π), (H ′, π′)) = c(H,H ′), where the right hand side refers
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to the category H, and since E respects the symmetries, so does F . K ◦F = E is
obvious. �

The proof of the following proposition is postponed, since it requires further
preparations.

PROPOSITION 375. Let C be an STC∗ and E : C → H a symmetric ∗-preserving
fiber functor. Let GE and F : C → RepfGE as defined above. Then the following
hold:

(i) If X ∈ C is irreducible then span
C
{πX(g), g ∈ GE} is dense in EndE(X).

(ii) If X,Y ∈ C are irreducible and X �∼= Y then span
C
{πX(g)⊕πY (g), g ∈ GE}

is dense in EndE(X)⊕ EndE(Y ).

THEOREM 376. Let C be an STC∗ and E : C → H a symmetric ∗-preserving
fiber functor. Let GE and F : C → RepfGE as defined above. Then F is an
equivalence of symmetric tensor ∗-categories.

Proof. We already know that F is a faithful symmetric tensor functor. In view
of Proposition 318 it remains to show that F is full and essentially surjective.

Since the categories C and RepfGE are semisimple, in order to prove that F
is full it is sufficient to show that (a) F (X) ∈ RepfGE is irreducible if X ∈
C is irreducible and (b) whenever X,Y ∈ C are irreducible and inequivalent
then Hom(F (X), F (Y )) = {0}. Now, (i) of Proposition 375 clearly implies that
End(F (X)) = C id, which is the desired irreducibility of F (X). Assume now that
X,Y ∈ C are irreducible and non-isomorphic and let s ∈ Hom(F (X), F (Y )), to
wit s ∈ Hom(E(X), E(Y )) and sπX(g) = πY (g)s for all g ∈ GE . Then (ii) of
Proposition 375 implies su = vs for any u ∈ EndE(X) and v ∈ EndE(Y ). With
u = 0 and v = 1 this implies s = 0, thus the irreps F (X) = (E(X), πX) and
F (Y ) = (E(X), πY ) are non-isomorphic. This proves that F is full.

Therefore, F is an equivalence of C with a full tensor subcategory of RepfGE .
If g ∈ GE is nontrivial, it is immediate by the definition of GE that there is an
X ∈ C such that gX �= idE(X) – but this means πX(g) �= 1. In other words,
the representations {F (X),X ∈ C} separate the points of GE . But it is a well
known consequence of the Peter-Weyl theorem that a full monoidal subcategory
of RepfGE separates the points of GE iff it is in fact equivalent to RepfGE . Thus
the functor F is essentially surjective, and we are done. �

Since they are so important, we restate Theorems 373 and 376 in a self contained
way:

THEOREM 377. Let C be an STC∗ and E : C → H a ∗-preserving symmetric
fiber functor. Let GE be the group of unitary monoidal natural transformations of
E with the topology inherited from

∏
X∈C U(E(X)). Then GE is compact and the

functor F : C → RepfGE , X �→ (E(X), πX), where πX(g) = gX , is an equivalence
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of STC∗s. If E1, E2 : C → H are ∗-preserving symmetric fiber functors then
E1
∼= E2 and therefore GE1

∼= GE2 .

REMARK 378. The preceding theorem is essentially a reformulation in modern
language of the classical result of Tannaka [Tannaka, 1939]. It can be generalized,
albeit without the uniqueness part, to a setting where C is only braided or even
has no braiding. This leads to a (concrete) Tannaka theory for quantum groups,
for which the interested reader is referred to the reviews [Joyal and Street, 1991]
and [Müger et al., 2004].

Before we turn to proving Theorem 373 (Subsection B.4) and Proposition 375
(Subsection B.5) we identify a necessary condition for the existence of fiber func-
tors, which will lead us to a generalization of Theorem 377.

B.2 Compact supergroups and the abstract Tannaka theorem

According to Theorem 377, an STC∗ admitting a symmetric ∗-preserving fiber
functor is equivalent, as a symmetric tensor ∗-category, to the category of finite
dimensional unitary representations of a compact group G that is uniquely deter-
mined up to isomorphism. Concerning the existence of fiber functors it will turn
out that the twist Θ (Definition 342) provides an obstruction, fortunately the only
one.

DEFINITION 379. An STC∗ is called even if Θ(X) = idX for all X ∈ C.
EXAMPLE 380. A simple computation using the explicit formulae for r, r, cX,Y
given in Example 333 shows that the STC∗ H of finite dimensional Hilbert spaces
is even. The same holds for the category RepfG of finite dimensional unitary
representations of a compact group G.

This suggests that an STC∗ must be even in order to admit a fiber functor. In
fact:

PROPOSITION 381. If an STC∗ C admits a ∗-preserving symmetric fiber functor
E then it is even.

Proof. By Proposition 344, we have E(Θ(X)) = Θ(E(X)). Since H is even, this
equals idE(X) = E(idX). Since E is faithful, this implies Θ(X) = idX . �

Fortunately, this is the only obstruction since, beginning in the next subsection,
we will prove:

THEOREM 382. Every even STC∗ admits a ∗-preserving symmetric fiber func-
tor E : C → H.

Combining this with Theorem 377 we obtain:

THEOREM 383. Let C be an even STC∗. Then there is a compact group G,
unique up to isomorphism, such that there exists an equivalence F : C → RepfG
of STC∗s.
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Theorem 383 is not yet sufficiently general for the application to quantum field
theory, which is the subject of this chapter. Making the connection with DHR
theory, we see that the twist of an irreducible DHR sector is ±1, depending on
whether the sector is bosonic or fermionic. Since in general we cannot a priori rule
out fermionic sectors, we cannot restrict ourselves to even STC∗s. What we there-
fore really need is a characterization of all STC∗s. This requires a generalization
of the notion of compact groups:

DEFINITION 384. A (compact) supergroup is a pair (G, k) where G is a (com-
pact Hausdorff) group and k is an element of order two in the center of G. An
isomorphism α : (G, k)

∼=→ (G′, k′) of (compact) supergroups is an isomorphism
α : G → G′ of (topological) groups such that α(k) = k′.

DEFINITION 385. A (finite dimensional, unitary, continuous) representation of a
compact supergroup (G, k) is just a (finite dimensional, unitary, continuous) rep-
resentation (H,π) of G. Intertwiners and the tensor product of representations are
defined as for groups, thus Rep(f)(G, k) ∼= Rep(f)G as C∗-tensor tensor categories.
(Since k is in the center of G, morphisms in Rep(f)(G, k) automatically preserve
the Z2-grading induced by π(k). Rep(f)(G, k) is equipped with a symmetry Σk as
follows: For every (H,π) ∈ Rep(G, k) let Pπ

± = (id + π(k))/2 be the projector on
the even and odd subspaces of a representation space H, respectively. Then

Σk((H,π), (H ′, π′)) = Σ(H,H ′)(1− 2Pπ
− ⊗ Pπ′

− ),

where Σ(H,H ′) : H ⊗H ′ → H ′ ⊗H is the usual flip isomorphism x⊗ y �→ y ⊗ x.
Thus for homogeneous x ∈ H, y ∈ H ′ we have Σk((H,π), (H ′, π′)) : x ⊗ y �→
±y ⊗ x, where the minus sign occurs iff x ∈ H− and y ∈ H ′

−. In the case
(G, k) = ({e, k}, k), we call Repf (G, k) the category SH of super Hilbert spaces.

REMARK 386. Note that the action of k induces a Z2-grading on H that is stable
under the G-action. Since the symmetry Σk defined above is precisely the one on
the category SH of finite dimensional super Hilbert spaces, we see that there is a
forgetful symmetric tensor functor Repf (G, k) → SH.

LEMMA 387. Σk as defined above is a symmetry on the category Rep(G, k). Thus
Repf (G, k) is a STC∗. For every object X = (H,π) ∈ Repf (G, k), the twist Θ(X)
is given by π(k).

Proof. Most of the claimed properties follow immediately from those of RepfG.
It is clear that Σk((H,π), (H ′, π′)) ◦Σk((H ′, π′), (H,π)) is the identity of H ′⊗H.
We only need to prove naturality and compatibility with the tensor product. This
is an easy exercise. The same holds for the identity Θ((H,π)) = π(k). �

We need a corollary of (the proof of) Theorem 383:

COROLLARY 388. For any compact group G, the unitary monoidal natural trans-
formations of the identity functor on RepfG form an abelian group that is isomor-
phic to the center Z(G).
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Proof. If k ∈ Z(G) and (H,π) ∈ RepfG is irreducible then π(k) = ω(H,π)idH ,
where ω(H,π) is a scalar. Defining Θ((H,π)) = ω(H,π)id(H,π) and extending to
reducible objects defines a unitary monoidal natural isomorphism of RepfG. Con-
versely, let {Θ((H,π))} be a unitary monoidal isomorphism of the identity func-
tor of RepfG and K : RepfG → H the forgetful functor. Then the family
(α(H,π) = K(Θ((H,π)))) is a unitary monoidal natural isomorphism of K. By
Theorem 377, there is a g ∈ G such that α(H,π) = π(g) for all (H,π) ∈ RepfG.
Since π(g) is a multiple of the identity for every irreducible (H,π), g is in Z(G)
by Schur’s lemma. Clearly the above correspondence is an isomorphism of abelian
groups. �

Modulo Theorem 382 we can now can prove the Main Result of this appendix:

THEOREM 389. Let C be an STC∗. Then there exist a com-
pact supergroup (G, k), unique up to isomorphism, and an equivalence
F : C → Repf (G, k) of symmetric tensor ∗-categories. In particu-
lar, if K : Repf (G, k) → SH is the forgetful functor, the composite
E = K ◦ F : C → SH is a ‘super fiber functor’, i.e. a faithful symmetric
∗-preserving tensor functor into the STC∗ of super Hilbert spaces.

Proof. We define a new STC∗ C̃ (the ‘bosonization’ of C) as follows. As a tensor
∗-category, C̃ coincides with C. The symmetry c̃ is defined by

c̃X,Y = (−1)(1−Θ(X))(1−Θ(Y ))/4cX,Y

for irreducible X,Y ∈ Obj C = Obj C̃, and extended to all objects by naturality.
It is easy to verify that (C̃, c̃) is again a symmetric tensor category, in fact an even
one. Thus by Theorem 383 there is a compact group G such that C̃ � RepfG
as STC∗s. Applying Corollary 388 to the category C̃ � RepfG and the family
(Θ(X))X∈C , as defined in the original category C proves the existence of an element
k ∈ Z(G), k2 = e, such that Θ((H,π)) = π(k) for all (H,π) ∈ C̃ � RepfG. Clearly
(G, k) is a supergroup. We claim that C � Repf (G, k) as STC∗s. Ignoring the
symmetries this is clearly true since Repf (G, k) � RepfG as tensor ∗-categories.
That C and Repf (G, k) are equivalent as STC∗s, i.e. taking the symmetries into
account, follows from the fact that C is related to C̃ precisely as Repf (G, k) is to
RepfG, namely by a twist of the symmetry effected by the family (Θ((H,π)) =
π(k)). To conclude, we observe that the uniqueness result for (G, k) follows from
the uniqueness of G in Theorem 383 and that of k in Corollary 388. �

REMARK 390. Theorem 389 was proven by Doplicher and Roberts in [Doplicher
and Roberts, 1989, Section 7] exactly as stated above, the only superficial difference
being that the terminology of supergroups wasn’t used. (Note that our supergroups
are not what is usually designated by this name.) As above, the proof was by
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reduction to even categories and compact groups. Independently and essentially
at the same time, a result analogous to Theorem 382 for (pro)algebraic groups was
proven by Deligne in [Deligne, 1990], implying an algebraic analogue of Theorem
383 by [Saavedra Rivano, 1972; Deligne and Milne, 1982]. Recently, Deligne also
discussed the super case, cf. [Deligne, 2002].

This concludes the discussion of the main results of this appendix. We now turn
to proving Theorem 373, Proposition 375 and Theorem 382.

B.3 Certain algebras arising from fiber functors

Let C be a TC∗ and E1, E2 : C → VectC fiber functors. Recall that they come
with natural isomorphisms diX,Y : Ei(X) ⊗ Ei(Y ) → Ei(X ⊗ Y ) and ei : 1Vect =
C → Ei(1C). Consider the C-vector space

A0(E1, E2) =
⊕
X∈C

Hom(E2(X), E1(X)).

For X ∈ C and s ∈ Hom(E2(X), E1(X)) we write [X, s] for the element of
A0(E1, E2) which takes the value s at X and is zero elsewhere. Clearly, A0 consists
precisely of the finite linear combinations of such elements. We turn A0(E1, E2)
into a C-algebra by defining [X, s] · [Y, t] = [X ⊗ Y, u], where u is the composite

E2(X ⊗ Y )
(d2
X,Y )−1

� E2(X)⊗E2(Y )
s⊗ t� E1(X)⊗ E1(Y )

d1
X,Y� E1(X ⊗ Y )

Since C is strict, we have (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) and 1⊗X = X = X ⊗ 1.
Together with the 2-cocycle type equation (56) satisfied by the isomorphisms diX,Y
this implies that A0(E1, E2) is associative. The compatibility (57) of diX,Y with ei

for i = 1, 2 implies that [1, e1 ◦ (e2)−1] is a unit of the algebra A0(E1, E2).

LEMMA 391. Let C be a TC∗ and E1, E2 : C → VectC fiber functors. The subspace

I(E1, E2) = span
C
{[X, a◦E2(s)]− [Y,E1(s)◦a] | s : X → Y, a : E2(Y ) → E1(X)}

is a two-sided ideal.

Proof. To show that I(E1, E2) ⊂ A0(E1, E2) is an ideal, let s : X → Y, a ∈
Hom(E2(Y ), E1(X)), thus [X, a◦E2(s)]− [Y,E1(s)◦a] ∈ I(E1, E2), and let [Z, t] ∈
A0(E1, E2). Then

([X, a ◦ E2(s)] −[Y,E1(s) ◦ a]) · [Z, t]
= [X ⊗ Z, d1

X,Z ◦ (a ◦ E2(s))⊗ t ◦ (d2
X,Z)−1]

− [Y ⊗ Z, d1
Y,Z ◦ (E1(s) ◦ a)⊗ t ◦ (d2

Y,Z)−1]
= [X ⊗ Z, d1

X,Z ◦ a⊗ t ◦ (d2
Y,Z)−1 ◦ E2(s⊗ idZ)]

−[Y ⊗ Z,E1(s⊗ idZ) ◦ d1
X,Z ◦ a⊗ t ◦ (d2

Y,Z)−1]
= [X ′, a′ ◦ E2(s′)]− [Y ′, E1(s′) ◦ a′] ∈ I(E1, E2),
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where in the second equality we used naturality of di, and in the last line we wrote
X ′ = X⊗Z, Y ′ = Y ⊗Z, s′ = s⊗ idZ : X ′ → Y ′ and a′ = d1

X,Z ◦a⊗ t ◦ (d2
Y,Z)−1 ∈

Hom(E2(Y ′), E1(X ′) in order to make clear that the result is in I(E1, E2). This
proves that the latter is a left ideal in A0(E1, E2). Similarly, one shows that it is
a right ideal. �

We denote by A(E1, E2) the quotient algebra A0(E1, E2)/I(E1, E2). It can
also be understood as the algebra generated by symbols [X, s], where X ∈ C, s ∈
Hom(E2(X), E1(X)), subject to the relations [X, s]+ [X, t] = [X, s+ t] and [X, a◦
E2(s)] = [Y,E1(s) ◦ a] whenever s : X → Y, a ∈ Hom(E2(Y ), E1(X)). Therefore
it should not cause confusion that we denote the image of [X, s] ∈ A0(E1, E2) in
A(E1, E2) again by [X, s].

PROPOSITION 392. Let C be an STC∗ and E1, E2 : C → VectC fiber functors.
If E1, E2 are symmetric then A(E1, E2) is commutative.

Proof. Assume that C is symmetric and that the fiber functors satisfy Ei(cX,Y ) =
ΣEi(X),Ei(Y ). Let [A, u], [B, v] ∈ A0(E1, E2), thus A,B ∈ C and u : E2(A) →
E1(A), v : E2(B) → E1(B). Then

[A, u] · [B, v] = [A⊗B, d1
A,B ◦ u⊗ v ◦ (d2

A,B)−1]

and

[B, v] · [A, u] = [B ⊗A, d1
B,A ◦ v ⊗ u ◦ (d2

B,A)−1]
= [B ⊗A, d1

B,A ◦ ΣE1(A),E2(B) ◦ u⊗ v ◦ ΣE2(B),E1(A) ◦ (d2
B,A)−1]

= [B ⊗A, d1
B,A ◦ E1(cB,A) ◦ u⊗ v ◦ E2(cB,A) ◦ (d2

B,A)−1]
= [B ⊗A,E1(cA,B) ◦ d1

A,B ◦ u⊗ v ◦ (d2
A,B)−1 ◦ E2(cB,A)].

With X = A⊗B, Y = B⊗A, s = cA,B and a = d1
A,B ◦u⊗ v ◦ (d2

A,B)−1 ◦E2(cB,A)
we obtain

[A, u] · [B, v] = [X, a ◦ E2(s)],

[B, v] · [A, u] = [Y,E1(s) ◦ a].

Thus

[A, u] · [B, v]− [B, v] · [A, u] = [X, a ◦ E2(s)]− [Y,E1(s) ◦ a] ∈ I(E1, E2),

implying [A0(E1, E2), A0(E1, E2)] ⊂ I(E1, E2). This implies commutativity of
A(E1, E2) = A0(E1, E2)/I(E1, E2). �

PROPOSITION 393. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving
fiber functors. Then A(E1, E2) has a positive ∗-operation, i.e. an antilinear and
antimultiplicative involution such that a∗a = 0 implies a = 0.
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Proof. We define a ∗-operation � on A0(E1, E2). Let [X, s] ∈ A0(E1, E2). Pick a
standard conjugate (Xi, ri, ri), define t ∈ HomH(E2(X), E1(X)) by

t = idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)

and put [X, s]� := [X, t]. (Of course, s∗ is defined using the inner products on the
Hilbert spaces E1(X), E2(X).) If we pick another standard conjugate (X

′
, r′, r′)

of X, we know that there is a unitary u : X → X
′
such that r′ = u⊗ idX ◦ r and

r′ = idX ⊗ u ◦ r. Using (X
′
, r′, r′) we obtain ([X, s]�)′ := [X

′
, t′] with t′ defined

by replacing r, r by r′, r′. Now, [X, t]− [X
′
, t′] equals

[X, idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)]
−[X

′
, idE1(X

′
) ⊗ E2(r′

∗) ◦ idE1(X
′
) ⊗ s∗ ⊗ idE2(X

′
) ◦ E1(r′)⊗ idE2(X

′
)]

= [X, (idE1(X) ⊗ E2(r′
∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X

′
) ◦ E1(r)⊗ idE2(X

′
)) ◦ E2(u)]

−[X
′
, E1(u) ◦ (idE1(X) ⊗ E2(r′

∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X
′
) ◦ E1(r)⊗ idE2(X

′
))],

which is in the ideal I(E1, E2) defined in Proposition 398. Thus, while [X, s]�

depends on the chosen conjugate (X, r, r) of X, its image γ([X, s]�) ∈ A(E1, E2)
doesn’t.

In order to be able to define a ∗-operation on A(E1, E2) by x∗ := γ◦�◦γ−1(x) we
must show that the composite map γ◦� : A0(E1, E2) → A(E1, E2) maps I(E1, E2)
to zero. To this purpose, let X,Y ∈ C, s : X → Y, a ∈ Hom(E2(Y ), E1(X)) and
choose conjugates (X, rX , rX), (Y , rY , rY ). Then

[X, a ◦ E2(s)]� − [Y,E1(s) ◦ a]�

= [X, idE1(X) ⊗ E2(rX∗) ◦ idE1(X) ⊗ (a ◦ E2(s))∗ ⊗ idE2(X) ◦ E1(rX)⊗ idE2(X)]
−[Y , idE1(X) ⊗ E2(rY ∗) ◦ idE1(X) ⊗ (E1(s) ◦ a)∗ ⊗ idE2(X) ◦ E1(rY )⊗ idE2(X)]

= [X, ã ◦ E2(s̃)]− [Y ,E1(s̃) ◦ ã],

with ã ∈ HomH(E2(Y ), E1(X)) and s̃ ∈ Hom(X,Y ) defined by

ã = idE1(X) ⊗E2(r∗X) ◦ idE1(X) ⊗ a∗ ⊗ idE2(Y ) ◦ E1(rX)⊗ idE2(Y ),

s̃ = idY ⊗ r∗X ◦ idY ⊗ s∗ ⊗ idX ◦ rY ⊗ idX .

This clearly is in I(E1, E2), thus x∗ := γ ◦ � ◦ γ−1(x) defines a ∗-operation on
A(E1, E2).

Now it is obvious that the resulting map ∗ on A(E1, E2) is additive and antilin-
ear. It also is involutive and antimultiplicative as one verifies by an appropriate use
of the conjugate equations. We omit the tedious but straightforward computations.
It remains to show positivity of the ∗-operation. Consider [X, s] ∈ A0(E1, E2), pick
a conjugate (X, r, r) and compute [X, s]∗ · [X, s] = [X ⊗X, t], where t equals

d1
X,X

◦
(
idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)

)
⊗s◦(d2

X,X
)∗.
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Now,

[X ⊗X, t] = [X ⊗X,E1(r∗) ◦ E1(r) ◦ t] = [1, E1(r) ◦ t ◦ E2(r∗)]

=
[
1, E1(r∗) ◦

(
idE1(X) ⊗E2(r∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X)

◦E1(r)⊗ idE2(X)

)
⊗ s ◦ E2(r)

]
= [1, E1(r∗) ◦ id⊗ (s ◦ s∗) ◦ E1(r)] = [1, u∗u],

where we have used the conjugate equations and put u = id⊗ s∗ ◦ E1(r). Thus,
[X, s]∗ · [X, s] = [1, u∗u] is zero iff u∗u is zero. By positivity of the ∗-operation
in H, this holds iff u = 0. Using once again the conjugate equations we see that
this is equivalent to s = 0. Thus for elements a ∈ A(E1, E2) of the form [X, s],
the implication a∗a = 0 ⇒ a = 0 holds. For a general a =

∑
i[Xi, si] we pick

isometries vi : Xi → X such that
∑
i vi ◦ v∗

i = idX (i.e. X ∼= ⊕iXi). Then
[Xi, si] = [X,E1(vi) ◦ si ◦ E2(v∗i )], thus∑

i

[Xi, si] = [X,
∑
i

E1(vi) ◦ si ◦ E2(v∗i )],

implying that every element of A(E1, E2) can be written as [X, s], and we are
done. �

PROPOSITION 394. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving fiber
functors. Then

‖a‖ = inf
b

′ sup
X∈C

‖bX‖EndE(X),

where the infimum is over all representers b ∈ A0(E1, E2) of a ∈ A(E1, E2), defines
a C∗-norm on A(E1, E2).

Proof. Let [X, s], [Y, t] ∈ A0(E1, E2). Then [X, s] · [Y, t] = [X ⊗ Y, u], where
u = d1

X,Y ◦s⊗ t◦ (d2
X,Y )−1. Since d1

X,Y , d2
X,Y are unitaries, we have ‖[X⊗Y, u]‖ =

‖u‖ ≤ ‖s‖·‖t‖. Thus ‖b‖ = supX∈C ‖bX‖EndE(X) defines a submultiplicative norm
on A0(E1, E), and the above formula for ‖a‖ is the usual definition of a norm on
the quotient algebra A0(E1, E2)/I(E1, E2). This norm satisfies ‖[X, s]‖ = ‖s‖.
Since every a ∈ A(E1, E2) can be written as [X, s], we have ‖a‖ = 0 ⇒ a = 0.
Finally, the computations in the proof of Proposition 393 imply

‖[X, s]∗[X, s]‖ = ‖[1, u∗u]‖ = ‖u∗u‖ = ‖u‖2 = ‖s‖2 = ‖[X, s]‖2,
which is the C∗-condition. �

DEFINITION 395. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving fiber
functors. Then A(E1, E2) denotes the ‖ · ‖-completion of A(E1, E2). (This is a
unital C∗-algebra, which is commutative if C, E1, E2 are symmetric.)
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B.4 Uniqueness of fiber functors

LEMMA 396. [Joyal and Street, 1993a] Let C be a TC∗, D a strict tensor cat-
egory and E1, E2 : C → D strict tensor functors. Then any monoidal natural
transformation α : E1 → E2 is a natural isomorphism.

Proof. It is sufficient to show that every component αX : E1(X) → E2(X)
has a two-sided inverse βX : E2(X) → E1(X). The family {βX ,X ∈ C} will
then automatically be a natural transformation. If (X, r, r) is a conjugate for X,
monoidality of α implies

E2(r∗) ◦ αX ⊗ αX = E2(r∗) ◦ αX⊗X = α1 ◦ E1(r∗) = E1(r∗).(58)

If we now define

βX = idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ αX ⊗ idE2(X) ◦ E1(r)⊗ idE2(X),

we have

βX ◦ αX = (idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ αX ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)) ◦ αX
= idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ αX ⊗ αX ◦ E1(r)⊗ idE1(X)

= idE1(X) ⊗ E1(r∗) ◦ E1(r)⊗ idE1(X) = idE1(X).

The argument for αX ◦ βX = idE2(X) is similar. �

REMARK 397. The lemma remains correct if one allows E1, E2 (or even C,D) to
be non-strict. To adapt the proof one must replace E1(r) (which is a morphism
E1(1) → E1(X ⊗ X)) by (dE1

X,X
)−1 ◦ E1(r) ◦ eE1 (which is a morphism 1Vect →

E1(X)⊗ E1(X)). Similarly with E2(r).

PROPOSITION 398. Let C be a TC∗ and E1, E2 : C → VectC fiber functors. The
pairing between A0(E1, E2) and the vector space

Nat(E1, E2) =
{

(αX)X∈C ∈
∏
X∈C

Hom(E1(X), E2(X)) |

E2(s) ◦ αX = αY ◦ E1(s) ∀s : X → Y
}

of natural transformations E1 → E2 that is given, for (αX) ∈ Nat(E1, E2) and
a ∈ A0(E1, E2), by

〈α, a〉 =
∑
X∈C

TrE1(X)(aXαX)(59)

descends to a pairing between Nat(E1, E2) and the quotient algebra A(E1, E2) =
A0(E1, E2)/I(E1, E2) such that

Nat(E1, E2) ∼= A(E1, E2)∗.

Under this isomorphism, an element a ∈ A(E1, E2)∗ corresponds to an element
of Nat⊗(E1, E2), i.e. a monoidal natural transformation (thus isomorphism by
Lemma 396), iff it is a character, to wit multiplicative.
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Proof. The dual vector space of the direct sum A0(E1, E2) is the direct product∏
X∈C Hom(E2(X), E1(X))∗, and since the pairing between Hom(E2(X), E1(X))×

Hom(E1(X), E2(X)), s× t �→ Tr(s ◦ t) is non-degenerate, we have

A0(E1, E2)∗ ∼=
∏
X∈C

Hom(E1(X), E2(X))

w.r.t. the pairing given in (59). Now, A(E1, E2) is the quotient of A0(E1, E2) by
the subspace I(E1, E2), thus the dual space A(E1, E2)∗ consists precisely of those
elements of A0(E1, E2)∗ that are identically zero on I(E1, E2). Assume (aX)X∈C
satisfies 〈α, a〉 = 0 for all a ∈ I(E1, E2), equivalently 〈α, [X, a◦E2(s)]− [Y,E1(s)◦
a]〉 = 0 for all s : X → Y and a : E2(Y ) → E1(X). By definition (59) of the
pairing, this is equivalent to

TrE1X(a ◦ E2(s) ◦ αX)− TrE1(Y )(E1(s) ◦ a ◦ αY ) = 0

for all s : X → Y and a ∈ Hom(E2(Y ), E1(X)). Non-degeneracy of the trace
implies that α = (αX)X∈C must satisfy E2(s)◦αX = αY ◦E1(s) for all s : X → Y ,
thus α ∈ Nat(E1, E2), implying

A(E1, E2)∗ ∼= Nat(E1, E2).

Now we consider the question when the functional φ ∈ A(E1, E2)∗ corresponding
to α ∈ Nat(E1, E2) is a character, i.e. multiplicative. This is the case when

〈α, [X, s] · [Y, t]〉 = 〈α, [X, s]〉〈α, [Y, t]〉 ∀[X, s], [Y, t] ∈ A(E1, E2).

(Strictly speaking, [X, s], [Y, t] are representers in A0(E1, E2) for some elements in
A(E1, E2).) In view of (59) and the definition of the product in A(E1, E2) this
amounts to

TrE1(X⊗Y )(d1
X,Y ◦ s⊗ t ◦ (d2

X,Y )−1 ◦αX⊗Y ) = TrE1(X)(s ◦ αX)TrE1(Y )(t ◦ αY )
= TrE1(X)⊗E2(X)((s ◦ αX)⊗ (t ◦ αY ))
= TrE1(X)⊗E2(X)(s⊗ t ◦ αX ⊗ αY ).

In view of the cyclic invariance and non-degeneracy of the trace, this is true for
all s : E2(X) → E1(X) and t : E2(Y ) → E1(Y ), iff

αX⊗Y = d2
X,Y ◦ αX ⊗ αY ◦ (d1

X,Y )−1 ∀X,Y ∈ C.
This is precisely the condition for α ∈ Nat(E1, E2) to be monoidal, to wit α ∈
Nat⊗(E1, E2). �

PROPOSITION 399. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving fiber
functors. Then a monoidal natural transformation α ∈ Nat⊗(E1, E2) is unitary
(i.e. each αX is unitary) iff the corresponding character φ ∈ A(E1, E2) is a ∗-
homomorphism (i.e. φ(a∗) = φ(a)).
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Proof. Let α ∈ Nat⊗(E1, E2) and [X, s] ∈ A(E1, E2). By definition of the pairing
of A(E1, E2) and Nat(E1, E2),

φ([X, s]) = 〈α, [X, s]〉 = TrE1(X)(s ◦ αX),

and therefore, using Tr(AB) = Tr(A∗B∗),

φ([X, s]) = TrE1(X)(s∗ ◦ α∗
X).

On the other hand,

φ( [X, s]∗) = 〈α, [X, idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X)]〉
= TrE1(X)(idE1(X) ⊗ E2(r∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r)⊗ idE2(X) ◦ αX)
= E2(r∗) ◦ s∗ ⊗ αX ◦ E1(r)
= E2(r∗) ◦ (αX ◦ α−1

X ◦ s∗)⊗ αX ◦ E1(r)
= E1(r∗) ◦ (α−1

X ◦ s∗)⊗ idE2(X) ◦ E1(r)
= TrE1(X)(α−1

X ◦ s∗).

(In the fourth step we have used the invertibility of α (Lemma 396) and in the
fifth equality we have used (58) with X and X interchanged and r replaced by r.).
Now non-degeneracy of the trace implies that φ([X, s]) = φ([X, s]∗) holds for all
[X, s] ∈ (E1, E2) iff α∗

X = α−1
X for all X ∈ C, as claimed. �

Now we are in a position to prove the first of our outstanding claims:

Proof of Theorem 373. By the preceding constructions, the ‖ · ‖-closure
A(E1, E2) of A(E1, E2) is a commutative unital C∗-algebra. As such it has (lots
of) characters, i.e. unital ∗-homomorphisms into C. (Cf. e.g. Theorem 401 below.)
Such a character restricts to A(E1, E2) and corresponds, by Propositions 398 and
399, to a unitary monoidal natural transformation α ∈ Nat(E1, E2). �

REMARK 400. 1. The discussion of the algebra A(E1, E2) is inspired by the
one in the preprint [Bichon, ND] that didn’t make it into the published version
[Bichon, 1998]. The above proof of Theorem 373 first appeared in [Bichon, 1999].

2. Lemma 396 implies that the category consisting of fiber functors and monoidal
natural transformations is a groupoid, i.e. every morphism is invertible. Theorem
373 then means that the category consisting of symmetric ∗-preserving fiber func-
tors and unitary monoidal natural transformations is a transitive groupoid, i.e. all
objects are isomorphic. That this groupoid is non-trivial is the statement of Theo-
rem 382, whose proof will occupy the bulk of this section, beginning in Subsection
B.6.

B.5 The concrete Tannaka theorem. Part II

In order to prove Proposition 375 we need the formalism of the preceding sub-
sections. We write A(E) for the commutative unital C∗-algebra A(E,E) defined
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earlier. In order to study this algebra we need some results concerning commuta-
tive unital C∗-algebras that can be gathered, e.g., from [Pedersen, 1989].

THEOREM 401. Let A be a commutative unital C∗-algebra. Let A∗ be its Banach
space dual and let

P (A) = {φ ∈ A∗ | φ(1) = 1, ‖φ‖ ≤ 1},
X(A) = {φ ∈ A∗ | φ(1) = 1, φ(ab) = φ(a)φ(b), φ(a∗) = φ(a) ∀a, b ∈ A}.

P (A) and X(A) are equipped with the w∗-topology on A according to which φι → φ
iff φι(a) → φ(a) for all a ∈ A. Then:

(i) X(A) ⊂ P (A). (I.e., ∗-characters have norm ≤ 1.)

(ii) X(A) is compact w.r.t. the w∗-topology on P (A).

(iii) The map A → C(X(A)) given by a �→ (φ �→ φ(a)) is an isomorphism of
C∗-algebras.

(iv) The convex hull

{
N∑
i=1

ciφi , N ∈ N, ci ∈ R+,
∑
i

ci = 1, φi ∈ X(A)

}

of X(A) is w∗-dense in P (A).

Proof. (i) Any unital ∗-homomorphism α of Banach algebras satisfies ‖α(a)‖ ≤
‖a‖.

(ii) By Alaoglu’s theorem [Pedersen, 1989, Theorem 2.5.2], the unit ball of A∗ is
compact w.r.t. the w∗-topology, and so are the closed subsets X(A) ⊂ P (A) ⊂ A∗.

(iii) This is Gelfand’s theorem, cf. [Pedersen, 1989, Theorem 4.3.13].
(iv) This is the Krein-Milman theorem, cf. Theorem 2.5.4 together with Propo-

sition 2.5.7 in [Pedersen, 1989]. �

Theorem 401, (ii) implies that the set X ≡ X(A(E)) of ∗-characters of A(E)
is a compact Hausdorff space w.r.t. the w∗-topology. By (iii) and Proposition
399, the elements of X are in bijective correspondence with the set GE of unitary
monoidal transformations of the functor E.

LEMMA 402. The bijection X ∼= GE is a homeomorphism w.r.t. the topologies
defined above.

Proof. By definition of the product topology on
∏
X∈C U(E(X)), a net (gι) in GE

converges iff the net (gι,X) in U(E(X)) converges for every X ∈ C. On the other
hand, a net (φι) in X converges iff (φι(a)) converges in C for every a ∈ A(E).
In view of the form of the correspondence φ ↔ g established in Proposition 398,
these two notions of convergence coincide. �
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The homeomorphism X ∼= GE allows to transfer the topological group structure
that GE automatically has to the compact space X. Now we are in a position to
complete the proof of our second outstanding claim.

Proof of Proposition 375. Since C is semisimple and essentially small, there
exist a set I and a family {Xi, i ∈ I} of irreducible objects such that every object is
(isomorphic to) a finite direct sum of objects from this set. If Nat(E) ≡ Nat(E,E)
is the space of natural transformations from E to itself, with every α ∈ Nat(E) we
can associate the family (αi = αXi

)i∈I , which is an element of
∏
i∈I EndE(Xi).

Semisimplicity of C and naturality of α imply that every such element arises from
exactly one natural transformation of E. (In case it is not obvious, a proof can
be found in [Müger et al., 2004, Proposition 5.4].) In this way we obtain an
isomorphism

γ : Nat(E) →
∏
i∈I

EndE(Xi), α �→ (αXi
)i∈I

of vector spaces. Now consider the linear map

δ :
⊕
i∈I

EndE(Xi) → A(E), (ai) �→
∑
i

[Xi, ai].

Since every a ∈ A(E) can be written as [X, s] (proof of Proposition 393) and
every [X, s] is a sum of elements [Xi, si] with Xi irreducible, δ is surjective. When
understood as a map to A0(E), δ obviously is injective. As a consequence of
Hom(Xi,Xj) = {0} for i �= j , the image in A0(E) of of δ has trivial intersection
with the ideal I(E), which is the kernel of the quotient map A0(E) → A(E), thus
δ is injective and therefore an isomorphism (of vector spaces, not algebras). If the
C∗-norm on A(E) is pulled back via δ we obtain the norm

‖(ai)i∈I‖ = sup
i∈I
‖ai‖EndE(Xi)

on
⊕

i∈I EndE(Xi). Thus we have an isomorphism δ :
⊕

i∈I EndE(Xi)
‖·‖ →

A(E) of the norm closures. W.r.t. the isomorphisms γ, δ, the pairing 〈·, ·〉 :
Nat(E)×A(E) → C of Proposition 398 becomes

〈·, ·〉∼ :
∏
i∈I

EndE(Xi) ×
⊕
i∈I

EndE(Xi) → C, (αXi
)× (ai) �→

∑
i∈I

TrE(Xi)(αiai).

(More precisely: 〈·, δ(·)〉 = 〈γ(·), ·〉∼ as maps Nat(E) ×⊕
i∈I EndE(Xi) → C.)

Thus if α ∈ Nat(E) is such that γ(α) ∈ ∏
i∈I EndE(Xi) has only finitely many

non-zero components (i.e. γ(α) ∈ ⊕i∈IEndE(Xi)), then 〈α, ·〉 ∈ A(E)∗ extends to
an element of A(E)∗.

Now (iv) of Theorem 401 implies that every φ ∈ A(E)∗ is the w∗-limit of a
net (φι) in the C-span of the ∗-characters X(A(E)) of A(E). Thus for every
(αi) ∈

⊕
i∈I EndE(Xi) there is a such a net (φι) for which

w∗ − lim φι = 〈γ−1((αi)), ·〉 ∈ A(E)∗.
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Restricting the φι to A(E) and using the isomorphism NatE ∼= A(E)∗, we obtain
a net in Nat E that converges to γ−1((αi)). By Propositions 398, 399, the iso-
morphism A(E)∗ → Nat E maps the elements of X(A(E)) to the unitary natural
monoidal transformations of E, i.e. to elements of GE . Thus, in particular for
every finite S ⊂ I we have

span
C
{πs1(g)⊕ · · · ⊕ πs|S|(g)︸ ︷︷ ︸

all s∈S

, g ∈ GE} =
⊕
s∈S

EndE(Xs),

which clearly is a good deal more than claimed in Proposition 375. �

This concludes the proof of all ingredients that went into the proof of Theorem
377. From the proof it is obvious that the commutative C∗-algebra A(E) is just
the algebra of continuous functions on the compact group GE , whereas A(E) is
the linear span of the matrix elements of the finite dimensional representations of
GE .

B.6 Making a symmetric fiber functor ∗-preserving

The aim of his subsection is to prove the following result, which seems to be new:

THEOREM 403. An even STC∗ C that admits a symmetric fiber functor C →
VectC also admits a symmetric ∗-preserving fiber functor C → H.

LEMMA 404. Let C be an STC∗ and E : C → VectC a symmetric fiber func-
tor. Choose arbitrary positive definite inner products 〈·, ·〉0X (i.e. Hilbert space
structures) on all of the spaces E(X),X ∈ C. Then the maps X �→ E(X)
and s �→ E(s∗)†, where E(s∗)† is the adjoint of E(s∗) w.r.t. the inner products
〈·, ·〉0X , define a faithful functor Ẽ : C → VectC. With d

eE
X,Y = ((dEX,Y )†)−1 and

e
eE = ((eE)†)−1, this is a symmetric fiber functor.

Proof. First note that s �→ Ẽ(s) is C-linear and really defines a functor, since
Ẽ(idX) = id eE(X) and

Ẽ(s◦t) = E((s◦t)∗)† = E(t∗◦s∗)† = (E(t∗)◦E(s∗))† = E(s∗)†◦E(t∗)† = Ẽ(s)◦Ẽ(t).

Faithfulness of E clearly implies faithfulness of Ẽ. With d
eE
X,Y = ((dEX,Y )†)−1 and

e
eE = ((eE)†)−1, commutativity of the diagrams (56) and (57) is obvious. Since E

is a tensor functor, we have

E(s⊗ t) ◦ dEX,Y = dEX′,Y ′ ◦ E(s)⊗ E(t)

for all s : X → X ′, t : Y → Y ′, which is equivalent to

(E(s⊗ t))† ◦ ((dEX′,Y ′)
−1)† = ((dEX,Y )−1)† ◦ (E(s)⊗ E(t))†.
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Since this holds for all s, t, we have proven naturality of the family (d eE
X,Y ), thus

Ẽ is a tensor functor. The computation

Ẽ(cX,Y ) = E(c∗X,Y )† = E(cY,X)† = Σ†
E(Y ),E(X) = ΣE(X),E(Y ),

where we have used Σ†
H,H′ = ΣH′,H , shows that Ẽ is also symmetric. Thus Ẽ is a

symmetric fiber functor. �

Now the discussion of Subsection B.3 applies and provides us with a commuta-
tive unital C-algebra A(E, Ẽ). However, we cannot appeal to Proposition 393 to
conclude that A(E, Ẽ) is a ∗-algebra, since E, Ẽ are not ∗-preserving. In fact, for
arbitrary symmetric fiber functors E1, E2 there is no reason for the existence of a
positive ∗-operation on A(E1, E2), but in the present case, where the two functors
are related by E2(s) = E1(s∗)†, this is true:

PROPOSITION 405. Let C be an STC∗, E : C → VectC a symmetric fiber functor
and Ẽ as defined above. Then

[X, s]� = [X, s†]

is well defined and is a positive ∗-operation on A(E, Ẽ). With respect to this ∗-
operation, the norm ‖ · ‖ from Proposition 394 is a C∗-norm, i.e. ‖a�a‖ = ‖a‖2
for all a ∈ A(E, Ẽ).

Proof. For [X, s] ∈ A0(E, Ẽ) we define [X, s]� = [X, s†], where s† is the adjoint
of s ∈ EndE(X) w.r.t. the inner product on E(X). Clearly, � is involutive and
antilinear. Now, if s : X → Y, a ∈ Hom(E2(Y ), E1(X)), then

([X, a ◦ E2(s)]− [Y,E1(s) ◦ a])� = [X, a ◦ E(s∗)†]� − [Y,E(s) ◦ a]�

= [X,E(s∗) ◦ a†]− [Y, a† ◦ E(s)†] = [X,E1(s∗) ◦ a†]− [Y, a† ◦ E2(s∗)].

Since s∗ ∈ Hom(Y,X) and a† ∈ Hom(E(X), E(Y )), the right hand side of this
expression is again in I(E, Ẽ). Thus I(E, Ẽ) is stable under �, and � descends to
an antilinear involution on A(E, Ẽ). In A0(E, Ẽ) we have

([X, s] · [Y, t])� = [X ⊗ Y, d
eE
X,Y ◦ s⊗ t ◦ (dEX,Y )−1]�

= [X ⊗ Y, (dEX,Y
†
)−1 ◦ s⊗ t ◦ (dEX,Y )−1]�

= [X ⊗ Y, (dEX,Y
†
)−1 ◦ s† ⊗ t† ◦ (dEX,Y )−1]

= [X ⊗ Y, d
eE
X,Y ◦ s† ⊗ t† ◦ (dEX,Y )−1]

= [X, s]� · [Y, t]�.

Together with commutativity of A(E, Ẽ) this implies that � is antimultiplica-
tive. Recall that there is an isomorphism δ :

⊕
i∈I EndE(Xi) → A(E, Ẽ) such

that ‖δ((ai)i∈I)‖ = supi ‖ai‖, where ‖ · ‖ is the norm defined in Subsection B.3.
By definition of � we have δ((ai))� = δ((a†

i )), implying ‖a�a‖ = ‖a‖2. Thus
(A(E, Ẽ), �, ‖ · ‖) is a pre-C∗-algebra. �
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(Note that the involution � has nothing at all to do with the one defined in
Subsection B.3!)

PROPOSITION 406. Let C be an STC∗ and E : C → VectC a symmetric fiber
functor. With Ẽ as defined above, there exists a natural monoidal isomorphism
α : E → Ẽ, whose components αX are positive, i.e. 〈u, αXu〉0X > 0 for all nonzero
u ∈ E(X).

Proof. As in Subsection B.4, the norm-completion A(E, Ẽ) of A(E, Ẽ) is a com-
mutative unital C∗-algebra and therefore admits a ∗-character φ : A(E, Ẽ) → C.
Restricting to A(E, Ẽ), Proposition 398 provides a monoidal natural isomorphism
α : E → Ẽ. But we know more: The character φ is positive, i.e. φ(a�a) > 0 for all
a �= 0. With a = [X, s] and taking (59) into account, we have

φ(a�a) = φ([X, s†s]) = TrE(X)(s†sαX) = TrE(X)(sαXs†)

=
∑
i

〈ei, sαXs†ei〉0X =
∑
i

〈s†ei, αXs†ei〉0X ,

where {ei} is any basis of E(X) that is orthonormal w.r.t. 〈·, ·〉0X . This is positive
for all a = [X, s] ∈ A(E, Ẽ) iff 〈u, αXu〉0X > 0 for all nonzero u ∈ E(X). �

Now we are in a position to prove the main result of this subsection, which is a
more specific version of Theorem 403.

THEOREM 407. Let C be an even STC∗ and E : C → VectC a symmetric fiber
functor. Then there exist Hilbert space structures (i.e. positive definite inner prod-
ucts 〈·, ·〉X) on the spaces E(X),X ∈ C such that X �→ (E(X), 〈·, ·〉X) is a ∗-
preserving symmetric fiber functor C → H.

Proof. Pick non-degenerate inner products 〈·, ·〉0X on the spaces E(X),X ∈ C.
Since E(1) is one-dimensional and spanned by eE1, where 1 ∈ C = 1VectC

, we can
define 〈·, ·〉01 by 〈aeE1, beE1〉01 = ab, as will be assumed in the sequel. Let Ẽ and
α ∈ Nat⊗(E, Ẽ) as above. Defining new inner products 〈·, ·〉X on the spaces E(X)
by

〈v, u〉X = 〈v, αXu〉0X ,

the naturality

αY ◦ E(s) = Ẽ(s) ◦ αX = E(s∗)† ◦ αX ∀s : X → Y

of (αX) implies

〈v,E(s)u〉Y = 〈v, αY E(s)u〉0Y = 〈v,E(s∗)†αXu〉0Y
= 〈E(s∗)v, αXu〉0X = 〈E(s∗)v, u〉X

for all s : X → Y, u ∈ E(X), v ∈ E(Y ). This is the same as E(s∗) = E(s)∗,
where now E(s)∗ denotes the adjoint of E(s) w.r.t. the inner products 〈·, ·〉.
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Thus the functor X �→ (E(X), 〈·, ·〉X) is ∗-preserving. The new inner products
〈·, ·〉X are non-degenerate since the αX are invertible, and the positivity property
〈u, αXu〉0X > 0 for u �= 0 implies that (E(X), 〈·, ·〉X) is a Hilbert space. The
monoidality

αX⊗Y ◦ dEX,Y = d
eE
X,Y ◦ αX ⊗ αY = ((dEX,Y )†)−1 ◦ αX ⊗ αY ∀X,Y

of the natural isomorphism α : E → Ẽ is equivalent to

αX ⊗ αY = (dEX,Y )† ◦ αX⊗Y ◦ dEX,Y .(60)

Using this we have

〈dEX,Y (u′ ⊗ v′), dEX,Y (u⊗ v) 〉X⊗Y = 〈dEX,Y (u′ ⊗ v′), αX⊗Y ◦ dEX,Y (u⊗ v)〉0X⊗Y
= 〈(u′ ⊗ v′), (dEX,Y )† ◦ αX⊗Y ◦ dEX,Y (u⊗ v)〉0X⊗Y
= 〈(u′ ⊗ v′), (αX ⊗ αY )(u⊗ v)〉0X⊗Y
= 〈u′, αXu〉0X〈v′, αY v〉0Y = 〈u′, u〉X〈v′, v〉Y ,

thus the isomorphisms dEX,Y : E(X) ⊗ E(Y ) → E(X ⊗ Y ) are unitary w.r.t. the
inner products 〈·, ·〉.

Now, the compatibility (57) of dE and eE implies that dE1,1 ◦ eE1⊗ eE1 = eE1
and therefore, using our choice of the inner product 〈·, ·〉01,

〈dE1,1(aeE1⊗ beE1), dE1,1(ceE1⊗ deE1)〉01⊗1 = 〈abeE1, cdeE1〉01
= abcd = 〈aeE1, ceE1〉01〈beE1, deE1〉01.

This means that dE1,1 : E(1) ⊗ E(1) → E(1) is unitary w.r.t. the inner product
〈·, ·〉01. Taking X = Y = 1 in (60) and using α1 = λidE(1), we get λ2 = λ. Since
α1 is invertible, we have λ = 1, thus α1 = idE(1) and therefore 〈·, ·〉1 = 〈·, ·〉01.
Now,

〈eE1, eE1〉1 = 〈eE1, α1eEu〉01 = 〈eE1, eE1〉01 = 1 = 〈1, 1〉C,

thus (eE)∗eE = idC. By one-dimensionality of the spaces involved, we also have
eE(eE)∗ = idE(1), thus eE : 1 → E(1) is unitary w.r.t. the inner new products
〈·, ·〉. �

B.7 Reduction to finitely generated categories

DEFINITION 408. An additive tensor category C is finitely generated if there
exists an object Z ∈ C such that every object X ∈ C is a direct summand of some
tensor power Z⊗n = Z ⊗ · · · ⊗ Z︸ ︷︷ ︸

n factors

, n ∈ N, of Z.

LEMMA 409. Let C be a TC∗. Then the finitely generated tensor subcategories of
C form a directed system, and C is the inductive limit of the latter:

C ∼= lim
−→
ι∈I
Ci.
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Proof. Consider all full tensor subcategories of C. Since C is essentially small, the
equivalence classes of such subcategories form a set, partially ordered by inclusion.
If C1, C2 ⊂ C are finitely generated, say by the objects X1,X2, then then the
smallest tensor subcategory containing C1 and C2 is generated by X1 ⊕ X2, thus
we have a directed system. Clearly there is a full and faithful tensor functor
lim−→

ι∈I Ci → C. Since every object X is contained in a finitely generated tensor
subcategory (e.g., the one generated by X), this functor is essentially surjective and
thus an equivalence of categories, cf. [Mac Lane, 1998], in fact of tensor categories,
cf. [Saavedra Rivano, 1972]. �

REMARK 410. 1. The reason for considering finitely generated categories is that
the existence problem of fiber functors for such categories can be approached using
powerful purely algebraic methods. The general case can then be reduced to the
finitely generated one using Lemma 409.

2. Note that we don’t require the generator Z to be irreducible. Thus if we
a priori only know that C is generated by a finite set Z1, . . . , Zr of objects, the
direct sum Z = ⊕iZi will be a (reducible) generator of C. This is why only a single
generating object appears in the definition.

3. If G is a compact group, the category RepfG is finitely generated iff G
is a Lie group. (Proof: ⇐ is a consequence of the well known representation
theory of compact Lie groups. ⇒: It is well known that the finite dimensional
representations of G separate the elements of G. Therefore, if (H,π) is a generator
of RepfG, it is clear that π must be faithful. Thus G is isomorphic to a closed
subgroup of the compact Lie group U(H), and as such it is a Lie group.)

4. The index set I in Lemma 409 can be taken countable iff C has countably
many isomorphism classes of irreducible objects. The category RepfG, where
G is a compact group, has this property iff G is second countable, equivalently
metrizable.

In Subsections B.8-B.11 we will prove the following result, which we take for
granted for the moment:

THEOREM 411. A finitely generated even STC∗ admits a symmetric fiber func-
tor E : C → VectC.

Proof of Theorem 382. By Lemma 409, we can represent C as an inductive
limit lim−→

ι∈I Ci of finitely generated categories. Now Theorem 411 provides us with
symmetric fiber functors Ei : Ci → VectC, i ∈ I, and Theorem 407 turns the
latter into ∗-preserving symmetric fiber functors Ei : Ci → H. By Theorem 377,
we obtain compact groups Gi = Nat⊗Ei (in fact compact Lie groups by Remark
410.3) with representations πi,X on the spaces Ei(X),X ∈ Ci such that the functors
Fi : Ci → RepfGi, X �→ (Ei(X), πi,X are equivalences. Let now i ≤ j, implying
that Ci is a full subcategory of Cj . Then Ej � Ci is a fiber functor for Ci and thus
Theorem 373 implies the existence of a unitary natural isomorphism αi,j : F1 →
F2 � Ci. (Note that αi,j is not unique!) Now, by definition every g ∈ G2 is a family
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of unitaries (gX ∈ U(E2(X)))X∈C2 defining a monoidal natural automorphism of
E2. Defining, for every X ∈ C1, hX := αi,jX ◦ gX ◦ (αi,jX )∗ we see that the family
(hX ∈ U(E1(X)))X∈C1 is a unitary monoidal natural automorphism of E1, to wit
an element of G1. In this way we obtain a map βi,j : Gj → Gi that clearly is
a group homomorphism and continuous. By Schur’s lemma, the unitary αi,jX is
unique up to a phase for irreducible X. Thus for such X, βi,jX is independent of
the chosen αi,j , and thus βi,j is uniquely determined. It is also surjective in view
of the Galois correspondence between the full tensor subcategories of RepfG and
the quotients G/N , where N ⊂ G is a closed normal subgroup. Now the inverse
limit

G = lim
←−
i∈I

Gi = {(gi ∈ Gi)i∈I | βi,j(gj) = gi whenever i ≤ j}

is a compact group with obvious surjective homomorphisms γi : G → Gi for all
i ∈ I. Now we define a functor E : C → RepfG as follows: For every X ∈ C pick
an i ∈ I such that X ∈ Ci and define F (X) = (Ei(X), πi(X) ◦ γi). Clearly this is
an object in RepfG, and its isomorphism class is independent of the chosen i ∈ I.
In this way we obtain a functor from C = lim→ Ci to RepfG ∼= lim→ RepfGi that
restricts to equivalences Ci → RepfGi. Thus E is full and faithful. Finally, E is
essentially surjective since every finite dimensional representation of G = lim← Gi

factors through one of the groups Gi. �

REMARK 412. In view of Remark 410.3, the preceding proof also shows that
every compact group is an inverse limit of compact Lie groups.

B.8 Fiber functors from monoids

Our strategy to proving Theorem 411 will be essentially the one of Deligne [Deligne,
1990], replacing however the algebraic geometry in a symmetric abelian category
by fairly elementary commutative categorical algebra. There are already several
expositions of this proof [Bichon, 1998; Rosenberg, 2000; Hái, 2002], of which we
find [Bichon, 1998] the most useful, see also [Bichon, ND]. However, we will give
more details than any of these references, and we provide some further simplifica-
tions.

The following result clearly shows the relevance of the notions introduced in
Subsection A.6 to our aim of proving Theorem 411:

PROPOSITION 413. Let C be a TC∗ and Ĉ be a C-linear strict tensor category
containing C as a full tensor subcategory. Let (Q,m, η) be a monoid in Ĉ satisfying

(i) dim HombC(1, Q) = 1. (I.e., HombC(1, Q) = Cη.)

(ii) For every X ∈ C, there is n(X) ∈ Z+ such that n(X) �= 0 whenever X �∼= 0
and an isomorphism αX : (Q⊗X,m⊗ idX) → n(X) · (Q,m) of Q-modules.



904 Hans Halvorson and Michael Müger

Then the functor E : C → VectC defined by

E : C → H, X �→ HombC(1, Q⊗X),

together with

E(s)φ = idQ ⊗ s ◦ φ, s : X → Y, φ ∈ Hom(1, Q⊗X)(61)

is a faithful (strong) tensor functor and satisfies dimC E(X) = n(X).
If Ĉ has a symmetry c w.r.t. which (Q,m, η) is commutative then E is symmetric

monoidal w.r.t. the symmetry Σ of VectC, i.e. E(cX,Y ) = ΣE(X),E(Y ).

Proof. We have E(X) = Hom(1, Q⊗X) ∼= Hom(1, n(X)Q) ∼= d(X)Hom(1, Q) ∼=
C
n(X), thus E(X) is a vector space of dimension n(X). Since E(X) �= 0 for every

non-zero X ∈ C, the functor E is faithful.
To see that E is monoidal first observe that by (ii) we have E(1) = Hom(1, Q) =

Cη. Thus there is a canonical isomorphism e : C = 1VectC
→ E(1) = Hom(1, Q)

defined by c �→ cη. Next we define morphisms

[dEX,Y : E(X)⊗ E(Y ) → E(X ⊗ Y ), φ⊗ ψ �→ m⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ.

By definition (61) of the map E(s) : E(X) → E(Y ) it is obvious that the family
(dEX,Y ) is natural w.r.t. both arguments. The equation

dEX1⊗X2,X3
◦ dEX1,X2

⊗ idE(X3) = dEX1,X2⊗X3
◦ idE1 ⊗ dEX2,X3

∀X1,X2,X3 ∈ C
required from a tensor functor is a straightforward consequence of the associativity
of m. The verification is left as an exercise.

That (E, (dX,Y ), e) satisfies the unit axioms is almost obvious. The first condi-
tion follows by

dX,1(idE(X) ⊗ e)φ = dX,1(φ⊗ η) = m⊗ idX ◦ idQ ⊗ φ ◦ η = φ,

and the second is shown analogously.
So far, we have shown that E is a weak tensor functor for which e : 1H → E(1C)

is an isomorphism. In order to conclude that E is a (strong) tensor functor it
remains to show that the morphisms dEX,Y are isomorphisms. Let X,Y ∈ C. We
consider the bilinear map

γX,Y : HomQ(Q,Q⊗X) � HomQ(Q,Q⊗ Y ) → HomQ(Q,Q⊗X ⊗ Y ),
s � t �→ s⊗ idY ◦ t.

(We write � rather than ⊗C for the tensor product of VectC in order to avoid con-
fusion with the tensor product in Q−Mod.) By 2., we have Q-module morphisms
si : Q→ Q⊗X, s′i : Q⊗X → Q for i = 1, . . . , n(X) satisfying s′i ◦sj = δij idQ, and∑
i si ◦ s′i = idQ⊗X , and similar morphisms ti, t

′
i, i = 1, . . . , n(Y ) for X replaced

by Y . Then the γij = γX,Y (si ⊗ tj) are linearly independent, since they satisfy
γ′
i′j′ ◦ γij = δi′iδj′j idQ with γ′

i′j′ = t′j ◦ s′i ⊗ idY . Bijectivity of γX,Y follows now
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from the fact that both domain and codomain of γX,Y have dimension n(X)n(Y ).
Appealing to the isomorphisms δX : HomQ(Q,Q⊗X) �→ Hom(1, Q⊗X) one easily
shows

dEX,Y = δX⊗Y ◦ γX,Y ◦ δ−1
X � δ−1

Y ,

which implies that dEX,Y is an isomorphism for every X,Y ∈ C.
We now assume that Ĉ has a symmetry c and that (Q,m, η) is commutative.

In order to show that E is a symmetric tensor functor we must show that

E(cX,Y ) ◦ dEX,Y = ΣE(X),E(Y ) ◦ dEY,X

for all X,Y ∈ C. Let φ ∈ E(X), ψ ∈ E(Y ).
By definition of E we have

(E(cX,Y ) ◦ dEX,Y )(φ⊗ ψ) = idQ ⊗ cX,Y ◦ m⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ

=

Q Y X
�
�
��

�
�

��
m � �

φ

�
�
� �

�
�

ψ

=

Q Y X

m � �

�
�

��
�

�

ψ φ

=

Q Y X

m � �

�
�
��

�
�

��

ψ

�
�
� �

�
�

φ

On the other hand,

(dEY,X ◦ cE(X),E(Y ))(φ⊗ ψ) = (dEY,X ◦ ΣE(X),E(Y ))(φ⊗ ψ) = dEY,X(ψ ⊗ φ)

=

Q Y X

m � �

ψ

�
�
� �

�
�

φ

If m is commutative, i.e. m = m ◦ cQ,Q, these two expressions coincide, and we
are done. �
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REMARK 414. 1. The property (ii) in the proposition is called the ‘absorbing
property’.

2. The conditions in Proposition 413 are in fact necessary for the existence of
a fiber functor! Assume that a tensor ∗-category C admits a ∗-preserving fiber
functor E : C → H. By [Müger et al., 2004], which reviews and extends work of
Woronowicz, Yamagami and others, there is a discrete algebraic quantum group
(A,∆) such that C � Repf (A,∆). In [Müger and Tuset, 2006] it is shown that
taking Ĉ � Rep(A,∆) (i.e. representations of any dimension) and Q = πl, there is
a monoid (Q,m, η) satisfying the conditions of Proposition 413. Namely, one can
take Q = πl, the left regular representation. In [Müger and Tuset, 2006] it shown
that (i) dim Hom(π0, πl) = 1, i.e. there exists a non-zero morphism η : π0 → πl,
unique up to normalization; (ii) πl has the required absorbing property; (iii) there
exists a morphism m : πl ⊗ πl → πl such that (Q = πl,m, η) is a monoid.

3. In the previous situation, the left regular representation πl lives in Repf (A,∆)
iff A is finite dimensional. This already suggests that the category C in general
is too small to contain a monoid of the desired properties. In fact, assume we
can take Ĉ = C. Then for every irreducible X ∈ C we have dim Hom(X,Q) =
dim Hom(1, Q⊗X) = n(X) > 0. Thus Q contains all irreducible objects as direct
summands. Since every object in C is a finite direct sum of simple objects, Ĉ = C
is possible only if C has only finitely many isomorphism classes of simple objects.
In fact, even in this case, our construction of (Q,m, η) will require the use of a
bigger category Ĉ. It is here that the category Ind C of Subsection A.7 comes into
play.

Since we have already reduced the problem of constructing a fiber functor to
the case of finitely generated tensor categories, we want a version of the preceding
result adapted to that situation:

COROLLARY 415. Let C be a TC∗ with monoidal generator Z ∈ C and let Ĉ
be a C-linear strict tensor category containing C as a full tensor subcategory. If
(Q,m, η) is a monoid in Ĉ satisfying

(i) dim HombC(1, Q) = 1.

(ii) There is d ∈ N and an isomorphism αZ : (Q ⊗ Z,m ⊗ idZ) → d · (Q,m) of
Q-modules.

Then the hypothesis (ii) in Proposition 413 follows. Thus E : X �→ HombC(1, Q⊗
X) is a fiber functor.

Proof. If X ∈ C, there exists n ∈ N such that X ≺ Z⊗n. Concretely, there are
morphisms u : X → Z⊗n and v : Z⊗n → X such that v ◦ u = idX . Then the
morphisms ũ = idQ ⊗ u : Q ⊗ X → Q ⊗ Z⊗n and ṽ = idQ ⊗ v : Q ⊗ Z⊗n →
Q ⊗ X are morphisms of Q-modules. Thus the Q-module (Q ⊗ X,m ⊗ idX)
is a direct summand of (Q ⊗ Z⊗n,m ⊗ idZ⊗n). By assumption, the latter is
isomorphic to a direct sum of dn copies of (Q,m). By Lemma 358 and assumption
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(i), EndQ((Q,m)) ∼= C, thus (Q,m) ∈ Q −Mod is irreducible. Thus the direct
summand (Q ⊗ X,m ⊗ idX) of dn · (Q,m) is a direct sum of r copies of (Q,m)
with r ≤ dm and r �= 0 whenever X �= 0. Thus hypothesis (ii) in Proposition 413
holds. �

In view of Corollary 415, proving Theorem 411 amounts to finding a symmetric
tensor category Ĉ containing C as a full subcategory and a commutative monoid
(Q,m, η) in Ĉ such that dim Hom(1, Q) = 1 and Q⊗Z ∼= d⊗Q as Q-modules for
a suitable monoidal generator Z of C. This will be achieved in Subsection B.11,
based on thorough analysis of the permutation symmetry of the category C.

B.9 Symmetric group action, determinants and integrality of dimen-
sions

We now turn to a discussion of certain representations of the symmetric groups
Pn, n ∈ N, present in tensor ∗-categories with a unitary symmetry. It is well known
that the symmetric group Pn on n labels has the presentation

Pn = (σ1, . . . , σn−1 | |i− j| ≥ 2 ⇒ σiσj = σjσi,

σiσi+1σi = σi+1σiσi+1 ∀i ∈ {1, . . . , n− 1}, σ2
i = 1 ∀i).

Since C is strict we may define the tensor powers X⊗n, n ∈ N, in the obvious
way for any X ∈ C. We posit X⊗0 = 1 for every X ∈ C.
LEMMA 416. Let C be an STC∗. Let X ∈ C and n ∈ N. Then

ΠX
n : σi �→ idX⊗i−1 ⊗ cX,X ⊗ idX⊗n−i−1

uniquely determines a homomorphism ΠX
n from the group Pn into the unitary

group of EndX⊗n.

Proof. It is clear that ΠX
n (σi) and ΠX

n (σj) commute if |i−j| ≥ 2. That ΠX
n (σi)2 =

idX⊗n is equally obvious. Finally,

ΠX
n (σi) ◦ ΠX

n (σi+1) ◦ ΠX
n (σi) = ΠX

n (σi+1) ◦ ΠX
n (σi) ◦ ΠX

n (σi+1)

follows from the Yang-Baxter equation satisfied by the symmetry c. �
REMARK 417. Dropping the relations σ2

i = 1 the same formulae as above define
homomorphisms of the Artin braid groups Bn into EndX⊗n. However, none of
the following considerations has known analogues in the braided case.

Recall that there is a homomorphism sgn : Pn → {1,−1}, the signature map.

LEMMA 418. Let C be an STC∗. For any X ∈ C we define orthogonal projections
in EndX⊗0 = End1 by SX0 = AX

0 = id1. For any n ∈ N, the morphisms

SXn =
1
n!

∑
σ∈Pn

ΠX
n (σ),

AX
n =

1
n!

∑
σ∈Pn

sgn(σ)ΠX
n (σ)
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satisfy

ΠX
n (σ) ◦ SXn = SXn ◦ ΠX

n (σ) = SXn ,

ΠX
n (σ) ◦ AX

n = AX
n ◦ ΠX

n (σ) = sgn(σ)AX
n

for all σ ∈ Pn and are thus orthogonal projections in the ∗-algebra EndX⊗n.

Proof. Straightforward computations. �

DEFINITION 419. The subobjects (defined up to isomorphism) of X⊗n corre-
sponding to the idempotents SXn and AX

n are denoted by Sn(X) and An(X),
respectively.

The following was proven both in [Doplicher and Roberts, 1989] and [Deligne,
1990]:

PROPOSITION 420. Let C be an even STC∗. For any X ∈ C we have

TrX⊗n AX
n =

d(X)(d(X)− 1)(d(X)− 2) · · · (d(X)− n + 1)
n!

∀n ∈ N.(62)

Proof. (Sketch) Making crucial use of the fact that C is even, i.e. Θ(X) = idX for
all X ∈ C, one can prove

TrX⊗n ΠX
n (σ) = d(X)#σ ∀X ∈ C, σ ∈ Pn,

where #σ is the number of cycles into which the permutation σ decomposes.
(The reader familiar with tangle diagrams will find this formula almost obvious:
Triviality of the twist Θ(X) implies invariance under the first Reidemeister move.
Thus the closure of the permutation σ is equivalent to #σ circles, each of which
contributes a factor d(X).) Now the result follows at once from the definition of
AX
n and the formula∑

σ∈Pn

sgn(σ) z#σ = z(z − 1)(z − 2) · · · (z − n + 1),

which holds for all n ∈ N and z ∈ C, as one can prove by induction over n. �

COROLLARY 421. In an STC∗ we have d(X) ∈ N for every non-zero X ∈ C.
Proof. Assume first that C is even, and let X ∈ C. Since C has subobjects
there exist an object An(X) ∈ C and a morphism s : An(X) → X⊗n such that
s∗ ◦ s = idAn(X) and s ◦ s∗ = AX

n . Then by part 1 and 2 in Proposition 339, we
get

TrX⊗n AX
n = TrX⊗n(s ◦ s∗) = TrAn(X)(s∗ ◦ s) = TrAn(X) idAn(X) = d(An(X)).

Since the dimension of any object in a ∗-category is non-negative we thus conclude
that TrX⊗n AX

n ≥ 0 for all n ∈ N. From the right-hand side in the formula (62)
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for TrX⊗n AX
n we see that TrX⊗n AX

n will become negative for some n ∈ N unless
d(X) ∈ N.

If C is odd, the above argument gives integrality of the dimensions in the
bosonized category C̃. Since the categorical dimension is independent of the braid-
ing, we have dC(X) = deC(X) and are done. �

Let C be an STC∗ and X ∈ C non-zero and set d = d(X) ∈ N. Consider
the subobject Ad(X) of X⊗d, introduced in the proof of Corollary 421, which
corresponds to the orthogonal projection AX

d ∈ EndX⊗d defined in Lemma 418.
Then

d(Ad(X)) = TrX⊗d AX
d =

d!
d!

= 1,

we see that Ad(X) is an irreducible and invertible object of C (with inverse Ad(X)).

DEFINITION 422. The isomorphism class of Ad(X)(X) is called the determinant
det X of X.

LEMMA 423. Let C be an STC∗ and X,Y ∈ C. Then

(i) det X ∼= det(X).

(ii) det(X ⊕ Y ) ∼= det X ⊗ det Y .

(iii) det(X ⊕X) ∼= 1.

Proof. (i) Let (X, r, r) be a standard left inverse of X. By inductive use of Lemma
338 one obtains standard left inverses (X

⊗n
, rn, rn) of X⊗n for any n ∈ N. If now

σ = σi1 · · ·σir ∈ Pn, one can verify that

ΠX
n (σ′) = r∗n ⊗ id

X
⊗n ◦ id

X
⊗n ⊗ΠX

n (σ)⊗ id
X
⊗n ◦ id

X
⊗n ⊗ rn,

where σ′ = σ−1
n−ir · · ·σ−1

n−i1 . In particular, sgnσ′ = sgn σ, implying

AX
n = r∗n ⊗ id

X
⊗n ◦ id

X
⊗n ⊗AX

n ⊗ id
X
⊗n ◦ id

X
⊗n ⊗ rn,

for any n ∈ N. Now the claim follows from Lemma 337.
(ii) For any X ∈ C we abbreviate dX = d(X) and AX = AX

dX
∈ EndX⊗dX . Let

u : X → Z, v : Y → Z be isometries implementing Z ∼= X ⊕ Y . Then X⊗dX is a
subobject of Z⊗dX , and similarly for Y ⊗dY . By definition, detZ is the subobject
of Z⊗dZ corresponding to the projector AZ ∈ EndZ⊗dZ . On the other hand,
det X ⊗ det Y is the subobject of X⊗dX ⊗ Y ⊗dY corresponding to the projector
AX ⊗ AY , and therefore it is isomorphic to the subobject of Z⊗dZ corresponding
to the projector

u⊗ · · · ⊗ u⊗ v ⊗ · · · ⊗ v ◦ AX ⊗AY ◦ u∗ ⊗ · · · ⊗ u∗ ⊗ v∗ ⊗ · · · ⊗ v∗ ∈ EndZ⊗dZ ,
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where there are dX factors u and u∗ and dY factors v and v∗. This equals

1
dX !dY !

∑
σ∈PdX
σ′∈PdY

sgn(σ)sgn(σ′)u⊗ · · · ⊗ u⊗ v ⊗ · · · ⊗ v

◦ ΠX
dX

(σ)⊗ΠY
dY

(σ′) ◦ u∗ ⊗ · · · ⊗ u∗ ⊗ v∗ ⊗ · · · ⊗ v∗.

By naturality of the braiding, this equals

1
dX !dY !

∑
σ∈PdX
σ′∈PdY

sgn(σ)sgn(σ′)ΠZ
dX

(σ)⊗ΠZ
dY

(σ′) ◦ pX ⊗ · · · ⊗ pX ⊗ pY ⊗ · · · ⊗ pY ,

where pX = u ◦ u∗, pY = v ◦ v∗. With the juxtaposition σ × σ′ ∈ PdX+dY
= PdZ

of σ and σ′ this becomes

1
dX !dY !

∑
σ∈PdX
σ′∈PdY

sgn(σ × σ′)ΠZ
dZ

(σ × σ′) ◦ pX ⊗ · · · ⊗ pX ⊗ pY ⊗ · · · ⊗ pY .(63)

On the other hand,

AZ =
1

dZ !

∑
σ∈PdZ

sgn(σ)ΠZ
dZ

(σ)

=


 ∑
σ∈PdZ

sgn(σ)ΠZ
dZ

(σ)


 ◦ (pX + pY )⊗ · · · ⊗ (pX + pY ).

Of the 2dZ terms into which this can be decomposed, only those with dX factors
pX and dY factors pY are nonzero since AX

n = 0 for n > dX and AY
n = 0 for

n > dY . We are thus left with a sum of dZ !/dX !dY ! terms, and working out the
signs we see that they all equal to dX !dY !/dZ ! times (63), thus the sum equals
(63). This proves the isomorphism detZ ∼= det X ⊗ det Y .

Finally, (iii) follows from

det(X ⊕X) ∼= detX ⊗ det X ∼= det X ⊗ det X ∼= det X ⊗ (det X)−1 ∼= 1,

where we have used (i) and (ii) of this lemma, d(det X) = 1 and (iii) of Lemma
341. �

For later use we state a computational result:

LEMMA 424. Let X satisfy det X ∼= 1 and write d = d(X). If s : 1→ X⊗d is an
isometry for which s ◦ s∗ = AX

d then

s∗ ⊗ idX ◦ idX ⊗ s = (−1)d−1d−1 idX .(64)
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Proof. We abbreviate x = s∗⊗ idX ◦ idX⊗s and observe that by non-degeneracy
of the trace it is sufficient to show that TrX(ax) = (−1)d−1d−1TrX(a) for all
a ∈ EndX. In order to show this, let (X, r, r) be a standard solution of the
conjugate equations and compute

TrX(ax) =

� �

r∗
	




�

�

a

s∗

X X Xd−1

s

� �r

= (−1)d−1

� �

r∗
	




�

�

a

s∗

X

X

�
�
��

�
�

��Xd−1

s

� �r

= (−1)d−1

s∗

� �r∗

X

�
�
��

�
�

��
� �r

	




�

�

a

Xd−1

s

= (−1)d−1

s∗

	




�

�

a

Xd−1

s

We have in turn used the total antisymmetry of s (Lemma 418), the naturality
properties of the braiding and the triviality of the twist ΘX . Now,

s∗ ◦ a⊗ idX⊗d−1 ◦ s = Tr1(s∗ ◦ a⊗ idX⊗d−1 ◦ s)
= TrX⊗d(a⊗ idX⊗d−1 ◦ s ◦ s∗) = TrX⊗d(a⊗ idX⊗d−1 ◦AX

d ).

In order to complete the proof we need to show that this equals d−1TrXa, which
is done by suitably modifying the proof of Proposition 420. By the same argument
as given there, it suffices to prove TrX⊗d(a ⊗ idX⊗d−1 ◦ ΠX

d (σ)) = d#σ−1TrXa.
Again, the permutation σ decomposes into a set of cyclic permutations, of which
now precisely one involves the index 1. It is therefore sufficient to prove TrX⊗n(a⊗
idX⊗n−1 ◦ΠX

n (σ)) = TrXa for every cyclic permutation σ of all n indices. Inserting
a at the appropriate place, the calculation essentially proceeds as before. The only
difference is that instead of TrX idX = d(X) one is left with TrXa, giving rise to
the desired result. �
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REMARK 425. Objects with determinant 1 were called special in [Doplicher and
Roberts, 1989], where also all results of this subsection can be found.

This concludes our discussion of antisymmetrization and determinants, and we
turn to symmetrization and the symmetric algebra. It is here that we need the
Ind-category that was introduced in Subsection A.7.

B.10 The symmetric algebra

In “ordinary” algebra one defines the symmetric algebra S(V ) over a vector space
V . Unless V = {0}, this is an infinite direct sum of non-trivial vector spaces.
We will need a generalization of this construction to symmetric tensor categories
other than Vect. While infinite direct sums of objects make sense in the setting of
C∗-tensor categories (Definition 345), a more convenient setting for the following
considerations is given by the theory of abelian categories.

LEMMA 426. Let C be an STC∗ and X ∈ C. For every n ∈ N choose an object
Sn(X) and an isometry un : Sn(X) → X⊗n such that un ◦ u∗

n = SXn . Also,
let u0 = id1, interpreted as a morphism from S0(X) = 1 to X0 = 1. The the
morphisms mi,j : Si(X)⊗ Sj(X) → Si+j(X) defined by

mi,j : Si(X)⊗ Sj(X)
ui ⊗ uj� X⊗i ⊗X⊗j ≡ X⊗(i+j)

u∗
i+j� Si+j(X)

satisfy

mi+j,k ◦mi,j ⊗ idSk(X) = mi,j+k ◦ idSi(X) ⊗mj,k

for all i, j, k ∈ Z+. Furthermore,

mi,j = mj,i ◦ cSi(X),Sj(X) ∀i, j

and mi,0 = m0,i = idSi(X).

Proof. As a consequence of SXn ◦ΠX
n (σ) = SXn (σ) for all σ ∈ Pn, cf. Lemma 418,

we have

SXi+j+k ◦ SXi+j ⊗ idX⊗k ◦ SXi ⊗ SXj ⊗ idX⊗k = SXi+j+k ◦ SXi+j ⊗ idX⊗k = SXi+j+k,

SXi+j+k ◦ idX⊗k ⊗ SXj+k ◦ idX⊗k ⊗ SXj ⊗ SXk = SXi+j+k ◦ idX⊗i ⊗ SXj+k = SXi+j+k.

Multiplying all this with u∗
i+j+k on the left and with ui⊗uj ⊗uk on the right and

using u∗
i ◦ SXi = u∗

n and SXi ◦ ui = ui this implies

u∗
i+j+k ◦ SXi+j ⊗ idX⊗k ◦ ui ⊗ uj ⊗ uk = u∗

i+j+k ◦ ui ⊗ uj ⊗ uk
= u∗

i+j+k ◦ idX⊗k ⊗ SXj+k ◦ ui ⊗ uj ⊗ uk.
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Using again that SXi+j = ui+j ◦u∗
i+j , we have the first identity we wanted to prove.

Furthermore,

mj,i ◦ cSi(X),Sj(X) = u∗
i+j ◦ uj ⊗ ui ◦ cSi(X),Sj(X) = u∗

i+j ◦ cX⊗i,X⊗j ◦ ui ⊗ uj
= u∗

i+j ◦ ΠX
i+j(σ) ◦ ui ⊗ uj = u∗

i+j ◦ SXi+j ◦ ΠX
i+j(σ) ◦ ui ⊗ uj

= u∗
i+j ◦ SXi+j ◦ ui ⊗ uj = u∗

i+j ◦ ui ⊗ uj = mi,j ,

where σ ∈ Pi+j is the permutation exchanging the first i with the remaining j
strands. The last claim is obvious in view of S0(X) = 1. �

In view of Lemma 353, C (with a zero object thrown in) is an abelian cate-
gory, thus there exists an abelian C-linear strict symmetric tensor category Ind C
containing C as a full subcategory and complete w.r.t. filtered inductive limits.
Therefore, for any object X in the STC∗ C, there exists an object

S(X) = lim
−→
n→∞

n⊕
i=0

Sn(X)

together with monomorphisms vn : Sn(X) → S(X).

PROPOSITION 427. Let C be an STC∗ and X ∈ C. Then there exists a morphism
mS(X) : S(X)⊗ S(X) → S(X) such that

mS(X) ◦ vi ⊗ vj = vi+j ◦mi,j : Si(X)⊗ Sj(X) → S(X)

and (S(X),mS(X), ηS(X) ≡ v0) is a commutative monoid in Ind C.

Proof. This amounts to using

HomInd C(S(X)⊗S(X), S(X)) = lim←−
m

lim−→
n

HomC


 m⊕
i,j=0

Si(X)⊗ Sj(X),
n⊕
k=0

Sk(X)




to assemble the morphisms mi,j : Si(X) ⊗ Sj(X) → Si+j(X) into one big mor-
phism S(X) ⊗ S(X) → S(X). We omit the tedious but straightforward details.
Associativity (mS(X) ◦mS(X) ⊗ idS(X) = mS(X) ◦ idS(X) ⊗ mS(X)) and commu-
tativity (mS(X) = mS(X) ◦ cS(X),S(X)) then follow from the respective properties
of the mi,j established in Lemma 426. The unit property mS(X) ◦ idS(X) ⊗ v0 =
idS(X) ⊗ v0 = idS(X) follows from mi,0 = m0,i = idSi(X). �

We now study the interaction between the operations of symmetrization and
antisymmetrization, i.e. between determinants and symmetric algebras, that lies
at the core of the embedding theorem. We begin by noting that given two com-
mutative monoids (Qi,mi, ηi), i = 1, 2 in a strict symmetric tensor category, the
triple (Q1 ⊗Q2,mQ1⊗Q2 , ηQ1⊗Q2), where ηQ1⊗Q2 = η1 ⊗ η2 and

mQ1⊗Q2 = m1 ⊗m2 ◦ idQ1 ⊗ cQ2,Q1 ⊗ idQ2 ,
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defines a commutative monoid, the direct product (Q1,m1, η1)×(Q2,m2, η2). The
direct product × is strictly associative, thus multiple direct products are unam-
biguously defined by induction.

LEMMA 428. Let C be a STC and assume Z ∈ C satisfies det Z ∼= 1. We write
d = d(Z) and pick s : 1→ Z⊗d, s′ : Z⊗d → 1 such that s′◦s = id1 and s◦s′ = AZ

d .
Let S(Z) be the symmetric tensor algebra over Z with the canonical embeddings
v0 : 1 → S(Z), v1 : Z → S(Z). Consider the commutative monoid structure on
Q = S(Z)⊗d given by

(Q,mQ, ηQ) = (S(Z),mS(Z), ηS(Z))×d.

Define morphisms f : 1→ Q and ui : Z → Q, ti : Z⊗(d−1) → Q, i = 1, . . . , d by

f = v1 ⊗ . . .⊗ v1︸ ︷︷ ︸
d factors

◦ s,

ui = v0 ⊗ . . .⊗ v0︸ ︷︷ ︸
i− 1 factors

⊗ v1 ⊗ v0 ⊗ . . .⊗ v0︸ ︷︷ ︸
d− i factors

,

ti = (−1)d−i v1 ⊗ . . .⊗ v1︸ ︷︷ ︸
i− 1 factors

⊗ v0 ⊗ v1 ⊗ . . .⊗ v1︸ ︷︷ ︸
d− i factors

.

Then s, f, ui, tj satisfy

mQ ◦ tj ⊗ ui ◦ s = δij f ∀i, j ∈ {1, . . . , d}.(65)

Proof. First note that s : 1→ Z⊗d as required exists since det Z ∼= 1 and that f
is a composition of monics, thus non-zero. We compute

mQ ◦ ti ⊗ ui ◦ s = (−1)d−i idS(Z)(i−1) ⊗ cS(Z)⊗(d−i),S(Z) ◦ v1 ⊗ v1 ⊗ · · · ⊗ v1 ◦ s

= (−1)d−i v1 ⊗ v1 ⊗ · · · ⊗ v1 ◦ idZ⊗(i−1) ⊗ cZ⊗(d−i),Z ◦ s
= v1 ⊗ v1 ⊗ · · · ⊗ v1 ◦ s
= f.

In the first equality we used the definition of (Q,mQ, ηQ) as d-fold direct product
of (S(Z),mS(Z), ηS(Z)) and the fact that v0 = ηS(Z) is the unit, naturality of the
braiding in the second and Lemma 418 in the third. To see that mQ ◦ tj⊗ui ◦ s = 0
if i �= j consider j = d− 1, i = d. Then mQ ◦ tj ⊗ ui ◦ s : 1→ S(Z)⊗d ≡ Q is the
composite

1 s→ Z⊗d

d−2 factors︷ ︸︸ ︷
v1 ⊗ · · · ⊗ v1⊗v0 ⊗ v1 ⊗ v1� S(Z)⊗(d+1)

idS(Z)⊗(d−1) ⊗mS(Z)� S(Z)⊗d.
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Now,

idS(Z)⊗(d−1) ⊗mS(Z) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s
= idS(Z)⊗(d−1) ⊗ (mS(Z) ◦ cS(Z),S(Z)) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s
= idS(Z)⊗(d−1) ⊗mS(Z) ◦ idS(Z)⊗(d−1) ⊗ cS(Z),S(Z)

◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s
= idS(Z)⊗(d−1) ⊗mS(Z) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ idZ⊗(d−2) ⊗ cZ,Z ◦ s
= − idS(Z)⊗(d−1) ⊗mS(Z) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s,

where we used the commutativity of mS(Z) in the first step and the total antisym-
metry of s in the last. Thus mQ ◦ ud ⊗ td−1 ◦ s = −mQ ◦ ud ⊗ td−1 ◦ s = 0.
For general i �= j the argument is exactly the same, but becomes rather tedious
to write up in detail. �

REMARK 429. Lemma 428 and Proposition 430 below, both taken from [Bichon,
1998], are the crucial ingredients in our approach to the reconstruction theorem.

B.11 Construction of an absorbing commutative monoid

Throughout this subsection, let C be an even STC∗ with monoidal generator Z.
Consider the commutative monoid (Q,m, η) = (S(Z),mS(Z), ηS(Z))×d(Z) in Ind C
and the morphisms s, s′, f, ui, tj as defined in Lemma 428. Then m0 ∈ EndQ
defined by

m0 = mQ ◦ idQ ⊗ (f − ηQ) = mQ ◦ idQ ⊗ f − idQ

is a Q-module map, thus m0 ∈ EndQ((Q,mQ)). Then its image j = im m0 :
(J, µJ ) → (Q,mQ) (in the abelian category Q−Mod) defines an ideal j : (J, µJ )→
(Q,m) in (Q,m, η). This ideal is proper iff j is not an isomorphism iff m0 is not
an isomorphism. Postponing this issue for a minute, we have:

PROPOSITION 430. Let C be an even symmetric STC∗ and let Z ∈ C be such
that det Z ∼= 1. Let (Q,m, η) and s, s′, f, ui, tj be as defined in Lemma 428 and
m0 as above. Let j′ : (J ′, µ′) → (Q,m) be any proper ideal in (Q,m, η) containing
the ideal j : (J, µ) → (Q,m), where j = im m0. Let (B,mB , ηB) be the quotient
monoid. Then there is an isomorphism

(B ⊗ Z,m⊗ idZ) ∼= d(Z) · (B,mB)

of B-modules.

Proof. Since the ideal is proper, the quotient (B,mB , ηB) is nontrivial and we
have an epi p : Q→ B satisfying

p ◦mQ = mB ◦ p⊗ p,(66)
p ◦ f = p ◦ ηQ = ηB.(67)
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In order prove the claimed isomorphism B ⊗ Z ∼= dB of B-modules we define
morphisms q̃i ∈ Hom(1, B ⊗ Z), p̃i ∈ Hom(Z,B), i = 1, . . . , d as the following
compositions:

q̃i : 1
s � Z⊗d ≡≡≡≡ Z⊗(d−1) ⊗ Z

ti ⊗ idZ� Q⊗ Z
p⊗ idZ� B ⊗ Z,

p̃i : Z
ui � Q

p � B.

Using, first (66), then (65) and (67) we compute

B
� �mB

p̃i

Z
q̃j

=

B
� �mB
	




�

�

p

	




�

�

ui

	




�

�

p

	




�

�

tj

s

=

B
	




�

�

p

mQ

 �

	




�

�

tj

	




�

�

ui

Zd−1�� ��Z
s

= δij p ◦ f = δij ηB.(68)

Defining, for i = 1, . . . , d,

qi =

B Z
mB

� �

q̃i

B

pi =

B
mB

� �

p̃i

B Z

we find

pi ◦ qj =

B
mB

� �

p̃i

mB
� �

Z
q̃j

B

=

B

mB

 �

� �mB

p̃i

Z
q̃j

B

= δij

B

mB
� �

�

ηB
B

= δij idB ,



Algebraic Quantum Field Theory 917

where in the next to last step we used (68). It is obvious from their definitions
that pi, qi are morphisms of B-modules. We have thus shown that the B-module
(B ⊗ Z,mB ⊗ idZ) has d direct summands (B,mB), and therefore

(B ⊗ Z,mB ⊗ idZ) ∼= (B,mB)⊕ . . .⊕ (B,mB)︸ ︷︷ ︸
d summands

⊕ (N,µN ).

It remains to be shown that N = 0 or, equivalently,
∑d
i=1 qi ◦pi = idB⊗Z . A short

argument to this effect is given in [Deligne, 1990; Bichon, 1998], but since it is
somewhat abstract we give a pedestrian computational proof. We calculate

d∑
i=1

qi ◦ pi =
d∑
i=1

B Z
� �

q̃i

� �

	




�

�

p̃i

B Z

=
d∑
i=1

B Z

mB

 �

mB
� �

q̃i

	




�

�

p̃i

B Z

=
d∑
i=1

B Z

mB

 �

mB

 �

	




�

�

p

	




�

�

ti

s

	




�

�

p

	




�

�

ui

B Z

=
d∑
i=1

B Z

mB

 �

	




�

�

p

mQ

 �

	




�

�

ui

	




�

�

ti

Zd−1

s

B Z
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Composition with ηB ⊗ idZ shows that this equals idB⊗Z iff

d∑
i=1

B Z
	




�

�

p

mQ

 �

	




�

�

ui

	




�

�

ti

Zd−1

s

Z

=

B Z

ηB
�

Z

(69)

In view of the definition of (Q,mQ, ηQ), the left hand side of (69) equals

(70)

∑d
i=1(−1)d−i

(
p ◦ cS(Z),S(Z)⊗(i−1) ⊗ idS(Z)⊗(d−i) ◦ v1 ⊗ · · · ⊗ v1

)
⊗ idZ ◦ idZ ⊗ s

= (p ◦ v1 ⊗ · · · ⊗ v1)⊗ idZ

◦
(∑d

i=1(−1)d−i cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s
)

.

Writing Ki = cZ,Z⊗(i−1) ⊗ idZ⊗(d−i+1) ◦ idZ ⊗ s, where i ∈ {1, . . . , d}, one easily
verifies

ΠZ
d+1(σj) ◦ Ki =




Ki−1 : j = i− 1
Ki+1 : j = i
−Ki : otherwise

for all j ∈ {1, . . . , i − 1}. This implies that the morphism Z → Z⊗(d+1) in the
large brackets of (70) is totally antisymmetric w.r.t. the first d legs, i.e. changes
its sign upon multiplication with ΠZ

d+1(σj), j = 1, . . . , d− 1 from the left. We can
thus insert AZ

d = s ◦ s′ at the appropriate place and see that (70) equals

= (p ◦ v1 ⊗ · · · ⊗ v1)⊗ idZ ◦ (s ◦ s′)⊗ idZ

◦
(

d∑
i=1

(−1)d−i cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s

)

= (p ◦ v1 ⊗ · · · ⊗ v1 ◦ s)⊗ idZ

◦
(

d∑
i=1

(−1)d−i s′ ⊗ idZ ◦ cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s

)
.

Now, p ◦ v1 ⊗ · · · ⊗ v1 ◦ s = p ◦ f = ηB . On the other hand, by the total
antisymmetry of s we have s′ ◦ cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) = (−1)i−1s′ and thus∑d

i=1(−1)d−i s′ ⊗ idZ ◦ cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s

=
∑d
i=1(−1)d−i(−1)i−1 s′ ⊗ idZ ◦ idZ ⊗ s

= d(−1)d−1 s′ ⊗ idZ ◦ idZ ⊗ s = idZ ,
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where the last equality is provided by Lemma 424. Thus (69) is true, implying∑d
i=1 qi ◦ pi = idB⊗Z and therefore the claimed isomorphism B ⊗ Z ∼= d(Z)B of

B-modules. �

LEMMA 431. Let C, Z and the monoid (Q,m, η) be as in Lemma 428. Then the
commutative algebra ΓQ = Hom(1, Q) is Z+-graded and has at most countable
dimension.

Proof. By construction of Q we have

ΓQ = Hom(1, Q) = lim
−→
n

n⊕
i=0

Hom(1, Si(Z)) =
⊕
i≥0

Hom(1, Si(Z)).

Each of the direct summands on the right hand side lives in C and thus has finite
dimension. It follows that ΓQ has at most countable dimension. That ΓQ is a
Z+-graded algebra is evident from the definition of mQ in terms of the morphisms
mi,j : Si(X)⊗ Sj(X) → Si+j(X) of Lemma 426. �

THEOREM 432. Let Z ∈ C be such that detZ ∼= 1. Then there exists a commu-
tative monoid (B,mB , ηB) in Ind C such that dim HomInd C(1, B) = 1 and there is
an isomorphism B ⊗ Z ∼= d(Z)B of B-modules.

Proof. Let (Q,m, η) and the ideal j = im m0 : (J, µ) → (Q,m) as before. Assume
that j is an isomorphism, thus epi. Then m0 is epi and thus an isomorphism by
Lemma 366. In particular, the map ΓQ → ΓQ given by s �→ s • (f − η) is an
isomorphism, thus f − η ∈ ΓQ is invertible. This, however, is impossible since ΓQ
is Z+-graded and f − η ∈ ΓQ is not in the degree-zero part. Thus the ideal j is
proper. By Lemma 362 there exists a maximal ideal j̃ : (J̃ , µ̃) → (Q,m) containing
j : (J, µ) → (Q,m). If the monoid (B,mB , ηB) is the quotient of (Q,m, ηQ) by
j : (J̃ , µ̃) → (Q,m), Proposition 430 implies the isomorphism B ⊗ Z ∼= d(Z) · B
of B-modules. By Lemma 364, the quotient module (B,mB , ηB) has no proper
non-zero ideals, thus by Lemma 365, the commutative C-algebra EndB((B,mB))
is a field extending k. By Lemma 358, EndB((B,m)) ∼= Hom(1, B) =: ΓB as a C-
algebra. By Lemma 371, the unit 1 ∈ Ind C is projective, thus Lemma 363 implies
that ΓB is a quotient of ΓQ, and by Lemma 431 it has at most countable dimension.
Now Lemma 433 below applies and gives ΓB = C and therefore dim Hom(1, B) = 1
as desired. �

LEMMA 433. Let K ⊃ C a field extension of C. If [K : C] ≡ dimC K is at most
countable then K = C.

Proof. Assume that x ∈ K is transcendental over C. We claim that the set
{ 1
x+a | a ∈ C} ⊂ K is linearly independent over C: Assume that

∑N
i=1

bi

x+ai
= 0,

where the ai are pairwise different and bi ∈ C. Multiplying with
∏
i(x+ai) (which

is non-zero in K) we obtain the polynomial equation
∑N
i=1 bi

∏
j �=i(x + aj) = 0 =
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∑N−1
k=0 ckx

k for x. Since x is transcendental, we have ck = 0 for all k = 0, . . . , N−1.
This gives us N linear equations

∑N
i=1 Mkibi = 0, k = 1, . . . , N , where Mki =∑

S⊂{1,...,N}−{i}
#S=k−1

∏
s∈S as. This matrix can be transformed into the matrix (Vki =

ak−1
i ) by elementary row transformations. By Vandermonde’s formula, detV =∏
i<j(aj−ai) �= 0, thus the only solution of Mb = 0 is b1 = · · · = bN = 0, proving

linear independence. Since C is uncountable this contradicts the assumption that
K has countable dimension over C. Thus K/C is algebraic and therefore K = C

since C is algebraically closed. �

Finally we have:

Proof of Theorem 411. If C is an even STC∗ with monoidal generator Z,
Lemma 423 allows us to assume det Z ∼= 1 (replacing Z by Z⊕Z). Now Theorem
432 provides a monoid (B,m, η) in Ind C satisfying the assumptions of Corollary
415, which gives rise to a symmetric fiber functor E : C → VectC. �

REMARK 434. It seems instructive to point out the main difference of our
proof of Theorem 411 w.r.t. the approaches of [Deligne, 1990; Bichon, 1998]. In
[Deligne, 1990], a commutative monoid (Q,m, η) for which there is an isomorphism
Q⊗Z ∼= d(Z)Q of Q-modules is constructed by a somewhat complicated inductive
procedure. The explicit construction of the monoid that we gave is due to [Bichon,
1998]. Deligne proceeds by observing that, for every X ∈ C, the k-vector space
Hom(1, Q ⊗ X) is a module over the commutative ring ΓQ := EndQ((Q,m)) ∼=
Hom(1, Q), and the functor Ẽ : X �→ Hom(1, Q⊗X) is monoidal w.r.t. the tensor
product of ΓQ −Mod (rather than that of VectC). Now, a quotienting procedure
w.r.t. a maximal ideal J in ΓQ is used to obtain a tensor functor E : C → K−Vect,
where K = ΓQ/J is a field extension of the ground field k. If Hom(1, Q) is of
at most countable dimension then [K : k] ≤ ℵ0, and if k is uncountable and
algebraically closed it follows that K = k.

Our approach differs in two respects. Less importantly, our insistence on
det Z ∼= 1 makes the construction of the monoid (Q,m, η) slightly more trans-
parent than in [Bichon, 1998]. More importantly, we perform the quotienting by a
maximal ideal inside the category of Q-modules in Ind C rather than in the cate-
gory of ΓQ-modules, yielding a monoid (Q′,m′, η′) in Ind C with ΓQ′ = C. Besides
giving rise to a symmetric fiber functor E : C → VectC in a more direct fashion,
this has the added benefit, as we will show in the final subsection, of allowing to
recover the group Nat⊗E without any reference to the fiber functor and its nat-
ural transformations! The ultimate reason for this is that, due to uniqueness of
the embedding functor, the monoid (Q′,m′, η′) in Ind C is nothing but the monoid
(πl, m̃, η̃) in RepG that arises from the left regular representation of G, cf. [Müger
and Tuset, 2006].
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B.12 Addendum

In the previous subsection we have concluded the proof of the existence of a fiber
functor and, by the concrete Tannaka theorem, of the equivalence C � Repf (G, k),
where (G, k) is a compact supergroup. However, we would like to show how the
group Nat⊗E, and in some cases also G, can be read off directly from the monoid
(Q,m, η), bypassing fiber functors, natural transformations etc.

DEFINITION 435. The automorphism group of a monoid (Q,m, η) in a strict
tensor category C is

Aut(Q,m, η) = {g ∈ AutQ | g ◦m = m ◦ g ⊗ g, g ◦ η = η}.

PROPOSITION 436. Let C be an STC∗ and (Q,m, η) a monoid in Ind C satisfying

(i) dim HomInd C(1, Q) = 1.

(ii) For every X ∈ C, there is n(X) ∈ Z+ such that n(X) �= 0 whenever X �∼= 0
and an isomorphism αX : (Q⊗X,m⊗ idX) → n(X) · (Q,m) of Q-modules.

Then the group Nat⊗E of monoidal natural automorphisms of the functor con-
structed in Proposition 413 is canonically isomorphic to the group Aut(Q,m, η).

Proof. Let g ∈ Aut(Q,m, η). For every X ∈ C define gX ∈ EndE(X) by

gX ψ = g ⊗ idX ◦ ψ ∀ψ ∈ E(X) = Hom(1, Q⊗X).

From the definition of (gX)X∈C and of the functor E it is immediate that (gX)X∈C
is a natural transformation from E to itself. We must show this natural transfor-
mation is monoidal, i.e.

E(X)⊗ E(Y )
dX,Y� E(X ⊗ Y )

E(X)⊗ E(Y )

gX ⊗ gY

� dX,Y� E(X ⊗ Y )

gX⊗Y

�

commutes. To this end consider φ ∈ E(X) = Hom(1, Q ⊗ X), ψ ∈ E(X) =
Hom(1, Q ⊗ Y ) and g ∈ Aut(Q,m, η) with (gX)X∈C as just defined. Then the
image of φ � ψ ∈ E(X)⊗ E(Y ) under gX⊗Y ◦ dX,Y is

g ⊗ idX⊗Y ◦ m⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ,

whereas its image under dX,Y ◦ gX ⊗ gY is

m⊗ idX⊗Y ◦ g ⊗ g ⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ.

In view of g ◦m = m ◦ g ⊗ g, these two expressions coincide, thus (gX) ∈ Nat⊗E.
It is very easy to see that the map σ : Aut(Q,m, η) → Nat⊗E thus obtained is a
group homomorphism.
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We claim that σ is an isomorphism. Here it is important that we work in Ind C
rather than any category Ĉ, since this implies that Q is an inductive limit of objects
in C. The assumptions (i),(ii) then give Hom(X,Q) ∼= Hom(1, Q ⊗ X) ∼= C

n(X)

for all X ∈ C and thus (using n(X) = n(X) = dim E(X))

Q ∼= lim−→
S⊂I

⊕
i∈S

n(Xi)Xi and EndQ ∼=
∏
i∈I

EndE(Xi),(71)

where S runs though the finite subsets of I. Assume now that σ(g) is the identity
natural transformation, i.e. g⊗ idX ◦ φ = φ for all X ∈ C and φ ∈ Hom(1, Q⊗X).
Be the existence of conjugates in C, this is equivalent to g ◦s = s for all Y ∈ C and
s ∈ Hom(Y,Q). Since Q is an inductive limit of objects in C, this implies g = idQ.

If now α ∈ Nat⊗E, we first observe that α is a natural isomorphism by 396.
By the isomorphisms Nat E ∼= ∏

i∈I EndE(Xi) (cf. the proof of Proposition 375)
and (71), we have a map Nat⊗E → AutQ. Reversing the preceding computations
shows that every α ∈ Nat⊗E gives rise to an element of Aut(Q,m, η). �

REMARK 437. This result shows that the group Nat⊗E can be recovered directly
from the absorbing monoid (Q,m, η) in Ind C. In general the compact group G
as defined in Subsection B.1 is a true subgroup of Nat⊗E, the latter being the
pro-algebraic envelope of G. (In the cases of G = U(1), SU(2), U(2), e.g., that
would be C

×, SL(2, C), GL(2, C), respectively.) But if C is finite (i.e. has finitely
many isomorphism classes of simple objects) then Nat⊗E is finite and G = Nat⊗E.
Interestingly, even in the case of finite C, where the monoid (Q,m, η) actually lives
in C, there seems to be no way to recover G without using Ind C at an intermediate
stage.
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Hughston–Jozsa–Wootters theorem,

569, 590
Husimi function, 480
hydrodynamics as part of statistical

physics, 926
Hyperion, 418, 478, 519, 1403

ideal fluid, 8, 15, 16, 82
ignorable coordinates, see cyclic co-

ordinates
ignorance interpretation (of mixed

states), 357, 432, 433, 439,
440, 512, 516, 544, 749

Immirzi parameter, 1295, 1301
improper mixture, see mixed state,

improper
impulsive measurement, 321–324, 327,

337, 377
incompatible observables, 285, 308,

346–349
incomplete motion, 491, 492, 1382,

1385, 1400
inductive limit C∗-algebra, 496, 504,

739, 765, 829, 879, 900, 901,
911, 920, 921, 1099, 1100,
1107, 1129, 1141, 1151, 1152

inertial frame, 140, 164, 169, 170, 188,
206, 334–339, 350, 451, 648,
649, 1297, 1375, 1376

inflationary model (or universe), 1209–
1212, 1215, 1224, 1233, 1234,
1284

chaotic, 1206, 1210, 1213, 1219,
1227, 1231, 1234–1236, 1244,
1245, 1256, 1262, 1266, 1269

information
accessible, 582
channel, 562
classical, 557, 576, 577
compressibility, 576, 577
compression, 562, 578

‘block coding’, 561
blind, 586
classical, 557
quantum, 585
visible, 586

compression rate, 560, 586
inaccessible, 577
mutual, 562, 564, 575, 577
quantum, 565, 576, 577
represented physically, 576
Shannon’s sense, 575
source, 557, 561

ergodic, 558
stationary, 557

information loss paradox, 1424, 1426
initial singularity (of the universe),

1188, 1190, 1204, 1211, 1232,
1235, 1236, 1284, 1426, see
big bang

initial conditions for the universe, 1223,
1233, 1237, 1238, 1273, 1426

initial value formulation/problem, 1370,
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1381, 1385
properly posed, 1390
well posed, 1388–1390, 1395,1414

instantons, 719
integrable system, 482, 483, 485

classical limit, 482
integral manifold, 42, 43, 98, 151
interaction Hamiltonian, 322, 324, 336,

364
interaction picture, 306, 1161
interference pattern, 345–347, 378, 441,

see wave-particle duality
intermediate isotropisation, 1226
invariance, 328, 333, 337, 1331, 1343
invariant means and states, 740, 1108
involution, 42
Isham, C., 209, 452, 462, 522–525,

1212, 1254, 1257, 1294, 1313,
1318, 1324

isotropic universe, 1225, 1226, see
Copernican Principle

isotropy group, 65, 66, 68, 120, 128

Jacobson, T., 1293, 1303
Jaynes, E., 569, 932, 943, 977, 993,

1003, 1010, 1090
Jozsa, R., 557, 569, 580, 585, 588,

590, 616, 618, 621, 627, 630–
632

Kaluza–Klein theory, 28, 29
Kent, A., 517, 522, 527, 602, 608
Kepler, J., 1305
Kepler problem, 5, 15, 174–175, 483,

484
key distribution and storage, 556, 594,

595–596, 599
public, 617
secure, 602, 650

Killing fields, 165, 199, 215, 252–256,
1421

kinematic independence, 633, 635, 636,
639, see microcausality

kinematics on Lie groups, 75
kinetic theory of gases, 927, 941–952

Klein, F.
and group theory, 1338–1342
and his Erlangen Program, 1339–

1340
Klein, M., 649, 930, 931, 957, 962,

965, 974, 990
Klein, O., 1290
Klein-Gordon equation, 154, 192, 207,

208, 1394, 1396, 1416, 1422
KMS (Kubo–Martin–Schwinger) states,

1114–1154
extremal KMS states and pure

phases, 499, 1144–1154
in BCS theory, Bose gas and Heisen-

berg model, 1122–1128
in QFT, 1142–1144
stability conditions, 1128–1142
Tomita–Takesaki theory, 1119–

1122
toy-model, 1115–1119

Kochen-Specker theorem, 359–362, 387,
1405

Kolmogorov axioms, 644, 1089
Kosso, P., 1350
Kraus operator, 570, 756
Kretschmann, E., 206, 1353
Kuhn, T., 423

Lagrange, J. L., 1337, 1345
Lagrangian approach to mechanics and

field theory, 143–146, 154–
164, 179, 192

Lagrangian submanifold, 485
Landau, L., 417
Landsman’s theorem, 320
Lanford’s theorem, 1031–1033
Laplace’s demon, 1388, 1392
Laplace, P.-S., 942–943, 1388
large scale of the universe, 1220
Last Scattering Surface, see LSS
lattice of propositions, 309–312, 403–

405, 641
laws of creation of the universe, 1218
laws of nature
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empiricist conception, 1371
local algebras, 745–750, see global ob-

servables
Lebowitz, J., 596
left action, 56
left translation, 45
left-invariant function, 123
Leggett’s argument against decoher-

ence, 516
Leibniz, G., 1313
Lewis, D., 155, 1371
Lie algebra, 35, 1341
Lie algebra of a Lie group, 45, 46
Lie bracket, 37
Lie derivative, 33
Lie group, see groups and group the-

ory, Lie algebra
Lie groupoids, 462
Lie subgroup, 50
Lie, S., 15

and group theory, 1338–1342
Lie–Poisson bracket, 88, 124, 125
Lie–Poisson reduction theorem, 19,

77, 82, 88
limit �→ 0, see classical limit
limit N →∞, see classical limit
limit to size of structure, 1205
Linden, N., 631
Lipschitz condition, 1383, 1387
Lo, H.-K., 594, 601
locality, 308, 351, 381, 391, 396
localizability of particles, 481
Lorentz theory, 649, 651
Lorentz, H., 417
Lorentz-invariance, 383, 388, 396
LSS (Last Scattering Surface), 1192,

1202, 1206, 1214, 1230
Lüder’s rule, 284, 289, see collapse

postulate

Mackey’s theorem, 331–334, 447–452,
461–462, see system of im-
primitivity

Mackey, G., 447

macroscopic average, 494
macroscopic observables, 493–496, 504–

506, 512, see global observ-
able

magnetic monopoles, 718
magnitude-redshift relation, 1214
Malmquist bias, 1199
many universes, 1219, 1259–1266
many-somethings interpretation of

quantum mechanics, 370, 646,
1407–1408

Marsden–Weinstein reduction, 467
Marsden–Weinstein–Meyer theorem,

127
matrix mechanics, 277, 417, 427, 428,

641
matrix representation of quantum states,

282, 298, 364
Maudlin, T., 183, 184, 191, 209
Maxwell, J., 944–952, 1300
Maxwell’s equations, 188–190, 1395,

1416
Mayers, D., 594, 601, 608
measurement, 321–325, 327, 328, 334–

337, 345, 352, 355–359, 362,
569

first kind, 324
generalized, 569, 573, 579
impulsive, 323, 326, 338, 376
non-selective measurement, 394,

575
operator, 323, 570–572, 579
projective, 570, 571

and entropy, 579
repeated, 311, 325
second kind, 324
selective, 575
weak, 324–327

measurement problem, 275, 355–368,
376–381, 431–433, 512, 518,
526, 1163–1168, see Schrödinger’s
problem

microcausality, 739, 741–743, 746, 749–
753, 766, 771, 772, 807, 839,
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see kinematic independence
microlocal analysis, 419, 476, 482
microscopic quantum observables, 506
Milne model, 1189
minimum apparent size, 1198
Minkowski spacetime, 256–263
Minkowski, H., 1363
misconceptions about cosmology, 1214
Misner, C., 1291
mixed state, 284, 289, 290, 316, 356,

364, 430–433, 439, 473, 479,
494, 501, 502, 565, 568–571,
574, 576–578, 588–592, 636,
639, 643, 749, see ignorance
interpretation

improper, 289, 366
maximally mixed, 749
proper, 289, 366, 605

mixture, see mixed state
modal interpretations of quantum the-

ory, 375, 646, 761–766, 1406–
1407

model selection, 1229
module, 876
momentum(or non-relativistic quan-

tum mechanics), 287, 329,
335, 340, 349–352

momentum function, 114
momentum map, 6, 106, 464
momentum map on cotangent bun-

dle, 114
monic, 874
monoid, 876

absorbing, 902, 913
module, 876
quotient, 878

n-Body problem, 175–177, see New-
tonian n-body problem

Naimark’s dilation theorem, 453
naive realism, 359
natural transformation, 864

monoidal, 866

Navier–Stokes equations, 1383–1384,
1396

Neumann, J. von, 430, 432
Newton, I., 1312, 1314
Newton’s equations of motion, 1385
Newton–Wigner position operator, 451
Newtonian n-body problem, 139–146,

1385
Newtonian gravitation theory, 245, 263–

270, 1385
Nieuwenhuizen, P. van, 1292
‘no go’ theorems, 383, 645
no-signaling theorem, 391
Noether’s theorems, 4, 6, 11, 108, 161,

253, 1355–1359, 1378, 1411
noisy channel, 562, 564
non-baryonic matter, see dark matter
non-contextuality, 360, 387
non-locality, 308, 381–397

in quantum field theory, 750–756
non-localizability of particles, see lo-

calizability of particles
non-singular start of universe, 1211
Norton, J., 197
NP-complete, 615
nucleosynthesis, 1192, 1199, 1214, 1222,

1232
null cone observation, 1194
number count dipole, 1230
number counts, 1198, 1199, 1214, 1224,

1227

object
conjugate, 869
irreducible, 870
projective, 875

observable, 277, 282, 283, 289, 312,
328, 337, 359, see POVM,
PVM

positive-operator-valued measure-
ment, 277, 569–575

observable universe, 1183, 1198, 1206,
1222, 1230

observational cosmology theorem, 1222

IndexI-12



observational completeness, 1232
observed isotropy, 1223
Ohanian, H., 1343
one-time pad, 594
operators introduced, 277f., 401–403

at a point in quantum field the-
ory, 766–777

origin of the light elements, 1193
origin of the universe, 1212, see big

bang
outcome independence, 390, 395

Painlevé’s conjecture, 1385
parameter independence, 390 395
partial observable, 1308, 1317
particles in quantum field theory, 756–

761, see Unruh effect
passage to the quotients, 63, 76
past distinguishing, see causal prop-

erties of relativistic space-
times

Pauli, W., 443, 555, 1290
Pearle, P., 379, 381, 645, 1403
Penrose, R., 1419
Peres, A., 590, 608, 1293
perfect (anti-)correlation, 288, 323,

349, 365, 381, 383
permutation-invariant state, 500
Perron–Frobenius theorem, 1048, 1050
phase gate, 616, 632
phase space quantization, 452, 456
phenomenon for Bohr, 434, 442
Phoenix universe, 1213
physical proposition, 310, 311–312, 316–

317
physics horizon, 1232, 1233
π/8 gate, 616, 632
Piron’s theorem, 312
Planck scale, 1287, 1289
Planck, M., 423, 1075–1079, 1370
pocket universe, 1210, see inflation-

ary model, chaotic
Podolsky, B., 349

Poincaré’s recurrence theorem, 983–
984

pointer state, 323, 519
Poisson antimorphism, 104, 105, 108,

115
Poisson bracket, 84, 307, 318, 319
Poisson equation, 1379
Poisson manifold, 6, 14, 24, 79, 84,

317, 458
quotient of, 101

Poisson map, 93
Poisson reduction theorem, 101
Poisson space, 506
Poisson submanifold, 95
Poisson structure, 91
polarization spectrum, 1203
Polyakov, V., 1300
Popov, V., 1292
position in non-relativistic quantum

mechanics, 330–333, 335–338,
340, 349–352, 375, 382, 451

POVM (positive operator valued mea-
sure), 277–283, 321, 327, 453,
569–575

pre- and post-selected states, 326, 596
predictability, 1388, see domain of pre-

diction
and chaos, 1388–1389
and determinism, 1386–1390
in general relativistic physics, 1419
in quantum mechanics, 1402–1403
in special relativistic physics, 1396–

1398
preferred basis, 372
prequantization, 463

line bundle, 464
presymplectic manifold, 151, 172, 179–

180, 189
primary states, 498
Primas, H., 444
Primas–Zurek cut, 518
prime factorization, 557
principle vs. constructive theories,

647–652
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probabilities in the Copenhagen in-
terpretation, 440

probability, 279, 282, 283, 298, 300,
318, 929, 941–943

problem of time, 133, 136, 137, 196–
221, 1316

projective representation, 301
projector morphism, 869
proper map, 64
protective measurement, see measure-

ment, weak
public-key cryptography, 617
pure state in quantum mechanics, 284,

285, 289, 293, 296, 301, 302,
312, 314–317, 320–322, 358

purification, 568, 569, 574
PVM (projection-valued measure), 278,

279, 281, 331, 571

quantization, 153, 154, 177, 195, 220–
221, 304, 446, 467, 669, see
geometric quantization and
system of imprimitivity and
Weyl quantization

quantum information and computa-
tion, see key distribution, bit
commitment, information

algorithms, 617
communication, 556, 590, 592
computation, 295, 556, 614
computer, 556

circuit model, 616
cluster state, 616
one-way, 616

cryptography, 556, 594, 595
dense coding, 593
information, 565, 576, 577, see

information
operation, 574
parallelism, 631
qubit, 577
teleportation, 556, 590, 591

quantum cosmology, 1183, 1212, 1294
quantum ergodic theory, 1092–1094

for time, 1102–1106
for space, 1106–1114

quantum gravity, 1211, 1212, 1214,
1287

quantum logic, 309, 369
quantum object in Primas’ sense, 444
quantum postulate, 438
quantum probability theory, 283, 1089
quantum theory of infinite systems,

492, 496, 738–750, 1094–1102
quantum world, 434, 526
quasi-equivalent representations, 498,

732, 745, 843, see represen-
tation

quasilocal observables, 496
quintessence, 1200
quotient space, 6, 62, 63

Raggio’s theorem, 445
randomized algorithm, 629
Raussendorff, R., 616
Raychaudhuri equation, 1186, 1188,

1190, 1211
Redhead, M., 191
redshift-distance relation, 1184, 1196–

1198
reduced density operator, 288, 366,

367, 375, 568
reduced phase space, 14, 21, 24, 128,

152, 183, 189, 202
reduced state, see reduced density op-

erator
reduction of dynamics, 102, 126, 129
Reeh–Schlieder theorem, 742–743
reference frame, 329, 335, 337, 339,

347
Regge calculus, 1296
relationism, 17–18, 1312
relative configuration space, 18, 21
relative phase space, 21
relative states, 370, 568
relativistic spacetime structure

causal structure, see causal prop-
erties of relativistic space-
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times
conformal structure, 232–233, 270–

271
projective structure, 232–233

reliable distance measurement, 1221
remote steering, 590, 591, 637, see

biorthogonal decomposition
renormalization, 683, 705–711, 714
representation, 57, 409

inequivalent representations, 778f.
right action, 56
right translation, 45
right-invariant function, 123
right-invariant vector field, 47
rigid body, 15, 61, 80, 90
Rimini, A., 645
Roberts, J., 800, 801, 815, 837, 840,

845, 855, 886
Robertson-Walker cosmological mod-

els, 1186–1188, 1207, 1215,
1223–1227, 1231

robust state, 518
Rosen, N. 349
Rosenfeld, L., 1290
rotation in relativity theory, 249–252
rotation group, 44, 52, 60, 72, 74, 90,

98
RSA, 617
Ruetsche, L., 221
Ruffini, R., 1343
Rynasiewicz, R., 206

Sagnotti, A., 1292
Saunders, S., 646
scars, 490
Schmidt decomposition, see biorthog-

onal decomposition
Schrödinger, E., 418, 428, 556, 569,

590, 591, 637, 639
Schrödinger coherent states, 455, 473,

480
Schrödinger equation, 305, 323, 355,

373, 474, 1399–1400

Schrödinger picture, 306, see Heisen-
berg picture

Schrödinger’s cat, 355, 364, 418–422,
514, 527, 640, see measure-
ment problem

Schrödinger’s problem, 641–644, 651,
see measurement problem

Schumacher, B. 585
Schumacher’s quantum source coding

theorem (noiseless channel
coding theorem), 578, 586,
589

Schwarz, J., 1298
selection criterion for representations,

502, 781f.
self-adjointness, 403, 1400–1402, 1421–

1423
semiclassical analysis, 476
semiclassical regime, 471
semidirect product Poisson structure,

461
Shannon, C., 557, 558
Shannon entropy, 557, 558, 562, 564,

576, 577
Shannon’s noisy channel coding the-

orem, 562, 564
Shannon’s source coding theorem (noise-

less channel coding theorem),
557, 560, 562, 577

Shor, P., 557, 617
Shor’s algorithm, 617, 626
signaling, 373, 391, 392, 582, see re-

mote steering
Simon, D., 617, 623
Simon’s algorithm, 617, 623
simultaneity in relativity theory, 237,

248, 256–263
singlet state, 349, 381, 384
singularity theorems, 1190, 1207
size of the visible universe, 1220
small universe, 1203, 1206, 1230, 1231
Smolin, J., 575
Smolin, L., 1293
Soler’s theorem, 312
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Sorkin, R., 1296
source evolution, 1221
space, public and private in relativity

theory, 249–252
space of states, see state space
spacetime

classical, 263–270
full Newtonian, 1387
Leibnizian, 1376
Maxwellian, 1377
neo-Newtonian, 263–270, 1377

relativistic, 230–249, see Friedmann-
Robertson-Walker model and
causal properties of

Gödel spacetime, 1407–1409
Malament-Hogarth spacetimes,

1420–1421
Minkowski spacetime, 256–263,

1394, 1396–1398
Misner spacetime, 1417
negative mass, 1422
Reissner-Nordström, 1421

relativistic, see causal properties
of

Schwarzschild spacetime, 1422
Taub-NUT spacetime, 1417

spatial coordinates contrasted with body
coordinates, 54, 76

spatial homogeneity of universe, 1185,
1209, 1218, 1223–1226

spatial isotropy of universe, 1185, 1195,
1223

special initial conditions, see fine tun-
ing

specific heat of solids, 1080
spectral action, 1296
spectral family, 278, see PVM
spectral modal interpretations, 375,

see modal interpretations of
quantum theory

spectral theorem, 278, see PVM
spectral triple, 1296
spectrum of the area, 1301
spherically symmetric universe mod-

els, 1223
spin, 291–298, 320, 336, 375, 450, 462
spin- 1

2 , 290, 402
spin-network, 1301
‘square root of NOT’ gate, 616
semiclassical analysis, 472
STC∗ (symmetric tensor category),

817, 853, 870, 872, 881–888,
896–900, 905–907, 910–913,
919, 920

STR (special theory of relativity), 154,
164, 188, 256–263, 397, 1347,
1393–1399

stable causality, 1370, see causal prop-
erties of relativistic space-
times

standard candles, 1200, 1221
standard model of particle physics,

683–723, 1287
standard models of cosmology, 1188,

1223
start of the universe, see big bang
state space in quantum mechanics,

280–282, 284, 289, 300, 308,
313–322, see mixed state, KMS
states, state space

Steane, A., 630, 631, 650
Stein, H., 258, 259
Stern–Gerlach device, 291, 385
Stinespring’s theorem, 456
stochastic dynamics, 1037–1062

approach to equilibrium and ob-
jections, 1046–1056

ergodic theorem for Markov pro-
cesses, 1049

interventionism, 1037, 1054–1057
Markov processes and irreversibil-

ity, 1038–1039, 1057–1062
Markov processes defined, 1039–

1043
Stone’s theorem, 301, 304
Stone-von Neumann theorem, 342, 447,

450, 1423
stress-energy tensor, 1394, 1410, see
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energy conditions
strong energy condition, 1187, 1211
strong non-disturbance, 353, 354
structure constants, 37
structure formation, 1201, 1202, 1207,

1209, 1210, 1214, 1217, 1221,
1228, 1244, 1245

structure function, 86
subadditivity inequality, 578
subcategory, 864

monoidal, 865
submanifold, 40
submersion, 40
substantivalism, 18, 1312, 1411, see

container view of spacetime
super

-Hilbert space, 885
-fiber functor, 886
-group, 885

super-horizon structure of the universe,
1206, see observable universe

supernovae, 1194, 1200, 1224, 1227
superposition, 280, 281, 317, 318, 356–

358, 378
superselection sector, 501–506, 778f.
supersymmetry, 724, 1299
surface brightness, 1197
symmetric algebra, 911
symmetric sequence, 494
symmetry, 252–256, 301, 321, 331, 337–

339, 867, see gauge symme-
try, general covariance,
Noether’s theorems

and group theory, 1337–1342
and irrelevance, 1360–1361
and Leibniz’s Principle of Suffi-

cient Reason (PSR), 1333,
1335

and objectivity, 1363
arguments, 1332
broken, 668–669, 693, 839–840,

1334–1336
classification of, 1344–1345
continuous, 1345

discrete, 1345
gauge, 1344, 1345
geometric, 1344
global, 1360, 1361
group, 1342
Hamiltonian, 12, 58
internal/external, 1344
Lagrangian, 161
local, 1359, 1361
meaning of, 1342–1345
of laws, 1332
of objects, 1332
of solutions, 1332, 1336
of states, 1332, 1335, 1336
quantum field theory, 764–766
principles, 1332
transformations, active and pas-

sive, 1342
variational, 161

symplectic foliation of Poisson mani-
folds, 91, 95, see symplectic
leaf

symplectic form, 8
symplectic group, 55
symplectic leaf, 96, 318, 458, 508
symplectic manifold, 8, 149–151
symplectic map, 55
symplectic vector field, 12
system of covariance, 329
system of imprimitivity, 331–334, 410,

447–454, 461–462, see Mackey’s
theorem

generalized, 454
relation to deformation quanti-

zation, 461

’t Hooft, G., 1292, 1296
Tannaka, T., 883
TC∗ (tensor ∗-category), 870
temporal orientability, 1409
tensor

category, 865
category, braided, 867
category, finitely generated, 900
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subcategory, 865

thermodynamics, 925, 932–941, 994,
see thermodynamic limit

thermodynamic limit, 1017–1028, 1159–
1160

Thomas, R., 221
Thomas–Fermi model, 1085
time homogeneity, 304
time of decoupling, 1191
time-dependent systems, 191–196
time-energy uncertainty relation, 344
Timpson, C., 632
Tomita–Takesaki theory, 735–738, see

KMS states
trace, 871
transformation group C∗-algebra, 452
transformation theory, 1345–1346
transition probability, 318–321, 479,

502
classical limit, 473

transition probability space, 319, 320,
503

transport equation, 484
tunnelling, 1156–1157, 1402
Turing, A., 614
Turing computability, 1418, see Tur-

ing machine
Turing machine, 614

nondeterministic (probabilistic) ,
615

universal, 556, 614, 1392
twist, 872
two-slit experiment, 347, see double

slit experiment
typical sequence, 558, 559

Umdeutung
functorial quantization, 471
Heisenberg, 427
of classical pure states, 474
quantization, 446
Rieffel, 459

Schrödinger, 428
von Neumann, 430

unbounded energies, 1232
uncertainty relation, 341–349, 1289

algebraic derivation of, 344
optical derivation of, 343
wavefunctional derivation of, 343

uniform thermal histories, 1225
uniqueness of the universe, 1216, 1219
uniqueness of cosmology, 1232
unitarily equivalent representations,

447, 732, 843, see represen-
tation

unitarity of a Hamiltonian flow, 509
unitary representation, 301
Unruh effect, 1143, 1295, 1303, 1424,

see Hawking effect
Unruh, W., 1295

Vaidman, L., 597
van Fraassen, B., 647
van Hove limit, 1135, 1160–1162
Veltman, F., 1292
Vidal, G., 631
von Neumann, J., 430, 432
von Neumann algebra, 443, 498, 506,

522, 730, 731, 742, 744–756,
762–766, 782, 802, 806–808,
812, 839, 1101–1105, 1110–
1114, 1118–1121, 1126, 1144,
1146, 1148, 1163, see
C∗-algebra

hyperfinite, 569
type classification, 733–738

von Neumann chain, 432, 515
von Neumann entropy, 575, 577, 579,

1091
von Neumann’s imprimitivity theo-

rem, 450
von Neumann’s infinite tensor prod-

uct, 504
von Plato, J., 962, 967

Wallace, D., 646
wave packet revival, 429, 519
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wave-particle duality, 345,
wavefunction, 281, 343, 373, 379–381
weak non-disturbance, 352, 354, see

state in quantum mechanics
Weber, T., 645
Weyl algebra, 758
Weyl quantization, 460, 473
Weyl relations, 333, 340–3411
Weyl, H., 233, 234, 1340, 1363, 1369
Wheeler, J., 650, 1291
Wheeler-DeWitt equation, 1293
Wien’s law for blackbody radiation,

423, 1078
Wiesner, S., 556, 593
Wigner function, 479

classical limit, 480
Wigner’s friend, 377, 1164, 1166
Wigner’s theorem, 300
Wigner, E. P., 1362

and his hierarchy, 1359–1360
geometric symmetries, 1344
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WKB approximation, 484
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GENERAL PREFACE

Dov Gabbay, Paul Thagard, and John Woods

Whenever science operates at the cutting edge of what is known, it invariably
runs into philosophical issues about the nature of knowledge and reality. Scientific
controversies raise such questions as the relation of theory and experiment, the
nature of explanation, and the extent to which science can approximate to the
truth. Within particular sciences, special concerns arise about what exists and
how it can be known, for example in physics about the nature of space and time,
and in psychology about the nature of consciousness. Hence the philosophy of
science is an essential part of the scientific investigation of the world.

In recent decades, philosophy of science has become an increasingly central
part of philosophy in general. Although there are still philosophers who think
that theories of knowledge and reality can be developed by pure reflection, much
current philosophical work finds it necessary and valuable to take into account
relevant scientific findings. For example, the philosophy of mind is now closely
tied to empirical psychology, and political theory often intersects with economics.
Thus philosophy of science provides a valuable bridge between philosophical and
scientific inquiry.

More and more, the philosophy of science concerns itself not just with general
issues about the nature and validity of science, but especially with particular issues
that arise in specific sciences. Accordingly, we have organized this Handbook into
many volumes reflecting the full range of current research in the philosophy of
science. We invited volume editors who are fully involved in the specific sciences,
and are delighted that they have solicited contributions by scientifically-informed
philosophers and (in a few cases) philosophically-informed scientists. The result
is the most comprehensive review ever provided of the philosophy of science.

Here are the volumes in the Handbook:

Philosophy of Science: Focal Issues, edited by Theo Kuipers.

Philosophy of Physics, edited by Jeremy Butterfield and John Earman.

Philosophy of Biology, edited by Mohan Matthen and Christopher Stephens.

Philosophy of Mathematics, edited by Andrew Irvine.

Philosophy of Logic, edited by Dale Jacquette.

Philosophy of Chemistry and Pharmacology, edited by Andrea Woody and
Robin Hendry.
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Philosophy of Statistics, edited by Prasanta S. Bandyopadhyay and Malcolm
Forster.

Philosophy of Information, edited by Pieter Adriaans and Johan van Ben-
them.

Philosophy of Technological Sciences, edited by Anthonie Meijers.

Philosophy of Complex Systems, edited by Cliff Hooker and John Collier.

Philosophy of Earth Systems Science, edited by Bryson Brown and Kent
Peacock.

Philosophy of Psychology and Cognitive Science, edited by Paul Thagard.

Philosophy of Economics, edited by Uskali

Philosophy of Linguistics, edited by Martin Stokhof and Jeroen Groenendijk.

Mark Risjord.

Philosophy of Medicine, edited by Fred Gifford.

Details about the contents and publishing schedule of the volumes can be found
at http://www.johnwoods.ca/HPS/.

As general editors, we are extremely grateful to the volume editors for arranging
such a distinguished array of contributors and for managing their contributions.
Production of these volumes has been a huge enterprise, and our warmest thanks
go to Jane Spurr and Carol Woods for putting them together. Thanks also to
Andy Deelen and Arjen Sevenster at Elsevier for their support and direction.

äM ki.

Philosophy of Anthropology and Sociology, edited by Stephen Turner and
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INTRODUCTION

Jeremy Butterfield and John Earman

1 THE PHILOSOPHY OF PHYSICS TODAY

In the last forty years, philosophy of physics has become a large and vigorous
branch of philosophy, and so has amply won its place in a series of Handbooks in
the philosophy of science. The reasons for its vigour are not far to seek. As we
see matters, there are two main reasons; the first relates to the formative years of
analytic philosophy of science, and the second to the last forty years.

First, physics had an enormous influence on the early phase of the analytic
movement in philosophy. This influence does not just reflect the fact that for the
logical positivists and logical empiricists, and for others such as Russell, physics
represented a paradigm of empirical knowledge. There are also much more specific
influences. Each of the three main pillars of modern physics — thermal physics,
quantum theory and relativity — contributed specific ideas and arguments to
philosophical debate. Among the more obvious influences are the following.

Thermal physics and the scientific controversy about the existence of atoms
bore upon the philosophical debate between realism and instrumentalism; and the
rise of statistical mechanics fuelled the philosophy of probability. As to quantum
theory, its most pervasive influence in philosophy has undoubtedly been to make
philosophers accept that a fundamental physical theory could be indeterministic.
But this influence is questionable since, as every philosopher of science knows
(or should know!), indeterminism only enters at the most controversial point of
quantum theory: viz., the alleged “collapse of the wave packet”. In any case, the
obscurity of the interpretation of quantum theory threw not only philosophers, but
also the giants of physics, such as Einstein and Bohr, into vigorous debate: and
not only about determinism, but also about other philosophical fundamentals, such
as the nature of objectivity. Finally, relativity theory, both special and general,
revolutionized the philosophy of space and time, in particular by threatening neo-
Kantian doctrines about the nature of geometry.

These influences meant that when the analytic movement became dominant in
anglophone philosophy, the interpretation of modern physics was established as
a prominent theme in its sub-discipline, philosophy of science. Accordingly, as
philosophy has grown, so has the philosophy of physics.

But from the 1960s onwards, philosophy of physics has also grown for a reason
external to philosophy. Namely, within physics itself there has been considerable

c
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interest in foundational issues, with results that have many suggestive repercus-
sions for philosophy. Again, there have been various developments within physics,
and thereby various influences on philosophy. The result, we believe, is that nowa-
days foundational issues in the fundamental physical theories provide the most
interesting and important problems in the philosophy of physics. We have chosen
the topics for this volume in accord with this conviction. In the next Subsection,
we will articulate some of these foundational issues, and thereby introduce the
Chapters of the volume.

2 CURRENT FOUNDATIONAL ISSUES IN PHYSICS

We will first discuss these issues under five headings. The first three correspond to
the three pillars of modern physics mentioned in Section 2.1; i.e. thermal physics,
quantum theory and relativity theory. The fourth and fifth concern combinations
of these pillars; and lead to speculations about the future of physics. These five
headings will provide a way of introducing most of this volume’s Chapters, albeit
not in the order in which they occur. Then, after these five headings, we will
introduce the volume’s remaining two Chapters.

2.1 Thermal physics

Controversies about the foundations of thermal physics, especially the characteri-
zation of the approach to equilibrium, have continued unabated since the days of
the field’s founding fathers, such as Maxwell and Boltzmann. Some aspects of the
original controversies can be seen again in modern discussions. But the contro-
versies have also been transformed by the development of several scientific fields;
especially the following three, which have grown enormously since the 1960s:

(i) classical mechanics, and its offspring such as ergodic theory and chaos theory;

(ii) quantum thermal physics; and

(iii) cosmology, which nowadays provides a very detailed and so fruitful context
for developing and evaluating Boltzmann’s bold idea that the ultimate origin
of the “arrow of time” is cosmological.

In this volume, the foundations of thermal physics is represented by the Chap-
ters by Uffink and by Emch, who cover classical and quantum aspects, respectively.
Among the topics Uffink discusses, two receive special attention: the evolution
of Boltzmann’s views, and the mathematical framework of stochastic dynamics.
Emch adopts the formalism of algebraic quantum statistical mechanics, and re-
views many results about that formalism’s notion of equilibrium, i.e. KMS states.
Two other Chapters also provide a little stage-setting for Uffink and Emch, though
without pursuing the relation to thermal physics: viz. the Chapters by Butterfield
on classical mechanics, and by Ellis on cosmology.
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2.2 Quantum theory

Since the 1960s, the physics community has witnessed a revival of the debates
about the interpretation of quantum theory that raged among the theory’s found-
ing fathers. In the general physics community, the single most influential author
has no doubt been John Bell, not only through his non-locality theorem and the
many experiments it engendered, but also through his critique of the “Copenhagen
orthodoxy” and his sympathy towards the pilot-wave and dynamical collapse het-
erodoxies. But in more specialist communities, there have been other crucial
factors that have animated the debate. Mathematical physicists have developed
a deep understanding of the various relations between quantum and classical the-
ories. Since the 1970s, there has been progress in understanding decoherence, so
that nowadays, almost all would accept that it plays a crucial role in the emergence
of the classical world from quantum theory. And since the 1990s, the burgeoning
fields of quantum information and computation have grown out of the interpreta-
tive debates, especially the analysis of quantum non-locality.

In this volume, these topics are taken up by Dickson, Landsman and Bub.
Dickson surveys the formalism of non-relativistic quantum theory, and some of
the main interpretative issues, including empirical content, quantum uncertainty,
the measurement problem, and non-locality. For the most part, Landsman reviews
from the perspective of mathematical physics the relations between quantum and
classical theories. In particular, he discusses various approaches to quantization
and the rigorous treatments of the classical limits h̄→ 0 and N →∞. But Lands-
man also includes discussions of the Copenhagen interpretation and decoherence.
Finally, Bub presents some central ideas and results about quantum information
and quantum computation. As a backdrop to this, he also briefly reviews classical
information and computation; and he ends by proposing some provocative morals
about the interpretation of quantum theory.

2.3 Relativity theory

The decades since the 1960s have seen spectacular developments, for both theory
and experiment, in general relativity and cosmology. But this Renaissance has
also been very fruitful as regards foundational and philosophical issues. Mathe-
matical relativists have continued to deepen our understanding of the foundations
of general relativity: foundations which, as mentioned in Section 1, were recog-
nized already in the 1920s as crucial for the philosophy of space and time. And
the recent transformation of cosmology from a largely speculative enterprise into
a genuine science has both brought various philosophical questions closer to sci-
entific resolution, and made other philosophical questions, e.g. about method and
explanation in cosmology, much more pressing.

In this volume, these topics are represented by the Chapters by Malament, Be-
lot and Ellis. Malament first expounds classical relativity. Then he discusses three
special topics: the definition of simultaneity in special relativity, the geometriza-
tion of Newtonian gravity, and the extent to which causal structure determines
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spacetime geometry. Belot’s main aim is to give a clear statement of the “problem
of time” as it occurs in classical general relativity; and to do that, he first reviews
the way time is represented in simpler classical theories, including mechanics. (Be-
lot’s Chapter thereby complements Butterfield’s: both expound aspects of classical
Hamiltonian theories, and stress how some of these aspects reappear in quantum
theories.) Ellis first reviews the present state of relativistic cosmological theory and
its observational basis; and then investigates nine philosophical themes, including
the anthropic principle and the possible existence of multiverses.

So much by way of introducing some foundational issues, and this volume’s cor-
responding Chapters, arising within one of the three pillars: thermal physics,
quantum theory and relativity. We turn to issues arising from combining the pil-
lars — or rather, parts of them! We have already adumbrated the combination of
the first and second: viz., in quantum thermal physics, reviewed here by Emch. It
is the combination of the second and third — quantum theory and relativity —
which we must now address. We shall do so under two headings, corresponding
to the distinction between special and general relativity. The first corresponds,
of course, to quantum field theory, which forms such a deep and well-established
framework for particle physics. The second corresponds to the quantum theory of
gravity — which unfortunately still remains only a hope and a goal.1

2.4 Quantum field theory

Although there are relativistic quantum mechanical theories of a fixed number of
particles, by far the most important framework combining quantum theory and
special relativity is quantum field theory. Broadly speaking, the foundational
issues raised by quantum field theory differ from quantum theory’s traditional
interpretative issues, about measurement and non-locality (cf. Quantum theory,
§2.2 above). There are two points here.

(i) Although quantum field theory of course illustrates the latter issues just
as much as elementary quantum theory does, it apparently cannot offer a
resolution of them. The measurement problem and the puzzles about non-
locality arise so directly from the unitarity and tensor-product features of
quantum theories, as to be unaffected by the extra mathematical structures

1Our image of three pillars prompts the question: what about the combination of thermal
physics and relativity? When Einstein’s special theory of relativity won acceptance, the rush
was on to revise the various branches of classical physics to make them properly relativistic. In
the case of thermodynamics, this program produced disputes about the Lorentz transformation
properties of the thermodynamic quantities of heat, temperature and entropy that persisted well
into the 1970s; (see [Liu, 1994] for an overview of this debate). As for classical general relativity
theory, there does not currently exist a statistical mechanics that incorporates the “gravitational
entropy of the universe”, and it seems unlikely that there can be such a theory. But for all anyone
knows, the ideas of thermal physics may play a crucial role in the hoped-for quantum theory of
gravity. There are hints to that effect from, for example, black hole thermodynamics, the Unruh
effect, and Hawking radiation. These topics are discussed briefly in Rovelli’s chapter.
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and physical ideas supplied by quantum field theory.2 And accordingly, it
has seemed to most workers to be wisest to pursue the traditional interpreta-
tive issues within non-relativistic quantum theory: if you identify a problem
in a simple context, but are confident that it is not an artefact of the con-
text’s simplicity, it is surely wisest to attack it there. (And as shown in this
volume by Dickson’s and Landsman’s Chapters, that context is by no means
“really simple”: non-relativistic quantum theory, and its relation to classical
theories, provides an abundance of intricate structure to investigate.)

(ii) On the other hand, there are several foundational issues that are distinctive
of quantum field theory. Perhaps the most obvious ones are: the nature of
particles (including the topic of localization), the interpretation of renormal-
ization, the interpretation of gauge structure, and the existence of unitarily
equivalent representations of the canonical commutation relations.

In this volume, these topics are taken up by ’t Hooft and by Halvorson and Müger.
First, ’t Hooft provides an authoritative survey of quantum field theory, from
the perspective of particle physics. Among the main topics he expounds are:
the quantization of scalar and spinor fields, Feynman path integrals, the ideas of
gauge fields and the Higgs mechanism, renormalization, asymptotic freedom and
confinement.

Halvorson and Müger discuss a smaller and distinctively foundational set of
issues, using the apparatus of algebraic quantum field theory. (So their use of
the algebraic approach complements the uses made by Emch and Landsman.)
They discuss the nature of particles and localization, non-locality, the assignment
of values to quantities (i.e. the measurement problem) and the definability of
quantum fields at individual spacetime points. But they devote most of their
effort to the Doplicher-Haag-Roberts theory of superselection. This theory yields
deep insights into crucial structures of quantum field theory: in particular, the
set of representations, the relation between the field and observable algebras, and
gauge groups.

2.5 Quantum gravity

Finally, we turn to the combination of quantum theory with general relativity: i.e.,
the search for a quantum theory of gravity. Here there is of course no established
theory, nor even a consensus about the best approach for constructing one. Rather
there are various research programmes that often differ in their technical aims, as
well as their motivations and conceptual frameworks. In this situation, various

2In some respects relativistic QFT makes the measurement problem worse. In non-relativistic
quantum mechanics, the collapse of the state vector is supposed to happen instantaneously;
so in the relativistic setting, one would have to develop some appropriate analogue. On the
other hand, the modal interpretation of ordinary QM — which arguably provides the best hope
for a no-collapse account of quantum measurement — faces formidable obstacles in relativistic
quantum field theory; (see [Clifton, 2000] and Halvorson and Müger, this volume, Section 5).
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foundational issues about the “ingredient” theories are cast in a new light. For
example, might quantum gravity revoke orthodox quantum theory’s unitarity, and
thereby en passant solve the measurement problem? And does the general covari-
ance (diffeomorphism invariance) of general relativity represent an important clue
about the ultimate quantum nature of space and time?

In this volume, these and related questions are taken up by Rovelli. He also
presents details about other topics: for example, the subject’s history, the two
main current programmes (string theory and loop quantum gravity), and quantum
cosmology. Ellis’ Chapter also discusses quantum cosmology. In this way, and
indeed by addressing other fundamental questions about the idea of an “ultimate”
physical theory, Ellis’s Chapter provides a natural complement to Rovelli’s.

So much by way of introducing Chapters that correspond to our initial three
pillars of modern physics, or to combinations of them. We turn to introducing
the volume’s remaining two Chapters. Here our intention has been to provide
Chapters whose discussions bridge the divisions between physical theories, and
even those between our three pillars. In this connection, it seemed to us that
of the various possible themes for such a cross-cutting discussion, the two most
appropriate ones were determinism and symmetry.3

Accordingly, Earman discusses how determinism fares in a wide class of the-
ories: his examples range from classical mechanics to proposals for quantum
gravity. He also addresses the relations between determinism and other issues:
in particular, predictability, the nature of spacetime, and symmetry. Symme-
try in classical physics is given a wide-ranging survey by Brading and Castellani.
Among other topics, they discuss: Curie’s principle, the advent of group theory
into physics, canonical transformation theory, general covariance in general rela-
tivity, and Noether’s theorems. Various aspects of symmetry and invariance in
quantum physics are discussed in the Chapters by Dickson, Emch, Halvorson, and
Landsman. But a synoptic overview of this complex topic remains to be written
— which we hope will be taken as a challenge by some of our readers.

Let us sum up this introduction to the Chapters that follow, with two comments
that are intended to give the prospective reader — perhaps daunted by the many
pages ahead! — some courage.

First, it is obvious that by our lights, there is no sharp line between philosophy
of physics and physics itself. So it is no surprise that some of the best work in
philosophy of physics is being done by physicists (as witnessed by several contri-
butions to this volume). No surprise: but certainly, to be welcomed. Conversely,
to the traditionally trained philosopher, work by philosophers of physics is liable
to look more like physics than philosophy. But for us, this blurring of disciplinary
boundaries is no cause for concern. On the contrary, it represents an opportunity
for philosophy to enrich itself. And in the other direction, philosophers can hope

3Other good candidates include the “direction of time”, or irreversibility, and the constitution
of matter. But adding chapters on these or other cross-cutting themes would have made the
volume altogether too long.
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that the foundations, and even philosophy, of physics can be a source of heuristic
ideas for physics. Or at least, physicists’ interest in foundational questions now
offers philosophers of physics the opportunity of fruitful discussion with physicists.

But agreed: this enrichment of philosophy does not come for free. And the need
to master technical material which is often difficult can be a barrier to entering
the philosophy of physics. In designing this volume, our response to this problem
has of course been, not to try to lower the barrier, at the cost of scholarship and
of fostering illusory hopes: rather our strategy has been to commission Chapters
that cover their chosen topics as expertly and completely as possible. So to the
reader, our message is simple: take heart! Once you are over the barrier, new
vistas open for the philosophy of science.

3 OUTLOOK: HALFWAY THROUGH THE WOODS

Finally, we would like to set the stage for this volume, by making two connected
comments about the present state of fundamental physics. Though it may seem
naive or hubristic for philosophers to make such comments, we believe it is worth
the risk. For we think that at the present juncture fundamental physics is unusually
open to contributions from philosophical reflection; and it will be clear from our
comments that together they represent an invitation to the reader to make such
contributions! The first comment concerns the amazing successes of present-day
physics; the second, the fact that so much remains to be understood.

3.1 Successes

First, we want to celebrate the extraordinary achievements of modern physics;
specifically of quantum theory and relativity theory. We propose to do this by
emphasising how contingent, indeed surprising, it is that the basic postulates of
relativity and quantum theory have proved to be so successful in domains of ap-
plication far beyond their originally intended ones.

Examples are legion. We pick out two examples, almost at random. Why should
the new chronogeometry introduced by Einstein’s special relativity in 1905 for
electromagnetism, be extendible to mechanics, thermodynamics and other fields
of physics? And why should the quantum theory, devised for systems of atomic
dimensions (10−8 cm) be good both for scales much smaller (cf. the nuclear
radius of ca. 10−12 cm) and vastly larger (cf. superconductivity and superfluidity,
involving scales up to 10−1 cm)? Indeed, much of the history of twentieth century
physics is the story of the consolidation of the relativity and quantum revolutions:
the story of their basic postulates being successfully applied ever more widely.

The point applies equally well when we look beyond terrestrial physics. We
have in mind, first, general relativity. It makes a wonderful story: the theory
was created principally by one person, motivated by conceptual, in part genuinely
philosophical, considerations — yet it has proved experimentally accurate in all
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kinds of astronomical situations. They range from weak gravitational fields such
as occur in the solar system — here it famously explains the minuscule portion
of the precession of the perihelion of Mercury (43” of arc per century) that was
unaccounted for by Newtonian theory; to fields 10,000 times stronger in a distant
binary pulsar — which in the last twenty years has given us compelling (albeit
indirect) evidence for a phenomenon (gravitational radiation) that was predicted
by general relativity and long searched for; and to exotic objects such as black
holes. But general relativity is not the only case. Quantum theory has also been
extraordinarily successful in application to astronomy: the obvious example is
the use of nuclear physics to develop a very accurate and detailed theories of
nucleosynthesis in the very early universe, and of stellar structure and evolution.

Indeed, there is a more general point here, going beyond the successes of rela-
tivity and quantum theory. Namely, we tend to get used to the various unities in
nature that science reveals — and thereby to forget how contingent and surprising
they are. Of course, this is not just a tendency of our own era. For example,
nineteenth century physics confirmed Newton’s law of gravitation to apply out-
side the solar system, and discovered terrestrial elements to exist in the stars (by
spectroscopy): discoveries that were briefly surprising, but soon taken for granted,
incorporated into the educated person’s ‘common sense’. Similarly nowadays: the
many and varied successes of physics in the last few decades, in modelling very ac-
curately phenomena that are (i) vastly distant in space and time, and-or (ii) very
different from our usual laboratory scales (in their characteristic values of such
quantities as energy, temperature, or pressure etc.), reveal an amazing unity in
nature. General theoretical examples of such unity, examples that span some 200
years, are: the ubiquitous fruitfulness of the field concept; and more specifically, of
least action principles. For a modern, specific (and literally spectacular) example,
consider the precision and detail of our models of supernovae; as confirmed by the
wonderful capacity of modern telescope technology to see and analyse individual
supernovae, even in other galaxies.

3.2 Clouds on the horizon

And yet: complacency, let alone triumphalism, is not in order! Current physics is
full of unfinished business — that is always true in human enquiry. But more to
the point, there are clouds on the horizon that may prove as great a threat to the
continued success of twentieth century physics, as were the anomalies confronting
classical physics at the end of the nineteenth century.

Of course, people differ about what problems they find worrisome; and among
the worrisome ones, about which problems are now ripe for being solved, or at least
worth addressing. As philosophers, we are generalists: so we naturally find all the
various foundational issues mentioned above worrisome. But being generalists, we
will of course duck out of trying to say which are the closest to solution, or which
are most likely to repay being addressed! In any case, such judgments are hard
to adjudicate, since intellectual temperament, and the happenstance of what one
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knows about or is interested in, play a large part in forming them.
But we would like to end by returning to one of Section 2’s “clouds”: a cloud

which clearly invites philosophical reflection, and perhaps contributions. Namely,
the problem of quantum gravity; in other words, the fact that general relativity
and quantum theory are yet to be reconciled. As mentioned in Section 2.5, Rovelli
(this volume) discusses how the contrasting conceptual structures of the “ingre-
dient” theories and the ongoing controversies about interpreting them, make for
conflicting basic approaches to quantum gravity.

But we want here to emphasise another reason why we still lack a successful
theory, despite great effort and ingenuity. In short, it is that the successes of
relativity and quantum theory, celebrated in Comment 3.1 above, conspire to
deprive us of the relevant experimental data.

Thus there are general reasons to expect data characteristic of quantum gravity
to arise only in a regime of energies so high (correspondingly, distances and times
so short) as to be completely inaccessible to us. To put the point in terms of
length: the value of the Planck length which we expect to be characteristic of
quantum gravity is around 10−33 cm. This is truly minuscule: the diameters of an
atom, nucleus, proton and quark are, respectively, about 10−8, 10−12, 10−13, and
10−16 cm. So the Planck length is as many orders of magnitude from the (upper
limit for) the diameter of a quark, as that diameter is from our familiar scale of a
centimetre!

We can now see how quantum gravity research is in a sense the victim of the
successes of relativity and quantum theory. For those successes suggest that we will
not see any “new physics” intimating quantum gravity even at the highest energies
accessible to us. The obvious example is quasars: these are typically a few light-
days in diameter, and yet have a luminosity 1000 times that of our galaxy (itself
100,000 light-years across, containing a hundred billion stars). They are the most
energetic, distant (and hence past!) celestial objects that we observe: they are now
believed to be fuelled by massive black holes in their cores. Yet suggestions, current
thirty years ago, that their stupendous energies and other properties that we can
observe, could only be explained by fundamentally new physics, have nowadays
given way to acceptance that “conventional physics” describing events outside the
black hole’s event-horizon can do so. (Agreed, we expect the physics deep inside
the black hole, in the vicinity of its singularity, to exhibit quantum gravity effects:
but if ever a region deserved the name “inaccessible”, this is surely one!) So the
situation is ironic, and even frustrating: quantum gravity research is a victim of
its ingredient theories’ success.

In any case, the search for quantum gravity is wide open. In closing, we would
like to endorse an analogy of Rovelli’s [1997]. He suggests that our present search
is like that of the mechanical philosophers such as Galileo and Kepler of the early
seventeenth century. Just as they struggled with the clues given by Copernicus and
Brahe, en route to the synthesis given by Newton, so also we are “halfway through
the woods”. Of course we should be wary of too grossly simplifying and periodiz-
ing the scientific revolution, and a fortiori of facile analogies between different
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historical situations. Nevertheless, it is striking what a “mixed bag” the doctrines
of figures such as Galileo and Kepler turn out to have been, from the perspec-
tive of the later synthesis. For all their genius, they appear to us (endowed with
the anachronistic benefits of hindsight), to have been “transitional figures”. One
cannot help speculating that to some future reader of twentieth century physics,
enlightened by some future synthesis of general relativity and quantum theory,
our current and recent efforts in quantum gravity will seem strange: worthy and
sensible from the authors’ perspective (one hopes), but a hodge-podge of insight
and error from the reader’s!
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Institute for Mathematics, Astrophysics, and Particle Physics, Radboud Univer-
siteit Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
mueger@math.ru.nl

Carlo Rovelli
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COMPENDIUM OF THE FOUNDATIONS OF
CLASSICAL STATISTICAL PHYSICS

Jos Uffink

1 INTRODUCTION

It has been said that an advantage of having a mature, formalized version of a
theory is that one may forget its preceding history. This saying is certainly true
for the purpose of studying the conceptual structure of a physical theory. In a
discussion of the foundations of classical mechanics, for example, one need not
consider the work of the Parisian scholastics. In the foundations of quantum me-
chanics, one may start from the von Neumann axioms, and disregard the preceding
“old” quantum theory. Statistical physics, however, has not yet developed a set
of generally accepted formal axioms, and consequently we have no choice but to
dwell on its history.

This is not because attempts to chart the foundations of statistical physics have
been absent, or scarce [Ehrenfest and Ehrenfest-Afanassjewa, 1912; ter Haar, 1955;
Penrose, 1979; Sklar, 1993; Emch and Liu, 2001]e.g.. Rather, the picture that
emerges from such studies is that statistical physics has developed into a number
of different schools, each with its own programme and technical apparatus. Unlike
quantum theory or relativity, this field lacks a common set of assumptions that is
accepted by most of the participants; although there is, of course, overlap. But
one common denominator seems to be that nearly all schools claim the founding
fathers, Maxwell, Boltzmann and Gibbs as their champions.

Broadly understood, statistical physics may be characterized as a branch of
physics intended to describe the thermal behaviour and properties of matter in
bulk, i.e. of macroscopic dimensions in relation to its microscopic corpuscular con-
stituents and their dynamics.1 In this review, we shall only deal with approaches
that assume a finite number of microscopic constituents, governed by classical dy-
namics. (See [Emch, 2006] for a discussion of quantum statistical physics that also
addresses infinite systems.)

The above description is deliberately vague; it does not yet specify what thermal
behaviour is, and being a characterization in terms of intentions, leaves open by
what methods the goals may be achieved. Let us expand a bit. There are two basic

1The terms “in bulk” and the distinction “micro/macroscopic” should be understood in a
relative sense. Thus, statistical physics may apply to a galaxy or nebula, in which the constituent
stars are considered as ’microscopic constituents’.
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ingredients in statistical physics. The first is a mechanical model of a macroscopic
material system. For example, a gas may be modeled as a system of point particles,
or as hard spheres, or as composite objects, etc. Similarly, one may employ lattice
models for solids, and so forth. In general, the particulars of the mechanical model,
and its dynamics, will depend on the system of interest.

The second ingredient of the theory on which all approaches agree is the in-
troduction of probability and statistical considerations. Sometimes, textbooks
explain the need for this ingredient by pointing to the fact that an exact solution
of the equations of motion for mechanical models with a large number of degrees of
freedom is unfeasible. But this motivation from deficiency surely underestimates
the constructive and explanatory role that probability plays in statistical physics.
A slightly better motivation, also found in many textbooks, is that even if the
dynamical equations could be solved in detail, most of these details would turn
out to be irrelevant for the purpose of characterizing the thermal behaviour. There
is some truth in this observation, yet it can hardly be satisfactory as it stands.
Certainly, not all details about the microdynamics are irrelevant, e.g. in phase
transitions, and one naturally wishes for more concrete information about exactly
which details are irrelevant and which are not.

One of the foremost foundational problems in statistical physics is thus to spec-
ify and to clarify the status of probabilistic assumptions in the theory. As we
shall see, this task already leads to a rough distinction between approaches in
which probability arises as a notion explicitly defined in mechanical terms (ki-
netic theory), and approaches in which it is a conceptually independent ingredient
(statistical mechanics).

Next, there are ingredients on which much less consensus can be found. Here is
a (partial) list:

- Assumptions about the overwhelmingly large number of microscopic consti-
tuents (typically of the order of 1023 or more).

- An assumption about the erratic nature of the dynamics (e.g. ergodicity).

- The choice of special initial conditions.

- The role of external influences on the system, i.e., assumptions about whether
the system is open to the exchange of energy/momentum with its environ-
ment, in combination with an assumed sensitivity of the dynamics under
such external disturbances.

- Symmetry of macroscopic quantities under permutation of the microscopic
constituents.

- Limits in the resolution or experimental accuracy of macroscopic observers.

- Appeal to a time-asymmetric principle of causality.
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The role of each of these ingredients in the recipe of statistical physics is contro-
versial. What many “chefs” regard as absolutely essential and indispensable, is
argued to be insufficient or superfluous by many others. A major goal in the foun-
dations of statistical physics should therefore lie in an attempt to sort out which
subset of the above ideas can be formulated in a precise and coherent manner
to obtain a unified and sufficiently general framework for a theory of statistical
physics.

Another issue in which the preceding discussion has been vague is what is meant
by the thermal behaviour and properties of macroscopic matter. There are two
sources on which one may draw in order to delineate this topic. The first is by
comparison to other (older) traditions in theoretical physics that have the same
goal as statistical physics but do not rely on the two main ingredients above viz.
a mechanical model and probabilistic arguments. There are two main examples:
thermodynamics and hydrodynamics. The other source, of course, is observation.
This provides a rich supply of phenomena, some of which have thus far withstood
full theoretical explanation (e.g. turbulence).

Obviously, a measure of success for statistical physics can be found in the ques-
tion to what extent this approach succeeds in reproducing the results of earlier,
non-statistical theories, where they are empirically adequate, and in improving
upon them where they are not. Thus, the foundations of statistical physics also
provides a testing ground for philosophical ideas about inter-theory relations, like
reduction (cf. [Brush, 1977; Sklar, 1993; Batterman, 2002]). However I will not
go into this issue. The remainder of this introduction will be devoted to a rough
sketch of the four theories mentioned, i.e. thermodynamics, hydrodynamics, ki-
netic theory and statistical physics.

1.1 Thermodynamics.

Orthodox thermodynamics is an approach associated with the names of Clausius,
Kelvin, and Planck. Here, one aims to describe the thermal properties of macro-
scopic bodies while deliberately avoiding commitment to any hypothesis about
the microscopic entities that might constitute the bodies in question. Instead,
the approach aims to derive certain general laws, valid for all such bodies, from a
restricted set of empirical principles.

In this approach the macroscopic body (or thermodynamic system) is conceived
of as a sort of black box, which may interact with its environment by means of
work and heat exchange. The most basic empirical principle is that macroscopic
bodies when left to themselves, i.e. when isolated from an environment, eventu-
ally settle down in an equilibrium state in which no further observable changes
occur. Moreover, for simple, homogeneous bodies, this equilibrium state is fully
characterized by the values of a small number of macroscopic variables.

Other empirical principles state which types of processes are regarded as im-
possible. By ingenious arguments one can then derive from these principles the
existence of certain quantities (in particular: absolute temperature, energy and
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entropy) as ‘state functions’, i.e. functions defined on a space of thermodynamical
equilibrium states for all such systems.

While the theory focuses on processes, the description it can afford of such
processes is extremely limited. In general, a process will take a system through
a sequence of non-equilibrium states, for which the thermodynamic state func-
tions are not defined, and thus cannot be characterized in detail with the tools
afforded by the theory. Therefore one limits oneself to the consideration of special
types of processes, namely those that begin and end in an equilibrium state. Even
more special are those processes that proceed so delicately and slowly that up
to an arbitrarily small error one may assume that the system remains in equilib-
rium throughout the entire process. The latter processes are called quasistatic, or
sometimes reversible.2

Of course, since equilibrium states are by definition assumed to remain in equi-
librium if unperturbed, all such processes are triggered by an external intervention
such as pushing a piston or removing a partition. For the first type of process,
orthodox thermodynamics can only relate the initial and final state. The second
type of process can be (approximately) represented as a curve in the equilibrium
state space.

The advantage of the approach is its generality. Though developed originally
for the study of gases and liquids, by the late nineteenth century, it could be ex-
tended to the behaviour of magnets and other systems. Indeed, the independence
of hypotheses about its micro-constituents means that the methods of orthodox
thermodynamics can also be –and have been– applied to essentially quantum-
mechanical systems (like photon gases) or to more exotic objects like black holes
(see [Rovelli, 2006]).

With regard to the foundations of statistical physics, two aspects of thermody-
namics are of outstanding importance. First, the challenge is to provide a coun-
terpart for the very concept of equilibrium states and to provide a counterpart for
the thermodynamic law that all isolated systems not in equilibrium evolve towards
an equilibrium state. Secondly, statistical physics should give an account of the
Second Law of thermodynamics, i.e. the statement that entropy cannot decrease in
an adiabatically isolated system. Obviously, such counterparts will be statistical;
i.e. they will hold on average or with high probability, but will not coincide with
the unexceptionally general statements of thermodynamics.

1.2 Hydrodynamics

It would be a mistake to believe that the goals of statistical physics are exhausted
by reproducing the laws of thermodynamics. There are many other traditions
in theoretical physics that provide a much more detailed, yet less general, char-
acterization of thermal behaviour. A concrete example is hydrodynamics or fluid
dynamics. In contrast to thermodynamics, hydrodynamics does rely on an assump-

2The reader may be warned, however, that there are many different meanings to the term
‘reversible’ in thermodynamics. See [Uffink, 2001] for a discussion.
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tion about microscopic constitution. It models a fluid as a continuous medium or
plenum. It is, in modern parlance, a field theory. Moreover it aims to describe
the evolution of certain macroscopic quantities in the course of time, i.e. during
non-equilibrium processes. As such it is an example of a theory which is much
more informative and detailed than thermodynamics, at the price, of course, that
its empirical scope is restricted to fluids.

Without going in detail (for a more comprehensive account, see e.g. [Landau
and Lifshitz, 1987; de Groot and Mazur, 1961]), hydrodynamics assumes there
are three fundamental fields: the mass density ρ(�x, t), a velocity field �v(�x, t) and
a temperature field T (�x, t). There are also three fundamental field equations,
which express, in a differential form, the conservation of mass, momentum and
energy. Unfortunately, these equations introduce further quantities: the pressure
P (�x, t), the stress tensor π(�x, t), the energy density u(�x, t), the shear and bulk
viscosities η and ζ and thermal conductivity κ, each of which has to be related to
the fundamental fields by means of various constitutive relations and equations of
state (dependent on the fluid concerned), in order to close the field equations, i.e.
to make them susceptible to solution.

The resulting equations are explicitly asymmetric under time reversal. Yet
another remarkable feature of hydrodynamics is the fact that the equations can be
closed at all. That is: the specification of only a handful of macroscopic quantities
is needed to predict the evolution of those quantities. Their behaviour is in other
words autonomous. This same autonomy also holds for other theories or equations
used to describe processes in systems out of equilibrium: for example the theories
of diffusion, electrical conduction in metals, the Fourier heat equation etc. In
spite of a huge number of microscopic degrees of freedom, the evolution of a few
macroscopic quantities generally seems to depend only on the instantaneous values
of these macroscopic quantities. Apart from accounting for the asymmetry under
time reversal displayed by such theories, statistical physics should also ideally
explain this remarkable autonomy of their evolution equations.

1.3 Kinetic theory

I turn to the second group of theories we need to consider: those that do rely on
hypotheses or modeling assumptions about the internal microscopic constitution
or dynamics of the systems considered. As mentioned, they can be divided into
two rough subgroups: kinetic theory and statistical mechanics.

Kinetic theory, also called the kinetic theory of gases, the dynamical theory of
gases, the molecular-kinetic theory of heat etc., takes as its main starting point the
assumption that systems (gases in particular) consist of molecules. The thermal
properties and behaviour are then related in particular to the motion of these
molecules.

The earliest modern version of a kinetic theory is Daniel Bernoulli’s (1731).
Bernoulli’s work was not followed by further developments along the same line
for almost a century. But it regained new interest in the mid-nineteenth century.
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The theory developed into a more general and elaborate framework in the hands
of Clausius, Maxwell and Boltzmann. Clausius extended Bernoulli’s model by
taking into account the collisions between the particles, in order to show that the
formidable molecular speeds (in the order of 103 m/s) were compatible with rela-
tively slow rates of diffusion. However, he did not develop a systematic treatment
of collisions and their effects. It was Maxwell who was the first to realize that
collisions would tend to produce particles moving at a variety of speeds, rather
than a single common speed, and proceeded to ask how probable the various values
of the velocity would be in a state of equilibrium. Maxwell thus introduced the
concept of probability and statistical considerations into kinetic theory.

From 1868 onwards, Boltzmann took Maxwell’s investigations further. In his
famous memoir of 1872 he obtained an equation for the evolution of the distri-
bution function, the Boltzmann equation, and claimed that every non-stationary
distribution function for an isolated gas would evolve towards the Maxwellian
form, i.e. towards the equilibrium state. However, along the way, Boltzmann had
made various assumptions and idealizations, e.g. neglecting the effect of multi-
particle collisions, which restrict his derivations’ validity to dilute gases, as well
as the Stoßzahlansatz, developed by Maxwell in 1867, (or ‘hypothesis of molecular
disorder’ as he later called it).

The Boltzmann equation, or variations of this equation, is the physicists’ work-
horse in gas theory. The hydrodynamical equations can be derived from it, as
well as other transport equations. However, it is well known that it is only an
approximation, and commonly regarded as a first step in a hierarchy of more
detailed equations. But the foremost conceptual problem is its time-asymmetric
nature, which highlights the fact that the Boltzmann equation itself could not
be derived from mechanics alone. During Boltzmann’s lifetime, this led to two
famous objections, the reversibility objection (Umkehreinwand) by Loschmidt and
the recurrence objection (Wiederkehreinwand) by Zermelo. A third important
challenge, only put forward much more recently by [Lanford, 1975], concerns the
consistency of the Boltzmann equation with the assumption that the gas system
is a mechanical system governed by Hamiltonian dynamics.

1.4 Statistical mechanics

There is only a vague borderline between kinetic theory and statistical mechanics.
The main distinctive criterion, as drawn by the Ehrenfests (1912) is this. Kinetic
theory is what the Ehrenfests call “the older formulation of statistico-mechanical
investigations” or “kineto-statistics of the molecule”. Here, molecular states, in
particular their velocities, are regarded as stochastic variables, and probabilities
are attached to such molecular states of motion. These probabilities themselves
are determined by the state of the total gas system. They are conceived of either as
the relative number of molecules with a particular state, or the relative time during
which a molecule has that state. (Maxwell employed the first option, Boltzmann
wavered between the two.) It is important to stress that in both options the
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“probabilities” in question are determined by the mechanical properties of the
gas. Hence there is really no clear separation between mechanical and statistical
concepts in this approach.

Gradually, a transition was made to what the Ehrenfests called a “modern for-
mulation of statistico-mechanical investigations” or “kineto-statistics of the gas
model”, or what is nowadays known as statistical mechanics. In this latter ap-
proach, probabilities are not attached to the state of a molecule but to the state
of the entire gas system. Thus, the state of the gas, instead of determining the
probability distribution, now itself becomes a stochastic variable.

A merit of this latter approach is that interactions between molecules can be
taken into account. Indeed, the approach is not necessarily restricted to gases,
but might in principle also be applied to liquids or solids. (This is why the name
‘gas theory’ is abandoned.) The price to be paid however, is that the proba-
bilities themselves become more abstract. Since probabilities are attributed to
the mechanical states of the total system, they are no longer determined by such
mechanical states. Instead, in statistical mechanics, the probabilities are usually
conceived of as being determined by means of an ‘ensemble’, i.e. a fictitious col-
lection of replicas of the system in question. But whatever role one may wish to
assign to this construction, the main point is that probability is now an indepen-
dent concept, no longer reducible to mechanical properties of the system.

It is not easy to pinpoint this transition in the course of the history, except to say
that Maxwell’s work in the 1860s definitely belong to the first category, and Gibbs’
book of 1902 to the second. Boltzmann’s own works fall somewhere in the middle
ground. His earlier contributions clearly belong to the kinetic theory of gases
(although his 1868 paper already applies probability to an entire gas system); while
his work after 1877 is usually seen as elements in the theory of statistical mechanics.
However, Boltzmann himself never indicated a clear distinction between these two
different theories, and any attempt to draw a demarcation at an exact location in
his work seems somewhat arbitrary.

From a conceptual point of view, the transition from kinetic gas theory to sta-
tistical mechanics poses two main foundational questions. First: on what grounds
do we choose a particular ensemble, or the probability distribution characterizing
the ensemble? Gibbs did not enter into a systematic discussion of this problem,
but only discussed special cases of equilibrium ensembles (i.e. canonical, micro-
canonical etc.) for which the probability distribution was stipulated by some spe-
cial simple form. A second problem is to relate the ensemble-based probabilities
to the probabilities obtained in the earlier kinetic approach for a single gas model.

The Ehrenfests [1912] paper was the first to recognize these questions, and to
provide a partial answer. Namely: Assuming a certain hypothesis of Boltzmann’s,
which they dubbed the ergodic hypothesis, they pointed out that for an isolated
system the micro-canonical distribution is the unique stationary probability dis-
tribution. Hence, if one demands that an ensemble of isolated systems describing
thermal equilibrium must be represented by a stationary distribution, the only
choice for this purpose is the micro-canonical one. Similarly, they pointed out
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that under the ergodic hypothesis, infinite time averages and ensemble averages
were identical. This, then, would provide a desired link between the probabili-
ties of the older kinetic gas theory and those of statistical mechanics, at least in
equilibrium and in the infinite time limit. Yet the Ehrenfests simultaneously ex-
pressed strong doubts about the validity of the ergodic hypothesis. These doubts
were soon substantiated when in 1913 Rosenthal and Plancherel proved that the
hypothesis was untenable for realistic gas models.

The Ehrenfests’ reconstruction of Boltzmann’s work thus gave a prominent role
to the ergodic hypothesis, suggesting that it played a fundamental and lasting
role in his thinking. Although this view indeed produces a more coherent view of
his multi-faceted work, it is certainly not historically correct. Boltzmann himself
also had grave doubts about this hypothesis, and expressly avoided it whenever he
could, in particular in his two great papers of 1872 and 1877b. Since the Ehren-
fests, many authors have presented accounts of Boltzmann’s work. Particularly
important are Klein [1973] and Brush [1976].

Nevertheless, the analysis of the Ehrenfests did thus lead to a somewhat clearly
delineated programme for or view about the foundations of statistical physics, in
which ergodicity was a crucial feature. The demise of the original ergodic hypoth-
esis did not halt the programme; the hypothesis was replaced by an alternative
(weaker) hypothesis, i.e. that the system is ‘metrically transitive’ (nowadays, the
name ‘ergodic’ is often used as synonym). What is more, certain mathematical re-
sults of Birkhoff and von Neumann (the ergodic theorem) showed that for ergodic
systems in this new sense, the desired results could indeed be proven, modulo a
few mathematical provisos that at first did not attract much attention.

Thus there arose the ergodic or “standard” view on the foundations of statisti-
cal mechanics; (see, e.g. [Khinchin, 1949, p. 44]). On that view, the formalism of
statistical mechanics emerges as follows: A concrete system, say a container with
gas, is represented as a mechanical system with a very large number of degrees of
freedom. All physical quantities are functions of the dynamical variables of the
system, or, what amounts to the same thing, are functions on its phase space.
However, experiments or observation of such physical quantities do not record the
instantaneous values of these physical quantities. Instead, every observation must
last a duration which may be extremely short by human standards, but will be
extremely long on the microscopic level, i.e. one in which the microstate has ex-
perienced many changes, e.g. because of the incessant molecular collisions. Hence,
all we can register are time averages of the physical quantities over a very long
periods of time. These averages are thus empirically meaningful. Unfortunately
they are theoretically and analytically obstreperous. Time averages depend on the
trajectory and can only be computed by integration of the equations of motion.
The expectation value of the phase function over a given ensemble, the phase av-
erage has the opposite qualities, i.e. it is easy to compute, but not immediately
empirically relevant. However, ergodicity ensures that the two averages are equal
(almost everywhere). Thus, one can combine the best of both worlds, and identify
the theoretically convenient with the empirically meaningful.
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While statistical mechanics is clearly a more powerful theory than kinetic theory,
it is, like thermodynamics, particularly successful in explaining and modeling gases
and other systems in equilibrium. Non-equilibrium statistical mechanics remains
a field where extra problems appear.

1.5 Prospectus

The structure of this chapter is as follows. In Section 2, I will provide a brief
exposition of orthodox thermodynamics, and in subsection 2.2 an even briefer
review of some less-than-orthodox approaches to thermodynamics. Section 3 looks
at the kinetic theory of gases, focusing in particular on Maxwell’s ground-breaking
papers of 1860 and 1867, and investigates the meaning and status of Maxwell’s
probabilistic arguments.

Section 4 is devoted to (a selection of) Boltzmann’s works, which, as men-
tioned above, may be characterized as in between kinetic theory and statistical
mechanics. The focus will be on his 1868 paper and his most celebrated papers
of 1872 and 1877. Also, the objections from Loschmidt [1877] and Zermelo [1897]
are discussed, together with Boltzmann’s responses. Our discussion emphasizes
the variety of assumptions and methods used by Boltzmann over the years, and
the open-endedness of his results: the ergodic hypothesis, the Stoßzahlansatz, the
combinatorial argument of 1877, and a statistical reading of the H-theorem that
he advocated in the 1890s.

Next, Section 5 presents an account of Gibbs’ [1902] version of statistical me-
chanics and emphasizes the essential differences between his and Boltzmann’s ap-
proach. Sections 6 and 7 give an overview of some more recent developments
in statistical mechanics, In particular, we review some results in modern ergodic
theory, as well as approaches that aim to develop a more systematic account of
non-equilibrium theory, such as the BBGKY approach (named after Bogolyubov,
Born, Green, Kirkwood and Yvon) and the approach of Lanford. Section 7 ex-
tends this discussion for a combination of approaches, here united under the name
stochastic dynamics that includes those known as ‘coarse-graining’ and ‘interven-
tionism’ or ‘open systems’. In all cases we shall look at the question whether or
how such approaches succeed in a satisfactory treatment of non-equilibrium.

As this prospectus makes clear, the choice of topics is highly selective. There are
many important topics and developments in the foundations of statistical physics
that I will not touch. I list the most conspicuous of those here together with some
references for readers that wish to learn more about them.

- Maxwell’s demon and Landauer’s principle: [Klein, 1970; Earman and Nor-
ton, 1998; 1999; Leff and Rex, 2003; Bennett, 2003; Norton, 2005; Maroney,
2005; Ladyman et al., 2006].

- Boltzmann’s work in the 1880s (e.g. on monocyclic systems) [Klein, 1972;
1974; Bierhalter, 1992; Gallavotti, 1999; Uffink, 2005].
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- Gibbs’ paradox [van Kampen, 1984; Jaynes, 1992; Huggett, 1999; Saunders,
2006].

- Branch systems [Schrödinger, 1950; Reichenbach, 1956; Kroes, 1985; Wins-
berg, 2004].

- Subjective interpretation of probability in statistical mechanics [Tolman,
1938; Jaynes, 1983; von Plato, 1991; van Lith, 2001a; Balian, 2005].

- Prigogine and the Brussels-Austin school [Obcemea and Brändas, 1983;
Batterman, 1991; Karakostas, 1996; Edens, 2001; Bishop, 2004].

2 ORTHODOX THERMODYNAMICS

2.1 The Clausius-Kelvin-Planck approach

Thermodynamics is a theory that aims to characterize macroscopic physical bodies
in terms of macroscopically observable quantities (typically: temperature, pres-
sure, volume, etc.,) and to describe their changes under certain types of interac-
tions (typically exchange of heat or work with an environment).

The classical version of the theory, which evolved around 1850, adopted as a
methodological starting point that the fundamental laws of the theory should be
independent of any particular hypothesis about the microscopic constitution of
the bodies concerned. Rather, they should be based on empirical principles, i.e.
boldly generalized statements of experimental facts, not on hypothetical and hence
untestable assumptions such as the atomic hypothesis.

The reasons for this methodology were twofold. First, the dominant view on
the goal of science was the positivist-empirical philosophy which greatly valued
directly testable empirical statements above speculative hypotheses. But the sway
of the positivist view was never so complete that physicists avoided speculation
altogether. In fact many of the main founders of thermodynamics eagerly in-
dulged in embracing particular hypotheses of their own about the microphysical
constitution of matter.

The second reason is more pragmatic. The multitude of microphysical hypothe-
ses and conjectures was already so great in the mid-nineteenth century, and the
prospect of deciding between them so dim, that it was a clear advantage to obtain
and present results that did not depend on such assumptions. Thus, when Clau-
sius stated in 1857 that he firmly believed in the molecular-kinetic view on the
nature of gases, he also mentioned that he had not previously revealed this opin-
ion in order not to mix this conviction with his work on thermodynamics proper
[Clausius, 1857, p. 353].3

3The wisdom of this choice becomes clear if we compare his fame to that of Rankine. Rankine
actually predated Clausius in finding the entropy function (which he called ‘thermodynamic
potential’). However, this result was largely ignored due to the fact that it was imbedded in
Rankine’s rather complicated theory of atomic vortices.
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Proceeding somewhat ahistorically,4 one might say that the first central concept
in thermodynamics is that of equilibrium. It is taken as a fact of experience
that macroscopic bodies in a finite volume, when left to themselves, i.e. isolated
from an environment eventually settle down in a stationary state in which no
further observable changes occur (the ‘Minus First Law’, cf. page 939). This
stationary state is called a (thermal) equilibrium state. Moreover, for simple,
homogeneous bodies, this state is fully characterized by the values of a small
number of macroscopic variables. In particular, for fluids (i.e. gases or liquids),
two independent variables suffice to determine the equilibrium state.

For fluids, the three variables pressure p, temperature θ and volume V , are
thus related by a so-called equation of state, where, following Euler, it has become
customary to express pressure as a function of the two remaining variables:

(1) p = p(θ, V )

The form of this function differs for different fluids; for n moles of an ideal gas it
is given by:

(2) p(θ, V ) = nRθ/V

where R is the gas constant and θ is measured on the gas thermometer scale.
The content of thermodynamics developed out of three ingredients. The first is

the science of calorimetry, which was already developed to theoretical perfection
in the eighteenth century, in particular by Joseph Black [Fox, 1971; Truesdell,
1980; Chang, 2003; 2004]. It involved the study of the thermal changes in a body
under the addition of or withdrawal of heat to the system. Of course, the (silent)
presupposition here is that this process of heat exchange proceeds so delicately and
slowly that the system may always be regarded as remaining in equilibrium. In
modern terms, it proceeds ‘quasi-statically’. Thus, the equation of state remains
valid during the process.

The tools of calorimetry are those of differential calculus. For an infinitesimal
increment dQ of heat added to a fluid, one puts

(3) dQ = cV dθ + ΛθdV,

where cV is called the heat capacity at constant volume and Λθ the latent heat at
constant temperature. Both cV and Λθ are assumed to be functions of θ and V .
The notation d is used to indicate that the heat increment dQ is not necessarily
an exact differential, i.e. Q is not assumed to be a function of state.

The total heat Q added to a fluid during a process can thus be expressed as a
line integral along a path P in the (θ, V ) plane

(4) Q(P) =
∫
P

dQ =
∫
P

(cV dθ + ΛθdV )

4I refer to [Uffink, 2001] for more details.
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A treatment similar to the above can be given for the quasistatic heat exchange
of more general thermal bodies than fluids. Indeed, calorimetry was sufficiently
general to describe phase transitions, say from water to ice, by assuming a discon-
tinuity in Λθ.

All this is independent of the question whether heat itself is a substance or
not. Indeed, Black himself wished to remain neutral on this issue. Even so,
much of the terminology of calorimetry somehow invites the supposition that heat
is a substance, usually called caloric, and many eighteenth and early nineteenth
century authors adopted this view [Fox, 1971]. In such a view it makes sense
to speak of the amount of heat contained in a body, and this would entail that
dQ must be an exact differential (or in other words: Q(P) must be the same
for all paths P with the same initial and final points). But this turned out to
be empirically false, when the effects of the performance of work were taken into
account.

Investigations in the 1840s (by Joule and Mayer among others) led to the con-
viction that heat and work are “equivalent”; or somewhat more precisely, that in
every cyclic process C, the amount of heat Q(C) absorbed by the system is pro-
portional to the amount of work performed by the system. Or, taking W (C) as
positive when performed on the system :

(5) JQ(C) + W (C) = 0

where J ≈ 4.2Nm/Cal is Joule’s constant, which modern convention takes equal
to 1. This is the so-called First Law of thermodynamics.

For quasistatic processes this can again be expressed as a line integral in a state
space Ωeq of thermodynamic equilibrium states

(6)
∮
C

(dQ + dW ) = 0

where

(7) dW = −pdV.

Assuming the validity of (6) for all cyclic paths in the equilibrium state space
implies the existence of a function U on Ωeq such that

(8) dU = dQ + dW.

The third ingredient of thermodynamics evolved from the study of the relations
between heat and work, in particular the efficiency of heat engines. In 1824, Carnot
obtained the following theorem.

Carnot’s Theorem: Consider any system that performs a cyclic
process C during which (a) an amount of heat Q+(C) is absorbed from
a heat reservoir at temperature θ+, (b) an amount of heat Q−(C) is
given off to a reservoir at a temperature θ−, with θ− < θ+, (c) there
is no heat exchange at other stages of the cycles, and (d) some work
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W (C) is done on a third body. Let η(C) := W (C)
Q+(C) be the efficiency of

the cycle. Then:

(1) All quasistatic cycles have the same efficiency. This effi-
ciency is a universal function of the two temperatures, i.e.,

(9) η(C) = η(θ+, θ−).

(2) All other cycles have a efficiency which is less or equal to
that of the quasi-static cycle.

Carnot arrived at this result by assuming that heat was a conserved substance
(and thus: Q+(C) = Q−(C) for all C), as well as a principle that excluded the
construction of a perpetuum mobile (of the first kind).

In actual fact, Carnot did not use the quasistatic/non-quasistatic dichotomy to
characterize the two parts of his theorem. 5

In fact, he used two different characterizations of the cycles that would produce
maximum efficiency. (a): In his proof that Carnot cycles belong to class (1), the
crucial assumption is that they “might have been performed in an inverse direction
and order”[Carnot, 1824, p. 11]. But a little later (p. 13), he proposed a necessary
and sufficient condition for a cycle to produce maximum efficiency, namely (b):
In all stages which involve heat exchange, only bodies of equal temperature are
put in thermal contact, or rather: their temperatures differ by a vanishingly small
amount.

Carnot’s theorem is remarkable since it did not need any assumption about the
nature of the thermal system on which the cycle was carried out. Thus, when
his work first became known to the physics community (Thomson, later known as
Lord Kelvin, 1848) it was recognized as an important clue towards a general theory
dealing with both heat and work exchange, for which Kelvin coined the name
‘thermodynamics’. Indeed, Kelvin already showed in his first paper (1848) on the
subject that Carnot’s universal function η could be used to devise an absolute
scale for temperature, i.e. one that did not depend on properties of a particular
substance.

Unfortunately, around the very same period it became clear that Carnot’s as-
sumption of the conservation of heat violated the First Law. In a series of papers
Clausius and Kelvin re-established Carnot’s theorem on a different footing (i.e.
on the first law (5) or, in this case Q+(C) = Q−(C) + W (C), and a principle that
excluded perpetual motion of the second kind) and transformed his results into
general propositions that characterize general thermodynamical systems and their
changes under the influence of heat and work. For the most part, these investi-
gations were concerned with the first part of Carnot’s theorem only. They led to
what is nowadays called the first part of the Second Law; as follows.

First, Kelvin reformulated his 1848 absolute temperature scale into a new one,
T (θ), in which the universal efficiency could be expressed explicitly as:

5Indeed, [Truesdell, 1980] argues that this characterization of his theorem is incorrect. See
[Uffink, 2001] for further discussions.
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(10) η(T+, T−) = 1− T−
T+

,

where Ti = T (θi). Since the efficiency η is also expressed by W/Q+ = 1−(Q−/Q+),
this is equivalent to

(11)
Q−
T−

=
Q+

T+
.

Next, changing the sign convention to one in which Q is positive if absorbed and
negative if given off by the system, and generalizing for cycles in which an arbitrary
number of heat reservoirs are involved, one gets:

(12)
∑
i

Qi

Ti
= 0.

In the case where the system is taken through a quasistatic cycle in which the
heat reservoirs have a continuously varying temperature during this cycle, this
generalizes to

(13)
∮
C

dQ

T
= 0.

Here, T still refers to the temperature of the heat reservoirs with which the
system interacts, not to its own temperature. Yet Carnot’s necessary and sufficient
criterion of reversibility itself requires that during all stages of the process that
involve heat exchange, the temperatures of the heat reservoir and system should
be equal. Hence, in this case one may equate T with the temperature of the system
itself.

The virtue of this result is that the integral (13) can now be entirely expressed in
terms of quantities of the system. By a well-known theorem, applied by Clausius
in 1865, it follows that there exists a function, called entropy S, defined on the
equilibrium states of the system such that

(14) S(s1)− S(s2) =
∫ s2

s1

dQ

T

or, as it more usually known:

(15)
dQ

T
= dS.

This result is frequently expressed as follows: dQ has an integrating divisor (namely
T ): division by T turns the inexact (incomplete, non-integrable) differential dQ
into an exact (complete, integrable) differential. For one mole of ideal gas (i.e. a
fluid for which cV is constant, Λθ vanishes and the ideal gas law (2) applies), one
finds, for example:

(16) S(T, V ) = cV lnT + R lnV + const.
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The existence of this entropy function also allows for a convenient reformulation
of the First Law for quasistatic processes (8) as

(17) dU = TdS − pdV,

now too expressed in terms of properties of the system of interest.
However important this first part of the Second Law is by itself, it never led to

much dispute or controversy. By contrast, the extension of the above results to
cover the second part of Carnot’s theorem gave rise to considerably more thought,
and depends also intimately on what is understood by ‘(ir)reversible processes’.

The second part of Carnot’s theorem was at first treated in a much more step-
motherly fashion. Clausius’ [1854] only devoted a single paragraph to it, obtaining
the result that for “irreversible” cycles

(18)
∮

dQ

T
≤ 0.

But this result is much less easy to apply, since the temperature T here refers to
that of the heat reservoir with which the system is in contact, not (necessarily)
that of the system itself.

Clausius put the irreversible processes in a more prominent role in his 1865
paper. If an irreversible cyclic process consists of a general, i.e. possibly non-
quasistatic stage, from si to sf , and a quasistatic stage, from sf back to si, one
may write (18) as

(19)
∫ sf

si non−qs

dQ

T
+
∫ si

sf qs

dQ

T
≤ 0.

Applying (14) to the second term in the left hand side, one obtains

(20)
∫ sf

si non−qs

dQ

T
≤ S(sf )− S(si)

If we assume moreover that the generally non-quasistatic process is adiabatic, i.e.
dQ = 0, the result is

(21) S(si) ≤ S(sf ).

In other words, in any adiabatic process the entropy of the final state cannot be
less than that of the initial state.

Remarks: 1. The notation
∮

for cyclic integrals, and d for inexact differentials
is modern. Clausius, and Boltzmann after him, would simply write

∫
dQ
T for the

left-hand side of (13) and (18).
2. An important point to note is that Clausius’ formulation of the Second

Law, strictly speaking, does not require a general monotonic increase of entropy
for any adiabatically isolated system in the course of time. Indeed, in orthodox
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thermodynamics, entropy is defined only for equilibrium states. Therefore it is
meaningless within this theory to ask how the entropy of a system changes during
a non-quasistatic process. All one can say in general is that when a system starts
out in an equilibrium state, and ends, after an adiabatic process, again in an
equilibrium state, the entropy of the latter state is not less than that of the former.

Still, the Second Law has often been understood as demanding continuous mono-
tonic increase of entropy in the course of time, and often expressed, for adiabati-
cally isolated systems, in a more stringent form

(22)
dS

dt
≥ 0.

There is, however, no basis for this demand in orthodox thermodynamics.
3. Another common misunderstanding of the Second Law is that it would

only require the non-decrease of entropy for processes in isolated systems. It
should be noted that this is only part of the result Clausius derived: the Second
Law holds more generally for adiabatic processes, i.e., processes during which
the system remains adiabatically insulated. In other words, the system may be
subject to arbitrary interactions with the environment, except those that involve
heat exchange. (For example: stirring a liquid in a thermos flask, as in Joule’s
‘paddle wheel’ experiment.)

4. Another point to be noted is that Clausius’ result that the entropy in an
adiabatically isolated system can never decrease is derived from the assumption
that one can find a quasistatic process that connects the final to the initial state,
in order to complete a cycle. Indeed, if such a process did not exist, the entropy
difference of these two states would not be defined. The existence of such qua-
sistatic processes is not problematic in many intended applications (e.g. if sf and
si are equilibrium states of a fluid); but it may be far from obvious in more general
settings (for instance if one considers processes far from equilibrium in a complex
system, such as a living cell). This warning that the increase of entropy is thus
conditional on the existence of quasistatic transitions has been pointed out already
by [Kirchhoff, 1894, p. 69].

5. Apart from the well-known First and Second Laws of thermodynamics, later
authors have identified some more basic assumptions or empirical principles in the
theory that are often assumed silently in traditional presentations — or sometimes
explicitly but unnamed — which may claim a similar fundamental status.

The most familiar of these is the so-called Zeroth Law, a term coined by [Fowler
and Guggenheim, 1939]. To introduce this, consider the relation of thermal equi-
librium. This is the relationship holding between the equilibrium states of two
systems, whenever it is the case that the composite system, consisting of these
two systems, would be found in an equilibrium state if the two systems are placed
in direct thermal contact — i.e., an interaction by which they are only allowed to
exchange heat. The zeroth law is now that the assumption that this is a transitive
relationship, i.e. if it holds for the states of two bodies A and B, and also for the
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states of bodies B and C, it likewise holds for bodies A and C.6

2.2 Less orthodox versions of thermodynamics

Even within the framework of orthodox thermodynamics, there are approaches
that differ from the Clausius-Kelvin-Planck approach. The foremost of those is
undoubtedly the approach developed by Gibbs in 1873–1878 [Gibbs, 1906]. Gibbs’
approach differs much in spirit from his European colleagues. No effort is devoted
to relate the existence or uniqueness of the thermodynamic state variables U T or
S to empirical principles. There existence is simply assumed. Also, Gibbs focused
on the description of equilibrium states, rather than processes.

Previous authors usually regarded the choice of variables in order to represent a
thermodynamic quantity as a matter of convention, like the choice of a coordinate
system on the thermodynamic (equilibrium) state space. For a fluid, one could
equally well choose the variables (p, V ), (V, T ), etc., as long as they are independent
and characterize a unique thermodynamic equilibrium state.7 Hence one could
equally well express the quantities U , S, etc. in terms of any such set of variables.
However, Gibbs had the deep insight that some choices are ‘better’ than others,
in the sense that if, e.g., the entropy is presented as a function of energy and
volume, S(U, V ), (or energy as a function of entropy and volume, U(S, V )) all other
thermodynamic quantities could be determined from it, while this is generally not
true for other choices. For example, if one knows only that for one mole of gas
S(T, V ) is given by (2), one cannot deduce the equations of state p = RT/V and
U = cV T . In contrast, if the function S(U, V ) = cV lnU + R lnV + const.’ is
given, one obtains these equations from its partial derivatives: p

T = ( ∂S∂V )U and
1
T = ( ∂S∂U )V .

For this reason, Gibbs called

(23) dU = TdS − pdV or dS =
1
T

dU +
p

T
dV

the fundamental equation.8 Of course this does not mean that other choices of
variables are inferior. Instead, one can find equivalent fundamental equations for

6Actually, transitivity alone is not enough. The assumption actually needed is that thermal
equilibrium is an equivalence relation, i.e., it is transitive, reflective and symmetric (cf. [Boyling,
1972, p. 45]). The idea of elevating this to a fundamental ‘Law’, is that this assumption, which
underlies the concept of temperature, can only be motivated on empirical grounds.

Another such assumption, again often stated but rarely named, is that any system contained
in a finite volume, if left to itself, tends to evolve towards an equilibrium state. This has also
sometimes been called a ‘zeroth law’ (cf. [Uhlenbeck and Ford, 1963, p.5; Lebowitz, 1994, p. 135])
in unfortunate competition with Fowler & Guggenheim’s nomenclature. The name Minus First
Law has therefore been proposed by [Brown and Uffink, 2001]. Note that this assumption already
introduces an explicitly time-asymmetric element, which is deeper than — and does not follow
from — the Second Law. However, most nineteenth (and many twentieth) century authors did
not appreciate this distinction, and as we shall see below, this Minus First Law is often subsumed
under the Second Law.

7The latter condition may well fail: A fluid like water can exist at different equilibrium states
with the same p, V , but different T [Thomsen and Hartka, 1962]

8Note how Gibbs’ outlook differs here from the Clausius-Kelvin-Planck view: These authors
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such pairs of variables too, in terms of the Legendre transforms of U . (Namely:
the Helmholtz free energy F = U − TS for the pair (T, V ); the enthalpy U + pV
for (p, S), and the Gibbs free energy U + pV − TS for (p, T ).) Further, Gibbs
extended these considerations from homogeneous fluids to heterogeneous bodies,
consisting of several chemical components and physical phases.

Another major novelty is that Gibbs proposed a variational principle to dis-
tinguish stable from neutral and unstable equilibria. (Roughly, this principle en-
tails that for stable equilibrium the function S(U, V ) should be concave.) This
criterium serves to be of great value in characterizing phase transitions in ther-
modynamic systems, e.g. the Van der Waals gas (Maxwell used it to obtain his
famous “Maxwell construction” or equal area rule [Klein, 1978]). Gibbs work also
proved important in the development of chemical thermodynamics, and physical
chemistry.

Another group of approaches in orthodox thermodynamics is concerned par-
ticularly with creating a more rigorous formal framework for the theory. This is
often called axiomatic thermodynamics. Of course, choosing to pursue a physi-
cal theory in an axiomatic framework does not by itself imply any preference for
a choice in its physical assumptions or philosophical outlook. Yet the Clausius-
Kelvin-Planck approach relies on empirical principles and intuitive concepts that
may seem clear enough in their relation to experience — but are often surprisingly
hard to define. Hence, axiomatic approaches tend to replace these empirical prin-
ciples by statements that are conceptually more precise, but also more abstract,
and thus arguably further removed from experience. The first example of this
work is Carathéodory 1909. Later axiomatic approaches were pursued, among
others, by [Giles, 1964]; [Boyling, 1972]; Jauch [1972; 1975], and by [Lieb and Yn-
gvason, 1999]. All these approaches differ in their choice of primitive concepts, in
the formulation of their axioms, and hence also in the results obtained and goals
achieved. However, in a rough sense, one might say they all focus particularly on
demonstrating under what conditions one might guarantee the mathematical ex-
istence and uniqueness of entropy and other state functions within an appropriate
structure.

Since the 1940s a great deal of work has been done on what is known as “non-
equilibrium thermodynamics” or “thermodynamics of irreversible processes” (see
e.g. [de Groot, 1951; Prigogine, 1955; de Groot and Mazur, 1961, Yourgrau, 1966;
Truesdell, 1969; Müller, 2003]). This type of work aims to extend orthodox thermo-
dynamics into the direction of a description of systems in non-equilibrium states.
Typically, one postulates that thermodynamic quantities are represented as con-
tinuously variable fields in space and time, with equilibrium conditions holding
approximately within each infinitesimal region within the thermodynamic system.

would look upon (23) as a statement of the first law of thermodynamics, interpreting the dif-
ferentials as infinitesimal increments during a quasistatic process, cf. (17). For Gibbs, on the
other hand, (23) does not represent a process but a differential equation on the thermodynamic
state space whose solution U(S, V ) or S(V, U) contains all information about the equilibrium
properties of the system, including the equations of state, the specific and latent heat, the com-
pressibility, etc. — much more than just First Law.
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Again, it may be noted that workers in the field seem to be divided into different
schools (using names such as “extended thermodynamics”,“generalized thermo-
dynamics”, “rational thermodynamics”, etc.) that do not at all agree with each
other (see [Hutter and Wang, 2003]).

This type of work has produced many successful applications. But it seems fair
to say that until now almost all attention has gone to towards practical application.
For example, questions of the type that axiomatic thermodynamics attempts to
answer, (e.g.: Under what conditions can we show the existence and uniqueness
of the non-equilibrium quantities used in the formalism?) are largely unanswered,
and indeed have given rise to some scepticism (cf. [Meixner, 1969; Meixner, 1970]).
Another inherent restriction of this theory is that by relying on the assumption
that non-equilibrium states can, at least in an infinitesimal local region, be well
approximated by an equilibrium state, the approach is incapable of encompassing
systems that are very far from equilibrium, such as in turbulence or living cells.)

The final type of approach that ought to be mentioned is that of statistical
thermodynamics. The basic idea here is that while still refraining from intro-
ducing hypotheses about the microscopic constituents of thermodynamic systems,
one rejects a key assumption of orthodox thermodynamics, namely, that a state
of equilibrium is one in which all quantities attain constant values, in order to
accommodate fluctuation phenomena such as Brownian motion or thermal noise.
Thus the idea becomes to represent at least some of the thermodynamic quantities
as random quantities, that in the course of time attain various values with various
probabilities. Work in this direction has been done by Szilard [1925], Mandelbrot
[1956; 1962; 1964], and Tisza and Quay [1963].

Of course the crucial question is then how to choose the appropriate probabil-
ity distributions. One approach, elaborated in particular by [Tisza, 1966], taking
its inspiration from Einstein [1910], relies on a inversion of Boltzmann’s principle:
whereas Boltzmann argued (within statistical mechanics) that the thermodynamic
notion of entropy could be identified with the logarithm of a probability; Einstein
argued that in thermodynamics, where the concept of entropy is already given,
one may define the relative probability of two equilibrium states by the exponent
of their entropy difference. Other approaches have borrowed more sophisticated
results from mathematical statistics. For example, Mandelbrot used the Pitman-
Koopman-Darmois theorem, which states that sufficient estimators exist only for
the “exponential family” of probability distributions to derive the canonical prob-
ability distribution from the postulate that energy be a sufficient estimator of the
system’s temperature (see also [Uffink and van Lith, 1999]).

3 KINETIC THEORY FROM BERNOULLI TO MAXWELL

3.1 Probability in the mid-nineteenth century

Probability theory has a history dating back at least two centuries before the
appearance of statistical physics. Usually, one places the birth of this theory in
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the correspondence of Pascal and Fermat around 1650. It was refined into a mature
mathematical discipline in the work of Jacob Bernoulli [1713], Abraham de Moivre
[1738] and Pierre-Simon de Laplace [1813] (cf. [Hacking, 1975]).

In this tradition, often called ‘classical probability’, the notion of probability is
conceived of as a measure of the degree of certainty of our beliefs. Two points are
important to note here. First, in this particular view, probability resides in the
mind. There is nothing like uncertainty or chance in Nature. In fact, all authors
in the classical tradition emphasize their adherence to strict determinism, either
by appeal to divine omniscience (Bernoulli, de Moivre) or by appeal to the laws of
mechanics and the initial conditions (Laplace). A probability hence represents a
judgment about some state of affairs, and not an intrinsic property of this state of
affairs. Hence, the classical authors never conceived that probability has any role
to play in a description of nature or physical processes as such.9 Secondly, although
Bernoulli himself used the term “subjective” to emphasize the fact that probability
refers to us, and the knowledge we possess, the classical interpretation does not
go so far as modern adherents to a subjective interpretation of probability who
conceive of probability as the degrees of belief of an arbitrary (although coherent)
person, who may base his beliefs on personal whims, prejudice and private opinion.

This classical conception of probability would, of course, remain a view without
any bite, if it were not accompanied by some rule for assigning values to proba-
bilities in specific cases. The only such available rule is the so-called ‘principle of
insufficient reason’: whenever we have no reason to believe that one case rather
than another is realized, we should assign them equal probabilities (cf. [Uffink,
1995]). A closely related version is the rule that two or more variables should be
independent whenever we have no reason to believe that they influence each other.

While the classical view was the dominant, indeed the only existent, view on
probability for the whole period from 1650 to 1813, it began to erode around
1830. There are several reasons for this, but perhaps the most important is,
paradoxically, the huge success with which the theory was being applied to the
most varied subjects. In the wake of Laplace’s influential Essai philosophique sûr
les Probabilités, scientists found applications of probability theory in jurisdiction,
demography, social science, hereditary research, etc. In fact, one may say: almost
everywhere except physics (cf. [Hacking, 1990]). The striking regularity found
in the frequencies of mass phenomena, and observations that (say) the number of
raindrops per second on a tile follows the same pattern as the number of soldiers in
the Prussian army killed each year by a kick from their horse, led to the alternative
view that probability was not so much a representation of subjective (un)certainty,
but rather the expression of a particular regularity in nature (Poisson, Quetelet).
From these days onward we find mention of the idea of laws of probability, i.e.
the idea that theorems of probability theory reflect lawlike behaviour to which

9Daniel Bernoulli might serve as an example. He was well acquainted with the work on prob-
ability of his uncle Jacob and, indeed, himself one of the foremost probabilists of the eighteenth
century. Yet, in his work on kinetic gas theory (to be discussed in section 3.2), he did not find
any occasion to draw a connection between these two fields of his own expertise.
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Nature adheres. In this alternative, frequentist view of probability, there is no
obvious place for the principle of insufficient reason. Instead, the obvious way to
determine the values of probabilities is to collect empirical data on the frequencies
on occurrences of events. However, a well-articulated alternative to the classical
concept of probability did not emerge before the end of the century, and (arguably)
not before 1919 — and then within in a few years there were no less than three
alternatives: a logical interpretation by Keynes, a frequentist interpretation by
von Mises and a subjective interpretation by Ramsey and De Finetti. See [Fine,
1973], [Galavotti, 2004] or [Emch, 2005] for a more detailed exposition.

Summing up roughly, one may say that around 1850 the field of probability was
in a state of flux and confusion. Two competing viewpoints, the classical and the
frequency interpretation, were available, and often mixed together in a confusing
hodgepodge. The result was well-characterized in a famous remark of [Poincaré,
1896] that all mathematicians seem to believe that the laws of probability refer to
statements learned from experience, while all natural scientists seem to think they
are theorems derived by pure mathematics.

The work of Maxwell and Boltzmann in the 1860s emerged just in the middle
of this confusing era. It is only natural that their work should reflect the ambi-
guity that the probability concept had acquired in the first half of the nineteenth
century. Nevertheless, it seems that they mainly thought of probability in terms
of frequencies, as an objective quantity, which characterizes a many-particle sys-
tem, and that could be explicitly defined in terms of its mechanical state. This,
however, is less clear for Maxwell than for Boltzmann.

Gradually, probability was emancipated from this mechanical background. Some
isolated papers of Boltzmann [1871b] and Maxwell [1879] already pursued the idea
that probabilities characterize an ensemble of many many-particle systems rather
than a single system. Gibbs’s 1902 book adopted this as a uniform coherent
viewpoint. However, this ensemble interpretation is still sufficiently vague to be
susceptible to different readings. A subjective view of ensembles, closely related
to the classical interpretation of Bernoulli and Laplace, has emerged in the 1950s
in the work of Jaynes. This paper, will omit a further discussion of this approach.
I refer to [Jaynes, 1983; Uffink, 1995; 1996; Balian, 2005] for more details.

3.2 From Bernoulli to Maxwell (1860)

The kinetic theory of gases (sometimes called: dynamical theory of gases) is com-
monly traced back to a passage in Daniel Bernoulli’s Hydrodynamica of 1738.
Previous authors were, of course, quite familiar with the view that gases are com-
posed of a large but finite number of microscopic particles. Yet they usually
explained the phenomenon of gas pressure by a static model, assuming repulsive
forces between these particles.

Bernoulli’s discussion is the first to explain pressure as being due to their motion.
He considered a gas as consisting of a great number of particles, moving hither and
thither through empty space, and exerting pressure by their incessant collisions
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on the walls. With this model, Bernoulli was able to obtain the ideal gas law
pV = const. at constant temperature, predicted corrections to this law at high
densities, and argued that the temperature could be taken as proportional to the
square of the velocity of the particles. Despite this initial success, no further results
were obtained in kinetic gas theory during the next century. By contrast, the view
that modeled a gas as a continuum proved much more fertile, since it allowed the
use of powerful tools of calculus. Indeed, the few works in the kinetic theory in
the early nineteenth century e.g. by Waterston and Herapath were almost entirely
ignored by their contemporaries (cf. [Brush, 1976]).

Nevertheless, the kinetic view was revived in the 1850s, in works by Kronig
and Clausius. The main stimulus for this revival was the Joule-Mayer principle of
the equivalence of heat and work, which led to the First Law of thermodynamics,
and made it seem more plausible that heat itself was just a form of motion of gas
particles. (A point well-captured in the title of Clausius’ 1857 paper: “The kind
of motion we call heat”, subsequently adopted by Stephen Brush 1976 for his work
on the history of this period.)

Clausius also recognized the importance of mutual collisions between the parti-
cles of the gas, in order to explain the relative slowness of diffusion when compared
with the enormous speed of the particles (estimated at values of 400 m/s or more
at ordinary room temperature). Indeed, he argued that in spite of their great
speed, the mean free path, i.e. the distance a particle typically travels between
two collision, could be quite small (of the order of micrometers) so that the mean
displacement per second of particles is accordingly much smaller.

However, Clausius did not pay much attention to the consideration that such
collisions would also change the magnitude of the velocities. Indeed, although his
work sometimes mentions phrases like “mean speed” or “laws of probability” he
does not specify a precise averaging procedure or probability assumption, and his
calculations often proceed by crude simplifications (e.g. assuming that all but one
of the particles are at rest).

Maxwell (1860)

It was Maxwell’s paper of 1860 that really marks the re-birth of kinetic theory.
Maxwell realized that if a gas consists of a great number N of moving particles,
their velocities will suffer incessant change due to mutual collisions, and that a
gas in a stationary state should therefore consist of a mixture of slower and faster
particles. More importantly, for Maxwell this was not just an annoying complica-
tion to be replaced by simplifying assumptions, but the very feature that deserved
further study.

He thus posed the question

Prop. IV. To find the average number of particles whose velocities lie
between given limits, after a great number of collisions among a great
number of equal particles. [Maxwell, 1860, p. 380].
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Denoting this desired average number as Nf(�v)d3�v, he found a solution to this
problem by imposing two assumptions: the distribution function f(�v) should (i)
factorize into functions of the orthogonal components of velocity, i.e. there exists
some function g such that:

(24) f(�v) = g(vx)g(vy)g(vz),

and (ii) be spherically symmetric, i.e.,

(25) f(�v) depends only on v = ‖�v‖.
He observed that these functional equations can only be satisfied if

(26) f(�v) = Ae−v
2/B ,

where the constant A is determined by normalization: A = (Bπ)−3/2; and constant
B is determined by relating the mean squared velocity to the absolute temperature
— i.e., adopting modern notation: 3

2kT = m
2 〈v2〉 — to obtain:

(27) f(�v) =
( m

2πkT

)3/2

e−mv
2/2kT .

Maxwell’s result led to some novel and unexpected predictions, the most striking
being that the viscosity of a gas should be independent of its density, which was,
nevertheless, subsequently experimentally verified. Another famous prediction of
Maxwell was that in this model the ratio of the specific heats γ = cV

cp
must take

the value of 4
3 . This did not agree with the experimentally obtained value of

γ = 1.408.10

Maxwell’s paper is the first to characterize the state of a gas by a distribution
function f . It is also the first to call f(�v)d3�v a probability. Clearly, Maxwell
adopted a frequency interpretation of probability. The probability for the velocity
to lie within a certain range d3�v is nothing but the relative number of particles in
the gas with a velocity in that range. It refers to an objective, mechanical property
of the gas system, and not to our opinions.

Now an obvious problem with this view is that if the gas contains a finite number
of particles, the distribution of velocities must necessarily be discrete, i.e., in Dirac
delta notation:

(28) f(�v) =
1
N

N∑
i=1

δ(�v − �vi),

10More generally, cV /cp = (f +2)/f where f is the number of degrees of freedom of a molecule.
This so-called cV /cp anomaly haunted gas theory for another half century. The experimental
value around 1.4 is partly due to the circumstance that most ordinary gases have diatomic
molecules for which, classically, f = 6. Quantum theory is needed to explain that one of these
degrees is “frozen” at room temperature. Experimental agreement with Maxwell’s prediction
was first obtained by Kundt and Warburg in 1875 for mercury vapour. (For more details, see
[Brush, 1976, p. 353–356]).
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and if the energy of the gas is finite and fixed, the distribution should have a
bounded support. The function (26) has neither of these properties.

It is not clear how Maxwell would have responded to such problems. It seems
plausible that he would have seen the function (26) as representing only a good
enough approximation,11 in some sense, to the actual state of the gas but not to be
taken too literally, just like actual frequencies in a chance experiment never match
completely with their expected values. This is suggested by Maxwell’s own illus-
tration of the continuous distribution function as a discrete cloud of points, each
of which representing the endpoint of a velocity vector (cf. Fig. 1 from [Maxwell,
1875]). This suggests he thought of an actual distribution more along the lines
of (28) than (26). But this leaves the question open in what sense the Maxwell
distribution approximates the actual distribution of velocities.

One option here would be to put more emphasis on the phrase “average” in
the above quote from Maxwell. That is, maybe f is not intended to represent
an actual distribution of velocities but an averaged one. But then, what kind of
average? Since an average over the particles has already been performed, the only
reasonable options could be an average over time or averaging over an ensemble
of similar gas systems. But I can find no evidence that Maxwell conceived of
such procedures in this paper. Perhaps one might argue that the distribution (26)
is intended as an expectation, i.e. that it represents a reasonable mind’s guess
about the number of particles with a certain velocity. But in that case, Maxwell’s
interpretation of probability ultimately becomes classical.

However this may be, it is remarkable that the kinetic theory was thus able
to make progress beyond Bernoulli’s work by importing mathematical methods
(functional equations) involving the representation of a state by continuous func-
tions; though at the price of making this state concept more abstractly connected
to physical reality.

A more pressing problem is that the assumptions (24, 25) Maxwell used to
derive the form of his distribution do not sit well with its intended frequency
interpretation. They seem to reflect a priori desiderata of symmetry, and are
perhaps motivated by an appeal to some form of the principle of insufficient reason,
in the sense that if there is, in our knowledge, no reason to expect a dependence
between the various orthogonal components of velocity, we are entitled to assume
they are independent.

This reading of Maxwell’s motivations is suggested by the fact that in 1867 he
described his 1860 assumption (24) as “the assumption that the probability of
a molecule having a velocity resolved parallel to x lying between given limits is
not in any way affected by the knowledge that the molecule has a given velocity
resolved parallel to y” [Maxwell, 1867, emphasis added].

It has been pointed out (see e.g. [Brush, 1976, Vol. II, pp. 183–188]) that Max-
well’s 1860 argument seems to have been heavily inspired by [Herschel, 1850] review

11This view was also expressed by [Boltzmann, 1896b]. He wrote, for example: “For a finite
number of molecules the Maxwell distribution can never be realized exactly, but only as a good
approximation” [Boltzmann, 1909, III, p. 569].
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Figure 1. An illustration of the Maxwell distribution from [Maxwell, 1875]. Every
dot represents the end-point of a velocity vector.
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of Quetelet’s work on probability. This review essay contained a strikingly similar
argument, applied to a marksman shooting at a target, in order to determine the
probability that a bullet will land at some distance from the target. What is more,
Herschel’s essay is firmly committed to the classical interpretation of probability
and gives the principle of insufficient reason a central role. Indeed, he explains the
(analogue of) condition (25) as “nothing more than the expression of our state of
complete ignorance of the causes of the errors [i.e. the deviation from the target]
and their mode of action” [Herschel, 1850, p. 398, emphasis in the original]. If
Maxwell indeed borrowed so much from Herschel, it seems likely that he would
also have approved of, or at least be inspired by, this motivation of condition
(25).12

Whatever may have been Maxwell’s original motivation for these assumptions,
their dubious nature is also clear from the fact that, in spite of his formulation of
the problem (i.e. to determine the form of the function f “after a great number of
collisions”), they do not refer to collisions at all. Indeed, it would seem that any
motivation for their validity would just as well apply to a gas model consisting
of non-colliding (e.g. perfectly transparent) particles as well. As Maxwell himself
later remarked about certain derivations in the works of others, one might say that
the condition “after a great number of collisions” is intended “rather for the sake
of enabling the reader to form a mental image of the material system than as a
condition for the demonstration” ([Garber et al., 1995, p. 359]. [Maxwell, 1879]).

3.3 Maxwell (1867)

Whatever the merits and problems of his first paper, Maxwell’s next paper on gas
theory of 1867 rejected his previous attempt to derive the distribution function
from the assumptions (24, 25) as “precarious” and proposed a completely different
argument. This time, he considered a model of point particles with equal masses
interacting by means of a repulsive central force, proportional to the fifth power of
their mutual distance. What is more important, this time the collisions are used
in the argument.

Maxwell considers an elastic collision between a pair of particles such that the
initial velocities are �v1, �v2 and final velocities �v1

′, �v2
′).13 These quantities are

related by the conservation laws of momentum and energy, yielding four equations,
and two parameters depending on the geometrical factors of the collision process.

It is convenient to consider a coordinate frame such that particle 1 is at rest in
the origin, and the relative velocity �v2−�v1 is directed along the negative z axis, and

12It is interesting to note that Herschel’s review prompted an early and biting criticism of the
principle of insufficient reason as applied to frequencies of events by Leslie Ellis, containing the
famous observation: “Mere ignorance is no ground for any inference whatsoever. Ex nihilo nihil.
It cannot be that because we are ignorant of the matter, we know something about it” [Ellis,
1850]. It is not certain, however, whether Maxwell knew of this critique.

13In view of the infinite range of the interaction, ‘initial’ and ‘final’ are to be understood in an
asymptotic sense, i.e. in the limits t −→ ±∞. An alternative followed in the text is to replace
Maxwell’s (1867) model with the hard spheres he had considered in 1860.
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to use cylindrical coordinates. If (b, φ, z) denote the coordinates of the trajectory of
the centre of particle 2, we then have b = const., φ = const, z(t) = z0−‖�v2−�v1‖t
before the collision. In the case where the particles are elastic hard spheres, a
collision will take place only if the impact parameter b is less than the diameter d
of the spheres. The velocities after the collision are then determined by ‖�v1−�v2‖, b
and φ. Transformed back to the laboratory frame, the final velocities �v1

′, �v2
′ can

then be expressed as functions of �v1, �v2, b and φ.
Maxwell now assumes what the Ehrenfests later called the Stoßzahlansatz : the

number of collisions during a time dt, say N(�v1, �v2), in which the initial velocities
�v1, �v2 within an element d3�v1d

3�v2 are changed into final velocities �v1
′, �v2

′ in an ele-
ment d3�v1

′d3�v2
′ within a spatial volume element dV = bdbdφdz = ‖�v1−�v2‖ bdbdφdt

is proportional to the product of the number of particles with velocity �v1 within
d3�v1 (i.e. Nf(�v1)d�v1), and those with velocity �v2 within d3�v2 (i.e. Nf(�v2)d3�v2),
and that spatial volume element. Thus:

(29) N(�v1, �v2) = N2f(�v1)f(�v2)‖�v2 − �v1‖d3�v1d
3�v2bdbdφdt.

Due to the time reversal invariance of the collision laws, a similar consideration
applies to the so-called inverse collisions, in which initial velocities �v1

′, �v2
′ and final

velocities �v1 and �v2 are interchanged. Their number is proportional to

(30) N(�v1
′, �v2

′) = N2f(�v1
′)f(�v1

′)‖�v2
′ − �v1

′‖d3�v1
′d�v2

′bdbdφdt

Maxwell argues that the distribution of velocities will remain stationary, i.e.
unaltered in the course of time, if the number of collisions of these two kinds are
equal, i.e. if

(31) N(�v1
′, �v2

′) = N(�v1, �v2).

Moreover, the collision laws entail that ‖�v2
′ − �v1

′‖ = ‖�v2 − �v1‖ and d3�v1
′d3�v2

′ =
d3�v1d

3�v2. Hence, the condition (31) may be simplified to

(32) f(�v1)f(�v2) = f(�v1
′)f(�v2

′), for all �v1, �v2.

This is the case for the Maxwellian distribution (26). Therefore, Maxwell says,
the distribution (26) is a “possible” form.

He goes on to claim that it is also the only possible form for a stationary
distribution.This claim, i.e. that stationarity of the distribution f can only arise
under (32) is nowadays also called the principle of detailed balancing (cf. [Tolman,
1938, p. 165]).14 Although his argument is rather brief, the idea seems to be that
for a distribution violating (32), there must (because of the Stoßzahlansatz ) be two
velocity pairs15 �v1, �v2 and �u1, �u2, satisfying �v1+�v2 = �u1+�u2 and v2

1 +v2
2 = u2

1+u2
2,

such that the collisions would predominantly transform (�v1, �v2) −→ (�u1, �u2) rather

14The reader might be warned, however, that the name ‘detailed balancing’ is also used to
cover somewhat different ideas than expressed here [Tolman, 1938, p. 521].

15Actually, Maxwell, discusses only velocities of a single molecule. For clarity, I have transposed
his argument to a discussion of pairs.
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than (�u1, �u2) −→ (�v1, �v2). But then, since the distribution is stationary, there must
be a third pair of velocities, (�w1, �w2), satisfying similar relations, for which the
collisions predominantly produce transitions (�u1, �u2) −→ (�w1, �w2), etc. Now, the
distribution can only remain stationary if any such sequence closes into a cycle.
Hence there would be cycles of velocity pairs (�v1, �v2) −→ (�u1, �u2) −→ . . . −→
(�v1, �v2) which the colliding particles go through, eventually returning to their
original velocities.

Maxwell then argues: “Now it is impossible to assign a reason why the successive
velocities of a molecule should be arranged in this cycle rather than in the reverse
order” [Maxwell, 1867, p.45]. Therefore, he argues, these two cycles should be
equally probable, and, hence, a collision cycle of the type (�v1, �v2) −→ (�v1

′, �v2
′) is

already equally probable as a collision cycle of the type (�v1
′, �v2

′) −→ (�v1, �v2), i.e.
condition (32) holds.

Comments. First, a clear advantage of Maxwell’s 1867 derivation of the distri-
bution function (26) is that the collisions play a crucial role. The argument would
not apply if there were no collisions between molecules. A second point to note is
that the distribution (26) is singled out because of its stationarity, instead of its
spherical symmetry and factorization properties. This is also a major improvement
upon his previous paper, since stationarity is essential to thermal equilibrium.

A crucial element in the argument is still an assumption about independence.
But now, in the Stoßzahlansatz, the initial velocities of colliding particles are as-
sumed independent, instead of the orthogonal velocity components of a single par-
ticle. Maxwell does not expand on why we should assume this ansatz ; he clearly
regarded it as obvious. Yet it seems plausible to argue that he must have had in
the back of his mind some version of the principle of insufficient reason, i.e., that
we are entitled to treat the initial velocities of two colliding particles as indepen-
dent because we have no reason to assume otherwise. Although still an argument
from insufficient reason, this is at least a much more plausible application than in
the 1860 paper.

A main defect of the paper is his sketchy claim that the Maxwell distribution
(26) would be the unique stationary distribution. This claim may be broken in
two parts: (a) the cycle argument just discussed, leading Maxwell to argue for
detailed balancing; and (b) the claim that the Maxwell distribution is uniquely
compatible with this condition.

A demonstration for part (b) was not provided by Maxwell at all; but this gap
was soon bridged by Boltzmann (1868) — and Maxwell gave Boltzmann due credit
for this proof. But part (a) is more interesting. We have seen that Maxwell here
explicitly relied on reasoning from insufficient reason. He was criticized on this
point by [Boltzmann, 1872] and also by [Guthrie, 1874].

Boltzmann argued that Maxwell was guilty of begging the question. If we
suppose that the two cycles did not occur equally often, then this supposition by
itself would provide a reason for assigning unequal probabilities to the two types
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of collisions.16 This argument by Boltzmann indicates, at least in my opinion that
he was much less prepared than Maxwell to argue in terms of insufficient reason.
Indeed, as we shall see in Section 4, his view on probability seems much more
thoroughly frequentist than Maxwell.

In fact Boltzmann later repeatedly mentioned the counterexample of a gas in
which all particles are lined up so that they only collide centrally, and move per-
pendicularly between parallel walls [Boltzmann, 1872 (Boltzmann, 1909, I p. 358);
Boltzmann, 1878 (Boltzmann, 1909, II p. 285)]. In this case, the velocity distri-
bution

(33)
1
2

(δ(v − v0) + δ(v + v0))

is stationary too.
Some final remarks on Maxwell’s work: As we have seen, it is not easy to

pinpoint Maxwell’s interpretation of probability. In his (1860), he identifies the
probability of a particular molecular state with the relative number of particles
that possess this state.17 Yet, we have also seen that he relates probability to a
state of knowledge. Thus, his position may be characterized as somewhere between
the classical and the frequentist view.

Note that Maxwell never made any attempt to reproduce the second law. Rather
he seems to have been content with the statistical description of thermal equilib-
rium in gases.18 All his writings after 1867 indicate that he was convinced that
a derivation of the Second Law from mechanical principles was impossible. In-
deed, his remarks on the Second Law generally point to the view that the Second
Law “has only statistical certainty” (letter to Tait, undated; [Garber et al., 1995,
p. 180]), and that statistical considerations were foreign to the principles of me-
chanics. Indeed, Maxwell was quite amused to see Boltzmann and Clausius engage
in a dispute about who had been the first to reduce the Second Law of thermody-
namics to mechanics:

It is rare sport to see those learned Germans contending the priority of
the discovery that the 2nd law of θΔcs is the ‘Hamiltonsche Prinzip’,

16More precisely, Boltzmann argued as follows: “In order to prove the impossibility [of the hy-
pothesis] that the velocity of [a pair of] molecule[s] changes more often from [(�v1, �v2) to (�v1

′, �v2
′)]

than the converse, Maxwell says that there should then exist a closed series of velocities that
would be traversed rather in one order than the other. This, however, could not be, he claims,
because one could not indicate a reason, why molecules would rather traverse the cycle in one or-
der than the other. But it appears to me that this last claim already presupposes as proven what
is to be proved. Indeed, if we assume as already proven that the velocities change as often from
(�v1, �v2) to (�v1

′, �v2
′) as conversely, then of course there is no reason why the cycle should rather

be run through in one order than the other. But if we assume that the statement to be proven
is not yet proved, then the very fact that the velocities of the molecules prefer to change rather
from (�v1, �v2) to (�u1, �u2) than conversely, rather from (�u1, �u2) to (�w1, �w2) than conversely, etc.
would provide the reason why the cycle is traversed rather one way than the other” [Boltzmann,
1909, I, p. 319].

17Curiously, this terminology is completely absent in his 1867 paper.
18Apart from a rather lame argument in [Maxwell, 1860] analyzed by [Brush, 1976, p.344].
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[. . . ] The Hamiltonsche Prinzip, the while, soars along in a region un-
vexed by statistical considerations, while the German Icari flap their
waxen wings in nephelococcygia19 amid those cloudy forms which the
ignorance and finitude of human science have invested with the incom-
munable attributes of the invisible Queen of Heaven (letter to Tait,
1873; [Garber et al., 1995, p. 225])

Clearly, Maxwell saw a derivation of the Second Law from pure mechanics, “un-
vexed by statistical considerations”, as an illusion. This point appears even more
vividly in his thought experiment of the “Maxwell demon”, by which he showed
how the laws of mechanics could be exploited to produce a violation of the Sec-
ond Law. For an entry in the extensive literature on Maxwell’s demon, I refer
to [Earman and Norton, 1998; 1999; Leff and Rex, 2003; Bennett, 2003; Norton,
2005].

But neither did Maxwell make any effort to reproduce the Second Law on a
unified statistical/mechanical basis. Indeed, the scanty comments he made on
the topic (e.g. in [Maxwell, 1873; Maxwell, 1878b]) rather seem to point in an-
other direction. He distinguishes between what he calls the ‘statistical method’
and the ‘historical’ or ‘dynamical’ (or sometimes ‘kinetic’) method. These are two
modes of description for the same system. But rather than unifying them, Max-
well suggests they are competing, or even incompatible — one is tempted to say
“complementary”– methods, and that it depends on our own knowledge, abilities,
and interests which of the two is appropriate. For example:

In dealing with masses of matter, while we do not perceive the individ-
ual molecules, we are compelled to adopt what I have described as the
statistical method, and to abandon the strict dynamical method, in
which we follow every motion by the calculus [Maxwell, 1872, p. 309,
emphasis added].

In this respect, his position stands in sharp contrast to that of Boltzmann, who
made the project of finding this unified basis his lifework.

4 BOLTZMANN20

4.1 Early work: Stoßzahlansatz and ergodic hypothesis

Boltzmann had already been considering the problem of finding a mechanical
derivation of the Second Law in a paper of 1866. At that time, he did not know
of Maxwell’s work. But in 1868, he had read both Maxwell’s papers of 1860 and
1867. Like Maxwell, he focuses on the study of gases in thermal equilibrium, in-
stead of the Second Law. He also adopts Maxwell’s idea of characterizing thermal
equilibrium by a probability distribution, and the Stoßzahlansatz as the central

19‘Cloudcuckooland”, an illusory place in Aristophanes’ The Birds.
20Parts of this section were also published in [Uffink, 2004].
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dynamical assumption. But along the way in this extensive paper, Boltzmann
comes to introduce an entirely different alternative approach, relying on what we
now call the ergodic hypothesis.

As we saw in section 3.3, Maxwell had derived his equilibrium distribution for
two special gas models (i.e. a hard sphere gas in 1860 and a model of point particles
with a central r5 repulsive force acting between them in 1867). He had noticed
that the distribution, once attained, will remain stationary in time (when the gas
remains isolated), and also argued (but not very convincingly) that it was the only
such stationary distribution.

In the first section of his 1868a, Boltzmann aims to reproduce and improve
these results for a system of an infinite number of hard discs moving in a plane.
He regards it as obvious that the equilibrium distribution should be independent
of the position of the discs, and that every direction of their velocities is equally
probable. It is therefore sufficient to consider the probability distribution over
the various values of the velocity v = ‖�v‖. However, Boltzmann started out with
a somewhat different interpretation of probability in mind than Maxwell. He
introduced the probability distribution as follows:

Let φ(v)dv be the sum of all the instants of time during which the
velocity of a disc in the course of a very long time lies between v and
v + dv, and let N be the number of discs which on average are located
in a unit surface area, then

(34) Nφ(v)dv

is the number of discs per unit surface whose velocities lie between v
and v + dv [Boltzmann, 1909, I, p. 50].21

Thus, φ(v)dv is introduced as the relative time during which a (given) disc has
a particular velocity. But, in the same breath, this is identified with the relative
number of discs with this velocity.

This remarkable quote shows how he identified two different meanings for the
same function. We shall see that this equivocation returned in different guises
again and again in Boltzmann’s writings.22 Indeed, it is, I believe, the very heart of
the ergodic problem, put forward so prominently by the Ehrenfests (cf. paragraph
6.1). Either way, of course, whether we average over time or particles, probabilities
are defined here in strictly mechanical terms, and are therefore objective properties
of the gas.

21Here and below, “Abh.” refers to the three volumes of Boltzmann’s collected scientific papers
[Boltzmann, 1909].

22This is not to say that he always conflated these two interpretations of probability. Some
papers employ a clear and consistent choice for one interpretation only. But then that choice dif-
fers between papers, or even in different sections of a single paper. In fact, in [Boltzmann, 1871c]

he even multiplied probabilities with different interpretations into one equation to obtain a joint
probability. But then in 1872 he conflates them again. Even in his last paper [Boltzmann and
Nabl, 1904], Boltzmann identifies two meanings of probability with a simple-minded argument.
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Next he goes into a detailed mechanical description of a two-disc collision pro-
cess. If the variables which specify the initial velocities of two discs before the
collision lie within a given infinitesimal range, Boltzmann determines how the
collision will transform the initial values of these variables (�vi, �vj) into the final
values (�v′

i, �v
′
j) in another range. At this point a two-dimensional analogy of the

Stoßzahlansatz is introduced to obtain the number of collisions per unit of time.
As in Maxwell’s treatment, this amounts to assuming that the number of such
collisions is proportional to the product φ(v1)φ(v2). In fact:

(35) N(�v1, �v2) ∝ N2 φ(v1)
v1

φ(v2)
v2
‖�v2 − �v1‖dv1dv2dt

where the proportionality constant depends on the geometry of the collision.
He observes that if, for all velocities vi, vj and all pairs of discs i, j, the collisions

that transform the values of the velocities (vi, vj) from a first range dvidvj into
values v′

i, v
′
j within the range dv′

idv′
j occur equally often as conversely (i.e., equally

often as those collisions that transform initial velocities v′
i, v

′
j within dv′

idv′
j into fi-

nal values vi, vj within dvidvj), the distribution φ will remain stationary. He states
“This distribution is therefore the desired one” [Boltzmann, 1909, I p. 55]. Actu-
ally, this is the first occasion in the paper at which the desideratum of stationarity
of the probability distribution is mentioned.

Using the two-dimensional version of the Stoßzahlansatz this desideratum leads
to

(36)
φ(vi)

vi

φ(vj)
vj

=
φ(v′

i)
v′
i

φ(v′
j)

v′
j

He shows [Boltzmann, 1909, p. 57] that the only function obeying condition (36) for
all choices of v1, v2, v

′
1v

′
2, compatible with the energy equation v2

1 +v2
2 = v′2

1 +v′2
2 ,

is of the form

(37) φ(v) = 2hve−hv
2
,

for some constant h. Putting f(v) := vφ(v) we thus obtain the two-dimensional
version of the Maxwell distribution (26). Boltzmann does not address the issue of
whether the condition (36) is necessary for the stationarity of φ.

In the next subsections of 1868a, Boltzmann repeats the derivation, each time
in slightly different settings. First, he goes over to the three-dimensional version
of the problem, assuming a system of hard spheres, and supposes that one special
sphere is accelerated by an external potential V (�x). He shows that if the velocities
of all other spheres are distributed according to the Maxwellian distribution (26),
the probability distribution of finding the special sphere at place �x and velocity �v is
f(�v, �x) ∝ e−h( 1

2mv
2+V (�x)) [Boltzmann, 1909, I, p.63]. In a subsequent subsection,

he replaces the spheres by material points with a short-range interaction potential
and reaches a similar result.

At this point, (the end of Section I of the [1868a] paper), the argument sud-
denly switches course. Instead of continuing in this fashion, Boltzmann announces
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[Boltzmann, 1909, p. 80] that all the cases treated, and others yet untreated, follow
from a much more general theorem. This theorem, which, as we shall see relies on
the ergodic hypothesis, is the subject of the second and third Section of the paper.
I will limit the discussion to the third section and rely partly on Maxwell’s (1879)
exposition, which is somewhat simpler and clearer than Boltzmann’s own.

The ergodic hypothesis

Consider a general mechanical system of N material points, each with mass m,
subject to an arbitrary time-independent potential.23 In modern notation, let
x = (�q1, �p1; . . . ; �qN , �pN ) denote the canonical position coordinates and momenta
of the system. Its Hamiltonian is then24

(38) H(x) =
1

2m

N∑
i

�p2
i + U(�q1, . . . , �qN ).

The state x may be represented as a phase point in the mechanical phase space
Γ. Under the Hamiltonian equations of motion, this phase point evolves in time,
and thus describes a trajectory xt (t ∈ R). This trajectory is constrained to lie
on a given energy hypersurface ΓE = {x ∈ Γ : H(x) = E}. Boltzmann asks for
the probability (i.e. the fraction of time during a very long period) that the phase
point lies in a region dx = d3�q1 · · · d3�pN , which we may write as:

(39) ρ(x)dx = χ(x)δ(H(x)− E)dx.

for some function χ. Boltzmann seems to assume implicitly that this distribution is
stationary. This property would of course be guaranteed if the “very long period”
were understood as an infinite time. He argues, by Liouville’s theorem, that χ is
a constant for all points on the energy hypersurface that are “possible”, i.e. that
are actually traversed by the trajectory. For all other points χ vanishes. If we
neglect those latter points, the function χ must be constant over the entire energy
hypersurface, and the probability density ρ takes the form

(40) ρmc(x) =
1

ω(E)
δ(H(x)− E),

the micro-canonical distribution, where

(41) ω(E) =
∫

δH(x) = Edx

is the so-called structure function.
In particular, one can now form the marginal probability density for the posi-

tions �q1, . . . , �qN by integrating over the momenta:
23Although Boltzmann does not mention it at this stage, his previous section added the stip-

ulation that the particles are enclosed in a finite space, surrounded by perfectly elastic walls.
24Actually Boltzmann allows the N masses to be different but restricts the potential as being

due to external and mutual two-particle forces only, i.e. H(x) =
P
i
�p2i

2mi
+

P
i≤j Uij(‖�qi−�qj‖)+P

i Ui(�qi).
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(42) ρmc(�q1, . . . , �qN ) :=
∫

ρmc(x) d3�p1 · · · d3�pN =

2m

ω(E)

∫
δ
(∑

�p2
i − 2m(E − U(q))

)
d�p1 · · · d�pN .

The integral over the momenta can be evaluated explicitly (it is 2R−1 times the
surface area of a hypersphere with radius R =

√
2m(E − U) in n = 3N dimen-

sions), to obtain

(43) ρmc(�q1, . . . , �qN ) =
2m(π)n/2

ω(E)Γ(n2 )
(2m(E − U(q))(n−2)/2,

where Γ denotes Euler’s gamma function: Γ(x) :=
∫∞
0

tx−1e−tdt.
Similarly, the marginal probability density for finding the first particle with a

given momentum component p1x as well as finding the positions of all particles at
�q1, . . . , �qN is

ρmc(p1x, �q1 . . . , �qN ) =
∫

ρmc(x) dp1ydp1zd
3�p2 · · · d3�pN

=
2mπ(n−1)/2

ω(E)Γ(n−1
2 )

(
2m(E − U(q))− p2

1x

)(n−3)/2
.(44)

These two results can be conveniently presented in the form of the conditional
probability that the x-component of momentum of the first particle has a value
between p and p+dp, given that the positions have the values �q1 . . . , �qN , by taking
the ratio of (44) and (43):

(45) ρmc(p | �q1, . . . , �qN )dp =
1√
2mπ

Γ(n2 )
Γ(n−1

2 )

(E − U − p2

2m
)(n−2)/2

(E − U)(n−3)/2
dp.

This, in essence, is the general theorem Boltzmann had announced. Further, he
shows that in the limit where n −→ ∞, and the kinetic energy per degree of
freedom κ := (E − U)/n remains constant, the expression (45) approaches

(46)
1√

4πmκ
exp

(
− p2

4mκ

)
dp.

This probability thus takes the same form as the Maxwell distribution (26), if one
equates κ = 1

2kT . Presumably, it is this result that Boltzmann had in mind when
he claimed that all the special cases he has discussed in section 1 of his paper,
would follow from the general theorem. One ought to note however, that since
U , and therefore κ, depends on the coordinates, the condition κ = constant is
different for different values of (�q1, . . . , �qn).

Some comments on this result.
1. The difference between this approach and that relying on the Stoßzahlansatz

is rather striking. Instead of concentrating on a gas model in which particles
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are assumed to move freely except for their occasional collisions, Boltzmann here
assumes a much more general Hamiltonian model with an arbitrary interaction
potential U(�q1, . . . �qN ). Moreover, the probability density ρ is defined over phase
space, instead of the space of molecular velocities. This is the first occasion where
probability considerations are applied to the state of the mechanical system as
whole, instead of its individual particles. If the transition between kinetic gas
theory and statistical mechanics may be identified with this caesura, (as argued
by the Ehrenfests 1912 and by Klein 1973) it would seem that the transition has
already been made right here.

But of course, for Boltzmann the transition did not involve a major conceptual
move, thanks to his conception of probability as a relative time. Thus, the prob-
ability of a particular state of the total system is still identified with the fraction
of time in which that state is occupied by the system. In other words, he had no
need for ensembles or non-mechanical probabilistic assumptions.

However, one should note that the equivocation between relative time and rel-
ative number of particles, which was comparatively harmless in the first section of
the 1868 paper, is now no longer possible in the interpretation of ρ. Consequently,
the conditional probability ρ(p|�q1, . . . �qN ) gives us the relative time that the total
system is in a state for which particle 1 has a momentum with x-component be-
tween p and p + dp, for given values of all the positions. There is no immediate
route to conclude that this has anything to do with the relative number of particles
with the momentum p. In fact, there is no guarantee that the probability (45) for
particle 1 will be the same for other particles too, unless we use the assumption
that U is invariant under permutation of the particles. Thus, in spite of their
identical form, the distribution (46) has a very different meaning than (26).

2. The transition from (45) to (46), by letting the number of particles become
infinite, also seems to be the first instance of a thermodynamical limit. Since the
Maxwell distribution is thus recovered only in this limit, Boltzmann’s procedure
resolves some questions raised above concerning Maxwell’s distribution. For a
finite number of particles, the distribution (45) always has a finite support, i.e.
ρmc = 0 for those values of p2

i ≥ 2m(E − U). Thus, we do not run into trouble
with the finite amount of energy in the gas.

3. Most importantly, the results (45,46) open up a perspective of great gener-
ality. It suggests that the probability of the molecular velocities for an isolated
system in a stationary state will always assume the Maxwellian form if the num-
ber of particles tends to infinity. Notably, this proof seems to completely dispense
with any particular assumption about collisions, or other details of the mechanical
model involved, apart from the assumption that it is Hamiltonian. Indeed it need
not even represent a gas.

4. The main weakness of the present result is its assumption that the trajectory
actually visits all points on the energy hypersurface. This is nowadays called the
ergodic hypothesis.25

25The literature contains some surprising confusion about how the hypothesis got its name. The
Ehrenfests borrowed the name from Boltzmann’s concept of an “Ergode”, which he introduced
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Boltzmann returned to this issue on the final page of the paper [Boltzmann,
1909, p. 96]. He notes there that there might be exceptions to his theorem, for
example, when the trajectory is periodic. However, Boltzmann observed, such
cases would be sensitive to the slightest disturbance from outside. They would
be destroyed, e.g. by the interaction of a single free atom that happened to be
passing by. He argued that these exceptions would thus only provide cases of
unstable equilibrium.

Still, Boltzmann must have felt unsatisfied with his own argument. According to
an editorial footnote in his collected works [Boltzmann, 1909, I p.96], Boltzmann’s
personal copy of the paper contains a hand-written remark in the margin stating
that the point was still dubious and that it had not been proven that, even in the
presence of interaction with a single external atom, the system would traverse all
possible values compatible with the energy equation.

Doubts about the ergodic hypothesis

Boltzmann’s next paper 1868b was devoted to checking the validity of the ergodic
hypothesis in a relatively simple solvable mechanical model. This paper also gives
a nice metaphoric formulation of the ergodic hypothesis: if the phase point were
a light source, and its motion exceedingly swift, the entire energy surface would
appear to us as homogeneously illuminated [Boltzmann, 1909, I, p. 103]. However,
his doubts were still not laid to rest. His next paper on gas theory 1871a returns
to the study of a detailed mechanical gas model, this time consisting of polyatomic

in [Boltzmann, 1884] and also discussed in his Lectures on Gas Theory [Boltzmann, 1898]. But
what did Boltzmann actually understood by an Ergode? Brush points out in his translation
of [Boltzmann, 1898, p. 297], and similarly in [Brush, 1976, p. 364], that Boltzmann used the
name to denote a stationary ensemble, characterized by the microcanonical distribution in phase
space. In other words, in in the context of Boltzmann’s 1898 an Ergode is just an microcanonical
ensemble, and seems to have nothing to do to do with the so-called ergodic hypothesis. Brush
criticized the Ehrenfests for causing confusion by their terminology.

However, in his original 1884 introduction of the phrase, the name Ergode is used for a station-
ary ensemble with only a single integral of motion , i.e. its total energy. As a consequence, the
ensemble is indeed micro-canonical, but, what is more, every member of the ensemble satisfies the
hypothesis of traversing every phase point with the given total energy. Indeed, in this context,
being an element of an Ergode implies satisfaction of this hypothesis. Thus, the Ehrenfests were
actually justified in baptizing the hypothesis “ergodic”.

Another dispute has emerged concerning the etymology of the term. The common opinion,
going back at least to the Ehrenfests has been that the word derived from ergos (work) and
hodos (path). [Gallavotti, 1994] has argued however that “undoubtedly” it derives from ergos
and eidos (similar). Now one must grant Gallavotti that it ought to expected that the etymology
of the suffix “-ode” of ergode is identical to that of other words Boltzmann coined in this paper,
like Holode, Monode, Orthode and Planode; and that a reference to path would be somewhat
unnatural in these last four cases. However, I don’t believe a reference to “eidos” would be more
natural. Moreover, it seems to me that if Boltzmann intended this etymology, he would have
written ”Ergoide” in analogy to planetoid, ellipsoid etc. That he was familiar with this common
usage is substantiated by him coining the term “Momentoide” for momentum-like degrees of
freedom (i.e. those that contribute a quadratic term to the Hamiltonian) in [Boltzmann, 1892].
The argument mentioned by [Cercignani, 1998, p. 141] (that Gallavotti’s father is a classicist)
fails to convince me in this matter.
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molecules, and avoids any reliance on the ergodic hypothesis. And when he did
return to the ergodic hypothesis in 1871b, it was with much more caution. Indeed,
it is here that he actually first described the worrying assumption as an hypothesis,
formulated as follows:

The great irregularity of the thermal motion and the multitude of forces
that act on a body make it probable that its atoms, due to the motion
we call heat, traverse all positions and velocities which are compati-
ble with the principle of [conservation of] energy [Boltzmann, 1909, I
p. 284].26

Note that Boltzmann formulates this hypothesis for an arbitrary body, i.e. it is
not restricted to gases. He also remarks, at the end of the paper, that “the proof
that this hypothesis is fulfilled for thermal bodies, or even is fullfillable, has not
been provided” [Boltzmann, I p. 287].

There is a major confusion among modern commentators about the role and
status of the ergodic hypothesis in Boltzmann’s thinking. Indeed, the question
has often been raised how Boltzmann could ever have believed that a trajectory
traverses all points on the energy hypersurface, since, as the Ehrenfests conjectured
in 1911, and was shown almost immediately in 1913 by Plancherel and Rosenthal,
this is mathematically impossible when the energy hypersurface has a dimension
larger than 1 (cf. paragraph 6.1).

It is a fact that both his (1868a, Abh. I, p.96) and (1871b, Abh. I, p.284) mention
external disturbances as an ingredient in the motivation for the ergodic hypothe-
sis. This might be taken as evidence for ‘interventionism’, i.e. the viewpoint that
such external influences are crucial in the explanation of thermal phenomena (cf:
[Blatt, 1959; Ridderbos and Redhead, 1998]). Yet even though Boltzmann clearly
expressed the thought that these disturbances might help to motivate the ergodic
hypothesis, he never took the idea very seriously. The marginal note in the (1868a)
paper mentioned above indicated that, even if the system is disturbed, there is still
no easy proof of the ergodic hypothesis, and all his further investigations concern-
ing this hypothesis assume a system that is either completely isolated from its
environment, or at most acted upon by a static external force. Thus, intervention-
ism did not play a significant role in his thinking.27

It has also been suggested, in view of Boltzmann’s later habit of discretizing
continuous variables, that he somehow thought of the energy hypersurface as a
discrete manifold containing only finitely many discrete cells [Gallavotti, 1994].
On this reading, obviously, the mathematical no-go theorems of Rosenthal and
Plancherel no longer apply. Now it is definitely true that Boltzmann developed
a preference towards discretizing continuous variables, and would later apply this

26An equivalent formulation of the ergodic hypothesis is that the Hamiltonian is the only
independent integral of the Hamiltonian equations of motion. This version is given in the same
paper [Boltzmann, 1909, p. 281-2]

27Indeed, on the rare occasions on which he later mentioned external disturbances, it was only
to say that they are “not necessary” [Boltzmann, 1895b]. See also [Boltzmann, 1896, §91].
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procedure more and more (although usually adding that this was fictitious and
purely for purposes of illustration and more easy understanding, cf. paragraph 4.2).
However, there is no evidence in the (1868) and (1871b) papers that Boltzmann
implicitly assumed a discrete structure of the mechanical phase space or the energy
hypersurface.

Instead, the context of his 1871b makes clear enough how he intended the hy-
pothesis, as has already been argued by [Brush, 1976]. Immediately preceding
the section in which the hypothesis is introduced, Boltzmann discusses trajecto-
ries for a simple example: a two-dimensional harmonic oscillator with potential
U(x, y) = ax2 +by2. For this system, the configuration point (x, y) moves through
the surface of a rectangle. (Cf. Fig. 2. See also [Cercignani, 1998, p. 148].) He
then notes that if a/b is rational, (actually: if

√
a/b is rational) this motion is

periodic. However, if this value is irrational, the trajectory will, in the course
of time, traverse “almählich die ganze Fläche” [Boltzmann, 1909, p. 271] of the
rectangle. He says that in this case x and y are independent, since for each val-
ues of x an infinity of values for y in any interval in its range are possible. The
very fact that Boltzmann considers intervals for the values of x and y of arbitrary
small sizes, and stressed the distinction between rational and irrational values of
the ratio a/b, indicates that he did not silently presuppose that phase space was
essentially discrete, where those distinctions would make no sense.

Now clearly, in modern language, one should say that if
√

a/b is irrational the
trajectory is dense in the rectangle, but not that it traverses all points. Boltzmann
did not possess this language. In fact, he could not have been aware of Cantor’s
insight that the continuum contains more than a countable infinity of points. Thus,
the correct statement that, in the case that

√
a/b is irrational, the trajectory will

traverse, for each value of x, an infinity of values of y within any interval however
small, could easily have led him to believe (incorrectly) that all values of x and y
are traversed in the course of time.

It thus seems eminently plausible, in view of the fact that this discussion imme-
diately precedes the formulation of the ergodic hypothesis, that Boltzmann’s un-
derstanding of the ergodic hypothesis is really what Ehrenfests dubbed the quasi-
ergodic hypothesis: the assumption that the trajectory is dense (i.e. passes arbitrar-
ily close to every point) on the energy hypersurface.28 The quasi-ergodic hypothe-
sis is not mathematically impossible in higher-dimensional phase spaces. However,
the quasi-ergodic hypothesis does not entail the desired conclusion that the only
stationary probability distribution over the energy surface is micro-canonical.

Nevertheless, Boltzmann remained sceptical about the validity of his hypothesis,
and attempted to explore different routes to his goal of characterizing thermal
equilibrium in mechanics. Indeed, both the preceding 1871a and his next paper
1871c present alternative arguments, with the explicit recommendation that they
avoid hypotheses. In fact, he did not return to the ergodic hypothesis at all until

28Or some hypothesis compatible with the quasi-ergodic hypothesis. As it happens, Boltz-
mann’s example is also compatible with the measure-theoretical hypothesis of ‘metric transitivity’
(cf. paragraph 6.1).
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Figure 2. Trajectories in configuration space for a two-dimensional harmonic os-
cillator with potential U(x, y) = ax2 + by2. Illustrating the distinction between
(i) the case where

√
a/b is rational (here 4/7) and (ii) irrational (1/e). Only a

fragment of the latter trajectory has been drawn.

the 1880s (stimulated by Maxwell’s 1879 review of the last section of Boltzmann’s
1868 paper). At that time, perhaps feeling fortified by Maxwell’s authority, he
was to express much more confidence in the ergodic hypothesis. However, after
1885, this confidence disappears again, and although he mentions the hypothesis
occasionally in later papers, he never assumes its validity. Most notably, the
ergodic hypothesis is not even mentioned in his Lectures on Gas Theory 1896, 1898.

To sum up, what role did the ergodic hypothesis play for Boltzmann? It seems
that Boltzmann regarded the ergodic hypothesis as a special dynamical assumption
that may or may not be true, depending on the nature of the system, and perhaps
also on its initial state and the disturbances from its environment. Its role was
simply to help derive a result of great generality: for any system for which the
hypothesis is true, its equilibrium state is characterized by (45), from which an
analogy to the Maxwell distribution may be recovered in the limit N −→ ∞,
regardless of any details of the inter-particle interactions, or indeed whether the
system represented is a gas, fluid, solid or any other thermal body.

As we discussed in paragraph 1.4, the Ehrenfests 1912 have suggested that the
ergodic hypothesis played a much more fundamental role. In particular, if the
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hypothesis is true, averaging over an (infinitely) long time would be identical to
phase averaging with the microcanonical distribution. Thus, they suggested that
Boltzmann relied on the ergodic hypothesis in order to equate time averages and
phase averages, or in other words, to equate two meanings of probability (relative
time and relative volume in phase space.) There is however no evidence that
Boltzmann ever followed this line of reasoning neither in the 1870s, nor later. He
simply never gave any justification for equivocating time and particle averages, or
phase averages, at all. Presumably, he thought nothing much depended on this
issue and that it was a matter of taste.

4.2 The Boltzmann equation and H-theorem (1872)

In 1872 Boltzmann published one of his most important papers. It contained two
celebrated results nowadays known as the Boltzmann equation and the H-theorem.
The latter result was the basis of Boltzmann’s renewed claim to have obtained a
general theorem corresponding to the Second Law. This paper has been studied
and commented upon by numerous authors, and an entire translation of the text
has been provided by [Brush, 1966]. Thus, for the present purposes, a succinct
summary of the main points might have been sufficient. However, there is still
dispute among modern commentators about its actual content.

The issue at stake in this dispute is the question whether the results obtained
in this paper are presented as necessary consequences of the mechanical equations
of motion, or whether Boltzmann explicitly acknowledged that they would allow
for exceptions. Klein has written:

I can find no indication in his 1872 memoir that Boltzmann conceived
of possible exceptions to the H-theorem, as he later called it [Klein,
1973, p. 73].

Klein argues that Boltzmann only came to acknowledge the existence of such ex-
ceptions thanks to Loschmidt’s critique in 1877. An opposite opinion is expressed
by [von Plato, 1994]. Calling Klein’s view a “popular image”, he argues that,
already in 1872, Boltzmann was well aware that his H-theorem had exceptions,
and thus “already had a full hand against his future critics”. Indeed, von Plato
states that

Contrary to a widely held opinion, Boltzmann is not in 1872 claiming
that the Second Law and the Maxwellian distribution are necessary
consequences of kinetic theory [von Plato, 1994, p. 81].

So it might be of some interest to try and settle this dispute.
Boltzmann (1872) starts with an appraisal of the role of probability theory in

the context of gas theory. The number of particles in a gas is so enormous, and
their movements are so swift that we can observe nothing but average values.
The determination of averages is the province of probability calculus. Therefore,
“the problems of the mechanical theory of heat are really problems in probability
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calculus” [Boltzmann, 1909, I, p. 317]. But, Boltzmann says, it would be a mistake
to believe that the theory of heat would therefore contain uncertainties.

He emphasizes that one should not confuse incompletely proven assertions with
rigorously derived theorems of probability theory. The latter are necessary conse-
quences of their premisses, just like in any other theory. They will be confirmed by
experience as soon as one has observed a sufficiently large number of cases. This
last condition, however, should be no significant problem in the theory of heat
because of the enormous number of molecules in macroscopic bodies. Yet, in this
context, one has to make doubly sure that we proceed with the utmost rigour.

Thus, the message expressed in the opening pages of this paper seems clear
enough: the results Boltzmann is about to derive are advertised as doubly checked
and utterly rigorous. Still, they are theoretical. Their relationship with experience
might be less secure, since any probability statement is only reproduced in obser-
vations by sufficiently large numbers of independent data. Thus, Boltzmann would
have allowed for exceptions in the relationship between theory and observation,
but not in the relation between premisses and conclusion.

He continues by saying what he means by probability, and repeats its equivo-
cation as a fraction of time and the relative number of particles that we have seen
earlier in 1868:

If one wants [. . . ] to build up an exact theory [. . . ] it is before all
necessary to determine the probabilities of the various states that one
and the same molecule assumes in the course of a very long time, and
that occur simultaneously for different molecules. That is, one must
calculate how the number of those molecules whose states lie between
certain limits relates to the total number of molecules [Boltzmann,
1909, I p. 317].

However, this equivocation is not vicious. For most of the paper the intended
meaning of probability is always the relative number of molecules with a particular
molecular state. Only at the final stages of his paper [Boltzmann, 1909, I, p. 400]
does the time-average interpretation of probability (suddenly) recur.

Boltzmann says that both Maxwell and he had attempted the determination
of these probabilities for a gas system but without reaching a complete solution.
Yet, on a closer inspection, “it seems not so unlikely that these probabilities can
be derived on the basis of the equations of motion alone...” [Boltzmann, 1909, I,
p. 317]. Indeed, he announces, he has solved this problem for gases whose molecules
consist of an arbitrary number of atoms. His aim is to prove that whatever the
initial distribution of state in such a system of gas molecules, it must inevitably
approach the distribution characterized by the Maxwellian form (ibid. p. 320).

The next section specializes to the simplest case of monatomic gases and also
provides a more complete specification of the problem he aims to solve. The gas
molecules are contained in a fixed vessel with perfectly elastic walls. They interact
with each other only when they approach each other at very small distances. These
interactions can be mimicked as collisions between elastic bodies. Indeed, these
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bodies are modeled as hard spheres [Boltzmann, 1909, I, p. 320]. Boltzmann
represents the state of the gas by a time-dependent distribution function ft(�v),
called the “distribution of state”, which gives us, at each time t, the relative
number of molecules with velocity between �v and �v + d3�v.29

He also states two more special assumptions:

1. Already in the initial state of the gas, each direction of velocity is equally
probable. That is:

(47) f0(�v) = f0(v).

It is assumed as obvious that this will also hold for any later time.

2. The gas is spatially uniform within the container. That is, the relative
number of molecules with their velocities in any given interval, and their
positions in a particular spatial region R does not depend on the location of
R in the available volume.

The next and crucial assumption used by Boltzmann to calculate the change in
the number of particles with a velocity �v1 per unit time, is the Stoßzahlansatz,
(29) and (30).

For modern readers, there are also a few unstated assumptions that go into the
construction of this equation. First, the number of molecules must be large enough
so that the (discrete) distribution of their velocities can be well approximated by
a continuous and differentiable function f . Secondly, f changes under the effect
of binary collisions only. This means that the density of the gas should be low (so
that three-particle collisions can be ignored) but not too low (which would make
collisions too infrequent to change f at all). These two requirements are already
hard enough to put in a mathematically precise form. The modern explicitation is
that of taking the so-called Boltzmann-Grad limit (cf. paragraph 6.4). The final
(unstated) assumption is that all the above assumptions remain valid in the course
of time.

He addresses his aim by constructing a differentio-integral evolution equation
for ft, by taking the difference of (29) and (30) and integrating over all variables
except �v1 and t. The result (in a modern notation) is the Boltzmann equation:

(48)
∂ft(�v1)

∂t
= N

∫ d

0

bdb

∫ 2π

0

dφ

∫
R3

d3�v2 ‖�v2 − �v1‖
(
ft(�v1

′)ft(�v2
′)− ft(�v1)ft(�v2)

)
which describes the change of f in the course of time, when this function at
some initial time is given. (Recall from paragraph 3.3 that the primed velocities
are to be thought of as functions of the unprimed velocities and the geometrical
parameters of the collision: �v′i = �vi

′(�v1, �v2, b, φ), and d denotes the diameter of the
hard spheres.)

29Actually Boltzmann formulated the discussion in terms of a distribution function over kinetic
energy rather than velocity. I have transposed this into the latter, nowadays more common
formulation.
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The H-theorem

Assuming that the Boltzmann equation (48) is valid for all times, one can prove,
after a few well-known manipulations, that the following quantity

(49) H[ft] :=
∫

ft(�v) ln ft(�v)d3�v

decreases monotonically in time, i.e.

(50)
dH[ft]

dt
≤ 0;

as well as its stationarity for the Maxwell distribution, i.e.:

(51)
dH[ft]

dt
= 0 (∀t) iff ft(v) = Ae−Bv

2
.

Boltzmann concludes Section I of the paper as follows:

It has thus been rigorously proved that whatever may have been the
initial distribution of kinetic energy, in the course of time it must neces-
sarily approach the form found by Maxwell. [. . . ] This [proof] actually
gains much in significance because of its applicability to the theory of
multi-atomic gas molecules. There too, one can prove for a certain
quantity [H] that, because of the molecular motion, this quantity can
only decrease or in the limiting case remain constant. Thus, one may
prove that because of the atomic movement in systems consisting of
arbitrarily many material points, there always exists a quantity which,
due to these atomic movements, cannot increase, and this quantity
agrees, up to a constant factor, exactly with the value that I found in
[[Boltzmann, 1871c]] for the well-known integral

∫
dQ/T .

This provides an analytical proof of the Second Law in a way com-
pletely different from those attempted so far. Up till now, one has
attempted to proof that

∫
dQ/T = 0 for a reversible (umkehrbaren)

cyclic30 process, which however does not prove that for an irreversible
cyclic process, which is the only one that occurs in nature, it is always
negative; the reversible process being merely an idealization, which can
be approached more or less but never perfectly. Here, however, we im-
mediately reach the result that

∫
dQ/T is in general negative and zero

only in a limit case... [Boltzmann, 1909, I, p. 345]

Thus, as in his 1866 paper, Boltzmann claims to have a rigorous, analytical and
general proof of the Second Law. From our study of the paper until now, (i.e.
section I) it appears that Klein’s interpretation is more plausible than von Plato’s.
I postpone a further discussion of this dispute to paragraph 4.2, after a brief look
at the other sections of the paper.

30The term “cyclic” is missing in Brush’s translation, although the original text does speak of
“Kreisprozeß”. The special notation

H
for cyclic integrals was not introduced until much later.
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Further sections of Boltzmann (1872)

Section II is entitled “Replacement of integrals by sums” and devoted to a rep-
etition of the earlier arguments, now assuming that the kinetic energies of the
molecules can only take values in a discrete set {0, ε, 2ε, . . . , pε}. Boltzmann shows
that in the limit ε −→ 0, pε −→∞ the same results are recovered.

Many readers have been surprised by this exercise, which seems rather super-
fluous both from a didactic and a logical point of view. (However, some have felt
that it foreshadowed the advent of quantum theory.) Boltzmann offers as motiva-
tion for the detour that the discrete approach is clearer than the previous one. He
argues that integrals only have a symbolic meaning, as a sum of infinitely many
infinitesimal elements, and that a discrete calculation yields more understanding.
He does not argue, however, that it is closer to physical reality. Be that as it may,
the section does eventually take the limit, and recovers the same results as before.

The third section treats the case where the gas is non-uniform, i.e., when con-
dition 2 above is dropped. For this case, Boltzmann introduces a generalized
distribution function ft(�r,�v), such that ftd

3�rd3�v represents the relative number of
particles with a position in a volume element d3�r around �r and a velocity in an
element d3�v around �v.

He obtains a corresponding generalized Boltzmann equation:

∂ft(�r,�v)
∂t

+ �v · ∇xft +
�F

m
· ∇vft =

N

∫
bdbdφd3�v2 ‖�v2 − �v1‖

(
ft(�r,�v′

1))ft(�r,�v
′
2)− ft(�r,�v1))ft(�r,�v2)

)
(52)

where �F denotes an external force field on the gas. The quantity H now takes the
form H[ft] :=

∫
ft(�r,�v)d3�rd3�v; and a generalization of the H-theorem dH/dt ≤ 0

is obtained.
The last three sections are devoted to polyatomic molecules, and aim to obtain

generalized results for this case too. The key ingredient for doing so is, of course,
an appropriately generalized Stoßzahlansatz. The formulation of this assumption
is essentially the same as the one given in his paper on poly-atomic molecules
1871a, which was later shown wrong and corrected by Lorentz. I will not go into
this issue (cf. [Lorentz, 1887; Boltzmann, 1887b; Tolman, 1938]).

An interesting passage occurs at the very end of the paper, where he expands
on the relationship between H and entropy. He considers a monatomic gas in
equilibrium. The stationary distribution of state is given as:

(53) f∗(�r,�v) = V −1

(
3m

4πT

)3/2

exp(
−3mv2

4T
)

where V is the volume of the container. (Note that in comparison with (27),
Boltzmann adopts units for temperature that make k = 2/3.) He shows that

(54) H[f∗] :=
∫

f∗ log f∗dxdv = −N log V

(
4πT

3m

)3/2

− 3
2
N ;
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which agrees (assuming S = −kNH[f∗]) with the thermodynamical expression
for the ideal gas (16) up to an additive constant. A similar result holds for the
polyatomic gas.

Remarks and problems

1. The role of probability. As we have seen, the H-theorem formed the basis
of a renewed claim by Boltzmann to have obtained a theorem corresponding to the
full Second Law (i.e. including both parts) at least for gases. A main difference
from his 1866 claim, is that he now strongly emphasizes the role of probability
calculus in his derivation. It is clear that the conception of probability expounded
here is thoroughly frequentist and that he takes ‘the laws of probability’ as empir-
ical statements. Furthermore, probabilities can be fully expressed in mechanical
terms: the probability distribution f is nothing but the relative number of particles
whose molecular states lie within certain limits. Thus, there is no conflict between
his claims that on the one hand, “the problems of the mechanical theory of heat
are really problems in probability calculus” and that the probabilities themselves
are derived on the basis of the equations of motion alone, on the other hand. In-
deed, it seems to me that Boltzmann’s emphasis on the crucial role of probability
in this paper is only intended to convey that probability theory provides a partic-
ularly useful and appropriate language for discussing mechanical problems in gas
theory. There is no indication in this paper yet that probability theory could play
a role by furnishing assumptions of a non-mechanical nature, i.e., independent of
the equations of motion (cf. [Boltzmann and Nabl, 1904, p. 520]).

2. The role of the Stoßzahlansatz. Note that Boltzmann stresses the gen-
erality, rigour and “analyticity” of his proof. He puts no emphasis on the special
assumptions that go into the argument. Indeed, the Stoßzahlansatz, later iden-
tified as the key assumption that is responsible for the time-asymmetry of the
H-theorem, is announced as follows

The determination [of the number of collisions] can only be obtained
in a truly tedious manner, by consideration of the relative velocities
of both particles. But since this consideration has, apart from its
tediousness, not the slightest difficulty, nor any special interest, and
because the result is so simple that one might almost say it is self-
evident I will only state this result.” [Boltzmann, 1909, I, p. 32].)

It thus seems natural that Boltzmann’s contemporaries must have understood
him as claiming that the H-theorem followed necessarily from the dynamics of the
mechanical gas model.31 I can find no evidence in the paper that he intended this
claim to be read with a pinch of salt, as [von Plato, 1991, p.. 81] has argued.

31Indeed this is exactly how Boltzmann’s claims were understood. For example, the recom-
mendation written in 1888 for his membership of the Prussian Academy of Sciences mentions as
his main feat that Boltzmann had proven that, whatever its initial state, a gas must necessarily
approach the Maxwellian distribution [Kirsten and Körber, 1975, p.109].
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Is there then no evidence at all for von Plato’s reading of the paper? Von
Plato refers to a passage from Section II, where Boltzmann repeats the previous
analysis by assuming that energy can take on only discrete values, and replacing
all integrals by sums. He recovers, of course, the same conclusion, but now adds a
side remark, which touches upon the case of non-uniform gases:

Whatever may have been the initial distribution of states, there is one
and only one distribution which will be approached in the course of
time. [. . . ] This statement has been proved for the case where the
distribution of states was already initially uniform. It must also be
valid when this is not the case, i.e. when the molecules are initially
distributed in such a way that in the course of time they mix among
themselves more and more, so that after a very long time the distribu-
tion of states becomes uniform. This will always be the case, with the
exception of very special cases, e.g. when all molecules were initially
situated along a straight line, and were reflected by the walls onto this
line [Boltzmann, 1909, I, p. 358].

It is this last remark that, apparently, led to the view that after all Boltzmann
did already conceive of exceptions to his claims. However, I should say that this
passage does not convince me. True enough, Boltzmann in the above quote indi-
cates that there are exceptions. But he mentions them only in connection with
an extension of his results to the case when the gas is not initially uniform, i.e.
when condition (2) above is dropped. There can be no doubt that under the as-
sumption of the conditions (1) and (2), Boltzmann claimed the rigorous validity
of the H-theorem. (Curiously, his more systematic treatment of the non-uniform
gas (Section III of 1872) does not mention any exception to the claim that “H can
only decrease” [Boltzmann, 1909, I p. 362].

As a matter of fact, when Loschmidt formulated the objection, it happened
to be by means of an example of a non-uniform gas (although nothing essential
depended on this). Thus, if Boltzmann had in 1872 a “full hand against his future
critics”, as von Plato claims, one would expect his reply to Loschmidt’s objection
to point out that Loschmidt was correct but that he had already anticipated the
objection. Instead, he accused Loschmidt of a fallacy (see paragraph 4.3 below).

But apart from the historical issue of whether Boltzmann did or did not en-
visage exceptions to his H-theorem, it seems more important to ask what kind of
justification Boltzmann might have adduced for the Stoßzahlansatz. An attempt
to answer this question must be somewhat speculative, since, as we have seen,
Boltzmann presented the assumption as “almost self-evident” and “having no spe-
cial interest”, and hence presumably as not in need of further explanation. Still
the following remarks may be made with some confidence.

First, we have seen that Maxwell’s earlier usage of the assumption was never
far away from an argument from insufficient reason. Thus, in his approach, one
could think of the Stoßzahlansatz as expressing that we have no reason to expect
any influence or correlation between any pair of particles that are about to collide.
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The assumption would then appear as a probabilistic assumption, reflecting a
‘reasonable judgment’, independent from mechanics.

In contrast, Boltzmann’s critique of Maxwell’s approach (cf. footnote 16) sug-
gests that he did not buy this argument for insufficient reason. But since the
Stoßzahlansatz clearly cannot be conceived of as an assumption about dynamics
— like the ergodic hypothesis — , this leaves only the option that it must be due
to a special assumption about the mechanical state of the gas. Indeed, in the years
1895-6, when Boltzmann acknowledged the need for the ansatz in the proof of his
H-theorem more explicitly — referring to it as “Assumption A” [Boltzmann, 1895]
or “the hypothesis of molecular disorder” [Boltzmann, 1896] — , he formulated it
as an assumption about the state of the gas.

Yet, even in those years, he would also formulate the hypothesis as expressing
that “haphazard governs freely” [Boltzmann, 1895, Abh. III, p. 546] or “that the
laws of probability are applicable for finding the number of collisions” [Boltzmann,
1895b]. Similarly, he describes states for which the hypothesis fails as contrived “so
as to intentionally violate the laws of probability”[Boltzmann, 1896, §3]. However,
I think these quotations should not be read as claims that the Stoßzahlansatz was
a consequence of probability theory itself. Rather, given Boltzmann’s empirical
understanding of “the laws of probability”, they suggest that Boltzmann thought
that, as a matter of empirical fact, the assumption would ‘almost always’ hold,
even if the gas was initially very far from equilibrium.

3. The H-theorem and the Second Law. Note that Boltzmann miscon-
strues, or perhaps understates, the significance of his results. Both the Boltzmann
equation and the H-theorem refer to a body of gas in a fixed container that evolves
in isolation from its environment. There is no question of heat being exchanged
by the gas during a process, let alone in an irreversible cyclic process. His com-
parison in the quotation on page 965 with Clausius’ integral

∫
dQ/T (i.e.

∮
dQ/T

in equation (18) above) is therefore really completely out of place.
The true import of Boltzmann’s results is rather that they provide (i) a gener-

alization of the entropy concept to non-equilibrium states,32 and (ii)a claim that
this non-equilibrium entropy −kH increases monotonically as the isolated gas
evolves for non-equilibrium towards an equilibrium state. The relationship with
the Second Law is, therefore, somewhat indirect: On the one hand, Boltzmann
proves much more than was required, since the second law does not speak of non-
equilibrium entropy, nor of monotonic increase; on the other hand it proves also
less, since Boltzmann does not consider the increase of entropy in general adiabatic
processes.

32Boltzmann emphasized that his expression for entropy should be seen as an extension of
thermodynamic entropy to non-equilibrium states in [1877b, (Boltzmann, 1909, II, p. 218);
1896, §5] . Of course there is no guarantee that this generalization is the unique candidate for a
non-equilibrium entropy.
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4.3 Boltzmann (1877a): the reversibility objection

According to [Klein, 1973], Boltzmann seemed to have been satisfied with his
treatments of 1871 and 1872 and turned his attention to other matters for a couple
of years. He did come back to gas theory in 1875 to discuss an extension of the
Boltzmann equation to gases subjected to external forces. But this paper does
not present any fundamental changes of thought. (However, it does contain some
further elucidation, for example, it mentions for the first time that the derivation
of the Boltzmann equation requires that the gas is so dilute that collisions between
three or more particles simultaneously can be ignored).

However, the 1875 paper did contain a result which, two years later, led to
a debate with Loschmidt. Boltzmann showed that (52) implied that a gas in
equilibrium in an external force field (such as the earth’s gravity) should have the
same average kinetic energy at all heights and therefore, a uniform temperature;
while its pressure and density would of course vary with height. This conclusion
conflicted with the intuition that when molecules travel upwards, they must do
work against the gravitational field, and pay for this by having a lower kinetic
energy at greater heights.

Now Boltzmann (1875) was not the first to reach the contrary result, and Lo-
schmidt was not the first to challenge it. Maxwell and Guthrie entered into a
debate on the very same topic in 1873. But actually their main point of con-
tention need not concern us very much. The discussion between Loschmidt and
Boltzmann is particularly important for quite another issue, which Loschmidt only
introduced as an side remark. Considering a gas container in a homogeneous grav-
itational field, Loschmidt discussed a situation where initially all atoms except one
lie at rest at the bottom of the container. The single moving atom could then,
by collisions, stir the others and send them into motion until a “stationary state”,
characterized by the Maxwell distribution, is obtained. He continues

By the way, one should be careful about the claim that in a system in
which the so-called stationary state has been achieved, starting from
an arbitrary initial state, this average state can remain intact for all
times. I believe, rather, that one can make this prediction only for a
short while with full confidence.
Indeed, if in the above case, after a time τ which is long enough to
obtain the stationary state, one suddenly assumes that the velocities
of all atoms are reversed, we would obtain an initial state that would
appear to have the same character as the stationary state. For a fairly
long time this would be appropriate, but gradually the stationary state
would deteriorate, and after passage of the time τ we would inevitable
return to our initial state: only one atom has absorbed all kinetic
energy of the system [. . . ], while all other molecules lie still on the
bottom of the container.
Obviously, in every arbitrary system the course of events must be be-
come retrograde when the velocities of all its elements are reversed
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[Loschmidt, 1876, p. 139].

Boltzmann’s response (1877a)

Boltzmann’s response to Loschmidt is somewhat confusing. On the one hand, he
acknowledges that Loschmidt’s objection is “quite ingenious and of great signifi-
cance for the correct understanding of the Second Law.” However, he also brands
the objection as a “fallacy” and a “sophism”.33 But then, two pages later again,
the argument is “of the greatest importance since it shows how intimately con-
nected are the Second Law and probability theory.”

The gist of the response is this. First, Boltzmann captures the essential core of
the problem in an admirably clear fashion:

“Every attempt to prove, from the nature of bodies and the laws of
interaction for the forces they exert among each other, without any
assumption about initial conditions, that

(55)
∫

dQ

T
≤ 0

must be in vain” [Boltzmann, 1909, II. p.119–121].

The point raised here is usually known as the reversibility objection. And since
the H-theorem (which only received this name in the 1890s) was presented in 1872
as a general proof that

∫
dQ
T ≤ 0 (cf. the long quotation on page 965), it would

imply that this theorem was invalid. Boltzmann aims to show, however, that this
objection is a fallacy. His argument might be dissected into 5 central points.

1. Conceding that the proof cannot be given. Boltzmann says that a proof
that every distribution must with absolute necessity evolve towards a uniform dis-
tribution cannot be given, claiming that this fact “is already taught by probability
theory”. Indeed, he argues, even a very non-uniform distribution of state is, al-
though improbable to the highest degree, not impossible. Thus, he admits that
there are initial states for which H increases, just as well as those for which H
decreases. This admission, of course, is hard to rhyme with his professed purpose
of showing that it is fallacious to conclude that some assumption about the initial
state would be needed.

Note that this passage announces a major conceptual shift. Whereas the 1872
paper treated the distribution of state ft as if it defines probability (i.e. of molec-
ular velocities), this time the distribution of states is itself something which can
be to a higher or lesser degree “probable”. That is: probabilities are attributed

33The very fact that Boltzmann called this conclusion — which by all means and standards is
correct — a fallacy shows, in my opinion, that he had not anticipated the objection. In fact, how
much Boltzmann had yet to learn from Loschmidt’s objection is evident when we compare this
judgment to a quotation from his Lectures on Gas Theory [1898, p. 442]: “this one-sidedness [of
the H-theorem] lies uniquely and solely in the initial conditions.”
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to distributions of state, i.e. the distribution of state itself is treated as a random
variable. This shift in viewpoint became more explicit in his (1877b); as we will
discuss in section 4.4 below.

2. Rethinking the meaning of “probability”. Boltzmann argues that every
distribution of state, whether uniform or non-uniform, is equally improbable. But
there are “infinitely many” more uniform distributions of state than non-uniform
distributions. Here we witness another conceptual shift. In (1872), the term
“distribution of state” referred to the function f(�v) or f(�r,�v), representing the
relative numbers of molecules with various molecular states. In that sense, there
would, of course, only be a single uniform distribution of state: the Maxwellian
distribution function (53). But since Boltzmann now claims there are many, he
apparently uses the term “distribution of state” to denote a much more detailed
description, that includes the velocity and position of every individual molecule,
so that permutations of the molecules yield a different distribution of state. That
is, he uses the term in the sense of what we would nowadays call a microstate,
and what he himself would call a “Komplexion” a few months later in his (1877b)
— on which occasion he would reserve the name ‘distribution of state’ for the
macrostate.

Note that Boltzmann assumes every Komplexion to be equally probable (or
improbable) so that the probability of a particular distribution of state is deter-
mined by the relative numbers. Indeed he remarks that it might be interesting to
calculate the probabilities of state distributions by determining the ratio of their
numbers; this suggestion is also worked out in his subsequent paper of 1877b.

This, indeed, marks another conceptual change. Not only are probabilities at-
tributed to distributions of state instead of being defined by them; they are deter-
mined by an equiprobability assumption. Boltzmann does not explicitly motivate
the assumption. In view of the discussion in paragraph 3.1, one might conjecture
that he must have had something like Laplace’s principle of insufficient reason in
mind, which makes any two cases which, according to our information are equally
possible, also equally probable. But this would indicate an even larger conceptual
change; and not just because Boltzmann is broadly a frequentist concerning prob-
ability. Also, the principle of insufficient reason, or any similar assumption, makes
sense only from the view point that probability is a non-mechanical notion: it
reflects our belief or information about a system. I cannot find any evidence that
he accepted this idea. Of course it is also possible to conjecture that he silently fell
back upon the ergodic hypothesis. But this conjecture also seems unlikely, given
his avoidance of the hypothesis since 1871.

3. A claim about evolutions. Boltzmann says: “Only from the fact that
there are so many more uniform than non-uniform distributions of state [i.e.: mi-
crostates] follows the larger probability that the distribution will become uniform
in the course of time” (p. 120). More explicitly, he continues:
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[. . . ] one can prove that infinitely many more initial states evolve after
a long time towards a more uniform distribution of states than to a less
uniform one, and that even in that latter case, these states will become
uniform after an even longer time [Boltzmann, 1909, II, p. 120]34

Note that this is a claim about evolutions of microstates. In fact, it is the first case
of what the Ehrenfests later called a statistical H-theorem, but what is perhaps
better called a statistical reading of the H-theorem, since in spite of Boltzmann’s
assertion, no proof is offered.

4. The (im)probability of Loschmidt’s initial state. Boltzmann maintains
that the initial conditions considered by Loschmidt only have a minute proba-
bility. This is because it is obtained by a time evolution and velocity reversal
of a non-uniform microstate. Since both time evolution and velocity reversal are
one-to-one mappings (or more to the point: they preserve the Liouville measure),
these operations should not affect the number or probability of states. Hence, the
probability of Loschmidt’s state is equal to that of the special non-uniform state
from which it is constructed. But by point 2 above, there are infinitely many more
uniform states than non-uniform states, so the probability of Loschmidt’s state is
extraordinarily small.

5. From (im)probability to (im)possibility. The final ingredient of Boltz-
mann’s response is the claim that whatever has an extraordinarily small probability
is practically impossible.

The conclusion of Boltzmann’s argument, based on these five points, is that the
state selected by Loschmidt may be considered as practically impossible. Note
that this is a completely static argument; i.e., its logic relies merely on the points
1,2,4 and 5, and makes no assumption about evolutions, apart from the general
feature that the dynamical evolution conserves states (or measure). Indeed, point
3, i.e. the statistical reading of the H-theorem, is not used in the argument.

As a consequence, the argument, although perfectly consistent, shows more
than Boltzmann can possibly have wanted. The same reasoning that implies Lo-
schmidt’s initial state can be ignored, also excludes other non-uniform states. In
particular, the same probability should be assigned to Loschmidt’s initial state
without the reversal of velocities. But that state can be produced in the labora-
tory, and, presumably, should not be considered as practically impossible. Indeed,
if we adopt the rule that all non-uniform states are to be ignored on account of
their low probability, we end up with a consideration of uniform states only, i.e.
the theory would be reduced to a description of equilibrium, and the H-theorem
reduced to dH/dt = 0, and any time-asymmetry is lost.

This, surely, is too cheap a victory over Loschmidt’s objection. What one would
like to see in Boltzmann’s argument is a greater role for assumptions about the
time evolution in order to substantiate his statistical reading of the H-theorem.

34The clause about ‘the latter case’ is absent in the translation by [Brush, 2003, p. 366].
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Summing up: From this point on, we shall see that Boltzmann emphasizes even
more strongly the close relations between the Second Law and probability theory.
Even so, it is not always clear what these relations are exactly. Further, one may
question whether his considerations of the probability of the initial state hit the
nail on the head. Probability theory is equally neutral to the direction of time as
is mechanics.

The true source of the reversibility problem was only identified by [Burbury,
1894a] and [Bryan, 1894] after Boltzmann’s lecture in Oxford, which created a
intense debate in the columns of Nature. They pointed out that the Stoßzahlansatz
already contained a time-asymmetric assumption.

Indeed, this assumption requires that the number of collisions of the kind
(�v1, �v2) −→ (�v1

′, �v2
′) is proportional to the product f(�v1)f(�v2) where, �v1, �v2 are

the velocities before the collisions. If we would replace this by the requirement that
the number of collisions is proportional to the product for the velocities �v1

′, �v2
′

after the collision, we would obtain, by a similar reasoning, dH/dt ≥ 0. The
question is now, of course, why we should prefer one assumption above the other,
without falling into some kind of double standard. (I refer to [Price, 1996] for a
detailed discussion of this danger.) One thing is certain, and that is that any such
preference cannot be obtained from mechanics and probability theory alone.

4.4 Boltzmann (1877b): the combinatorial argument

Boltzmann’s next paper (1877b) is often seen as a major departure from the con-
ceptual basis employed in his previous work. Indeed, the conceptual shifts already
indicated implicitly in his reply to Loschmidt become in this article explicit. In-
deed, according to [ter Haar, 1955, p. 296] and [Klein, 1973, p. 83], it is this paper
that marks the transition from kinetic theory to statistical mechanics. Further,
the paper presents the famous link between entropy and ‘probability’ that later
became known as “Boltzmann’s principle”, and was engraved on his tombstone as
“S = k log W”.

Boltzmann’s begins the paper by stating that his goal is to elucidate the re-
lationship between the Second Law and probability calculus. He notes he has
repeatedly emphasized that the Second Law is related to probability calculus. In
particular he points out that the 1872 paper confirmed this relationship by show-
ing that a certain quantity [i.e. H] can only decrease, and must therefore obtain
its minimum value in the state of thermal equilibrium. Yet, this connection of the
Second Law with probability theory became even more apparent in his previous
paper (1877a). Boltzmann states that he will now solve the problem mentioned
in that paper, of calculating the probabilities of various distributions of state by
determining the ratio of their numbers.

He also announces that, when a system starts in an improbable state, it will
always evolve towards more probable states, until it reaches the most probable
state, i.e. that of thermal equilibrium. When this is applied to the Second Law,
he says, “we can identify that quantity which is usually called entropy, with the
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probability of the state in question.” And: “According to the present interpre-
tation, [the Second Law] states nothing else but that the probability of the total
state of a composite system always increases” [Abh. II, pp. 165-6]. Exactly how
all this is meant, he says, will become clear later in the article.

The combinatorial argument

Succinctly, and rephrased in the Ehrenfests’ terminology, the argument is as fol-
lows. Apart from Γ, the mechanical phase space containing the possible states
x for the total gas system, we consider the so-called μ-space, i.e. the state space
of a single molecule. For monatomic gases, this space is just a six-dimensional
Euclidean space with (�r,�v) as coordinates. With each mechanical state x we can
associate a collection of N points in μ-space; one for each molecule.

Now, partition μ-space into m disjoint cells: μ = ω1 ∪ . . . ∪ ωm. These cells
are taken to be rectangular in the coordinates and of equal size. Further, it is
assumed that the energy of each molecule in cell ωi in has a value εi, depending
only on i. For each x, henceforth also called the microstate (Boltzmann’s term
was the Komplexion), we define the macrostate or ‘distribution of state’ as Z :=
(n1, . . . , nm), with ni the number of particles whose molecular state is in cell ωi.
The relation between macro- and microstate is obviously non-unique since many
different microstates, e.g. obtained by permuting the molecules, lead to the same
macrostate. One may associate with every given macrostate Z0 the corresponding
set of microstates:

(56) ΓZ0 := {x ∈ Γ : Z(x) = Z0}.
The phase space volume |ΓZ0 | of this set is proportional to the number of permu-
tations of the particles that do not change the macrostate Z0. Indeed, when the
six-dimensional volume of the cells ωi is δω, i.e., the same for each cell, the phase
space volume of the set ΓZ is

(57) |ΓZ | = N !
n1! · · ·nm!

(δω)N .

Moreover, assuming that ni � 1 for all i and using the Stirling approximation
for the factorials, one finds

(58) ln ΓZ ≈ N lnN −
∑
i

ni lnni + N ln δω.

This expression is in fact proportional to a discrete approximation of the H-
function. Indeed, putting

(59) ni = Nf(�ri, �vi)δω

where (�ri, �vi) are the coordinates of a representative point in ωi, we find∑
i

ni lnni =
∑
i

Nf(�ri, �vi) ln
(
Nf(�ri, �vi)δω

)
δω
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≈ N

∫
f(�r,�v)

(
ln f(�r,�v) + lnN + ln δω

)
d3�rd3�v

= NH + N lnN + N ln δω;(60)

and therefore, in view of (58):

−NH ≈ ln |ΓZ |.(61)

And since Boltzmann had already identified −kNH with the entropy of a macro-
state, one can also take entropy as proportional to the logarithm of the volume
of the corresponding region in phase space. Today, ln |ΓZ | is often called the
Boltzmann entropy.

Boltzmann next considers the question for which choice of Z does the region
ΓZ have maximal size, under the constraints of a given total number of particles
N , and a total energy E:

(62) N =
m∑
i=1

ni, E =
m∑
i=1

niεi.

This problem can easily be solved with the Lagrange multiplier technique. Under
the Stirling approximation (58) one finds

(63) ni = μeλεi ,

which is a discrete version of the Maxwell distribution. (Here, μ an λ are deter-
mined in terms of N and E by the constraints (62).)

Boltzmann proposes to take the macrostate with the largest volume as repre-
senting equilibrium. More generally, he also refers to these volumes as the “prob-
ability” or “permutability” of the macrostate. He therefore now expresses the
Second Law as a tendency for the system to evolve towards ever more probable
macrostates, until, in equilibrium, it has reached the most probable state.

Remarks and problems

1. The role of dynamics. In the present argument, no dynamical assumption
has been made. In particular, it is not relevant to the argument whether the
ergodic hypothesis holds, or how the particles collide. At first sight, it might seem
that this makes the present argument more general than the previous one. Indeed,
Boltzmann suggests at the end of the paper [Boltzmann, 1909, II p. 223] that the
same argument might be applicable also to dense gases and even to solids.

However, it should be noticed that the assumption that the total energy can be
expressed in the form E =

∑
i niεi where the energy of each particle depends only

on the cell in which it is located, and not on the state of other particles is very
strong. This can only be maintained, independently of the number N , if there is
no interaction at all between the particles. The validity of the argument is thus
really restricted to ideal gases (cf. [Uhlenbeck and Ford, 1963]).
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2. The choice of cells. One might perhaps hope, at first sight, that the pro-
cedure of partitioning μ-space into cells is only a technical or didactic device and
can be eliminated by finally taking a limit in which δω −→ 0; similar to the proce-
dure of his 1872 paper. This hope is dashed because the expression (58) diverges.
Indeed, the whole prospect of using combinatorics would disappear if we did not
adopt a finite partition. But also the special choice to give all cells equal volume
in position and velocity variables is not quite self-evident, as Boltzmann himself
shows. In fact, before he develops the argument given here, his paper presents
a discussion in which the particles are characterized by their energy instead of
position and velocity. This leads him to carve up μ-space into cells of equal size δε
in energy. He then shows that the combinatorial argument fails to reproduce the
desired Maxwell distribution for particles moving in 3 spatial dimensions.35 This
failure is then remedied [Boltzmann, 1909, II, p. 190] by switching to a choice of
equally sized cells in δω in position and velocity. The latter choice is apparently
’right’, in the sense that leads to the desired result. However, since the choice
clearly cannot be relegated to a matter of convention, it leaves open the question
of justification.

Modern commentators are utterly divided in the search for a direction in which
a motivation for the choice of the size of these cells can be found. Some argue
that the choice should be made in accordance with the actual finite resolution of
measuring instruments or human observation capabilities. The question whether
these do in fact favour a partition into cells of equal phase space volume has hardly
been touched upon. Others [Popper, 1982; Redhead, 1995] reject an appeal to
observation capacities on the grounds that these would introduce a ‘subjective’ or
‘anthropocentric’ element into the explanation of irreversibility (see also [Jaynes,
1965; Grünbaum, 1973; Denbigh and Denbigh, 1985; Ridderbos, 2002]).

3. Micro versus macro. The essential step in the argument is the distinction
between micro- and macrostates. This is indeed the decisive new element, that al-
lowed Boltzmann a complete reinterpretation of the notion and role of probability.

In 1872 and before, the distribution of state f was identified with a probability
(namely of a molecular state, cf. Remark 1 of paragraph 4.2). On the other
hand, in the present work it, or its discrete analogue Z, is a description of the
macrostate of the gas, to which a probability is assigned. Essentially, the role
of the distribution of state has been shifted from defining a probability measure
to being a stochastic variable. Its previous role is taken over by a new idea:
Probabilities are not assigned to the particles, but to the macrostate of the gas as
a whole, and measured by the corresponding volume in phase space.

Another novelty is that Boltzmann has changed his concept of equilibrium.
Whereas previously the defining characteristic of equilibrium was its stationarity,

35The problem is that for an ideal gas, where all energy is kinetic, δε ∝ vδv. On the other
hand, for three-dimensional particles, δω ∝ v2δv. The function f derived from (59) and (63)
thus has a different dependence on v in the two cases. As Boltzmann notes, the two choices are
compatible for particles in two dimensions (i.e. discs moving in a plane).
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in Boltzmann’s new view it is conceived as the macrostate (i.e. a region in phase
space) that takes up the largest volume. As a result, a system in a state of equi-
librium need not remain there: in the course of time, the microstate of the system
may fluctuate in and out of this equilibrium region. Boltzmann briefly investi-
gated the probability of such fluctuations in his [Boltzmann, 1878]. Almost thirty
years later, the experimental predictions for fluctuation phenomena by Einstein
and Smoluchowski provided striking empirical successes for statistical mechanics.

4. But what about evolutions? Perhaps the most important issue is this.
What exactly is the relation of the 1877b paper to Loschmidt’s objection and
Boltzmann’s primary reply to it (1877a)? The primary reply (cf. paragraph 4.3)
can be read as an announcement of two subjects of further investigation:

From the relative numbers of the various distributions of state, one
might even be able to calculate their probabilities. This could lead to
an interesting method of determining thermal equilibrium [Boltzmann,
1909, II, p. 121]

This is a problem about equilibrium. The second announcement was that Boltz-
mann said “The case is completely analogous for the Second Law” [Boltzmann,
1909, II, p. 121]. Because there are so very many more uniform than non-uniform
distributions, it should be extraordinarily improbable that a system should evolve
from a uniform distribution of states to a non-uniform distribution of states. This
is a problem about evolution (cf. point 3 of section 4.3). In other words, one would
like to see that something like the statistical H-theorem actually holds.

Boltzmann’s [1877b] is widely read as a follow-up to these announcements. In-
deed, Boltzmann repeats the first quote above in the introduction of the paper
[Boltzmann, 1909, II, p. 165], indicating that he will address this problem. And
so he does, extensively. Yet he also states:

Our main goal is not to linger on a discussion of thermal equilibrium,
but to investigate the relations of probability with the Second Law of
thermodynamics [Boltzmann, 1909, II, p. 166].

Thus, the main goal of [1877b] is apparently to address the problem concerning
evolutions and to show how they relate to the Second Law. Indeed, this is what
one would naturally expect since the reversibility objection is, after all, a problem
concerned with evolutions. Even so, a remarkable fact is that the 1877b paper
hardly ever touches its self-professed “main goal” at all. As a matter of fact, I can
find only one passage in the remainder of the paper where a connection with the
Second Law is mentioned.

It occurs in Section V [Boltzmann, 1909, II, p. 216-7]. After showing that
in equilibrium states for monatomic gases the ‘permutability measure’ ln |ΓZ | (for
which Boltzmann’s notation is Ω) is proportional to the thermodynamical entropy,
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up to an arbitrary additive constant, he concludes that, by choosing the constant
appropriately:36

(64)
∫

dQ

T
=

2
3
Ω
[
=

2
3

ln |ΓZ |
]

and adds:

It is known that when a system of bodies goes through reversible
changes, the total sum of the entropies of all these bodies remains
constant; but when there are among these processes also irreversible
(nicht umkehrbar) changes, then the total entropy must necessarily
increase. This follows from the familiar circumstance that

∫
dQ/T is

negative for an irreversible cyclic process. In view of (64), the sum of all
permutability measures of all bodies

∑
Ω, or their total permutability

measure, must also increase. Hence, permutability is a quantity which
is, up to a multiplicative and additive constant, identical to entropy,
but which retains a meaning also during the passage of an irreversible
body [sic– read: “process”], in the course of which it continually in-
creases [Boltzmann, 1909, II p.217]

How does this settle the problem about evolutions, and does it provide a satisfac-
tory refutation of the reversibility objection? In the literature, there are at least
four views about what Boltzmann’s response actually intended or accomplished.

4α. Relying on the separation between micro- and macroscales: A view
that has been voiced recently, e.g. by [Goldstein, 2001], is that Boltzmann had, by
his own argument, adequately and straightforwardly explained why entropy should
tend to increase. In particular, this view argues, the fact of the overwhelmingly
large phase space volume of the set Γeq of all equilibrium phase points, compared
to the set of non-equilibrium points already provides a sufficient argument.

For a non-equilibrium phase point x of energy E, the Hamiltonian
dynamics governing the motion xt arising from x would have to be
ridiculously special to avoid reasonably quickly carrying xt into Γeq

and keeping it there for an extremely long time — unless, of course x
itself were ridiculously special [Goldstein, 2001, p. 6].

In fact, this view may lay some claim to being historically faithful. As we have
seen, [Boltzmann, 1877a] did claim that the large probability for an evolution
towards equilibrium did follow from the large differences in number of states.

The main difficulty with this view is that, from a modern perspective, it is
hard to maintain that it is adequate. States don’t evolve into other states just
because there are more of the latter, or because they make up a set of larger

36Actually, equation (64) is the closest he got to the famous formula on his tombstone, since
Ω = ln W , and Boltzmann adopts a temperature scale that makes k = 2/3.
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measure. The evolution of a system depends only on its initial state and its
Hamiltonian. Questions about evolution can only be answered by means of an
appeal to dynamics, not by the measure of sets alone. To take an extreme example,
the trajectory covered by xt, i.e. the set {xt : t ∈ R} is a set of measure zero
anyway; and hence very special. By contrast, its complement, i.e. the set of states
not visited by a given trajectory is huge: it has measure one. Certainly, we
cannot argue that the system cannot avoid wandering into the set of states that it
does not visit. Another example is that of a system of non-interacting particles,
e.g., the ideal gas. In this case, all the energies of the individual particles are
conserved, and because of these conserved quantities, the phase point can only
visit a very restricted region of phase space.37

The lesson is, of course, that in order to obtain any satisfactory argument why
the system should tend to evolve from non-equilibrium states to the equilibrium
state, we should make some assumptions about its dynamics. In any case, judg-
ments like “reasonable” or “ridiculous” remain partly a matter of taste. The
reversibility objection is a request for mathematical proof (which, as the saying
goes, is something that even convinces an unreasonable person).

4β. Relying on the ergodic hypothesis: A second, and perhaps the most
well-known, view to this problem is the one supplied by the Ehrenfests. In essence,
they suggest that Boltzmann somehow relied on the ergodic hypothesis in his
argument.

It is indeed evident that if the ergodic hypothesis holds, a state will spend time in
the various regions of the energy hypersurface in phase space in proportion to their
volume. That is to say, during the evolution of the system along its trajectory,
regions with a small volume, corresponding to highly non-uniform distributions of
state are visited only sporadically, and regions with larger volume, corresponding
to more uniform distributions of state more often.

This should also make it plausible that if a system starts out from a very
small region (an improbable state) it will display a tendency to evolve towards the
overwhelmingly larger equilibrium state. Of course, this ‘tendency’ would have
to be interpreted in a qualified sense: the same ergodic hypothesis would imply
that the system cannot stay inside the equilibrium state forever and thus there
would necessarily be fluctuations in and out of equilibrium. Indeed, one would
have to state that the tendency to evolve from improbable to probable states is
itself a probabilistic affair: as something that holds true for most of the initial
states, or for most of the time, or as some or other form of average behaviour. In
short, we would then hopefully obtain some statistical version of the H-theorem.
What exactly the statistical H-theorem should say remains an open problem in the
Ehrenfests’ point of view. Indeed they distinguish between several interpretations
(the so-called ‘concentration curve’ and the ‘bundle of H-curves’ [Ehrenfest and
Ehrenfest-Afanassjewa, 1912, p. 31–35]).

37It is somewhat ironic to note, in view of remark 1 above, that this is the only case compatible
with Boltzmann’s argument. This gives rise to Khinchin’s “methodological paradox” (cf. 1019).
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Now, it is undeniable that the Ehrenfests’ reading of Boltzmann’s intentions
has some clear advantages. In particular, even though nobody has yet succeeded
in proving a statistical H-theorem on the basis of the ergodic hypothesis, or on
the basis of the assumption of metric transitivity (cf. paragraph 6.1, one might
hope that some statistical version of the H-theorem is true.

One problem here is that the assumptions Boltzmann used in his paper are re-
stricted to non-interacting molecules, for which the ergodic hypothesis is demon-
strably false. But even more importantly, it is clear that Boltzmann did not follow
this line of argument in 1877b at all. Indeed, he nowhere mentions the ergodic
hypothesis. In fact he later commented on the relation between the 1877b paper
and the ergodic hypothesis of 1868, saying:

On that occasion [i.e. in (1877b)] . . . I did not wish to touch upon the
question whether a system is capable of traversing all possible states
compatible with the equation of energy [Boltzmann, 1881a, Abh. II
p. 572].

4γ. Relying on the H-theorem: A third point of view, one to which this
author adhered until recently, is that, in (1877b) Boltzmann simply relied on the
validity of the H-theorem of 1872. After all, it was the 1872 paper that proposed
to interpret −NH as entropy (modulo multiplicative and additive constants), on
the basis of the alleged theorem that it could never decrease. The 1877b paper
presents a new proposal, to link the entropy of a macrostate with ln |ΓZ |. But this
proposal is motivated, if not derived, by showing that ln |ΓZ | is (approximately)
equal to −NH, as in (61), whose interpretation as entropy was established in
(1872). It thus seems plausible to conjecture that Boltzmann’s thinking relied on
the results of that paper, and that the claim that states will evolve from improbable
to probable states, i.e. that ln |ΓZ | shows a tendency to increase in time, likewise
relied on the H-theorem he had proved there.38 The drawback of this reading is
that it makes Boltzmann’s response to the reversibility objection quite untenable.
Since the objection as formulated in his (1877a) calls the validity of the H-theorem
into question, a response that presupposes the validity of this theorem is of no help
at all.

4δ. Bypassing the H-theorem: [Janssen, 2002] has a different reading. He
notes: “In Boltzmann’s 1877 paper the statement that systems never evolve from
more probable to less probable states is presented only as a new way of phrasing the
Second Law, not as a consequence of the H-theorem” (p. 13). Indeed, any explicit
reference to the H-theorem is absent in the 1877b paper. However, what we are
to make of this is not quite certain. The earlier paper (1877a) did not mention
the theorem either, but only discussed “any attempt to prove that

∫
dQ
T ≤ 0”.

Still, this is commonly seen as an implicit reference to what is now known as the

38The conjecture is supported by the fact Boltzmann’s later exposition in 1896 is presented
along this line.



982 Jos Uffink

H-theorem, but which did not yet have a particular name at that time. Indeed,
the H-theorem itself was characterized in 1872 only as a new proof that

∫
dQ
T ≤ 0

(cf. the quotation on page 965). So, the fact that the H-theorem is not explicitly
mentioned in (1877b) is not by itself a decisive argument that he did not intend
to refer to it.

Even so, the fact that he presented the increase of entropy as something which
was well-known and did not refer to the 1872 paper at all, does make Janssen’s
reading plausible. So, perhaps Boltzmann merely relied on the empirical valid-
ity of the Second Law as a ground for this statement, and not at all on any
proposition from kinetic theory of gases.39 This, of course, would undermine even
more strongly the point of view that Boltzmann had a statistical version of the
H-theorem, or indeed any theorem at all, about the probability of time evolution.

The reversibility objection was not about a relationship between the phenomeno-
logical Second Law and the H-theorem, but about the relationship between the
H-theorem and the mechanical equations of motion. So even though Janssen’s
reading makes Boltzmann’s views consistent, it does not make the 1877b paper
provide a valid answer to Loschmidt’s objection.

4ε. The urn analogy — victory by definition? At the risk of perhaps
overworking the issue, I also want to suggest a fifth reading. Boltzmann’s (1877b)
contains an elaborate discussion of repeated drawings from an urn. In modern
terms, he considers a Bernoulli process, i.e., a sequence of independent identically
distributed repetitions of an experiment with a finite number of possible outcomes.
To be concrete, consider an urn filled with m differently labeled lots, and a sequence
of N drawings, in which the lot i is drawn ni times (

∑m
i=1 ni = N). He represents

this sequence by a “distribution of state” Z = (n1, . . . , nm). In this discussion, the
probability of these distributions of state is at first identified with the (normalized)
number of permutations by which Z can be produced. In other words

(65) Prob(Z) ∝ N !
n1! · · ·nm!

.

But halfway this discussion [Boltzmann, 1909, II, p. 171], he argues that one can
redefine probabilities in an alternative fashion, namely, as the relative frequency
of occurrence during later drawings of a sequence of N lots. Thus, even when,
on a particular trial, an improbable state Z occurred, we can still argue that on
a later drawings, a more probable state will occur. Boltzmann speaks about the
changes in Z during the consecutive repetitions as an evolution. He then says:

39Further support for this reading can be gathered from later passages. For example, [Boltz-
mann, 1897b] writes “Experience shows that a system of interacting bodies is always found
‘initially’ in an improbable state and will soon reach the most probable state (that of equilib-
rium). [Boltzmann, 1909, III, p. 607]. Here too, Boltzmann presents the tendency to evolve from
improbable to more probable states as a fact of experience rather than the consequence of any
theorem.
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The most probable distribution of state must therefore be defined as
that one to which most [states] will evolve to [Boltzmann, 1909, II,
p. 172].

Although he does not make the point quite explicitly, the discussion of urn
drawings is undoubtedly meant as an analogy for the evolution of the distribution
of state in a gas. Hence, it is not implausible that, in the latter case too, Boltzmann
might have thought that by definition the most probable distribution of state is
the one that most states will evolve to. And this, in turn, would mean that he
regarded the problem about evolutions not as something to be proved, and that
might depend on the validity of specific dynamical assumptions like the ergodic
hypothesis or the Stoßzahlansatz, but as something already settled from the outset.
This would certainly explain why Boltzmann did not bother to address the issue
further.

Even so, this reading too has serious objections. Apart from the fact that it
is not a wise idea to redefine concepts in the middle of an argument, the analogy
between the evolution of an isolated gas and a Bernoulli process is shaky. In the
first case, the evolution is governed by deterministic laws of motion; in the latter
one simply avoids any reference to underlying dynamics by the stipulation of the
probabilistic independence of repeated drawings. However, see paragraph 6.2.

To sum up this discussion of Boltzmann’s answer to the reversibility objection:
it seems that on all above readings of his two 1877 papers, the lacuna between
what Boltzmann had achieved and what he needed to do to answer Loschmidt
satisfactorily — i.e. to address the issue of the evolution of distributions of state
and to prove that non-uniform distributions tend, in some statistical sense, to
uniform ones, or to prove any other reformulation of the H-theorem — remains
striking.

4.5 The recurrence objection

Poincaré

In 1890, in his famous treatise on the three-body problem of celestial mechan-
ics, Poincaré derived what is nowadays called the recurrence theorem . Roughly
speaking, the theorem says that for every mechanical system with a bounded phase
space, almost every initial state of the system will, after some finite time, return
to a state arbitrarily closely to this initial state, and indeed repeat this infinitely
often.

In modern terms, the theorem can be formulated as follows:

Recurrence Theorem: Consider a dynamical system40 〈Γ,A, μ, T 〉
40See section 6.1 for a definition of dynamical systems. But in short: Γ is a phase space, A a

family of measurable subsets of Γ and T is a one-parameter continuous group of time evolutions
Tt : Γ× R −→ Γ.
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with μ(Γ) <∞. Let A ∈ A be any measurable subset of Γ,and define,
for a given time τ , the set

(66) B = {x : x ∈ A & ∀t ≥ τ : Ttx �∈ A}
Then

(67) μ(B) = 0.

In particular, for a Hamiltonian system, if we choose Γ to be the energy hyper-
surface ΓE , take A to be a ‘tiny’ region in ΓE , say an open ball of diameter ε in
canonical coordinates, the theorem says that the set of points in this region whose
evolution is such that they will, after some time τ , never return to region A, has
measure zero. In other words, almost every trajectory starting within A will after
any finite time we choose, later return to A.

Poincaré had already expressed his objections against the tenability of a me-
chanical explanation of irreversible phenomena in thermodynamics earlier (e.g.
[Poincaré, 1889]). But armed with his new theorem, he could make the point even
stronger. In his 1893, he argued that the mechanical conception of heat is in con-
tradiction with our experience of irreversible processes. According to the English
kinetic theories, says Poincaré:

[t]he world tends at first towards a state where it remains for a long
time without apparent change; and this is consistent with experience;
but it does not remain that way forever, it the theorem cited above is
not violated; it merely stays there for an enormously long time, a time
which is longer the more numerous are the molecules. This state will
not be the final death of the universe but a sort of slumber, from which
it will awake after millions and millions of centuries.

According to this theory, to see heat pass from a cold body into a warm
one, it will not be necessary to have the acute vision, the intelligence
and the dexterity of Maxwell’s demon; it will suffice to have a little
patience [Brush, 2003, p.380].

He concludes that these consequences contradict experience and lead to a “definite
condemnation of mechanism” [Brush, 2003, p.381].

Of course, Poincaré’s “little patience”, even for “millions and millions of cen-
turies” is a rather optimistic understatement. Boltzmann later estimated the time
needed for a recurrence in 1 cc of air to be 101019

seconds (see below): utterly be-
yond the bounds of experience. Poincaré’s claim that the results of kinetic theory
are contradicted by experience is thus too hasty.

Poincaré’s article does not seem to have been noticed in the contemporary
German-language physics community — perhaps because he criticized English
theories only. However, Boltzmann was alerted to the problem when a slightly
different argument was put forward by Zermelo in 1896. The foremost difference
is that in Zermelo’s argument experience does not play a role.
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Zermelo’s argument

Zermelo (1896a) points out that for a Hamiltonian mechanical system with a
bounded phase space, Poincaré’s theorem implies that, apart from a set of singular
states, every state must recur almost exactly to its initial state, and indeed repeat
this recurrence arbitrarily often. As a consequence, for any continuous function F
on phase space, F (xt) cannot be monotonically increasing in time, (except when
the initial state is singular); whenever there is a finite increase, there must also
be a corresponding decrease when the initial state recurs. (see [Olsen, 1993] for a
modern proof of this claim) Thus, it would be impossible to obtain ‘irreversible’
processes. Along the way, Zermelo points out a number of options to avoid the
problem.

1. Either we assume that the gas system has no bounded phase space. This
could be achieved by letting the particles reach infinite distances or infinite ve-
locities. The first option is however excluded by the assumption that a gas is
contained in a finite volume. The second option could be achieved when the
gas consists point particles which attract each other at small distances, (e.g. an
F ∝ r−2 inter-particle attractive force can accelerate them toward arbitrarily high
velocities.) However, on physical grounds one ought to assume that there is always
repulsion between particles at very small distances.

2. Another possibility is to assume that the particles act upon each other by
velocity-dependent forces. This, however would lead either to a violation of the
conservation of energy or the law of action and reaction, both of which are essential
to atomic theory.

3. The H-theorem holds only for those special initial states which are the
exception to the recurrence theorem, and we assume that only those states are
realized in nature. This option would be unrefutable, says Zermelo. Indeed, the
reversibility objection has already shown that not all initial states can correspond
to the Second Law. However, here we would have to exclude the overwhelming
majority of all imaginable initial states, since the exceptions to the Recurrence
Theorem only make up a set of total extension (i.e. in modern language: measure)
zero. Moreover, the smallest change in the state variables would transform a
singular state into a recurring state, and thus suffice to destroy the assumption.
Therefore, this assumption “would be quite unique in physics and I do not believe
that anyone would be satisfied with it for very long.”

This leaves only two major options:
4. The Carnot-Clausius principle must be altered.41

5. The kinetic theory must be formulated in an essentially different way, or even
be given up altogether.

Zermelo does not express any preference between these last two options. He
concludes that his aim has been to explain as clearly as possible what can be
proved rigorously, and hopes that this will contribute to a renewed discussion and

41By this term, Zermelo obviously referred to the Second Law, presumably including the Zeroth
Law.
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final solution of the problem.
I would like to emphasize that, in my opinion, Zermelo’s argument is entirely

correct. If he can be faulted for anything, it is only that he had not noticed that
in his very recent papers, Boltzmann had already been putting a different gloss on
the H-theorem.

Boltzmann’s response

[Boltzmann, 1896b] response opens by stating that he had repeatedly pointed out
that the theorems of gas are statistical. In particular, he says, he had often em-
phasized as clearly as possible that the Maxwell distribution law is not a theorem
from ordinary mechanics and cannot be proven from mechanical assumptions.42

Similarly, from the molecular viewpoint, the Second Law appears merely as a
probability statement. He continues with a sarcastic remark:

Zermelo’s paper shows that my writings have been misunderstood; nev-
ertheless it pleases me for it appears to be the first indication that these
works have been noticed in Germany.43

Boltzmann agrees that Poincaré’s recurrence theorem is “obviously correct”, but
claims that Zermelo’s application of the theorem to gas theory is not. His counter
argument is very similar to his (1895) presentation in Nature, a paper that Zermelo
had clearly missed.

In more detail, this argument runs as follows. Consider a gas in a vessel with
perfectly smooth and elastic walls, in an arbitrary initial state and let it evolve
in the course of time. At each time t we can calculate H(t). Further, consider
a graph of this function, which Boltzmann called: the H-curve. In his second
reply to Zermelo [Boltzmann, 1897a], he actually produced a diagram. A rough
an modernized version of such an H-curve is sketched in Fig. 3.

Barring all cases in which the motion is ‘regular’, e.g. when all the molecules
move in one common plane, Boltzmann claims the following properties of the
curve:

(i). For most of the time, H(t) will be very close to its minimum value, say Hmin.
Moreover, whenever the value of H(t) is very close to Hmin, the distribution
of molecular velocities deviates only very little from the Maxwell distribution.

42This is, as we have seen, a point Boltzmann had been making since 1877. However, one might
note that just a few years earlier, [Boltzmann, 1892], after giving yet another derivation of the
Maxwell distribution (this time generalized to a gas of hard bodies with an arbitrary number of
degrees of freedom that contribute quadratic terms to the Hamiltonian), had concluded: “I believe
therefore that its correctness [i.e. of the Maxwell distribution law] as a theorem of analytical
mechanics can hardly be doubted” [Boltzmann, 1909, III p.432]. But as we have seen on other
occasions, for Boltzmann, statements that some result depended essentially on probability theory,
and the statement that it could be derived as a mechanical theorem, need not exclude each other.

43Eight years earlier, Boltzmann had been offered the prestigious chair in Berlin as successor
of Kirchhoff, and membership of the Prussian Academy. The complaint that his works did not
draw attention in Germany is thus hard to take seriously.
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H(t)

Hmin

t −→

Figure 3. A (stylized) example of an H-curve

(ii). The curve will occasionally, but very rarely, rise to a peak or summit, that
may be well above Hmin.

(iii). The probability of a peak decreases extremely rapidly with its height.

Now suppose that, at some initial time t = 0, the function takes a very high value
H0, well above the minimum value. Then, Boltzmann says, it will be enormously
probable that the state will, in the course of time, approach the Maxwell dis-
tribution, i.e., H(t) will decrease towards Hmin; and subsequently remain there
for an enormously long time, so that the state will deviate only very little from
the Maxwell distribution during vanishingly short durations. Nevertheless, if one
waits even longer, one will encounter a new peak, and indeed, the original state
will eventually recur. In a mathematical sense, therefore, these evolutions are
periodic, in full conformity with Poincaré’s recurrence theorem.

What, then, is the failure of Zermelo’s argument? Zermelo had claimed that only
very special states have the property of continually approaching the Maxwell dis-
tribution, and that these special states taken together make up an infinitely small
number compared to the totality of possible states. This is incorrect, Boltzmann
says. For the overwhelming majority of states, the H-curve has the qualitative
character sketched above.

Boltzmann also took issue with (what he claimed to be Zermelo’s) conclusion
that the mechanical viewpoint must somehow be changed or given up. This con-
clusion would only be justified, he argues, if this viewpoint led to some consequence
that contradicted experience. But, Boltzmann claims, the duration of the recur-
rence times is so large that no one will live to observe them.

To substantiate this claim about the length of the recurrence time, he presents,
in an appendix an estimate of the recurrence time for 1 cc of air at room tempera-
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ture and pressure. Assuming there are 109 molecules in this sample,44 and choos-
ing cells in the corresponding μ-space as six-dimensional cubes of width 10−9 m in
(physical) space and 1 m/s in velocity space, Boltzmann calculates the number of
different macrostates, i.e. the number of different ways in which the molecules can
be distributed over these cells as (roughly) 10109

. He then assumes that, before
a recurrence of a previous macrostate, the system has to pass through all other
macrostates. Even if the molecules collide very often, so that the system changes
its macrostate 1027 times per second, the total time it takes to go through this
huge number of macrostates will still take 10109−27 ≈ 10109

seconds. In fact, this
time is so immensely large that its order of magnitude is not affected whether we
express it in seconds, years, millennia, or what have you.

The upshot is, according to Boltzmann: if we adopt the view that heat is
a form of motion of the molecules, obeying the general laws of mechanics, and
assume that the initial state of a system is very unlikely, we arrive at a theorem
which corresponds to the Second Law for all observed phenomena. He ends with
another sarcasm:

All the objections raised against the mechanical view of Nature are
therefore empty and rest on errors. But whoever cannot overcome the
difficulties, which a clear understanding of the theorems of gas theory
poses, should indeed follow the advice of Mr Zermelo and decide to
give up the theory completely. [Boltzmann, 1909, III p. 576].

Zermelo’s reply

[Zermelo, 1896b] notes that Boltzmann’s response confirms his views by admit-
ting that the Poincaré theorem is correct and applicable to a closed system of
gas molecules. Hence, in such a system, “all [sic] motions are periodic and not
irreversible in the strict sense”. Thus, kinetic gas theory cannot assert that there
is a strict monotonic increase of entropy as the Second Law would require. He
adds: “I think this general clarification was not at all superfluous” [Brush, 2003,
p. 404].

Therefore, Zermelo argues, his main point had been conceded: there is indeed
a conflict between thermodynamics and kinetic theory, and it remains a matter
of taste which of the two is abandoned. Zermelo admits that observation of the
Poincaré recurrences may well fall beyond the bounds of human experience. He
points out (correctly) that Boltzmann’s estimate of the recurrence time presup-
poses that the system visits all other cells in phase space before recurring to an
initial state. This estimate is inconclusive, since the latter assumption is somewhat
ad hoc. In general, these recurrence times need not “come out so ‘comfortingly’
large” [Brush, 2003, p. 405]. But, as I stressed before, the relation with experience
simply was no issue in Zermelo’s objection.

44Actually, modern estimates put the number of molecules in 1cc of air closer to 1019, which

would make Boltzmann’s estimate for recurrence time even larger still, i.e. 101019
.



Compendium of the Foundations of Classical Statistical Physics 989

The main body of Zermelo’s reply is taken by an analysis of the justification
of and consequences drawn from Boltzmann’s assumption that the initial state is
very improbable, i.e., that H0 is very high. Zermelo argues that even in order to
obtain an approximate or empirical analogue of the Second Law, as Boltzmann
envisaged, i.e. an approach to a long-lasting, but not permanent equilibrium state,
it would not suffice to show this result for one particular initial state. Rather, one
would have to show that evolutions always take place in the same sense, at least
during observable time spans.

As Zermelo understands it, Boltzmann does not merely assume that the initial
state has a very high value for H, but also that, as a rule, the initial state lies on
a maximum, or has just passed a maximum. If this assumption is granted, then it
is obvious that one can only observe a decreasing flank of the H-curve. However,
Zermelo protests, one could have chosen any time as the initial time. In order to
obtain a satisfactorily general result, the additional assumption would thus have
to apply at all times. But then the H-curve would have to consist entirely of
maxima. But this leads to nonsense, Zermelo argues, since the curve cannot be
constant. Zermelo concludes that Boltzmann’s assumptions about the initial state
are thus in need of further physical explanation.

Further, Zermelo points out that probability theory, by itself, is neutral with
respect to the direction of time, so that no preference for evolutions in a particular
sense can be derived from it. He also points out that Boltzmann apparently equates
the duration of a state and its extension (i.e. the relative time spent in a region
and the relative volume of that region in phase space). “I cannot find that he has
actually proved this property” [Brush, 2003, p. 406].

Boltzmann’s second reply

In his second reply 1897a, Boltzmann rebuts Zermelo’s demand for a physical
explanation of his assumptions about the initial state of the system with the claim
that the question is not what will happen to an arbitrarily chosen initial state, but
rather what will happen to a system in the present state of the universe.

He argues that one should depart from the (admittedly unprovable) assumption
that the universe (or at least a very large part of the universe that surrounds us
started in a very improbable state and still is in an improbable state. If one then
considers a small system (e.g. a gas) that is suddenly isolated from the rest of the
universe, there are the following possibilities: (i) The system may already be in
equilibrium, i.e. H is close to its minimum value. This, Boltzmann says, is by far
the most probable case. But among the few cases in which the system is not in
equilibrium, the most probable case is (ii) that H will be on a maximum of the
H-curve, so that it will decrease in both directions of time. Even more rare is the
case in which (iii) the initial value of H will fall on a decreasing flank of the H
curve. But such cases are just as frequent as those in which (iv) H falls on an
increasing flank.45

45The Ehrenfests 1912 later added a final possible case (v): H may initially be on a local
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Thus, Boltzmann’s explanation for the claim that H is initially on a maximum
is that this would be the most likely case for a system not in equilibrium, which
isolated from the rest of the universe in its present state.

This occasion is perhaps the first time that Boltzmann advanced an explana-
tion of his claims as being due to an assumption about initial state of the system,
ultimately tied to an assumption about the initial conditions of the universe. To-
day, this is often called the past-hypothesis (cf. [Albert, 2000; Winsberg, 2004;
Callender, 2004; Earman, 2006]).

He ends his reply with the observation that while the mechanical conception of
gas theory agrees with the Clausius-Carnot conception [i.e. thermodynamics] in all
observable phenomena, a virtue of the mechanical view is that it might eventually
predict new phenomena, in particular for the motion of small bodies suspended
in fluids. These prophetic words were substantiated eight years later in Einstein’s
work on Brownian motion.

However, he does not respond to Zermelo’s requests for more definite proofs of
the claims (1) –(3), or of the equality of phase space volume and time averages
in particular. He bluntly states that he has thirty years of priority in measuring
probabilities by means of phase space volume (which is true) and adds that he has
always had done so (which is false). Even so, one cannot interpret this claim of
Boltzmann as a rejection of the time average conception of probability. A few lines
below, he claims that the most probable states will also occur most frequently, ex-
cept for a vanishingly small number of initial states. He does not enter into a proof
of this. Once again, this provides an instance where the Ehrenfests conjectured
that Boltzmann might have had the ergodic hypothesis in the back of his mind.

Remarks

Boltzmann’s replies to Zermelo have been recommended as “superbly clear and
right on the money” [Lebowitz, 1999, p. S347]. However, as will clear from the
above and the following remarks, I do not share this view. See also [Klein, 1973;
Curd, 1982; Batterman, 1990; Cercignani, 1998; Brush, 1999; Earman, 2006] for
other commentaries on the Zermelo-Boltzmann dispute.

1. The issues at stake It is clear that, in at least one main point of the dispute,
Boltzmann and Zermelo had been talking past each other. When Zermelo argued
that in the kinetic theory of gases there can be no continual approach towards a
final stationary state, he obviously meant this in the sense of a limit t −→ ∞.
But Boltzmann’s reply indicates that he took the “approach” as something that is
not certain but only probable, and as lasting for a very long, but finite time. His
graph of the H-curve makes abundantly clear that limt−→∞H(t) does not exist.

It is true that his statistical reading of the H-theorem, as laid down in the claims
(1)–(3) above, was already explicit in (Boltzmann 1895), and thus Boltzmann could

minimum of the H-curve, so that it increases in both directions of time. But by a similar
reasoning, that case is even less probable than the cases mentioned by Boltzmann.
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claim with some justification that his work had been overlooked. But in fairness,
one must note that, even in this period, Boltzmann was sending mixed messages
to his readers. Indeed, the first volume of Boltzmann’s Lectures on Gas Theory,
published in 1896, stressed, much like his original [1872] paper on the H-theorem,
the necessity and exceptionless generality of the H-theorem, adding only that the
theorem depended on the assumption of molecular disorder (as he then called the
Stoßzahlansatz ):46 “

[T]he quantity designated as H can only decrease; at most it can re-
main constant.[. . . ] The only assumption we have made here is that
the distribution of velocities was initially ‘molecularly disordered’ and
remains disordered. Under this condition we have therefore proved
that the quantity called H can only decrease and that the distribution
of velocities must necessarily approach the Maxwell distribution ever
more closely [Boltzmann, 1896, § 5, p. 38].

Zermelo might not have been alone in presuming that Boltzmann had intended
this last claim literally, and was at least equally justified in pointing out that
Boltzmann’s clarification “was not at all superfluous”.

On the other hand, Boltzmann misrepresented Zermelo’s argument as conclud-
ing that the mechanical view should be given up. As we have seen, Zermelo only
argued for a dilemma between the strict validity of the kinetic theory and the strict
validity of thermodynamics. Empirical matters were not relevant to Zermelo’s
analysis. Still, Boltzmann is obviously correct when he says that the objection
does not yet unearth a conflict with experience. Thus, his response would have
been more successful as a counter-argument to Poincaré than to Zermelo.

2. The statistical reading of the H-theorem. Another point concerns the
set of claims (1)–(3) that Boltzmann lays down for the behaviour of the H-curve.
Together, they form perhaps the most clearly stated and explicit form of the
“statistical reading of the H-theorem” (cf remark 3 on page 972). Yet they only
have a loose connection to the original theorem. It is unclear, for example, whether
these claims still depend on the Stoßzahlansatz, the assumption that the gas is
dilute, etc. It thus remains a reasonable question what argument we have for their
validity. Boltzmann offers none. In his 1895 paper in Nature, he argued as if
he had proved as much in his earlier papers, and added tersely: ”I will not here
repeat the proofs given in my papers” [Boltzmann, 1909, III p. 541]. But surely,
Boltzmann never proved anything concerning the probability of the time evolution
of H, and at this point there remains a gap in his theory. Of course, one might

46in his reply to Zermelo, Boltzmann claimed that his discussion of the H-theorem in the Lec-
tures on Gas theory was intended under the explicitly emphasized assumption that the number
of molecules was infinite, so that the recurrence theorem did not apply. However, I can find no
mention of such an assumption in this context. On the contrary, the first occasion on which this
latter assumption appears is in §6 on page 46 where it is introduced as “an assumption we shall
make later”, suggesting that the previous discussion did not depend on in it.
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speculate on ways to bridge this gap; e.g. that Boltzmann implicitly and silently
relied on the ergodic hypothesis, as the Ehrenfests suggested or in other ways, but
I refrain from discussing this further. The most successful modern attempt so far
to formulate and prove a statistical H-theorem has been provided by Lanford, see
paragraph 6.4 below.

5 GIBBS’ STATISTICAL MECHANICS

The birth of statistical mechanics in a strict sense, i.e. as a coherent and systematic
theory, is marked by the appearance of J.W. Gibbs’s book (1902) which carries
this title: Elementary Principles in Statistical Mechanics; developed with especial
reference to the rational foundation of thermodynamics. His point of departure is
a general mechanical system governed by Hamiltonian equations of motion, whose
(micro)states are represented by points in the mechanical phase space Γ.

Gibbs avoids specific hypotheses about the microscopic constitution of such a
system. He refers to the well-known problem concerning the anomalous values of
the specific heat for gases consisting of diatomic molecules (mentioned in footnote
10), and remarks:

Difficulties of this kind have deterred the author from attempting to
explain the mysteries of nature, and have forced him to be contented
with the more modest aim of deducing some of the more obvious propo-
sitions relating to the statistical branch of mechanics [Gibbs, 1902,
p. viii].

It is clear from this quote that Gibbs’ main concern was with logical coherence,
and less with the molecular constitution. (Indeed, only the very last chapter of
the book is devoted to systems composed of molecules.) This sets his approach
apart from Maxwell and Boltzmann.47

The only two ingredients in Gibbs’ logical scheme are mechanics and probability.
Probability is introduced here as an ingredient not reducible to the mechanical
state of an individual system, but by means of the now familiar “ensemble”:

We may imagine a great number of systems of the same nature, but
differing in the configurations and velocities which they have at a given
instant, and differing not merely infinitesimally, but it may be so as
to embrace every conceivable combination of configuration and veloc-
ities. And here we may set the problem, not to follow a particular
system through its succession of configurations, but to determine how
the whole number of systems will be distributed among the various
conceivable configurations and velocities at any required time, when
the distribution has been given for some one time [Gibbs, 1902, p. v].

47It also sets him apart from the approach of Einstein who, in a series of papers (1902, 1903,
1904) independently developed a formalism closely related to that of Gibbs, but used it as a probe
to obtain empirical tests for the molecular/atomic hypothesis (cf. [Gearhart, 1990; Navarro, 1998;
Uffink, 2006]).
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and

What we know about a body can generally be described most accu-
rately and most simply by saying that it is one taken at random from
a great number (ensemble) of bodies which are completely described.
(p. 163)

Note that Gibbs is somewhat non-committal about any particular interpretation
of probability. (Of course, most of the presently distinguished interpretations of
probability were only elaborated since the 1920s, and we cannot suppose Gibbs
to have pre-knowledge of those distinctions.) A modern frequentist (for whom a
probability of an event is the frequency with which that event occurs in a long
sequence of similar cases) will have no difficulty with Gibbs’ reference to an ensem-
ble, and will presumably identify that notion with von Mises’ notion of a Kollektiv.
On the other hand, authors like Jaynes who favour a subjectivist interpretation
of probability (in which the probability of an event is understood as a state of
knowledge or belief about that event) have emphasized that in Gibbs’ approach
the ensemble is merely ‘imagined’ and a tool for representing our knowledge.

The ensemble is usually presented in the form of a probability density function
ρ over Γ, such that

∫
A

ρ(x)dx is the relative number of systems in the ensemble
whose microstate x = (�q1, �p1; . . . ; �qN , �pN ) lies in the region A. The evolution of
an ensemble density ρ0 at time t = 0 is dictated by the Hamiltonian equations of
motion. In terms of the (formal) time evolution operator Tt, we get

(68) ρt(x) = ρ0(T−tx)

or, in differential form:

(69)
∂ρt(x)

∂t
= {H, ρ}

where {·, ·} denotes the Poisson bracket:

(70) {H, ρ} =
N∑
i=1

∂H

∂�qi

∂ρ

∂�pi
− ∂H

∂�pi

∂ρ

∂�qi

A case of special interest is that in which the density function is stationary, i.e.

(71) ∀t :
∂ρt(x)

∂t
= 0.

This is what Gibbs calls the condition of statistical equilibrium. Gibbs notes that
any density which can be written as a function of the Hamiltonian is stationary,
and proceeds to distinguish special cases, of which the most important are:

ρE(x) =
1

ω(E)
δ(H(x)− E) (microcanonical)(72)

ρθ(x) =
1

Z(θ)
exp(−H(x)/θ) (canonical)(73)

ρθ,α(x,N) =
1

N !Z(θ, α)
exp(−H(x)/θ + αN) (grand-canonical)(74)
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where ω(E), Z(θ) and Z(θ, α) are normalization factors. In the following I will
mainly discuss the canonical and microcanonical ensembles.

5.1 Thermodynamic analogies for statistical equilibrium

As indicated by the subtitle of the book, Gibbs’ main goal was to provide a ’rational
foundation’ for thermodynamics. He approaches this issue quite cautiously, by
pointing out certain analogies between relations holding for the canonical and
microcanonical ensembles and results of thermodynamics. At no point does Gibbs
claim to have reduced thermodynamics to statistical mechanics.

The very first analogy noticed by Gibbs is in the case of two systems, A and B
put into thermal contact. This is modeled in statistical mechanics by taking the
product phase space, ΓAB = ΓA×ΓB, and a Hamiltonian HAB = HA+HB+Hint.
If both A and B are described by canonical ensembles and if Hint is ‘infinitely
small’ compared to the system Hamiltonian, then the combined system will be
in statistical equilibrium if θA = θB . This, he says, “is entirely analogous to
. . . the corresponding case in thermodynamics” where “the most simple test of the
equality of temperature of two bodies is that they remain in thermal equilibrium
when brought into thermal contact” (ibid. p. 37). Clearly, Gibbs invites us to
think of statistical equilibrium as analogous to thermal equilibrium, and θ as the
analogue of the temperature of the system.48

A second point of analogy is in reproducing the ‘fundamental equation’ (23) of
thermodynamics:

(75) dU = TdS +
∑
i

Fidai

where ai are the so-called external parameters (e.g. volume) and Fi the associated
generalized forces (e.g. minus the pressure). For the canonical ensemble, Gibbs
derives a relation formally similar to the above fundamental equation:49

(76) d〈H〉 = θdσ −
∑
i

〈Ai〉dai.

Here, 〈H〉 is the expectation value of the Hamiltonian in the canonical ensemble,
θ the modulus of the ensemble, σ the so-called Gibbs entropy of the canonical
distribution:

(77) σ[ρθ] = −
∫

ρθ(x) ln ρθ(x)dx,

ai are parameters in the form of the Hamiltonian and the 〈Ai〉 = 〈 ∂H∂ai
〉 represent

48A more elaborate discussion of the properties of the parameter θ and their analogies to
temperature, is in Einstein (1902). That discussion also addresses the transitivity of thermal
equilibrium, i.e. the Zeroth Law of thermodynamics (cf. paragraph 2).

49See [Uhlenbeck and Ford, 1963; van Lith, 2001b] for details.
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the ‘generalized forces’.50 The equation suggests that the canonical ensemble
averages might serve as analogues of the corresponding thermodynamic quantities,
and θ and σ as analogues of respectively temperature and entropy.51

Note the peculiarly different role of θ and σ in (76): these are not expectations
of phase space functions, but a parameter and a functional of the ensemble density
ρθ. This has a significant conceptual implication. The former quantities may be
thought of as averages, taken over the ensemble of some property possessed by
each individual system in the ensemble. But for temperature θ and entropy σ,
this is not so. In the case of θ one can diminish this contrast — at least when H is
the sum of a kinetic and a potential energy term and the kinetic part is quadratic
in the momenta, i.e. H =

∑
i αip

2
i + U(q1, . . . qn) — because of the well-known

equipartition theorem. This theorem says that θ equals twice the expected kinetic
energy for each degree of freedom:

(78)
θ

2
= αi〈p2

i 〉θ.
Thus, in this case, one can find phase functions whose canonical expectation values
are equal to θ, and regard the value of such a function as corresponding to the
temperature of an individual system.52 But no function χ on phase space exists
such that

(79) σ[ρθ] = 〈χ〉θ for all θ.

Thus, the Gibbs entropy cannot be interpreted as an average of some property of
the individual members of the ensemble.

The next question is whether a differential equation similar to (76) can be
obtained also for the microcanonical ensemble. In this case, it is natural to con-
sider the same expressions 〈Ai〉 and 〈H〉 as above, but now taken as expectations
with respect to the microcanonical ensemble, so that obviously 〈H〉mc = E. The
problem is then to find the microcanonical analogies to T and S. [Gibbs, 1902,
p. 124–128, 169–171] proposes the following:

T ←→
(

d ln Ω(E)
dE

)−1

,(80)

S ←→ ln Ω(E),(81)

where

Ω(E) :=
∫
H(x)≤E

dp1 . . . dqn(82)

50A more delicate argument is needed if one wishes to verify that −〈 ∂H
∂V
〉 can really be identified

with pressure, i.e. the average force per unit area on the walls of the container. Such an argument
is given by [Martin-Löf, 1979, p. 21–25]

51A crucial assumption in this derivation is that the differential expressions represent infinites-
imal elements of quasistatic processes during which the probability density always retains its
canonical shape. This assumption is in conflict with a dynamical evolution [van Lith, 2001b,
p. 141].

52For proposals of more generally defined phase functions that can serve as an analogy of
temperature, see [Rugh, 1997; Jepps et al., 2000].
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is known as the integrated structure function.
Remarkably, in a later passage, [Gibbs, 1902, p. 172–178] also provides a second

pair of analogies to temperature and entropy, namely:

T ←→
(

d ln ω(E)
dE

)−1

(83)

S ←→ lnω(E),(84)

where ω is the structure function

ω(E) =
dΩ(E)

dE
=
∫
H(x)=E

dx.

For this choice, the relation (75) is again reproduced. Thus, there appears to be a
variety of choice for statistical mechanical quantities that may serve as thermody-
namic analogue. Although Gibbs discussed various pro’s and con’s of the two sets,
— depending on such issues as whether we regard the energy or the temperature
as an independent variable, and whether we prefer expected values of most prob-
able values — he does not reach a clear preference for one of them. (As he put it,
system (80,81) is the more natural, while system (83,84) is the simpler of the two.)
Still, Gibbs argued (ibid., p. 183) that the two sets of analogies will approximately
coincide for a very large number degrees of freedom. Nevertheless, this means
there remains an underdetermination in his approach that one can hope to avoid
only in the thermodynamic limit.

The expressions (81) and (84) are also known as the ‘volume entropy’ and
the ‘surface entropy’. In modern textbooks the latter choice has been by far
the most popular, perhaps because it coincides with the Gibbs entropy for the
microcanonical ensemble: σ[ρE ] = lnω(E). However, it has been pointed out
that there are also general theoretical reasons to prefer the volume entropy (81),
in particular because it is, unlike the surface entropy, an adiabatic invariant (see
[Hertz, 1910; Rugh, 2001; Campisi, 2005]).

Of course, all of this is restricted to (statistical) equilibrium. In the case of non-
equilibrium, one would obviously like to obtain further thermodynamical analogies
that recover the approach to equilibrium (the ‘Minus First Law’, cf. p. 939) and
an increase in entropy for adiabatic processes that start and end in equilibrium,
or even to reproduce the kinetic equations on a full statistical mechanical basis.
What Gibbs had to say on such issues will be the subject of the paragraphs 5.3
and 5.4.

But Gibbs also noted that a comparison of temperature and entropy with their
analogies in statistical mechanics “would not be complete without a consideration
of their differences with respect to units and zeros and the numbers used for their
numerical specification” [Gibbs, 1902, p.183]. This will be taken up below in §5.2.
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5.2 Units, zeros and the factor N !

The various expressions Gibbs proposed as analogies for entropy, i.e. (77,81,84),
were presented without any discussion of ‘units and zeros’, i.e. of their physical
dimension and the constants that may be added to these expressions. This was
only natural because Gibbs singled out those expressions for their formal merit
of reproducing the fundamental equation, in which only the combination TdS
appears. He discussed the question of the physical dimension of entropy by noting
that the fundamental equation remains invariant if we multiply the analogue for
temperature — i.e. the parameter θ in the canonical case, or the functions (80 or
(83) for the microcanonical case — by some constant K and the corresponding
analogues for entropy — (77), (81) and (84) — by 1/K. Applied to the simple
case of the monatomic ideal gas of N molecules, he concluded that, in order to
equate the analogues of temperature to the ideal gas temperature, 1/K should be
set equal to

(85)
1
K

=
2
3

cV
N

,

where cV is the specific heat at constant volume. He notes that “this value had
been recognized by physicists as a constant independent of the kind of monatomic
gas considered” [Gibbs, 1902, p. 185]. Indeed, in modern notation, 1/K = k, i.e.
Boltzmann’s constant.

Concerning the question of ‘zeros’, Gibbs noted that all the expressions pro-
posed as analogy of entropy had the dimension of the logarithm of phase space
volume and are thus affected by the choice of our units for length mass and time
in the form of some additional constant (cf. [Gibbs, 1902, p. 19,183]). But even
if some choice for such units is fixed, further constants could be added to the sta-
tistical analogs of entropy, i.e. arbitrary expressions that may depend on anything
not varied in the fundamental equation. However, their values would disappear
when differences of entropy are compared. And since only entropy differences have
physical meaning, a question of determining these constants would thus appear to
be immaterial. However, Gibbs went on to argue that “the principle that the en-
tropy of any body has an arbitrary additive constant is subject to limitations when
different quantities of the same substance are compared”[Gibbs, 1902, p. 206]. He
formulated further conditions on how the additive constant may depend on the
number N of particles in his final chapter.

Gibbs starts this investigation by raising the following problem. Consider the
phase (i.e. microstate) (�q1, �p1; . . . ; �qN , �pN ) of an N -particle system where the par-
ticles are said to be “indistinguishable”, “entirely similar” or “perfectly similar”.53

Now, if we perform a permutation on the particles of such a system, should we
regard the result as a different phase or not? Gibbs first argues that it “seems in
accordance with the spirit of the statistical method” to regard such phases as the

53Presumably, these terms mean (at least) that the Hamiltonian is invariant under their per-
mutation, i.e. they have equal mass and interact in exactly the same way.
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same. It might be urged, he says, that for such particles no identity is possible ex-
cept that of qualities, and when comparing the permuted and unpermuted system,
“nothing remains on which to base the identification of any particular particle of
the first system with any particular particle of the second” [Gibbs, 1902, p. 187].

However, he immediately rejects this argument, stating that all this would be
true for systems with “simultaneous objective existence”, but hardly applies to
the “creations of the imagination”. On the contrary, Gibbs argues:

“The perfect similarity of several particles of a system will not in the
least interfere with the identification of a particular particle in one case
and with a particular particle in another. The question is one to be
decided in accordance with the requirements of practical convenience
in the discussion of the problems with which we are engaged” [Gibbs,
1902, p. 188]

He continues therefore by exploring both options, calling the viewpoint in which
permuted phases are regarded as identical the generic phase, and that in which
they are seen as distinct the specific phase. In modern terms the generic phase
space is obtained as the quotient space of the specific phase space obtained by iden-
tifying all phase points that differ by a permutation (see [Leinaas and Myrheim,
1977]). In general, there are N ! different permutations on the phase of a system of
N particles,54 and there are thus N ! different specific phases corresponding to one
generic phase. This reduces the generic phase space measure by an overall factor
of 1

N ! in comparison to the specific phase space. Since the analogies to entropy all
have a dimension equal to the logarithm of phase space measure, this factor shows
up as an further additive constant to the entropy, namely − ln N ! in comparison
to an entropy calculated from the specific phase. Gibbs concludes that when N is
constant, “it is therefore immaterial whether we use [the generic entropy] or [the
specific entropy], since this only affects the arbitrary constant of integration which
is added to the entropy [Gibbs, 1902, p. 206].55

However, Gibbs points out that this is not the case if we compare the entropies
of systems with different number of particles. For example, consider two identical
gases, each with the same energy U , volume V and number of particles N , in
contiguous containers, and let the entropy of each gas be written as S(U, V,N).
Gibbs puts the entropy of the total system equal to the sum of the entropies:

(86) Stot = 2S(U, V,N).

Now suppose a valve is opened, making a connection between the two containers.
Gibbs says that “we do not regard this as making any change in the entropy,
although the gases diffuse into one another, and this process would increase the
entropy if the gases were different” [Gibbs, 1902, p. 206-7]. Therefore, the entropy
in this new situation is

54This assumes that the molecular states �pi, �qi) of the particles do not coincide. However the
points in specific phase space for which one or more molecular states do coincide constitute a set
of Lebesgue measure zero anyway.

55The same conclusion also obtains for the Boltzmann entropy (61) [Huggett, 1999].
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(87) S′
tot = Stot.

But the new system, is a gas with energy 2U , volume 2V , and particle number
2N . Therefore, we obtain:

(88) S′
tot = S(2U, 2V, 2N) = 2S(U, V,N),

where the right-hand side equation expresses the extensivity of entropy. This
condition is satisfied (at least for large N) by the generic entropy but not by the
specific entropy. Gibbs concludes “it is evident therefore that it is equilibrium
with respect to generic phases, and not that with respect to specific, with which
we have to do in the evaluation of entropy, . . . except in the thermodynamics of
bodies in which the number of molecules of the various kinds is constant” [Gibbs,
1902, p. 207].

The issue expressed in these final pages is perhaps the most controversial in
Gibbs’ book; at least it has generated much further discussion. Many later authors
have argued that the insertion of a factor 1/N ! in the phase space measure is oblig-
atory to obtain “correct” results and, ultimately due to a lack of any metaphysical
identity or “haecceity” of the perfectly similar particles considered. Some have
even gone on to argue that quantum mechanics is needed to explain this. For exam-
ple, [Huang, 1987, p. 154] writes “It is not possible to understand classically why we
must divide [. . . ] by N ! to obtain the correct counting of states. The reason is in-
herently quantum mechanical . . . ”. However, many others deny this [Becker, 1967;
van Kampen, 1984; Ray, 1984]. It would take me too far afield to discuss the var-
ious views and widespread confusion on this issue.

Let it suffice to note that Gibbs rejected arguments from the metaphysics of
identity for the creations of the imagination. (I presume this may be taken to
express that the phases of an N -particles system are theoretical constructs, rather
than material objects.) Further, Gibbs did not claim that the generic view was
correct and the specific view of incorrect; he preferred to settle the question by
“practical convenience”. There are indeed several aspects of his argument that
rely on assumptions that may be argued to be conventional. for example the
‘additivity’ demand (86) could be expanded to read more fully:

(89) Stot(U1, V1, N1;U2, V2, N2)+Ktot = S1(U1, V1, N1)+K1+S2(U2, V2, N2)+K2,

Applied to the special case where S1 and S2 are identical functions taken at the
same values of their arguments. The point to note here is that this relation only
leads to (86) if we also employ the conventions Ktot = K1 + K2 and K1 = K2.
Also, his cautious choice of words concerning (87) — “we do not regard this as
making any change” — suggest that he wants to leave open whether this equation
expresses a fact or a conventional choice on our part. But by and large, it seems
fair to say that Gibbs’ criterion for practical convenience is simply the recovery of
the properties usually assumed to hold for thermodynamic entropy.

As a final remark, note that the contrast mentioned here in passing by Gibbs,
i.e. that in thermodynamics the mixing of identical gases, by allowing them to
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diffuse into one another, does not change the entropy, whereas this process does
increase entropy if the gases are different, implicitly refers to an earlier discussion
of this issue in his 1875 paper [Gibbs, 1906, pp. 165–167]. The contrast between
the entropy of mixing of identical fluids and that of different fluids noted on that
occasion is now commonly known as the Gibbs paradox. (More precisely, this
‘paradox’ is that the entropy of mixing different fluids is a constant (kT ln 2 in the
above case) as long as the substances are different, and vanishes abruptly when
they are perfectly similar; thus negating the intuitive expectation one might have
had that the entropy of mixing should diminish gradually when the substances
become more and more alike). Now note that in the the specific view, mixing
different substances and mixing identical substances both lead to an entropy in-
crease: in that view there is no Gibbs paradox, since there is no abrupt change
when the substances become more and more alike. On the other hand, the adop-
tion of the generic view, i.e. the division of the phase space measure by N !, is
used by Gibbs to recover the usual properties of thermodynamic entropy including
the Gibbs paradox — the discontinuity between mixing of different and identical
gases.

Still, many authors seem to believe that the division by N ! is a procedure that
solves the Gibbs paradox. But this is clearly not the case; instead, it is the specific
viewpoint that avoids the paradox, while the generic viewpoint recovers the Gibbs
paradox for the statistical mechanical analogies to entropy. The irony of it all
is that, in statistical mechanics, the term “Gibbs paradox” is sometimes used to
mean or imply the absence of the original Gibbs paradox in the specific point
of view, so that a resolution of this “Gibbs paradox” requires the return of the
original paradox.

5.3 Gibbs on the increase of entropy

As we have seen, the Gibbs entropy may be defined as a functional on arbitrary
probability density functions ρ on phase space Γ:56

(90) σ[ρ] = −
∫

ρ(x) ln ρ(x)dx

This expression has many well-known and useful properties. For example, under
all probability densities restricted to the energy hypersurface H(x) = E, the mi-
crocanonical density (72) has the highest entropy. Similarly, one can show that of
all distributions ρ with a given expectation value 〈H〉ρ, the canonical distribution
(73) has the highest entropy, and that of all distributions for which both 〈H〉 and
〈N〉 are given, the grand-canonical ensemble has the highest entropy.

56Gibbs actually does not use the term entropy for this expression. He calls the function ln ρ
the “index of probability”, and −σ “the average index of probability”. As we have seen, Gibbs
proposed more than one candidate for entropy in the microcanonical ensemble, and was well
aware that: “ [t]here may be [. . . ], and there are, other expressions that may be thought to have
some claim to be regarded as the [. . . ] entropy with respect to systems of a finite number of
degrees of freedom” [Gibbs, 1902, p. 169].
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But suppose that ρ is not stationary. It will therefore evolve in the course
of time, as given by ρt(x) = ρ(T−tx). One might ask whether this entropy will
increase in the course of time. However, Liouville’s theorem implies immediately

(91) σ[ρt] = σ[ρ0].

In spite of the superficial similarity to Boltzmann’s H, the Gibbs entropy thus
remains constant in time. The explanation of the Second Law, or an approach to
equilibrium, cannot be so simple.

However, Gibbs warns us to proceed with great caution. Liouville’s theorem
can be interpreted as stating that the motion of ρt can be likened to motion in a
(multidimensional) incompressible fluid. He thus compared the evolution of ρ to
that of the stirring of a dye in a incompressible medium [Gibbs, 1902, p. 143-151].
In this case too, the average density of the dye, as well as the average of any
function of its density, does not change. Still, it is a familiar fact of experience
that by stirring tends to bring about a uniform mixture, or a state with uniform
density, for which the expression − ∫ ρ ln ρ dx would have increased to attain its
maximum value.

Gibbs saw the resolution of this contradiction in the definition of the notion
of density. This, of course, is commonly taken as the limit of the quantity of
dye in a spatial volume element, when the latter goes to zero. If we apply this
definition, i.e. take this limit first, and then consider the stirring motion, we will
arrive at the conclusion that − ∫ ρ ln ρdx remains constant. But if we consider the
density defined for a fixed finite (non-zero) volume element, and then stir for an
indefinitely long time, the density may become ’sensibly’ uniform, a result which is
not affected if we subsequently let the volume elements become vanishingly small.
The problem, as Gibbs saw it, is therefore one of the order in which we proceed
to take two limits.

Gibbs was aware that not all motions in phase space produce this tendency
toward statistical equilibrium, just as not every motion in an incompressible fluid
stirs a dy to a sensibly homogeneous mixture. Nevertheless, as he concluded
tentatively,: “We might perhaps fairly infer from such considerations as have been
adduced that an approach to a limiting condition of statistical equilibrium is the
general rule, when the initial condition is not of that character” [Gibbs, 1902,
p. 148].

5.4 Coarse graining

The most common modern elaboration of Gibbs’ ideas is by taking recourse to
a partitioning of phase space in cells, usually called “coarse graining. Instead
of studying the original distribution function ρ(x) we replace ρ(x)dx by its phase
average over each cell, by the mapping:

(92) CG : ρ(x) �→ CGρ(x) =
∑
i

ρ̂(i)11ωi
(x),
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where

(93) ρ̂(i) :=

∫
ωi

ρ(x)dx∫
ωi

dx
,

and 11 denotes the characteristic function:

(94) 11A(x) =
{

1 if x ∈ A,
0 elsewhere.

The usual idea is that such a partition matches the finite precision of our obser-
vational capabilities, so that a “coarse grained” distribution might be taken as a
sufficient description of what is observable. Obviously, the average value of any
function on Γ that does not vary too much within cells is approximately the same,
whether we use the fine-grained or the coarse-grained distribution.

For any ρ one can also define the coarse grained entropy Σ[ρ] as the composition
of (92) and (90):

(95) Σ[ρ] := σ[CGρ].

This coarse grained entropy need not be conserved in time. Indeed, it is easy to
show (cf. [Tolman, 1938, p. 172]). that:

(96) Σ[ρ] ≥ σ[ρ].

Hence, if we assume that at some initial time that ρ0 = CGρ0, e.g. if ρ0 ∝ 1
Vi

11ωi

for some cell i, then for all t:

(97) Σ[ρt] ≥ σ[ρt] = σ[ρ0] = Σ[ρ0].

However, this does not imply that Σ[ρt] is non-decreasing or that it approaches a
limiting value as t −→∞.

If a property, similar to the stirring of a dye holds for the dynamical evolution
of ρt, one may have

(98) lim
t−→∞Σ[ρt] = Σ[ρmc]

and hence, an approach towards equilibrium could emerge on the coarse-grained
level. This convergence will of course demand a non-trivial assumption about the
dynamics. In modern work this assumption is that the system has the mixing
property (see paragraph 6.1).

5.5 Comments

Gibbs’ statistical mechanics has produced a formalism with clearly delineated con-
cepts and methods, using only Hamiltonian mechanics and probability theory. It
can and is routinely used to calculate equilibrium properties of gases and other
systems by introducing a specific form of the Hamiltonian. The main problems
that Gibbs has left open are, first, the motivation for the special choice of the
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equilibrium ensembles and, second, that the quantities serving as thermodynamic
analogies are not uniquely defined. However, much careful work has been devoted
to show that, under certain assumptions about tempered interaction of molecules,
unique thermodynamic state functions, with their desired properties are obtained
in the ‘thermodynamic limit’ (cf. §6.3).

1. Motivating the choice of ensemble. While Gibbs had not much more to
offer in recommendation of these three ensembles than their simplicity as candi-
dates for representation for equilibrium, modern views often provide an additional
story. First, the microcanonical ensemble is particularly singled out for describing
an ensemble of systems in thermal isolation with a fixed energy E.

Arguments for this purpose come in different kinds. As argued by Boltzmann
(1868), and shown more clearly by Einstein (1902), the microcanonical ensemble
is the unique stationary density for an isolated ensemble of systems with fixed
energy, if one assumes the ergodic hypothesis. Unfortunately, for this argument,
the ergodic hypothesis is false for any system that has a phase space of dimension
2 or higher (cf. paragraph 6.1).

A related but more promising argument relies on the theorem that the measure
Pmc associated with the microcanonical ensemble via Pmc(A) =

∫
A

ρmc(x)dx is the
unique stationary measure under all measures that are absolutely continuous with
respect to Pmc, if one assumes that the system is metrically transitive (again, see
paragraph 6.1).

This argument is applicable for more general systems, but its conclusion is
weaker. In particular, one would now have to argue that physically interesting
systems are indeed metrically transitive, and why measures that are not absolutely
continuous with respect to the microcanonical one are somehow to be disregarded.
The first problem is still an open question, even for the hard-spheres model (as we
shall see in paragraph 6.1). The second question can be answered in a variety of
ways.

For example, [Penrose, 1979, p. 1941] adopts a principle that every ensemble
should be representable by a (piecewise) continuous density function, in order to
rule out “physically unreasonable cases”. (This postulate implies absolute con-
tinuity of the ensemble measure with respect to the microcanonical measure by
virtue of the Radon-Nikodym theorem.) See [Kurth, 1960, p. 78] for a similar
postulate. Another argument, proposed by [Malament and Zabell, 1980], assumes
that the measure P associated with a physically meaningful ensemble should have
a property called ‘translation continuity’. Roughly, this notion means that the
probability assigned to any measurable set should be a continuous function under
small displacements of that set within the energy hypersurface. Malament & Zabell
show that this property is equivalent to absolute continuity of P with respect to
μmc, and thus singles out the microcanonical measure uniquely if the system is
metrically transitive (see [van Lith, 2001b, for a more extensive discussion]).

A third approach, due to Tolman and Jaynes, more or less postulates the mi-
crocanonical density, as a appropriate description of our knowledge about the
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microstate of a system with given energy (regardless of whether the system is
metrically transitive or not).

Once the microcanonical ensemble is in place as a privileged description of an
isolated system with a fixed energy, one can motivate the corresponding status for
the other ensembles with relatively less effort. The canonical distribution is shown
to provide the description of a small system S1 in weak energetic contact with a
larger system S2, acting as a ‘heat bath’ (see [Gibbs, 1902, p. 180–183]). Here,
it is assumed that the total system is isolated and described by a microcanonical
ensemble, where the total system has a Hamiltonian Htot = H1 + H2 + Hint with
H2 � H1 � Hint. More elaborate versions of such an argument are given by
Einstein (1902) and Martin-Löf (1979). Similarly, the grand-canonical ensemble
can be derived for a small system that can exchange both energy and particles
with a large system. (see [van Kampen, 1984]).

2. The ‘equivalence’ of ensembles. It is often argued in physics textbooks
that the choice between these different ensembles (say the canonical and micro-
canonical) is deprived of practical relevance by a claim that they are all “equiva-
lent”. (See [Lorentz, 1916, p. 32] for perhaps the earliest version of this argument,
or [Thompson, 1972, p. 72; Huang, 1987, p. 161-2] for recent statements.) What is
meant by this claim is that if the number of constituents increases, N −→∞, and
the total Hamiltonian is proportional to N , the thermodynamic relations derived
from each of them will coincide in this limit.

However, these arguments should not be mistaken as settling the empirical
equivalence of the various ensembles, even in this limit. For example, it can
be shown that the microcanonical ensemble admits the description of certain
metastable thermodynamic states, (e.g. with negative heat capacity) that are ex-
cluded in the canonical ensemble (see [Touchette, 2003; Touchette et al., 2004, and
literature cited therein]).

3. The coarse-grained entropy. The coarse-graining approach is reminiscent
of Boltzmann’s construction of cells in his (1877b); cf. the discussion in para-
graph 4.4). The main difference is that here one assumes a partition on phase-
space Γ, where Boltzmann adopted it in the μ-space. Nevertheless, the same issues
about the origin or status of a privileged partition can be debated (cf. p. 977). If
one assumes that the partition is intended to represent what we know about the
system, i.e. if one argues that all we know is whether its state falls in a particular
cell ωi, it can be argued that the its status is subjective. If one argues that the
partition is meant to represent limitations in the precision of human observational
possibilities, perhaps enriched by instruments, i.e. that we cannot observe more
about the system than that its state is in some cell ωi, one might argue that its
choice is objective, in the sense that there are objective facts about what a given
epistemic community can observe or not. Of course, one can then still maintain
that the status of the coarse-graining would then be anthropocentric (see also the
discussion in §7.5). However, note that Gibbs himself did not argue for a prefer-
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ential size of the cells in phase space, but for taking the limit in which their size
goes to zero in a different order.

4. Statistical equilibrium. Finally, a remark about Gibbs’ notion of equilib-
rium. This is fundamentally different from Boltzmann’s 1877 notion of equilibrium
as the macrostate corresponding to the region occupying the largest volume in
phase space (cf. section 4.4). For Gibbs, statistical equilibrium can only apply to
an ensemble. And since any given system can be regarded as belonging to an infin-
ity of different ensembles, it makes no sense to say whether an individual system
is in statistical equilibrium or not. In contrast, in Boltzmann’s case, equilibrium
can be attributed to a single system (namely if the microstate of that system is
an element of the set Γeq ⊂ Γ). But it is not guaranteed to remain there for all
times.

Thus, one might say that in comparison with the orthodox thermodynamical
notion of equilibrium (which is both stationary and a property of an individual
system) Boltzmann (1877b) and Gibbs each made an opposite choice about which
aspect to preserve and which aspect to sacrifice. See [Uffink, 1996b; Callender,
1999; Lavis, 2005] for further discussions.

6 MODERN APPROACHES TO STATISTICAL MECHANICS

This section will leave the more or less historical account followed in the previ-
ous sections behind, and present a selective overview of some influential modern
approaches to statistical physics. In particular, we focus on ergodic theory (§ 6.1–
6.2), the theory of the thermodynamic limit §6.3, the work of Lanford on the
Boltzmann equation (§6.4), and the BBGKY approach in §6.5.

6.1 Ergodic theory

When the Ehrenfests critically reviewed Boltzmann’s and Gibbs’ approach to sta-
tistical physics in their renowned Encyclopedia article 1912, they identified three
issues related to the ergodic hypothesis.

1. The ambiguity in Boltzmann’s usage of “probability” of a phase space region
(as either the relative volume of the region or the relative time spent in the
region by the trajectory of the system).

2. The privileged status of the microcanonical probability distribution or other
probability distributions that depend only on the Hamiltonian.

3. Boltzmann’s argument that the microstate of a system, initially prepared in a
region of phase space corresponding to a non-equilibrium macrostate, should
tend to evolve in such a way that its trajectory will spend an overwhelmingly
large majority of its time inside the region of phase space corresponding to
the equilibrium macrostate Γeq.
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In all these three problems, a more or less definite solution is obtained by
adopting the ergodic hypothesis. Thus, the Ehrenfests suggested that Boltzmann’s
answer to the above problems depended on the ergodic hypothesis. As we have
seen, this is correct only for Boltzmann’s treatment of issue (2) in his 1868a. The
doubtful status of the ergodic hypothesis, of course, highlighted the unresolved
status of these problems in the Ehrenfests’ point of view.

In later works the “ergodic problem” has become more exclusively associated
with the first issue on the list above, i.e., the problem of showing the equality of
phase and time averages. This problem can be formulated as follows. Consider
a Hamiltonian system and some function f defined on its phase space Γ. The
(infinite) time average of f , for a system with initial state x0 may be defined as:

(99) f(x0) = lim
T→∞

1
T

∫ T

0

f(Ttx0)dt

where Tt is the evolution operator. On the other hand, for an ensemble of systems
with density ρt(x), the ensemble average of f is

(100) 〈f〉t =
∫

f(x)ρt(x)dx.

The ergodic problem is the question whether, or under which circumstances, the
time average and ensemble average are equal, i.e.: f(x0)

?= 〈f〉t. Note that there
are immediate differences between these averages. f depends on the initial state
x0, in contrast to 〈f〉. Indeed, each choice of an initial phase point gives rise to
another trajectory in phase space, and thus gives, in general, another time aver-
age. Secondly, 〈f〉 will in general depend on time, whereas f is time-independent.
Hence, a general affirmative answer to the problem cannot be expected.

However, in the case of a stationary ensemble (statistical equilibrium) the last
disanalogy disappears. Choosing an even more special case, the microcanonical
ensemble ρmc, the simplest version of the ergodic problem is the question:

(101) f(x0)
?= 〈f〉mc.

Now it is obvious that if Boltzmann’s ergodic hypothesis is true, i.e. if the
trajectory of the system traverses all points on the energy hypersurface ΓE , the
desired equality holds. Indeed, take two arbitrary points x and y in ΓE . The
ergodic hypothesis implies that there is a time τ such that y = Tτx. Hence:

f(y) = lim
T→∞

1
T

∫ T

0

f(Tt+τx)dt

= lim
T→∞

1
T

(∫ τ

0

f(Ttx)dt +
∫ T

0

f(Ttx)dt

)

= lim
T→∞

1
T

∫ T

0

f(Ttx)dt = f(x)
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In other words, f must be constant over ΓE , and hence, also equal to the micro-
canonical expectation value.

For later reference we note another corollary: the ergodic hypothesis implies
that ρmc is the only stationary density on ΓE (cf. section 4.1).

The Ehrenfests doubted the validity of the ergodic hypothesis, as Boltzmann
had himself, and therefore proposed an alternative, which they called the quasi-
ergodic hypothesis. This states that the trajectory lies dense in ΓE , i.e., xt will pass
through every open subset in ΓE , and thus come arbitrarily close to every point
in ΓE . The system may be called quasi-ergodic if this holds for all its trajectories.
As we have seen, this formulation seems actually closer to what Boltzmann may
have intended, at least in 1871, than his own literal formulation of the hypothesis.

Not long after the Ehrenfests’ review, the mathematical proof was delivered that
the ergodic hypothesis cannot hold if ΓE is a more than one-dimensional manifold
[Rosenthal, 1913; Plancherel, 1913]. The quasi-ergodic hypothesis, on the other
hand, cannot be immediately dismissed. In fact, it may very well be satisfied for
Hamiltonian systems of interest to statistical mechanics. Unfortunately, it has
remained unclear how it may contribute to a solution to the ergodic problem. One
might hope, at first sight, that for a quasi-ergodic system time averages and micro-
canonical averages coincide for continuous functions, and that the microcanonical
density ρmc is the only continuous stationary density. But even this is unknown. It
is known that quasi-ergodic systems may fail to have a unique stationary measure
[Nemytskii and Stepanov, 1960, p. 392]. This is not to say that quasi-ergodicity
has remained a completely infertile notion. In topological ergodic theory, the con-
dition is known under the name of “minimality”, and implies several interesting
theorems (see [Petersen, 1983, p. 152ff]).

While the Rosenthal-Plancherel result seemed to toll an early death knell over
ergodic theory in 1913, a unexpected revival occurred in the early 1930s. These
new results were made possible by the stormy developments in mathematics and
triggered by Koopman’s results, showing how Hamiltonian dynamics might be
embedded in a Hilbert space formalism where the evolution operators Tt are rep-
resented as a unitary group. This made a whole array of mathematical techniques
(e.g. spectral analysis) available for a new attack on the problem.

The first result was obtained by von Neumann in a paper under the promising
(but misleading) title “Proof of the Quasi-Ergodic Hypothesis” 1932. His theo-
rem was strengthened by G.D. Birkhoff in a paper entitled “Proof of the Ergodic
Theorem” 1931, and published even before von Neumann’s.

Since their work, and all later work in ergodic theory, involves more precise
mathematical notions, it may be worthwhile first to introduce a more abstract
setting of the problem. An abstract dynamical system is defined as a tuple
〈Γ,A, μ, T 〉, where Γ as an arbitrary set, A is a σ-algebra of subsets of Γ, called
the ‘measurable’ sets in Γ, and μ is a probability measure on Γ, and T denotes a
one-parameter group of one-to-one transformations Tt on Γ (with t ∈ R or t ∈ Z)
that represent the evolution operators. The transformations Tt are assumed to
be measure-preserving, i.e. μ(TtA) = μ(A) for all A ∈ A. In the more concrete
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setting of statistical mechanics, one may take Γ to be the energy hypersurface, A
the collection of its Borel subsets, μ the microcanonical probability measure and
T the evolution induced by the Hamiltonian equations.

The von Neumann-Birkhoff ergodic theorem can be formulated as follows:

Ergodic theorem: Let 〈Γ,A, μ, T 〉 be any dynamical system and f
be an integrable function on Γ. Then

(i) f(x) = limT→∞ 1
T

∫ T
0

f(Ttx)dt exists for almost all x;
i.e. the set of states x ∈ Γ for which f(x) does not exist has
μ-measure zero.

(ii) f(x) = 〈f〉μ for almost all x iff the system is metrically transitive.

Here, metric transitivity means that it is impossible is to carve up Γ in two regions
of positive measure such that any trajectory starting in one region never crosses
into the other. More precisely:

Metric transitivity: A dynamical system is called metrically tran-
sitive57 iff the following holds: for any partition of Γ into disjoint sets
A1, A2 such that TtA1 = A1 and TtA2 = A2, it holds that μ(A1) = 0
or μ(A2) = 0.

It is not difficult to see why this theorem may be thought of as a successful so-
lution of the original ergodic problem under a slight reinterpretation. First, metric
transitivity captures in a measure-theoretic sense the idea that trajectories wan-
der wildly across the energy hypersurface, allowing only exceptions for a measure
zero set. Secondly, the theorem ensures the equality of time and microcanonical
ensemble average, although only for integrable functions and, again, with the ex-
ception of a measure zero set. But that seemed good enough for the taste of most
physicists.

The ergodic theorem was therefore celebrated as a major victory. In the words
of Reichenbach:

Boltzmann introduced [. . . ] under the name of ergodic hypothesis [. . . ]
the hypothesis that the phase point passes through every point of the
energy hypersurface. This formulation is easily shown to be untenable.
It was replaced by P. and T. Ehrenfest by the formulation that the
path comes close to every point within any small distance ε which we
select and which is greater than 0.

There still remained the question whether the ergodic hypothesis must
be regarded as an independent supposition or whether it is derivable
from the canonical equations, as Liouville’s theorem is.

57This name is somewhat unfortunate, since the condition has nothing to do with metric in
the sense of distance, but is purely measure-theoretical. Metrically transitive systems are also
called ‘metrically indecomposable’ or, especially in the later literature ‘ergodic’. I will stick to
the older name in order to avoid confusion with the ergodic hypothesis.
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This problem[ . . . ] was finally solved through ingenious investigations
by John von Neumann and George Birkhoff, who were able to show
that the second alternative is true. [. . . ] With von Neumann and
Birkhoff’s theorem, deterministic physics has reached its highest degree
of perfection: the strict determinism of elementary processes is shown
to lead to statistical laws for macroscopic occurrences.” [Reichenbach,
1956, p. 78]

Unfortunately, nearly everything stated in this quotation is untrue.

Problems

1. Do metrically transitive systems exist? An immediate question is of
course whether metrically transitive systems exist. In a mathematical sense of
‘exist’ the answer is affirmative. More interesting is the question of whether one
can show metric transitivity for any model that is realistic enough to be relevant
to statistical mechanics.

A few mechanical systems have been explicitly proven to be metrically transi-
tive. For example: one hard sphere moving in a vessel with a convex scatterer,
or a disc confined to move in a ‘stadium’ (two parallel line-segments connected by
two half circles) or its three-dimensional analogue: one hard sphere moving in a
cylinder, closed on both sides by half-spheres. But in statistical mechanics one is
interested in systems with many particles.

In [1963], Sinai announced he had found a proof that a gas consisting of N hard
spheres is metrically transitive. The ergodic theorem thus finally seemed to be
relevant to physically interesting gas models. Of course, the hard-spheres-model
is an idealization too, but the general expectation among physicists was that a
transition to more sophisticated models of a gas system would only make the
metric transitivity even more likely and plausible, even though admittedly harder
to prove.

The problem proves to be extraordinarily tedious, and Sinai’s proof was com-
plicated and, actually, never completely published. But many partial results were.
In fact, the development of ideas and techniques needed for the effort contributed
much to the emergence of a vigorous mathematical theory, nowadays called ‘er-
godic theory’. And since Sinai’s claim seemed so desirable, many books and arti-
cles presented the claim as a solid proven fact (e.g. [Lebowitz and Penrose, 1973;
Sklar, 1993]).

But by the 1980s, the delay in the publication of a complete proof started to
foster some doubts about the validity of the claim. Finally, [Sinai and Chernov,
1987, p. 185] wrote: “The announcement made in [[Sinai, 1963]] for the general
case must be regarded as immature.” What has been shown rigorously is that a
system of three hard spheres is metrically transitive. Recently, the problem has
been taken further by [Szász, 1996] and [Simányi and Szász, 1999]. They have
ascertained that for a model of N hard spheres, the ergodic component, i.e. a
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subset of the energy hypersurface on which the assumption of metric transitivity
holds has positive measure. The full problem, however, still awaits solution.

2. Infinite times. In the definition of the time average (99) the limit T →∞
is taken. This brings along a number of problems:

(i). The time average is interesting because it is experimentally accessible. The
hope is that it represents the equilibrium value of f . But the limit T → ∞
tells us nothing about what happens in a finite time. What is empirically
accessible, at best, is the quantity 1

T

∫ T
0

f(Ttx0)dt for a large but finite T .
This expression can still deviate arbitrarily far from the limiting value.

(ii). The limit may even exist while the system is not in equilibrium. A time-
averaged value need not be an equilibrium value, because in general

(102) lim
T→∞

1
T

∫ T

0

f(Ttx) dt �= lim
t→∞ f(Ttx).

For periodical motions, for example, the left-hand side exists but the right-
hand side does not.

(iii) Empirically, equilibrium often sets in quite rapidly. But the time T needed
to make 1

T

∫ T
0

f(Ttx0)dt even remotely close to 〈f〉mc might be enormous,
namely of the order of Boltzmann’s estimate of the Poincaré-recurrence
times! (See also [Jaynes, 1967, p. 94].)

3. The measure-zero problem. The result that the ergodic theorem provides
is that for metrically transitive systems f(x) = 〈f〉mc except for a set of microstates
with measure zero. So the suggestion here is that this set of exceptions is in
some sense negligible. And, as judged from the probability measure μmc, that
is obviously true. But a set of measure zero need not be negligible in any other
sense. It is well-known that if one compares ‘smallness in measure’ with other
natural criteria by which one can judge the ‘size’ of sets, e.g. by their cardinality,
dimension or Baire category, the comparisons do not match. Sets of measure zero
can be surprisingly large by many other standards [Sklar, 1993, pp. 181–188].

More importantly, one might choose another measure μ′, such that μ-measure
zero sets are no longer sets of μ′-measure zero and conversely. It is of course the
choice of the measure that determines which sets have measure zero. Thus, if
one decides to disregard or neglect sets with a microcanonical measure zero, a
privileged status of the microcanonical measure is already presupposed. But this
means the virtue of the ergodic theorem as a means of motivating a privileged role
of the microcanonical measure is diminished to a self-congratulating one.
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6.2 The mixing property, K systems and Bernoulli systems

Ergodic theory, the mathematical field that emerged from the theorems of Birkhoff
and von Neumann, may be characterized as a rigorous exploration of the question
to what extent a deterministic, time-reversal invariant dynamical system may give
rise to random-like behaviour on a macroscopic scale, by assuming various special
properties on its dynamics.

In its modern incarnation, this theory distinguishes a hierarchy of such prop-
erties that consists of various strengthenings of metric transitivity. Perhaps the
most important are the mixing property, the property of being a ‘K system’ and
the Bernoulli systems. The higher up one goes this ladder, the more ‘random’
behaviour is displayed. The evolution at the microlevel is in all cases provided
by the deterministic evolution laws. In the (extensive) literature on the subject,
many more steps in the hierarchy are distinguished (such as ‘weak mixing’, ‘weak
Bernoulli’, ‘very weak Bernoulli’ etc.), and also some properties that do not fit into
a strict linear hierarchy (like the ‘Anosov’ property, which relies on topological no-
tions rather than on a purely measure-theoretical characterization of dynamical
systems). It falls beyond the scope of this paper to discuss them.

Mixing

The idea of mixing is usually attributed to Gibbs, in his comparison of the evolution
of ensembles with stirring of a dye into an incompressible fluid (cf. section 5.4).
Even if initially the fluid and the dye particles occupy separate volumes, stirring
will eventually distribute the dye particles homogeneously over the fluid. The
formal definition is:

Mixing: A dynamical system 〈Γ,A, μ, T 〉 is called mixing iff ∀A,B ∈
A
(103) lim

t→∞μ(TtA ∩B) = μ(A)μ(B).

In an intuitive sense the mixing property expresses the idea that the dynamical
evolution will thoroughly stir the phase points in such a way that points initially
contained in A eventually become homogeneously distributed over all measurable
subsets B of Γ. One can easily show that mixing is indeed a stronger property
than metric transitivity, by applying the condition to an invariant set A and choos-
ing B = A. The converse statement does not hold. (E.g.: the one-dimensional
harmonic oscillator is metrically transitive but not mixing).

Again, there is an interesting corollary in terms of probability measures or
densities. Consider a mixing system, and a time-dependent probability density ρt,
such that ρt is absolutely continuous with respect to the microcanonical measure
μ. (This means that all sets A ∈ A with μ(A) = 0, also have

∫
A

ρt(x)dx = 0, or
equivalently, that ρt is a proper density function that is integrable with respect
to μ.) In this case, the probability measure associated with ρt converges, as
t −→ ∞, to the microcanonical measure. Thus, an ensemble of mixing systems
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with an absolutely continuous density will asymptotically approach to statistical
equilibrium. Note that the same result will also hold for t −→ −∞, so that there
is no conflict with the time reversal invariance. Is it in conflict with Poincaré’s
recurrence theorem? No, the recurrence theorem is concerned with microstates
(phase points), and not probability densities. Even when almost all trajectories
eventually return close by their original starting point, the recurrence time will
differ for each phase point, so that the evolution of an ensemble of such points can
show a definite approach to statistical equilibrium.

Note also that if the result were used as an argument for the privileged status
of the microcanonical measure (viz., as the unique measure that all absolutely
continuous probability distributions evolve towards), the strategy would again be
marred by the point that the condition of absolute continuity already refers to the
microcanonical measure as a privileged choice.

Despite the elegance of the mixing property, we can more or less repeat the
critical remarks made in the context of the ergodic theorem. In the first place,
the condition considers the limit t→∞, which implies nothing about the rate at
which convergence takes place. Secondly, the condition imposed is trivially true
if we choose A or B to be sets of measure zero. Thus, the mixing property says
nothing about the behaviour of such sets during time evolution. And thirdly, one
is still faced with the question whether the mixing property holds for systems that
are physically relevant for statistical mechanics. And since the property is strictly
stronger than metric transitivity, this problem is at least as hard.

K systems

The next important concept is that of a K system (‘K’ after Kolmogorov). For
simplicity, we assume that time is discrete, such that Tt = T t, for t ∈ Z. There
is a perfectly analogously defined concept for continuous time, called K flows (cf.
Emch, this volume, Definition 10.3.2).

K System:58 A dynamical system 〈Γ,A, μ, T 〉 is called a K system if
there is a subalgebra A0 ⊂ A, such that

1. TnA0 ⊂ TmA0 for times m < n; where ⊂ denotes proper inclu-
sion.

2. the smallest σ-algebra containing ∪∞n=1T
−nA0 is A.

3. ∩∞n=1T
nA0 = N , where N is the σ-algebra containing only sets

of μ-measure zero or one.

At first sight, this definition may appear forbiddingly abstract. One may gain
some intuition by means of the following example. Consider a finite partition

58There is a considerable variation in the formulation of this definition [Cornfeld et al., 1982;
Batterman, 1991; Berkovitz et al., 2006]. The present formulation adds one more. It is identical
to more common definitions if one replaces n and m in the exponents of T by −n and −m
respectively.
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α = {A1, . . . Am} of Γ into disjoint cells and the so-called coarse-grained history
of the state of the system with respect to that partition. That is, instead of the
detailed trajectory xt, we only keep a record of the labels i of the cell Ai in which
the state is located at each instant of time, until time t=0:

(104) . . . i−k, . . . , i−3, i−2, i−1, i0 i−k ∈ {1, . . . , m}, k ∈ N.

This sequence is completely determined by the microstate x at t = 0:

(105) i−k(x) =
m∑
j=1

j11Aj
(T−kx)

where 11 denotes the characteristic function (94). Yet, as we shall see, for a K
system, this sequence typically behaves in certain respects like a random sequence.
Observe that

(106) i−k(x) = j ⇐⇒ T−kx ∈ Aj ⇐⇒ x ∈ T kAj ;

so we can alternatively express the coarse-grained history by means of evolutions
applied to the cells in the partition. If Tα := {TA1, . . . , TAm}, let α ∨ Tα :=
{Ai ∪ TAj : i, j = 1, . . . m} denote the common refinement of α and Tα. Saying
that x belongs to Ai∪TAj is, of course, equivalent to providing the last two terms
of the sequence (104). Continuing in this fashion, one can build the refinement

(107)
∞∨
k=0

T kα = α ∨ Tα ∨ T 2α · · · ∨ T kα ∨ · · · ,

each element of which corresponds to a particular coarse-grained history (104) up
to t=0. The collection (107) is no longer finite, but still a countable partition of
Γ.

Now take A0 to be the σ-algebra generated from the partition
∨∞
k=0 T kα.

Clearly, the events in this algebra are just those whose occurrence is completely
decided whenever the coarse-grained history is known. In other words, for all
A ∈ A0, μ(A|C) is zero or one, if C is a member of (107). It is easy to see that
T−mA0 is just the σ-algebra generated from T−m∨∞

k=0 T kα =
∨∞
k=−m T kα, i.e.

from the partition characterizing the coarse-grained histories up to t = m. Since
the latter partition contains the history up to t = n for all n < m, we have:

(108) T−mA0 ⊆ T−nA0 for all n < m.

This is equivalent to condition 1, but with ‘⊂’ replaced by ‘⊆’.
Further, to explain condition 2, note that the smallest σ-algebra containing

∪Nn=1T
−nA0 is generated by the union of the partitions

∨∞
k=−n T kα for all n ≤ N ,

which in view of (108) is just T−NA0. Thus, condition 2 just says that if we extend
the record of the coarse-grained history to later times t = N > 0, and let N −→∞,
the partition eventually becomes sufficiently fine to generate all measurable sets
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in A. This is a strong property of the dynamics. It means that the entire coarse-
grained record, extending from −∞ to ∞, provides all information needed to
separate all the measurable sets in A, (except, possibly, if they differ by a measure
zero set.)

Similarly, in order to explain condition 3, note that (108) implies that ∩Nn=1T
nA0 =

TNA0, which is generated from
∨∞
k=0 T kα, i.e., the coarse-grained histories up to

time −N . Thus, condition 3 expresses the demand that, as we let N −→ ∞, the
class of events that are settled by the coarse-grained histories up to time t = −N
shrinks to the ‘trivial’ algebra of those sets that have probability one or zero. In
other words, for every event A ∈ A, with 0 < μ(A) < 1, the occurrence of A is
undecided at some early stage of the coarse-grained history.

Yet the truly remarkable feature of K systems lies in the strict inclusion de-
manded in condition 1: at any time n, the collection of events decided by the
coarse-grained histories up to n, is strictly smaller than the collection of events
decided at time n+1. Since the latter is generated from the former by adding the
partition T−(n+1)α to the partition

∨
T−kα, this means that at each time n the

question which cell of the partition is occupied at time n+1 is not answerable from
the knowledge of the previous coarse-grained history. This is quite a remarkable
property for a sequence generated by a deterministic law of motion, although, of
course, it is familiar for random sequences such as tosses with a die or spins of a
roulette wheel.

In this attempt at elucidation, we have presupposed a particular finite partition
α. One may ask whether there always is, for each Kolmogorov system, such a
partition. The answer is yes, provided the system obeys some mild condition
(that 〈Γ,A, μ〉 is a Lebesgue space).59 Another question is whether the claims
made about coarse-grained histories are specific for this particular partition. The
answer is no. One may show that, given that they hold for some partition α,
they also hold for any choice of a finite partition of Γ. (Very roughly speaking:
because the partition

∨
n Tnα generates the σ-algebra of all events, the coarse-

grained histories constructed from another finite partition can be reconstructed in
terms of the coarse-grained histories in terms of α.

Bernoulli systems

The strongest property distinguished in the ergodic hierarchy is that of Bernoulli
systems. To introduce the definition of this type of dynamical systems, it is useful
to consider first what is usually known as a ‘Bernoulli’ scheme. Consider an elemen-
tary chance set-up with outcomes {A1, . . . Am} and probabilities pj . A Bernoulli
scheme is defined as the probability space obtained from doubly infinite sequences
of independent identically distributed repetitions of trials on this elementary set-
up. Formally, a Bernoulli scheme for a set (or “alphabet”) α = {1, . . . , m} with

59Roughly, this condition means that 〈Γ,A, μ〉 is isomorphic (in a measure-theoretic sense) to
the interval [0, 1], equipped with the Lebesgue measure. (See [Cornfeld et al., 1982, p. 449] for
the precise definition).
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probabilities {pj} is the probability space 〈Γ,A, μ〉, where Γ is the set of all doubly
infinite sequences

(109) η = (. . . , i−2, i−1, io, i1, i2 . . . , ) ik ∈ {1, . . . , m}; k ∈ Z

and A is defined as the smallest σ-algebra on Γ containing the sets:

(110) Aj
k := {η ∈ Γ : ik = j}.

A is also known as the cylinder algebra. Further, we require of a Bernoulli scheme
that:

(111) μ(Aj
k) = pj for all k ∈ Z.

One can turn this probability space into a dynamical system by introducing the
discrete group of transformations Tm, m ∈ Z, where T denotes the shift, i.e. the
transformation on Γ that shifts each element of a sequence η one place to the left:

(112) For all k ∈ Z: T (ik) = ik−1.

Thus we define:

Bernoulli system: A dynamical system 〈Γ,A, μ, T 〉 with a discrete
time evolution T is a Bernoulli-system iff there is a finite partition
α = {A1, . . . , Am} of Γ such that the doubly infinite coarse-grained
histories are (isomorphic to) a Bernoulli scheme for α with distribution

(113) pi = μ(Ai) i ∈ {1, . . . m}.
Thus, for a Bernoulli system, the coarse-grained histories on α behave as ran-

domly as independent drawings from an urn. These histories show no correlation
at all, and the best prediction one can make about the location of the state at
time n + 1, even if we know the entire coarse-grained history from minus infinity
to time n, is no better than if we did not know anything at all. One can show that
every Bernoulli-system is also a K-system, but that the converse need not hold.

Discussion

Ergodic theory has developed into a full-fledged mathematical discipline with nu-
merous interesting results and many open problems (for the current state of the
field, see [Cornfeld et al., 1982; Petersen, 1983; Mañé, 1987]). Yet the relevance of
the enterprise for the foundations of statistical mechanics is often doubted. Thus
[Earman and Rédei, 1996] argue that the enterprise is not relevant for explaining
‘why phase averaging works’ in equilibrium statistical mechanics; [Albert, 2000,
p. 70] even calls the effort poured into rigorous proofs of ergodicity “nothing more
nor less — from the standpoint of foundations of statistical mechanics — than a
waste of time”. (For further discussions, see: [Farquhar, 1964; Sklar, 1973; Fried-
man, 1976; Malament and Zabell, 1980; Leeds, 1989; van Lith, 2001a; Frigg, 2004;
Berkovitz et al., 2006])
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This judgment is usually based on the problems already indicated above; i.e. the
difficulties of ascertaining that even the lowest property on the ergodic hierarchy
actually obtains for interesting physical models in statistical mechanics, the empir-
ical inaccessibility of infinite time averages, and the measure zero problem. Also,
one often appeals to the Kolmogorov-Arnold-Moser (KAM) results60 in order to
temper the expectations that ergodicity could be a generic property of Hamilto-
nian systems. These difficulties are serious, but they do not, in my opinion, justify
a definitive dismissal of ergodic theory.

Instead, it has been pointed out by [Khinchin, 1949; Malament and Zabell, 1980;
Pitowsky, 2001] that further progress may be made by developing the theory in
conditions in which (i) the equality of ensemble averages and time averages need
not hold for all integrable functions, but for only a physically motivated subclass,
(ii) imposing conditions that fix the rate of convergence in the infinite time limits
in (99) and (103) and (iii) relaxing the conditions on what counts as an equilibrium
state. Indeed important progress concerning (i) has been achieved in the ‘theory
of the thermodynamic limit’, described in paragraph 6.3. It is clear that further
alterations may be mathematically obstreperous; and that any results that might
be obtained will not be as simple and general as those of the existing ergodic theory.
But there is no reason why progress in these directions should be impossible. See
e.g. [Vranas, 1998; van Lith, 2001b].

The measure zero problem, I would argue, is unsolvable within any “merely”
measure-theoretic setting of the kind we have discussed above. The point is, that
any measure theoretic discussion of dynamical systems that differ only on mea-
sure zero sets are, in measure-theoretical terms, isomorphic and usually identified.
Measure theory has no way of distinguishing measure zero sets from the empty
set. Any attempt to answer the measure zero problem should call upon other
mathematical concepts. One can expect further light only by endowing the phase
space with further physically relevant structure, e.g. a topology or a symplectic
form (cf. [Butterfield, 2006; Belot, 2006]).

Furthermore, even if ergodic theory has little of relevance to offer to the ex-
planation of ‘why phase averaging works’ in the case of equilibrium statistical
mechanics, this does not mean it is a waste of time. Recall that the equality of
phase and time averages was only one of several points on which the Ehrenfests
argued that claims by Boltzmann could be substantiated by an appeal to the
ergodic hypothesis. Another point was his (1877) claim that a system initially
in a non-equilibrium macrostate should tend to evolve towards the equilibrium
macrostate.

60Quite roughly, the KAM theorems show that some Hamiltonian systems for which trajectories
are confined to an invariant set in phase space of small positive measure — and therefore not
metrically transitive — , will continue to have that property when a sufficiently small perturbation
is added to their Hamiltonian (for a more informative introduction, see [Tabor, 1989]). This
conclusion spoilt the (once common) hope that non-metrically transitive systems were rare and
idealized exceptions among Hamiltonian systems, and that they could always be turned into a
metrically transitive system by acknowledging a tiny perturbation from their environment. As we
have seen (p. 958), Boltzmann (1868) had already expressed this hope for the ergodic hypothesis.
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It is ironic that some critics of ergodic theory dismiss the attempt to show in
what sense and under which conditions the microstate does display a tendency
to wander around the entire energy hypersurface as irrelevant, while relying on
a rather verbal and pious hope that this will “typically” happen without any
dynamical assumption to fall back on. Clearly, the ergodic hierarchy might still
prove relevant here.

Still, it is undeniable that many concrete examples can be provided of systems
that are not ergodic in any sense of the word and for which equilibrium statistical
mechanics should still work. In a solid, say an ice cube, the molecules are tightly
locked to their lattice site, and the phase point can access only a minute region
of the energy hypersurface. Similarly, for a vapour/liquid mixture in a ∩-shaped
vessel in a gravity field, molecules may spend an enormously long proportion of
time confined to the liquid at the bottom of one leg of the vessel, even though the
region corresponding to being located in the other leg is dynamically accessible.
And still one would like to apply statistical mechanics to explain their thermal
properties.

Summing up, even admitting that ergodic theory cannot provide the whole
story in all desired cases does not mean it is irrelevant. I would argue that,
on a qualitative and conceptual level, one of the most important achievements of
ergodic theory is that it has made clear that strict determinism on the microscopic
level is not incompatible with random behaviour on a macroscopic level, even in
the strong sense of a Bernoulli system. This implies that the use of models with
a stochastic evolution like urn drawings, that Boltzmann used in 1877, or the
dog flea model of the Ehrenfests, (cf. §7.2), are not necessarily at odds with an
underlying deterministic dynamics.

6.3 Khinchin’s approach and the thermodynamic limit

In the ‘hard core’ version of ergodic theory, described in the previous two para-
graphs, one focuses on abstract dynamical systems, i.e. the only assumptions used
are about a measure space equipped with a dynamical evolution. It is not neces-
sary that this dynamics arises from a Hamiltonian. Further, it is irrelevant in this
approach whether the system has a large number of degrees of freedom. Indeed,
the ‘baker transformation’, an example beloved by ergodic theorists because it
provides a dynamical system that possesses all the properties distinguished in the
ergodic hierarchy, uses the unit square as phase space, and thus has only two de-
grees of freedom. On the other hand, Hamiltonian systems with large numbers of
degrees of freedom, may fail to pass even the lowest step of the ergodic hierarchy,
i.e. metric transitivity.

This aspect of ergodic theory is often criticized, because the thermal behaviour
of macroscopic systems that the foundations of statistical mechanics ought to
explain, arguably appears only when their number of degrees of freedom is huge.
As Khinchin puts it:

All the results obtained by Birkhoff and his followers [...] pertain to
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the most general type of dynamic systems [...]. The authors of these
studies have not been interested in the problem of the foundations of
statistical mechanics which is our primary interest in this book. Their
aim was to obtain the results in the most general form; in particular all
these results pertain equally to the systems with only a few degrees of
freedom as well as to the systems with a very large number of degrees
of freedom.

From our point of view we must deviate from this tendency. We would
unnecessarily restrict ourselves by neglecting the special properties of
the systems considered in statistical mechanics (first of all their funda-
mental property of having a very large number of degrees of freedom)
[...]. Furthermore, we do not have any basis for demanding the possibil-
ity of substituting phase averages for the time averages of all functions;
in fact the functions for which such substitution is desirable have many
specific properties which make such a substitution apparent in these
cases (Khinchin, 1949, p. 62).

Thus, partly in order to supplement, partly in competition to ergodic theory,
Khinchin explored an approach to the ergodic problem that takes the large number
of degrees of freedom as an essential ingredient, but only works for a specific class
of functions, the so-called sum functions.

In particular, consider a Hamiltonian dynamical system 〈Γ,A, T, μ〉 of N point
particles. That is, we assume: x = (�q1, �p1; . . . ; �qN , �pN ) ∈ Γ ⊂ R

6N . A function f
on Γ is a sum function if

(114) f(x) =
N∑
i=1

φi(xi)

where xi = (�pi, �qi) is the molecular state of particle i.61 Under the further as-
sumption that the Hamiltonian itself is a sum function, Khinchin proved:

Khinchin’s ergodic theorem: For all sum functions f there are
positive constants κ1, κ2 such that, for all N :

(115) μ

({
x ∈ Γ :

∣∣∣∣∣f(x)− 〈f〉μ
〈f〉μ

∣∣∣∣∣ ≥ κ1N
−1/4

})
≤ κ2N

−1/4

In words: as N becomes larger and larger, the measure of the set where f̄ and 〈f〉
deviate more than a small amount goes to zero.

This theorem, then, provides an alternative strategy to address the ergodic prob-
lem: it says that time average and microcanonical phase average of sum functions
will be roughly equal, at least in a very large subset of the energy hypersurface,

61Note that Khinchin does not demand that sum functions are symmetric under permutation
of the particles.
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provided that the number of particles is large enough. Of course, this ‘rough equal-
ity’ is much weaker than the strict equality ‘almost everywhere’ stated in the von
Neumann-Birkhoff ergodic theorem. Moreover, it holds only for the sum functions
(114). However, the assumption of metric transitivity is not needed here; nor is
any of the more stringent properties of the ergodic hierarchy.

The advantages of this approach to the ergodic problem are clear: first, one
avoids the problem that ergodic properties are hard to come by for physically
interesting systems. Second, an important role is allotted to the large number of
degrees of freedom, which, as noted above, seems a necessary, or at least welcome
ingredient in any explanation of thermal behaviour,62 and thirdly a physically
motivated choice for special functions has been made.

However, there are also problems and drawbacks. First, with regard to the
“infinite-times” problem (cf. p. 1010), Khinchin’s approach fares no better or worse
than the original ergodic approach. Second, since the rough equality does not hold
“almost everywhere” but outside of a subset whose measure becomes small when
N is large, the measure-zero problem of ergodic theory (p. 1010) is now replaced
by a so-called “measure-epsilon problem”: if we wish to conclude that in practice
the time average and the phase average are (roughly) equal, we should argue that
the set for which this does not hold, i.e. the set in the left-hand side of (115) is
negligible. This problem is worse than the o measure-zero problem. For example,
we cannot argue that ensembles whose density functions have support in such sets
are excluded by an appeal to absolute continuity or translation continuity (cf. the
discussion on p. 1003). Further, if we wish to apply the result to systems that are
indeed not metrically transitive, there may be integrals of the equations of motion
that lock the trajectory of the system into a tiny subset of Γ for all times, in which
case such a set cannot be neglected for practical purposes (cf. [Farquhar, 1964]).

Khinchin argued that the majority of physically important phase functions that
one encounters in statistical mechanics are sum functions (cf. [Khinchin, 1949,
p. 63,97]). However, this view is clearly too narrow from a physical point of view.
It means that all quantities that depend on correlations or interactions between
the particles are excluded.

Finally there is the ‘methodological paradox’ [Khinchin, 1949, p. 41–43]. This
refers to the fact that Khinchin had to assume that the Hamiltonian itself is
also a sum function. Let me emphasize that this assumption is not made just
for the purpose of letting the Hamiltonian be one of the functions to which the
theorem applies; the assumption is crucial to the very derivation of the theorem.
As Khinchin clearly notes, this is paradoxical because for an equilibrium state to
arise at all, it is essential that the particles can interact (e.g. collide), while this
possibility is denied when the Hamiltonian is a sum function.

In Khinchin’s view, the assumption should therefore not be taken literally. In-

62The point can be debated, of course. Some authors argue that small systems can show ther-
mal behaviour too, which statistical mechanics then ought explain. However, the very definition
of thermal quantities (like temperature etc.) for such small systems is more controversial [Hill,
1987; Feshbach, 1987; Rugh, 2001; Gross and Votyakov, 2000].
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stead, one should assume that there really are interaction terms in the Hamil-
tonian, but that they manifest themselves only at short distances between the
particles, so that they can be neglected, except on a tiny part of phase space.
Still, it remains a curious feature of his work that his theorem is intended to ap-
ply in situations that are inconsistent with the very assumptions needed to derive
it (cf. [Morrison, 2000, p. 46-47]). As we shall see in the next paragraph, later
work has removed this paradox, as well as many other shortcomings of Khinchin’s
approach.

The theory of the thermodynamic limit

The approach initiated by Khinchin has been taken further by van der Linde and
Mazur (1963), and merged with independent work of van Hove, Yang and Lee,
Fisher, Griffiths, Minlos, Ruelle, Lanford and others, to develop, in the late 60s
and early 70s, into what is sometimes called the ’rigorous results’ approach or the
‘theory of the thermodynamic limit’. The most useful references are [Ruelle, 1969;
Lanford, 1973; Martin-Löf, 1979]. The following is primarily based on [Lanford,
1973], which is the most accessible and also the most relevant for our purposes,
since it explicitly addresses the ergodic problem, and on [van Lith, 2001b].

As in Khinchin’s work, this approach aims to provide an explanatory programme
for the thermal behaviour of macroscopic bodies in equilibrium by relying mostly
on the following central points,

- One adopts the microcanonical measure on phase space.

- the observable quantities are phase functions F of a special kind (see below).

- The number of particles N is extremely large.

It is shown that, under some conditions, in the ‘thermodynamic limit’, to be
specified below, the microcanonical probability distribution for F/N becomes con-
centrated within an narrow region around some fixed value. This result is similar
to Khinchin’s ergodic theorem. However, as we shall see, the present result is more
powerful, while the assumptions needed are much weaker.

To start of, we assume a Hamiltonian, of the form

(116) H(x) =
N∑
i

�p2
i

2m
+ U(�q1, . . . , �qN ).

defined on the phase space Γ for N particles. For technical reasons, it is more con-
venient and simpler to work in the configuration space, and ignore the momenta.
Consider a sequence of functions F (�q1, . . . �qn), n = 1, 2, . . . with an indefinite num-
ber of arguments, or, what amounts to the same thing, a single function F defined
on

(117) ∪∞n=1(R
3)n.
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Such a function is called an ‘observable’ if it possesses the following properties:

(a). Continuity: For each n, F (�q1, . . . �qn) is a continuous function on R
3n

(b). Symmetry: For each n, F (�q1, . . . �qn) is invariant under permutation of its
arguments.

(c). Translation invariance: For each n, and each �a ∈ R
3, F (�q1 +�a, . . . �qn +�a) =

F (�q1, . . . �qn)

(d). Normalization: F (�q1) = 0

(e). Finite range: There exists a real number R ∈ R such that, for each n, the
following holds: Suppose we divide the n particles into two clusters labeled
by i = 1, . . . m, and i′ = 1, . . . m′, where m + m′ = n. If |�qi − �qi′ | > R for all
i, i′, then F (�q1, . . . �qm; �q1, . . . , �qm′) = F (�q1, . . . �qm) + F (�q1, . . . , �qm′).

For the most part, these conditions are natural and self-explanatory. Note that
the symmetry condition (b) is very powerful. It may be compared to Boltzmann’s
(1877b) combinatorial approach in which it was argued that macrostates occupy
an overwhelmingly large part of phases space due to their invariance under per-
mutations of the particles (see §4.4). Note further that condition (e) implies that
F reduces to a sum function if all particles are sufficiently far from each other.
It also means that the observables characterized by Lanford may be expected to
correspond to extensive quantities only. (Recall that a thermodynamical quantity
is called extensive if it scales proportionally to the size of the system, and intensive
if it remains independent of the system size.) In the present approach, intensive
quantities (like temperature and pressure) are thus not represented as observables,
but rather identified with appropriate derivatives of other quantities, after we have
passed to the thermodynamical limit.

Further, it is assumed that the potential energy function U in (116) also satisfies
the above conditions. In addition, the potential energy is assumed to be stable,63

i.e.:

(f). Stability: There is a number B ∈ R, such that, for all n and all �q1, . . . �qn:

(118) U(�q1, . . . �qn) ≥ −nB.

This condition — which would be violated e.g. for Newtonian gravitational inter-
action — avoids that as n becomes large, the potential energy per particle goes to
minus infinity, i.e., it avoids a collapse of the system.

For some results it is useful to impose an even stronger condition:
63Strictly speaking, condition (f) is not needed for the existence of the thermodynamic limit

for the configurational microcanonical measure. It is needed, however, when these results are ex-
tended to phase space (or when using the canonical measure). Note also that the term “stability’
here refers to an extensive lower bound of the Hamiltonian. This should be distinguished from
thermodynamic concept of stability, which is expressed by the concavity of the entropy function
(cf. p. 940).
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(f′.) Superstability: The potential energy U is called superstable if, for every
continuous function Φ of compact support in R

3:

(119) U(�q1, . . . �qN ) + λ
∑
i�=j

Φ(�qi − �qj)

is stable for a sufficiently small choice of λ > 0. In other words, a stable
potential is superstable if it remains stable when perturbed slightly by a
continuous finite-range two-body interaction potential.

As in Khinchin’s approach, the assumption (f) or (f′) is not just needed because
one would like to count the potential energy among the class of observables; rather
it is crucial to the proof of the existence of the thermodynamic limit. Of course,
the assumption that the interaction potential is continuous and of finite range is
still too restrictive to model realistic inter-molecular forces. As Lanford notes,
one can weaken condition (e) to a condition of ‘weakly tempered’ potentials,64,
dropping off quickly with distance (cf. [Fisher, 1964, p. 386; Ruelle, 1969, p. 32]
, although this complicates the technical details of the proofs. Again, it is clear,
however, that some such condition on temperedness of the long range interactions
is needed, if only to avoid another catastrophe, namely that the potential energy
per particle goes to +∞ as n increases, so that system might tend to explode. (As
could happen, e.g. for a system of charges interacting by purely repulsive Coulomb
forces.)

Now, with the assumptions in place, the idea is as follows. Choose a given
potential U and an observable F obeying the above conditions. Pick two numbers
u and ρ, that will respectively represent the (potential) energy per particle and
the particle density (in the limit as N gets large), a bounded open region Λ ⊂ R

3,
and a large integer N , such that N

V (Λ) ≈ ρ. ( Here, V (Λ) denotes the volume of
Λ.) Further, choose a small number δu > 0, and construct the (thickened) energy
hypersurface in configuration space, i.e. the shell:

(120) ΩΛ,N,u,δu =
{

(�q1, . . . �qN ) ∈ ΛN :
U(�q1, . . . �qN )

N
∈ (u− δu, u + δu)

}
.

Let μ denote the Lebesgue measure on ΛN ; its (normalized) restriction to the
above set may then be called the ‘thickened configurational microcanonical mea-
sure’. Note that

(121) ωcf(E) :=
∫

ΛN

d�q1 · · · �qN δ(U(�q1 . . . �qN )− E)

may be considered as the configurational analogue of the structure function (41).
Thus

64If, for simplicity, the potential U is a sum of pair interactions U =
P
i�=j φ(�qi − �qj), it

is weakly tempered iff there are real constants R, D, ε > 0, such that φ(�r) ≤ D‖�r‖3+ε when
‖�r‖ ≥ R.
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(122) μ(ΩΛ,N,u,δu) =
∫

ΛN

d�q1 · · · �qN11(u−δu,u+δu)(U/N) =
∫ N(u+δu)

N(u−δu
dE ωcf(E),

so that 1
2Nδuμ(ΩΛ,N,u,δu) provides a thickened or smoothened version of this con-

figurational structure function. The reason for working with this thickened hy-
pershell instead of the thin hypersurface is of course to circumvent singularities
that may appear in the latter. In any case, we may anticipate that, when δu is
small, this expression will represent the configurational part of the microcanonical
entropy (84. A further factor 1/N ! may be added to give this entropy a chance of
becoming extensive.65 (See also paragraph §5.2.

We are interested in the probability distribution of F/N with respect to this
thickened microcanonical measure on configuration space. For this purpose, pick
an arbitrary open interval J , and define

(123) V(Λ, N, u, δu, F, J) :=
1

N !
μ

({
(�q1, . . . , �qN ) ∈ Ωu,δu :

F (�q1, . . . , �qN )
N

∈ J

})
.

So,

(124)
1

μ(ΩΛ,N,u,δu)
V(Λ, N, u, δu, F, J) =

V(Λ, N, u, δu, F, J)
V(Λ, N, u, δu, F, R)

gives the probability that F/N lies in the interval J with respect to the above
microcanonical measure.

We wish to study the behaviour of this probability in the thermodynamic limit,
i.e. as N becomes large, and V (Λ) grows proportional to N , such that N/V (Λ) = ρ.
This behaviour will depend on the precise details of the limiting procedure, in
particular on the shape of Λ. Lanford chooses to take the limit in the sense of van
Hove: A sequence of bounded open regions Λ in R

3 is said to become infinitely
large in the sense of Van Hove if, for all r > 0, the volume of the set of all points
within a distance r from the boundary of Λ, divided by the volume of Λ, goes
to zero as N goes to infinity. In other words, the volume of points close to the
surface becomes negligible compared to the volume of the interior. This avoids
that surface effects could play a role in the limiting behaviour — and eliminates
the worry that interactions with the walls of the container should have been taken
into account.

Now, the first major result is:

(Existence of the thermodynamic limit.) As N −→ ∞, and Λ
becomes infinitely large in the sense of Van Hove, in such a way that
N/V (Λ) = ρ, then either of the following cases holds:

(α). V(Λ, N, u, δu, F, J) goes to zero faster than exponentially in N ,
or:

65For example, if the system is an ideal gas, i.e. if U(�q1, . . . , �qN ) ≡ 0, one will have ωcf(E) =

V N =
“
N
ρ

”N
, so that ln 1

N !
ωcf(E) scales proportionally to N , but ln ωcf(E) does not.
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(β). V(Λ, N, u, δu, F, J) ≈ eNs(ρ,u,δu,F,J) where s(ρ, F, J) does not de-
pend on Λ or N , except through the ration N

V (Λ) = ρ.

In other words, this result asserts the existence of

(125) s(ρ, u, δu, F, J) := lim
N−→∞

1
N

lnV(Λ, N, u, δu, F, J)

where s is either finite or −∞. (The possibility that s = −∞ for all values of
the arguments of s is further ignored.) This already gives some clue for how the
probability (123) behaves as a function of J . If J1 and J2 are two open intervals,
N is large, and we suppress the other variables for notational convenience, we
expect:

(126)
μ( FN ∈ J1)
μ( FN ∈ J2)

=
V(J1)
V(J2)

≈ eN(s(J1)−s(J2)).

If s(J2) > s(J1), this ratio goes to zero exponentially in N . Thus, for large systems,
the probability μ( FN ∈ J) will only be appreciable for those open intervals J for
which s(J) is large.

A stronger statement can be obtained as follows. Associated with the set func-
tion s(J) one may define a point function s:

(127) s(x) := inf
J�x
J open

s(J)

It can then be shown that, conversely, for all open J :

(128) s(J) = sup
x∈J

s(x)

Moreover, — and this is the second major result — one can show:

(129) s(x) is concave.

Further, s(x) is finite on an open convex subset of its domain [Lanford, 1973,
p. 26].

Now, it is evident that a concave function s(x) may have three general shapes:
It either achieves its maximum value: (i) never; (ii) exactly once, say in some
point x0; or (iii) on some interval. In case (i), F/N ‘escapes to infinity’ in the
thermodynamic limit; this case can be excluded by imposing the superstability
condition (f′). Case (ii) is, for our purpose, the most interesting one. In this case,
we may consider intervals J2 = (x0 − ε, x0 + ε), for arbitrarily small ε > 0 and J1

any open interval that does not contain x0; infer from (127,128) that s(J2) > s(J1),
and conclude from (126) that the relative probability for F/N to take a value in
J2 rather than J1 goes to zero exponentially with the size of the system.

Thus we get the desired result: As N becomes larger and larger, the proba-
bility distribution of F/N approaches a delta function. Or in other words, the
function F/N becomes roughly constant on an overwhelmingly large part of the
configurational energy-hypershell:
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(130) lim
N−→∞

μ

({
(�q1, . . . , �qN ) ∈ ΩΛ,N,u,δu : |F (�q1, . . . , �qN )

N
− x0| > ε

})
= 0

In case (iii), finally, one can only conclude that the probability distribution be-
comes concentrated on some interval, but that its behaviour inside this interval
remains undetermined. One can show, if this interval is bounded, that this case is
connected to phase transitions (but see [p. 12, 58 for caveats]). 66

Remarks.

1. Phase transitions. First, it is obviously an immense merit of the theory
of the thermodynamic limit that, in contrast to ergodic theory, it is, in principle,
capable of explaining and predicting the occurrence of phase transitions from a
model of the microscopic interaction, in further work often in conjunction with
renormalization techniques. Indeed, this capability is its major claim to fame,
quite apart from what it has to say about the ergodic problem. What is more, it is
often argued that phase transitions are strictly impossible in any finite system, and
thus absolutely require the thermodynamic limit [Styer, 2004; Kadanoff, 2000].

This argument raises the problem that our experience, including that of phase
transitions in real physical bodies, always deals with finite systems. A theory
that presents an account of phase transitions only in the thermodynamic limit,
must then surely be regarded as an idealization. This conclusion will not come as
a shock many physicists, since idealizations are ubiquitous in theoretical physics.
Yet a curious point is that this particular idealization seems to be ‘uncontrollable”.
See [Sklar, 2002] and [Liu, 1999; Callender, 2001; Batterman, 2005] for further dis-
cussion. I also note that an alternative approach has been proposed recently. In
this view phase transitions are associated with topology changes in the micro-
canonical hypersurface {x : H(x) = E} with varying E. The crucial distinction
from the theory of the thermodynamic limit is, of course, is that such topology
changes may occur in finite, — indeed even in small — systems (cf. [Gross, 1997;
Gross and Votyakov, 2000; Casetti et al, 2003]). However this may be, I shall focus
below on the virtues of the thermodynamic limit for the ergodic problem.

2. The ergodic problem revisited. When compared to ergodic theory or
Khinchin’s approach, the theory of the thermodynamic limit has much to speak in

66To see the connection (loosely), note that if one removes the condition F/N ∈ J from the
definition (123) — or equivalently, chooses J = R — , then s in (125) can be interpreted as the
(thickened, configurational) microcanonical entropy per particle. Considered now as a function
of the open interval (u − δu, u + δu), s has the same properties as established for s(J), since
U itself belongs to the class of observables. Thus, here too, there exists a point function s(u)
analogous to (127), and this function is concave (Actually, if we restore one more variable in the
notation, and write s(ρ, u), the function is concave in both variables). In case (iii), therefore,
this function is constant in u over some interval, say [u′

0.u′′
0 ]. This means that there is then a

range of thermodynamical states with the same temperature T = ( ∂s
∂u

)−1
ρ , for a range of values

of u and ρ, which is just what happens in the condensation phase transition in a van der Waals
gas.
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its favour. As in Khinchin’s work, the problem of establishing metric transitivity
for physically interesting systems does not arise, because the approach does not
need to assume it. Further, as in Khinchin’s work, the approach works only for
special functions. But the class of functions singled out by the assumptions (a–f.)
or (a–f′.) above is not restricted to (symmetric) sum functions, and allows for
short-range interactions between the particles. Thus, unlike Khinchin, there is no
methodological paradox (cf. p.1019).

Yet one might still question whether these assumptions are not too restrictive
for physically interesting systems. On the one hand, it is clear that some conditions
on temperedness and stability are needed to rule out catastrophic behaviour in the
thermodynamic limit, such as implosion or explosion of the system. One the other
hand, these assumptions are still too strong to model realistic thermal systems.
The Coulomb interaction, which according to [Lieb and Lebowitz, 1973, p. 138]
is “the true potential relevant for real matter”, is neither tempered nor stable.
A tour the force, performed by Lenard, Dyson, Lebowitz and Lieb, has been to
extend the main results of the theory of the thermodynamical limit to systems
interacting purely by Coulomb forces (if the net charge of the system is zero or
small), both classically and quantum mechanically (for fermions) (see [Lieb, 1976,
and literature cited therein]). This result, then, should cover most microscopic
models of ordinary matter, as long as relativistic effects and magnetic forces can
be ignored. But note that this extension is obtained by use of the canonical,
rather than the microcanonical measure, and in view of the examples of non-
equivalence of these ensembles (cf. p. 5.5) one might worry whether this result
applies to ordinary matter in metastable states (like supersaturated vapours, and
superheated or supercooled liquids).

Another remarkable point is that, unlike Khinchin’s result (115), the result
(130) does not refer to time averages at all. Instead, the instantaneous value
of F/N is found to be almost constant for a large subset of the configurational
energy hypersurface. Hence, there is also no problem with the infinite time limit
(cf. p. 1010. Indeed, dynamics or time evolutions play no role whatsoever in the
present results, and the contrast to the programme of ergodic theory is accordingly
much more pronounced than in Khinchin’s approach.

3. Problems left. What is left, in comparison to those two approaches to
the ergodic problem, are two problems. First, there is still the question of how
to motivate the choice for the configurational microcanonical measure (i.e. the
normalized Lebesgue measure restricted to the energy hypershell). Lanford is
explicit that the theory of the thermodynamic limit offers no help in this question:

It is a much more profound problem to understand why events which
are very improbable with respect to Lebesgue measure do not occur in
nature. I, unfortunately, have nothing to say about this latter problem.
[Lanford, 1973, p. 2].

For this purpose, one would thus have to fall back on other attempts at motivation
(cf. p. 1003).
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Secondly, there is the measure-epsilon problem (cf. p. 1019). The desired
equality F/N ≈ x holds, according to (130), if N is large, outside of a set of
small measure. Can we conclude that this set is negligible, or that its states do
not occur in nature? In fact, the result (130) instantaneous values is so strong
that one ought to be careful of not claiming too much. For example, it would be
wrong to claim that for macroscopical systems (i.e. with N ≈ 1027), the set in the
left-hand side of (130) does not occur in nature. Instead, it remains a brute fact
of experience that macroscopic systems also occur in non-equilibrium states. In
such states, observable quantities take instantaneous values that vary appreciably
over time, and thus differ from their microcanonical average. Therefore, their
microstate must then be located inside the set of tiny measure that one would like
to neglect. Of course, one might argue differently if N is larger still, say N = 10100

but this only illustrates the ‘uncontrollability’ of the idealization involved in this
limit, i.e. one still lacks control over how large N must be to be sure that the
thermodynamic limit is a reasonable substitute for a finite system.

Further points. Other points, having no counterpart in the approaches dis-
cussed previously, are the following. The approach hinges on a very delicately
construed sequence of limits. We first have to take the thickened energy shell,
then take N, Λ to infinity in the sense of van Hove, finally take δu to zero. But
one may ask whether this is clearly and obviously the right thing to do, since
there are alternative and non-equivalent limits (the sense of Fisher), the order of
the limits clearly do not commute (the thickness of the energy hypershell is pro-
portional to Nδu), and other procedures like the ‘continuum limit’ [Compagner,
1989] have also been proposed.

Finally, in order to make full contact to classical statistical mechanics, on still
has to lift restriction to configuration space, and work on phase space. [Lanford,
1973, p. 2] leaves this as a ”straightforward exercise” to the reader. Let’s see if we
can fill in the details.

Suppose we start from a thickened microcanonical measure on phase space, with
the same thickness 2Nδu, around a total energy value of E0 = Ne0. Its probability
density is then given by

ρNe0,Nδu(�p1, . . . �pN ; �q1 . . . �qN ) =
1

2Nδu

∫ E0+Nδu

E0−Nδu

1
ω(E)

δ(H(x)− E)dE(131)

For the Hamiltonian (116), the integral over the momenta can be performed (as
was shown by Boltzmann [1868] (cf. Eqn (43). This yields a marginal density

(132) ρNe0, Nδu(�q1, . . . , �qN ) =
1

2Nδu

2mπ3N/2

Γ( 3N
2 )∫ E0+Nδu

E0−Nδu

1
ω(E)

(2m(E − U(q)))(3N−2)/2
dE

This is not quite the normalized Lebesgue measure on configuration space em-
ployed by Lanford, but since the factor (2m(E − U(q))(3N−2)/2 is a continuous
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function of U , — at least if E0 −Nδu−U > 0 — it is absolutely continuous with
respect to the Lebesgue measure on the shell, and will converge to it in the limit
δu −→ 0.

But in a full phase space setting, the physical quantities can also depend on
the momenta, i.e., they will be functions F (�p1, . . . �pN ; �q1 . . . �qN ) and, even if one
assumes the same conditions (a–f) as before for their dependence on the second
group of arguments, their probability distribution cannot always be determined
from the configurational microcanonical measure. For example, let F1 and F2

be two observables on configuration space, for which F1/N and F2/N converge
to different values in the thermodynamical limit, say x1 and x2, and let G be
any symmetric function of the momenta that takes two different values each with
probability 1/2. For example, take

(133) G(�p1, . . . �pN ) =
{

1 if
∑
i �pi · �n ≥ 0,

0 elsewhere. ,

for some fixed unit vector �n. Now consider the following function on phase space:

(134) A(�p1, . . . �pN ; �q1 . . . �qN )) =
G(�p1, . . . �pN )F1(�q1 . . . �qN ) + G′(�p1, . . . �pN )F2(�q1 . . . �qN ),

where G′ = 1−G. If we first integrate over the momenta, we obtain Ã = 1
2 (F1+F2),

which converges in the thermodynamical limit to 1
2 (x1 + x2). However, it would

be wrong to conclude that A is nearly equal to 1
2 (x1 + x2) (x1 + x2)/2 in an

overwhelmingly large part of phase space. Instead, it is nearly equal to x1 on
(roughly) half the available phase space and nearly equal to x2 on the remaining
half.

The extension of (130) to phase space functions will thus demand extra as-
sumptions on the form of such functions; for example, that their dependence on
the momenta comes only as some function of the kinetic energy, i.e.

(135) A�p1, . . . �pN ; �q1, . . . �qN ) = ψ(
∑ �p2

i

2m
) + F (�q1, . . . , �qN )

for some continuous function ψ.

6.4 Lanford’s approach to the Boltzmann equation

We now turn to consider some modern approaches to non-equilibrium statistical
mechanics. Of these, the approach developed by Lanford and others (cf. [Lanford,
1975; Lanford, 1976; Lanford, 1981; Spohn, 1991; Cercignani et al., 1994]) deserves
special attention because it stays conceptually closer to Boltzmann’s 1872 work
on the Boltzmann equation and the H-theorem than any other modern approach
to statistical physics. Also, the problem Lanford raised and tried to answer is
one of no less importance than the famous reversibility and recurrence objections.
Furthermore, the results obtained are the best efforts so far to show that a sta-
tistical reading of the Boltzmann equation or the H-theorem might hold for the
hard spheres gas.
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The question Lanford raised is that of the consistency of the Boltzmann equation
and the underlying Hamiltonian dynamics. Indeed, if we consider the microstate
of a mechanical system such as a dilute gas, it seems we can provide two competing
accounts of its time evolution.

(1) On the one hand, given the mechanical microstate x0 of a gas, we can
form the distribution of state f(�r,�v), such that f(�r,�v)d3�vd3�r gives the relative
number of molecules with a position between �r and �r+d3�r and velocity between �v
and �v + d3�v. Presumably, this distribution should be uniquely determined by the
microstate x0. Let us make this dependence explicit by adopting the notation f [x0].
This function, then, should ideally serve as an initial condition for the Boltzmann
equation (48), and solving this equation — assuming, that is, that it, that it has a
unique solution — would give us the shape of the distribution function at a later
time, f

[x0]
t (�r,�v).

(2) On the other hand, we can evolve the microstate x0 for a time t with the
help of the Hamiltonian equations. That will give us xt = Ttx0. This later state
xt will then also determine a distribution of state f [xt](�r,�v).

It is a sensible question whether these two ways of obtaining a later distribution
of state from an initial microstate are the same, i.e. whether the two time evolu-
tions are consistent. In other words, the problem is whether the diagram below
commutes:

(136)
x0

Hamilton−→ xt
↓ ↓

f [x0] Boltzmann−→ f
[x0]
t

?= f [xt]

The first issue that has to be resolved here is the precise relation between a
microstate and the distribution of state f . It is obvious that, in so far as this
function represents the physical property of a gas system, it should be determined
by the momentary microstate x. It is also clear, that in so far as it is assumed to
be continuous and differentiable in time in order to obey the Boltzmann equation,
this cannot be literally and exactly true.

So let us assume, as Boltzmann did, that the gas consists of N hard spheres,
each of diameter d and mass m, contained in some fixed bounded spatial region Λ
with volume |Λ| = V . Given a microstate x of the system one can form the ‘exact’
distribution of state:

(137) F [x](�r,�v) :=
1
N

N∑
i

δ3(�r − �qi)δ3(�v − �pi
m

).

This distribution is, of course, not a proper function, and being non-continuous
and non-differentiable, clearly not a suitable object to plug into the Boltzmann
equation. However, one may reasonably suppose that one ought to be able to
express Boltzmann’s ideas in a limit in which the number of particles, N , goes to
infinity. However, this limit clearly must be executed with care.
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On the one hand, one ought to keep the gas dilute, so that collisions involving
three or more particles will be rare enough so that they can safely be ignored in
comparison to two-particle collisions. On the other hand, the gas must not be so
dilute that collisions are altogether too rare to contribute to a change of f . The
appropriate limit to consider, as Lanford argues, is the so-called Boltzmann-Grad
limit in which N −→∞, and:67

(138)
Nd2

V
= constant > 0.

Denote this limit as “N
BG−→∞”, where it is implicitly understood that d ∝ N−1/2.

The hope is then that in this Boltzmann-Grad limit, the exact distribution F [xN ]

will tend to a continuous function that can be taken as an appropriate initial
condition for the Boltzmann equation. For this purpose, one has to introduce a
relevant notion of convergence for distributions on the μ-space Λ×R

3. A reasonable
choice is to say that an arbitrary sequence of distributions fn (either proper density
functions or in the distributional sense) converges to a distribution f , fn −→ f ,
iff the following conditions hold:

For each rectangular parallelepiped Δ ⊂ Λ× R
3 :

lim
n−→∞

∫
Δ

fNd3�rd3�v =
∫

Δ

fd3�rd3�v,(139)

and lim
n−→∞

∫
�v2fnd

3�rd3�v =
∫

�v2fd3�rd3�v,(140)

where the second condition is meant to guarantee the convergence of the mean
kinetic energy.

It is also convenient to introduce some distance function between (proper or
improper) distributions that quantifies the sense in which one distribution is close
to another in the above sense. That is to say, one might define some distance
d(f, g) between density functions on Λ×R3 such that

(141) d(fn, f) −→ 0 =⇒ fn −→ f.

There are many distance functions that could do this job, but I won’t go into the
question of how to pick out a particular one.

The hope is then, to repeat, that F [xN ] −→ f in the above sense when N
BG−→∞,

where f is sufficiently smooth to serve as an initial condition in the Boltzmann
equation, and that with this definition, the Boltzmannian and Hamiltonian evolu-
tion become consistent in the sense that the diagram (136) commutes. But clearly
this will still be a delicate matter. Indeed, increasing N means a transition from
one mechanical system to another with more particles. But there is no obvious

67The condition can be explained by the hand-waving argument that Nd2/V is proportional to
the ‘mean free path’, i.e. a typical scale for the distance traveled by a particle between collisions,
or also by noting that the collision integral in the Boltzmann equation is proportional to Nd2/V ,
so that by keeping this combination constant, we keep the Boltzmann equation unchanged.
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algorithm to construct the state xN+1 from xN , and thus no way to enforce con-
vergence on the level of individual states.

Still, one might entertain an optimistic guess, which, if true, would solve the
consistency problem between the Boltzmann and the Hamiltonian evolution in an
approximate fashion if N is very large.

Optimistic Guess: If F [xN
0 ] is near to f then F [xN

t ] is near to ft for
all t > 0, and where ft is the solution of the Boltzmann equation with
initial condition f .

As [Lanford, 1976] points out, the optimistic guess cannot be right. This is an
immediate consequence of the reversibility objection: Indeed, suppose it were true
for all x ∈ Γ, and t > 0. (Here, we momentarily drop the superscript N from xN

to relieve the notation.) Consider the phase point Rx obtained from x by reversing
all momenta: R(�q1, �p1; . . . ; �qN , �pN ) = (�q1,−�p1; . . . , ; �qN ,−�pN ). If F [x](�r,�v) is near
to some distribution f(�r,�v), then F [Rx](�r,�v) is near to f(�r,−�v). But as x evolves
to xt, Rxt evolves to TtRxt = RT−txt = Rx. Hence F [TtRxt](�r,�v) = F [Rx](�r,�v)
is near to f(�r,−�v). But the validity of the conjecture for Rxt would require that
F [TtRxt](�r,�v) is near to ft(�r,−�v) and these two distributions of state are definitely
not near to each other, except in some trivial cases.

But even though the optimistic guess is false in general, one might hope that it
is ‘very likely’ to be true, with some overwhelming probability, at least for some
finite stretch of time. In order to make such a strategy more explicit, Lanford takes
recourse to a probability measure on Γ, or more precisely a sequence of probability
measures on the sequence of ΓN ’s.

Apart from thus introducing a statistical element into what otherwise would
have remained a purely kinetic theory account of the problem, there is a definite
advantage to this procedure. As mentioned above, there is no obvious algorithm to
construct a sequence of microstates in the Boltzmann-Grad limit. But for measures
this is different. The microcanonical measure, for example is not just a measure
for the energy hypersurface of one N -particles-system; it defines an algorithmic
sequence of such measures for each N .

In the light of this discussion, we can now state Lanford’s theorem as follows
[Lanford, 1975; 1976]:

Lanford’s Theorem: Let t �→ ft be some solution of the Boltzmann
equation, say for t ∈ [0, a) ⊂ R. For each N , let ΔN denote the set
in the phase space ΓN of N particles, on which F [xN ] is near to f0

(the initial condition in the solution of the Boltzmann equation) in the
sense that for some chosen distance function d and for tolerance ε > 0:

(142) ΔN = {xN ∈ ΓN : d(F [xN ], f0) < ε}.

Further, for each N , conditionalize the microcanonical measure μN on
ΔN :
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(143) μΔ,N (·) := μN (·|ΔN ).

In other words, μΔ,N is a sequence of measures on the various ΓN that
assign measure 1 to the set of microstates xN ∈ ΓN that are close to
f0 in the sense that d(F [xN ], f0) < ε.
Then: ∃τ , 0 < τ < a such that for all t with 0 < t < τ :

(144) μΔ,N ({xN ∈ ΓN : d(F [xN
t ], ft) < ε}) > 1− δ

where δ −→ 0 as both ε −→ 0 and N
BG−→∞.

In other words: as judged from the microcanonical measure on ΓN restricted to
those states xN that have their exact distribution of state close to a given initial
function f0, a very large proportion (1 − δ) evolve by the Hamiltonian dynamics
in such a way that their later exact distribution of state F [xN

t ] remains close to
the function ft, as evolved from f0 by the Boltzmann equation.

Remarks

Lanford’s theorem shows that a statistical and approximate version of the Boltz-
mann equation can be derived from Hamiltonian mechanics and the choice of an
initial condition in the Boltzmann-Grad limit. This is a remarkable achievement,
that in a sense vindicates Boltzmann’s intuitions. According to [Lanford, 1976,
p. 14], the theorem says that the approximate validity of the Boltzmann equation,
and hence the H-theorem, can be obtained from mechanics alone and a consider-
ation of the initial conditions.

Still the result established has several remarkable features, all of which are
already acknowledged by Lanford. First, there are some drawbacks that prevent
the result from having practical impact for the project of justifying the validity of
the Boltzmann equation in real-life physical applications. The density of the gas
behaves like N/d3, and in the Boltzmann-Grad limit this goes to zero. The result
thus holds for extremely rarified gases. Moreover, the length of time for which
the result holds, i.e. τ , depends on the constant in (138), which also provides a
rough order of magnitude for the mean free path of the gas . It turns out that,
by the same order of magnitude considerations, τ is roughly two fifths of the
mean duration between collisions. This is a disappointingly short period: in air
at room temperature and density, τ is in the order of microseconds. Thus, the
theorem does not help to justify the usual applications of the Boltzmann equation
to macroscopic phenomena which demand a much longer time-scale.

Yet note that the time scale is not trivially short. It would be a misunder-
standing to say that the theorem establishes only the validity of the Boltzmann
equation for times so short that the particles have had no chance of colliding: In
two fifths of the mean duration between collisions, about 40 % of the particles
have performed a collision.
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Another issue is that in comparison with Boltzmann’s own derivation no explicit
mention seems to have been of the Stoßzahlansatz. In part this is merely apparent.
In a more elaborate presentation (cf. Lanford 1975, 1976), the theorem is not
presented in terms of the microcanonical measure, but an arbitrary sequence of
measures νN on (the sequence of phase spaces) ΓN . These measures are subject
to various assumptions. One is that each νN should be absolutely continuous with
respect to the microcanonical measure μN , i.e. νN should have a proper density
function

(145) dνN (x) = nN (x1, . . . xN )dx1 · · ·xN
where xi = (�qi, �pi) denotes the canonical coordinates of particle i. Further, one
defines, for each N and m < N , the reduced density functions by

(146) n
(m)
N (x1, . . . xm) :=

N !
(N −m)!

1
Nm

∫
nN (x1, . . . xN )dxm+1 · · · dxN

i.e. as (slightly renormalized) marginal probability distributions for the first m
particles. The crucial assumption is now that

(147) lim
N

BG−→∞
n

(m)
N (x1, . . . xm) = n(1)(x1) · · ·n(1)(xm)

uniformly on compact subsets of (Λ × R
3)m. This assumption (which can be

shown to hold for the microcanonical measures) is easily recognized as a measure-
theoretic analogy to the Stoßzahlansatz. It demands, in the Boltzmann-Grad limit,
statistical independence of the molecular quantities for any pair or m-tuple of
particles at time t = 0. As Lanford also makes clear, it is assumption (146) that
would fail to hold if we run the construction of the reversibility objection; (i.e. if
we follow the states x in ΔN for some time t, 0t < τ , then reverse the momenta,
and try to apply the theorem to the set Δ′

N = {Rxt : x ∈ ΔN} ).
But another aspect is more positive. Namely: Lanford’s theorem does not need

to assume explicitly that the Stoßzahlansatz holds repeatedly. Indeed a remarkable
achievement is that once the factorization condition (146) holds for time t = 0 it
will also hold for 0 < t < τ , albeit in a weaker form (as convergence in measure,
rather than uniform convergence). This is sometimes referred to as “propagation
of chaos” [Cercignani et al., 1994].

But the main conceptual problem concerning Lanford’s theorem is where the
apparent irreversibility or time-reversal non-invariance comes from. On this is-
sue, various opinions have been expressed. [Lanford, 1975, p. 110] argues that
irreversibility is the result of passing to the Boltzmann-Grad limit. Instead, [Lan-
ford, 1976] argues that it is due to condition (146) plus the initial conditions (i.e.:
xN ∈ ΔN ).

However, I would take a different position. The theorem equally holds for
−τ < t < 0, with the proviso that ft is now a solution of the anti-Boltzmann
equation. This means that the theorem is, in fact, invariant under time-reversal.
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6.5 The BBGKY approach

The so-called BBGKY-hierarchy (named after Bogolyubov, Born, Green, Kirk-
wood and Yvon) is a unique amalgam of the description of Gibbs and the approach
of Boltzmann. The goal of the approach is to describe the evolution of ensembles
by means of reduced probability densities, and to see whether a Boltzmann-like
equation can be obtained under suitable conditions — and thereby an approach
to statistical equilibrium.

First, consider an arbitrary time-dependent probability density ρt. The evolu-
tion of ρ is determined via the Liouville-equation by the Hamiltonian:

(148)
∂ρt
∂t

= {H, ρ}.

Central in the present approach is the observation that for relevant systems in
statistical mechanics, this Hamiltonian will be symmetric under permutation of the
particles. Indeed, the Hamiltonian for a system of N indistinguishable particles
usually takes the form

(149) H(�q1, �p1; . . . ; �qN , �pN ) =
N∑
=1

�pi
2

2m
+

N∑
i

V (�qi) +
N∑
i<j

φ(‖qi − �qj‖)

where V is the potential representing the walls of the bounded spatial region Λ,
say:

(150) V (�q) =
{

0 if �q ∈ Λ
∞ elsewhere

and φ the interaction potential between particle i and j. This is not only symmetric
under permutation of the particle labels, but even has the more special property
that it is a sum of functions that never depend on the coordinates of more than
two particles. (cf. the discussion in §6.3.)

Let us again use the notation x = (�q1, �p1; . . . ; �qN , �pN ) = (x1, . . . , xN ); with
xi = (�qi, �pi), and consider the sequence of reduced probability density functions,
defined as the marginals of ρ:

ρ(1)(x1) :=
∫

ρt(x) dx2 · · ·xN
...(151)

ρ(m)(x1, . . . , xm) =
∫

ρt(x) dxm+1 · · · dxN

Here, ρ(m) gives the probability density that particles 1, . . . , m are located at
specified positions �q1, . . . �qm and moving with the momenta �p1, . . . �pm, whereas all
remaining particles occupy arbitrary positions and momenta.
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Symmetry of the Hamiltonian need not imply symmetry of ρ. But one might
argue that we may restrict ourselves to symmetric probability densities if all ob-
servable quantities are symmetric. In that case, it makes no observable difference
when two or more particles are interchanged in the microstate and one may replace
ρ by its average under all permutations without changing the expectation values
of any observable quantity. However this may be, we now assume that ρ is, in fact,
symmetric under permutations of the particle labels. In other words, from now
on ρ(m) gives the probability density that any arbitrarily chosen set of m particles
have the specified values for position and momentum.

The guiding idea is now that for relevant macroscopic quantities, we do not
need the detailed form of the time evolution of ρt. Rather, it suffices to focus on
no more than just a few marginals from the hierarchy (151). For example, suppose
a physical quantity represented as a phase function A is a symmetric sum function
on Γ:

(152) A(x) =
N∑
i=1

A(xi)

Then

(153) 〈A〉 = N

∫
A(x1)ρ(1)(x1) dx1

which is a considerable simplification. But this is not to say that we can compute
the evolution of 〈A〉 in time so easily.

Consider in particular ρ
(1)
t in (151). This is the one-particle distribution func-

tion: the probability that an arbitrary particle is in the one-particle state (�p, �q).
This distribution function is in some sense analogous to Boltzmann’s f . But note:
ρ1 is a marginal probability distribution; it characterizes an ensemble, whereas f
is (in this context) a stochastic variable, representing a property of a single gas:

(154) f(�r,�v)) =
1
N

∑
i

δ(�qi − �r)δ(�v − �pi
m

).

How does ρ
(1)
t evolve? From the Liouville-equation we get

∂ρ(1)(x1)
∂t

=
∫
{H, ρ}d3�p2 · · · �pNd�q2 · · · �qN .(155)

It is convenient here to regard the Poisson bracket as a differential operator on ρ,
usually called the Liouville operator L:

(156) Lρ :=
N∑
i=1

(
∂H

∂�qi
· ∂

∂�pi
− ∂H

∂�pi
· ∂

∂�qi

)
ρ.

For the Hamiltonian (149) this can be expanded as:
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(157) L =
N∑
i

L(1)
i +

N∑
i<j

L(2)
ij

where

(158) L(1)
i := �pi · ∂

∂�qi

and

(159) L(2)
ij :=

∂φij
∂�qi
·
(

∂

∂�pi
− ∂

∂ �pj

)

The evolution of ρ(1) is then given by:

∂ρ
(1)
t (x1)
∂t

= L(1)
1 ρ

(1)
t (x1) +

∫
dx2L(2)

12 ρ(2)(x1, x2)(160)

More generally, for higher-order reduced distribution functions ρ(m) (m ≥ 2), the
evolution is governed by the equations:

∂ρ
(m)
t (x1, . . . , xm)

∂t
=

m∑
i=1

L(1)
i ρ

(m)
t (x1, . . . xm) +

m∑
i<j=1

L(2)
ij ρ

(m)
t (x1, . . . , xm)

+
m∑
i

∫
dxm+1L(2)

i,m+1ρ
(m+1)
t (x1, . . . xm+1)(161)

The equations (160,161) form the BBGKY hierarchy. It is strictly equivalent to
the Hamiltonian formalism for symmetric ρ and H, provided that H contains no
terms that depend on three or more particles. As one might expect, solving these
equations is just as hard as for the original Hamiltonian equations. In particular,
the equations are not closed: in order to know how ρ

(1)
t evolves, we need to know

ρ
(2)
t . In order to know how ρ

(2)
t evolves, we need to know ρ

(3)
t etc.

The usual method to overcome this problem is to cut off the hierarchy, i.e.
to assume that for some finite m, ρ(m) is a functional of ρ() with � < m. In
particular, if we just consider the easiest case (m = 2) and the easiest form of the
functional, we can take ρ(2) to factorize in the distant past (t −→ −∞), giving:

(162) ρ
(2)
t (x1, x2) = ρ

(1)
t (x1)ρ

(1)
t (x2); if t −→ −∞

i.e., requiring that the molecular states of any pair of particles are uncorrelated
before their interaction. This is analogous to the Stoßzahlansatz (29), but now, of
course, formulated in terms of the reduced distribution functions of an ensemble.

It can be shown that for the homogeneous case, i.e. when ρ(2) is uniform over the
positions �q1 and �q2, i.e. when ρ(2)(x1, x2) = ρ(2)(�p1, �p2) and when φ is a interaction
potential of finite range, the evolution equation for ρ(1) becomes formally identical
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to the Boltzmann equation (48). That is to say, in (160) we may substitute L(1)
i = 0

and:

∂ρ
(1)
t (�p1)
∂t

=
∫
L(2)

12 ρ(�p1, �p2)d3 �p2

=
N

m

∫
bdbdφ

∫
d�p2‖�p2 − �p1‖(163) (

ρ
(1)
t (�p1

′)ρ(1)
t (�p2

′)− ρ
(1)
t (�p1)ρ

(1)
t (�p2)

)
(See [Uhlenbeck and Ford, 1963, p. 131] for more details.)

Remarks

The BBGKY approach is thoroughly Gibbsian in its outlook, i.e. it takes a prob-
ability density over phase space as its basic conceptual tool. An additional ingre-
dient, not used extensively by Gibbs, is its reliance on permutation symmetry. It
gives an enormous extension of Gibbs’ own work by providing a systematic hierar-
chy of evolution equations for reduced (or marginalized) density functions, which
can then be subjected to the techniques of perturbation theory. An ensemble-based
analogy of the Boltzmann equation comes out of this approach as a first-order ap-
proximation for dilute gases with collision times much smaller than the mean free
time. The Boltzmann equation for inhomogeneous gases cannot be obtained so
easily– as one might expect also on physical grounds that one will need extra
assumptions to motivate its validity.

It is instructive to compare this approach to Lanford’s. His analogy of the
Boltzmann equation is obtained for a different kind of function, namely the one-
particle distribution function F [x], i.e. the exact relative number of particles with
molecular state (�r,�v), instead of ρ(1). Of course, there is a simple connection
between the two. Noting that F [x] is a sum function (cf. equation (137), we see
that

(164) 〈F [x]〉 =
∫

ρ(1)(�p1, �q1)f(δ(�r − �q1)δ(�v − �p1

m
)dp1dq1 = ρ(1)(�r,�v).

In other words, the one-particle distribution function ρ(1) is the expected value of
the exact distribution of state. It thus appears that where Lanford describes the
probability of the evolution of the exact distribution of state, the BBGKY result
(164) describes the evolution of the average of the exact distribution of state.
Lanford’s results are therefore much more informative.

One might be tempted here to argue that one can justify or motivate that
that actual particle distribution might be taken equal to its ensemble average
by arguments similar to those employed in ergodic theory. In particular, we have
seen from Khinchin’s work (cf. §6.3) that for large enough systems, the probability
that a sum function such as F [x] deviates significantly from its expectation value is
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negligible. However, an important complication is that this reading of Khinchin’s
results holds for equilibrium, i.e. they apply with respect to the microcanonical
distribution ρmc, not to an arbitrary time-dependent density ρt envisaged here.

The time asymmetry of the resulting equation does not derive from the hier-
archy of equations, but from the ensemble-based analogy of the Stoßzahlansatz
(162). That is to say, in this approach time asymmetry is introduced via an initial
condition on the ensemble, i.e. the absence of initial correlations. It can be shown,
just like for the original Boltzmann equation, that when the alternative boundary
condition is imposed that makes the momenta independent after collisions, (i.e.
if (162) is imposed for t −→ ∞ instead) the anti-Boltzmann equation is obtained
(see [Uhlenbeck and Ford, 1963, p. 127]).

7 STOCHASTIC DYNAMICS

7.1 Introduction

Over recent decades, some approaches to non-equilibrium statistical mechanics,
that differ decidedly in their foundational and philosophical outlook, have never-
theless converged in developing a common unified mathematical framework. I will
call this framework ‘stochastic dynamics’, since the main characteristic feature of
the approach is that it characterizes the evolution of the state of a mechanical
system as evolving under stochastic maps, rather than under a deterministic and
time-reversal invariant Hamiltonian dynamics.68

The motivations for adopting this stochastic type of dynamics come from dif-
ferent backgrounds, and one can find authors using at least three different views.

1. “Coarse graining” (cf. [van Kampen, 1962; Penrose, 1970]): In this view
one assumes that on the microscopic level the system can be characterized as
a (Hamiltonian) dynamical system with deterministic time-reversal invariant dy-
namics. However, on the macroscopic level, one is only interested in the evolution
of macroscopic states, i.e. in a partition (or coarse graining) of the microscopic
phase space into discrete cells. The usual idea is that the form and size of these
cells are chosen in accordance with the limits of our observational capabilities. A
more detailed exposition of this view is given in §7.5.

On the macroscopic level, the evolution now need no longer be portrayed as
deterministic. When only the macrostate of a system at an instant is given, it is in
general not fixed what its later macrostate will be, even if the underlying micro-
scopic evolution is deterministic. Instead, one can provide transition probabilities,
that specify how probable the transition from any given initial macrostate to later
macrostates is. Although it is impossible, without further assumptions, to say
anything general about the evolution of the macroscopically characterized states,
it is possible to describe the evolution of an ensemble or a probability distribution
over these states, in terms of a stochastic process.

68Also, the name has been used in precisely this sense already by Sudarshan and coworkers,
cf. [Sudarshan et al., 1961; Mehra and Sudarshan, 1972].
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2. “Interventionism”, “tracing” or “open systems” (cf. [Blatt, 1959; Davies,
1976; Lindblad, 1976; Lindblad, 1983; Ridderbos, 2002]): On this view, one as-
sumes that the system to be described is not isolated but in interaction with the
environment. It is assumed that the total system, consisting of the system of inter-
est and the environment can be described as a (Hamiltonian) dynamical system
with a time-reversal invariant and deterministic dynamics. If we represent the
state of the system by x ∈ Γ(s) and that of the environment by y ∈ Γ(e), their
joint evolution is given by a one-parameter group of evolution transformations,
generated from the Hamiltonian equations of motion for the combined system:
Ut : (x, y) �→ Ut(x, y) ∈ Γ(s) × Γ(e). The evolution of the state x in the course of
time is obtained by projecting, for each t, to the coordinates of Ut(x, y) in Γ(s);
call the result of this projection xt. Clearly, this reduced time evolution of the
system will generally fail to be deterministic, e.g. the trajectory described by xt
in Γ(s) may intersect itself.

Again, we may hope that this indeterministic evolution can nevertheless, for
an ensemble of the system and its environment, be characterized as a stochastic
process, at least if some further reasonable assumptions are made.

3. A third viewpoint is to deny [Mackey, 1992; 2001], or to remain agnostic
about [Streater, 1995], the existence of an underlying deterministic or time-reversal
invariant dynamics, and simply regard the evolution of a system as described by
a stochastic process as a new fundamental form of dynamics in its own right.

While authors in this approach thus differ in their motivation and in the inter-
pretation they have of its subject field, there is, as we shall see, a remarkable unity
in the mathematical formalism adopted for this form of non-equilibrium statistical
mechanics. The hope, obviously, is to arrange this description of the evolution
of mechanical systems in terms of a stochastic dynamics in such a way that the
evolution will typically display ‘irreversible behaviour’: i.e. an ‘approach to equi-
librium’, that a Boltzmann-like evolution equation holds, that there is a stochastic
analogy of the H-theorem, etc. In short, one would like to recover the autonomy
and irreversibility that thermal systems in non-equilibrium states typically display.

We will see that much of this can be achieved with relatively little effort once
a crucial technical assumption is in place: that the stochastic process is in fact a
homogeneous Markov process, or, equivalently, obeys a so-called master equation.
Much harder are the questions of whether the central assumptions of this approach
might still be compatible with an underlying deterministic time-reversal invariant
dynamics, and in which sense the results of the approach embody time-asymmetry.
In fact we shall see that conflicting intuitions on this last issue arise, depending
on whether one takes a probabilistic or a dynamics point of view towards this
formalism.

From a foundational point of view, stochastic dynamics promises a new ap-
proach to the explanation of irreversible behaviour that differs in interesting ways
from the more orthodox Hamiltonian or dynamical systems approach. In that
approach, any account of irreversible phenomena can only proceed by referring to
special initial conditions or dynamical hypotheses. Moreover, it is well-known that
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an ensemble of such systems will conserve (fine-grained) Gibbs entropy so that the
account cannot rely on this form of entropy for a derivation of the increase of
entropy.

In stochastic dynamics, however, one may hope to find an account of irreversible
behaviour that is not tied to special initial conditions, but one that is, so to
say, built into the very stochastic-dynamical evolution. Further, since Liouville’s
theorem is not applicable, there is the prospect that one can obtain a genuine
increase of Gibbs entropy from this type of dynamics.

As just mentioned, the central technical assumption in stochastic dynamics is
that the processes described have the Markov property.69 Indeed, general aspects
of irreversible behaviour pour out almost effortlessly from the Markov property,
or from the closely connected “master equation”. Consequently, much of the
attention in motivating stochastic dynamics has turned to the assumptions needed
to obtain this Markov property, or slightly more strongly, to obtain a non-invertible
Markov process [Mackey, 1992]. The best-known specimen of such an assumption
is [van Kampen, 1962] “repeated randomness assumption”. And similarly, critics
of this type of approach [Sklar, 1993; Redhead, 1995; Callender, 1999] have also
focused their objections on the question just how reasonable and general such
assumptions are (cf. paragraph 7.5).

I believe both sides of the debate have badly missed the target. Many authors
have uncritically assumed that the assumption of a (non-invertible) Markov pro-
cess does indeed lead to non-time-reversal-invariant results. As a matter of fact,
however, the Markov property (for invertible or non-invertible Markov processes)
is time-reversal invariant. So, any argument to obtain that property need not pre-
suppose time-asymmetry. In fact, I will argue that this discussion of irreversible
behaviour as derived from the Markov property suffers from an illusion. It is due
to the habit of studying the prediction of future states from a given initial state,
rather than studying retrodictions towards an earlier state. As we shall see, for
a proper description of irreversibility in stochastic dynamics one needs to focus
on another issue, namely the difference between backward and forwards transition
probabilities.

In the next subsections, I will first (§7.2) recall the standard definition of a
homogeneous Markov process from the theory of stochastic processes. Subsection
7.3 casts these concepts in the language of dynamics, introduces the master equa-
tion, and discusses its analogy to the Boltzmann equation. In §7.4, we review
some of the results that prima facie display irreversible behaviour for homoge-
neous Markov processes. In subsection 7.5 we turn to the physical motivations
that have been given for the Markov property, and their problems, while §7.6 fo-
cuses on the question how seemingly irreversible results could have been obtained
from a time-symmetric assumptions. Finally, §7.7 argues that a more promising
discussion of these issues should start from a different definition of reversibility of
stochastic processes.

69Some authors argue that the approach can and should be extended to include non-Markovian
stochastic processes as well. Nevertheless I will focus here on Markov processes.
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7.2 The definition of Markov processes

To start off, consider an example. One of the oldest discussions of a stochastic
process in the physics literature is the so-called ‘dog flea model’ of P. and T.
Ehrenfest (1907).

Consider N fleas, labeled from 1 to N, situated on either of two dogs. The
number of fleas on dog 1 and 2 are denoted as n1 and n2 = N − n1. Further, we
suppose there is an urn with N lots carrying the numbers 1, . . . N respectively. The
urn is shaken, a lot is drawn (and replaced), and the flea with the corresponding
label is ordered to jump to the other dog. This procedure is repeated every second.

It is not hard to see that this model embodies an ‘approach equilibrium’ in some
sense: Suppose that initially all or almost all fleas are on dog 1. Then it is very
probable that the first few drawings will move fleas from dog 1 to 2. But as soon
as the number of fleas on dog 2 increases, the probability that some fleas will jump
back to dog 1 increases too. The typical behaviour of, say, |n1 − n2| as a function
of time will be similar to Boltzmann’s H-curve, with a tendency of |n1 − n2| to
decrease if it was initially large, and to remain close to the ‘equilibrium’ value
n1 ≈ n2 for most of the time. But note that in contrast to Boltzmann’s H-curve
in gas theory, the ‘evolution’ is here entirely stochastic, i.e. generated by a lottery,
and that no underlying deterministic equations of motion are provided.

In general, a stochastic process is, mathematically speaking, nothing but a
probability measure P on a measure space X, whose elements will here be denoted
as ξ, on which there are infinitely many random variables Yt, with t ∈ R (or
sometimes t ∈ Z). Physically speaking, we interpret t as time, and Y as the
macroscopic variable(s) characterizing the macrostate — say the number of fleas
on a dog, or the number of molecules with their molecular state in some cell of μ-
space, etc. Further, ξ represents the total history of the system which determines
the values of Yt(ξ). The collection Yt may thus be considered as a single random
variable Y evolving in the course of time.

At first sight, the name ‘process’ for a probability measure may seem somewhat
unnatural. From a physical point of view it is the realization, in which the random
variables Yt attain the values Yt(ξ) = yt that should be called a process. In the
mathematical literature, however, it has become usual to denote the measure that
determines the probability of all such realizations as a ‘stochastic process’.

For convenience we assume here that the variables Yt may attain only finitely
many discrete values, say yt ∈ Y = {1, . . . , m}. However, the theory can largely
be set up in complete analogy for continuous variables.

The probability measure P provides, for n = 1, 2, . . ., and instants t1, . . . , tn
definite probabilities for the event that Yt at these instants attains certain values
y1, . . . , yn:

P(1)(y1, t1)
P(2)(y2, t2; y1, t1)

...
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P(n)(yn, tn; . . . ; y1, t1)(165)
...

Here, P(n)(yn, tn; . . . ; y1, t1) stands for the joint probability that at times t1, . . . , tn
the quantities Yt attain the values y1, . . . yn, with yi ∈ Y. It is an abbreviation for

(166) P(n)(yn, tn; . . . ; y1, t1) := P ({ξ ∈ X : Ytn(ξ) = yn & · · · & Yt1(ξ) = y1})
Obviously the probabilities (165) are normalized and non-negative, and each P(n)

is a marginal of all higher-order probability distributions:

(167) P(n)(yn, tn; . . . ; y1, t1) =
∑
yn+m

· · ·
∑
yn+1

P(n+m)(yn+m, tn+m; . . . ; y1, t1).

In fact, the probability measure P is uniquely determined by the hierarchy (165).70

Similarly, we may define conditional probabilities in the familiar manner, e.g.:

(168) P(1|n−1)(yn, tn|yn−1, tn−1; . . . ; y1, t1) :=
P(n)(yn, tn; . . . ; y1, t1)

P(n−1)(yn−1, tn−1; . . . ; y1, t1)

provides the probability that Ytn attains the value yn, under the condition that
Ytn−1 , . . . , Yt1 have the values yn−1, . . . , y1.

In principle, the times appearing in the joint and conditional probability distri-
butions (165,168) may be chosen in an arbitrary order. However, we adopt from
now on the convention that they are ordered as t1 < · · · < tn.

A special and important type of stochastic process is obtained by adding the
assumption that such conditional probabilities depend only the condition at the
last instant. That is to say: for all n and all choices of y1, . . . yn and t1 < . . . < tn:

(169) P(1|n)(yn, tn|yn−1, tn−1; . . . ; yn, tn) = P(1|1)(yn, tn|yn−1, tn−1)

This is the Markov property and such stochastic processes are called Markov pro-
cesses.

The interpretation often given to this assumption, is that Markov processes
have ‘no memory’. To explain this slogan more precisely, consider the following
situation. Suppose we are given a piece of the history of the quantity Y : at the
instants t1, . . . , tn−1 its values have been y1, . . . , yn−1. On this information, we
want to make a prediction of the value yn of the variable Y at a later instant tn.
The Markov-property (169) says that this prediction would not have been better
or worse if, instead of knowing this entire piece of prehistory, only the value yn−1

of Y at the last instant tn−1 had been given. Additional information about the
past values is thus irrelevant for a prediction of the future value.

For a Markov process, the hierarchy of joint probability distributions (165) is
subjected to stringent demands. In fact they are all completely determined by:

70At least, when we assume that the σ-algebra of measurable sets in X is the cylinder algebra
generated by sets of the form in the right-hand side of (166).
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(a) the specification of P(1)(y, 0) at one arbitrary chosen initial instant t = 0, and
(b) the conditional probabilities P(1|1)(y2, t2|y1, t1) for all t2 > t1. Indeed,

P(1)(y, t) =
∑
y0

P(1|1)(y, t|y0, 0)P(1)(y0, 0);(170)

and for the joint probability distributions P(n) we find:

P(n)(yn, tn; . . . ; y1, t1) = P(1|1)(yn, tn|yn−1, tn−1)P(1|1)(yn−1, tn−1|yn−2, tn−2)×
× · · · × P(1|1)(y2, t2|y1, t1)P(1)(y1, t1).(171)

It follows from the Markov property that the conditional probabilities P(1|1) have
the following property, known as the Chapman-Kolmogorov equation:

(172) P(1|1)(y3, t3|y1, t1) =
∑
y2

P(1|1)(y3, t3|y2, t2)P(1|1)(y2, t2|y1, t1) for t1 < t2 < t3.

So, for a Markov process, the hierarchy (165) is completely characterized by
specifying P(1) at an initial instant and a system of conditional probabilities P(1|1)
satisfying the Chapman-Kolmogorov equation. The study of Markov processes
therefore focuses on these two ingredients.71

A following special assumption is homogeneity. A Markov process is called
homogeneous if the conditional probabilities P(1|1)(y2, t2|y1, t1) do not depend on
the two times t1, t2 separately but only on their mutual difference t = t2 − t1; i.e.
if they are invariant under time translations. In this case we may write

(173) P(1|1)(y2, t2|y1, t1) = Tt(y2, y1)

such conditional probabilities are also called transition probabilities.
Is the definition of a Markov process time-symmetric? The choice in (169) of

conditionalizing the probability distribution for Ytn on earlier values of Yt is of
course special. In principle, there is nothing in the formulas (165) or (168) that
forces such an ordering. One might, just as well, ask for the probability of a value
of Yt in the past, under the condition that part of the later behaviour is given (or,
indeed, conditionalize on the behaviour at both earlier and later instants.)

At first sight, the Markov property makes no demands about these latter cases.
Therefore, one might easily get the impression that the definition is time-asymmetric.
However, this is not the case. One can show that (169) is equivalent to:

(174) P(1|n−1)(y1, t1|y2, t2; . . . ; yn, tn) = P(1|1)(y1t1|y2, t2)

71Note, however, that although every Markov process is fully characterized by (i) an initial
distribution P(1)(y, 0) and (ii) a set of transition probabilities P(1|1) obeying the Chapman-
Kolmogorov equation and the equations (171), it is not the case that every stochastic process
obeying (i) and (ii) is a Markov process. (See [van Kampen, 1981, p. 83] for a counterexample).
Still, it is true that one can define a unique Markov process from these two ingredients by
stipulating (171).
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where the convention t1 < t2 < · · · < tn is still in force. Thus, a Markov process
does not only have ‘no memory’ but also ‘no foresight’. Some authors (e.g. [Kelly,
1979]) adopt an (equivalent) definition of a Markov process that is explicitly time-
symmetric: Suppose that the value yi at an instant ti somewhere in the middle of
the sequence t1 < · · · < tn is given. The condition for a stochastic process to be
Markov is then

P(n|1)(yn, tn; . . . ; y1, t1|yi, ti) =
P(n−i|1)(yn, tn; . . . ; yi+1, ti+1|yi, ti) P(i−1|1)(yi−1, ti−1; y1, t1|yi, ti)(175)

for all n = 1, 2, . . . and all 1 ≤ i ≤ n. In another slogan: The future and past are
independent if one conditionalizes on the present.

7.3 Stochastic dynamics

A homogeneous Markov process is for t > 0 completely determined by the specifica-
tion of an initial probability distribution P(1)(y, 0) and the transition probabilities
Tt(y2|y1) defined by (173). The difference in notation (between P and T ) also
serves to ease a certain conceptual step. Namely, the idea is to regard Tt as a
stochastic evolution operator. Thus, we can regard Tt(y2|y1) as the elements of a
matrix, representing a (linear) operator T that determines how an initial distribu-
tion P(1)(y, 0) will evolve into a distribution at later instants t > 0. (In the sequel
I will adapt the notation and write P(1)(y, t) as Pt(y).)

(176) Pt(y) = (TtP )(y) :=
∑
y′

Tt(y|y′)P0(y′).

The Chapman-Kolmogorov equation (172) may then be written compactly as

(177) Tt+t′ = Tt ◦ Tt′ for t, t′ ≥ 0

where ◦ stands for matrix multiplication, and we now also extend the notation to
include the unit operator:

(178) 11(y, y′) = T0(y, y′) := δy,y′

where δ denotes the Kronecker delta.
The formulation (177) can (almost) be interpreted as the group composition

property of the evolution operators T . It may be instructive to note how much
this is due to the Markov property. Indeed, for arbitrary conditional probabilities,
say, if Ai, Bj and Ck denote three families of complete and mutually exclusive
events (i.e. ∪iAi = ∪jBj = ∪kCk = Y; Ai ∩ Ai′ = Bj ∩ Bj′ = Ck ∩ Ck′ = ∅ for
i �= i′, j �= j′ and k �= k′), the rule of total probability gives :

(179) P (Ai|Ck) =
∑
j

P (Ai|Bj , Ck)P (Bj |Ck).
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In general, this rule can not be regarded as ordinary matrix multiplication or a
group composition! But the Markov property makes P (Ai|Bj , Ck) in (179) reduce
to P (Ai|Bj), and then the summation in (179) coincides with familiar rule for
matrix multiplication.

I wrote above: ‘almost’, because there is still a difference in comparison with
the normal group property: in the Chapman-Kolmogorov-equation (177) all times
must be positive. Thus, in general, for t > 0, Tt may not even be defined and so
it does not hold that

(180) T−t ◦ Tt = 11.

A family of operators {Tt, t ≥ 0} which is closed under a operation ◦ that obeys
(177), and for which T0 = 11 is called a semigroup. It differs from a group in the
sense that its elements Tt need not be invertible, i.e., need not have an inverse. The
lack of an inverse of Tt may be due to various reasons: either Tt does not possess
an inverse, i.e. it is not a one-to-one mapping, or Tt does possess an inverse matrix
T inv
t , which however is itself non-stochastic (e.g. it may have negative matrix-

elements). We will come back to the role of the inverse matrices in Sections 7.4
and 7.7.

The theory of Markov processes has a strong and natural connection with linear
algebra. Sometimes, the theory is presented entirely from this perspective, and
one starts with the introduction of a semigroup of stochastic matrices, that is to
say, m by m matrices T with Tij ≥ 0 and

∑
i Tij = 1. Or, more abstractly, one

posits a class of states P , elements of a Banach space with a norm ‖P‖1 = 1, and
a semigroup of stochastic maps Tt, (t ≥ 0), subject to the conditions that Tt is
linear, positive, and preserves norm: ‖TtP‖1 = ‖P‖1, (cf. [Streater, 1995]).

The evolution of a probability distribution P (now regarded as a vector or a
state) is then particularly simple when t is discrete ( t ∈ N):

(181) Pt = T tP0, where T t = T ◦ · · · ◦ T︸ ︷︷ ︸
t times

.

Homogeneous Markov processes in discrete time are also known as Markov chains.
Clearly, if we consider the family {Tt} as a semigroup of stochastic evolution op-

erators, or a stochastic form of dynamics, it becomes attractive to look upon P0(y)
as a contingent initial state, chosen independently of the evolution operators Tt.
Still, from the perspective of the probabilistic formalism with which we started,
this might be an unexpected thought: both P(1) and P(1|1) are aspects of a single,
given, probability measure P . The idea of regarding them as independent ingre-
dients that may be specified separately doesn’t then seem very natural. But, of
course, there is no formal objection against the idea, since every combination of a
system of transition probabilities Tt obeying the Chapman-Kolmogorov equation,
and an arbitrary initial probability distribution P0(y) = P(1)(y, 0) defines a unique
homogeneous Markov process (cf. footnote 71). In fact, one sometimes even goes
one step further and identifies a homogeneous Markov process completely with
the specification of the transition probabilities, without regard of the initial state
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P0(y); just like the dynamics of a deterministic system is usually presented without
assuming any special initial state.

For Markov chains, the goal of specifying the evolution of Pt(y) is now already
completely solved in equation (181). In the case of continuous time, it is more
usual to specify evolution by means of a differential equation. Such an equation
may be obtained in a straightforward manner by considering a Taylor expansion of
the transition probability for small times [van Kampen, 1981, p.101–103] — under
an appropriate continuity assumption.

The result (with a slightly changed notation) is:

(182)
∂Pt(y)

∂t
=
∑
y′

(W (y|y′)Pt(y′)−W (y′|y)Pt(y))

Here, the expression W (y|y′) is the transition probability from y′ to y per unit
of time. This differential equation, first obtained by Pauli in 1928, is called the
master equation. (This name has become popular because an equation of this type
covers a great variety of processes.)

The interpretation of the equation is suggestive: the change of the probability
Pt(y) is determined by making up a balance between gains and losses: the proba-
bility of value y increases in a time dt because of the transitions from y′ to y, for
all possible values of y′. This increase per unit of time is

∑
y′ W (y|y′)Pt(y′). But

in same period dt there is also a decrease of Pt(y) as a consequence of transitions
from the value y to all other possible values y′. This provides the second term.

In this “balancing” aspect, the master equation resembles the Boltzmann equa-
tion (48), despite the totally different derivation, and the fact that Pt(y) has
quite another meaning than Boltzmann’s ft(v). (The former is a probability dis-
tribution, the latter a distribution of particles.) Both are first-order differential
equations in t. A crucial mathematical distinction from the Boltzmann equation
is that the master equation is linear in P , and therefore much easier to solve.

Indeed, any solution of the master equation can formally be written as:

(183) Pt = etLP0,

where L represents the operator

(184) L(y|y′) := W (y|y′)−
∑
y′′

W (y′′|y′)δy,y′ .

The general solution (183) is similar to the discrete time case (181), thus showing
the equivalence of the master equation to the assumption of a homogeneous Markov
process in continuous time.

A final remark(not needed for later paragraphs). The analogy with the Boltz-
mann equation can even be increased by considering a Markov process for particle
pairs, i.e. by imagining a process where pairs of particles with initial states (i, j)
make a transition to states (k, l) with certain transition probabilities (cf. [Al-
berti and Uhlmann, 1982, p. 30]) Let W (i, j|k, l) denote the associated transition
probability per unit of time. Then the master equation takes the form:
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(185)
∂Pt(i, j)

∂t
=
∑
k,l

(W (i, j|k, l)Pt(k, l)−W (k, l|i, j)Pt(i, j)) .

Assume now that the transitions (i, j) −→ (k, l) and (k, l) −→ (i, j) are equally
probable, so that the transition probability per unit of time is symmetric: W (i, j|k, l) =
W (k, l|i, j), and, as an analogue to the Stoßzahlansatz, that P (i, j) in the right-
hand side may be replaced by the product of its marginals:

(186) P (i, j) −→
∑
j

P (i, j) ·
∑
i

P (i, j) = P ′(i)P ′′(j)

Summing the above equation (185) over j, we finally obtain

(187)
∂P ′

t (i)
∂t

=
∑
j

∂Pt(i, j)
∂t

=
∑
j,k,l

T (i, j|k, l)
(
P ′
t (k)P ′′

t (l)− P ′
t (i)P

′′
t (j)

)
,

i.e., an even more striking analogue of the Boltzmann equation (48). But note
that although (185) describes a Markov process, the last equation (187) does not:
it is no longer linear in P , as a consequence of the substitution (186).

7.4 Approach to equilibrium and increase of entropy?

What can we say in general about the evolution of Pt(y) for a homogeneous Markov
process? An immediate result is this: the relative entropy is monotonically non-
decreasing. That is to say, if we define

(188) H(P,Q) := −
∑
y∈Y

P (y) ln
P (y)
Q(y)

as the relative entropy of a probability distribution P relative to Q, then one can
show (see e.g. Moran 1961; Mackey 1991, p. 30):

(189) H(Pt, Qt) ≥ H(P,Q)

where Pt = TtP , Qt = TtQ, and Tt are elements of the semigroup (181) or (183).
One can also show that a non-zero relative entropy increase for at least some pair

probability distributions P and Q, the stochastic matrix Tt must be non-invertible.
The relative entropy H(P |Q) can, in some sense, be thought of as a measure of

how much P and Q “resemble” each other.72 Indeed, it takes its maximum value
(i.e. 0) if and only if P = Q; it may become −∞ if P and Q have disjoint support,
(i.e. when P (y)Q(y) = 0 for all y ∈ Y.) Thus, the result (189) says that if the
stochastic process is non-invertible, pairs of distributions Pt and Qt will generally
become more and more alike as time goes by.

Hence it seems we have obtained a general weak aspect of “irreversible be-
haviour” in this framework. Of course, the above result does not yet imply that

72Of course, this is an asymmetric sense of “resemblance” because H(P, Q) = H(Q, P ).
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the ‘absolute’ entropy H(P ) := −∑y P (y) lnP (y) of a probability distribution is
non-decreasing. But now assume that the process has a stationary state. In other
words, there is a probability distribution P ∗(y) such that

(190) TtP
∗ = P ∗.

The intention is, obviously, to regard such a distribution as a candidate for the
description of an equilibrium state. If there is such a stationary distribution P ∗,
we may apply the previous result and write:

(191) H(P, P ∗) ≤ H(TtP, TtP
∗) = H(Pt, P ∗).

In other words, as time goes by, the distribution TtP will then more and more
resemble the stationary distribution than does P . If the stationary distribution is
also uniform, i.e.:

(192) P ∗(y) =
1
m

,

then not only the relative but also the absolute entropy H(P ) := −∑y P (y) lnP (y)
increases, because

(193) H(P, P ∗) = H(P )− lnm.

In order to get a satisfactory description of an ‘approach to equilibrium’ the
following questions remain:

(i) is there such a stationary distribution?
(ii) if so, is it unique?
(iii) does the monotonic behaviour of H(Pt) imply that limt−→∞ Pt = P ∗?

Harder questions, which we postpone to the next subsection 7.5, are:
(iv) how to motivate the assumptions needed in this approach or how to make

judge their (in)compatibility with an underlying time deterministic dynamics; and
(v) how this behaviour is compatible with the time symmetry of Markov pro-

cesses.

Ad (i). A stationary state as defined by (190), can be seen as an eigenvector
of Tt with eigenvalue 1, or, in the light of (183), an eigenvector of L for the
eigenvalue 0. Note that T or L are not necessarily Hermitian (or, rather, since we
are dealing with real matrices, symmetric), so that the existence of eigenvectors is
not guaranteed by the spectral theorem. Further, even if an eigenvector with the
corresponding eigenvalue exists, it is not automatically suitable as a probability
distribution because its components might not be positive.

Still, it turns out that, due to a theorem of Perron (1907) and Frobenius (1909),
every stochastic matrix indeed has a eigenvector, with exclusively non-negative
components, and eigenvalue 1 (see e.g. [Gantmacher, 1959; Van Harn and Holewijn,
1991]). But if the set Y is infinite or continuous this is not always true.

A well-known example of the latter case is the so-called Wiener process that
is often used for the description of Brownian motion. It is characterized by the
transition probability density:
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(194) Tt(y|y′) =
1√
2πt

exp
(y − y′)2

2t
, y, y′ ∈ R.

The evolution of an arbitrary initial probability density ρ0 can be written as a
convolution:

(195) ρt(y) =
∫

Tt(y|y′)ρ0(y′)dy′;

which becomes gradually lower, smoother and wider in the course of time, but
does not approach any stationary probability density. Because this holds for every
choice of ρ0, there is no stationary distribution in this case.

However, it is not reasonable to see this as a serious defect. Indeed, in thermo-
dynamics too one finds that a plume of gas emitted into free space will similarly
diffuse, becoming ever more dilute without ever approaching an equilibrium state.
Thermodynamic equilibrium is only approached for systems enclosed in a vessel
of finite volume.

However, for continuous variables with a range that has finite measure, the
existence of a stationary distribution is guaranteed under the condition that the
probability density ρy is at all times bounded, i.e. ∃M ∈ R such that ∀t ρt ≤ M ;
(see [Mackey, 1992, p. 36]).

Ad (ii). The question whether stationary solutions will be unique is somewhat
harder to tackle. This problem exhibits an analogy to that of metric transitivity
in the ergodic problem (cf. paragraph 6.1).

In general, it is very well possible that the range Y of Y can be partitioned in two
disjoint regions, say A and B, with Y = A ∪B, such that there are no transitions
from A to B or vice versa (or that such transitions occur with probability zero).
That is to say, the stochastic evolution Tt might have the property

(196) Tt(Y ∈ A|Y ∈ B) = Tt(Y ∈ B|Y ∈ A) = 0

In other words, its matrix may, (perhaps after a conventional relabeling of the
outcomes) be written in the form:

(197)
(

TA 0
0 TB

)
.

The matrix is then called (completely) reducible. In this case, stationary distribu-
tions will generally not be unique: If P ∗

A is a stationary distribution with support
in the region A, and P ∗

B is a stationary distribution with support in B, then every
convex combination

(198) αP ∗
A(y) + (1− α)P ∗

B(y) with 0 ≤ α ≤ 1.

will be stationary too. In order to obtain a unique stationary solution we will
thus have to assume an analogue of metric transitivity. That is to say: we should
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demand that every partition of Y into disjoint sets A and B for which (196) holds
is ‘trivial’ in the sense that P (A) = 0 or P (B) = 0.

So, one may ask, is the stationary distribution P ∗ unique if and only if the
transition probabilities Tτ are not reducible? In the ergodic problem, as we saw in
6.1, the answer is positive (at least if P ∗ is assumed to be absolutely continuous
with respect to the microcanonical measure). But not in the present case!

This has to do with the phenomenon of so-called ‘transient states’, which has
no analogy in Hamiltonian dynamics. Let us look at an example to introduce this
concept. Consider a stochastic matrix of the form:

(199)
(

TA T ′

0 TB

)

where T ′ is a matrix with non-negative entries only. Then:

(200)
(

TA T ′

0 TB

)(
PA
0

)
=
(

TAPA
0

)
,

(
TA T ′

0 TB

)(
0

PB

)
=(

T ′PB
TBPB

)

so that here transitions of the type a −→ b have probability zero, but transitions
of the type b −→ a occur with positive probability. (Here, a, b stand for arbitrary
elements of the subsets A and B.) It is clear that in such a case the region B
will eventually be ‘sucked empty’. That is to say: the total probability of being
in region B (i.e. ‖T tPB‖) will go exponentially to zero. The distributions with
support in B are called ‘transient’ and the set A is called ‘absorbing’ or a ‘trap’.

It is clear that these transient states will not play any role in the determination
of the stationary distribution, and that for this purpose they might be simply
ignored. Thus, in this example, the only stationary states are those with a support
in A. And there will be more than one of them if TA is reducible.

A matrix T that may be brought (by permutation of the rows and columns) in
the form (199), with TA reducible is called incompletely reducible [van Kampen,
1981, p. 108]. Further, a stochastic matrix is called irreducible if it is neither
completely or incompletely reducible. An alternative (equivalent) criterion is that
all states ‘communicate’ with each other, i.e. that for every pair of i, j ∈ Y there
is some time t such that Pt(j|i) > 0.

The Perron-Frobenius theorem guarantees that as long as T irreducible, there
is a unique stationary distribution. Furthermore, one can then prove an analogue
of the ergodic theorem:[Petersen, 1983, p. 52]

Ergodic theorem for Markov processes: If the transition prob-
ability Tt is irreducible, the time average of Pt converges to the unique
stationary solution:

(201) lim
τ→∞

1
τ

∫ τ

0

TtP (y)dt = P ∗(y).
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Ad (iii). If there is a unique stationary distribution P ∗, will TtP converge to
P ∗, for every choice of P? Again, the answer is not necessarily affirmative. (Even
if (201) is valid!) For example, there are homogeneous and irreducible Markov
chains for which Pt can be divided into two pieces: Pt = Qt+Rt with the following
properties [Mackey, 1992, p. 71]:

1. Qt is a term with ‖Qt‖ −→ 0. This is a transient term.

2. The remainder Rt is periodic, i.e. after some finite time τ the evolution
repeats itself: Rt+τ = Rτ .

These processes are called asymptotically periodic. They may very well occur in
conjunction with a unique stationary distribution P ∗, and show strict monotonic
increase of entropy, but still not converge to P ∗. In this case, the monotonic
increase of relative entropy H(Pt, P ∗) is entirely due to the transient term. For
the periodic piece Rt, the transition probabilities are permutation matrices, which,
after τ repetitions, return to the unit operator.

Besides, if we arrange that P ∗ is uniform, we can say even more in this example:
The various forms Rt that are attained during the cycle of permutations with
period τ all have the same value for the relative entropy H(Rt, P

∗), but this
entropy is strictly lower than H(P ∗, P ∗) = 0. In fact, P ∗ is the average of the
Rt’s, i.e.: P ∗ = 1

τ

∑t=τ
t=1 Rt, in correspondence with (201).

Further technical assumptions can be introduced to block examples of this kind,
and thus enforce a strict convergence towards the unique stationary distribution,
e.g. by imposing a condition of ‘exactness’ [Mackey, 1992]. However, it would take
us too far afield to discuss this in detail.

In conclusion, it seems that a weak aspect of “irreversible behaviour”, i.e. the
monotonic non-decrease of relative entropy is a general feature for all homogeneous
Markov processes, (and indeed for all stochastic processes), and non-trivially so
when the transition probabilities are non-invertible. Stronger versions of that
behaviour, in the sense of affirmative answers to the questions (i), (ii) and (iii),
can be obtained too, but at the price of additional technical assumptions.

7.5 Motivations for the Markov property and objections against them

Ad (iv). We now turn to the following problem: what is the motivation behind
the assumption of the Markov property? The answer, of course, is going to depend
on the interpretation of the formalism that one has in mind, and may be different
in the ‘coarse-graining’ and the ‘open systems’ or interventionist approaches (cf.
Section 7.1). I shall discuss the coarse-graining approach in the next paragraph
below, and then consider the similar problem for the interventionist point of view.
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Coarse-graining and the repeated randomness assumption

In the present point of view, one assumes that the system considered is really
an isolated Hamiltonian system, but the Markov property is supposedly obtained
from a partitioning of its phase space. But exactly how is that achieved?

One of the clearest and most outspoken presentations of this view is [van Kam-
pen, 1962]. As in paragraph 5.4, we assume the existence of some privileged
partition of the Hamiltonian phase space Γ — or of the energy hypersurface ΓE
— into disjoint cells: Γ = ω1 ∪ · · · ∪ ωm. Consider an arbitrary ensemble with
probability density ρ on this phase space. Its evolution can be represented by an
operator

(202) U∗
t ρ(x) := ρ(U−tx),

where, — in order to avoid conflation of notation — we now use Ut to denote
the Hamiltonian evolution operators, previously denoted as Tt, e.g. in (68) and
throughout section 6. Let transition probabilities between the cells of this partition
be defined as

(203) Tt(j|i) := P (xt ∈ ωj |x ∈ ωi) = P (Utx ∈ ωj |x ∈ ωi) =

∫
(U−tωj)∩ωi

ρ(x)dx∫
ωi

ρ(x)dx
,

Obviously such transition probabilities will be homogeneous, due to the time-
translation invariance of the Hamiltonian evolution Ut. Further, let p̂0(i) := P (x ∈
ωi) =

∫
ωi

ρ(x)dx, i ∈ Y = {1, . . . , m}, be an arbitrary initial coarse-grained prob-
ability distribution at time t=0.

Using the coarse-graining map defined by (92), one may also express the coarse-
grained distribution at time t as

(204) CGU∗
t ρ(x) =

∑
ji

Tt(j|i)p̂0(i)
1

μ(ωj)
11ωj

(x)

where μ is the canonical measure on Γ, or the microcanonical measure on ΓE . This
expression indicates that, as long as we are only interested in the coarse grained
history, it suffices to know the transition probabilities (203) and the initial coarse
grained distributions.

But in order to taste the fruits advertised in the previous paragraphs, one needs
to show that the transition probabilities define a Markov process, i.e., that they
obey the Chapman-Kolmogorov equation (172),

(205) Tt′+t(k|i) = Tt′(k|j)Tt(j|i); for all t, t′ > 0.

Applying (204) for times t, t′ and t + t′, it follows easily that the Chapman-
Kolmogorov equation is equivalent to

(206) CGU∗
t′+t = CGU∗

t′ CGU∗
t , for all t, t′ > 0.
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In other words, the coarse-grained probability distribution at time t + t′ can be
obtained by first applying the Hamiltonian dynamical evolution during a time t,
then performing a coarse-graining operation, next applying the dynamical evolu-
tion during time t′, and then coarse-graining again. In comparison to the relation
U∗
t′+t = U∗

t′U
∗
t , we see that the Chapman-Kolmogorov condition can be obtained

by demanding that it is allowed to apply a coarse-graining, i.e. to reshuffle the
phase points within each cell at any intermediate stage of the evolution. Of
course, this coarse-graining halfway during the evolution erases all information
about the past evolution apart from the label of the cell where the state is located
at that time; and this ties in nicely with the view of the Markov property as having
no memory (cf. the discussion on p. 1042).

What is more, the repeated application of the coarse-graining does lead to a
monotonic non-decrease of the Gibbs entropy: If, for simplicity, we divide a time
interval into m segments of duration τ , we have

(207) ρmτ = CGU∗
τ CGU∗

τ · · · CGU∗
τ︸ ︷︷ ︸

m times

ρ

and from (96):

(208) σ[ρmτ ] ≥ σ[ρ(m−1)τ ] ≥ . . . ≥ σ[ρτ ] ≥ σ[ρ0].

But since the choice of τ is arbitrary, we may conclude that σ[ρt] is monotonically
non-decreasing.

Thus, van Kampen argues, the ingredient to be added to the dynamical evolu-
tion is that, at any stage of the evolution, one should apply a coarse-graining of
the distribution. It is important to note that it is not sufficient to do that just
once at a single instant. At every stage of the evolution we need to coarse-grain
the distribution again and again. Van Kampen [1962, p. 193] calls this the repeated
randomness assumption.

What is the justification for this assumption? Van Kampen points out that it is
“not unreasonable” (ibid., p. 182), because of the brute fact of its success in phe-
nomenological physics. Thermodynamics and other phenomenological descriptions
of macroscopic systems (the diffusion equation, transport equations, hydrodynam-
ics, the Fokker-Planck equation, etc.) all characterize macroscopic systems with
a very small number of variables. This means that their state descriptions are
very coarse in comparison with the microscopic phase space. But their evolution
equations are autonomous and deterministic: the change of the macroscopic vari-
ables is given in terms of the instantaneous values of those very same variables.
The success of these equations shows, apparently, that the precise microscopic
state does not add any relevant information beyond this coarse description. At
the same time, van Kampen admits that the coarse-graining procedure is clearly
not always successful. It is not difficult to construct a partition of a phase space
into cells for which the Markov property fails completely.

Apparently, the choice of the cells must be “just right” [van Kampen, 1962,
p. 183]. But there is as yet no clear prescription how this is to be done. Van
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Kampen [1981, p. 80] argues that it is “the art of the physicist” to find the right
choice, an art in which he or she succeeds in practice by a mixture of general
principles and ingenuity, but where no general guidelines can be provided. The
justification of the repeated randomness assumption is that it leads to the Markov
property and from there onwards to the master equation, providing a success-
ful autonomous, deterministic description of the evolution of the coarse-grained
distribution.

It is worth noting that van Kampen thus qualifies the ‘usual’ point of view
(cf. p. 977 above, and paragraph 5.4) on the choice of the cells; namely, that the
cells are chosen in correspondence to our finite observation capabilities. Observ-
ability of the macroscopic variables is not sufficient for the success of the repeated
randomness assumption. It is conceivable (and occurs in practice) that a particu-
lar partition in terms of observable quantities does not lead to a Markov process.
In that case, the choice of observable variables is simply inadequate and has to
be extended with other (unobservable) quantities until we (hopefully) obtain an
exhaustive set, i.e. a set of variables for which the evolution can be described au-
tonomously. An example is the spin-echo experiment: the (observable) total mag-
netization of the system does not provide a suitable coarse-grained description. For
further discussion of this theme, see: [Blatt, 1959; Ridderbos and Redhead, 1998;
Lavis, 2004; Balian, 2005].

Apart from the unsolved problem for which partition the repeated randomness
assumption is to be applied, other objections have been raised against the repeated
randomness assumption. Van Kampen actually gives us not much more than the
advice to accept the repeated randomness assumption bravely, not to be distracted
by its dubious status, and firmly keep our eyes on its success. For authors as [Sklar,
1993], who refers to the assumption as a ”rerandomization posit”, this puts the
problem on its head. They request a justification of the assumption that would
explain the success of the approach. (Indeed, even [van Kampen, 1981, p. 80]
describes this success as a “miraculous fact”!). Such a request, of course, will not
be satisfied by a justification that relies on its success. (But that does not mean,
in my opinion, that it is an invalid form of justification.)

Another point that seems repugnant to many authors, is that the repeated
coarse-graining operations appear to be added ‘by hand’, in deviation from the true
dynamical evolution provided by Ut. The increase of entropy and the approach to
equilibrium would thus apparently be a consequence of the fact that we shake up
the probability distribution repeatedly in order to wash away all information about
the past, while refusing a dynamical explanation for this procedure. [Redhead,
1995, p. 31] describes this procedure as “one of the most deceitful artifices I have
ever come across in theoretical physics” (see also [Blatt, 1959] [Sklar, 1993] and
[Callender, 1999] for similar objections).

One might ask whether the contrast between the repeated randomness assump-
tion and the dynamical evolution need be so bleak as Van Kampen and his critics
argue. After all, as we have seen in paragraph 6.2, there are dynamical systems
so high in the ergodic hierarchy that they possess the Bernoulli property for some
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partition of phase space (cf. paragraph 6.2). Since the Markov property is weaker
than the Bernoulli property, one may infer there are also dynamical systems whose
coarse grained evolutions define a homogeneous Markov process.73 Thus one might
be tempted to argue that the Markov property, or the repeated randomness as-
sumption proposed to motivate it, need not require a miraculous intervention from
an external ‘hand’ that throws information away; a sufficiently complex determin-
istic dynamics on the microscopic phase space of the system might do the job all by
itself. However, the properties distinguished in the ergodic hierarchy all rely on
a given measure-preserving evolution. Thus, while some dynamical systems may
have the Markov property, they only give rise to stationary Markov processes.
Its measure-preserving dynamics still implies that the Gibbs entropy remains con-
stant. Thus, the result (208) can only be obtained in the case when all inequality
signs reduce to equalities. To obtain a non-trivial form of coarse-graining, we
should indeed suspend the measure-preserving dynamics.

In conclusion,!!! although the choice of a privileged partition remains an un-
solved problem, there need not be a conflict between the repeated randomness
assumption and the deterministic character of the dynamics at the microscopic
level. However, whether the assumption (206) might actually hold for Hamilto-
nian systems interesting for statistical mechanics is, as far as I know, still open.

Interventionism or ‘open systems’

Another approach to stochastic dynamics is by reference to open systems. The
idea is here that the system in continual interaction with the environment, and
that this is responsible for the approach to equilibrium.

Indeed, it cannot be denied that in concrete systems isolation is an unrealistic
idealization. The actual effect of interaction with the environment on the micro-
scopic evolution can be enormous. A proverbial example, going back to [Borel,
1914], estimates the gravitational effect caused by displacing one gram of matter
on Sirius by one centimeter on the microscopic evolution of an earthly cylinder
of gas. Under normal conditions, the effect is so large, that, roughly and for a
typical molecule in the gas, it may be decisive for whether or not this molecule
will hit another given molecule after about 50 intermediary collisions. That is
to say: microscopic dynamical evolutions corresponding to the displaced and the
undisplaced matter on Sirius start to diverge considerably after a time of about
10−6 sec. In other words, the mechanical evolution of such a system is so extremely
sensitive for disturbances of the initial state that even the most minute changes
in the state of the environment can be responsible for large changes in the micro-
scopic trajectory. But we cannot control the state of environment. Is it possible
to regard irreversible behaviour as the result of such uncontrollable disturbances

73Strictly speaking this is true only for discrete dynamical systems. For continuous time, e.g.
for Hamiltonian dynamics, the Markov property can only be obtained by adding a time smoothing
procedure to the repeated randomness assumption [Emch, 1965],[Emch and Liu, 2001, pp. 484–
486].
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from outside?74

Let (x, y) be the state of a total system, where, as before, x ∈ Γ(s) represents
the state of the object system and y ∈ Γ(e) that of the environment. We assume
that the total system is governed by a Hamiltonian of the form

(209) Htot(x, y) = H(s) + H(e) + λHint(x, y),

so that the probability density of the ensemble of total systems evolves as

(210) ρt(x, y) = U∗
t ρ0(x, y) = ρ (U−t(x, y))

i.e., a time-symmetric, deterministic and measure-preserving evolution.
At each time, we may define marginal distributions for both system and envi-

ronment:

(211) ρ
(s)
t (x) =

∫
dy ρt(x, y),

(212) ρ
(e)
t (x) =

∫
dx ρt(x, y).

We are, of course, mostly interested in the object system, i.e. in (211). Assume
further that at time t = 0 the total density factorizes:

(213) ρ0(x, y) = ρ
(s)
0 (x)ρ(e)

0 (y).

What can we say about the evolution of ρ
(s)
t (x)? Does it form a Markov process,

and does it show increase of entropy?
An immediate result (see e.g. [Penrose and Percival, 1962]) is this:

(214) σ[ρ(s)
t ] + σ[ρ(e)

t ] ≥ σ[ρ(s)
0 ] + σ[ρ(e)

0 ],

where σ denotes the Gibbs fine-grained entropy (90). This result follows from the
fact that σ[ρt] is conserved and that the entropy of a joint probability distribution
is always smaller than or equal to the sum of the entropies of their marginals; with
equality if the joint distribution factorizes. This gives a form of entropy change for
the total system, but it is not sufficient to conclude that the object system itself
will evolve towards equilibrium, or even that its entropy will be monotonically
increasing. (Notice that (214) holds for t ≤ 0 too.)

Actually, this is obviously not to be expected. There are interactions with an
environment that may lead the system away from equilibrium. We shall have to
make additional assumptions about the situation. A more or less usual set of
assumptions is:

(a). The environment is very large (or even infinite); i.e.: the dimension of Γ(e)

is much larger than that of Γ(s), and H(s) � H(e).

74Note that the term ‘open system’ is employed here for a system in (weak) interaction with
its environment. This should be distinguished from the notion of ‘open system’ in other branches
of physics where it denotes a system that can exchange particles with its environment.
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(b). The coupling between the system and the environment is weak, i.e. λ is very
small.

(c). The environment is initially in thermal equilibrium, e.g., ρ(e)(y) is canonical:

(215) ρ
(e)
0 =

1
Z(β)

e−βH
(e)

(d). One considers time scales only that are long with respect to the relaxation
times of the environment, but short with respect to the Poincaré recurrence
time of the total system.

Even then, it is a major task to obtain a master equation for the evolution of
the marginal state (211) of the system, or to show that its evolution is generated
by a semigroup, which would guarantee that this forms a Markov process (under
the proviso of footnote 71). Many specific models have been studied in detail (cf.
[Spohn, 1980]). General theorems were obtained (although mostly in a quantum
mechanical setting) by [Davies, 1974; Davies, 1976a; Lindblad, 1976; Gorini et al.,
1976]. But there is a similarly to the earlier approach: it seems that, here too, an
analogue of ‘repeated randomness’ must be introduced. [Mehra and Sudarshan,
1972; van Kampen, 1994; Maes and Netočný, 2003].

At the risk of oversimplifying and misrepresenting the results obtained in this
analysis, I believe they can be summarized as showing that, in the so-called ‘weak
coupling’ limit, or some similar limiting procedure, the time development of (211)
can be modeled as

(216) ρ
(s)
t (x) = Ttρ

(s)(x) t ≥ 0,

where the operators Tt form a semigroup, while the environment remains in its
steady equilibrium state:

(217) ρ
(e)
t (y) = ρ

(e)
0 (y) t ≥ 0.

The establishment of these results would also allow one to infer, from (214), the
monotonic non-decrease of entropy of the system.

To assess these findings, it is convenient to define, for a fixed choice of ρ
(e)
0 the

following linear map on probability distributions of the total system:

(218) T R : ρ(x, y) �→ T Rρ(x, y) =
∫

ρ(x, y)dy · ρ0(y)

This map removes the correlation between the system and the environment, and
projects the marginal distribution of the environment back to its original equilib-
rium form.

Now, it is not difficult to see that the Chapman-Kolmogorov equation (which
is equivalent to the semigroup property) can be expressed as

(219) T RU∗
t+t′ = T RU∗

t′T RU∗
t for all t, t′ ≥ 0
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which is analogous to (206).
There is thus a strong formal analogy between the coarse-graining and the open-

systems approaches. Indeed, the variables of the environment play a role compa-
rable to the internal coordinates of a cell in the coarse graining approach. The
exact microscopic information about the past is here translated into the form of
correlations with the environment. This information is now removed by assuming
that at later times, effectively, the state may be replaced by a product of the form
(213), neglecting the back-action of the system on the environment. The map-
pings CG and T R are both linear and idempotent mappings, that can be regarded
as special cases of the projection operator techniques of Nakajima and Zwanzig,
which allows for a more systematical and abstract elaboration, sometimes called
subdynamics.

Some proponents of the open systems approach, (e.g. [Morrison, 1966; Red-
head, 1995]), argue that in contrast to the coarse-graining approach, the present
procedure is ‘objective’. Presumably, this means that there is supposed to be a
fact of the matter about whether the correlations are indeed ‘exported to the en-
vironment’. However, the analogy between both approaches makes one suspect
that any problem for the coarse-graining approach is translated into an analogous
problem of the open systems approach. Indeed, the problem of finding a privileged
partition that we discussed in the previous paragraph is mirrored here by the ques-
tion where one should place the division between the ‘system’ and ‘environment’.
There is no doubt that it practical applications this choice is also arbitrary.

7.6 Can the Markov property explain irreversible behaviour?

Ad (v). Finally, I turn to what may well be the most controversial and surprising
issue: is the Markov property, or the repeated randomness assumption offered to
motivate it, responsible for the derivation of time-reversal non-invariant results?

We have seen that every non-invertible homogeneous Markov process displays
“irreversible behaviour” in the sense that different initial probability distributions
will tend to become more alike in the course of time. Under certain technical con-
ditions, one can obtain stronger results, e.g. an approach to a unique equilibrium
state, monotonic non-decrease of absolute entropy, etc. All these results seem to
be clearly time-asymmetric. And yet we have also seen that the Markov property
is explicitly time symmetric. How can these be reconciled?

To start off, it may be noted that it has often been affirmed that the Markov
property is the key towards obtaining time-asymmetric results. For example, Pen-
rose writes:

“ . . . the behaviour of systems that are far from equilibrium is not
symmetric under time reversal: for example: heat always flows from
a hotter to a colder body, never from a colder to a hotter. If this be-
haviour could be derived from the symmetric laws of dynamics alone
there would, indeed, be a paradox; we must therefore acknowledge the
fact that some additional postulate, non-dynamical in character and
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asymmetric under time reversal must be adjoined to the symmetric
laws of dynamics before the theory can become rich enough to explain
non-equilibrium behaviour. In the present theory, this additional pos-
tulate is the Markov postulate” (Penrose 1970, p. 41).

In the previous paragraph, we have already questioned the claim expressed here
that the Markov property is “non-dynamical”. But now we are interested in the
question whether postulating the Markov property would be asymmetric under
time-reversal. Many similar statements, e.g. that the repeated randomness as-
sumption is “the additional element by which statistical mechanics has to be sup-
plemented in order to obtain irreversible equations” [van Kampen, 1962, p. 182],
or that the non-invertibility of a Markov process provides the origin of thermo-
dynamic behaviour [Mackey, 1992] can be found in the works of advocates of this
approach.

But how can this be, given that the Markov property is explicitly time-symmetric?
In order to probe this problem, consider another question. How does a given proba-
bility distribution P (y, 0) evolve for negative times? So, starting again from (170),
let us now take t ≤ 0. We still have:

(220) P (y, t) =
∑
y′

P (y, t, |y′, 0)P (y′, 0).

These conditional probabilities P (y, t, |y′, 0) satisfy the ‘time-reversed’ Markov
property (174), that says that extra specification of later values is irrelevant for
the retrodiction of earlier values. As a consequence, we get for t ≤ t′ ≤ t′′, 0:

P (y, t|y′′, t′′) =
∑
y′

P (y, t|y′, t′)P (y′, t′|y′′, t′′)(221)

i.e., a time-reversed analogue of the Chapman-Kolmogorov equation.
We may thus also consider these conditional probabilities for negative times

as backward evolution operators. If we could assume their invariance under time
translation, i.e. that they depend only on the difference τ = t− t′, we could write

(222) Sτ (y|y′) := P (y, t|y, t′) with τ = t− t′ ≤ 0,

and obtain a second semigroup of operators Sτ , obeying

(223) Sτ+τ ′ = Sτ ◦ Sτ ′ τ, τ ′ ≤ 0

that generate stochastic evolutions towards the past.
Further, these backward conditional probabilities are connected to the forward

conditional probabilities by means of Bayes’ theorem:

(224) P(1|1)(y, t|y′, t′) =
P(1|1)(y′, t′|y, t)P (y, t)

P (y′, t′)
;

and if the process, as before, is homogeneous this becomes
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(225) P(1|1)(y, t|y′, t′) =
T−τ (y′|y)Pt(y)

Pt′(y′)
; τ = t− t′ < 0.

The matrix P(1|1)(y, t|y′, t′) always gives for t < t′ the correct ‘inversion’ of Tt.
That is to say:

(226)
∑
y′

P (y, t|y′, t′)(Tt′−tPt)(y′) = Pt(y)

Note firstly that (225) is not the matrix-inverse of Tt! Indeed, the right-hand side
of (225) depends on Pt and Pt′ as well as T . Even if the matrix-inverse T (inv) does
not exist, or is not a bona fide stochastic matrix, the evolution towards the past
is governed by the Bayesian inversion, i.e. by the transition probabilities (225).

Note also that if the forward transition probabilities are homogeneous, this is
not necessarily so for the backward transition probabilities. For example, if in
(225) one translates both t and t′ by δ, one finds

P (y, t + δ|y′, t′ + δ) =
T−τ (y′|y)P (y, t + δ)

P (y′, t′ + δ)
.

Here, the right-hand side generally still depends on δ. In the special case that
the initial distribution is itself stationary, the backward transition probabilities
are homogeneous whenever the forward ones are. If P (y, t) is not stationary, we
might still reach the same conclusion, as long as the non-stationarity is restricted
to those elements y or y′ of Y for which Tt(y|y′) = 0 for all t. Otherwise, the two
notions become logically independent.

This gives rise to an unexpected new problem. Usually, an assumption of ho-
mogeneity (or time translation invariance) is seen as philosophically innocuous, as
compared to time reversal invariance. But here we see that assuming time trans-
lation invariance for a system of forward transition probabilities is not equivalent
to assuming the same invariance for the backward transition probabilities. If one
believes that one of the two is obvious, how will one go about explaining the fail-
ure of the other? And how would one explain the preference for which one of the
two is obvious, without falling into the “double standards” accusation of the kind
raised by [Price, 1996]?

But what about entropy increase? We have seen before that for every non-
invertible Markov process the relative entropy of the distribution P with respect
to the equilibrium distribution increases, and that the distribution evolves towards
equilibrium. (Homogeneity of the process is not needed for this conclusion.) But
the backward evolution operators form a Markov process too, for which exactly the
same holds. This seems paradoxical. If TtP0 = Pt, we also have Pt = S−tP0. The
entropy of Pt can hardly be both higher and lower than that of P0! An example may
clarify the resolution of this apparent problem: namely, the stationary solutions
of S are not the same as the stationary solutions of T !

Example Consider a Markov chain with Y = {1, 2} and let
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(227) T =
(

1
2

1
2

1
2

1
2

)
.

Choose an initial distribution P0 =
(

α
1− α

)
. After one step we already get

(228) TP =
(

1
2
1
2

)

which is also the (unique) stationary distribution P ∗. The backward transition
probabilities are given by Bayes’ theorem, and one finds easily:

(229) S =
(

α α
1− α 1− α

)
.

The stationary distribution for this transition probability is

(230) P̃ ∗ =
(

α
1− α

)
.

That is to say: for the forward evolution operator the transition

(231)
(

α
1− α

)
T−→
(

1
2
1
2

)

is one for which a non-stationary initial distribution evolves towards a station-
ary one. The relative entropy increases: H(P0, P

∗) ≤ H(TP, P ∗). But for the
backward evolution, similarly:

(232)
(

1
2
1
2

)
S−→
(

α
1− α

)

represents an evolution from a non-stationary initial distribution to the stationary
distribution P̃ ∗ and, here too, relative entropy increases: H(P1, P̃

∗) ≤ H(P0, P̃
∗).

The illusion that non-invertible Markov processes possess a built-in time-
asymmetry is (at least partly) due to the habit of regarding Tτ as a fixed evo-
lution operator on an independently chosen distribution P0. Such a view is of
course very familiar in other problems in physics, where deterministic evolution
operators generally do form a group and may be used, at our heart’s desire, for
positive and negative times.

Indeed, the fact that these operators in general have no inverse might seem to
reflect the idea that Markov processes have no memory and ‘loose information’
along the way and that is the cause of the irreversible behaviour, embodied in
the time-asymmetric master equation, increase of relative or absolute entropy or
approach to equilibrium. But actually, every Markov process has apart from a
system of forward, also a system of backward transition probabilities, that again
forms a semigroup (when they are homogeneous). If we had considered them as
given we would get all conclusions we obtained before, but now for negative times.
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I conclude that irreversible behaviour is not built into the Markov property, or in
the non-invertibility of the transition probabilities, (or in the repeated randomness
assumption75, or in the Master equation or in the semigroup property). Rather
the appearance of irreversible behaviour is due to the choice to rely on the forward
transition probabilities, and not the backward. A similar conclusion has been
reached before [Edens, 2001] in the context of proposals of Prigogine and his
coworkers. My main point here is that the same verdict also holds for more
‘mainstream’ approaches as coarse-graining or open systems.

7.7 Reversibility of stochastic processes

In order not to end this chapter on a destructive note, let me emphasize that I do
not claim that the derivation of irreversible behaviour in stochastic dynamics is
impossible. Instead, the claim is that motivations for desirable properties of the
forward transition probabilities are not enough; one ought also show that these
properties are lacking for the backward transitions.

In order to set up the problem of irreversibility in this approach to non-equilibrium
statistical mechanics for a more systematic discussion, one first ought to provide a
reasonable definition for what it means for a stochastic process to be (ir)reversible;
a definition that would capture the intuitions behind its original background in
Hamiltonian statistical mechanics.

One general definition that seems to be common (cf. [Kelly, 1979 p. 5]) is to
call a stochastic process reversible iff, for all n and t1, . . . , tn and τ :

(233) P(n)(y1, t1; . . . ; yn, tn) = P(n)(y1, τ − tn; . . . ; yn, τ − tn).

See [Grimmett and Stirzaker, 1982, p. 219] for a similar definition restricted to
Markov processes) The immediate consequence of this definition is that a stochas-
tic process can only be reversible if the single-time probability P(1)(y, t) is sta-
tionary, i.e. in statistical equilibrium. Indeed, this definition seems to make the
whole problem of reconciling irreversible behaviour with reversibility disappear.
As [Kelly, 1979, p. 19] notes in a discussion of the Ehrenfest model: “there is
no conflict between reversibility and the phenomenon of increasing entropy — re-
versibility is a property of the model in equilibrium and increasing entropy is a
property of the approach to equilibrium”

But clearly, this view trivializes the problem, and therefore it is not the appropri-
ate definition for non-equilibrium statistical mechanics. Recall that the Ehrenfest
dog flea model (§7.2) was originally proposed in an attempt of showing how a ten-
dency of approaching equilibrium from a initial non-equilibrium distribution (e.g.

75In recent work, van Kampen acknowledges that the repeated randomness assumption by
itself does not lead to irreversibility: “This repeated randomness assumption [. . . ] breaks the
time symmetry by explicitly postulating the randomization at the beginning of the time interval
Δt. There is no logical justification for this assumption other than that it is the only thing
one can do and that it works. If one assumes randomness at the end of each Δt coefficients for
diffusion, viscosity, etc. appear with the wrong sign; if one assumes randomness at the midpoint
no irreversibility appears” [van Kampen, 2002, p.475, original emphasis].
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a probability distribution that gives probability 1 to the state that all fleas are lo-
cated on the same dog) could be reconciled with a stochastic yet time-symmetric
dynamics.

If one wants to separate considerations about initial conditions from dynam-
ical considerations at all, one would like to provide a notion of (ir)reversibility
that is associated with the stochastic dynamics alone, independent of the initial
distribution is stationary.

It seems that an alternative definition which would fulfill this intuition is to say
that a stochastic process is reversible if, for all y and y′ and t′ > t,

(234) P(1|1)(y, t|y′, t′) = P(1|1)(y, t′|y′, t).

In this case we cannot conclude that the process must be stationary, and indeed,
the Ehrenfest model would be an example of a reversible stochastic process. I
believe this definition captures the intuition that if at some time state y′ obtains,
the conditional probability of the state one time-step earlier being y is equal to
that of the state one time-step later being y.

According to this proposal, the aim of finding the “origin” of irreversible be-
haviour or “time’s arrow”, etc. in stochastic dynamics must then lie in finding
and motivating conditions under which the forward transition probabilities are
different from the backwards transition probabilities, in the sense of a violation
of (234). Otherwise, irreversible behaviour would essentially be a consequence of
the assumptions about initial conditions, a result that would not be different in
principle from conclusions obtainable from Hamiltonian dynamics.
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[Carnot, 1824] S. Carnot. Réflexions sur la puissance motrice du feu. Paris: Bachelier, 1824.
Re-edited and translated in E. Mendoza (Ed.) Reflections on the motive power of fire, New
York: Dover, 1960.

[Cercignani, 1998] C. Cercignani. Ludwig Boltzmann, the man who trusted atoms Oxford: Ox-
ford University Press, 1998.

[Cercignani et al., 1994] C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory
of dilute gases. New York: Springer-Verlag, 1994.

[Chang, 2003] H. Chang. Preservative realism and its discontents: revisiting caloric. Philosophy
of Science, 70, 902–912, 2003.

[Chang, 2004] H. Chang. Inventing temperature. Measurement and scientific progress. Oxford:
Oxford University Press, 2004.
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QUANTUM STATISTICAL PHYSICS

Gérard G. Emch

1 INTRODUCTION

In search for the headwaters of the Missouri during their 1804–1806 expedition,
Lewis and Clark decreed that the river begins at the confluence of three streams
— the Jefferson, Gallatin, and Madison rivers — and ends as a main tributary to
the mighty Mississippi.

Similarly, and with some of the same arbitrariness, three major headings can
be used to mark the beginnings of quantum statistical physics (QSP): Planck’s
“quantum hypothesis” following his 1900 papers [Planck, 1900a; Planck, 1900b],
Gibbs’ 1902 book on “statistical mechanics” [Gibbs, 1902], and what is now known
as Einstein’s 1905 “Brownian motion” [Einstein, 1905b]. Pushing the metaphor
into our own days, the power of QSP is manifest in the landscape of condensed
matter physics (from solid state physics to astrophysics). The navigation there,
albeit often tentative, has brought to shore predictions that have been confirmed
with a precision impressive enough to clamor for a consistent explanation. The
purpose of this chapter is to point to directions along which such explanations may
be found. I begin this search by tracing briefly the course of the three tributaries
mentioned above, thus by identifying the initial motivations for QSP.

Planck’s long-lasting hesitations indicate how much in advance he was, not only
of his own time, but perhaps even of himself; e.g., at first, he had put forward his
black-body radiation law on account of the nature of the body — little oscillators in
the walls — rather than on account of the nature of the radiation. As Planck was
transposing to the description of electromagnetic waves the counting arguments
Boltzmann used in the thermal physics of material bodies, he initially left open
the question of whether this was a mere formal analogy, or whether it was one
that could be justified from putative interactions between radiation and matter;
or whether, yet, this speculative analogy had deeper roots. Planck’s reluctance still
shows through in the recommendation he wrote in 1913 to support young Einstein’s
early election to the Prussian Academy of Sciences: “That he may sometimes
have missed the target of his speculations, as for example in his hypothesis of
the light quanta, cannot really be held against him.” While this may be seen as
a barb directed to [Einstein, 1905a], note nevertheless that Planck’s reference to
a quantum hypothesis is not a passing accident: he was meticulous in his use of
words; consider, for instance the use of “theory”, “theorem”, and “hypothesis”

c
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in the title of his 1911 address to the German Chemical Society [Planck, 1911].
Soon thereafter, the rest of the world overcame his scruples: the Nobel prize was
awarded to Planck in 1918 for “his discovery of energy quanta”; and to Einstein
in 1921 for “his discovery of the law of the photoelectric effect.” For each of them,
the laudatio calls attention to their respective contributions to the nascent QSP,
specifically: the black body radiation for Planck and the specific heat of solids for
Einstein; see subsections 2.1 and 2.3 below.

Gibbs’ book [Gibbs, 1902] focuses on classical statistical physics. While the
basic concepts had been apprehended differently by the German Clausius, the
Austrian Boltzmann and the British Maxwell, the American Gibbs proposes that
the field has reached the modicum of maturity necessary for a consolidation of
the foundations; for axiomatization in other fields, compare with Hilbert [Hilbert,
1900; Hilbert, 1899; Hilbert, 1918], and Einstein [Einstein, 1921]. Even in the
classical context, Gibbs’ reluctance to invoke Boltzmann’s ergodic postulate points
to the persistence of unresolved issues regarding what Gibbs calls in the very title
of his book “the rational foundation of thermodynamics”; for a brief presentation
of those aspects of Gibbs’ work that may be most relevant to my purpose here,
see [Uffink, 2006, section 5]. It pertains to the present chapter to examine how
much of this dichotomy persists in the quantum realm, and the extent to which
whatever persists is relevant to the explanatory purposes of QSP.

Einstein’s papers on Brownian motion still reside conceptually in the realm
of classical physics. In spite of the neglect in which many mathematicians still
held the foundations of probabilistic theories around the turn of the twentieth
century (cf. e.g. [Hilbert, 1900, Problem 6]), Einstein’s approach stands as a
witness to the fact that stochastic arguments — i.e. arguments involving ran-
dom processes — had gained currency in the physicists’ marketplace. Einstein’s
conclusions were widely (if not universally) accepted at face value as empirical
proof of the existence of molecules, as not just computationally convenient small
entities or units, but as objects with definite dimensions [Einstein, 1906b]. Fur-
thermore, Einstein’s papers were not the isolated manifestation of a singular genius
that the cumbersome title of his first paper might suggest [Einstein, 1905b]. On
the one hand, from the physicist’s perspective, it must be noted that Einstein
begins his second paper in the sequence with an ackowledgment that he had ig-
nored the earlier contributions of Siedentopf and Gouy who had interpreted the
“so-called Brownian motion” [Einstein dixit ] as caused by the irregular thermal
motions of the molecules [Einstein, 1906c; Gouy, 1888]. On the other hand, the
modern mathematician will recognize, with the hindsight of practitioners such
as Kac and Chandrasekhar, that Smolukowski simultaneously distilled from the
same empirical sources the mathematical intuition allowing him to post a claim
on what was to become the theory of stochastic processes [Smolukowski, 1906a;
Smolukowski, 1916]. Yet, it was only in 1933 that Kolmogorov made precise the
essentials of the underlying syntax, namely the mathematical theory of probability
[Kolmogorov, 1933]. Even so, an unresolved issue remains to this day as to the
proper semantics: von Mises’ collectives [von Mises, 1928] or de Finetti’s subjec-
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tive assignments [de Finetti, 1937]. I post my stakes — see subsection 3.1 — on
the latter issue when considering the extension of the theory of probability to the
quantum realm, with special regard to the specific demands of QSP.

As this essay opens, the question arises as to whether the confluence of three
streams of interest compounds the foundational problems of each of them or, on the
contrary, whether they can be brought to inform one another. I aim my argument
towards the latter view, although I am not oblivious to such ubiquitous problems
as questioning what elements of reality should — or should not — be ascribed
to individual microscopic quantum systems. As part of the larger problem of the
reduction of thermodynamics by statistical mechanics, I consider specifically the
question whether and how QSP can claim to explain the collective properties of
many-body systems: it does postulate a quantum description at the microscopic
level, while it has not obtained as yet an ontological grasp of the individual compo-
nents of these systems. In my presentation I follow Einstein’s admonition: “If you
want to find out anything from the theoretical physicists about the methods they
use ... don’t listen to their words, fix your attention on their deeds.” [Einstein,
1933].

2 EARLY SUCCESSES

In [Jammer, 1966] Max Jammer provides much of the specific historical documen-
tation pertaining to the beginnings of quantum theory; and he discusses some of
the ensuing debates in [Jammer, 1974]. Here, I start with a discussion of the early
pragmatic successes of QSP, with special attention to two aspects: their classical
mooring in the high temperature regime; and the understanding QSP gives of the
particle-wave duality. Both of these aspects illustrate the added insight gained
from the contextual differences coloring the answers to the same questions when
asked in QSP rather than in the quantum theories of, say, the Bohr atom or scat-
tering processes; compare with Mara Beller’s perspective on the making of the
quantum revolution [Beller, 1999].

2.1 Planck’s interpolating formula for black-body radiation

The experimental evidence available to Planck was the spectral density ρT (ν)
of the energy per unit volume of electromagnetic radiation, as a function of its
frequency ν , when electromagnetic radiation is in equilibrium with a black-body
at temperature T . In [Planck, 1900a; Planck, 1900b], Planck proposes to fit these
data with the formula

(1) ρT (ν) = A
hν

e
hν
kT − 1

with A =
8πν2

c3

where c is the speed of light, k = R/NAv is the Boltzmann constant, R is the
universal gas constant and NAv is the Avogadro number. In addition, a new
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constant enters the formula, h , known nowadays as the Planck constant. While
Planck himself would pretend that (1) had been a “lucky guess” such a formula
could not have come into existence in a conceptual vacuum.

Two qualitative laws had been identified by Wien [1894], Stefan [1879] and
Boltzmann [1884]. The Wien displacement law states that

(2) ρT (ν) = ν3 f(
ν

T
)

where f is some undetermined function, satisfying the condition that the following
integral converges

(3)
1
V

E(T ) =
∫ ∞

o

dνρT (ν)

which expresses the density, per unit volume, of the energy of the radiation at
temperature T . Upon inserting (2) in (3), one receives immediately the Stephan–
Boltzmann law:

(4) E(T ) = σT 4

where σ is a constant. Planck’s proposal complies with these laws.
Two analytic expressions (or “laws”) had been proposed, which specify the

function f in (2). One law, due to Wien [1896], reads:

(5) ρT (ν) = α ν3 exp−γ ν
T .

With α and γ being two constants, this law had been confirmed empirically in the
range where ν/T is large. In contrast, the other law, due to Rayleigh [1900], see
also Jeans [1905a], is:

(6) ρT (ν) =
8π

c3
ν2 kT

which had been confirmed empirically in the range where ν/T is small.
Clearly, (1) interpolates analytically between the Wien and Rayleigh–Jeans for-

mulas; and it gives a quantitative meaning to the conditions that ν/T be “large”
(resp. “small”), namely ν/T � k/h (resp. ν/T � k/h ). In the intermedi-
ate range, Planck’s interpolating formula fits experimental results very well, both
qualitatively and quantitatively.

Planck’s colleagues could not fail to be impressed and Planck’s triumph would
have been complete had he been able to explain his formula from first principles,
at least to the considerable extent with which (2) to (6) could be understood.
Instead, Planck has to resort to “an act of desperation” — his own words [Jammer,
1966] — and he constructs, after several attempts, a heuristic model in which
the radiation exchanges energy in discrete quanta with putative “resonators” in
thermodynamical equilibrium within the walls. The model suffers from several
shortcomings — among them Planck’s adaptation of Boltzmann’s counting —
and much uncertainty concerning its theoretical status:
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Walter Nernst ... initially disliked quantum theory, claiming that it
was ‘really nothing else than an interpolation formula ... only a rule
for calculations ... but has proven so fruitful by the work of Planck ...
and ... of Einstein that the duty of science is to take it seriously and
to subject it to careful investigations’. [Jammer, 1966, p. 59]

The consensus that later settled in the physics community is that any attempt
— Planck’s included — to derive (1) from first principles would be doomed to
failure: (1) is a fundamental or primary law, i.e. one that is not to be explained,
but the consequences of which ought to be explored.

2.2 Einstein’s fluctuation formula and the particle-wave
duality

For a start, Einstein notes two shortcomings in Planck’s derivation. The first is
formal, but nevertheless essential: Planck’s account does not conform to Boltz-
mann’s statistical counting as closely as Planck suggests. The second is pointed
out in [Einstein, 1906a]: Planck’s treatment involves an inconsistency between:
(a) his use of the (classical) Maxwell theory of electromagnetism to compute the
average energy of a resonator in a radiation field; and (b) the assumption that
the energy of a resonator can change only discontinuously. Together with other
empirical problems — among which the photoelectric effect [Einstein, 1905a] —
these difficulties led Einstein to propose that, while Planck’s radiation formula (1)
has incontestable empirical merits, the “quantization” itself is to be looked for
in the radiation field rather than in a dubious mechanism of interaction with the
walls. Einstein’s criticism raises, in the same volley, the question of whether light
is wave-like as accounted for by Maxwell’s electromagnetic theory; or whether
it is particle-like as Newton’s theory had it before its purported falsification in
interference experiments conducted in the early nineteenth century .

Einstein’s fluctuation formula [Einstein, 1909a] proposes that light should be
viewed simultaneously as both particle and wave; specifically:

SCHOLIUM 1. Let the Planck’s spectral density ρT (ν) in (1) be interpreted as
the average energy 〈uT (ν)〉 of quantum oscillators of frequency ν of the radiation
in thermal equilibrium at temperature T . Then for all values of hν/kT , the energy
fluctuation 〈(∆u)2〉 = kT 2∂T 〈uT (ν)〉 is the sum of two terms

(7)

〈(∆u)2〉 = 〈(∆u)2〉p + 〈(∆u)2〉w where



〈(∆u)2〉p = 〈uT (ν)〉hν

〈(∆u)2〉w = 〈uT (ν)〉2 c3

8πν2


 and 〈(∆u)2〉p / 〈(∆u)2〉w = exp

hν
kT −1

Hence, the particle-like contribution 〈(∆u)2〉p dominates when hν/kT >> 1 , and
the wave-like contribution 〈(∆u)2〉w dominates when hν/kT << 1 . In this in-
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terpretation, the particle-wave duality is thus a matter of degree, rather than an
alternative between the two mutually exclusive horns of a dilemma.

Less of a conceptual problem in QSP, this duality becomes more difficult to
master in other empirical contexts where one may prefer to view a photon either
as a particle or as a wave packet. Moreover, this duality has since been extended
to all (sub-atomic) particles; e.g. phenomena usually associated with waves, such
as diffraction of beams of light, have been observed as well with beams of electrons
and then neutrons; cf. e.g. [Jammer, 1966, pp. 249-253]; or for an update [Rauch,
2005]. In other circumstances, one prefers to use a particle language, as for in-
stance in the description of the photo-electric effect [Einstein, 1905a]; as reported
in most QM textbooks, a photon impinging on a metallic surface causes an elec-
tron to be expelled; or in atomic spectroscopy, a particle — the atom — emits a
beam of light; cloud- and bubble-chambers have since let us visualize interparticle
collisions; and yet their description in scattering theory uses the so-called wave
operator; cf. e.g. [Amrein et al., 1977]. In the light of this duality, and follow-
ing upon the speculations of Einstein and de Broglie, physicists have learned to
adapt their language to the aspect they wish to emphasize. Yet, the persistent
arguments about “self-interference” show that some residual ambiguities have yet
to be resolved; cf. the long debate extending from [Taylor, 1909] to [Aichele et al.,
2005], and surely beyond.

Upon returning to the early manifestations of QSP, one ought to mention that
the Einstein fluctuation formula (7) above, as well as the explanation of the tem-
perature dependence of the specific heat of solids — see subsection 2.3 below —
motivate the Ehrenfests’ suggestion [Ehrenfest and Ehrenfest, 1911] that in statis-
tical mechanics, quantum behaviour manifests itself mostly at low temperatures,
whereas classical behaviour emerges at high temperatures. The fact is that in
many expressions, such as the Planck distribution (1), the Planck constant h and
the temperature T appear together in a factor h/T , or in the form used in the
sequel, � β ; hence in these expressions the “classical limit” h→ 0 and the “high-
temperature limit” T →∞ are included in (� β)→ 0 . All refer to cases where the
relevant energies, or energy densities, are extremely large when measured in the
scale determined by the numerical value of the Planck constant.

2.3 Debye’s specific heat of solids below the classical regime

For the purpose of this subsection, the situation down in the field is that Dulong
& Petit (1819) had proposed an argument to the effect that the specific heat —
measured in calories per mole per degree — ought to be the same for all solids:
3R where R is the universal gas constant. Yet, it later became apparent that this
“constant” could decrease dramatically with temperature, so much so that by the
end of the nineteenth century, the experimental data led to the conjecture that the
specific heat of solids becomes vanishingly small as the temperature approaches
absolute 0K . In the meantime, the discovery of X-rays by Roentgen (1895) had
allowed several experimentalists — Ewald (1911), and at the suggestion of von
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Laue, Friedrich and Knipping (1912) — to obtain diffraction patterns corroborat-
ing speculations that crystalline solids are regular lattices, at the vertices of which
sit the atoms.

As no classical explanation of the observed drastic temperature dependence of
the specific heat seemed forthcoming, Einstein and Debye offered the following
model; cf. [Einstein, 1907; Einstein, 1911b; Debye, 1912].

The starting point is (1) above, the Planck formula for black-body radiation,
now reinterpreted in terms of the vibrational modes of a solid at temperature T :

(8) U(T ) =
∫

dν g(ν)U(ν, T ) with U(ν, T ) =
hν

e
hν
kT − 1

and
∫

0

∞
dν g(ν) =

3N

where N is the number of 3-dimensional oscillators in the solid. Where Einstein
had assumed that g is concentrated on a fixed frequency νo , Debye chooses for
g the simplest vibrational distribution that takes into account that in a crystal,
say of volume V , the vibrations have a minimal wavelength of the order of the
interatomic distance in the lattice:

(9) g(ν) = G

{
1 if 0 ≤ ν ≤ νo
0 if ν > νo

}
with G =

12πν2

s3
V .

G takes into account that vibrations are now sound waves rather than electromag-
netic waves — compare with A = 8πν2

c3 in (1) — thus s is now the speed of sound,
instead of the speed c of light; and the replacement of 8π = 2·4π by 12π = (2+1)·4π
reflects the fact that sound-waves in solids have, in addition to the two transverse
polarizations also present in light, a third degree of freedom, namely longitudinal
modes. These hypotheses entail the following consequence.

SCHOLIUM 2. There exists a temperature Θ , such that the specific heat satisfies

(10) CV �



3R for T � Θ

12
5 π4R(TΘ )3 for T � Θ

.

Hence, the Debye model differentiates between two regimes: at high temperatures
it recovers the Dulong–Petit law; and it predicts that as the temperature ap-
proaches 0 K , the specific heat vanishes according to CV ∼ T 3 . In this model, the
temperature Θ , now called the Debye temperature, depends on the solid consid-
ered through the cut-off frequency νo , and thus on the speed of sound in that solid
and on its density N/V . The numerical value of Θ gives a quantitative estimate
— for details, see subsection 6.1 — of what is meant by high and low temperature
regimes for the specific heat of crystalline solids. Moreover, in Debye’s model, CV
decreases monotonically and continuously over the whole range of temperatures
T ∈ IR+ .

As a last comment on the passage from (1) to (8), note that by analogy with
the photons as the quanta of light, the elementary sound vibrations in solids are
viewed as quanta, now known as phonons .
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2.4 BE-condensation: the long haul

When taking seriously the idea that the microscopic picture of the macroscopic
world may be a quantum one, the most immediate question is to obtain the cor-
responding description of a quantum ideal gas; this came to be known as the
Bose—Einstein gas, or simply the Bose gas [Bose, 1924; Einstein, 1924]. The
starting point is the grand canonical partition function Z(Λ, T, µ) of an assem-
bly of identical massive particles of mass m in equilibrium at temperature T and
chemical potential µ ; this assembly is enclosed in a cubical box of volume Λ ⊂ IR3 ,
with periodic boundary conditioms. As these particles are non-interacting, the to-
tal energy is the sum of their individual energies εk = �

2|k|2/2m, where k ∈ Z3 .
The quantum hypothesis is that the Planck distribution (1) applies here so as to
entail (with β = 1/kT ) :

(11) Z(Λ, T, µ) =
∏
k∈Z3

(1− exp−β(εk−µ))−1 .

From this formula, one computes the specific volume v and the pressure P , ac-
cording to the rules learned in classical statistical mechanics; the so-called activity
is defined as z = exp(βµ) :

(12) v−1 = z∂z
1
|Λ| ln Z(Λ, T, µ) and β P =

1
|Λ| ln Z(Λ, T, µ) .

The problem is thus stated completely, although the consequences of (11–2.12)
are not easy objects to compute directly. The solution involves a mathematical
excursion through some classical analysis, and the reward is a nice physical bounty:
a phase transition with the onset of a condensed phase at very low temperatures;
not your classical ideal gas!

The necessary classical analysis — now widely available, cf. e.g. [Whittaker and
Watson, 1927, p.280, ex. 7], [Erdélyi, 1953, I, pp. 27–30], or for some historical
perspective [Truesdell, 1945] — was already known to our pioneers, and they did
recognize that in the limit Λ ↑ IR3 , these sums reduce to:

(13)
v−1 = 4π

∫∞
o

dp p2 z[exp(�2p2/2mkT )− z]−1

β P = 4π
∫∞
o

dp p2 ln[1− z exp(−�
2p2/2mkT )]




which are known in classical analysis as Appell integrals, namely

(14)
v−1 = λ−3g( 3

2 , z)

β P = λ−3g( 5
2 , z)


 with




λ2 = 2π�
2/mkT

g(s, z) = z
Γ(s)

∫∞
o

dt ts−1

expt −z

.

For every s with Re(s) > 0 , g defines a function of z which is analytic in the cut
complex plane C\[1,∞) . For |z| < 1 and Re(s) > 0 , one receives the well-studied
Lerch zeta functions which can be expanded in power series



Quantum Statistical Physics 1083

(15) g(s, z) = z ζ(s, z) with ζ(s, z) =
∞∑
n=0

zn (n + 1)−s .

For z = 1 and Re(s) > 1 the above series converges to the Riemann zeta function
ζ(s) . Note that the values s = 3

2 and s = 5
2 — which are needed in (14) — fall

within this range. Moreover g(3
2 , ·) : z ∈ (0, 1) → R+ is smooth, strictly increasing,

with limz→1 g( 3
2 , z) = ζ( 3

2 ) = 2.612 . . . . The problem is thus mathematically under
complete control.

Now to the physics. This divides into two steps.
The first step is easy: it considers the high temperature and low density regime,

where λ3 v−1 < g( 3
2 , 1) = ζ( 3

2 ) . In particular, by straightforward 1st-order power
expansion:

(16) for λ3 v−1 << 1 : P v = kT [1− 2−5/2(λ3 v−1) + . . . ] .

Hence, in this high temperature and low density regime, the quantum gas behaves
asymptotically like the classical ideal gas of Boyle/Mariotte/Gay–Lussac. This is
yet another confirmation of the Ehrenfests’ remark according to which the classical
limit obtains in QSP as a high temperature limit; note indeed that the so-called
thermal wavelength λ that appears in (14) satisfies λ ∼ � β

1
2 , i.e. in this problem

again, the limits T →∞ (⇔ β → 0) and �→ 0 have formally the same effect.
The second step in the treatment of the problem is where the bounty is to

be found. The question is how to go beyond the above regime, i.e. beyond the
unnatural limit

(17) λ3v−1 = ζ(
3
2
) ,

a restriction no actual gas should be expected to respect. Mathematically, this
limiting condition seems to appear as the consequence of the breakdown of ana-
lyticity in (14) that begins at z = 1 . Physically, the problem appears because the
limit |Λ| → ∞ has been taken too carelessly.

Let us therefore return to the expression of v−1 when |Λ| <∞ . We have then,
with 〈nk〉 denoting the average number of particles in mode k :

(18)
1
|Λ|

∑
k∈Z3

〈nk〉 =
1
|Λ|

∑
k∈Z3,k �=0

〈nk〉+ 1
|Λ|

z

1− z
.

As the 〈nk〉 with k �= 0 are well-behaved as z → 1 , the separation of (18) into
two terms suggests that we take simultaneously the limits |Λ| → ∞ and z → 1 in
such a manner that the second term in (18) approaches a finite limit, say vo

−1 ,
resulting in the replacement of (14) by:

(19)
v−1 = λ−3 ζ( 3

2 ) + vo
−1

β P = λ−3 ζ( 5
2 )


 .

The above limiting procedure, interpreted as
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(20) vo
−1 = lim

|Λ|
1
|Λ| 〈no〉 ,

leads to a macroscopic occupation of the ground state k = 0 ; the theory does
not predict the value of vo : it may depend on the temperature. Note that the
pressure P in (19) depends on temperature only (namely through λ ). The state
of the system described by (19) is called its condensed phase; the transition to this
phase from the normal phase λ3v−1 < ζ( 3

2 ) is referred to as the Bose–Einstein
condensation, (or BEC ) and its appearance at low temperature is a prediction of
purely quantum origin, one that has no equivalent in the classical world.

This begs for an instantiation in the world of the laboratory. At low temperature
a superfluid phase appears in 4He. The density at the onset of this phenomenon
is about ρ � .178 g/cm3 . Upon taking into account the value of the Avogadro
number, one receives v−1 � 2.7 · 1023 cm−3 , from which (17) gives a thermal
wavelength λ � 4.6 ·10−8 cm which is not unreasonable for a quantity that is to be
interpretated as a measure of the interparticle distance. To this value corresponds,
via the definition of λ in (14), a temperature T � 3.2K . The experimental value of
the temperature at the onset of the superfluid phase in 4He is T � 2.2K , a rather
remarkable fit, considering how crude the model is. Moreover, the thermodynamics
of the model can be worked out — cf. e.g. [Huang, 1965] — and shows that the
specific heat Cv(T ) at first increases monotonically from Cv(0) = 0 to exceed the
classical value 3/2 but then experiences a sharp peak — a discontinuity in the
first derivative — from which it decreases monotonically to limT→∞ Cv(T ) = 3/2 .
The specific heat of 4He also exhibits such a singularity, albeit more pronounced:
it is logarithmic; hence its name λ − point, as the graph of the specific heat as a
function of temperature looks like the Greek lower case letter lambda.

All this represented a great success in the the mid-1920s. The next batch
of problems appeared when the theory tried to account for the fact that 4He
is not a gas, but a liquid; for this, the ideal gas assumption of the model is
quite unrealistic: a liquid is not made of non-interacting particles. Putting the
interactions into the theory proved to be a formidable problem, long compounded
by the experimental fact that 4He was the only substance recognized to exhibit
Bose–Einstein condensation: theoreticians had no variable parameter to guide and
adjust their speculations. Following up on a proposal made in the late 1950s, the
situation changed drastically during the 1980s and 1990s with the advent of micro-
Kelvin technology which allowed BEC to be observed in atomic gases in harmonic
traps; for two deep, but very different, reviews, cf. [Lieb, 2001] and [Pitaevskii and
Stringari, 2003]; and for a brief overview [Emch and Liu, 2002, subsection 14.2.2].

The account in this subsection was limited mostly to the macroscopic, thermo-
dynamical aspects of BEC in its infancy; in subsection 5.2 below, a C∗−algebraic
treatment of the Bose–Einstein model is discussed in connection with the appear-
ance in QSP of the modular structures to be associated to the equilibrium KMS
condition.
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2.5 Beyond the Bohr atom: the Thomas–Fermi model

The entry in quantum mechanics of Schrödinger wave-mechanics (1926) was
marked by a resounding success: the physics community could recognize immedi-
ately the application of a then already well-established method to a new realm; the
theoretical explanation of the energy spectrum of the hydrogen atom was reduced
to solving an eigenvalue problem in a differential equation. Every entry-level text
in quantum mechanics presents this derivation.

And yet, beyond the Bohr atom, the solution of the Schrödinger equation for an
atom with even a few electrons turned to be an insurmontable task: the electrons
are charged particles and while the interaction between a single electron and the
nucleus had been rigorously accounted for in the hydrogen atom, one could not deal
analytically with the mutual electromagnetic interactions between the electrons.

Very soon thereafter, Thomas [1927] and Fermi [1927] came up with a semi-
classical model in which two ingredients enter. The first is the ground state electron
density ρ which is assumed to be spherically symmetric and normalized by the
condition

(21) 4π
∫ ∞

o

drr2ρ(r) = Z

where eZ is the charge of the nucleus. The second is the average electric potential
Φ(r) in the atom. These two ingredients are assumed to satisfy the classical
equation, the Poisson equation of electrostatics

(22) ∆Φ ≡ 1
r

d2

dr2
(rΦ) = 4πeρ with lim

r→0
Φ(r) = eZ .

And yet the model has a quantum aspect to account for the Pauli exclusion prin-
ciple; this is the so-called Fermi–Dirac statistics that had been proposed just the
previous year [Fermi, 1926]. Here, this shows up in:

(23) n(r, p) =
{

2h−3 if ε := 1
2m − eΦ < εo

0 if ε > εo
.

from which one gets, by integration over p (upon putting εo = 0), that ρ satisfies

(24) ρ(r) =
{

8π
3h3 (2meΦ)3/2 if Φ > 0
0 if Φ < 0

.

Clearly, the model is conceptually inconsistent, with stakes in each of the classi-
cal and the quantum realms. Yet, in my student days this model was a routine sta-
ple of the quantum mechanics curriculum [Schiff, 1955; Landau and Lifshitz, 1958a;
Messiah, 1960] as it can be solved without any further assumptions than those
listed above; the solution is exact up to the fact that it requires a numerical com-
putation well within the realm of a controllable approximation.

Upon using the numerical values of the Planck constant h , the charge e and
the mass m of the electron, the model predicts that the radius of the atom, taken



1086 Gérard G. Emch

to be the radius of the sphere that contains all the electrons but one increases
monotonically from 2.2 · 10−8 cm for Z = 25 , to 2.8 · 10−8 cm for Z = 100 . The
order of magnitude is correct. This can be counted therefore as an early success
of quantum theory.

However, one should expect that such a crude model does not tell the whole
story. Indeed: (1) the predicted increase stops at Z = 55 (corresponding to the
cesium atom) after which the radius decreases, albeit slowly; (2) when looked at
more closely, the model yields an electron density that has unreasonable properties
both very close and very far from the nucleus. Besides, the model needs serious re-
considerations to explain the existence of stable molecules or to accommodate a rel-
ativistic treatment. These problems never completely left the scene of theoretical
physics, but remained somewhat in the background for about half-a-century, until
rigorous analytic methods clarified the sense in which the model is asymptotically
exact and may be used to study the stability of atoms, molecules and even stars;
cf. [Lieb and Simon, 1977; Lieb, 1982a; Lieb, 1990]; see also [Catto et al., 1998;
Le Bris and Lions, 2005].

2.6 White dwarfs: the Chandrasekhar bound

Returning to the quantum ideal gas discussed in subsection 2.4, let us examine
now the Fermi gas. Instead of (11), start with the partition function

(25) Z(Λ, T, µ) =
∏
k∈Z3

(1 + exp−β(εk−µ))

which now entails in the limit Λ ↑ Z3 , instead of (13):

(26)
v−1 = 4π

∫∞
o

dp p2 z[exp(�2p2/2mkT ) + z]−1

β P = 4π
∫∞
o

dp p2 ln[1 + z exp(−�
2p2/2mkT )]


 .

In the high temperature and low density regime — λ3v−1 � 1 — one recovers
again an asymptotic expansion, the leading term of which is the classical ideal gas:

(27) for λ3 v−1 << 1 : P v � kT [1 + 2−5/2(λ3 v−1) + . . . ] .

Again, up to the sign of the correction, this is very similar to the Bose–Einstein re-
sult (16): it also coincides asymptotically with the classical ideal gas as T becomes
large.

In the low temperature and high density regime — λ3v−1 � 1 — the situation
differs drastically from what it was in subsection 2.4: whereas bosons tend to
congregate, no two fermions are allowed in the same state on account of the Pauli
exclusion principle. Recall that in chemistry, this is the principle that underpins
a quantum explanation for the Mendeleev table of elements. In QSP the Pauli
principle is visible through (26): in the ground state of the system, the fermions
occupy the lowest possible energy states up to a finite energy, called the Fermi–
energy
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(28) εF =
�

2

2m

[
(3π2) v−1

] 2
3 .

For temperatures such that kT � εF the momentum distribution will be

(29) < np >=




1 for (|p|2/2m)
∼
< εF

0 for (|p|2/2m)
∼
> εF

with a steep sigmoid of narrow breadth kT around εF . This regime is called the
degenerate Fermi gas. To characterize this regime, rewrite kT � εF , with εF as
in (28), as:

(30) β v−
2
3 �

[
�

2

2m
(3π2)

2
3

]−1

which gives a quantitative meaning to the expression low temperature and high
density regime; for instance, this yields a useful first approximation for the gas of
electrons in metals at usual temperatures. The condition kT � εF corresponds to
λ3v−1 � 1 and in this regime (26) entails

(31) Pv � 2
5
εF

[
1 +

5π2

12
(
kT

εF
)2 + . . .

]
i.e. lim

kT
εF

→0
Pv

5
3 =

2
5
(3π2)

2
3

�
2

2m
.

Hence, at fixed density, the pressure approaches a strictly positive constant as
T → 0 , in marked contrast with the behaviour of the classical ideal gas (see (27))
where T → 0 implies P → 0 .

Less mundane examples are provided by celestial objects, white dwarfs and
neutron stars. With a temperature similar to that of the sun, i.e. 107K to 108K
in the center, and a mass of the same order of magnitude as the sun, the white
dwarfs have a very high density, about 106 to 107 times that of the sun. They are
stars where all the hydrogen fuel has been burned, and thus they are constituted of
completely ionized helium atoms. From these hypotheses on the composition and
condition of a white dwarf, one computes the density of the electron gas, and then
from (28) the corresponding Fermi energy εF which, when expressed in terms of
TF = εF /k , turns out to give TF � 1011K . Hence T � TF and it is consistent to
assume — as R.H. Fowler did already in 1926 [Fowler, 1926] — that the electron
assembly in the white dwarfs may be described as a degenerate Fermi gas, and that
it is the enormous pressure in such a gas that prevents the star from gravitational
collapse. It is however true that at such density and pressure, electrons must be
treated relativistically, i.e. ε =

√
(pc)2 + (mc2)2 instead of ε = p2/2m. This brings

about all sorts of analytic difficulties, among which is a change from 5/3 towards
4/3 in the power of v in (31). In the course of his computations of this effect,
Chandrasekhar [1931a] remarked that since the gravitational pressure is governed
by the mass of the star, the latter would collapse if the mass were to become too
large; he actually evaluated this critical mass Mmax to be
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(32) Mmax � (3π)
1
2 (

�c

G
)3/2(µmN )−2 � 1.4M�

where (in cgs units) � = h/2π with h � 6.62 × 10−27 ergs cm is the Planck
constant, c � 3 × 1010 cm/sec is the speed of light, G � 6.67 × 10−8 dyn cm2

g−2 is Newton’s gravitational constant, mN � 1.66 × 10−24 g, µ is the number
of nucleons per electron; here µ = 2 since the star is supposed to have used its
hydrogen supply, and be made of 4

2He. Finally, to reduce the result in astronomic
units, M� � 1.99× 1033 g is the mass of the sun. Astronomers today refer to the
maximum mass Mmax as the Chandrasekhar limit [where mathematicians would
speak of a “bound”].

Chandrasekhar’s original derivation is mathematically correct, yet somewhat
cumbersome. Already by the end of 1932, L.D. Landau [1932] presented a more
elementary argument, and in addition, upon hearing of the discovery of the neu-
tron, he applied the above formula to then putative neutron stars.

To have included these predictions here among the early “successes” of QSP
may be justified only by hindsight. When they appeared in the early 1930s they
and their consequences caused quite a wave, on the crest of which rode A.S. Ed-
dington, an astronomer of commanding authority, who spoke of a reductio ab
absurdum calling for the interposition of an as yet unknown fundamental theory:
for him a massive star (M > Mmax) collapsing to a black hole was heresy, and
he was in a position not to mince his words about it. Eddington’s fierce attack
on a junior colleague did not cause Chandrasekhar to recant; unconvinced, Chan-
dra nevertheless decided to turn to other astronomical problems until the late
1950s [Chandrasekhar, 1958] and early 1960s, when his speculations, and Lan-
dau’s, found observational confirmations.

For the unfolding of the resolution of the Chandrasekhar–Eddington conflict, cf.
e.g. [Shapiro and Teukolsky, 1983], the title of which already indicates the complete
extent to which Chandrasekhar was ultimately vindicated. A pristine, yet non-
technical presentation of the physics of the Chandrasekhar bound may be read in
[Thorne, 1994, chapter 4]; the story of the neutron stars, albeit more involved is
also told there in [Thorne, 1994, chapter 5]; for the fundamental technical support,
cf. [Weinberg, 1972, chapter 11].

3 AXIOMATIC PRUNINGS

Usually, either one of two reasons prompts the process of axiomatization. The
first is the search for the soul — some would say the skeleton — hidden inside the
aleatory appearances of the body: a ritual of purification. The second is the need
for fundamental changes when a theory faces increasingly insuperable limitations.
Both of these reasons motivate the developments I retrace in the present section;
as I write this I am reminded of the essential tensions described elsewhere in [Segal,
1990].

It is an interesting coincidence that the early 1930s saw the almost simultane-
ous — albeit independent — axiomatizations of two of the ingredients of QSP:
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Quantum mechanics with von Neumann’s treatise [von Neumann, 1932c]; and
Statistics, a.k.a. probability and stochastic processes, with Kolmogorov’s paper
[Kolmogorov, 1933]. As both of these belong to other chapters of this Handbook,
only a few words will suffice here.

3.1 Kolmogorov’s and von Neumann’s formalisms compared

In a nutshell, Kolmogorov’s syntax for probability starts with a seminal description
of measure theory: a triple {Ω, E , µ} is given where E is a σ−algebra of measurable
subsets of a set Ω, and µ is a countably additive function

(33) µ : E ∈ E → µ(E) ∈ IR+ with µ(Ω) = 1

i.e. µ is a probability measure on {Ω, E}. µ naturally extends to a functional on
the algebra A = L∞(Ω, E , µ) of all essentially bounded functions A : Ω→ |C :

(34) µ : A ∈ A → µ(A) =
∫∫

Ω

dµ(ω)A(ω) ∈ |C .

Hereafter, I will refer to this extension as a classical state.
Similarly, von Neumann’s syntax involves a triple: {H,P, ψ} where P is the

orthomodular lattice of all closed subspaces of a Hilbert space H , ψ is a countably
additive positive function

(35)
ψ : P ∈ P → ψ(P ) ∈ IR+ with ψ(I) = 1 and

ψ(
∑
n Pn) =

∑
n ψ(Pn) ∀ {Pn} ⊂ P such that n �= m |= Pn ⊥ Pm


 .

I shall refer to any such funtion ψ as a quantum state. Gleason’s theorem asserts
in particular — see below for a complete statement — that for every quantum state
ψ there exists a density operator, i.e. a positive operator ρ of unit trace, such that
ψ extends to the W ∗−algebra B = B(H) of all bounded linear operators from H
into itself:

(36) ψ : B ∈ B → ψ(B) = TrρB ∈ IR .

When working within the von Neumann formalism, I will identify any closed
subspace P ⊆ H and the projector P ∈ B(H) on this subspace; I will indifferently
refer to ψ or to ρ as a state on B ; and I will refer to the restriction of ψ to P as
a quantum measure. I will also follow the physicist’s custom of referring to ρ as a
density matrix, thus ignoring the mathematician’s distinction between an operator
and its expression in a specified (orthonormal) basis.

The mathematical similarities and differences between the classical and quan-
tum realms are emphasized by the Koopman formalism of classical mechanics; cf.
e.g. [Emch and Liu, 2002, pp. 255, 267]. This formalism — actually a precursor of
the GNS construction — associates to {Ω, E , µ} the Hilbert space H = L2(Ω, E , µ)
of all functions Ψ : ω ∈ Ω → Ψ(ω) ∈ |C that are square-integrable with respect to
µ . Every element A ∈ A = L∞(Ω, E , µ) is then viewed as an element of B = B(H),
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namely under the identification of the function A : ω ∈ Ω → A(ω) ∈ |C with the
multiplication operator A : Ψ ∈ H → AΨ ∈ H where (AΨ)(ω) = A(ω)Ψ(ω) .
Under this identification A becomes a maximal abelian W ∗− subalgebra of B ;
while the center of B , namely {C ∈ B | ∀B ∈ B : [B,C] = 0} is trivial, i.e. con-
sists of the multiples of the identity operator. Note further that every element
B ∈ B(H) can be viewed as a continuous linear functional on the Banach space
T (H) of all trace-class operators, spanned by the countably additive states; namely
B : T ∈ T (H) → Tr TB ∈ |C ; conversely every norm-continuous linear functional
on B(H) obtains in this manner; i.e. B(H) is the Banach space dual of T (H) ;
equivalently, T (H) is the predual of B(H) . Similarly, the predual of L∞(Ω, E , µ) is
the Banach space of L1(Ω, E , µ) , spanned by the probability distributions which
are absolutely continuous with respect to µ .

The interpretation of a quantum state ψ in terms of classical probabilities ob-
tains upon reading (35) separately for each family {Pn} of mutually compatible
quantum events. The bijective equivalence between the objects described by (35)
and (36) is the pragmatic content of Gleason’s theorem; cf. e.g. [Emch and
Liu, 2002, p. 225]: every quantum state can be uniquely written in the form
(36), and every density operator ρ defines through (36) a function ψ satisfying
(35), i.e. a quantum state ψ . For the semantic, i.e. the empirical (frequen-
tist vs. subjective) interpretations of states, first in classical probability theo-
ries, and then in quantum theories, cf. e.g. [Jaynes, 1967; Emch and Liu, 2002;
Emch, 2005]; in particular, see [Uffink, 2006] for the evolution in CSP of the
primacy of one over the other of these interpretations of probabilities.

Again in a nutshell, I believe that it serves my purpose well, in most of this essay,
to espouse the ‘subjective’ rather than their ‘frequentist’ interpretation, namely to
view the state of a physical system — be it classical or quantum, macroscopic or
microscopic — as a faithful summary of the knowledge one has of the process by
which this system has been prepared. In particular, this semantic view of the quan-
tum state shall translate well from the case of systems with finitely many degrees
of freedom considered in von Neumann’s quantum mechanics, to the systems with
infinitely many degrees of freedom to be considered in QSP; see subsections 3.4
to 6.3. In particular, while von Neumann’s beams or ‘ensembles’, of independent,
identically prepared systems — [von Neumann, 1932c, note 156] — are adequate
to describe scattering experiments or the atomic spectroscopy of his time, the view
of quantum states that I choose to adopt here accomodates better the description
of single macroscopic systems — such as a cup of coffee or a measuring apparatus.

3.2 QSP in von Neumann’s formalism

The centerpiece of equilibrum QSP in von Neumann’s formalism is the following
result [von Neumann, 1932c]:

THEOREM 3. Let H be a Hilbert space, H be a self-adjoint operator acting in H
and such that for all β > 0 : the partition function Z := Tr exp(−βH) be finite.
And, with k > 0 fixed, let for any state ρ on B(H)
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(37) S[ρ] = −k Trρ log ρ .

As H has discrete spectrum and is bounded below, let εo be its smallest eigenvalue;
and let s denote either the largest eigenvalue of H if H is bounded above, or ∞
if it is not. Then, for any given εo < E < s , the maximum of S[ρ] , subject to the
constraint TrρH = E is reached on the state

(38) ρ = Z−1 e−βH with Z = Tre−βH

where the value of β is determined by the value E of the constraint.

The first part of the proof consists in showing that the maximum occurs on the
class of states of the form ρ =

∑
n λn Pn where

∑
n εn Pn is the spectral resolution

of H . After this, the result follows from the classical argument using Lagrange
multipliers with respect to the collection of variables Λ = {λn} ⊂ IR+ , namely
from determining the maximum of the function S[Λ] = −k

∑
n λn log λn subject

to the simultaneous constraints
∑
n λnεn = E and

∑
n λn = 1 .

Note that this variational principle could have been rephrased as defining the
state ρ in (38) as the state that minimizes — now under the single constraint
Trρ = 1 , i.e.

∑
n λn = 1 — the Helmholtz free-energy defined as F := E − TS

with E and S as in the theorem, and β = kT where k is known as the Boltzmann
constant (see below).

Note also that, in either of these two forms, this variational principle has its
root in the classical statistical physics (CSP) of Boltzmann and Gibbs; cf. [Uffink,
2006]. Conceptually, and very much as in CSP, the von Neumann QSP result
involves a consensus on two questions. The first question is to justify the inter-
pretation of S as an entropy. There are two ways to do this.

(i) Firstly, as in CSP, one may identify S with the equilibrium entropy of macro-
scopic thermal physics upon computing S for well-controlled model(s), such
as the ideal gas and finding — for in each of the specific cases considered —
that the value of Smax obtained through the above theorem coincides with the
value of the thermodynamical entropy. It is only at that stage that k may be
identified with the universal Boltzmann constant k � 1.3810−23 J/deg ; note
the units, namely [energy]/[temperature], as is proper for the thermal entropy
where T is the integrating factor that allows one to pass from the “heating”
differential η to the exact differential dS = η/T . As fine as that may be for
equilibrium CSP/QSP, this identification leaves open the interpretation of S
as entropy in non-equilibrium situations.

(ii) The second route to an interpretation of S is to show that I(ρ) = −S(ρ) is
a measure of the information content of the state ρ , namely to find empir-
ically meaningful conditions that express the intuitive concept of “informa-
tion content” and to show that — up to a multiplicative constant — there
exists exactly one S that satisfies these conditions. The argument offered by
Khinchin [1957] for classical probability distributions involves — inter alia —
the axiom of consistency under refinements. This argument was transposed
to the quantum case by Thirring [1983b] to give:
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THEOREM 4. S[ρ] = −k Trρ log ρ is the only functional satisfying:

1. S[ρ] is continuous in ρ , in the sense that it is a continuous function of the
eigenvalues of ρ .

2. For every finite probability distribution P = {pn |n = 1, 2, . . . , N} and every
finite collection of states {ρn |n = 1, 2, . . . , N} on a finite collection of Hilbert
spaces {Hn |n = 1, 2, . . . , N} , let ρ be the state defined on H = ⊕Nn=1Hn by
ρ = ⊕Nn=1pnρn . One has then: S[ρ] = S[P ] +

∑N
n=1 pnS[ρn] where S[P ] is

the value of the Khinchin functional for the probability distribution P .

3. S

[(
1
2 0
0 1

2

)]
= k log 2.

The first of the three conditions of theorem 4 is clear: an arbitrarily small
change in the state should result in an arbitrarily small change in the information
it conveys. The second condition expresses refinement under a particular class of
partitionings; while the third is only a normalization. Just as in CSP, the quantum
information content (−S), uniquely specified by these conditions, is formally used
to define the quantum entropy S .

The second question concerning the conceptual relevance of theorem 3 is to
justify the very use of a variational principle; compare with [Uffink, 1995]. In
my view, for both the classical and the quantum cases, this comes most naturally
when one opts for the subjective interpretation of states rather than the frequentist
interpretation. Indeed, if one wants the state to account for the knowledge one
has of the system, it seems consistent to select for ρ the state that assumes no
more information than that expressed explicitly by the constraint.

When the operator H in theorem 3 is taken to represent the energy of the
system, the state (38) is called — by analogy to the Gibbs canonical equilibrium
state of CSP — the quantum canonical equilibrium state for the natural tempera-
ture β = 1/kT . Note in particular that, in the Schrödinger picture, the evolution
generated by H , namely:

(39) ∀ t ∈ IR : ρ(t) = U(t)ρU(−t) with U(t) = exp−i 1
�
Ht

leaves the canonical equilibrium state invariant, as is to be expected when one
wishes to identify the energy-operator with the Hamiltonian of the system.

At first sight, the von Neumann formalism affords a good start for the develop-
ment of a quantum ergodic theory. To keep things as simple as possible, consider
the Hilbert space L = {X ∈ B(H) |Tr X∗X <∞} equipped with the scalar prod-
uct (X,Y ) = Tr X∗Y . This space is known to mathematicians as the space of
Hilbert–Schmidt operators acting on H . In particular, every density matrix is an
element of L ; and thus this space is also known to physicists as the Liouville space
of the quantum system described on H . The advantage of restricting attention to
this space is that (39) extends to a unitary action on L :

(40) V : (t,X) ∈ IR× L → V (t)[X] = U(t)XU(−t) ∈ L .
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In the same way as the self-adjoint generator H of the continuous unitary group
{U(t)|t ∈ IR} is called the Hamiltonian of the quantum system considered, the
self-adjoint generator L of the continuous unitary group {V (t)|t ∈ IR} is called the
Liouvillian of this system. One has then

THEOREM 5. Let H ∈ B have purely discrete spectrum, i.e. H can be written in
the form H =

∑
n εnPn where the Pn are mutually orthogonal projectors adding

to I . Then the following limit exists

(41) Eerg[X] = lim
T→∞

1
T

∫ T

0

dt V (t)[X] with X ∈ L ;

and

Eerg[X] =
∑
n

PnXPn and ∀ t ∈ IR : V (t)[Eerg[X]] = Eerg[X].

In particular, the ergodic average Eerg[ρ] of a density matrix ρ exists, is again a
density matrix, and is time-invariant.

It is tempting to try and consider theorem 5 as proper quantum version of the
classical ergodic theorems of Birkhoff [1931] or von Neumann [1932a]. Indeed,
the conclusions of these classical theorems and of theorem 5 are similar when one
reads them in terms of (countably additive) ‘states’ respectively defined as:

• A ∈ L∞(Ω, µ) → ∫
Ω
dµ fA ∈ |C where f ∈ L1(Ω, µ) , f positive with f

normalized by
∫
Ω
dµ f = 1 (for the classical case);

• A ∈ B(H) → Tr ρA ∈ |C where ρ is a density matrice, i.e. a positive trace-
class operator with ρ normalized by Trρ = 1 (for the quantum case);

and similarly for their respective time-averages.
Note that while the classical theorems are usually followed by a corollary in-

volving the (quasi-)ergodic hypothesis and some discussion of the relevance of the
results for the foundations of CSP — for a critical presentation see e.g. [Uffink,
2006, section 6.1] — I do not intend to try and follow suit here, in view of theorems
7 and 8 below which, for the purposes of QSP, cast a shadow on the adequacy of
the assumptions theorem 5 makes on the Hamiltonian H . For a quantum ergodic
theorem better adapted to the needs of QSP, see theorem 25 below.

Nevertheless, two related interesting comments may be made about theorem 5.

(i) If, in this theorem, H is non-degenerate, i.e. if ∀n : dimPn = 1 , then Eerg[ρ]
coincides with

(42) Qo[ρ] =
∑
n

Tr(ρPn)Pn =
∑
n

(ρΨn,Ψn)Pn

where PnΨn = Ψn with (Ψn,Ψm) = δmn , and where Qo[ρ] is thus the density
matrix resulting from the von Neumann quantum measuring process [von
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Neumann, 1932c, p. 351]; see also subsection 6.3 below. In particular, if ρ
is a pure state, i.e. is a projector PΨ on some vector Ψ =

∑
n cnΨn , then

Qo[PΨ] =
∑
n |cn|2Pn has lost all the information encoded in the relative

phases of the coefficients cn .

(ii) In [von Neumann, 1932c, pp. 380 ff] von Neumann shows that the entropy S
of a state does not decrease — and in the generic case does increase — as the
result of a measurement, whereas it is constant under the unitary evolution
(40). He thus sees in

(43) S[Qo[ρ]] ≥ S[ρ]

a confirmation that quantum measurements are generically irreversible pro-
cesses. Similarly then, the information encoded in a (non-degenerate) density
matrix ρ may only decrease as a result of taking its time-average, a reasonable
feature indeed.

Yet, while theorem 5 could have been regarded as the germ of a quantum ergodic
theory, the occurrence of monotonic irreversibility in QSP is significantly more
elusive, as the next subsection demonstrates.

3.3 Some reasons to go beyond von Neumann’s formalism

Some of the problems non-equilibrium QSP has to face are illustrated in a simple
spin-lattice model that was originally suggested to me by an actual experiment,
the so-called nuclear free-induction relaxation; cf. [Emch and Liu, 2002, section
15.3].

The system consists of a linear chain of N interacting spins {σk = (σxk , σ
y
k , σ

n
k )

|k = 1, . . . , N} with N even (and large, in a sense to be specified later on), and let

(44) σxk =
(

0 1
1 0

)
, σyk =

(
0 −i
i 0

)
, σzk =

(
1 0
0 −1

)

be the Pauli matrices acting on Hk � C2 . The Hilbert space of the system is
then H = ⊗kHk � |C2N

. In this chain, two spins on sites k and k + n interact
with an energy −Jnσ

z
kσ

z
k+n , with Jn > 0 so that a lower energy is ascribed to

configurations in which the z−components of these spins are parallel rather than
anti-parallel. The whole system is plunged in a homogeneous magnetic field B in
the direction z . The total Hamiltonian is chosen to be

(45) HN = −B
N∑
k=1

σzk −
N∑
k=1

N/2∑
n=1

Jnσ
z
kσ

z
k+n with Jn = 2−nJo > 0 .

The system is initially prepared in the state

(46) ρN = Z−1
N exp−βBPN

k=1 σ
x
k with ZN = Tr exp−βBPN

k=1 σ
x
k .

For the three “macroscopic” observables
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(47) SαN =
1
N

N∑
k=1

σαk with α standing for x, y, z

one computes easily from (39–40) with H = HN given by (45):

(48)
Tr (VN (t)[ρN ]SxN ) = Tr (ρN SxN ) cos(2Bt)fN (t)
Tr (VN (t)[ρN ]SyN ) = Tr (ρN SyN ) sin(2Bt)fN (t)
Tr (VN (t)[ρN ]SzN ) = Tr (ρN SzN )




where

(49)
fN (t) = f(t)/WN (t) with

f(t) =
[ sin(Jot)

Jo t

]2 and WN (t) =
[ sin(2−N/2Jot)

2−N/2Jo t

]2

 .

REMARKS 6.

1. For the purpose of discussing the putative irreversibility of the model, the
(conservative) Larmor precession {cos(Bt), sin(Bt)} of the magnetization
around the direction z of the magnetic field B is of little or no interest.

2. In favour of the “irreversibility” of the model, one first notes that

(50) ∀ t with |t| << TN = 2N/2πJ−1
o : fN (t) � f(t)

and then the decay of |TrVN (t)[ρ]SαN | is governed by t−2 . Therefore, in
this time frame, the magnetization (48) exhibits an apparent approach to
equilibrium.

3. However, against the statement that the model would show an irreversible
approach to equilibrium, one observes that

(51) lim
t→TN

fN (t) = 1 = fN (0)

and thus, over the long run the system is periodic in time. This quantum
model therefore would seem to confirm the classical Zermelo recurrence ob-
jection, or Wiederkehreinwand ; for the latter, see [Uffink, 2006, section 4.5].

4. The saving grace, nevertheless, is that the period TN increases exponentially
with the size N of the system; see (50). This exponential behaviour is al-
ready encountered is CSP, as demonstrated by the Ehrenfest dog-flea model
briefly mentioned in subsection 6.1 below. Thus, a modern Galileo would
have his Simplicio argue that for macroscopically large systems, unaccount-
able perturbations would set in before TN is approached, thus irremediably
masking this periodicity; compare this to Boltzmann’s responses to the Zer-
melo objection; see again [Uffink, 2006, section 4.5].
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5. Upon taking stock of this objection Salviati would invoke some modern ver-
sion of the apocryphal commandment to the effect that “Thou shalt not
interchange limits” since:

(52) lim
N→∞

lim
t→∞ fN (t) does not exist but lim

t→∞ lim
N→∞

fN (t) exists and is 0 .

6. The present model presents also a quantum manifestation of the classical
Loschmidt reversibility objection, or Umkehreinwand — cf. [Uffink, 2006,
section 4.3] — as one has, here also:

(53) fN (−t) = fN (t) and even f(−t) = f(t)

confirming the classical Janus dictum according to which the security of a
postdiction is the same as that of a prediction. Hence, this model indicates
that, if the Umkehreinwand were indeed a genuine objection to QSP —
which I do not believe it is — the thermodynamical limit would not avoid
it, whereas remarks (4) and (5) above show how it may respond to the
Wiederkehreinwand.

7. Finally, one serious shortcoming of the present model — not as a model of
the particular experiment considered above, but as a model for the approach
to equilibrium in a QSP accounting for transport coefficients — is that, even
in the limit of N → ∞ , the evolution is monitored by an inverse power
law in time, rather than an exponential law, as would be required for the
type of behaviour encountered in such macroscopic situations as described
by Newton’s cooling law, Fourier’s heat equation, or more generally any
macroscopic differential transport equation with linear coefficients.

The model illustrates explicitly some of the essential limitations of the von Neu-
mann formalism for QSP, as manifested in the following two general results. The
main assumption of theorems 3 and 5, namely that the Hamiltonian operator H
has discrete spectrum, though seemingly innocuous — and actually necessary —
when dealing with equilibrium QSP, has one potentially disastrous consequence
when one attempts to extend the formalism to non-equilibrium situations: metas-
tases of the classical objections spread into the quantum realm, as we shall now
see.

The first result is a quantum version of the classical recurrence theorem of Zer-
melo. To be mathematically precise recall, in the words of Besicovitch’s standard
text [Besicovitch, 1954], that a function f : t ∈ IR → f(t) ∈ |C is said to be almost
periodic in the sense of Harald Bohr, if f(t + T ) is approximately equal to f(t)
— with an arbitrary degree of accuracy — for infinitely many values of T , these
values being spread over the whole real line, in such a way as not to leave empty
intervals of arbitrarily great length.

THEOREM 7. If the Hamiltonian H = H∗ ∈ B(H) has purely discrete spectrum,
i.e. if H =

∑
n εnPn ; and if {V (t) | t ∈ IR} is the unitary action in the Liouville

space L defined in (40), then
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(54) ∀X,Y ∈ L : fX,Y (t) = Tr (V (t)[X]Y )

is an almost periodic function in t in the sense of H. Bohr.

Proof. f(t) is a Fourier series
∑
n,m an,m exp−i 1

�
(εn−εm)t with an,m = Tr(PnX

Pm y) ; by the Schwartz inequality in L :
∑
n,m |an,m|2 converges and thus — cf.

[Besicovitch, 1954] — f is an almost periodic function of t in the sense of H. Bohr.
�

One might then attempt to get rid of recurrences by assuming — as is certainly
allowed in the von Neumann formalism of quantum mechanics, provided dimH =
∞ — that the spectrum of the Hamiltonian is purely continuous. From the point
of view of QSP, however, this cure would raise the following new difficulty, namely
that ergodic states may not be countably additive, i.e. may not be representable
by density matrices.

To describe this phenomenon, consider the Banach space B = B(H) equipped
with its usual operator norm; and denote by B∗ its dual, i.e. the Banach space of
all continuous, linear functionals on B . Then

(55) B∗ = A∗ ⊕A⊥

where

i. A is the space of compact operators on H , i.e. A = {A ∈ B(H) | Ψn ⇀
Ψ ⇒ AΨn → AΨ} ; here, ⇀ and → respectively denote weak- and strong-
convergences in H . When the ∗−algebra A is equipped with the operator
norm it inherits from B(H) , A is closed in B(H) and thus is a Banach space
on its own; in fact A is the only non-trivial closed two-sided ∗−ideal of B .

ii. For every ϕ ∈ A∗ , the dual of A , there exists a unique trace-class operator
R ∈ T = {B ∈ B |Tr (B∗B)

1
2 < ∞} such that ∀A ∈ A : ϕ(A) = Tr(R A) .

In particular, to every positive, continuous linear functional ψ on A such
that supA∈A,‖A‖≤1 ‖ψ(A)‖ = 1 there corresponds a unique density matrix,
and conversely.

iii. A⊥ = {ϕ ∈ B |A ∈ A ⇒ ϕ(A) = 0} .
Note that each of the inclusions T ⊆ L ⊆ A ⊆ B is strict iff H is infinite-
dimensional, a condition that is required whenever one wants to avoid recurrences,
since dimH <∞ obviously entails that the spectrum of H is purely discrete, and
then theorem 7 applies.

We can now make precise the above mentioned difficulty concerning the descrip-
tion of ergodic states within the context of countably additive states:

THEOREM 8. Let H ∈ B(H) be the self adjoint generator of any strongly con-
tinuous unitary group {U(t) | t ∈ R} acting on H ; and, with t running over
IR , let ρ ∈ T → ρ(t) = U(t)ρU(−t) ∈ T describe the evolution of any den-
sity matrix ρ ; further, let ψt denote the corresponding (countably additive!) state
ψt : B ∈ B(H) → ψt(B) = Tr(ρ(t)B) ∈ |C. Then, it follows that:
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a. For every compact observable A ∈ A the ergodic limit

(56) lim
T→∞

1
T

∫ T

o

dt ψt(A)

exists and defines a positive linear functional E∞[ψ] on A .

b. If, moreover, the spectrum of H is purely continous, then E∞[ψ] cannot be
extended to a countably additive state on B(H) .

Proof. For the part (a), the economical strategy is to take advantage of two
density theorems, namely: (i) when L is equipped with its Hilbert-Schmidt norm,
it contains T as a dense subspace; and (ii) when A is equipped with the operator
norm it inherits from B(H) , it contains L as a dense subspace. Hence, one can
uniquely lift the evolution from T (H) to a unique unitary evolution on the Hilbert
space L where one can use the classical ergodic theorem — [von Neumann, 1932a],
or [Emch and Liu, 2002; Uffink, 2006] — to assert the existence of the ergodic limit
for any pair (X,Y ) ∈ L×L , and in particular for any pair (ρ,A) ∈ T ×L . Upon
recalling the duality A = T ∗ , the ergodic result is then extended by continuity
from T × L to (ρ,A) ∈ T ×A .

To prove part (b), one notices that, on the one hand, this limit is given, for every
A ∈ A by Eo[ψ](A) = Tr(

∑
n(Pn ρPn A) where {Pn} is the set of all the projectors

corresponding to the discontinuous jumps in the spectral family of H . Hence, when
H has continuous spectrum, this set is empty and thus ∀A ∈ A : Eo[ψ](A) = 0 .
On the other hand, Eo[ψ] certainly extends further thanA ; for instance the ergodic
limit obviously exists for any X ∈ {H}′ , i.e. for all bounded observables that are
constants of the motion; in particular E[ψo](I) = 1 . Hence, even if E[ψo] could be
extended to a state on B , this state would belong to A⊥ and thus would have no
countably additive component in the direct sum decomposition (55). �

The proof of the theorem shows that the same objection can be raised with any
Hamiltonian the spectrum of which contains even only one interval of continuity.
Taking Hamiltonians that are still self-adjoint, but not bounded above would only
raise more technical problems without providing a solution to the basic limitation
exposed in theorem 8.

Hence, von Neumann’s formalism for QSP leads non-equilibrium QSP into the
horns of a dilemma: either the evolution is almost periodic or the ergodic states
are not countably additive. In particular, non-equilibrium states cannot approach
asymptotic states that can be described by density matrices.

To make a bad situation even worse, Zeh discovered — admittedly, long after von
Neumann’s treatise had appeared and yet relevant to the thrust of this section —
that there are serious empirical difficulties with the concept of an isolated quantum
system [Zeh, 1970; Wigner, 1984]. Could certainty be fading out? [Prigogine,
1997]. Zeh’s original observation has led to the development of the concept of
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decoherence; cf. Landsman [Landsman, 2006, section 7.1]. I very briefly address
this and some related issues in section 6 below.

Even in equilibrium QSP, the anchor provided by von Neumann was slipping:
the formalism cannot account for the coexistence of thermodynamical phases; for
a response to this objection, see subsection 5.7 below.

In counterpoint to these questions, one fundamental problem needs to be ad-
dressed: namely that the von Neumann formalism is not adequate to describe
typical many-body systems where an infinite number of degrees of freedom are
brought into the picture. The prescribed remedy is discussed in the next subsec-
tion.

3.4 Haag–Kastler’s axioms and Takeda’s inductive limits

This subsection outlines a formalism proposed to deal effectively with the non-
relativistic many-body problems in QSP. This formalism was born out of the
axiomatic responses prompted by the diagnosis of a mid-life crisis in relativis-
tic Quantum Field Theory [QFT] [van Hove, 1952; Friedrichs, 1953; Wightman
and Schweber, 1955]; the nail in the coffin was driven by Haag [1955]; cf. e.g. the
famous Haag theorem and its embalmings in [Barton, 1963, section 14], [Streater
and Wightman, 1964, section IV.5], and/or [Emch, 1972a, section 3.d]. The al-
gebraic axiomatization is presented here with sufficiently elementary details, yet
with enough restraint to eschew the “imperialistic” label sometimes attached to
it.

The main idea is to account for the local structure of infinitely extended systems.
In their original proposal, Haag and Kastler [1964] mention several precedents in
axiomatic QFT; among these [Haag, 1959a; Haag and Schroer, 1962]; see also
[Haag, 1959b]. (I first heard of the algebraic approach in seminars in Geneva,
where Araki presented some aspects of his Zurich lectures [Araki, 1961/2].) Segal’s
early advocacy of an algebraic approach [Segal, 1947] ought also to be mentioned.

This subsection is divided in two complementary parts: the first part presents
a description of the general structure; the second illustrates this structure with an
example, the 1-dimensional quantum spin-lattice.

Part I. The general structure.
One begins by selecting an absorbing directed net F of regions Λ of finite extension
in space; usually, the space is the Minkowski space M

n+1 for relativistic QFT, the
Euclidean space IRn or a lattice Z

n for non-relativistic QSP. The case of immediate
physical interest is n = 3 , but exploratory models are often constructed with
n = 1, 2 . Recall that a directed net is a partially ordered set — here the order
relation is the usual set-theoretical inclusion — such that for every pair of elements
Λ1,Λ2 in F there is at least one element Λ ∈ F such that Λ1 ⊆ Λ and Λ2 ⊆ Λ .
To say that this net is absorbing is to say that for every point x in space there
exists at least one element Λ ∈ F such that x ∈ Λ . The symbol Λ1 �� Λ2 will be
used to signify that two regions Λ1 and Λ2 are causally disjoint, i.e. in QFT, these
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regions are spacelike to one another; and in non-relativistic QSP, they are disjoint
in the set-theoretical sense, i.e. Λ1 ∩ Λ2 = ∅ . G denotes a group of rigid motions
in the space, namely the inhomogeneous Lorentz group for M

n+1 ; the Euclidean
group for IRn ; or the group of lattice translations for Z

n .
Secondly, to every Λ ∈ F one assigns a C∗−algebra AΛ ; without loss of gener-

ality, one may assume that AΛ has an identity IΛ . This assignment is subject to
the following three postulates.

POSTULATE 9 (Isotony). Whenever Λ1 ∈ F and Λ2 ∈ F satisfy Λ1 ⊆ Λ2 , one
is given an injective ∗−homomorphism i21 : AΛ1 → AΛ2 such that

1. i21(IΛ1) = IΛ2

2. Λ1 ⊆ Λ2 ⊆ Λ3 ⇒ i32 ◦ i21 = i31 .

The following result was proven by Takeda [1955].

THEOREM 10. Let F be a directed net, and {AΛ | Λ ∈ F} satisfy the isotony
postulate. Then there exist: a C∗−algebra A with unit I ; and a family of injective
∗ −homomorphisms {iΛ : AΛ → A | Λ ∈ F} such that

1. ∀Λ ∈ F : iΛ(IΛ) = I ;

2. Λ1 ⊆ Λ2 ⇒ iΛ1(AΛ1) ⊆ iΛ2(AΛ2) ;

3.
⋃

Λ∈F iΛ(AΛ) is a norm-dense sub−∗algebra of A .

The C∗−algebra A is called the C∗−inductive limit of the net {AΛ | Λ ∈ F} . We
will use hereafter the notations

Ao :=
⋃

Λ∈F
iΛ(AΛ) and A =

nAo.

POSTULATE 11 (Local commutativity). Whenever Λ1,Λ2 ∈ F satisfy Λ1 �� Λ2 ,
and Λ3 ∈ F is such that both Λ1 ⊆ Λ3 and Λ2 ⊆ Λ3 :

A1 ∈ AΛ1 and A2 ∈ AΛ2 ⇒ i31(A1) i32(A2) = i32(A2) i31(A1) .

The following result is then immediate.

COROLLARY 12. If Λ1 �� Λ2 , then

A1 ∈ AΛ1 and A2 ∈ AΛ2 ⇒ iΛ1(A1) iΛ2(A2) = iΛ2(A2) iΛ1(A1) .

For the aspects of QSP considered here, it will be an innocent abuse of language
to refer to the above postulate as simply the postulate of locality.
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POSTULATE 13 (Covariance). An action ν : (g,A) ∈ G × Ao → νg[A] ∈ Ao
is given so that for every region Λ ∈ F , νg induces a ∗−isomorphism between
AΛ and Ag[Λ] , where g[Λ] denotes the image of the region Λ under the point
transformation g .

Upon using theorem 10, this can be lifted toA , namely νg[iΛ(AΛ)] = ig[Λ](Ag[Λ]) :

COROLLARY 14. The action of G extends by continuity to a norm-continuous
group representation ν : g ∈ G→ Aut(A) .

DEFINITION 15. With the above notations, Ao is called the algebra of local
observables; and A is called the algebra of quasi-local observables. Moreover, if ϕ
is a state on A such that ∀ g ∈ G : ϕ ◦ νg = ϕ , let πϕ be the corresponding GNS
representation. The von Neumann algebra Nϕ = πϕ(A)′′ is called the algebra of
global observables relative to the state ϕ .

Note that quasi-local observables involve norm limits; they are therefore general,
algebraic objects that can be defined abstractly, i.e. without reference to any
particular Hilbert space representation. In contrast, global observables that are
not quasi-local involve weak-operator limits, and thus depend on the Hilbert space
representation in which these limits are taken; for the purposes of QSP these
observables depend, via the GNS construction, on the physical situation for which
they are defined, i.e. on the state with respect to which they are considered. This
aspect of the theory will be discussed in details in subsection 3.5 — see in particular
the preliminaries to scholium 23, and remark 26(1) — and it will be essential for the
treatment of phase transitions, inasmuch as these involve averages of observables,
for instance the spontaneous magnetization in ferromagnets; see subsection 5.7
below.

Part II. A concrete example of a net of observable-algebras.
This example exhibits the construction of the algebra of observables for an infinite
quantum spin-lattice system that obtains in the thermodynamical limit of finite
systems such as the one treated in subsection 3.3 above. Consider indeed an infinite
1-dimensional lattice Z with a quantum 1

2−spin sitting at each node (or “site”);
hence a copy Ak of the C∗−algebraM(2, |C) of 2×2 matrices with complex entries
is associated to each site k ∈ Z ; i.e. Ak is generated by the Pauli matrices (44),
i.e. by the three observables corresponding to the three components of a 1

2−spin
sitting at site k .

Let now F be the net of all finite subsets Λ ⊂ Z . To each of these Λ is then asso-
ciated the “local” C∗−algebra AΛ = ⊗k∈ΛAk which is thus a copy ofM(2|Λ|, |C) ,
where |Λ| denotes the number of sites in Λ .

Let now Λ1 and Λ2 be two finite regions, with Λ1 ⊆ Λ2 . An injective ∗−homo-
morphism of AΛ1 into AΛ2 obtains by linearity from its restriction to monomials,
namely

i21(A1 ⊗A2 ⊗ . . .⊗A|Λ1|) = B1 ⊗B2 ⊗ . . .⊗B|Λ2|
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with

∀ k ∈ Λ2 : Bk =
{

Ak if k ∈ Λ1

Ik if k /∈ Λ1
.

These inclusions satisfy postulate 9.
Here, two finite regions are in the relation Λ1 �� Λ2 whenever Λ1 ∩ Λ2 = ∅ .

Since the commutators of observables attached to individual sites vanish whenever
the two sites are different, any two observables attached to disjoint regions do
commute. Formally, this is to say that postulate 11 is satisfied.

Finally, let G := Z denote the additive group of translations of the lattice. To
define the action of G on the algebra of local observables it is sufficient to notice
that for all g ∈ G and all Λ ∈ F : |g[Λ]| = |Λ| , so that both Ag[Λ] and AΛ

are copies of the same matrix algebra, namely M(2|Λ|, |C) : the images of a local
observable and its translate are simply different copies of the same matrix; this
indeed defines νg in such a way that postulate 13 is satisfied.

3.5 Quantum ergodic theory and macroscopic observables

While classical ergodic theory concerns itself with measures µ that are invariant
under a group G and their mixing properties, quantum ergodic theory discusses
the properties of G−invariant states and their clustering properties. Accordingly,
in this subsection I will discuss also the roles of space and/or time averages in
explaining at least part of the success of QSP; compare with [Uffink, 2006] and,
in particular, with [Earman and Rédei, 1996].

Therefore, one question to be addressed in this subsection must be whether
and how ergodic theory may serve as a cornerstone to build up statistical me-
chanics. Traditionally, under the impetus of the emphasis the Ehrenfests’ placed
on Boltzmann’s ergodic hypothesis (or rather its measure-theoretical version, the
quasi-ergodic hypothesis), the group G is taken to be the group IR governing
the time evolution. Nevertheless, partly in response to some swaying to and fro
in Boltzmann’s own writings, the jury is still out on the fundamental issue of
this hypothesis’ relevance for the foundations of CSP; see in particular [Uffink,
2006, section I.3, and subsections I.4.3 and I.6.1]. It is also remarkable that al-
ready Gibbs [Gibbs, 1902] chose to emphasize the role of mixing properties, i.e.
properties which are stronger than metric transitivity and make more precise the
presumption that the dynamics is ‘erratic’; cf. e.g. [Uffink, 2006, sections I.4.1
and I.5]; other issues are touched upon in [Emch and Liu, 2002, pp. 317–330];
and, for a pertinent account that takes stock of the work done in the second half
of the twentieth century, by the Lebowitz and Sinai schools, see [Szasz, 1996].

Consequently, I will concentrate here on two sub-questions: (i) the extent to
which the mathematics of classical ergodic theory may be generalized to the for-
malism of quantum theory; and (ii) the extent to which such generalizations may
help formulate better certain aspects of the foundations of QSP.

The answer to the first of these sub-questions is that much of the mathematics
goes through, with some minor adjustments. The answers to the second is more
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complex. On the one hand, as long as the focus remains on the time evolution the
main issues persist, among which is the paucity of realistic models. On the other
hand, when the group G deals with the geometry of the problem, quantum ergodic
theory — especially and the roles of averages, and theorems linking extremal
invariance and clustering properties — does help distinguish, within QSP, the
quantum aspects of the microscopic description and the classical aspects of the
macroscopic world. Thus, I divide the presentation in two parts, according to
whether ergodicity is considered with respect to the time evolution or with respect
to space symmetries.

A. Ergodicity with respect to time
Some insight is gained from a model first proposed in [Ford et al., 1965], which
comes in two versions, classical and quantum. The quantum version has been
controlled mathematically in [Davies, 1972]. It is proven there that an infinite 1-
dimensional chain of weakly coupled 1-dimensional quantum harmonic oscillators
may serve as a thermal reservoir for a single 1-dimensional quantum oscillator in
the chain and that a diffusion equation governs the evolution of the latter. This
is accomplished by a rigorous treatment of the van Hove weak-coupling/long-time
limit about which more will be said in subsection 6.1 below. Anticipating some
mathematical definitions to be made precise later on — see paragraph 5.3.C —
it is sufficient for the present discussion to register that, in this van Hove limit, a
reduced evolution obtains which is a contractive semi-group of completely positive
maps {γs | s ∈ IR+} acting on the von Neumann algebra No � B(L2(IR, |C)) at-
tached to the site of the single oscillator considered. Moreover this evolution, when
observed from any one-dimensional subspace {xu | x ∈ IR} in the 2-dimensional
phase space {ξP + ηQ | ζ = (ξ, η) ∈ IR2} of the single oscillator, is described by a
classical distribution µ(x, s) that satisfies for all s ∈ IR+ the diffusion equation:

(57) ∂sµ(x, s) = D
[
∂2
x + β(V ′(x) ∂x + V ′′(x))

]
µ(x, s)

where β = 1/kT is the natural temperature, V = 1
2ω x2 is a harmonic po-

tential, while the diffusion constant D and the frequency ω are numbers, the
values of which depend only on the direction ζ/|ζ| ∈ IR2/S1 . Note that the
corresponding invariant measure is the canonical equilibrium, Gaussian measure
µ(x) = Z−1 exp(−βV (x)) with Z =

∫
R
dxµ(x) , i.e. Z−1 =

√
2πβω .

The point of the model here is that the dissipative system described by the
contractive semi-group {γs | s ∈ IR+} governing this Markovian diffusion process
admits a canonical dilation to a conservative dynamical system. Indeed, there
exists a group {αs | s ∈ IR} of automorphisms of the von Neumann algebra
N = πϕ(A)′′ describing the full chain of oscillators in the equilibrium state ϕ
corresponding to the temperature β when the interactions are switched off. In
conformity with subsection 3.4 the algebra of quasi-local observables A is here the
C∗−algebra ⊗k∈ ZNk where the Nk are copies of No . The free equilibrium state
has the form ϕ = ⊗ϕk where ϕk is the von Neumann canonical equilibrium state
for the oscillator at the site k . Let now i be the injection of No into N and ϕo
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denote the restriction of ϕ to No , i.e. ∀No ∈ No : ϕo(No) = ϕ(i[No]) . Let further
E : N → No be the canonical conditional expectation with respect to the state
ϕ , satisfying ϕo ◦E = ϕ . The sense in which {N , α,E} is a dilation of {No, γ} is
that

(58) ∀ (s,No) ∈ IR+ ×No : γs[No] = E ◦ αs ◦ i [No] .

For details, see [Emch, 1976] where, in particular, this result was noted to be very
reminiscent of the classical flow of Brownian motion constructed by Hida [Hida,
1970] who also proved that this flow is a classical Kolmogorov flow, in the sense
of the following definition.

DEFINITION 16. A classical dynamical system {Ω, E , µ, α∗} consisting of a prob-
ability space {Ω, E} , a probability measure µ , and a group {α∗

t | t ∈ IR} of au-
tomorphisms of {Ω, E} such that ∀ t ∈ IR : µ ◦ α∗

t = µ , is said to be a classical
Kolmogorov flow whenever there exists a σ−subring A ⊂ E such that, with the
notation At = α∗

t[A] :
(1) ∀ t > 0 : A ⊂ At ; (2)

∨
t∈IRAt = E ; and (3)

∧
t∈IRAt = {∅,Ω} .

Kolmogorov flows are characterized among classical dynamical systems by their
having strictly positive dynamical entropy; thus they sit pretty high in the classical
ergodic hierarchy, above the Lebesgue spectrum condition, and thus above the
weaker conditions of mixing and ergodicity; for didactic accounts, cf. e.g. [Arnold
and Avez, 1968; Cornfeld et al., 1982].

The conservative quantum dynamical system described above as the canoni-
cal dilation of a contractive semigroup, does satisfy a quantum generalization of
definition 16, namely:

DEFINITION 17. A quantum dynamical system {N , ϕ, α} consisting of a von
Neumann algebraN , a faithful normal state ϕ onN , and a group α = {αt | t ∈ IR}
of automorphisms of N , with ∀ t ∈ IR : ϕ ◦ αt = ϕ , is said to be a generalized
Kolmogorov flow whenever there exists a von Neumann subalgebra A ⊂ N such
that, with the notation At = αt[A] :

(1) ∀ t > 0 : A ⊂ At ; (2)
∨
t∈IRAt = N ; (3)

∧
t∈IRAt = |CI ; and

(4) ∀ t ∈ IR : τt[A] = A ,

where {τt | t ∈ IR} is the modular group canonically associated to ϕ .

REMARKS 18.

1. The
∨

in condition (2) involves a weak-operator closure, namely (2) means
that N is the smallest von Neumann algebra that contains all the At ; the∧

in condition (3) is simply the usual intersection; thus (3) signifies that no
operator belongs to all At unless it is a multiple of the identity.

2. The modular group τ will be introduced in section 4; let it suffice to say
here that, if we were dealing with a finite system, τ would be the group of
automorphisms of N associated to the Hamiltonian corresponding to von
Neumann’s canonical equilibrium density matrix.
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3. Definition 17 encompasses definition 16 when N is taken to be the abelian
von Neumann algebra L∞(Ω, E) acting on the Hilbert spaceH = L2(Ω, E , µ) ;
in this case ∀ t ∈ R : τt = id , and condition (4) is then trivially satisfied.

4. In the general case, condition (4) is necessary to ensure the existence of a
conditional expectation E : N → A .

5. Except for the positivity of the dynamical entropy — which depends on a con-
sensus that is still pending about a physically meaningful definition of quan-
tum dynamical entropy; see nevertheless [Narnhofer and Thirring, 1994b;
Tuyls, 1998] and references therein — all the ergodic properties of classical
Kolmogorov systems carry over straightforwardly from the classical to quan-
tum realm [Emch, 1976]. In the model described above these properties are
exhibited in the quantum triple {N , ϕ, α} .

6. Definition 17 was first proposed in [Emch, 1976]. Generalizations of this def-
inition, involving the passage from W∗− to C∗−algebras, were then explored
in [Narnhofer and Thirring, 1989].

7. The material of the present remark may be found in [Arnold and Avez, 1968]
and is inserted here only as a preparation for the next remark. In classical
ergodic theory the next rung up the ergodic ladder, just above Kolmogorov
flows, is occupied by Anosov flows. These flows formalize an observation
made in 1898 by Hadamard, namely that the geodesics on manifolds of
negative curvature exhibit exponential sensitivity to initial conditions, in
contrast with the usual linear sensitivity characteristic of free flows on flat
manifolds. If the manifold is furthermore compact, one may intuitively ex-
pect that Hadamard’s observation entails some kind of mixing behaviour.
This is indeed the case: the first ever Hamiltonian flow shown to be ergodic
— the geodesic flow on a compact surface of constant negative curvature —
is already an Anosov flow. These flows exhibit exponentially contracting and
expanding directions transversal to the direction of the flow, thus prefiguring
a microscopic explanation for the empirically observed Lyapunov coefficients.
The discrete-time archetype is the Arnold CAT map operating of the torus
T 2 : = IR2/Z

2 . One ought to note that up to Kolmogorov flows, classical
ergodic theory may be viewed as a chapter in probability theory; Anosov
flows, in addition, involve an essential appeal to differential geometry, as
was recognized only in the second half of the twentieth century through the
work of the Russian school.

8. In order to explore possible quantum extensions of the concept of Anosov
flow, a quantum analog of the latter has been devised by the present author
in collaboration with Narnhofer, Sewell and Thirring [Emch et al., 1994a];
for an antecedent, see [Benatti et al., 1991a]; for a discussion of dynamical
entropy in this context, see [Andries et al., 1995]; for reviews and some
general perspectives, see [Narnhofer, 2001; Narnhofer, 2005].
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One essential feature of this extension is that now the phase space of this
quantum CAT map is the noncommutative torus T 2

θ , an ubiquitous staple
of Connes’ noncommutative geometry; cf. e.g. [Connes, 2000, section XIII]
or [Garcia–Bondia et al., 2003, chapter 12]; and for the place these tori
occupy in the geometric quantization programme, cf. [Emch, 1998b]. As for
quantum ergodic theory, it was noted already in [Emch et al., 1994a] that the
generators of the expanding and contracting horocycles form a basis in the
2-dimensional distinguished space of derivations that are not approximately
inner — i.e. cannot be uniformly approximated by inner derivations [Garcia–
Bondia et al., 2003, section 12.3].

The presence of expanding and contracting directions in quantum as well
as in classical Anosov flows offers a bridge from classical to quantum chaos.
The problem of what is quantum chaos — or what it ought to be — has
received attention from different prospectives; cf. e.g. [Gutzwiller, 1990]; for
a philosophical perspective, cf. [Belot and Earman, 1997], and for a recent
review, cf. in this volume [Landsman, 2006, section 5.6].

The investigations sketched in this remark, with applications to QSP in view,
also have a mathematical parallel in QFT, cf. [Borchers, 1999; Wiesbrock,
1997]; see also subsection 5.5 below.

Summary and warning. It seems fair to infer that the mathematical general-
ization of classical ergodic kinematics to the quantum realm will carry through
quite well. Nevertheless, the discussion of the underlying physical dynamics, when
confronted with Hamiltonian mechanics, does not fare any more smoothly in the
quantum case than it does in the classical case. Some of the conceptual problems
may already be illustrated with the help of the model discussed at the begin-
ning of this subsection. There, the dissipative dynamical system {No, γ} may be
viewed as the reduced dynamics of two different conservative dynamical systems;
both of these act on the same infinite assembly of harmonic oscillators. From the
first system the reduced dynamics obtains only through the van Hove limit which
compounds the very long-time effects — on a single subsystem — of a very weak
coupling with, and within, the bath. But there is nothing in common between the
time scale of the dynamics that governs the original conservative system and the
time scale pertaining to the other conservative system, viz. the one obtained as
the canonical dilation of the dissipative system. So there is little reason to believe
that the ergodic behaviour of the latter reflects any global dynamical property of
the former.

While this may be blamed on some naive modeling, it nevertheless emphasizes
that the time scale of the conservative microscopic description and that of the
emerging macroscopic description may differ significantly. In more sophisticated
models, this will have to be taken into consideration and the complicated behaviour
of the microscopic description may have to be washed away — one way or another
— before a clean ergodic behaviour is manifested at the macroscopic level. It
appears that van Hove’s idea is a reasonable way to do this; see subsection 6.1
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below.

Starting with their initial motivation in Boltzmann’s works, most presentations
of classical ergodic theory focus on the properties of the time-evolution, in par-
ticular on the transitivity of measures and the time-averages of observables. Its
generalization to the quantum realm invites the consideration of other aspects of
classical ergodic theory, namely the space averages with respect to the actions of
other groups beside those that govern the evolution. This will be done in the
second part of this subsection.

B. Ergodicity with respect to space
As was already recognized by Haag [1959b] for QFT, the “other” group of most
immediate relevance to QSP is the group of space translations, introduced as a part
of the postulate of covariance in the Haag–Kastler axioms; cf. postulate 13 above.
With n = 1, 2, . . . , let X

n denote either the Euclidean space IRn or the “cubic”
lattice Z

n ; and let |x| denote the length of the vector x ∈ X
n . Henceforth, we

concentrate on the abelian group G � X
n of all translations x ∈ X

n → x+a ∈ X
n

where a ∈ X
n . Let further {AΛ | Λ ∈ F} be the corresponding Haag–Kastler net

of local algebras, and A be their C∗− inductive limit, with A equipped with the
group of automorphisms {νa | a ∈ Xn} defined as in corollary 14. Let again
Ao ⊂ A denote the algebra of local observables. For any fixed pair (Λ1,Λ2)
of elements in F , there exists a12 ∈ G such that a[Λ1] �� Λ2 for all a ∈ G with
|a| > |a12| . Consequently, by locality (see postulate 11) whenever a ∈ G with |a| >
|a12| , A1 ∈ A1 and A2 ∈ A2 , we have νa[A1]A2 = A2 νa[A1] . By continuity, this
entails

COROLLARY 19. For all A,B ∈ A : lim|a|→∞ ‖ νa[A]B − B νa[A] ‖ = 0 , i.e.
the group G of translations acts on the algebra A of quasi-local observables in a
norm-asymptotic abelian manner.

This property makes no sense in the original von Neumann framework for the
quantum mechanics of finite systems. In the generalized Haag–Kastler framework
devised for infinite systems, this statement which is straighforwardly correct for
space translations is rarely satisfied by the time evolution in realistic models that
have been controlled.

This raises three questions: the first is whether this property has useful conse-
quences; the second is whether this property can be weakened without jeopardizing
the consequences that may be derived from it; and the third is whether any of the
weakened forms of this property may be satisfied by the time evolution. I will
argue that the answers to the first two questions are “yes”. Specifically, in regard
to the first question, see in particular corollary 30 below; and in response to the
second, see the forthcoming theorem 25. However, here again, I will warn against
the seduction of hypotheses that may ensure a positive answer to the third ques-
tion, but may be hard to satisfy in specific models; see also the last paragraph in
5.4.B and remark 63(6) below.

DEFINITION 20. A state ϕ on the algebra A of quasi-local observables is said to
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be translation invariant whenever ∀ (a,A) ∈ G×A : ϕ(νa[A]) = ϕ(A) , a situation
denoted by ϕ ◦ ν = ϕ . The state ϕ is said to be extremal translation invariant
if it is translation invariant and may not be written as a convex sum of different
translation invariant states.

With G denoting the group of translations of X
n = IRn or Z

n , G is triv-
ially identified with X

n . Let C = C(G) be the set of all complex-valued, contin-
uous, bounded functions f : G → |C . Henceforth, this set is equipped with the
usual point-wise addition and multiplication of functions, and with the sup-norm
‖f‖ = supx∈G |f(x)|. These operations equip C with the structure of an (abelian)
C∗−algebra. Define then an action of G on C by a[f ](x) = f(x− a) .

DEFINITION 21. With the above notations, an invariant mean on C is a state η
on C such that ∀ (a, f) ∈ G× C : η(a[f ]) = η(f) .

Given X
n , there are several such means. For instance, the ergodic mean on IR

may be defined as follows. Let Ce = {f ∈ C | lima→∞ 1/2a
∫ a
−adx f(x) exists } .

Then ∀ f ∈ Ce , let ηe(f) : = lima→∞ 1/2a
∫ a
−adx f(x) ; which then extends by

continuity to C , so as to give an invariant mean, which is the one I will prefer to
use in the sequel. One may wish to define similarly the mean η+ on C+ = {f ∈ C |
limx→∞ f(x) exists } . And, similarly, another mean η− obtains from the functions
that admit a limit as x→ −∞ .

To define averages of states and of observables, notice that for every state ϕ
on the algebra A of quasi-local observables and any A,B ∈ A , the functions
ϕ(ν•[A]B) : a ∈ G → ϕ(νa[A]B) ∈ |C — here the symbol • serves as a reminder
to mark the place of the variable a — are continuous and bounded, namely by
‖A‖ ‖B‖. Thus the functions ϕ(ν•[A]B) belong to C. When B = I we write simply
ϕ(ν•[A]) for ϕ(ν•[A]I) . With these notations, the following definition makes sense.

DEFINITION 22. Given an invariant mean η on C and any state ϕ on the algebra
A of quasi-local observables, the average η[ϕ] of the state ϕ is defined as the
translation invariant state

η[ϕ] : A ∈ A → η (ϕ(ν•[A])) ∈ |C .

A translation invariant state ϕ is said to be η−clustering whenever

∀A,B ∈ A : η (ϕ(ν•[A]B)) = ϕ(A)ϕ(B) .

Warnings concerning terminology:

1. η−clustering is also referred to as “weak clustering”.

2. η−clustering should not be confused with the stronger property called “weak
mixing”, namely

∀A,B ∈ A : η |ϕ(ν•[A]B) − ϕ(A)ϕ(B)| = 0
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where for any complex number z , |z| denotes absolute value of z . The name
“weak mixing” conforms to the usage in classical ergodic theory, cf. e.g.
[Arnold and Avez, 1968, p. 21].

3. The property simply called clustering does not involve averaging, and thus
is stronger; it is:

∀ a ∈ IRn and ∀A,B ∈ A : lim
λ→∞

ϕ(νλa[A]B) = ϕ(A)ϕ(B) .

This property is called “mixing” in classical ergodic theory, cf. e.g. [Arnold
and Avez, 1968, p. 20].

4. An even stronger property is introduced in definition 27 below.

5. Each of the above properties expresses how much the correlations between
νa[A] and B decay with large distances |a| when the system is in the state ϕ .
The term “clustering” affixed to these properties, also used in QFT, seems
to be inherited from scattering theory where it expresses the asymptotic
independence of separate scattering products, or “clusters”.

The definition of the average of an observable is a little bit more involved. For
the general mathematical framework, cf. e.g. [Emch, 1972a, subsection 2.2.d];
in particular, for the general statements and proofs corresponding to scholium
23 and theorem 25 below, cf. [Emch, 1972a, lemma, pp. 174–175] and [Emch,
1972a, theorem 8, pp. 183–184]. Note that, here, the asymptotic abelianness
of the action of the group of space translations — corollary 19 above — allows
the simpler presentation offered below. This is where global observables — cf.
definition 15 above — enter the picture.

Let ϕ be a translation invariant state on the algebra A of quasi–local observ-
ables, and {πϕ,H,Φ} be the GNS triple associated to ϕ . Let further Nϕ = πϕ(A)′′

and Zϕ = Nϕ ∩N ′
ϕ .

For a ∈ G fixed, and A running over A , the map πϕ(A)Φ ∈ H → πϕ(νa[A])Φ ∈
H extends uniquely to a unitary operator Ua ∈ U(H) : = {U ∈ B(H) | U∗U =
UU∗ = I} . This defines a continuous unitary representation U : a ∈ G → Ua ∈
U(H) such that ∀ (a,A) ∈ G×A : Uaπϕ(A)U∗

a = πϕ(νa[A]) .
As usual, let U(G)′ := {B ∈ B(H) | ∀ a ∈ G : UaB = BUa} denote the com-

mutant of U(G) . Equivalently here, U(G)′ = {B ∈ B(H) | ∀ a ∈ G : UaBU∗
a =

B} .
Finally, let P : = {Ψ ∈ H | ∀ a ∈ G : UaΨ = Ψ } ; and denote by P the

orthogonal projector from H onto P .

SCHOLIUM 23. For every invariant mean η on C , the map

ηϕ : A ∈ A → ηϕ[A] ∈ Zϕ ∩ U(G)′

defined, for all A ∈ A by

∀ Ψ1,Ψ2 ∈ H : (Ψ1, ηϕ[A]Ψ2) = η (Ψ1, πϕ(ν•[A])Ψ2)
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is a ∗−homomorphism and satisfies ηϕ[A]P = P ηϕ[A] = P ηϕ[A]P .

DEFINITION 24. Let η be an invariant mean on C ; ϕ be a translation invariant
state on the algebra A of quasi-local obervables; Nϕ = πϕ(A)′′ be the algebra of
global observables associated to the state ϕ , via the GNS triple {πϕ,H,Φ} ; and
NG
ϕ = {N ∈ Nϕ | ∀ a ∈ G : UaNU∗

a = N} be the algebra of translation invariant
global observables. Then the average of a quasi-local observable A ∈ A is defined
as the translation invariant global observable ηϕ[A] ∈ NG

ϕ .

We are now ready to enunciate the central quantum ergodic theorem relative
to the action of the group of space translations.

THEOREM 25. Let ν : a ∈ G→ Aut(A) denote the action of the space-translation
group on the algebra A of quasi-local observables; and let η be any invariant mean
on C . Then the following conditions on a translation invariant state ϕ on A are
equivalent:

1. ϕ is extremal translation invariant;

2. ϕ is η−clustering, i.e. ∀A,B ∈ A : η (ϕ(ν•[A]B)) = ϕ(A)ϕ(B) ;

3. the canonical extension ϕ̃ : N ∈ Nϕ → (Φ, N Φ) ∈ |C of ϕ to the von Neu-
mann algebra Nϕ of global observables associated to ϕ is the only translation
invariant normal state on this algebra;

4. the invariant subspace P ⊂ H is one-dimensional;

5. the average ηϕ[A] of every quasi-local observable A ∈ A is a multiple of the
identity, namely ηϕ[A] = ϕ(A) I ;

6. all translation invariant global observables N ∈ NG
ϕ

: = Nϕ ∩ U(G)′ are
multiples of the identity;

7. Zϕ ∩ U(G)′ = |C I where Zϕ := Nϕ ∩Nϕ′ .

REMARKS 26.

1. Recall that in definition 15 three kinds of observables were introduced.
The local observables relative to some finite region Λ are described in the
original von Neumann formalism [von Neumann, 1932c] where, typically,
AΛ = B(HΛ) , and HΛ = L2(Λ, dx) . Thus one refers to local observables as
self-adjoint elements of Ao = ∪Λ∈FAΛ . The quasi-local observables, defined
abstractly as observables that are norm-limits of local observables, pertain
to the microscopic description of many-body systems that are infinitely ex-
tended in space; section 5 below opens with three concrete QSP examples.
These ‘quasi-local’ observables belong to the C∗−algebra A =

nAo . Observ-
ables of the third kind, the global observables, appear at the macroscopic
level when bulk properties of matter are investigated; they belong to the
von Neumann algebra Nϕ : = πϕ(A)′′ obtained as the weak-closure of the
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GNS representation πϕ (of A) corresponding to a state ϕ (on A) specifically
obtained by a process called the thermodynamical limit, several examples of
which are discussed in the following sections.

Space averages are examples of such global observables. A concrete exam-
ple in ferromagnetism obtains with any one of the three components of the
magnetization. Observables of this third kind depend on the global state
of the system considered, thus reflecting the preparation of the system. For
instance, when the state is extremal translation invariant, these observables
are multiples of the identity operator — recall the equivalence of conditions
(1) and (5) in theorem 25 — hence their value is the same in all configura-
tions that differ only locally from the given state. Their assuming different
values in configurations that differ globally from one another serves as wit-
ness for the existence of different thermodynamical phases; cf. subsection
5.7.

2. A global state ϕ on A =
nAo with Ao =

⋃
Λ∈F AΛ is usually defined by

continuity from

(59) ∀Λ and ∀AΛ ∈ AΛ : ϕ(AΛ) = lim
|Ω|→∞,

Ω∈F,Ω⊇Λ

ϕΩ(AΛ)

where {ϕΩ|Ω ∈ F} is a consistent family of local states. The local states
are themselves defined with respect to some consistent boundary conditions;
e.g. periodic boundary conditions on every Λ . Hence, the global state ϕ
and thus the von Neumann algebra Nϕ : = πϕ(A)′′ of global observables
may depend on the boundary conditions one has chosen. This happens in
particular in the presence of the long-range order that often accompanies
the onset of phase transitions. This dependence on initial conditions, even
in the thermodynamical limit, is an ubiquitous phenomenon, known already
in classical statistical physics.

Indeed, in an argument that was later confirmed to be correct — for refer-
ences, cf. e.g. [Emch and Liu, 2002, pp. 416–417] — Peierls [1936] pointed
out the fact that the Ising model in two dimensions develops, for sufficiently
low temperatures, a sensitivity to boundary conditions: one phase — say
the one with strictly positive magnetization — may be selected by clamping
all spins on the boundary in the “up” position.

3. Here again, in the special case where {N , ϕ} is {L∞(Ω), µ} , the above the-
orem reduces to the known classical case. Note however that the theorem
is stated here for space translations rather than for the time evolution; the
reason is that the proof uses asymptotic abelianness which space translations
satisfy — see corollary 19 above — or some weakened form such as (61) in
remark 31 below. Yet, even such a weakened form of asymptotic abelianness
is hard to come by for the time evolution of quantum dynamical models.
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The clustering condition (2) in the theorem may be strengthened when the rep-
resentation πϕ is primary, i.e. when the center Zϕ : = πϕ(A)′′ ∩ πϕ(A)′ satisfies
Zϕ = |CI . Specifically, for any region Λ ∈ F , let

AΛ
c :=

n∪Ω∈F ;Ω��ΛAΩ ,

where, for any subset B ⊂ A ,
nB denotes the closure of B in the norm-topology

of A . As a consequence of locality A ∈ AΛ and B ∈ AΛ
c entail AB − BA = 0 .

Let now Nϕ,Λc := πϕ(AΛ
c)′′ .

DEFINITION 27. A state ϕ on the algebra A of quasi-local observables is said to
be uniformly clustering whenever for any A ∈ A and every ε > 0 , there exists a
region Λ ∈ F depending on A and ε , such that

(60) ∀B ∈ AΛ
c : |ϕ(AB)− ϕ(A)ϕ(B)| ≤ ε ‖B‖ .

DEFINITION 28. The elements of the von Neumann algebraNϕ∞ :=
⋂

Λ∈F Nϕ,Λc
are called observables at infinity with respect to ϕ .

SCHOLIUM 29. For each state ϕ separately, the observables at infinity are central,
i.e. Nϕ∞ ⊆ Zϕ . Moreover the following two conditions on a state ϕ are equivalent:

1. all observables at infinity are multiples of the identity operator, i.e. Nϕ∞ =
|C I ;

2. ϕ is uniformly clustering.

Note that definitions 27, 28 and scholium 29 do not require that ϕ be space-
translation invariant, although they involve in an essential manner the local struc-
ture of A . For space-translation invariant states one has in addition:

COROLLARY 30. The following two conditions:

1. ϕ is a translation invariant state on the algebra A of quasi-local observables;

2. the algebra Nϕ of global observables is a factor, i.e. Zϕ = |C I

jointly entail that

a. ϕ is extremal translation invariant (and so satisfies the equivalent conditions
noted in theorem 25);

b. ϕ is uniformly clustering.

REMARKS 31.

1. Condition (2) in corollary 30 is satisfied whenever ϕ is an extremal KMS
state; cf. subsection 5.6 below.

2. The proofs of theorem 25, scholium 29, and corollary 30 are not trivial, but
they were all known by the early 1970s; cf. e.g. [Emch, 1972a, theorem II.2.8
and theorem IV.1.7].
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3. In particular, the proof of theorem 25 shows that the equivalence of its seven
conditions may be obtained in more general contexts where the action of the
group of space translations is replaced by an action with respect to which
the invariant state ϕ satisfies the condition of η−abelianness, namely the
condition:

(61) ∀A,B,C ∈ A : η {ϕ(C∗[νg[A]B −Bνg[A]]C)} = 0 .

This condition is much weaker that the norm-asymptotic abelianness proven
in corollary 19 for the action of the translation group.

4. It is therefore tempting to try and transfer the above considerations to the
group IR governing the time evolution of a quantum dynamical system. In
fact if ϕ is an extremal IR−invariant state, then such a dynamical system
will be η−abelian in the sense of (61), provided the vector Φ of the GNS
representation — which, by construction, is cyclic for πϕ(A) — is also cyclic
for the von Neumann algebra πϕ(A)′ , a condition equivalent to the require-
ment that Φ be separating for the von Neumann algebra Nϕ := πϕ(A)′′ , i.e.
N ∈ Nϕ and NΦ = 0 entail N = 0 . The condition that a von Neumann
algebra N admits a vector Φ that is cyclic for both N and N ′ is referred
to by saying that this von Neumann algebra is in standard form; for the
relevance of this condition in the present context cf. definition 36 and theo-
rem 39 below. This however only raises again the question of whether ϕ is
extremal under the evolution responsible for the approach to equilibrium. In
this respect, we may note that this is the case for the dilated evolution in the
example of a chain of weakly coupled harmonic oscillators, discussed at the
beginning of this subsection, and in general for the evolution α of generalized
Kolmogorov flows; cf. definition 17; see nevertheless the “warning” following
remark 18, or subsection 5.4(B).

5. On the mathematical side, quantum ergodic theory may be concerned with
group actions more general than space or time translations. In fact, the-
orem 25 and the third remark just above extend without modifications to
the actions of amenable groups, i.e. groups G that admit an invariant mean
in the sense of definition 21 (where G = IRn or Z

n is replaced by G) . For a
general presentation of the theory of amenable groups, cf. e.g. [Greenleaf,
1969] or for a brief review geared to applications in QSP [Emch, 1972a, pp.
164–172]. Restricting attention here to locally compact groups, let it suf-
fice to note that compact groups, abelian groups, and semi-direct products
thereof are amenable; in particular the rotation groups, translation groups,
and Euclidean groups in finite-dimensional Euclidean spaces are amenable.
However, no non-compact semi-simple Lie group is amenable, so that in par-
ticular the Lorentz group of 4-dimensional relativisitic QFT is not amenable.

6. Pushing the theory even further than amenable group actions may be done
by considering “large groups of automorphisms” of a C∗−algebra A , i.e.
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actions α : G → Aut(A) that satisfy for every self-adjoint A ∈ A and every
G−invariant state ϕ on A :

(62) w−opco{πϕ(αg[A]) | g ∈ G} ∩ πϕ(A)′ �= ∅ ,

where for any subset S of a vector space, co{S} denotes the “convex hull” of
S , i.e. the collection of all convex combinations of elements in S ; and for any
set B ⊂ B(H) , w−opB denotes the closure of B in the weak-operator topology
of B(H) . The notion of large group of automorphisms was introduced by
Størmer in 1967 who used it soon afterwards to prove a quantum analogue of
de Finetti’s exchangeability theorem in classical probability theory [Størmer,
1969]; for a review and some applications to the semantic foundations of
quantum theory, cf. e.g. [Emch, 2005] and references therein. Note that any
amenable group action for which the system is η−abelian for some mean η
is a large group of automorphisms for this system.

Here again, one can hardly resist the conclusion that quantum ergodic theory
is now a mature mathematical theory in search of further physical applications to
QSP, most notably through the understanding it provides for the various clustering
(or mixing) properties described in the present section; cf. e.g. subsections 5.4
and 5.7 below.

4 THE KMS CONDITION FOR EQUILIBRIUM

The identification of the KMS condition as a canonical characterization of equi-
librium states appears in the confluence of two currents of thought.

The first source is the recognition by Kubo [1957] and by Martin & Schwinger
[1959] that objects which play a central role in condensed matter physics, namely
the so-called thermal Green functions — cf. e.g. [Bonch-Bruevich and Tyablikov,
1962] — possess remarkable analytic properties. For a foretaste, see scholium 32
below.

The second source of inspiration is recognizable in the original texts [Murray
and von Neumann, 1936] of what was to become the theory of von Neumann
algebras, and is emphasized in the candid reminiscences of one of the pioneers
of this theory [Murray, 1990]. A great deal of the theory could be built from
the following observation: there are matrix algebras N which, together with their
commutant N ′ , satisfy the following properties:

(i) they are factors, i.e. have trivial center: N ∩N ′ = |CI ; (ii) N and N ′ admit
a common cyclic vector Φ ; (iii) there exists an involutive antiunitary operator J
such that JΦ = Φ and N ∈ N → JNJ ∈ N ′ is bijective. For a concrete, simple
example, see equation (71) below.

Each of the two facets of the theory — analytic and algebraic — involves some
mathematical intricacies; hence the division of this section into two subsections:
first, a simple example; and second, the general theory.
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4.1 A Wignerian Approach

In this subsection, I wish to abide by Wigner’s famous dictum [Wigner, 1962]:
“Please explain it with 2 × 2 matrices.” Accordingly I proceed with the descrip-
tion of what happens to a quantum 1/2−spin in canonical equilibrium at natural
temperature β > 0 in a magnetic field B parallel to the z-axis. The observables are
the self-adjoint elements of the algebraM of 2× 2 matrices with complex entries.
The Hamiltonian is

(63) H = −Bσz =
(

ε1 0
0 ε2

)
with ε1 = −B , ε2 = +B.

The canonical equilibrium state is, according to von Neumann’s characterization
(38):

(64) ψH : M ∈M→ Tr(ρHM) with ρH =
(

λ1 0
0 λ2

)

where λn = ZH
−1 exp(−βεn) , with ZH = exp(−βε1) + exp(−βε2) denoting the

partition function of the system.
In the Heisenberg picture, conjugate to Schrödinger’s picture (39), the evolution

is

(65)

αt : M ∈M→ αt[M ] = U∗(t)MU∗(−t) ∈M

with U∗(t) =
(

eiε1t 0
0 eiβε2t

)
.




To make computations easier and, moreover, immediately generalizable to higher
dimensions, consider the matrices

Emn : Ψ ∈ |C2 → (Ψn,Ψ)Ψm ∈ |C2

where {Ψn | n = 1, 2} are eigenvectors of H , i.e. with

Ψ1 =
(

1
0

)
; Ψ2 =

(
0
1

)
:

E11 =
(

1 0
0 0

)
; E12 =

(
0 1
0 0

)
; E21 =

(
0 0
1 0

)
; E22 =

(
0 0
0 1

)
.

These matrices form a basis in M and — with ψH and αt as in (64) and (65) —
satisfy

EklEmn = δlmEkn , ψH(Emn) = λmδmn , αt(Emn) = ei(εm−εn)tEmn .

From these relations and the identity exp[−β(εm− εn)]λn = λm , one obtains that
the analytic functions

fklmn : z ∈ |C→ λn ei(εm−εn)zδlmδkn
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satisfy ∀ t ∈ IR : fklmn(t) = ψH(Eklαt[Emn]) and fklmn(t+iβ) = ψH(αt[Emn]Ekl) .
Moreover, on the strip

Ωβ := {z ∈ |C | 0 ≤ Im z ≤ β} ,
the analytic functions fklmn are bounded, namely by exp(|εm − εn|β) .

These two properties of the canonical equilibrium state ψH extend by linearity
to the time correlation functions

(66) fMN (t) = ψH(Mαt[N ]) and fMN (t + iβ) = ψH(αt[N ]M)

with M and N arbitrary inM .
Conversely, suppose that ϕ is a state on M such that for every pair M,N of

elements in M there exists a function fM,N : z ∈ Ωβ → fM,N (z) ∈ |C such that

(i) fM,N is bounded and continuous on the strip Ωβ ;

(ii) fM,N is analytic inside that strip;

(iii) for all t ∈ IR : fM,N (t) = ϕ(Mαt[N ]) and fM,N (t + iβ) = ϕ(αt[N ]M) .

Then in particular, with M = I , the function fI,N is periodic with period iβ . It
may then be extended to a function that is both bounded and analytic on the whole
complex plane. The classical Liouville’s theorem — cf. e.g. [Churchill and Brown,
1990, theorem 43.1] — thus entails that this function must be constant, i.e. for all
(t,N) ∈ IR×M : ϕ(αt[N ]) := Tr U∗(−t)ρU∗(t)N is equal to TrρN = ϕ(N) ; and
thus

ρ =
(

µ1 0
0 µ2

)
where the values of µ1 , µ2 positive with µ1+µ2 = 1 are computed presently. Upon
comparing, for every pair of indices (m,n) the analytic continuation of

fmn(t) = ϕ(Enmαt[Emn]) = ei(εm−εn)tµn

and
fmn(t + iβ) = ϕ(αt[Emn]Enm) = ei(εm−εn)tµm

one obtains exp[−β(εm− εn)]µm = µn and thus, upon imposing the normalization
ϕ(I) = 1 , i.e. µ1 + µ2 = 1 :

µn =
e−βµn

e−βµ1 + e−βµ2
= λn .

Thus, indeed ϕ = ψH .
In summary, one obtained by elementary means an elementary illustration of

the first facet of the theory, its analytic aspect:

SCHOLIUM 32. Let H = −Bσz be the Hamiltonian describing a spin 1
2 in a

magnetic field B . Then, for any state ϕ onM =M(2, |C) , the following conditions
are equivalent:
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(I) ϕ is the canonical equilibrium state ψH with respect to the Hamiltonian H ;

(II) for every pair (M,N) of elements of M there exists a function fM,N : z ∈
Ωβ → |C such that

(67)

fM,N is bounded and continuous on Ωβ ;
fM,N is analytic in the interior of Ωβ ;

∀ t ∈ IR :
{

fM,N (t) = ϕ(M αt[N ])
fM,N (t + iβ) = ϕ(αt[N ]M)


 .

Moving now towards the algebraic aspect of the theory, one pursues with the
same simple model, and let ϕ be a faithful state overM , i.e. a state such that M ∈
M and ϕ(M∗M) = 0 entail M = 0 . Without loss of generality one may choose a
basis in which the density matrix ρ corresponding to ϕ is diagonal, with eigenvalues
λn (n = 1, 2) strictly positive since ϕ is supposed to be faithful. Consider the
representation π of M given by:

(68) ∀M =
(

a b
c d

)
∈M : π(M) =




a b 0 0
c d 0 0
0 0 a b
0 0 c d


 = M ⊗ I

acting on the Hilbert space |C4 equipped with its standard scalar product in which
Ψkl defined by

Ψ11 =




1
0
0
0


 , Ψ21 =




0
1
0
0


 , Ψ12 =




0
0
1
0


 , Ψ22 =




0
0
0
1




is an orthonormal basis. The vector

(69) Φ =
∑
k

λk
1
2 Ψkk =




λ1
1
2

0
0

λ2
1
2




satisfies Ψmn = λn
1
2 π(Emn)Φ , from which one reads:

|C4 = {π(M)Φ |M ∈M} and ∀M ∈M : (Φ, π(M)Φ) = ϕ(M) .

Hence {H : = |C4, π,Φ} is the canonical GNS triple associated to the state ϕ .
Moreover, since ϕ is assumed to be faithful, ‖π(M)Φ‖ = 0 entails M = 0 , i.e. Φ is
also separating for π(M) . The essential step now is to introduce the two operators
J and ∆ defined on H by the conditions that J is antilinear, ∆ is linear, with

JΨmn = Ψnm and ∆Ψmn =
λm
λn

Ψmn .
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Note that, since ∆ is given here with its spectral resolution, the functions of this
operator may be defined by linearity from f(∆) : Ψmn ∈ |C4 → f(λm

λn
)Ψmn ∈ |C4 .

In particular, {∆is|s ∈ IR} is a continuous group of unitary operators acting on
|C4 .

One verifies immediately from their definition above that the operators J and
∆ satisfy the following properties. Firstly,

(70) J is an isometry , J2 = I , ∆ is self−adjoint , J∆J = ∆−1 , JΦ = Φ =
∆Φ .

Secondly,

(71) J




a b 0 0
c d 0 0
0 0 a b
0 0 c d


 J =




a∗ 0 b∗ 0
0 a∗ 0 b∗

c∗ 0 d∗ 0
0 c∗ 0 d∗


 ∈ I ⊗M

i.e. upon denoting by N the image π(M) of M through the representation π ,
we have: J N J = N ′ ; hence (71) gives an explicit bijection from N onto its
commutant N ′ . The relation (71) is a particular case of the general Tomita–
Takesaki duality (see theorem 39 below).

Thirdly, with β > 0 arbitrary, but fixed, we have ∀ t ∈ IR : ∆−it/β Ψmn =
exp[i(εm−εn)t] Ψmn . Hence ∆−it/βπ(Emn)∆it/βΨkl = exp[i(εm−εn)t]π(Emn)Ψkl

with εn = c− (1/β) ln λn where c is an arbitrary real constant. Consequently, the
unitary group {∆it/β | t ∈ IR} implements a group of automorphisms ofN , namely

(72) τt : N ∈ N → τt[N ] = ∆−it/βN∆it/β ∈ N
with, for all (t,M) ∈ IR × M , τt[π(M)] = π(αt[M ]) with αt[M ] = expiHt M
exp−iHt and H =

∑
n εnEnn . Summing up, this establishes that ϕ is the canon-

ical equilibrium state at natural temperature β for the Hamiltonian H just con-
structed.

Fourthly, the operator S = J∆
1
2 satisfies S π(Emn)Φ = π(Enm)Φ and thus,

since J and therefore S are antilinear:

(73) ∀N ∈ N : S N Φ = N∗ Φ .

Finally, the generator L of the unitary group {∆it/β | t ∈ T} on |C4 = |C2⊗ |C2 is

(74) L = H ⊗ I − I ⊗H ,

so that the spectrum of L is symmetric around 0 : Sp(L) = {ε2− ε1, 0, 0, ε1− ε2} .
SCHOLIUM 33. Let {|C4, π,Φ} be the GNS triple canonically associated to a
faithful state ϕ on the algebraM of 2×2 matrices; and let N be the von Neumann
algebra π(M) = {π(M) |M ∈M} acting on H = |C4 . Then

1. N is isomorphic to M and ϕ may be regarded as a faithful state on N ;



Quantum Statistical Physics 1119

2. Φ is both cyclic and separating for N ;

3. the anti-linear operator defined by S : NΦ ∈ H = N∗Φ ∈ H has polar
decomposition S = J∆

1
2 where J is an involutive, anti-linear isometry from

H onto itself, and ∆ is a positive operator acting on H ;

4. J establishes a duality between N and its commutant; specifically: N ∈
N → JNJ ∈ N ′ is an anti-linear bijection;

5. {∆−it/β | t ∈ IR} implements a group of automorphisms τt of N with respect
to which the state ϕ satisfies the analyticity condition described in scholium
32;

6. JΦ = Φ = ∆Φ , J2 = J and ∀ s ∈ IR : J∆is = ∆isJ .

REMARKS 34. Upon surveying the proofs of scholia 32 and 33, one verifies that
they can be extended verbatim from M = M(2, |C) to M = M(n, |C) where n is
any finite positive integer. These scholia extend further toM = B(H) where H is
a Hilbert space (with countable basis) provided that:

(i) the Hamiltonian H satisfies Tr(−βH) <∞ ;

(ii) the state ϕ is countably additive, retaining the condition that ϕ be faithful.

Indeed, under these circumstances one can read again the proofs of the scholia,
now for the ∗−algebra E = Span{π(Emn) | m,n = 1, . . .} of all finite linear
combinations of the operators π(Emn) with Emn : Ψ ∈ H → (Ψn,Ψ)Ψm ∈ H
where again {Ψn | n = 1, 2, . . .} is an orthonormal basis in H . The extension
from E to the von Neumann algebra B(H) obtains since the assumptions that ϕ
is countably additive and faithful allow one to use standard continuity arguments,
namely here, e.g. [Dixmier, 1957, theorem I.3.5, lemma I.4.4, proposition I.4.1];
or [Kadison and Ringrose, 1983/1986, volume ii, chapter 7]. In particular, N =
π(B(H)) = {π(M) | M ∈ B(H)} is already a von Neumann algebra — i.e. N =
N ′′ — and is isomorphic to B(H) . Since B(H) is a factor, so is N , i.e. the
center of this von Neumann algebra is trivial: N ∩N ′ = |CI . Moreover N may be
identified with B(H)⊗ |CI and N ′ with |CI ⊗ B(H) .

The von Neumann formalism for quantum mechanics [von Neumann, 1932c]
allows one to go this far, but no further. Recall that some of the reasons why one
needs to proceed further were indicated in subsection 3.3. The next subsection
provides an important tool toward achieving this.

4.2 The Kubo–Martin–Schwinger condition and the Tomita–Takesaki
theory

The above results suggest three definitions; the first two are just matters of math-
ematical terminology, but the third is at the heart of this section.
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DEFINITION 35. A state ϕ on a von Neumann algebra N is said to be normal
whenever it is countably additive., i.e. ϕ(

∑
n Pn) =

∑
n ϕ(Pn) for each countable

family {Pn} of mutually orthogonal projections in N .

This simply extends to general von Neumann algebras condition (35), already
recognized in [von Neumann, 1932c] as the quantum analogue of the complete
additivity of probability measures. The next definition formalizes in the present
context some of the notions encountered in the motivating examples covered in
the previous subsection.

DEFINITION 36. A von Neumann algebra N acting on a Hilbert space H is said
to be in standard form whenever there exists a vector Φ ∈ H that is both cyclic
and separating for N , i.e. NΦ is norm dense in H and for N ∈ N , NΦ = 0 entails
N = 0 .

REMARKS 37. This concept has been around for a long time, but it seems fair
to say that full recognition of its central importance in the general theory of von
Neumann algebras had to wait for the Tomita–Takesaki modular theory [Tomita,
1967; Takesaki, 1970a]. At the most basic level, notice that if N is in standard
form, one may assume without loss of generality that ‖Φ‖ = 1 , so that ϕ : N ∈
N → (Φ, NΦ) ∈ |C is a faithful normal state on N .

Conversely it follows, from the same continuity arguments as those used in
remark 34 above, that if ϕ is any normal state on a von Neumann algebra N , the
GNS representation π corresponding to ϕ is already a von Neumann algebra; if ϕ
is faithful, then N is isomorphic to π(N ) . Thus the canonical GNS vector Φ is not
only cyclic, but it is also separating. Hence whenever ϕ is a faithful normal state,
N is isomorphic to π(N ) which is a von Neumann algebra presented in standard
form

The third definition pertains to the core of this section. It is an adaptation of
the work of [Kubo, 1957; Martin and Schwinger, 1959], proposed by [Haag et al.,
1967] as an extension of the definition of canonical equilibrium states on the global
C∗−algebra to be associated to an infinite system.

DEFINITION 38. Let A be a C∗−algebra, and let α : t ∈ IR→ αt ∈ Aut(A) be a
group of automorphisms of A . A state ϕ on A is said to satisfy the KMS condition
with respect to α for the natural temperature β if for every pair (A,B) of elements
of A there exists a function fA,B defined on the strip Ωβ = {z ∈ |C | 0 ≤ Imz ≤ β} ,
such that fA,B is bounded and continuous on Ωβ ; fA,B is analytic in the interior
of Ωβ ; and ∀ t ∈ IR : fA,B(t) = ϕ(Aαt[B]) and fA,B(t + iβ) = ϕ(αt[B]A) .

The main mathematical result of this section, taken from the Tomita–Takesaki
modular theory [Tomita, 1967; Takesaki, 1970a], may now be stated.

THEOREM 39 (Tomita–Takesaki). Let N be a von Neumann algebra acting on
a Hilbert space H and admitting a cyclic and separating unit vector Φ . Then the
closed antilinear operator S obtained as the closure of the map N Φ → N∗ Φ ,
defined for all N ∈ N , has polar decomposition S = J∆ where J = J2 is an
antilinear isometry from H onto itself, satisfying JNJ = N ′ ; and ∆ is a self-
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adjoint operator (not necessarily bounded!) that is positive, and such that J∆it =
∆itJ ; and for any β > 0 ∀(t,N) ∈ IR × N : τt[N ] = ∆−it/β N ∆it/β defines a
group {τt} of ∗−automorphisms of N with respect to which the faithful normal
state ϕ : N ∈ N → (Φ, N Φ) ∈ |C satisfies the KMS condition for β . Moreover
{τt | t ∈ IR} is the unique group of ∗−automorphisms of N with respect to which
ϕ satisfies this condition.

REMARKS 40.

1. The theorem generalizes to any arbitrary von Neumann algebra in standard
form the result we described — in remark 34 — for the GNS representation
of B(H) associated to any of its faithful normal states.

2. It is essential to the purpose of the present review to emphasize that the
theorem does not require that N be a factor.

3. Whereas the theorem asserts that the dynamics τ is uniquely determined by
the KMS condition, the converse is not true: when N is not a factor, there
exist other normal states on N that also satisfy the KMS condition with
respect to the same dynamics. Indeed, when N is not a factor, one verifies
that for every Z �= 0 that belongs to the center Z = N ∩N ′ , ψ : N ∈ N →
[ϕ(Z∗Z)]−1ϕ(Z∗NZ) defines a normal state that again satisfies the KMS
condition with respect to τ for the same β . This remark, the proof of which
will be given in subsection 5.6, is essential to the arguments presented in
subsection 5.7.

4. Beyond its mathematical attractiveness, the legitimacy of the conjecture that
the KMS condition may be regarded as a definition of canonical equilibrium
states in the QSP of macroscopic systems will also be discussed in the next
section.

5. Finally, mathematical probity requires us to mention that — factor or not
— a major difficulty in the proof of theorem 39 resides in showing that the
map N Φ → N∗ Φ is closable; for the resolution of this problem, cf. the
original papers [Tomita, 1967; Takesaki, 1970a]; it is probably fair to warn
the reader that even the didactic presentation in [Kadison and Ringrose,
1983/1986, chapter 9] would have carried us beyond the bounds of this es-
say. To convey nevertheless an idea of the structures involved in the theorem,
I resorted therefore to presenting first the models covered in the preliminary
scholia 32 and 33, as these could be treated with mathematically elementary
tools. The drawback was however that these models, as well as their routine
extensions from M(2, |C) to B(H) described in remark 34, only involve fac-
tors, in fact faithful representations of B(H) , that are not sufficient to cover
the macroscopic purposes of QSP where infinitely many degrees of freedom
are brought to play. As Haag, Hugenholtz, and Winnink [1967] correctly
envisaged, it is the generality involved in theorem 39 that is actually needed
in physical applications. The temporal coincidence of this physical intuition
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and the arrival on the scene of the mathematical theory of Tomita–Takesaki
[1967; 1970a] is a truly remarkable event vividly recounted in [Kadison, 1990,
pp. 77–79].

5 KMS CONDITION, QSP AND THERMODYNAMICS

This section presents some of the evidences supporting the physical interpreta-
tion of the KMS condition proposed in [Haag et al., 1967] as an alternative
definition of equilibrium states in QSP. We already saw that for finite systems
the KMS condition is satisfied by the canonical equilibrium states of von Neu-
mann, and only by those states. Now, in subsections 5.1–5.3 models are described
to show how the modular structures invented and developed by [Tomita, 1967;
Takesaki, 1970a] — which we saw (cf. scholium 33) are realized in finite sys-
tems in canonical equilibrium — are also encountered in the equilibrium QSP of
infinite systems, thus allowing one to go beyond von Neumann’s formalism [von
Neumann, 1932c]. In subsection 5.4 various stability conditions are exhibited that
give a thermodynamical characterization of KMS states in QSP. A brief excursion
is undertaken in subsection 5.5 to indicate some vistas toward the recognition of
the role the KMS condition has later been called to play in relativistic QFT, a role
dubbed “revolutionary” by the practitioners. Subsection 5.6 is a mathematical
interlude devoted to the algebraic characterization of extremal KMS states. When
we return to QSP in subsection 5.7, systems that exhibit phase transitions are con-
sidered and the unique decomposition of any canonical equilibrium state into its
pure thermodynamical phases is shown to be closely modeled by a unique decom-
position of KMS states into extremal KMS states. In particular, this subsection is
oriented toward substantiating the overarching idea that the KMS condition pro-
vides the thermodynamics of infinite systems with a conceptual scheme in which
phase transitions occur accompanied by spontaneous symmetry breakdown.

5.1 Beyond Fock space: The BCS model

The first indication that something was amiss in the use of the von Neumann for-
malism in QSP was the Bardeen–Cooper–Schrieffer model for superconductivity,
the BCS model. Indeed, in the original treatment of this model [Bardeen et al.,
1957], the Hamiltonian chosen to describe a specific interaction between the elec-
trons in a finite but large metallic solid is invariant under gauge transformations
of the first kind; an approximation is then proposed, which is asserted to become
exact in the infinite volume limit; in this formal process however this symmetry
is lost; moreover, the spectrum of the resulting Hamiltonian presents an energy
gap that is temperature–dependent. One might argue that the experimentalist
may not wish to be concerned with the breaking of that symmetry, but the energy
gap cannot be ignored: experimentalists do measure it in the laboratory. Thus,
mathematical physicists thought that they ought to understand — how or rather
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whether — the Hamiltonian itself may indeed depend on the temperature. Within
five years, the culprit was found by Haag [1962] to be that the whole treatment
was allegedly carried out in a fixed irreducible representation of the CCR, the then
ubiquitous Fock representation, and that this constraint was doing violence to the
model.

Specifically, the original Hamiltonian is

(75) HΛ =
∑
p,s

ε(p)as(p)∗as(p) +
∑
p,q

b(p)∗ṽ(p, q)b(q)

where Λ is the region of space in which the system is contained, typically a cubic
box of finite volume |Λ| ; p and q label momentum and are integer multiples of
2π|Λ|− 1

2 ; s = ± 1
2 ; as(p)∗ and as(p) are the creation and annihilation operators

for an electron of spin s and momentum p ; ε(p) = −µ+ 1
2p2/2m is the energy of a

free electron of momentum p ; b(p)∗ = a↑(p)∗a↓(−p)∗ is the creation operator of a
so-called Cooper pair; and b(p)∗ṽ(p, q)b(q) is the interaction energy between two
Cooper pairs, i.e. four electrons, so that the Hamiltonian (75) is not quadratic in
the original field operators. The form of ṽ(p, q) will be discussed later on.

The approximating Hamiltonian is

(76) H̃Λ =
∑
p,s

E(p)γs(p)∗γs(p)

where γs(p)∗ and γs(p) are the creation and annihilation operators for the elemen-
tary excitations given by a Bogoliubov–Valatin transformation

(77)
γ↑(p) = u(p)a↑(p) + v(p)a↓(−p)∗

γ↓(p) = −v(−p)a↑(−p)∗ + u(−p)a↓(p)

}

where

(78)
E(p) = {ε(p)2 + [∆(p)∆(p)∗]} 1

2

D(p) = {[E(p)− ε]2 + [∆(p)∆(p)∗]} 1
2

;
u(p) = ∆(p)∗/D(p)
v(p) = [E(p)− ε(p)]/D(p)

and ∆ satisfies the all-important self-consistency equation

(79) ∆(p) = −
∑
q

ṽ(p, q)
∆(q)
2E(q)

tanh
(

1
2
βE(q)

)
.

Clearly ∆ = 0 is always a solution, in which case the spectra of H and H̃ coincide;
this is the normal phase in which nothing particularly interesting happens. The
essence of the model is that there is a critical temperature Tc (recall β = 1/kT )
below which an energetically more favorable solution ∆ �= 0 develops. This cor-
responds to the superconducting phase. We henceforth pursue the discussion for
0 < T < Tc .

This is the phase we are interested in, and it may be useful to recall in physical
terms what the physicists first saw in (76)–(79). BCS devised a limiting procedure
— involving the thermodynamical limit and a “mean-field approximation” (weak,
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but very long range interaction) — by which the original Hamiltonian (75) and the
new Hamiltonian (76) become interchangeable in the sense that they are claimed
to lead to the same limit. While (75) is expressed in terms of the electrons’ creation
and annhilation operators as(p) ; the new Hamiltonian (76) is free in terms of the
elementary excitations γs(p) . The energy spectrum of these excitations is {E(p)}
and differs — see (78) — from the energy spectrum {ε(p)} of the free electrons by a
temperature-dependent “gap” which is observable in the laboratory; the numerical
results so obtained for this gap are in very good agreement with the prediction
(79); cf. [Schrieffer, 1974, Figure 1–3].

The mathematical picture however demands some explanation. Indeed: (i) the
initial Hamiltonian (75) is invariant under the gauge symmetry defined, for any
θ ∈ (0, 2π] by as(p)→ exp(iθ)as(p) whereas the Hamiltonian (76) is not; and (ii)
the energy spectrum {E(p)} of the Hamiltonian (76) is temperature dependent,
whereas there is no temperature dependence in (75).

The question therefore is to account for how one could possibly claim — as was
done in the prevailing folklore — that such an approximation could become exact
in the thermodynamical limit. For this, one has to examine where ∆ comes from,
namely that ∆(p) is a scalar multiple of the identity operator, to be viewed as
an approximation of the operator ∆̂(p) =

∑
q ṽ(p, q)b(q) . The argument for this

is based on the remark that, under suitable assumptions on ṽ , one can arrange
for the limit |Λ| → ∞ of ∆̂(p) to exist — in the weak-operator topology — and
to commute with all the creation and annihilation operators as(q)∗ and as(q)
which generate an algebra which is tacitly assumed to be irreducible. In this
limit, the operator ∆(p) would be replaced by a scalar multiple of the identity.
Some “suitable” assumptions seemed to be achieved when ṽ is the double Fourier
transform

ṽ(p, q) =
∫

Λ

dxdyf(p, x)v(x, y)f(q, y)∗ where f(p, x) =
{ |Λ|− 1

2 eipx x ∈ Λ
0 x /∈ Λ

with a nonlocal potential v such that v(x, y)∗ = v(y, x) , c =
∫

dxdy|v(x, y)| <∞
and

∑
q |ṽ(p, q)| <∞ , so that limΛ→∞ |ṽ(p, q)| = 0 and |ṽ(p, q)| ≤ c/|Λ| .

The practitioner will recognize here an approximation of the mean molecular
field type, a heuristic tool introduced, during the first ten years of the twentieth
century, by P. Weiss and L.S. Ornstein in the classical theory of phase transitions.
Yet, the approximation is not acceptable here without some further discussion
since it leads to the paradoxes already mentioned.

We are now in a position to recognize Haag’s seminal contribution [Haag, 1962]:
the tacit assumption of the irreducibility of the representation of the field algebra
is untenable. Giving up this assumption allows one to resolve the paradoxes: ∆
and hence the coefficients u and v in the Bogoliubov–Valatin transformation (77)
— rather than being multiples of the identity — now belong to the non-trivial
center Z of the representation canonically associated by the GNS construction
corresponding to the equilibrium state of the system. The gauge group now acts
in a non-trivial manner on Z and thus restores the symmetry of the theory. And in
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the limit considered, the time-evolution is well defined as an automorphism group
of the von Neumann algebra generated by the representation. These technical
niceties have been succesively refined — and confirmed — in subsequent investiga-
tions, cf. e.g. [Emch and Guenin, 1966; Thirring and Wehrl, 1967; Thirring, 1968;
Dubin and Sewell, 1970; Sewell, 1982b].

5.2 Beyond Fock space: The Bose gas

Even before the modular structures were formally recognized by mathematicians,
their first instantiation appeared in QSP. One can indeed discern these struc-
tures in the pioneering re-examination Araki and Woods [1963] made of the Bose–
Einstein model for an ideal quantum gas; for the original version of the model, cf.
subsection 2.4. The present subsection summarizes the principal aspects of the
Araki–Woods treatment.

The reader is assumed to be familiar with the definition of the Weyl form of
the canonical commutation relations (CCR) for a countably infinite number of
degrees of freedom, as a family {W (f) | f ∈ D(IR3)} of unitary operators acting
on the (boson) Fock space F : =

⊕∞
N=0

sHN and satisfying ∀ f, g ∈ D(IR3) :
W (f)W (g) = exp{−i Im(f, g)/2)} ; where D(IR3) is the space of all infinitely
differentiable functions f : IR3 → |C which have compact support; and sHN is the
symmetric N−fold tensor product of the one-particle space H1 = L2(IR3) with
itself; cf. e.g. [Emch, 1972a], or [Halvorson, 2006].

For the Bose gas at temperatures T > Tc where Tc is the critical temperature
found by Bose and Einstein, the GNS representation πg corresponding to the
gaseous normal phase — in the thermodynamical limit at fixed density ρ and
chemical activity z — is given as follows. The Hilbert space of the representation
πg may be identified with H = F ⊗F ; its cyclic vector is Φ = Φo ⊗Φo , where Φo
is the vacuum vector in F . Then

(80) πg[W (f)] = W (ζ+f)⊗W (Kζ−f)

where completeness demands that we specify that (ζ+f)˜(k) = [1+ρ(β, z; k)]
1
2 f̃(k) ,

and (ζ−f)˜(k) = [ρ(β, z; k)]
1
2 f̃(k) , (Kf)˜(k) = f̃(k)∗ ; ρ(β, z; k) = z[exp(βε(k)) −

z]−1 with ε(k) = |k|2/2m and z is determined by ρ and β through ρ = (2π)−3
∫

d3k
ρ(β, z; k) .

The von Neumann algebra Ng = {πg[W (f)] | f ∈ D(IR3)}′′ is a factor, the
commutant of which is Ng ′ = {νg[W (f)] | f ∈ D(IR3)}′ where

(81) νg[W (f)] = W (Kζ−f)⊗W (ζ+f) .

Note that νg also gives a representation of the Weyl CCR.
In what I believe was the first presentation of the programme proposed in [Haag

et al., 1967] to a wide audience of mainstream physicists, namely the huge IU-
PAP 1966 Copenhagen meeting on statistical mechanics, Winnink [Winnink, 1967]
started indeed with a summary of the above results. As the duality between the
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von Neumann algebra and its commutant is already a property of finite systems
— see scholium 33 and remark 34 above — Winnink’s emphasis was that this
property may persist in general for systems endowed with infinitely many degrees
of freedom, as is the case in this specific model — the Bose gas — where the
thermodynamical limit of canonical equilibrium is controlled. The emphasis on
dealing with infinite systems — also advocated in the lecture [Verboven, 1967]
preceding Winnink’s — raised eyebrows with many of the physicists in the Copen-
hagen audience, to wit: “Wouldn’t one think that, so to say, the motivation of
going to an infinite system would be to obtain simpler results than are obtained
for a finite system?” [Uhlenbeck, 1967]; or even more pointedly: “What does this
have to do with statistical mechanics?”[van Kampen, 1967]. The conjecture was
already floated that the formalism could be useful for an adequate description of
phase transitions, a conjecture I will examine in subsections 5.6 and 5.7.

In retrospect, it is quite remarkable that Araki and Woods [1963] had already
unearthed several features that were later placed in the context of the general the-
ory that was to be built on the subsequent work of Tomita and Takesaki [Tomita,
1967; Takesaki, 1970a] for the mathematical formalism and the work of Haag et
al. [1967] for its application to QSP. Among the results by Araki and Woods, one
may note that the von Neumann factor Ng they constructed for T > Tc is of type
III — a type of factor the existence of which was known, but for which examples
were then quite elusive even in the pure mathematics literature — and this was
the first occurrence of this type of factor in QSP, although their ubiquity was later
recognized all over in QSP and in QFT; and also in pure mathematics, but that
is another story. In addition, Araki and Woods established that the unitary op-
erators implementing time-evolution and space-translation on the von Neumann
algebra Ng do not belong to this algebra. They also discussed the representations
relative to the superfluid phase which occurs for temperatures 0 < T < Tc , and
they found that the associated GNS representation is an integral of factor rep-
resentations. Incidentally, they do mention that this points to a formal analogy
with the mathematical structure Haag found in his study of the BCS model; see
subsection 5.1 above.

5.3 The KMS condition and the Heisenberg model

The first proof that the KMS conditions themselves are actually satisfied in con-
crete infinite quantum systems was provided by Araki [1969] for a class of one-
dimensional quantum spin-lattice models which includes the archetypal model —
originally proposed by Heisenberg [1928] as a putative model for ferromagnetism
— defined by the local, so-called “exchange” Hamiltonian:

(82) HΛ = −J
b−1∑
k=a

σk · σk+1

where J is the coupling constant describing interactions of neighbouring quantum
spins σk = (σkx, σky, σkz) sitting on a regular, one-dimensional finite string Λ =
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[a, b] ⊂ Z1 ; and σk · σk+1 denotes σk
xσk+1

x + σk
yσk+1

y + σk
zσk+1

z .

The problem of determining whether this quantum model would support ferro-
magnetism in its thermodynamical limit — even in this one-dimensional version
— turned out to be much harder to handle than the classical Ising model where
only interactions Jσk

zσk+1
z are considered.

For the classical models, a method known as the transfer-matrix — and actually
proposed for the two-dimensional Ising model [Kramers and Wannier, 1941] —
allows one to treat the one–dimensional version of this classical model in a few lines
for nearest neighbour interactions, or even with strictly finite-range interactions,
i.e. when the interactions are strictly zero between spins that are further apart
than a finite distance (the same for all pairs). At the cost of quite some work
[Ruelle, 1968b], the method can be made to work for interactions that extend to
infinity, while decaying sufficently fast so as to have finite moment or so that the
surface energy has a bound independent of the volume.

As emphasized in some detail in [Emch, 1972b], even the nearest neighbour
quantum Heisenberg model requires an extension akin to the method used for
the infinite range classical case. Araki [1969] thus managed to control the ther-
modynamical limit ϕ of the canonical equilibrium state and its time correlation
functions well enough to establish that for all positive temperatures β > 0 , the
state ϕ satisfies the KMS condition; and that it is extremal with respect to this
condition — i.e. cannot be decomposed into a mixture of states satisfying the KMS
condition — and shows no spontaneous magnetization. Thus, while physicists —
with their understanding of the onset of collective behaviour in the classical case
— could anticipate that this quantum one-dimensional model would not exhibit
any ferromagnetic phase transition, Araki proves it.

The class of models for which Araki established the above results is strongly
dependent on the one-dimensionality of the “lattice” Z . Nevertheless, the proof
does not require that the interactions be isotropic, i.e. couplings between the
different components of the spins do not need to be the same in all directions.
Moreover the proof does not require that the interactions between the spins on
the lattice be restricted to nearest neighbours: in the original version of the proof,
it was only required that they vanish between spins that are further apart than
a fixed (but arbitrary) finite distance, but even this restriction has been relaxed
to cover the same range as the corresponding classical models. Finally, whereas
in the Heisenberg model the individual half-spins are described by copies of the
algebra M(2, |C) , the proof accommodates as well the cases where Ak �M(n, |C)
with n <∞ .

Hence Araki’s results support a conjecture that pure thermodynamical phases
may be described by extremal KMS states; see subsection 5.7 below for further
evidences.

It may be added that if, in addition, lattice translation invariance is built into
the theory through the local Hamiltonian HΛ , e.g. as in (82), then the limiting
KMS state ϕ is invariant under the group Z of the lattice translations, and — since
its GNS representation leads to a factor — ϕ is also extremal with respect to this
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condition, so that space-correlations between spins decay very fast as their distance
increases. Here, technically speaking, ϕ is exponentially, uniformly clustering in
space; i.e. for any quasi-local observable A ∈ Ao , there exist positive constants γ
and δ such that for all finite N and all B ∈ A Z\[−N,N ] : |ϕ(AB)− ϕ(A)ϕ(B)| ≤
δ ‖B‖ exp(−γN) .

Before leaving the Heisenberg model, note that in the case T = 0, it also offers
a very nice toy model for QFT; cf. e.g. [Streater, 1967].

5.4 The KMS condition and stability

The following five points summarize the KMS story I have told so far.

1. Von Neumann’s definition of quantum canonical states at finite temperature
is limited to finite systems; and this limitation renders cumbersome (at best)
the formalism’s application to QSP — see subsection 3.3.

2. For finite systems, the von Neumann equilibrium states are exactly those
that satisfy a formal analytic condition, the so-called KMS condition — see
subsection 4.1.

3. The KMS condition can be extended beyond the mathematical formalism
laid down by von Neumann — see subsection 4.2.

4. The KMS condition is satisfied in some concrete models of infinite systems for
states that have a reliable interpretation as temperature equilibrium states
— see subsections 5.2 and 5.3.

5. The KMS condition appears as well in a purely mathematical context, the
Tomita–Takesaki theory of modular algebras which turns out to be very
fertile; while the latter aspect of the story would carry us beyond the bounds
of this essay, some hints are briefly alluded to in see subsections 4.2 and 5.2.

Before the KMS theory could be deemed adequate as a physical theory, it ought to
meet at least two more concerns: (i) the formalism should allow the mathematical
description of quantum phenomena that escape the grip of von Neumann’s formal-
ism; (ii) the KMS states should be stable. Subsections 5.2 and 5.3 above indicate
how the first of these two concerns is met; further examples will be presented in
subsection 5.7. The present subsection addresses the second concern, as various
stability criteria — labeled A to E — are discussed. The order of the presentation
is to direct the reader’s attention to the progressive emergence of formulations
whereby KMS states are characterized in terms increasingly germane to those of
variational principles.

A. Cut-and-paste stability.
We begin with a model that is sufficiently simple to provide exact results support-
ing the expectation that a large system in a canonical equilibrium state should be
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able to serve as a thermal reservoir for “any” of its parts. The model is a vari-
ation on the theme of the so-called XY-model; this variation was proposed and
solved in [Emch and Radin, 1971]; further references will be given at the end of
this subsection.

The X-Y model itself — referred to below as the ‘un-partitioned system’ — is
a one-dimensional quantum spin-lattice gas with finite-range interactions. Specif-
ically, for any region Λ = {k ∈ Z | a ≤ k ≤ b} with −∞ < a + 1 < b < ∞ , the
Hamiltonian is

(83) H[a,b] = −
b−1∑
k=a

(1 + ζ)σkxσk+1
x + (1− ζ)σkyσk+1

y .

From the work of Araki — see subsection 5.3 above — we learned that the ther-
modynamical limit (as a → −∞ , b → ∞) of both of the following objects exists:
(i) the canonical equilibrium state ϕ[a,b] at any finite natural temperature β > 0
and (ii) the time-evolution α[a,b] ; and that the resulting state ϕ and evolution α
of the infinite system satisfy the KMS condition.

We now split the total system in two non-interacting parts: a finite region
to which we affix the subscript S , and an infinite region to which we affix the
subscript R , which is the complement of ΛS in Z , namely:

ΛS = [c, d] and ΛR = (−∞, c− 1] ∪ [d + 1,∞)

with −∞ < a < c− 1 ; c < d− 1 ; d + 1 < b <∞ .
This partitioned system can be viewed as the thermodynamical limit of a finite

system with Hamiltonian:

(84) H̃[a,b] = H[a,c−1] + H[c,d] + H[d+1,b] .

Clearly the C∗−algebras for both the original system and the partitioned system
are the same, namely the C∗−inductive limit A : = ⊗k∈ ZAk where the Ak are
copies of the algebra M(2, |C) of the 2 × 2 matrices with complex entries. Thus
A = AS ⊗AR where AS := ⊗k∈ΛS

Ak and AR := ⊗k∈ΛR
Ak .

Again, as for the original (un-partitioned) system, the thermodynamical limit
of the canonical equilibrium state and of the evolution of the partitioned system,
defined from (84), do exist and satisfy the KMS condition; they are denoted here
by ϕ̃ and α̃ .

Note that ϕ and ϕ̃ are different. For instance, ϕ is invariant with respect to
translations along the chain, while ϕ̃ is not. Nevertheless, a first stability property
of this model is established in [Emch and Radin, 1971], namely:

(85) ∀A ∈ A : lim
|t|→∞

ϕ̃(αt[A]) = ϕ(A) .

Hence, as the full evolution α unfolds, the correlations between S and R that were
cut by the partitioning are re-established: the partition is erased.

Moreover, let ϕ̃S denote the restriction of ϕ̃ to AS ; and similarly for R; one
has ϕ̃ = ϕ̃S ⊗ ϕ̃R . The evolution α̃ preserves the partitioning, namely ∀A ∈
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AS [resp.AR] : α̃t[A] ∈ AS [resp.AR] . Hence, we have α̃ = α̃S ⊗ α̃R ; i.e. the two
systems evolve independently. Again the KMS conditions are satisfied for S and
R separately.

After this partitioning, let us now change the temperatures of S and R so
that (i) ϕ̃S,βS

is the canonical equilibrium on AS at some temperature βS with
respect to the evolution α̃S ; and similarly (ii) with βR (possibly different from
βS) for ϕ̃R,βR

(w.r.t α̃R) on AR . Let thus ϕ̃S,βS
⊗ ϕ̃R,βR

be the initial state of
the partitioned system; and denote by ϕβ the canonical equilibrium on the whole
system, at temperature β with respect to the original interacting evolution α .
Then, the following is proven [Emch and Radin, 1971] for all βS , βR > 0 and for
all A ∈ A :

(86) lim
|t|→∞

ϕ̃S,βS
⊗ ϕ̃R,βR

(αt[A]) = ϕβ(A) with β = βR .

Hence the name ‘cut-and-paste stability’. The system is first partitioned in two
parts, a finite system S surrounded by an infinite system R that do not interact
with one another: the interactions across the boundaries [i.e. between the sites c−1
and c ; and between the sites d and d + 1 ] have been ‘cut’. In this configuration,
the finite system S and the infinite system R are separately put at (different)
temperatures βS and βR . When these systems are ‘pasted’ back together, one
finds that the joint evolution drives the full system S ∪ R to a temperature β
which has to be the temperature at which R was initially, namely β = βR . In this
sense, R serves as a thermal reservoir for S .

The special property of the model responsible for this result is that it satisfies
a remarkable condition which I now describe.

Let γ be the automorphism of A uniquely determined by

(87) ∀ k ∈ Z :




γ[σkz] = σk
z

γ[σkx] = − σk
x

γ[σky] = − σk
y

.

Note in particular that the original Hamiltonian H[a,b] and the cut Hamitonian
H̃[a,b] belong to the even algebra Ae := {A ∈ A | γ[A] = A} . This entails that in
the thermodynamical limit ϕ ◦ γ = ϕ and γ ◦ α ◦ γ = α ; and similarly for all the
corresponding objects obtained after the partitioning. In particular, the evolution
preserves the even algebra, i.e. ∀ (t, A) ∈ IR×Ae : αt[A] ∈ Ae .

Now, the special property of the model can be explicitly stated:

(88) ∀A,B ∈ Ae : lim
|t|→∞

‖Aαt[B]− αt[B]A‖ = 0 ;

i.e. the evolution, when restricted to the even observables of the model, is strongly
asymptotically abelian.

The proof — and an immediate generalization — of (86) above is a direct
consequence of quantum ergodic theory (see subsection 3.5). First, one notices that
ϕ is uniformly clustering in space, i.e. for every ε > 0 and every A ∈ A there exists
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a finite region Λ such that for every B outside this region |ϕ(AB)−ϕ(A)ϕ(B)| ≤
ε‖B‖ . This entails that the KMS state ϕ is extremal with respect to this condition,
i.e. cannot be decomposed into a convex combination of other KMS states; see
subsection 5.6 below, and in particular definition 57. These properties are inherited
by the restriction ϕe of ϕ to the even algbra Ae . The asymptotic abelianness of
the evolution then implies [Araki and Miyata, 1968] that the state ϕe is not only
time-invariant — as we know every KMS state must be — but it is also extremal
with respect to this condition, i.e. cannot be decomposed into other time-invariant
states, which is to say that ϕe cannot be written as ϕe = λψe + (1 − λ)χe with
0 < λ < 1 and ψe, χe time-invariant, unless ψe = χe = ϕe .

Since ϕ,ϕe, ϕ̃S , ϕ̃R are even, one looses no information by carrying out the proof
of (85) and (86) in Ae ; in particular, (88) implies the existence of the point-wise
limit of (ϕS ⊗ϕR) ◦αt in the LHS of (86); then the above argument shows that it
must coincide with ϕ.

Note further that what is proven in [Emch and Radin, 1971] is in fact a stronger
result, which implies (86) and thus (85) as particular cases, namely that for all
even states ψS of the system S :

(89) ∀A ∈ A : lim
|t|→∞

ψS ⊗ ϕ̃R(αt[A]) = ϕβ(A)

which therefore reinforces the ‘cut-and-paste stability’ interpretation proposed im-
mediately after equation (86).

This result may be further generalized in two ways. First, the restriction that
ψS in (89) be an even state can be dispensed with; cf. [Araki and Barouch, 1982].
Second, as was already noticed in [Emch and Radin, 1971], an ergodic or averaged
version of (89), specifically, with η denoting an invariant mean on the group IR :

(90) ∀A ∈ A : η{ψS ⊗ ϕ̃R(α[A])} = ϕβ(A)

obtains [Emch and Radin, 1971], even if only a weaker version of (88) holds, namely
the condition of η−asymptotic abelianness (60), i.e.

(91) ∀A,B,C ∈ Ae : η{ϕ(C∗ [Aα[B]− α[B]A]C)} = 0 .

Depending on one’s intellectual temperament, either the general argument pre-
sented earlier, or the specific model just reviewed, raises the question of whether
the KMS condition could be derived from some general stability argument. This
question is addressed from several angles in (B)–(E) below.

The model presented above was discussed again in [Robinson, 1973]; see also
[Araki and Barouch, 1982] and references therein. It belongs to a long line of
inquiries that started as attempts to derive Newton’s cooling law from first prin-
ciples; related problems are usually understood under the generic label ‘return to
equilibrium’. As of this writing, the latest comprehensive entry on the subject may
be [Bach et al., 2000] where a wealth of “novel technical devices” are brought to
bear; the reader will also find there an informative sample of the large literature on
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the subject. In a broad sense, several — but not all — of the criteria of stability in
this subsection also address this perennial problem of return to equilibrium from
small or local deviations. Its ubiquity however should not overshadow two other
important and largely unsolved problems; cf. subsection .6.4 below.

B. Stability against local perturbations.
Various conditions of asymptotic abelianness were investigated by Kastler et al.
For a summary, see [Kastler, 1976] which also offers a annotated bibliography. For
their main stability theorem, they settled on the notions described in definitons
41 and 42 below.

DEFINITION 41. Let A be a C∗−algebra. An evolution α : IR→ Aut(A) is said
to be L1− asymptotically abelian on a norm dense ∗−subalgebra Ao ⊂ A when

∀ (t, A) ∈ IR×Ao : αt[A] ∈ Ao ;

and

∀A,B ∈ Ao :
∫ +∞

−∞
dt ‖B αt[A]− αt[A]B‖ <∞ .

Some preliminary notations are required for Definition 42 below. With A and α
as in definition 41 let Asa = {A ∈ A | A = A∗} , and let S be the set of all states
on A , equipped with its weak topology. For ϕ ∈ S and an element h ∈ Asa with
ϕ(h2) > 0 , define

(i) the perturbed state ϕh by ϕh : A ∈ A → 1
ϕ(h2) ϕ(hAh) ∈ A ;

(ii) the perturbed evolution {αht | t ∈ IR} by αht : A ∈ A → Uh
t αt[A]Uh

t
∗

where {Uh
t | t ∈ IR} satisfies the so-called ‘co-cycle differential equation’

(the derivative is w.r.t. the norm-topology)

∀ t ∈ IR : i d
dtU

h
t = Uh

tαt[h] with initial condition Uh
o = I .

To understand the sense in which αh may be viewed as the perturbed evolution cor-
responding to h , note that the above co-cycle equation admits a unique continuous
solution t ∈ IR → Uh

t ∈ A ; it can be computed explicitly as the norm-convergent
Dyson series:

Uh
t =

∞∑
n=0

Ch
t,n with Ch

t,n = (−i)n
∫ t

o

dtn

∫ tn

o

dtn−1 . . .

∫ t2

o

dt1αt1 [h] . . . αtn [h].

This solution satisfies: (i) Uh
t unitary, and

(ii) ∀ s, t ∈ IR : Uh
s+t = Uh

s αs[Uh
t] .

Consequently, the evolution defined as {αht | t ∈ IR} is a group of automorphisms
of A with, in particular:

∀ s, t ∈ IR : αhs+t = αhs ◦ αht .
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The interpretation of αh as the evolution resulting from the perturbation of α by
the operator h obtains from the following relation between the generators of αh

and α :

i
d

dt
αht
∣∣
t=0

= i
d

dt
αt
∣∣
t=0

+ δh with δh : A ∈ A → [h,A] := hA−Ah ∈ A .

DEFINITION 42. With the above notations, an α−invariant state ϕ on A is
said to be stable against inner perturbations, whenever there is a neighbourhood
Vϕ ⊂ S of ϕ such that ∀A ∈ A , and ∀h ∈ Asa with ϕh ∈ Vϕ :

1. ∀ t ∈ IR : ϕh(αht[A]) = ϕh(A) ;

2. with λ ∈ IR : limλ→0 ϕλh(A) = ϕ(A) ;

3. limt→∞ ϕh(αt[A]) = ϕ(A) .

THEOREM 43. With A , Ao and α as in definition 41, assume that α is L1−
asymptotically abelian on Ao . Let ϕ be an α−invariant state on A and assume
that ϕ is stable against inner perturbations in the sense of definition 42. Then
— under three ancillary conditions to be discussed below — ϕ satisfies the KMS
condition with respect to α for some natural temperature β .

REMARKS 44. The ancillary conditions of the theorem are sketched in the three
entries below.

1. The state ϕ is assumed not to be a trace, i.e. there exist A,B ∈ A such that
ϕ(AB) �= ϕ(BA) . This is meant to avoid the classical circumstance that
would arise in the limit of infinite temperature, i.e. β = 0 , i.e. T =∞ .

2. In the GNS representation canonically associated to ϕ , the generator of the
unitary group U(IR) that implements α(IR) is assumed not to be one-sided.
This is meant to avoid the opposite circumstance where ϕ would be a zero-
temperature ground state, i.e. β =∞ , i.e. T = 0 .

3. The state ϕ is assumed to be hyperclustering of order 4 on the ∗−subalgebra
Ao . This technical condition requires the following to hold: for every positive
integer p ≤ 4 and all A1, . . . , Ap ∈ Ao , there exist positive constants C and
δ such that

(92) ∀ t1, . . . , tp ∈ R : ϕTp (αt1 [A1] · · ·αtp [Ap]) ≤ C { 1+max |tk− tl|1+δ }−1

where the truncated correlations ϕTp are defined recursively by 0 = ϕTo ,

ϕ(A) = ϕT1 (A) and ϕ(A1, . . . , Ap) =
∑
P ϕTn1

(Ak1 , . . . , Akn1
) . . . ϕTnj

(Aq1 ,
. . . , Aqnj

) and the sum carries over all order-preserving partitions of S =
{1, 2, . . . , p} in subsets Sj ⊆ S satisfying the following conditions: S =
∪jSj , j �= k ⇒ Sj ∩ Sk = ∅ , and within each Sj = {k1, k2, . . . , knj

} :
k1 < k2 < . . . < knj

. The reader will verify immediately that ϕ(A1, A2) =



1134 Gérard G. Emch

ϕT2 (A1, A2) + ϕT1 (A1)ϕT1 (A2) , and then realize that the recursion relation
explains better what is going on with higher truncated correlations than
writing explicitly the summations over P .

Note that the ϕTp provide a hierarchy where all correlations of lower order
already have been taken into account. In particular in the case of the CCR,
a remarkable result of Robinson [Robinson, 1965] shows that either this
hierachy goes up indefinitely or, if the truncated ϕTn vanish for all n ≥ N
with N > 2 , then they must vanish for all n > 2 .

The concept of truncated ϕTn is not a stranger. It comes to us as a quan-
tum cousin of the “cumulants” of classical probability theory and of the
“Ursell functions” of classical statistical mechanics. The classical equivalent
of Robinson’s theorem gives a characterization of the Gaussian distribution,
which translates in quantum statistics as yet another characterization of
the canonical equilibrium state of an assembly of free harmonic oscillators.
Robinson’s theorem thus gives a foretaste of why it is so difficult to produce
and/or control models of QFT and QSP that are not “quasi-free”.

To sum up, the third ancillary condition of the theorem aims to convey that
in the course of time all time-correlations of order p ≤ 4 are to decay rapidly
enough for long time separations.

The investigations by Kastler et al. reported above appear to be systematically
predicated on conditions of time-asymptotic abelianness (definition 41) and time-
hyperclustering (remark 44(3)). Thus compare these with any of the conditions
encountered in sections 3 and 4; the latter are naturally satisfied for space trans-
lations, but in constructing specific models, even these conditions are extremely
difficult to impose straight on the microscopic dynamics, i.e. on the Hamiltonian
that is to describe the time evolution. Whether this is an intrinsic shortcoming
of the theory behind theorem 43 above, or an indication of some lack of either
imagination or technical dexterity on the part of model builders remains open at
this stage. Nevertheless, it appears that one weak form of asymptotic abelian-
ness is not only sufficient but also necessary when one wants to identify, among
KMS states, those that are merely extremal with respect to this condition, from
those that are, moreover, extremal with respect to time-invariance; cf. e.g. [Emch,
1972a, corollary 2, p. 206]; or remark 63(6) below. Here again, reminiscences from
the perennial ergodic dreams in classical statistical Hamiltonian mechanics would
incline some to hope that such an identification could perhaps be in the cards.
As I have recognized in several other parts of this essay, my crystal ball remains
clouded on this issue.

C. Thermal reservoir stability.
Consider the intuitive idea that a system R may be construed as a “thermal reser-
voir” at temperature β , if it drives suitably devised test systems S to equilibrium
at temperature β when they are coupled to R . Kossakowski et al. [1977] proposed
to formalize this idea in the following manner; see also [Sewell, 2002, pp. 114–116].
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For a concrete motivation, compare the specific XY-model described in part A of
this subsection.

To model situations where one expects that R ought to be very much larger
than S in order to exclude feedbacks from the test system S onto the reservoir R,
one assumes that R is infinite and S is finite.

The putative reservoir R is described by a triple {AR, αR, ϕR} where AR is
a C∗−algebra; αR is an evolution group of automorphisms of AR ; and ϕR is a
state on AR , invariant under the evolution αR . Denote by δR := i ddtα

R
t

∣∣
t=o

the
generator of the evolution αR . Some ancillary conditions on R will be specified
later.

The test system S is a dynamical system in the sense of von Neumann, i.e. is
described by: {AS , αS , ϕSβ} where AS = B(H) ; αS is the evolution generated by a
Hamiltonian HS such that for all temperatures β > 0 , Z := Tr exp(−βHS) <∞ ;
and ϕS is given by

(93) ϕSβ (AS) = Tr ρSβ AS with ρSβ = Z−1e−βH
S

.

δS = i [HS , · ] will denote the generator of αS . Finally, SS will denote the set of
all countably additive states on AS .

A family {αλ | λ ≥ 0} of dynamical couplings between R and S is described by
groups of automorphisms on A = AR⊗AS , the generator of which is of the form:

(94) δλ = δR ⊗ I + I ⊗ δS + λδV where
δV : A ∈ A → i λ[V , A] ∈ A , with V ∈ Asa

}
.

As the ancillary conditions on R are specified, so will be the form of V ; see (97)
and (98) below.

The next step in the modeling is devised to emphasize the sense in which the
long-time cumulative effects on S of the evolution αλ are accounted for when R
and S are coupled. For this Kossakowski et al. [1977] appeal to the so-called
van Hove limit, an instance of which already appeared in subsection 3.5; see also
remark 45 below. For the system at hand here, the van Hove limit takes the
following form. First, it considers only a reduced evolution, namely only what
the system S experiences of the total evolution; mathematically this reduction is
achieved by E : A → AS , the conditional expectation defined, for all AS ⊗ AR ,
by E[AS ⊗ AR] = AS ϕR(AR) , and then extended by linearity and continuity to
A . Secondly, the van Hove limit requires to focus on a long-time/weak-coupling
regime defined by rescaling time with an inverse power of the interaction strength.
Thus, the van Hove limiting procedure consists here in proving that the following
limit exists for all positive ‘rescaled’ times s :

(95) γSs : AS ∈ AS → lim
λ→0 ; t→∞
s=λ2 t

αS−t ◦ E ◦ αλt [AS ] ∈ AS .

REMARKS 45. This type of limit has a long history. I learned it first from
van Hove [van Hove, 1955] where the author had proposed it as a tool to relate
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macroscopic transport phenomena to the microscopic dynamics that is expected
to underlie them. It emphasizes that in such discussions time ought to be rescaled
in a way determined by the strength λ of the interaction. Some justifications for
taking such a limit will be discussed in subsection 6.1 below.

Finally, given two C∗− algebras A and B , and n a non-negative integer, one
says that a map γ : A → B is n-positive whenever it is linear, and the induced
map γn : A ⊗M(n, |C) → B ⊗M(n, |C) is positive, i.e. the image of any positive
element in A⊗M(n, |C) is a positive element in B⊗M(n, |C) . When either A or B
is abelian, a positive map is necessarily n−positive; hence n−positivity is a notion
new to the non-commutative context of QSP. Furthermore, a map is said to be
completely positive whenever it is n−positive for all n ∈ Z

+ . In connection with
expressions like the right-hand side of (95) above, note that the composition of
completely positive maps is again completely positive; and that automorphisms,
states, injections and conditional expectations are completely positive maps. A
collection {γs | s ∈ IR+} of maps of A into itself is said to form a semi-group
whenever γo is the identity map, and ∀ (s, t) ∈ IR+ × IR+ : γs+t = γs ◦ γt .

This should exhaust the list of general preliminaries necessary to describe the
stability criterion proposed by Kossakowski et al. [1977], namely:

DEFINITION 46. A system {AR, αR, ϕR} is said to be a thermal reservoir at
temperature β whenever there is a “large enough” collection Tβ of test systems
{AS , αS , ϕSβ} and dynamical couplings {αλ} such that

1. the van Hove limit (95) exists, and defines a semi-group of completely positive
transformations {γSs | s ∈ IR+} of AS ;

2. the canonical von Neumann equilibrium state ϕSβ on AS is the only state
ϕ ∈ SS that is invariant under both αS and γS ;

(96) 3 . ∀ (ψS , AS) ∈ SS⊗AS : lim
s→∞ ψS (γSs [AS ]) = ϕSβ (AS) .

The term “large enough” in the above definition admittedly needs to be made
more precise: this is where the ancillary conditions on the interaction V and the
reservoir R enter the picture and allow one to prove scholium 47 and theorem 48
below.

One condition is that the interaction V in (94) be of the form

(97) V =
n∑
k=1

BR
k ⊗BS

k with




n is finite
BR
k ∈ ARsa and ϕR(BR

k ) = 0
BS
k ∈ ASsa


 .

Note that the conditional expectation E[V ] of V vanishes.
An additional condition is that there exists ARo ⊆ AR such that: (i) Span{ARo ∪

I} (where I is the identity in AR ) is norm dense in AR ; (ii) for all BR
k ∈ ARo ,

the functions t → ϕR(BR
j αRt [BR

k ]) are in L1 ; and (iii) the multi-time truncated
correlations, for the state ϕR to be tested, satisfy
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(98) t1 < . . . < tl with |tj − tk| → ∞ ⇒ {ϕR}T (αRt1 [B
R
t1 ] · · · αRtn [BR

tn ]) → 0.

Upon taking advantage of [Davies, 1974, theorem 2.3], the following results were
obtained in [Kossakowski et al., 1977]:

SCHOLIUM 47. These ancillary conditions are sufficient to imply that condition
(1) in definition 46 is satisfied for all finite S .

This ensures that the collection Tβ of test systems will indeed be large enough.

THEOREM 48. When the circumstances just outlined are realized, the following
conditions are equivalent:

1. for some temperature β , the state ϕR is a KMS state on AR with respect to
the evolution αR ;

2. the system R, in the state ϕR , is a thermal reservoir for temperature β in
the sense of definition 46 with “large enough” sharpened by scholium 47.

REMARKS 49.

1. Hence, every test system S in Tβ is driven to equilibrium at temperature
β by the reservoir R exactly when ϕR satisfies the KMS condition for this
temperature.

2. As mentioned before, this result is largely model-independent, and does not
involve, at least explicitly, any assumption of time asymptotic abelianness.
Moreover, instead of a single model for which one can prove that a special
infinite system in equilibrium serves as thermal reservoir for each of its finite
parts, the present theorem characterizes a collection Tβ of test systems S
for which the infinite system R serves as a thermal reservoir. Thus, the
theorem is an improvement on the particular motivating model discussed in
paragraph A above.

3. Yet, as [Kossakowski et al., 1977] noticed, the decay of multi-time correla-
tions (98) that enables their proposal to work is reminiscent of the similar
conditions imposed by Kastler et al. in their result on stability against local
perturbations; see (92) in paragraph B above.

4. From an empirical point of view, the theorem may be regarded as specifying
a procedure to lift the notion of temperature in equilibrium QSP from finite
systems to infinite systems.

5. Nevertheless, it must be noted that the circumstances under which γS is
known to satisfy condition (1) of definition 46 and the decay of correlations
in (98) do appear to involve some clustering properties that may limit the
domain of applicability of the theorem to cases where πϕ(AR)′′ is a factor,
and where ϕR is extremal under both the KMS condition and the condition
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of time-invariance. Hence, asymptotic abelianness enters less conspiciously
here.

D. Passivity.
In [Pusz and Woronowicz, 1978] the authors noticed a property of KMS states
which they called passivity; and they found ways to show that this property in
turn entails the KMS property under assumptions that do not involve asymptotic
abelianness in time.

Specifically, let {A, ϕ, α} be a dynamical system where A is a C∗−algebra, ϕ
be a state on A , and {αt | t ∈ R} is a one-parameter group of automorphisms of
A . Let then D(δ) denote the domain of the generator δ of the evolution α , i.e.
D(δ) is the linear subspace of all A ∈ A such that the derivative δ[A] := i ddtαt[A]
exists.

Consider now the situation obtained by letting this system interact during a
finite time-interval with an outside system, so that the effect of their interaction on
the system of interest may be assumed to be described as the perturbed dynamics
αh satisfying the differential equations:

(99) ∀A ∈ D(δ) :




i ddtα
h
t[A] = αht[δ[A] + [ht, A]]

αht=0[A] = A

where h is an element of C1
+(IR,Asa) , the set of all continuously differentiable

functions, with compact support in IR+ and taking their values in the self-adjoint
part of A . The system is thus an open system for all times t in the support of h ,
i.e. for all times when the perturbation h is actually in effect. The condition that
the support of h be compact and contained in IR+ ensures that, for all times T >
sup {t ∈ IR |ht �= 0} , the external conditons are as they were at time t = 0 . The
smoothness condition h ∈ C1 on the time-dependence of the external pertubation
is a mathematical convenience that is physically reasonable. Then

(100) LhT (ϕ) :=
∫ T

o

dt ϕ(αht [
d

dt
ht])

describes the energy transmitted to the system in the time interval [0, T] during
which the system was under the influence of the external perturbation h .

DEFINITION 50. The state ϕ is said to be passive if for all h ∈ C1
+(R,Asa) and

all T > sup {t ∈ IR |ht �= 0} : LhT (ϕ) ≥ 0.

Upon having advanced this definition, Pusz and Woronowicz [1978] proved the
following result:

THEOREM 51. Let {A, ϕ, α} be a C∗− dynamical system, and consider the fol-
lowing conditions: (I) ϕ is either a KMS state with respect to α for some temper-
ature β > 0; or is a ground state; and (II) ϕ is passive in the sense of definition
50. Then:

1. Without further assumptions: (I)⇒ (II) .
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2. If furthermore: (i) A admits an action ν : G → Aut(A) where G is a
locally compact amenable group; (ii) ν commutes with the evolution α, i.e.
∀ (t, g) ∈ R×G : νg ◦αt = αt ◦νg ; and (iii) ϕ is η−clustering with respect to
the action of G . Then these conditions, taken together, entail (II)⇒ (I) .

REMARKS 52. The following remarks focus on part (2) of the theorem, i.e. the
operational characterization of KMS states as passive.

1. In the passivity condition (II), ϕ has not been assumed to be invariant under
the unperturbed evolution α ; in part (2) this property obtains as ϕ is proven
to satisfy the KMS condition.

2. The condition that ν commutes with α is natural in view of the conclusion
to be obtained: if an automorphism leaves invariant a KMS state, then it
must commute with the evolution with respect to which this state is KMS.

3. Invariant means and amenable groups were introduced in subsection 3.5; see
in particular definition 21 and remark 31(5).

4. Among the ancillary assumptions listed in (2), it is not even necessary to
impose as a precondition that ϕ be G−invariant; this follows from the explicit
assumption that it is η−clustering, i.e. (see definition 22):

∀ A , B ∈ A : ηG (ϕ(νg[A]B)) = ϕ(A)ϕ(B) .

Actually, this condition entails furthermore that ϕ cannot be decomposed in
a convex combination of other G−invariant states.

5. In QSP, the natural candidate for G is the group of translations in space.
Hence, in contrast with the stability conditions studied earlier, the assumed
clustering property does not need to be with respect to time. This allows
us to consider systems for which the evolution is not asymptotically abelian.
This opening is significant when it comes to concrete modeling for the pur-
poses of QSP: one may not wish to have to identify the weak-clustering with
respect to the group {νg | g ∈ G} and any putative clustering with respect
to the evolution {αt | t ∈ IR} .

6. In addition, Pusz and Woronowicz [Pusz and Woronowicz, 1978] propose
an alternative route, replacing all the ancillary conditions in part (2) of
the theorem by a strengthened form of passivity. Specifically, instead of
considering a single dynamical system, they consider, for every positive
integer, identical non-interacting copies {Ak, ϕk, αk | k = 1, . . . , N} from
which one constructs the collective dynamical system {AN , ϕN , αN} where
{AN = ⊗Nk=1Ak , ϕN = ⊗Nk=1ϕk , and αN = ⊗Nk=1αk }. The perturbation
h however is allowed to be a general element in C1

+(IR,AN ) , so that αh is
allowed not to act independently on each of the component systems. Then
ϕ is said to be completely passive whenever for every positive integer N the
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state ϕN is passive. Now, without further ado — i.e. without having to
impose condition (2) in theorem 51 — the complete passivity of ϕ can be
proven to be equivalent to the condition that ϕ satisfy the KMS condition.
For QSP, the choice between the condition of complete passivity or condition
(2) in the theorem, is largely a question of taste.

E. Thermodynamical stability.
To close this subsection, I wish to indicate how the concept of thermodynamical
stability gives rise to yet another characterization of KMS states, this one without
restriction on whether the states considered are to be extremal with respect to
the KMS condition. To avoid technicalities, I present these considerations in the
simplest case, namely where the system is a quantum spin-lattice and thus is
described by a C∗−algebra A = ⊗k∈ Zd Ak where the Ak are copies of a finite
matrix algebra, say M(n,C) , with n and d finite. Throughout Λ ⊂ Z

d denotes
a connected finite subset of the lattice Z

d ; ϕ denotes a state on A ; ϕΛ denotes
the restriction of ϕ to the finite matrix algebra AΛ = ⊗k∈ΛAk ; and ρΛ is the
density matrix corresponding to ϕΛ . Furthermore it is convenient to assume here
that the dynamics obtains from short-range — or possibly suitably tempered —
interactions between the sites. The reader interested in how far the considerations
presented below may be pursued will find a review in [Sewell, 2002]; among the
original papers, let it suffice to mention for orientation purposes [Araki, 1974;
Araki and Sewell, 1977; Sewell, 1977; Sewell, 1980b; Ruelle, 1968a; Robinson, 1971;
Araki and Moriya, 2002].

A version of the second law of thermodynamics — compare with the equivalent
form of the variational principle defined immediately after theorem 3 — defines
the local free-energy relative to Λ at natural temperature β = 1/kT as:

FΛ,β(ϕ) = EΛ(ϕ)− T SΛ(ϕ) with




EΛ(ϕ) = ϕΛ(HΛ)

SΛ(ϕ) = −k Tr ρΛ log ρΛ

.

Two states ψ and ϕ on A are said to satisfy the equivalence relation Λo∼ whenever
they coincide outside the finite region Λo . We then write ψ ∼ ϕ whenever there
exists Λo such that ψ

Λo∼ ϕ . For the quantum lattice considered here, one can then
prove that the following limit exists

(101) ∀ψ ∼ ϕ : ∆Fβ(ψ |ϕ) := lim
Λ↑ Zd

(FΛ,β(ψ)− FΛ,β(ϕ)) .

For the order of the arguments ψ and ϕ in ∆Fβ recall that mathematicians (and
some philosophers) read from right to left, while most physicists seem to read from
left to right. Thus, ∆Fβ(ψ |ϕ) , as written above, represents the increment of free-
energy when passing from the state ϕ to any state ψ that differs from ϕ only in a
finite region. Araki and Sewell [Araki and Sewell, 1977; Sewell, 1977] introduced
the following definition and prove the following result; see also [Sewell, 1980b;
Sewell, 2002].
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DEFINITION 53. With ∆Fβ(ϕ |ψ) as in (101), a state ϕ on A is said to be locally
thermodynamically stable at natural temperature β whenever

∀ψ ∼ ϕ : ∆Fβ(ψ |ϕ) ≥ 0 .

Hence, to require that this stability condition be satisfied is indeed a variational
principle: the free-energy of the state ϕ cannot be reduced by going to a state ψ
that differs from ϕ only locally.

THEOREM 54. For a state ϕ on a quantum lattice system of the type considered
here, the following conditions are equivalent:

1. ϕ satisfies the KMS condition at natural temperature β ;

2. ϕ is locally thermodynamically stable at natural temperature β .

REMARKS 55.

1. This result involves in an essential manner the local structure of the system
considered, namely that the global algebra A is the C∗−inductive limit of
local algebras AΛ relative to bounded regions of space, where the indexing
net F := {Λ} is absorbing, i.e. — recall subsection 3.4, part I — for every
point x in space, there is a bounded region Λ ∈ F such that x ∈ Λ . An
alternative version is requiring that for every bounded region Ω of space
there exists some Λ ∈ F such that Ω ⊆ Λ ; both versions are acceptable in
axiomatic QSP.

2. Also in contrast to reservoir stability — see theorem 48 — this result is
one of internal consistency in the sense that it establishes the equivalence of
two definitions of equilibrium for the same system when described from two
different points of view: the microscopic KMS condition and the local aspect
of thermodynamics of the system considered. In particular, the argument
does not involve any coupling of the system considered with any test system.

3. Extensions of the domain of validity of the theorem are desirable. In this
respect, quantum spin-lattice systems with reasonably long-range interac-
tions have been controlled. However, some technical difficulties often stand
in the way toward the expected extensions to continuous systems. Typically
these difficulties originate in the infinite dimensionality of the Hilbert spaces
HΛ corresponding to finite regions, and in the fact that the corresponding
Hamiltonians HΛ are unbounded; also, precautions may have to be taken to
ensure that the local particle-density remains bounded.

4. One type of extension of the above variational principle is instructive, namely
the shift from local stability to global stability requirements. Specifically,
consider again a quantum-lattice system defined on Z

d . Assume further
that the dynamics is invariant under the translation group G = Z

d , and
restrict attention to the set SG of states ψ each of which is G−invariant.
Assume finally that the following limits exist
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(102) fβ(ψ) = lim
Λ↑ Zd

|Λ|−1
FΛ,β(ψ) ; φβ = lim

Λ↑ Zd
|Λ|−1 log Tr exp−βHΛ .

A state ϕ ∈ SG is now said to be globally thermodynamically stable — or
GTS for short — whenever it minimizes the free-energy density, i.e. when

(103) fβ(ϕ) = min
ψ∈SG

fβ(ψ) = φβ .

As long as one remains with G−invariant states on quantum-lattices having
G−invariant dynamics with only short-range interactions, one has

ϕ is GTS ⇐⇒ ϕ is KMS .

However, while⇒ remains valid even when interactions are allowed to extend
over a reasonably long range, the “short-range” requirement is essential for
⇐ . It has been suggested [Sewell, 1980b] that KMS states that are not GTS,
i.e. do not minimize the free-energy density, may model metastable states.

5.5 A brief excursion into QFT

As a remark on the role of KMS states in mathematical physics I wish to men-
tion, however briefly, the appearance of modular structures beyond the confines
of non-relativistic QSP, namely their entry into relativistic QFT. For the general
framework of algebraic QFT, cf. e.g. in this volume [Halvorson, 2006]; for a pre-
sentation specifically geared to QFT on curved space-times, cf. also [Wald, 1994];
and for a discussion of some of the interpretation problems raised by the materials
in this section, cf. [Clifton and Halvorson, 2001].

From the perspective developed in this essay, the natural entry into the consid-
erations to be discussed in the present subsection is through a manifestation, in
Minkowski-space QFT, of the Tomita–Takesaki duality — recall scholium 33 or
theorem 39.

Bisognano and Wichmann [Bisognano and Wichmann, 1975] developed a con-
sequence of a standard result in axiomatic QFT — the Reeh–Schlieder theorem,
cf. e.g. [Streater and Wightman, 1964, p.168], or [Emch, 1972a, p. 290] and
references cited therein — which ensures in particular that the vacuum state
ϕ , when restricted to a wedge WR = {(x, y, z, t) ∈ M3+1 | z > |t|} , is faith-
ful on the corresponding algebra NR . Thus, this restriction ϕR of ϕ to NR
equips the latter with the structure of a Tomita–Takesaki modular algebra. Here,
the canonical objects of the Tomita–Takesaki theory have a seminal geometric
interpretation. The involutive antiunitary operator J — corresponding to the
reflection (x, y, z, t) → (x, y,−z,−t) which maps the wedge WR to the wedge
WL = {(x, y, z, t) ∈ M3+1 | z < |t|} — implements a bijection from NR to
NR′ � NL ; and the modular group {∆iλ | λ ∈ R} implements on NR the Lorentz
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boost 


x
y
z
t


 →




1 0 0 0
0 1 0 0
0 0 cosh(2πλ) − sinh(2πλ)
0 0 − sinh(2πλ) cosh(2πλ)






x
y
z
t


 .

Since uniformly accelerated observers moving in the interior of a wedge WR

perceive its boundaries as past and future horizons, the result of Bisognano and
Wichman could be interpreted as saying that in the universe of such observers —
the wedge WR — the vacuum of the field in M3+1 appears to be a thermal bath,
in the following sense. The state ϕR : N ∈ NR → ϕ(N) ∈ |C — where NR ⊂ N
is the algebra corresponding to the wedge WR , N is the algebra corresponding
to the full Minkowski space, and ϕ is the vacuum defined on N — is a KMS
state at temperature β > 0 with respect to the evolution {τt : N ∈ NR → τt[N ] =
∆−it/β N ∆it/β ∈ NR | t ∈ IR} (where, as usual, the numerical value of the natural
temperature β = 1/kT depends on the scale with respect to which the time t is
measured).

The physical interest of this interpretation is enhanced by an earlier remark
by Rindler [Rindler, 1966] to the effect that the universe of uniformly accelerated
observers in WR is similar to the universe around the Schwarzschild solution of
the Einstein equations, i.e. around a stationary “black hole”.

With this dictionary in hand, the phenomenon discovered by Bisognano and
Wichmann as a consequence of the Tomita–Takesaki theory translates into an
effect found independently by Unruh [1976] in an attempt to clarify the then
recently discovered Hawking effect [Hawking, 1975] (also known as the Hawking
radiation). The latter describes a related but different phenomenon, the creation
of thermally distributed particles around a collapsing black hole. The similarities
and differences between the Unruh and the Hawking effects are discussed in [Wald,
1994, chapters 5 and 7]; for some of the thermodynamical aspects of the subject
in the astrophysics literature, cf. e.g. [Davies, 1978; Hawking and Page, 1983] or
[Wald, 1994, chapter 6]; for the specific questions of what is actually measurable,
how and where, see [Unruh and Wald, 1984]; and for some of the philosophical
issues, see [Clifton and Halvorson, 2001].

The impact of the Bisognano and Wichmann discovery on the axiomatic QFT
literature began with the work of Sewell [Sewell, 1980a; Sewell, 1982a] who gen-
eralized their results to some curved manifolds, perceived the role that the bi-
furcate horizon plays in the Unruh effect, and proposed to identify the Hawk-
ing temperature and the temperature in the KMS condition associated with the
Tomita–Takesaki modular theory. The introduction of KMS structures in QFT
then turned out to be the harbinger of a “revolution” [Borchers, 2000]. A few
among the many developments that ensued are: an extension of the axiomatic
of algebraic QFT to curved manifolds; an interpretation of the intrinsic geom-
etry of space-time in terms of consistency relations between the modular struc-
tures to be attached to an absorbing net of intersecting wedge-like regions of GR



1144 Gérard G. Emch

space-times; and the beginnings of a relativistic QSP where local KMS condi-
tions are formulated in terms of future-directed time-like vectors that determine
local rest-frames; cf. e.g. [Summers and Verch, 1996; Buchholz et al., 2002;
Ojima, 2003; Wiesbrock, 1997; Buchholz, 2003; Summers and White, 2003; Buch-
holz and Lechner, 2004]; closer to the Hawking effect proper, [Haag et al., 1994;
Kay and Wald, 1991; Fredenhagen and Haag, 1990]; and for a new framework
[Fredenhagen, 2003].

5.6 A mathematical interlude: extremal KMS states

The role of extremal KMS states in QSP will be studied in subsection 5.7. The
purpose of this section is to review some mathematical preliminaries such as the
definition of extremal KMS states, their characterization in terms of their GNS
representation, and the decomposition of a KMS state into its extremal compo-
nents.

REMARKS 56.

1. Let A be a C∗−algebra, β > 0 and τ be a group of automorphisms of A . The
set Sβ of all KMS states on A that satisfy the KMS condition for τ and β
is convex, i.e. for any two KMS states ψ and χ on A , with respect to the
same τ and β , and any λ ∈ (0, 1) : ϕ = λψ + (1− λ)χ is again a KMS state
for τ and β .

2. The set Sβ is closed in the w∗− topology it inherits from A , and it is
bounded in the metric topology. Hence it is w∗−compact, and the Krein–
Milman theorem entails that Sβ is the w∗−closed convex hull of the set Eβ
of its extreme points [Dunford and Schwartz, 1964, theorem V.8.4]. This
ensures not only the existence of extremal points, but also that there are
sufficiently many of them: every element in Sβ is the limit of finite convex
sums of elements in Eβ ; see definition 57 below.

3. Moreover β1 �= β2 entails Sβ1 ∩ Sβ2 = ∅ . Incidentally, the GNS represen-
tations constructed from states ϕ1 ∈ Sβ1 and ϕ2 ∈ Sβ2 with β1 �= β2 are
disjoint in the sense that no subrepresentation of one of these is unitarily
equivalent to any subrepresentation of the other; cf. [Takesaki, 1970c].

DEFINITION 57. Given a von Neumann algebra N , a group {τt | t ∈ IR} of
automorphisms of N , β ∈ IR+, and Sβ as in remark 56(1) above. A state ϕ ∈ Sβ

is said to be extremal KMS at natural temperature β if it does not admit a convex
decomposition into states in Sβ — i.e. states that satisfy the KMS condition for
the same τ and β . The set of all extremal KMS states is denoted Eβ .

THEOREM 58. Let ϕ be a faithful normal state on a von Neumann algebra N and
τ be the unique group of automorphisms of N with respect to which ϕ satisfies the
KMS condition for some natural temperature β . Denote by Z the center N ∩N ′

of N . Then
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A. For every (t, Z) ∈ IR×Z , τt[Z] = Z .

B. For every positive non-zero element Z ∈ Z with 0 < Z < I ,

ψ(N) := ϕ(Z)−1ϕ(ZN) and χ(N) := ϕ(I − Z)−1ϕ((I − Z)N)

define two states ψ and χ on N that satisfy the KMS condition for the same
τ and β and provide a convex decomposition of ϕ .

C. For every ϕ that admits a convex decomposition ϕ = λψ + (1 − λ)χ into
states ψ and χ on N that satisfy the KMS condition for the same τ and β ,
there exists a unique positive non-zero element Z ∈ Z with ‖Z‖ ≤ 1 such
that for all N ∈ N

ψ(N) = ϕ(Z)−1ϕ(ZN) and χ(N) = ϕ(I − Z)−1ϕ((I − Z)N) .

Proof. As pointed out in remark 37, we may assume without loss of generality
that N is presented in standard form, so that there exists a cyclic and separating
vector Φ ∈ H for N with ∀N ∈ N : (Φ, NΦ) = ϕ(N) .

[A.] Z ∈ Z ⇒ ∀(t,N) ∈ IR × N , ϕ(N∗τt[Z]) = ϕ(τt[z]N∗) and thus ϕ being
KMS entails that ϕ(Nτt[Z]) is constant in t so that ∀ t ∈ IR : (NΦ, [τt[Z]−Z]Φ) =
0 . Φ being cyclic entails [τt[Z] − Z]Φ = 0 , and then Φ being separating entails
[τt[Z]− Z] = 0 .

[B.] ϕ being faithful and 0 < Z < I positive and non-zero entail 0 < ϕ(Z) < 1 ;
and, upon taking into account that Z and thus Z

1
2 belong to N ′ , one verifies that

ψ and χ are states onN and that they inherit from ϕ its KMS property. Moreover,
one reads immediately from their definition that ϕ = λψ(N)+(1−λ)χ(N) , where
0 < λ = ϕ(Z) < 1 .

[C.] Conversely, from ϕ = λψ(N) + (1 − λ)χ(N) , with 0 < λ < 1 one has
ψ ≤ λ−1ϕ and thus there exists an element X ∈ N ′ such ∀N ∈ N : ψ(N) =
(XΦ, NXΦ) , i.e. ψ is a vector state on N and thus is normal and majorized
by the normal functional λ−1ϕ . Hence the Sakai-Radon-Nikodym [Sakai, 1971,
proposition 1.24.4], entails that there exists some positive Y ∈ N with ‖Y ‖ ≤ 1
such that

∀N ∈ N : ψ(N) =
1
2
λ−1ϕ(NY + Y N) .

Suppose that there exists another element Ỹ ∈ N with the same properties. Let
then X = Y − Ỹ . We have then 0 = ϕ(X∗X +XX∗) and thus, since ϕ is a positive
linear functional and both X∗X and XX∗ are positive: ϕ(X∗X) = 0 . Since ϕ is
faithful, X = 0 i.e. Y = Ỹ i.e. Y is unique.

It remains to be shown that the assumptions of the theorem entail that Y also
belongs to N ′ . Since ϕ and ψ are KMS, they satisfy for all t ∈ IR : ϕ ◦ τt =
ϕ and ψ ◦ τt = ψ . Consequently

ψ(N) = ψ(τt[N ]) =
1
2
λ−1φ(τt[N ]Y + Y τt[N ]) =

1
2
λ−1φ(Nτ−t[Y ] + τ−t[Y ]N) .
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From the uniqueness of Y ∈ N which we just established, we have ∀ t ∈ IR :
τt[Y ] = Y . ϕ being KMS entails therefore ∀N ∈ N : ϕ(NY ) = ϕ(Y N) and thus
ψ(N) = λ−1ϕ(Y N) . Upon applying the KMS condition to both ψ and ϕ , we get
∀N ∈ N : NY = Y N i.e. Y ∈ N ′ . Clearly then λ = ϕ(Z) . The same argument
goes through with χ replacing ψ and (I − Z) replacing Z. �

The following characterization is an immediate consequence of the above theo-
rem:

COROLLARY 59. With the assumptions of theorem 58, the KMS state ϕ is ex-
tremal KMS iff N is a factor, i.e. iff N has trivial center: N ∩N ′ = |CI .

SCHOLIUM 60. With the assumptions of theorem 58, assume that ϕ is not ex-
tremal KMS, but that the center Z of N is generated by a family {Pk ∈ Z | k =
1, 2, ...} of mutually orthogonal projectors. Then there exists a unique decompo-
sition of ϕ into a convex combination

∑
k λk ϕk of states ϕk on N where the ϕk

are extremal KMS for the same dynamics τ and the same natural temperature β .

Proof. To say that ϕ is a KMS state that is not extremal KMS is to say that
there exist KMS states ψj and scalars µj ∈ (0, 1) such that ϕ =

∑
j µjψj . From

part C of the theorem, for every ψj there exists a positive Zj ∈ Z such that
∀N ∈ N : ψj = φ(Zj)−1φ(ZjN) . Since Z is an abelian von Neumann algebra
with discrete spectrum, every Zj may be written as

∑
k zkPk with zk ∈ IR+ and

the Pk are minimal projectors in Z . Hence the ϕk : N ∈ N → λk
−1 ϕ(PkN) ∈ |C

with λk = φ(Pk) are states on N . From part B of the theorem, these are still
KMS states for the same τ and β . Therefore, it only remains to show that the
states ϕk are extremal with respect to the KMS condition.

To see this, consider the decomposition H = ⊕kHk where Hk are the subspaces
{ΨH ∈ H | PkΨ = Ψ} . Since each Pk belongs to Z , the subspaces Hk are
stable under N and under N ′ , i.e. whenever X ∈ N or X ∈ N ′ , we have
∀Ψ ∈ Hk : XΨ ∈ Hk . Let then Nk = {PkNPk | N ∈ N} , N ′

k = {PkNPk |
N ∈ N ′} ; and note that these are von Neumann algebras acting on the space Hk
admitting there a cyclic and separating vector, namely PkΦ , such that ∀N ∈ Nk :
ϕ̃k(N) := (Φk, NΦk) defines a faithful normal state onNk ; it is thus the restriction
to this algebra of the state ϕ . Note further that for all t ∈ IR , Nk is stable
under τt . Since Nk ∩ Nk′ = |CIk (where Ik is the identity operator in Hk) ϕ̃k
is extremal KMS. Proceeding ab absurdo, suppose that ϕk itself is not extremal
KMS. Then there would exist some KMS state ψ on N and some λ ∈ (0, 1) such
that ψ ≤ λ−1ϕk . Denote by ψ̃k the restriction of ψ to Nk . We have then, in
particular, λ−1ϕk(N∗N) ≥ ψ([NPk]∗[NPk]) = ψk(N∗N) ; i.e. λ−1ϕ̃ ≥ ψ̃k . Since
ϕ̃k is extremal KMS and ψ̃k is KMS, the equality must prevail, i.e. λ−1ϕ̃ = ψ̃k ; and
since ϕ̃k and ψ̃k are states, λ = 1 , i.e. on (N)k : ψ̃k(N∗N) = ϕ̃k(N∗N) . By the
Schwartz inequality, we have for every N ∈ N , ψ̃k([PkNPk]∗[PkNPk]) ≤ ψ(N∗N) ,
and thus ψ ≥ ϕk . Together with the initial inequality, namely ψ ≤ ϕk (since we
know now that λ = 1), these two inequalities reduce to ψ = ϕk . Hence ϕk is indeed
an extremal KMS state on N . Since ϕk is extremal KMS on Nk , the restriction
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ψ̃k of ψ to this algebra must coincide with ϕ̃k ; and thus ϕk is maximal KMS on
N . Hence ϕ has been decomposed into a convex combination of extremal KMS
states. Uniqueness follows by contradiction. �

DEFINITION 61. A convex set C is said to be a simplex whenever every point in
C admits a unique convex decomposition into extremal points of C .

Recall that in two-dimensional Euclidean geometry, a triangle is a simplex; indeed
any point in the triangle obtains as a unique convex combination of points situated
at the vertices of the triangle. But a circle is not a simplex: the set of its extreme
points is the circumference of the circle, and given any point inside the circle, all
secants through this point give different convex combinations of extreme points.

REMARKS 62.

1. Scholium 60 may therefore be paraphrased by saying that under the assump-
tion that the spectrum Sp(Z) of the center Z is discrete, Sβ is a simplex; and
that the decomposition is a weighed sum with respect to a discrete probabil-
ity measure supported by the extreme points Eβ of the set Sβ of all normal
KMS states for the given dynamics τ and the given natural temperature β .
From the proof of the scholium, one checks that the latter statement extends
indeed to all normal states, and not just to those that are faithful.

2. In case Sp(Z) is not discrete, the above sum must be replaced by an integral,
and some measure-theoretical trimmings are necessary to specify the sense
in which ϕ defines a unique measure concentrated on the boundary of Sβ .
The general mathematical context in which these decompositions appear is
in the study of central measures, see [Takesaki, 1970a; Kadison and Ringrose,
1983/1986]. For the purpose of this essay, the simpler version just described
will suffice to anchor the conceptual structure of the theory governing the
unique decomposition of KMS states into their extremal components.

3. Note that the set of states on a quantum system described by the von Neu-
mann postulates is not a simplex: if a density matrix has at least one eigen-
value with multiplicity greater or equal to 2, its decomposition in pure states
is not unique. Hence the set of KMS states in quantum statistical physics
possesses a classical property that is otherwise not heard of in the quantum
realm.

4. It remains to demonstrate that this property is relevant to QSP; and thus
that QSP requires the consideration of situations for which the relevant rep-
resentations do not lead to factors, in contrast with the von Neumann for-
malism of quantum mechanics where the canonical equilibrium states lead
only to factor representations — recall the end of remark 34. This problem
is the object of the next subsection.
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5.7 Extremal KMS states, pure thermodynamical phases

The main argument one can advance to justify the claim that pure thermody-
namical phases be described in QSP as extremal KMS states originates in the
conjunction of three circumstances.

The first is based on subsections 5.3 and 5.4 where strong evidences were given
for the identification of canonical equilibrium states as KMS states.

The second is the fact that extremal KMS states are the elementary objects
in the KMS theory. This is reminiscent of the identification of atomic levels in
spectroscopy with irreducible representations of the group of symmetries of the sys-
tem, the famous “Gruppenpest” epitomized in [Wigner, 1931]. In mathematics,
this programme was extended to a systematic presentation of the familiar so-called
special functions where these functions now appear as bases of irreducible repre-
sentations of groups; cf. e.g. [Talman, 1968; Vilenkin, 1968]. Closer to the focus
of this essay, the early identification — in [Murray and von Neumann, 1936] — of
factors as the building blocks of the theory of von Neumann algebras proceeds from
the same principle: a methodological option confirmed by the central decomposi-
tion of a von Neumann algebra as a direct integral of factors; cf. e.g. [Kadison and
Ringrose, 1983/1986, theorem 14.2.2, pp. 1027–1028]. All the while, the group-
theoretical approach continues to contribute in sorting out qualitative clssification
problems in nuclear spectroscopy, and elementary particles high energy physics.

The third circumstance pointing to the description of pure thermodynamical
phases as extremal KMS states — i.e. KMS states the GNS representations of
which are factors, cf. corollary 59 above — is the mathematical fact that the
decomposition of a KMS state in extremal KMS states is unique; cf. scholium
60 and remark 62(2) above. In the context of QSP, this fact naturally directs
attention to the situation encountered in thermodynamics where an equilibrium
state decomposes uniquely into its pure thermodynamical phases.

Thus, this subsection is divided into two parts. In part A, the above specu-
lations are confronted with a model for QSP where everything can be computed
explicitly. In part B, the characterization of pure thermodynamical phases as
extremal KMS states is brought to bear on a famous argument by Landau of-
fering a fundamental microscopic distinction between solids and fluids in term of
space correlation functions. This exemplifies how the unique decomposition of
KMS states into their extremal components helps describe the coexistence of pure
thermodynamical phases in QSP and spontaneous symmetry breaking in systems
undergoing phase transitions. For further discussion of the latter, cf. [Liu and
Emch, 2005].

A. Quantum Weiss–Ising models for ferromagnetism
Recall first the results of Araki reported in subsection 5.3 concerning the absence
of a ferromagnetic phase transition: the unique KMS state for each of the models
covered there is extremal.

To check how this coincidence fares with systems that do exhibit several ther-
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modynamical phases, we turn now to a class of models that have a long history
in the physics of phase transitions [Weiss, 1907; Brout, 1965], and are accepted by
mathematicians to be amenable to a sufficiently rigorous treatment [Kac, 1968],
namely the Weiss–Ising models for ferromagnetism.

Consider a one-dimensional lattice Z where to every site k ∈ Z a quantum spin
σk is attached. To every finite string Λ ⊂ Z is associated a Hamiltonian

(104) H = −
∑
k∈Λ

[B + BΛ,k]σkz with BΛ,k =
1
2

∑
j∈Λ

JΛ,jkσj
z

where B is interpreted as a homogeneous external magnetic field parallel to a fixed
direction z ; and BΛ,k is an average magnetic field, the so-called “molecular” field,
experienced by the spin at site k resulting from all other spins in the region Λ .
The artificial assumption imposed on the models of the van der Waals or Weiss-
type, which makes them exactly solvable in the thermodynamical limit, is that
the strength of the interaction JΛ,jk decreases with the size |Λ| of Λ ; compare
this with the property |v(p, q)| ≤ c/|Λ| of the interaction of the BCS model in
subsection 5.1.

Adopting here a simplified version of [Emch and Knops, 1970], we will assume
that

(105) JΛ,jk =
{ |Λ|−1 J > 0 when j �= k

0 otherwise .

Upon controlling the thermodynamical limit |Λ| → ∞ , one finds that two ex-
tremal KMS states emerge when T < Tc where 1/kTc = βc = J−1 . These are
recognized by the following properties of a global observable — cf. definition 15
and scholium 23 — namely, the magnetization M , the three components of which

M i = weak op. limit |Λ|→∞
1
|Λ|
∑
k∈Λ

σk
i (i = x, y, z)

are defined in the corresponding temperature-dependent representation. They
satisfy

(106)
(i) Mx = My = 0

(ii) Mz = tanh[β(B + JMz)] .

REMARKS 63.

1. For the transverse components, Mx and My , (106.i) was to be expected
from the symmetry of the system. The interesting part is the result for the
component Mz parallel to the applied magnetic field: (106.ii) is the classical
self-consistency equation: the model exhibits a phase transition as there
exists a temperature Tc (with βc = J−1) below which Mz does not vanish
as B → 0 , but tends to a finite, temperature-dependent value, the so-called
spontaneous magnetization.
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2. Hence in the thermodynamical limit, the problem of determining the ex-
tremal KMS states of the model admits two new solutions, absent above Tc ;
these extremal KMS states exhibit the two opposite spontaneous magneti-
zations characteristic of the two pure thermodynamical phases familiar from
the treatment of the classical case in e.g. [Kac, 1968].

3. A phase transition has occurred at T = Tc and it is accompanied, for T < Tc ,
by a spontaneous breakdown of the flip-flop symmetry σk

z → −σk
z of the

local Hamiltonians (104).

4. One ought to note at this point that the treatment in [Kac, 1968] was in
the most orthodox spirit of classical statistical mechanics: an analysis by
steepest descent methods of the partition function in the limit |Λ| → ∞ .
The novelty in [Emch and Knops, 1970] was to consider also the evolution of
the x− and y− components of the quantum spins and to study the resulting
quantum dynamics in order to confront the interpretation of extremal KMS
states with results already known from a classical treatment.

As with the BCS model reviewed in subsection 5.1 above, which has also the
structure of a ‘molecular’ field model, some technicalities are involved here:
in the thermodynamical limit, the convergence of the evolution is estab-
lished only for the von Neumann algebras belonging to the representations
considered.

5. This simplified version of the model, where (105) is assumed, already allows
us to demonstrate the general features explored in this subsection. We may
nevertheless mention that in [Emch and Knops, 1970] JΛ,jk is allowed to
depend on the distance |j − k| , but only in such a way that for each k ∈
Z , there exists a constant ck such that

∑
k |JΛ,jk| < ck for every finite Λ

containing k , subject to the condition that ∀ j, k ∈ Z : lim|Λ|→∞ JΛ,jk = 0 ;
the set of thermodynamical phases then becomes more complex, but its
description still illustrates the adequacy of the decomposition account of
spontaneous symmetry breakdown.

6. We already pointed out — first in section 4.1 — that as a consequence
of the Liouville theorem of complex analysis, KMS states are necessarily
time-invariant. Nevertheless, as established in [Emch and Knops, 1970],
the present model admits extremal KMS states that are not extremal time-
invariant — i.e. KMS states that are convex sums of different time-invariant,
but not KMS, states — although these extremal KMS states do satisfy a very
strong clustering property with respect to space-translations. The occurrence
of extremal KMS states that are not extremal time-invariant reflects the
fact that the time-evolution is not asymptotically abelian. This is not an
unexpected peculiarity of the model since experience shows that asymptotic
abelianness for the group of time-translations is rarely satisfied in QSP —
although a few exceptions are known, among them the even part of the XY-
model discussed at the beginning of subsection 5.4, despite the fact that
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locality entails very strong asymptotic abelianness for the group of space-
translations.

The coexistence of liquid and gas — say vapour and liquid water — presents formal
similarities with the coexistence of magnetic phases oriented in opposite directions.
The lattice-gas models of classical statistical mechanics are treated in close anal-
ogy with those of their ferromagnetic counterparts: instead of attributing to each
site of a regular n-dimensional Ising model, a classical spin taking the values +1/2
and −1/2 , one considers a random variable indexed by the sites of the lattice and
taking the values 1 or 0 depending on whether the site is occupied by a molecule
or not; double (or higher) occupancy is ruled out by fiat in these models. Phe-
nomenologically, liquid-vapour coexistence curves in the phase diagram translate
closely to the coexistence curves in ferromagnetic materials. In particular both
present a critical point, precisely located in the phase space by the occurrence of
diverging fluctuations. For temperatures higher than the critical temperature, any
distinction between liquid and gas is untenable, and this state of matter is best
described as a fluid.

B. QSP brought to bear on the Landau argument
The situation encountered with the coexistence of fluid and crytalline phases of the
same substance — say water in its fluid phase and ice phase — is phenomenolog-
ically very different from the situation presented by a gas-liquid phase transition.
Here, no critical point has been located: the fluid-solid coexistence curve extends
indefinitely as pressure and density are increased. A heuristic argument for the
non-existence of a critical point for the fluid-solid coexistence curve was advanced
by Landau; see for instance [Landau and Lifshitz, 1958b, p. 260]. The argument
was taken up by Uhlenbeck in [Uhlenbeck, 1968, p. 17]: “Because the solid and
the fluid are with respect to long range order qualitatively different, there cannot
be a critical point, since by going around it this would imply that long range order
would appear gradually, which is impossible. This is the argument of Landau and
I find it completely convincing.” And yet, Uhlenbeck warns on the same page that
“one cannot escape the fact (intuitively evident, although not proved!) that there
is already long range order in the solid phase itself.”

In an impressive sequence of papers, Kastler et al. [1967] rose to the challenge;
the various assumptions of asymptotic abelianness, pervasive in these papers, was
shown to be dispensable in the version worked out in [Emch et al., 1970], which is
followed here.

The programme is to classify the extremal KMS states that appear in the de-
composition of a Euclidean invariant KMS state. Let A be the C∗−algebra ob-
tained as the C∗−inductive limit of local algebras A(Λ) over an absorbing net
F of finite regions Λ ⊂ IR3 (here ‘finite’ means finite volume: |Λ| < ∞ ). Let
α : t ∈ IR → αt ∈ Aut(A) describe an evolution; let ν : g ∈ IE3 → αg ∈ Aut(A)
describe the action of the Euclidean group IE3 ; and let ϕ be a KMS state on A
with respect to the evolution α for the temperature β ; ϕ is assumed to be invari-
ant under the action of the Euclidean group, i.e. ∀ g ∈ IE3 : ϕ ◦ νg = ϕ ; this
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condition is motivated by the phenomenological expectation that the underlying
interactions are Euclidean invariant.

It is convenient to assume further that ϕ is strongly transitive with respect to
the action of IE3 in the sense that the following two conditions are satisfied.

1. For any two states ψ and ψ′ appearing in the decomposition of ϕ in extremal
KMS states, there exists at least one g ∈ IE3 such that ψ′ = ψ ◦ νg .

2. For one — and therefore all — state ψ appearing in the decomposition of ϕ
into extremal KMS states, the isotropy subgroup Gψ := {g ∈ IE3 | ψ ◦ νg =
ψ} contains at least three non-coplanar translations.

Note that for any g ∈ IE3 and any ψ appearing in the decomposition of ϕ into
extremal KMS states, the state ψg := ψ ◦ νg also appears there; and that Gψg

=
g−1Gψg . Hence, up to conjugacy, all elements appearing in the decomposition of
ϕ have the same symmetry. This conjugacy class is denoted Gϕ , and is referred
to it as the intrinsic symmetry of ϕ . It is the part of the Euclidean symmetry
of ϕ that is preserved when ϕ is decomposed into its extremal KMS components.
Consequently, condition (1) is essentially one of convenience: if it were not satisfied,
one would first have to separate the decomposed states in classes of conjugate
elements, and carry out the analysis sketched below for each class separately.
Condition (2) excludes pathological cases which one does not want to consider
here. Mathematically, it strengthens condition (1) to ensure that the orbit of each
extremal state under the translation group IR3 ⊂ IE3 in the space of all states on
A is closed.

It is then proven in [Emch et al., 1970] that a Euclidean-invariant KMS state ϕ
that satisfies the above conditions must necessarily belong to one of the following
four classes.

The first class obtains when ϕ is already extremal KMS, i.e. its intrinsic sym-
metry is the group IE3 itself. This case occurs exactly when one — and thus all
— of the following equivalent conditions is satisfied:

1. ϕ is extremal IR3 invariant, i.e. cannot be decomposed into a convex combi-
nation of states that are invariant under all translations in IR3 .

2. The spectrum of the generator P of the unitary representation of IR3 canon-
ically associated to ϕ by the GNS construction consists of exactly one eigen-
value, namely k = 0 , and this eigenvalue is non-degenerate.

3. ϕ is uniformly clustering in space, i.e. : for every ε > 0 and A ∈ A there
exists a finite region of space Λ ⊂ IR3 such that

(107) ∀B ∈ A(Λc) : |ϕ(AB)− ϕ(A)ϕ(B)| ≤ ε‖B‖
where A(Λc) ⊂ A is the C∗−inductive limit of the local algebras A(Ω) with
Ω ∈ F and Ω �� Λ , (i.e. Ω ∩ Λ = ∅ ); see definition 27, scholium 29 and
corollary 30 above.
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In view of these properties, a state ϕ belonging to this class is intepreted as a
fluid phase.

To describe the other three classes, namely the strongly transitive Euclidean
invariant KMS states that do not describe fluids, let us focus now on the notion
of the intrinsic translational invariance of ϕ . For any state ψ that appears in
the decomposition of ϕ into extremal KMS states, let Gψ denote the subgroup
of Euclidean symmetries of ψ , and let Hψ = Gψ ∩ IR3 denote the subgroup of
space-translations that preserve ψ . As one reviews the definition of the conjugacy
classes one verifies that this group is indeed characteristic of the original state ϕ .
Note also that strong transitivity entails that IR3/Hψ is compact.

The second class of Euclidean, strongly transitive KMS states is now specified
by the following equivalent conditions, where ψ is any state appearing in the
decomposition of ϕ into its extremal KMS components.

1. Gψ is a crystallographic group.

2. ϕ is not extremal IR3−invariant, and Hψ is generated by three non-coplanar
translations.

3. With χ = ηIR3
[ψ] — where ηIR3

is any invariant mean over the translation
group IR3 — χ is η−clustering (see definition 22 above), but neither weakly
mixing nor even partially weakly mixing, i.e. χ satisfies

(108) ∀ A , B ∈ A : ηIR3
(χ(ν•[A]B)− χ(A)χ(B)) = 0

but does not satisfy any of the stronger conditions

(109) ∀ A , B ∈ A : ηIR3 |χ(ν•[A]B)− χ(A)χ(B) | = 0

(110) ∀ A , B ∈ A : ηIR1
∣∣∣ ηIR2

(χ(ν•[A]B))− χ(A)χ(B)
∣∣∣ = 0

(111) ∀ A , B ∈ A : ηIR2
∣∣∣ ηIR1

(χ(ν•[A]B))− χ(A)χ(B)
∣∣∣ = 0
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REMARKS 64.

1. Taken separately, each of the conditions (1–3) excludes that ϕ be a fluid
phase. Indeed, a fluid phase is extremal KMS, so that its intrinsic symme-
try is the Euclidian group IE3 , contradicting (1); a fluid phase is extremal
IR3−invariant, contradicting (2); a fluid phase is uniformly clustering (see
5.33), which implies that each of the relations (108–111) would be satisfied,
whereas (109–111) are not satisfied in the present phase.

2. The other two classes to which ϕ may belong are characterized as follows.
(109), if satisfied, would have entailed Hψ = IR3 , thus contradicting the
second part of condition (2). This would correspond to a situation where
the rotational symmetry is broken whereas the translational symmetry of
the state ϕ would be completely preserved in its decomposition into its ex-
tremal KMS components. Although this may occur in systems exhibiting
spontaneous magnetization, it is not immediately relevant to the purpose of
identifying the way in which the formalism distinguishes fluids from solids
in a world where fundamental interactions are invariant under the Euclidean
group IE3 .

Similarly, (110) or (111), if satisfied, would have entailed Hψ is continuous
in one or two direction(s) but discrete in the complementary direction(s).
Such situations have been envisaged also — as early as the mid 1930s, cf.
e.g. [Landau and Lifshitz, 1958b, p. 410] — but here again, their putative
existence does not bear directly on the problem at hand.

3. The space-averaged state χ , which is IR3−invariant by construction, nev-
ertheless keeps a memory of the symmetry of the state ψ from which it is
constructed. Indeed the discrete part of the spectrum of the generator Pχ of
the unitary group representation of IR3 , associated to the GNS construction
corresponding to χ , coincides with the reciprocal group of Hψ , namely with

(112) Hψ
∗ = {k ∈ IR3 | ∀a ∈ Hψ : k · a = 0 mod 2π}

which, in principle, is observable in X-ray diffraction patterns.

Upon keeping from the above what is relevant to the absence of a critical point in
the coexistence curve between fluid and solid, the analysis of the decomposition of
Euclidean invariant canonical equilibrium states into their pure thermodynamical
phase components provides a rigid relation between the clustering properties and
the geometric properties of these states. Namely: fluid phases exhibit a uniform
clustering property (107), while crystalline phases lead to the distinctly weaker
property of weak-clustering (108), thus vindicating the Landau argument.
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6 WHENCE AND WHITHER QSP?

This final section may serve as a summary, a conclusion, a collection of appendices
sharpening some aspects of the theory that have not been discussed in the main
text; and hopefully, as a constructive prospectus for territories beyond the scope
of this essay.

Let me summarize very briefly the story so far. First, recall that sections 1 to 3
reviewed some of the salient features that are variously treated in traditional texts
on QSP. Then, in sections 4 and 5, I argued that the algebraic formalism of the
KMS condition provides a well-defined syntax, the semantics of which supports
the following associations in equilibrium QSP.

• Canonical equilibrium states are described by KMS states, a notion that
translates naturally from finite systems to systems considered in the themo-
dynamical limit.

• Pure thermodynamical phases are described by extremal KMS states.

• Pure thermodynamical phase components that appear in the unique decom-
position of a canonical equilibrium state may have a symmetry lower than
that of the original state: only the manifold of the different contributing
phases reflects the original symmetry; cf. [Liu and Emch, 2005] where we de-
scribe the “decompositional account” of spontaneous symmetry breakdown
in the quantum theory of phase transitions.

Against this background, the material of the present section is presented in four
subsections. I first review the mathematical concept of a limit and its physical
interpretation as used in the main text. I then discuss again the notion of macro-
scopic observables, taking here a perspective that opens on the next subsection:
the quantum measurement problem. Finally, I present some remarks — prospec-
tive and/or revisionist? — on the pursuit of constructive confrontations between
mathematical and theoretical physicists in order that they better inform the wider
arenas where philosophers of science operate.

6.1 Four limiting procedures in QSP

In dealing with the topics just reviewed, and as early as in sections 2 and 3, at
least four different types of limits were encountered, alone or in concert.

1. the classical limit h→ 0 ;

2. the high temperature limit T →∞ ;

3. the thermodynamic limit |Λ| → ∞ ;

4. the van Hove limit {λ→ 0 and t→∞} with τ := λ2 t remaining finite.
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As the philosophical legitimacy of each of these four limits (or ‘limiting pro-
cedures’) has been variously questioned elsewhere, I ought to specify again — in
the vernacular, i.e. without an explicit mention of the traditional (ε, δε) — that
the limits were consistently understood in this essay to be controlled limits in the
sense of mathematics: you give me a tolerance, and I tell you the price; the smaller
the tolerance, the higher the price; but however small the error you are willing to
tolerate, there is a price under which you are guaranteed that the article will be
within what you decided you are going to tolerate. Mathematical physics adds to
this the requirement that the “price” be expressed in currencies recognized by the
putative laboratory technician. Let us examine successively the above four limits
from this perspective.

1. The classical limit.
The Planck constant is a fundamental physical constant: in cgs units h � 6.62 ×
10−27 ergsec; the familiar notation � := h/2π is used here. To say that it is small
is a “value judgement”, reflecting the energy scale which you believe is relevant for
the problem you wish to discuss. To illustrate the working of limiting processes,
and their physical meaning, let us examine a specific example, the classical limit
of a typically quantum phenomenon, the tunnel effect in which a particle of energy
E does “slip through” a barrier of height Vo > E . This effect was discovered in
1928 independently by Gamow and by Gurney and Condon [Gamov, 1928; Gurney
and Condon, 1928; Gurney and Condon, 1929] in their search for an explanation
of alpha-particle emission from heavy nuclei. The Josephson junction — an oxide
layer sandwiched between two superconductors — is a more recent manifestation
of this quantum phenomenon; cf. e.g. [Josephson, 1982]. Let us consider here the
simplest model, quantum tunelling through a square one-dimensional barrier.

One verifies immediately that the Schrödinger equation

(113)

[
− 1

2m�
2 d2

dx2 + V (x)
]

Ψ(x) = EΨ(x) with

V (x) =




0 if x < a
Vo if − a < x < a
0 if x > a

where 0 < a <∞ and 0 < Vo <∞

admits, whenever 0 < E < Vo , a solution of the form

(114) Ψ(x) =




A−eikx + B−e−ikx if x < a
Aeκx + Be−κx if − a < x < a
A+eikx if x > a

with

(115) k =
{

2mE

�2

} 1
2

and κ =
{

2m(Vo − E)
�2

} 1
2

where the relative ratio of the five coefficients A−, B−, A,B,A+ in (114) are deter-
mined by imposing four conditions, namely that Ψ and its derivative be continuous
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at the boundaries x = ±a . In particular, these conditions imply

A− = A+eika
1

4ikκ

[
(κ + ik)2e−2κa − (κ− ik)2e2κa

]
.

Then from the reverse triangle inequality |a− b| ≥ max{|a| − |b| , |b| − |a|} :

∣∣∣∣A−
A+

∣∣∣∣ ≥ k2 + κ2

4kκ

(
e2κa − e−2κa

)
=

[
1
2

Vo√
E(Vo − E)

]
sinh 2κa

Since the term [...] is independent of � , let us emphasize the role of � by rewriting
the above formula as:

(116)
|A+|2
|A−|2 ≤ C [sinh 2κa]−2 .

From the definition of A± in (114), the left-hand side of (116) is to be inter-
preted as the transmission coefficient of the barrier. In the corresponding classical
model, 0 < E < Vo entails that this coefficient vanishes. Thus, to demand that
the quantum model approximates its classical counterpart is to require that the
quantum transmission coefficient be arbitrarily small, say

(117)
|A+|2
|A−|2 ≤ C [sinh 2K]−2

with K as large as one desires. To ensure that (117) is satisfied, the computation
leading to (116) shows that it is sufficient to have: κa > K , i.e.

(118) � < K−1 [2m(Vo − E)]
1
2 a .

Hence, the classical limit of the quantum system (113) now is controlled:

(i) mathematically, through the conjunction of (117) and (118);

(ii) physically, as (118) gives an estimate of its range of validity in terms of the
physical quantities that characterize this system

In this sense the classical limit is similar to the non-relativistic limit: the classi-
cal description emerges from the quantum theory in the same way as Newton’s
mechanics emerges from Einstein’s special relativity theory. The key to a proper
understanding is the evaluation of the domain of validity of the approximations.
Having done so, I have no qualm assuring my insurance agent that my car is not
going to tunnel out of my garage, nor do I worry about relativistic red-shift when I
drive my car in congested traffic. Such are the physical parameters that prevail in
my car, my garage and the town where I live; compare with [Gamov, 1940] where
Gamow pretends with didactic gusto that h � 1 ergsec or c � 15 km/hour.

2. The high temperature limit.
Following the Ehrenfests, I have repeatedly argued in this essay that in QSP, the
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classical regime emerges when the temperature is high enough. Typically, the
quantities that tell us the regime in which we operate are similar to (βh) with
β = 1/kT (where k is the Boltzmann constant k � 1.38× 10−16 erg degree−1).

To illustrate this point, let us review the results on the black-body radiation
(subsection 2.1) and the specific heat of solids (subsection 2.3).

We saw qualitatively that if hν � kT Planck’s formula of 1900, here (1), repro-
duces (5) which had been previously established by Wien in 1896 [Wien, 1896].
Quantitatively, Paschen and Wanner [Paschen and Wanner, 1899] had verified in
1899 that Wien’s formula is in agreement with laboratory data in the range of
visible light, i.e. for wave length λ = c/ν between 4000 Å and 7000 Å, for temper-
atures up to 4000 K; this is what we would call today the “quantum regime”. As
the temperature at the surface of the sun is about 6000 K, going to much higher
temperatures was then not an option. Nevertheless, as the ratio hν/kT is con-
cerned, raising T or lowering ν have the same effect; the latter means pushing the
observation into the infrared, which was possible at the time. Indeed, the following
year Lummer and Pringsheim [Lummer and Pringsheim, 1900] recorded system-
atic deviations from Wien’s formula when the wavelength reaches the range of 12
to 18 µ (recall 1µ = 10−6m and thus 12µ = 12 · 104Å, compared with ∼ 7 · 103Å
for visible red). This is the observation that prompted the purely classical deriva-
tion of the Rayleigh–Jones formula (6), and then Planck’s interpolation between
hν � kT (Wien) and hν � kT (Rayleigh–Jones). Experimentally, the passage
from Pashen and Wanner to Lummer and Pringsheim thus marks very sharply
in time (less than two years) the crossing of the boundary from the quantum to
the classical regimes. These two regimes are numerically characterized by their
distance |λ − λmax| from the wavelength λmax — or equivalently the frequency
νmax — at which the Planck distribution (1) passes through a maximum.

As for the specific heat of solids, upon revisiting equations (8) and (9) Debye
already verified that conclusion (10) can be sharpened to give the exact result

(119)
CV = 3R{4D(Θ

T )− 3(Θ
T )[ exp(Θ

T )− 1]−1}
where

D(x) =
∫ x
o

dt t3

et−1 and kΘ = hνo


 .

Scholium 2 was obtained by noticing that

D(x) �



1 for 0 < x� 1

1
5π4x−3 for x� 1

.

To go further than this, and determine the onset of the classical regime CV = 3R ,
requires one to notice two things. First, CV in (119) is a monotonically increasing
universal function of the variable Θ/T ; while it cannot be written in terms of
elementary functions, it can be computed numerically. Since Θ is known in term
of the cut-off νo on the vibrational frequencies of the crystal, its value can be
determined by mechanical means: for instance, at room temperature, Θ is about



Quantum Statistical Physics 1159

100 K (for lead) and about 400 K (for aluminium), with silver and copper in
between. For these, and many other metals, the measured values of the specific
heat fall remarkably close to the theoretical prediction (119); cf. e.g. [Wannier,
1966, fig.13.9, p.276]. This curve shows a monotonic and smooth passage from the
classical to the quantum regimes as the temperature decreases. Specifically, we can
now discuss quantitatively the onset of the classical regime. The exact expression
(119) entails that the first two terms in the expansion of CV for Θ/T � 1 give

(120) CV � 3R{1− 1
20

(
Θ
T

)2}
so that at room temperature T � 300 K, the correction to the classical value
CV = 3R ranges from about 0.6 % (for lead) to about 9 % for aluminium; both of
which are in good agreement with experimental data.

For other early recognitions of the emergence of the classical regime in high tem-
perature QSP, see subsections 2.4 and 2.6 where the classical ideal gas is recovered
as controlled high temperature limits of both the Bose and the Fermi quantum
gases.

3. The thermodynamical limit.
As its name indicates, the thermodynamical limit is designed to elicit various
macroscopic thermodynamical behaviours from microscopic mechanical models. I
find it convenient to separate here the problems addressed in non-equilibrium and
in equilibrium statistical physics.

a. Non-equilibrium physics. In the classical realm already, one appeals to the
large size of the systems considered to avoid the spurious appearance of recurrences
in the theoretical modeling of physical phenomena such as the thermodynamical
approach to equilibrium. For instance, to buttress Boltzmann’s kinetic theory of
gases, the Ehrenfests proposed the so-called dog-flea model, a stochastic model
later revisited by Mark Kac. This model is reviewed in [Emch and Liu, 2002,
section 3.4] where the results of a computer experiment are reported, involving N =
100 “fleas” jumping “at random” between two “dogs”: a tendency to approach
equilibrium is manifest during a few hundred jumps, whereas the frequency of
recurrences, which Kac showed to increase exponentially with N , is observed to
occur — as regularly as to be expected — over a range of several tens of thousands
of trials.

In the quantum realm, a model for an actual experiment, the nuclear free-
relaxation, is solved in subsection 3.3 above. Here again the model shows an
approach to equilibrium practically unaffected by a “recurrence time” that grows
as 2N , where N is the number of lattice sites in the system, a macroscopic CaF2

crystal. Hence the empirical justification for the limit N →∞ is that the relevant
time-parameter for the experimentalist is ∼ 21023

, which is indeed exorbitant;
accordingly, I could not discern from the laboratory [Lowe and Nordberg, 1957]
any concern about putative recurrences. The supporting analytic evidence is the
explicit size-correction given in equation (49) and discussed with some detail in
remarks 6.
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b. Equilibrium Physics. In equilibrium situations, the thermodynamical limit
is called upon to focus on properties of matter in bulk, so to speak navigating
the high seas, away from the shoals of boundary effects. This often requires some
elaborate rigging, in CSP as well as in QSP.

Roughly speaking, up to the middle of the twentieth century, this was achieved
by replacing sums by integrals, as in equations (13–14). As in other parts of
mathematical physics, this mathematical procedure is usually well under control,
albeit physics sometimes requires unusual precautions, as shown explicitly in the
caveat of equation (50).

Later on, especially in the modeling of phase transitions, when the emergence
of collective behaviour turned out to be essential for the understanding of the
phenomena at hand, and when existence questions were raised, more sophistication
was demanded. In particular, for the limit where the size of the system is allowed
to go to infinity, dimension enters the play; and then, in particular, the shapes of
the regions considered must be such that the ratio of the surface to the volume
goes to zero: cubes are fine; sponges are not. As indicated in the various models
presented in section 5, it is possible to carry out such limiting procedures explicitly
and successfully. The simplest examples are lattice systems, say spins on a lattice
Z
d . Examples of continuous systems are also given in this section 5; yet, in general,

such systems, say on IRd , require extra technical care to ensure spatial uniformity
and to avoid bundling effects; hence, in the latter cases the theory is not always
as fully controlled as one may desire; see nevertheless [Sewell, 2002]. Interactions
with extremely long range may pose further problems with regard to: (a) the
definition of the limiting state; and (b) the control of the limiting time evolution;
such situations were met in subsections 5.1 and 5.7.A.

4. The van Hove limit.
We encountered particular instances of this limiting procedure in subsections 3.5
and 5.4. But a more general discussion was postponed to the present section.

In a brillant transposition of a theme van Hove had heard played to justify the
Born approximation in the discussion of long-time asymptotic behaviour in scatter-
ing theory, he proposed in [van Hove, 1955] a variation allowing him to characterize
a regime where the time-scale of the irreversible macroscopic phenomena is em-
phasized over the time-scale of the underlying reversible, Hamiltonian microscopic
dynamics. Van Hove’s original presentations were conducted for specific models
by means of perturbation techniques, carried to all orders, in which he selected
for summation the “most divergent diagrams.” At first, his virtuoso performances
drew considerable scepticism; cf. e.g. [van Kampen, 1962]. The main problem
was to isolate the conditions under which the essentials of what would become
a theory may emerge from the contingent diagrammatics attached to the solu-
tion of particular models. Systematic mathematical treatments are now available
to show how a joint long-time/weak-coupling limit may lead from a conservative
unitary evolution to a contractive dynamical semi-group; cf. e.g. [Martin, 1979;
Davies, 1976a].
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In terms of the focus of this subsection, namely the control of limits that allow
one to ensure that the system considered is operating in a desired regime, here
exponential decay, one aims at proving a result of the following form; cf. e.g.
[Martin and Emch, 1975, section 4].

There exist finite constants τo > 0 and C > 0 such that for 0 ≤ λ2t ≤ τo :

(121)
∣∣∣∣ lim
|Λ|→∞

(Φ, Uo
−tUtΨ)Λ − (Φ, exp(−[Γ + i∆]λ2t)Ψ)

∣∣∣∣ ≤ λC

where Uo
−tUt describes the evolution in the so-called interaction picture, with Uo

t =
exp(−iHot) , Ut = exp(−i[Ho + λV ] t) ; Ho,H + λV,∆ are self-adjoint operators,
and Γ is not only self-adjoint, but also positive so as to describe decay in the
time range 0 ≤ τ := λ2t ≤ τo . Hence the term “long-time/weak-coupling limit”:
when the coupling constant λ is small enough [i.e. the RHS of 121 is small] the
evolution is approximated by the contractive semi-group S(τ) := exp(−[Γ+ i∆]τ)
with τ = λ2t ∈ [0, τo] , provided the time t is sufficiently large in the scale measured
by t � τ/λ2 .

The separation of the total Hamiltonian H = Ho+λV into an “unperturbed” or
“free” part Ho and an “interaction” λV must be justified. Van Hove proposed that
it is to be traced back to the fact that the observables of interest in irreversible
processes are macroscopic (see subsection 6.2 below), thus determining a joint
spectral resolution; then Ho appears as the “diagonal” part of H in this spectral
resolution. For instance, A =

∫
dkA(k)a∗(k)a(k) and Ho =

∫
dkε(k)a∗(k)a(k) .

This remark also helps justify the use of the interaction picture Uo
−tUt since it

entails that the observables of interest are invariant under the “free” evolution. As
the macroscopic observables are translation invariant, the notation

∫
dk is used to

suggest that the momentum representation corresponds to the spectral resolution
in which the observables and the free Hamiltonian are diagonal.

The understanding of the van Hove limit gained in the 1970s has since been
confirmed and extended; cf. e.g. [Bach et al., 2000; Derezinski and Früboes, 2005]
and references therein; for baselines [Davies, 1976a], [Emch and Liu, 2002, section
15.2] and [Alicki and Fannes, 2001].

Although I do not wish to elaborate on the following historical point, I may men-
tion incidentally that the use of the interaction picture helped van Hove discern in
his perturbation expansions some characteristic features of many-body physics by
which he suggested non-equilibrium QSP differ from the QFT supporting quan-
tum scattering theory. To this day, however, I am not sure whether van Hove’s
Delphian utterances have been properly digested into the corpus of contemporary
mathematical physics.

I should also mention here that coupled limits have been considered also in CSP.
An example is the Grad limit for classical gases in which the volume V is kept
fixed, the number of molecules N → ∞ , and the cross-section of the molecules
σ : = π d2 → 0 (thus the volume of each molecule v(∼ d3) → 0 and the density
of the gas ρ : = N

V → ∞ ), while the mean-free path λ = V
Nd2 is kept constant;

in [Grad, 1958], Grad proposed this limit as a mean to derive the Boltzmann
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equation. For further references relative to the latter problem, see [Uffink, 2006,
section I.6.2] or [Emch and Liu, 2002, section 3.3]; and in particular, for the 2-
dimensional Lorentz gas (with now σ = 2d), cf. [Martin, 1979] where it is pointed
out that the Grad limit and the van Hove limit (in a form of it adapted to this
model) are equivalent in one important sense: they both predict the same ratio
between the macroscopic time-scale validated by observations, and the microscopic
time-scale provided by the mean free time between two successive collisions.

The related philosophical issues about the roles that asymptotic reasoning plays
in explanation, reduction, and emergence are cogently discussed in [Batterman,
2002a]. The above four limiting procedures may bring additional water to this
epistemological mill; see already [Grad, 1967].

In closing this subsection, I should at least mention coarse-graining, yet an-
other procedure that has been transferred from the classical to the quantum realm
[van Kampen, 1954; Emch, 1964]. One of the reasons for not bringing it up in
this essay is that I did not need it for the considerations I developed here. And
the reason for this may be that I have come to believe that the primacy of coarse-
graining has been largely superseded by the syntax of infinite systems which allows
one to bypass several awkward issues about the relations between the micro- and
macroscopic worlds; see for instance in subsection 6.3 below. Yet, as with the ther-
modynamical limit, coarse-graining helped explore those macroscopic properties
one wishes to see emerging from finer descriptions; in so doing, it also emphasizes
that distinguishing differences of scales or tempi enables smooth negotiations of
such passages.

6.2 Macroscopic observables

Coming back to the general formalism, assuming that the thermodynamic limit has
been taken, and concentrating on space-translations, subsection 3.5 emphasized
one feature that is new to quantum ergodic theory. Space-averaged observables are
essential observables in the sense of the theory of superselection sectors prompted
by [Wick et al., 1952], i.e. they commute with all quasi-local observables and
among themselves. This is yet another classical aspect of quantum theory. The
specific classical description that emerges in this manner depends on the global
preparation of the system (but is insensitive to local perturbations) as the very
definition — and values — of these space-averaged observables depends on the
translation-invariant state ϕ of the system one considers. This aspect of quantum
ergodic theory shows up as a direct consequence of the “locality” assumed in the
Haag–Kastler axioms.

Hence it is proper to regard the emergence of a classical macroscopic descrip-
tion out of a quantum microscopic description as a consequence of translation-
invariance and locality; cf. subsections 3.5.B and 5.7. As we saw, the passage to
the thermodynamical limit and the attendant emergence of macroscopic observ-
ables allow one to discern the simultaneneous existence of several thermodynamical
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pure phases, as for instance the non-vanishing magnetization in zero magnetic field
signals the presence of a permanent magnet. Similarly, the laboratory observation
of a discontinuity in the derivative of the isotherms at the ends of the Maxwell
plateau is better understood if one takes the thermodynamical limit: otherwise,
the isotherms are analytic all along and the theoretical description of their experi-
encing so extreme a bend is simply neither convenient nor useful when considering
a cup of tea. And again, nobody would claim that when receiving their drinks
they recognize the ice-cubes only because the size of these is infinite ... which,
mercifully, it isn’t. Yet, the Landau criterion for distinguishing a solid from a
fluid (see subsection 5.7.b) is strictly valid only when the thermodynamical limit
is considered. This is a paradox only when the definition of limits is forgotten;
here as elsewhere in physics, the key to the proper understanding of limits lies in
their manifesting the emergence of qualitatively different regimes.

For time-averaged observables, the situation is more complicated. Recall some
basic facts. To any time-invariant state ϕ the GNS construction associates a
representation πϕ of the C∗−algebra A of quasi-local observables, and a unitary
representation of the time evolution under which the von Neumann algebra ob-
tained as the weak-operator closure of πϕ(A) , namely Nϕ : = πϕ(A)′′ , is stable.
Then, while the time-average of an observable always belongs to Nϕ as does its
space-average, the time-average now also belongs to the commutant Nϕ′ = πϕ(A)′

of this algebra, and thus to its center Zϕ := πϕ(A)′′ ∩ πϕ(A)′ , if and only if the
evolution is η−abelian. The latter condition — see equation (61) — may be sat-
isfied in some particular models, but its status is as yet too precarious to enshrine
this condition as a general “axiom” on the same footing as “locality”.

In spite of the limitation just described, some of the remaining ergodic properties
of observables under the time-evolution, together with some of the applications of
the theory, were discussed in subsection 3.5.A.

6.3 The quantum measurement process viewed from the perspective
of QSP

The technical literature on quantum measurement underwent some striking de-
velopments in the 1970s — cf. e.g. [Hepp, 1972; Bell, 1975; Whitten-Wolfe and
Emch, 1976]; and also [Emch, 2003; Sewell, 2005] — in part as a consequence of
the advent of the algebraic approach to QSP.

Insofar as there was a consensus on what the problem was, the original doctrine
is best expounded in Wigner’s careful exegesis of what he called the “orthodox”
theory of von Neumann [von Neumann, 1932c]; Wigner’s papers are collected in
[Wigner, 1997, Part II] and [Wigner, 1995, Part II]; Wigner’s positions on the
subject were last stated in [Wigner, 1984]. Some of the philosophical issues are
outlined in [Dickson, 2006].

A renewal in the understanding and implementation of several of the basic
tenets of the doctrine was largely motivated by two critiques repeatedly advanced
by Wigner himself. The first critique was that “to increase the accuracy of the
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measurement one has to use a very large measuring apparatus” [Wigner, 1995, p.
177] or “the large size of the apparatus appears to be essential for the possibility
of a measurement” [Wigner, 1995, p. 178]. The second critique is the problem of
infinite regress — the so–called Wigner’s friend argument; cf. e.g. [Wigner, 1995,
p. 215] — that follows from the necessity “to consider the system that has been
called, so far, the apparatus, to be the object of the measurement. In other words,
one will bring this apparatus into interaction with a new measuring object ... [and
so on]”; [Wigner, 1995, pp. 208-9]. As this does not appear to be a problem with
which one is usually concerned in the analysis of classical measurements, Wigner
reiterated a statement he attributed to Fock, but which he said he believed to
be part of the teaching of the “Copenhagen school”, namely that: “Measuring
instruments must be described classically”; of singular relevance to the present
essay, this quote is taken from a paragraph Wigner entitled “Is the measuring
apparatus macroscopic?” [Wigner, 1995, p. 205].

The reason I believe to be at the core of this awkwardness is that in Wigner’s
heydays, physicists were still in awe of a perceived dichotomy between the classical
and the quantum worlds. Hence a new branch of the literature on the quantum
measuring problem could develop when a solution of continuity was found that
bridges these two descriptions — quantum and classical — of the one world in
which we live. This happened when the conceptualization of the physical role of
limiting proceedures came under control and, in particular, the concept of macro-
scopic observables was understood; see subsections 6.1 and 6.2 above, references
therein, and [Landsman, 2006]. I claim that the concepts developed to deal with
QSP can help construct a measuring apparatus that is described in quantum terms
and yet behaves, qua measuring apparatus, in a classical regime. I will now indi-
cate how at least this part of the conceptual problems associated with quantum
measurement has been clarified.

Let AS be the algebra of observables for the system to be measured, and let
B ⊂ AS be an abelian subalgebra, the self-adjoint elements of which are the
observables of interest. In the interest of formal simplicity I make here the following
assumptions, parts of which are easy to dispense with.

• AS contains a unit IS and is a collection of finite-dimensional matrices.

• The spectrum of B is non-degenerate; hence every observable B ∈ B is of the
form B =

∑
k bkQk with Qk = Q∗

k ; QkQl = δklQk ;
∑
k Qk = I ; and dim

Qk = 1 .

Initially, the system of interest is in the state ϕS : A ∈ AS → TrρA ∈ |C , and we
want the measuring process to determine, for all B ∈ B the values ϕS(B) , i.e. for
all k , the values λk = ϕS(Qk) , so that we can compute ϕS(B) =

∑
k bkλk .

For this measurement, a team of quantum engineers will be asked to build
a dedicated measuring apparatus described by an algebra AM with self-adjoint
“pointers” Mk which are in bijective correspondence with the Qk . They prepare
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this apparatus in the state ϕM . For simplicity, they assume that their AM contains
a unit IM and that they arrange for

∑
k Mk = IM . And finally, they try to build

an interactive Hamiltonian mechanism such that when the system of interest and
the apparatus are brought into contact the initial state ϕo = ϕS⊗ϕM on AS⊗AM
will evolve in such a manner that the following two conditions are satisfied:

(a) concerning the measuring apparatus:

(122) ∀Ml :




ϕM (Ml) −→ ϕp(Ml) =
∑
k λkψk(Ml) where

ψk(Ml) = δkl with no dispersion
;

(b) concerning the system to be measured:

(123) ∀AS ∈ AS :




ϕS(AS) −→ ϕp(AS) =
∑
k λkϕk(AS) where

ϕk(AS) =
{

ϕS(Qk)−1ϕS(QkASQk) when λk �= 0
ϕS(AS) when λk = 0

.

Let me comment on these design requirements. Note first that (122) would
deliver the values λk = ϕS(Qk) from which one computes the expectation values
ϕS(B) of all observables for the measurement of which the apparatus was designed.
I will specify later — see (125) — what is meant by the requirement that the result
of the measurement be “without dispersion”, i.e. formally ϕp([X−ϕp(X)I]2) = 0 .

To relate the requirement (123) to the familiar textbook description of the
measuring process, consider briefly the particular form it takes in the von Neumann
framework where ϕS is a pure state on the algebra AS = B(HS) and the Qk are
one-dimensional; let {Φk} be an orthonormal basis in HS with QkΦl = δklΦk ; in
term of this basis, one can write, without loss of generality ϕS(AS) = (ΦS , ASΦS)
with ΦS =

∑
k ckΦk ; and λk = |ck|2 . Then (123) takes the form ϕp(AS ⊗ IM ) =

Tr(ρpAS) with ρp =
∑
k |ck|2Qk . Hence, viewed from AS , the pure state-vector

ΦS evolves to the mixed density matrix ρp . In this sense, (123) is the general form
of the so-called von Neumann (non-selective) collapse postulate for the case where
the initial state of the system is not necessarily a pure state.

Note that (122) and (123) are reduced descriptions of the evolution of the state
ϕo : these requirements demand only that the evolution of special observables be
followed; these special observables are: (a) the pointers Ml of the apparatus; and
(b) all observables AS pertaining to the system S . In particular, the requirement
(123) would not be incompatible with a measuring process (which we denote as
−→ ) driven by a unitary evolution of the composite system ∪ apparatus .

In line with von Neumann’s “relative frequencies” view of quantum probability
— explicitly inspired by von Mises [von Neumann, 1932c, fn. 156] — the general
form (123) applies best to a measurement performed on a beam of particles rather
than separately on individual particles. Hence — in line with the interpretation
of ‘states of physical systems’ stated in subsection 3.1 — this description of the
measuring process understands that the initial state of the system S is viewed
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as a summary of its preparation. For instance, in the historical Stern–Gerlach
experiment, an incident beam of silver atoms was produced by evaporation from
a heated oven; cf. [Jammer, 1966, p. 133]. Thus, what the experimentalists knew
was the direction of the beam and the temperature of the oven: the latter surely
a macroscopic notion! Similarly, the initial state of the measuring apparatus is
viewed here as the result of its preparation; adhering to this pragmatic interpreta-
tion, one ought not to impose on the initial state of a (large!) measuring apparatus
that it be pure: plainly this would require an exhorbitant amount of information
to be entered in its preparation — information that ought not to be actually nec-
essary for the adequate performance of measurements aiming to collect the simple
microscopic information described by the distribution {λk} .

Due to all sorts of pesky circumstances — e.g. the recurrences present in finite
systems or the intrusion of the “Wigner’s friend” (introduced earlier in this sub-
section) — our apparatus builders would be exposed to dire frustrations, unless
they be granted enough time and space so that the following idelaization is a close
enough approximation — to a degree chosen in advance — of their implementation
of the measuring process ϕo −→ ϕp , namely:

(124) ϕp(X) := lim
t→∞ lim

|Λ|→∞
ϕo(αΛ

t [X]) with X =




AS ⊗ IM
or
IS ⊗MΛ

k

,

choosing the pointers so that in the thermodynamical limit, lim|Λ|→∞ Mk exist
and define ‘essential’ observables — in the sense of subsection 6.2 above; in partic-
ular, the reader may want to review the connection with superselection rules — i.e.
observables that the orthodox theory would construe to be classical. The require-
ment “without dispersion” in (122) may now be specified, namely one demands
that

(125) lim
t→∞ lim

|Λ|→∞
[
ϕo(αt[(Mk]2)Λ − {ϕo(αt[(Mk])Λ}2

]
= 0 .

There is even an additional benefit in allowing the thermodynamical limit in
(124), namely that one may demand that the experimental set-up be such that the
result (124) of the measurement be empirically insensitive to local perturbations in
the preparation of the initial state ϕM of the apparatus. This requirement means
that ϕp(X) in (124) do not change when the initial state ϕM of the apparatus is
replaced by any state ψM : A ∈ AM → ϕM (D∗AD) ∈ |C where D is any (quasi-
)local element of AM satisfying the normalization ϕ(D∗D) = 1 ; or, even more
generally, by any state ψM normal on the von Neumann algebra πϕM

(AM )′′ . Such
robustness pertains to the pragmatic demand that the preparation of a large(!)
measuring apparatus be reasonably simple.

Here ends — at least for the main purpose of this subsection — the list of spec-
ifications demanded from our quantum engineers when constructing a measuring
device.

The contribution of algebraic QSP to the solution of the quantum measurement
problem is this: the above programme can be completely implemented in the
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sense that specific and rigorously controllable models have been built satisfying
all of the above specifications. These models therefore establish the applicability
of the algebraic approach to the foundations of physics beyond the limitations
of what Wigner called the orthodox theory. In sum, this approach encompasses
the description of classical regimes unknown within the confines of the orthodox
theory; cf. e.g. [Hepp, 1972; Whitten-Wolfe and Emch, 1976; Emch, 2003; Sewell,
2005] and other references listed in [Landsman, 2006, subsection 6.6].

An objection to (124), namely that real-world laboratories are finitely extended
in space and in time is seductive. But it neglects the main understanding that
presides over taking a limit: recall subsection 6.1 above. Here also the limit defines
an asymptotic regime; thus, the control of the limiting procedures allows to take
into account that good experiments do require expenses in room and allotments of
time, each to be evaluated in terms of the precision to which one aims. The mea-
suring process involves a particular instance of a general macroscopic phenomenon,
the “approach to equilibrium”. In subsection 6.1(3) above, I commented again on
the role of the thermodynamical limit |Λ| → ∞ in the emergence of this regime.

The role of the subsequent limit t → ∞ deserves a further comment in the
context of the measurement process: it does not say that an infinite time is required
to register the result of the measurement, but rather, in accordance with our
general understanding of the role of limits, the existence of the limit t→∞ asserts
that for every ε > 0 , there exists a time Tε that can be evaluated, and is such
that the measurement has been completed for ever, within the required precision ε ,
when t > Tε . Thus in contrast with the constraint of the orthodox theory requiring
that the unitary evolution be sharply interrupted at the ‘end’ of the measurement
process, our quantum engineers do not need to make provisions for switching off
the measuring device. Now, not taking first the limit |Λ| → ∞ , only requires them
to review their estimate of the effects of the finite size of the apparatus; from this
estimate, they evaluate how large the apparatus must be so as to allow a generous
time TΛ before which they have to switch off the measurement and avoid some
nasty kickback. The controlled limit |Λ| → ∞ is thus not a pragmatic limitation
to the validity of the theory any more than is the theoretical implementation of
the thermodynamical limit (N →∞ , |Λ| → ∞ with D := N/|Λ| fixed) to remove
astronomically long recurrences from the description of the cooloing down of your
everyday cup of coffee. The description obtained in the thermodynamical limit is
closer to the pragmatic account of the observed cooling down than would be its
description as occuring in a finite system: the latter description would indeed be
hampered by superfluous, irrelevant details. To sum up, in the actual construction
of models for the measuring process, the problems that our quantum engineers
encountered were not with satisfying the ancillary condition Tε � τ � TΛ where
τ denoted the laboratory time-scale on their wristwatch. See nevertheless [Bell,
1975].

While the models do prove that all the demands of the above programme are
compatible, it is in the very nature of models that they cannot prove that
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(i) the conditions of the programme are necessary to an understanding of the
measuring process; nor

(ii) the conditions of the programme are sufficient, as other demands may be
made, and other conditions may need to be required.

Concerning remark (i), the programme presented above emphasizes possible
contributions that QSP can bring to an understanding of the quantum measure-
ment process. One specific aim was to avoid having the theories of the measure-
ment process beached on a conceptual sandbar between the quantum and classical
worlds: the programme exploits circumstances where QSP shows how the quan-
tum description of the one world encompasses conceptually important classical
aspects. Thus the irreducible quantum/classical dichotomy has now faded into
more comprehensive views, QSP being one of them. The emergence of classical
behaviour in quantum theory is also one of the significant aspects of the deco-
herence programme, although the likely confluence of these two approaches has
not yet gained universal acceptance. For a fair description of the latter issues,
and their bearing on the measurement problem, I would recommend [Landsman,
2006]; and for a vivid and somewhat confrontational exchange on the relevance of
decoherence in this context, [Anderson, 1994; Adler, 2003].

Remark (ii) above has at least two aspects. One of these aspects is that while
the models that establish the internal consistency of the programme discussed in
this subsection are treated with mathematical rigour, they can hardly be viewed
as sufficiently realistic to satisfy our colleagues on the laboratory floor. Another
aspect of the above remark (ii) on sufficiency, is that I do not know how the
algebraic QSP would be helpful for formulating some of the remaining challenging
questions still open in the theory of quantum measurement. If I had to single out
one among these, I would direct attention first to measurements now “routinely”
performed on an individual quantum system; cf. e.g. [Rauch and Werner, 2000]
or [Rauch, 2005]. Whether the so-called “many worlds” and “consistent histories”
approaches are really called for here is too wide a question to be addressed in this
essay on QSP; cf. [Dickson, 2006; Landsman, 2006].

6.4 Mathematical physics vs. theoretical physics

Several largely unsolved problems may have been overshadowed by the abundant
literature on the “return to equilibrium” of small or local deviations that are driven
back to equilibrium by a thermal bath; for models of such coupled systems, see
paragraphs A and C in subsection 6.4.

Most of the problems discussed below occur also in classical statistical physics;
QSP offers little to alleviate them, but a little it does do, and here is how.

The first of these problems is to avoid an infinite regress: if a (small) system
of interest is driven to equilibrium by a (large) thermal reservoir, whence is the
reservoir getting its own canonical equilibrium and temperature? Rather than a
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conceptual answer to this question, the KMS condition was originally conceived
as a clever, but formal, transcription — from theoretical to mathematical physics
— that turned out to be a wonderfully useful organizing tool.

This very success demanded that the KMS condition be given a deeper physical
justification. Substantial answers were found later, diversely expressed as several
stability conditions. The latter were presented in subsection 5.4 in an order in
which their formulations increasingly sound more like bona fide variational prin-
ciples. This development is thus in line with the widely held opinion that “a
variational principle is considered to be the supreme form of a law of physics”
[Itô, 1987, Art. 441]. This is good, but as in other fields, a philosophical question
persists as to whether any science ought to be solely, or ultimately, founded on
variational principles as mechanics and so many sciences have since the eighteenth
century. Theoretical physics may have offered some other considerations in this
regard, such as the “big-bang” and “decoherence,” but their explanatory value,
consistency and adequacy remain to be proven. In the meantime, it is not unrea-
sonable to prefer the updated variational principles with which algebraic QSP has
proven able to refine their more traditional versions.

A second problem raised by the physics literature on the return to equilibrium
concerns the description of global transport phenomena such as heat conduction
and electric resistivity due to the interactions between electrons and phonons or
random impurities in metals. Van Hove proposed a programme — of which the
van Hove limiting procedure is a part, see subsection 6.1(4) above — to approach
this type of question. One of the remaining problems is to produce mathemat-
ically clean arguments for the claims that are made. An even larger problem
still to be fully mastered is to go beyond the contingencies of particular ad hoc
models. This will require one to explain in physical terms amenable to a math-
ematical description the general microscopic properties actually responsible for
a realistic delineation of the time-scales and/or regimes in which one observes
such macroscopic phenomena; the first examples that come to mind are New-
ton’s “cooling law” and Fourier’s “heat” theory, i.e. the exponential tempera-
ture equilibration of temperatures and the flow of heat that governs the steady
temperature distribution in materials placed between sources at different tem-
peratures. The materials presented in this essay, particularly in subsections 3.5
[e.g. eqn. (57)] or 5.4 [e.g. eqn. (86)], exemplify some of the first steps that
have been taken profitably along this road. Further, and promising but still for-
mal, results have been obtained in [Eckman et al., 1999; Bonetto et al., 2000;
Bach et al., 2000], yet much remains to be done to bridge these with earthly con-
cerns for an understanding that would allow one to compute realistic estimates of
the value of specific material transport coefficients.

A third and perhaps more troubling problem. Time-reversal or not [Earman,
2002; Fredenhagen, 2003], even in my dreams I have not yet seen any “cosmological
arrow of time” flying convincingly through the landscape of the C∗−algebraic
approach developed for QSP ... but neither may such a flight be ruled out as a
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heretical foray into this formalism [Buchholz, 2003].

A fourth direction in which to look for extensions of the programme of QSP is
concerned with situations arising far away from equilibrium.

Yet a fifth arena for investigations has opened, where a connection with the
algebraic approach to QSP is emerging. It will indeed be interesting to observe
whether and how the maturing mathematical theory of quantum stochastic pro-
cesses [Parthasarathy, 1995; Hudson, 1998] will or may throw new light on the
reduction process of statistical mechanics.

Finally, QSP has of course found most of its pragmatic confirmation in the
praxis of condensed matter physics and the extension of the latter into the study of
complex phenomena. However, getting enmeshed here into the technical concrete
details indispensable to the full mastery of this praxis would have carried us much
beyond the confines of this essay. A richly documented overview of the scope of
this field of enquiry may be found in [Anderson, 1994]. Yet, as with [Feynman,
1998], such matters need to be taken up again to weave in more threads and knots
as well as to incite new philosophical reflections:

Vingt fois sur le métier remettez votre ouvrage ...
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Abhängigkeit der Wärmestrahlung von Temperatur aus der electromagnetischen Lichttheorie.
Annalen der Physik und Chemie, 22:291–294, 1884.

[Bonch-Bruevich and Tyablikov, 1962] V.L. Bonch–Bruevich and S.V. Tyablikov. The Green
function method in statistical mechanics. North–Holland, Amsterdam, 1962.

[Bonetto et al., 2000] F. Bonetto, J.L. Lebowitz and L. Rey–Bellet. Fourier’s law: a challenge
to theorists, pages 128–150 in [Fokas et al., 2001].

[Borchers, 1993] H.J. Borchers. On modular inclusion and spectrum condition. Letters in Math-
ematical Physics, 27:311-323, 1993.

[Borchers, 1995] H.J. Borchers. On the use of modular groups in quantum field theory. Annales
de l’Institut Henri Poincaré, 67:331–382, 1995.
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gas et sur son rapport avec la théorie de la diffusion. Bulletin International de l’Académie
des Sciences de Cracovie, 1906:202–213; reprinted with translation, pages 29–42 in [Ingarden
et al., 1999]. See also [Smolukowski, 1906b].

[Smolukowski, 1906b] M. Smolukowski. Zur kinetischen Theorie der Brownschen Molekular Be-
wegung und der Suspensionen. Annalen der Physik, 21:755–780, 1906.

[Smolukowski, 1916] M. Smolukowski. Drei Vorträge über Diffusion, Brownsche Molekularbe-
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ISSUES IN THE PHILOSOPHY OF
COSMOLOGY

George F R Ellis

1 INTRODUCTION

Cosmology is the study of the large-scale structure of the Universe, where ‘the
Universe’ means all that exists in a physical sense [Harrison, 2000]. This is to be
distinguished from the Observable Universe, namely that part of the Universe con-
taining matter accessible to our astronomical observations, which is a subset of the
Universe proper. Thus cosmology considers the vast domain of galaxies, clusters
of galaxies, quasi-stellar objects, etc., observable in the sky by use of telescopes of
all kinds, examining their nature, distribution, origins, and relation to their larger
environment. Observational cosmology [Hoyle, 1960; Kristian and Sachs, 1966;
Gunn et al., 1978; Sandage et al., 1993; Bothun, 1998] aims to determine the
large-scale geometry of the observable universe and the distribution of matter in
it from observations of radiation emitted by distant objects, while physical cos-
mology [Peebles, 1971; Sciama, 1971; Weinberg, 1972; Silk, 2001; Perkins, 2005;
Dodelson, 2003] is the study of interactions during the expansion of the uni-
verse in its early hot big bang phase, and astrophysical cosmology [Sciama, 1971;
Peebles, 1993b; Padmanbhan, 1993; Rees, 1995; Dodelson, 2003] studies the re-
sulting later development of large-scale structures such as galaxies and clusters
of galaxies. Various forms of quantum cosmology (see e.g. [Hawking, 1993;
Gibbons et al., 2003; Copeland et al., 2005]) and studies of particle physics aspects
of cosmology [Kolb and Turner, 1990; Peacock, 1999; Allday, 2002; Perkins, 2005;
Dodelson, 2003] attempt to characterize the epochs before the hot big bang phase.
These studies function in a mainly symbiotic way, each informing and supplement-
ing the others to create an overall cosmological theory of the origin and evolution
of the physical universe [Bondi, 1960; Harrison, 2000; Silk, 1997].

A unique role of the universe is in creating the environment in which galaxies,
stars, and planets develop, thus providing a setting in which local physics and
chemistry can function in a way that enables the evolution of life on planets such
as the Earth. If the cosmological environment were substantially different, local
conditions would be different and in most cases we would not be here [Carr and
Rees, 1979; Davies, 1982; Barrow and Tipler, 1984; Tegmark, 1998; Rees, 1999]
— indeed no biological evolution at all would have taken place. Thus cosmology
is of substantial interest to the whole of the scientific endeavor, for it sets the
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framework for the rest of science, and indeed for the very existence of observers
and scientists. It is unique as the ultimate historical/geographical science.

Cosmology as a serious scientific study began with the discovery of Einstein’s
static universe in 1917, followed by the key observational discovery of the lin-
ear redshift-distance relation by Hubble in 1929, indicating the expansion of the
universe, and the development of theoretical understanding of the geometry and
dynamics of the non-static Friedmann-Lemâıtre models with their Robertson-
Walker geometry [North, 1965; Berendzen et al., 1976; Smith, 1982; Ellis, 1989;
Kragh, 1996]. It has been transformed in the past decades into a mainstream
branch of physics [Barnett et al., 1996; Nilsson et al., 1991] by the linking of nuclear
and particle physics theories to observable features of the cosmos [Weinberg, 1972;
Kolb and Turner, 1990; Peacock, 1999; Allday, 2002; Dodelson, 2003], and into
an important part of astronomy because of the massive flow of new astronomical
data becoming available [Gunn et al., 1978; Harwit, 1984; Bothun, 1998], partic-
ularly through new ground-based telescopes such as Keck and through balloon
and satellite observatories such as the Hubble Space telescope (optical and ultra-
violet), IRAS (infra-red), ROSAT (x-ray), and COBE and WMAP (microwave).
Thus the subject has progressed from a mainly mathematical and even philosoph-
ical exercise to an important part of mainstream science, with a well-established
standard model confirmed by various strands of evidence [Weinberg, 1972; Peebles
et al., 1991; Silk, 1997; Peacock, 1999; Dodelson, 2003]. Nevertheless because of
its nature, it is different from any other branch of the natural sciences, its unique
features playing themselves out in the ongoing interaction between speculation,
theory, and observation.

Cosmology’s major difference from the other sciences is the uniqueness of its
object of study — the Universe as a whole [McCrea, 1953; McCrea, 1960; Munitz,
1962] — together with its role as the background for all the rest of physics and
science, the resulting problems being accentuated by the vast scale of the universe
and by the extreme energies occurring in the very early universe. We are unable
to manipulate in any way its originating conditions, and there are limitations
on our ability to observe both to very distant regions and to very early times.
Additionally, there are limits to our ability to test the physics relevant at the
earliest epochs. Consequently it is inevitable that (as is also the case for the other
historical sciences) philosophical choices will to some degree shape the nature of
cosmological theory, particularly when it moves beyond the purely descriptive to
an explanatory role [Matravers et al., 1995] — that move being central to its
impressive progress in recent decades. These philosophical choices will strongly
influence the resulting understanding, and even more so if we pursue a theory with
more ambitious explanatory aims.

After a substantial outline of present day cosmology in Section 2, these issues
will be explored in the subsequent sections, based on a series of thirty-four Theses
clustered around nine key aspects of the nature of cosmology, broadly speaking
relating to geometry, physics, and philosophy, that frame the context of the philo-
sophical issues facing cosmology and its relation to local physics. I believe this
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formulation helps focus on specific issues of importance in this relation. To those
who believe cosmology is simply about determining a number of physical parame-
ters, this will seem a vastly over-complicated approach; but then a major purpose
of this paper is precisely to counter such simplistic visions of the nature of cos-
mology. For other reports on the philosophy of cosmology, see [McCrea, 1970;
Munitz, 1962; Ellis, 1991; Leslie, 1994; Leslie, 1998].

2 OUTLINE OF COSMOLOGY

A series of basic features of present day cosmology are now well established.
Decades of painstaking work has established the distances of galaxies and hence
the huge scale of the universe, as well as the basic feature that the universe is ex-
panding and evolving; the old dream of a static universe is unviable [Ellis, 1990].
Cosmology proceeds by assuming the laws of physics are the same everywhere, and
underlie the evolution of the universe. The dominant role of gravity, despite its
weakness, then arises from the fact that it is the only known force acting effectively
on astronomical scales (the other known long-range force is electromagnetism, but
in this case negative charges balance out positive charges, leaving no resultant
large-scale effect). Consequently, cosmological theory describing all but the very
earliest times is based on the classical relativistic theory of gravitation, namely
Einstein’s General Theory of Relativity [Malament, 2006], with the matter present
determining space-time curvature and hence the evolution of the universe. The
way this works out in any particular situation depends on the nature of the mat-
ter/fields present, described by their effective equations of state and interaction
potentials.

The survey of cosmology in this section looks successively at the basic models
of cosmology; the hot big bang; cosmological observations, including the Cosmic
Background Radiation anisotropy spectrum; causal and visual horizons, and their
implications; recent theoretical developments (including inflation); the very early
universe; and the present concordance model, which includes both dark matter
and dark energy.

2.1 Basic Theory

Cosmology starts by assuming that the large-scale evolution of spacetime can be de-
termined by applying Einstein’s field equations of Gravitation (‘EFE’) everywhere:
global evolution will follow from local physics. The standard models of cosmology
[Robertson, 1933; Ehlers, 1993; Weinberg, 1972; Hawking and Ellis, 1973] are based
on the assumption that once one has averaged over a large enough physical scale,
isotropy is observed by all fundamental observers (the preferred family of observers
associated with the average motion of matter in the universe). When this isotropy
is exact, the universe is spatially homogeneous as well as isotropic [Walker, 1944;
Ehlers, 1993; Ellis, 1971a]. The matter motion is then along irrotational and shear-
free geodesic curves with tangent vector ua, implying the existence of a canoni-
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cal time-variable t obeying ua = −t,a. The Robertson-Walker (‘RW’) geome-
tries used to describe the large-scale structure of the universe [Robertson, 1935;
Walker, 1936] embody these symmetries exactly. Consequently they are confor-
mally flat, that is, the Weyl tensor is zero:

(1) Cijkl := Rijkl+ 1
2 (Rikgjl+Rjlgik−Rilgjk−Rjkgil)− 1

6R(gikgjl−gilgjk) = 0;

this tensor represents the free gravitational field, enabling non-local effects such as
tidal forces and gravitational waves which do not occur in the exact RW geometries.

Comoving coordinates can be chosen so that the metric takes the form:

(2) ds2 = −dt2 + S2(t) dσ2, ua = δa0 (a = 0, 1, 2, 3)

where S(t) is the time-dependent scale factor, and the worldlines with tangent
vector ua = dxa/dt represent the histories of fundamental observers. The space
sections {t = const} are surfaces of homogeneity and have maximal symmetry:
they are 3-spaces of constant curvature K = k/S2(t) where k is the sign of K. The
normalized metric dσ2 characterizes a 3-space of normalized constant curvature k;
coordinates (r, θ, φ) can be chosen such that

(3) dσ2 = dr2 + f2(r)
(
dθ2 + sin2 θdφ2

)
where f(r) = {sin r, r, sinh r} if k = {+1, 0, −1} respectively. The rate of expan-
sion at any time t is characterised by the Hubble parameter H(t) = Ṡ/S.

To determine the metric’s evolution in time, one applies the Einstein Field
Equations (‘EFE’), showing the effect of matter on space-time curvature, to the
metric (2,3). Because of local isotropy, the matter tensor Tab necessarily takes a
perfect fluid form relative to the preferred worldlines with tangent vector ua:

(4) Tab = (µ + p/c2)uaub + (p/c2)gab

(c is the speed of light). The energy density µ(t) and pressure term p(t)/c2 are
the timelike and spacelike eigenvalues of Tab. The integrability conditions for the
EFE are the energy-density conservation equation

(5) T ab;b = 0 ⇔ µ̇ + (µ + p/c2)3Ṡ/S = 0 .

This becomes determinate when a suitable equation of state function w := pc2/µ
relates the pressure p to the energy density µ and temperature T : p = w(µ, T )µ/c2

(w may or may not be constant). Baryons have {pbar = 0⇔ w = 0} and radiation
has {pradc2 = µrad/3 ⇔ w = 1/3, µrad = aT 4

rad}, which by (5) imply

(6) µbar ∝ S−3, µrad ∝ S−4, Trad ∝ S−1.

The scale factor S(t) obeys the Raychaudhuri equation

(7) 3S̈/S = −1
2
κ(µ + 3p/c2) + Λ,
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where κ is the gravitational constant and Λ the cosmological constant.1 This
shows that the active gravitational mass density of the matter and fields present
is µgrav := µ + 3p/c2 . For ordinary matter this will be positive:

(8) µ + 3p/c2 > 0 ⇔ w > −1/3

(the ‘Strong Energy Condition’), so ordinary matter will tend to cause the universe
to decelerate (S̈ < 0). It is also apparent that a positive cosmological constant
on its own will cause an accelerating expansion (S̈ > 0). When matter and a
cosmological constant are both present, either result may occur depending on
which effect is dominant. The first integral of equations (5, 7) when Ṡ �= 0 is the
Friedmann equation

(9)
Ṡ2

S2
=

κµ

3
+

Λ
3
− k

S2
.

This is just the Gauss equation relating the 3-space curvature to the 4-space cur-
vature, showing how matter directly causes a curvature of 3-spaces [Ehlers, 1993;
Ellis, 1971a]. Because of the spacetime symmetries, the ten EFE are equivalent
to the two equations (7, 9). Models of this kind, that is with a Robertson-Walker
(‘RW’) geometry with metric (2, 3) and dynamics governed by equations (5, 7, 9),
are called Friedmann-Lemâıtre universes (‘FL’ for short). The Friedmann equa-
tion (9) controls the expansion of the universe, and the conservation equation (5)
controls the density of matter as the universe expands; when Ṡ �= 0 , equation (7)
will necessarily hold if (5, 9) are both satisfied.

Given a determinate matter description (specifying the equation of state w =
w(µ, T ) explicitly or implicitly) for each matter component, the existence and
uniqueness of solutions follows both for a single matter component and for a com-
bination of different kinds of matter, for example µ = µbar + µrad + µcdm + µν
where we include cold dark matter (cdm) and neutrinos (ν). Initial data for such
solutions at an arbitrary time t0 (eg. today) consists of,

• The Hubble constant H0 := (Ṡ/S)0 = 100h km/sec/Mpc;

• A dimensionless density parameter Ωi0 := κµi0/3H2
0 for each type of matter

present (labelled by i);

• If Λ �= 0, either ΩΛ0 := Λ/3H2
0 , or the dimensionless deceleration parameter

q0 := −(S̈/S)0H−2
0 .

Given the equations of state for the matter, this data then determines a unique
solution {S(t), µ(t)}, i.e. a unique corresponding universe history. The total matter
density is the sum of the terms Ωi0 for each type of matter present, for example

(10) Ωm0 = Ωbar0 + Ωrad0 + Ωcdm0 + Ων0,
1A cosmological constant can also be regarded as a fluid with pressure p related to the energy

density µ by {p = −µc2 ⇔ w = −1}. For the history of the cosmological constant, see [Earman,
2001; Earman, 2003].
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and the total density parameter Ω0 is the sum of that for matter and for the
cosmological constant:

(11) Ω0 = Ωm0 + ΩΛ0.

Evaluating the Raychaudhuri equation (7) at the present time gives an important
relation between these parameters: when the pressure term p/c2 can be ignored
relative to the matter term µ (as is plausible at the present time),2

(12) q0 =
1
2

Ωm0 − ΩΛ0.

This shows that a cosmological constant Λ can cause an acceleration (negative q0);
if it vanishes, the expression simplifies: Λ = 0⇒ q = 1

2 Ωm0, showing how matter
causes a deceleration of the universe. Evaluating the Friedmann equation (9) at
the time t0, the spatial curvature is

(13) K0 := k/S2
0 = H2

0 (Ω0 − 1).

The value Ω0 = 1 corresponds to spatially flat universes (K0 = 0), separating
models with positive spatial curvature (Ω0 > 1 ⇔ K0 > 0) from those with
negative spatial curvature (Ω0 < 1⇔ K0 < 0).

The FL models are the standard models of modern cosmology, surprisingly effec-
tive in view of their extreme geometrical simplicity. One of their great strengths
is their explanatory role in terms of making explicit the way the local gravita-
tional effect of matter and radiation determines the evolution of the universe as a
whole, this in turn forming the dynamic background for local physics (including
the evolution of the matter and radiation).

2.1.1 The basic solutions

For baryons (pressure-free matter) and non-interacting radiation, the Friedmann
equation (9) takes the form

(14)
3Ṡ2

S2
=

A

S3
+

B

S4
+

Λ
3
− 3k

S2

where A := κµbar0S
3
0 and B := κµrad0S

4
0 . The behaviour depends on the cosmo-

logical constant Λ [Robertson, 1933; Rindler, 2001].
When Λ = 0, the universe starts off at a very dense initial state — according

to the classical theory, an initial singularity where the density and curvature go
infinite (see Sec. 2.1.2). Its future fate depends on the value of the spatial curva-
ture, or equivalently the density parameter Ω0. The universe expands forever if
{k = 0 ⇔ Ω0 = 1} or {k < 0 ⇔ Ω0 < 1}, but collapses to a future singularity if
{k > 0⇔ Ω0 > 1}. Thus Ω0 = 1 corresponds to the critical density µcrit separat-
ing Λ = 0 FL models that recollapse in the future from those that expand forever,
and Ω0 is just the ratio of the matter density to this critical density:

2Assuming we represent ‘dark energy’ (Sec. 2.3.6) as a cosmological constant.
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(15) {Ωcrit = 1⇔ κµcrit = 3H2
0} ⇒ Ω0 := κµ0/3H2

0 = µ0/µcrit .

When Λ < 0, all solutions start at a singularity and recollapse.
When Λ > 0, if k = 0 or k = −1 all solutions start at a singularity and expand

forever. If k = +1 there can again be models with a singular start, either expanding
forever or collapsing to a future singularity. However in this case a static solution
(the Einstein static universe) is also possible, as well as models asymptotic to this
static state in either the future or the past. Furthermore models with k = +1 can
bounce (collapsing from infinity to a minimum radius and re-expanding).

The dynamical behaviour of these models has been investigated in depth: first
for dust plus a cosmological constant [Robertson, 1933; Rindler, 2001], followed
by perfect fluids, fluids with bulk viscosity, kinetic theory solutions, and scalar
field solutions. Current models employ a realistic mixture of matter components
(baryons, radiation, neutrinos, cold dark matter, a scalar field, and perhaps a
cosmological constant). Informative phase planes show clearly the way higher
symmetry (self-similar) models act as attractors and saddle points for the other
models [Madsen and Ellis, 1988; Ehlers and Rindler, 1989].

The simplest expanding solutions are the following:

1. The Einstein-de Sitter model, for which {p = 0, Λ = 0, k = 0} ⇒ Ω0 = 1.
This is the simplest expanding non-empty solution:

(16) S(t) = C t2/3

starting from a singular state at time t = 0 (C is an arbitrary constant). Its
age (the proper time since the start of the universe) when the Hubble con-
stant takes the value H0 is τ0 = 2

3H0
. This is a good model of the expansion

of the universe since radiation domination ended until the recent times when
a cosmological constant started to dominate the expansion. It is also a good
model of the far future universe if k = 0 and Λ = 0.

2. The Milne model, for which {µ = p = 0, Λ = 0, k = −1} ⇒ Ω0 = 0, giving
a linearly expanding empty solution:

(17) S(t) = C t.

This is just flat space-time as seen by a uniformly expanding set of observers
[Rindler, 2001, pp. 360-363], singular at t = 0. Its age is τ0 = 1

H0
. It is a

good model of the far future universe if k < 0 and Λ = 0.

3. The de Sitter universe, for which {µ = p = 0, Λ �= 0, k = 0} ⇒ Ω0 = 0,
giving the steady state expanding empty solution:3

(18) S(t) = C exp (Ht),

3The Steady State universe of Bondi, Hold and Hoyle [Bondi, 1960] utilised this metric, but
was non-empty as they abandoned the EFE.
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where C and H are constants. As the expansion rate is constant forever,
there is no start and its age is infinite.4 It is a good model of the far future
universe for those cases which expand forever with Λ > 0. It can alternatively
be understood as a solution with Λ = 0 and containing matter with the
exceptional equation of state µ + p/c2 = 0. There are other RW forms of
the de Sitter Universe: a geodesically complete form with k = +1, S(t) =
S0 cosh Ht (a regular bounce), and another geodesically incomplete form
with k = −1 , S(t) = S0 sinh Ht (a singular start). This lack of uniqueness is
possible because this is a spacetime of constant curvature, with no preferred
timelike directions or space sections [Schrödinger, 1956; Hawking and Ellis,
1973; Rindler, 2001].5

2.1.2 An initial singularity?

The above are specific models: what can one say generically? When the inequality
(8) is satisfied, one obtains directly from the Raychaudhuri equation (7) the

Friedmann-Lemâıtre Universe Singularity Theorem [Ehlers, 1993;
Ellis, 1971a]: In a FL universe with Λ ≤ 0 and µ + 3p/c2 > 0 at all
times, at any instant t0 when H0 ≡ (Ṡ/S)0 > 0 there is a finite time
t∗: t0 − (1/H0) < t∗ < t0, such that S(t) → 0 as t → t∗; the universe
starts at a space-time singularity there, with µ → ∞ and T → ∞ if
µ + p/c2 > 0.

This is not merely a start to matter — it is a start to space, to time, to physics
itself. It is the most dramatic event in the history of the universe: it is the start of
existence of everything. The underlying physical feature is the non-linear nature of
the EFE: going back into the past, the more the universe contracts, the higher the
active gravitational density, causing it to contract even more. The pressure p that
one might have hoped would help stave off the collapse makes it even worse because
(consequent on the form of the EFE) p enters algebraically into the Raychaudhuri
equation (7) with the same sign as the energy density µ. Note that the Hubble
constant gives an estimate of the age of the universe: the time τ0 = t0 − t∗ since
the start of the universe is less than 1/H0.

This conclusion can in principle be avoided by a cosmological constant, but in
practice this cannot work because we know the universe has expanded by at least
a ratio of 6, as we have seen objects at a redshift6 of 5; from (14), the cosmological
constant would have to have an effective magnitude at least 63 = 216 times the
present matter density to dominate and cause a turn-around then or at any earlier
time, and so would be much bigger than its observed present upper limit (of the

4It is however singular in that it is geodesically incomplete; this metric covers only half the
de Sitter hyperboloid [Schrödinger, 1956; Hawking and Ellis, 1973].

5There is also a static (non-RW) form of the metric — the first form of the metric discovered.
6The redshift z for light emitted at te and observed at t0 is related to the expansion by

1 + z = S(t0)/S(te), see Sec. 2.3.3.
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same order as the present matter density). Accordingly, no turn around is possible
while classical physics holds [Ehlers and Rindler, 1989]. However energy-violating
matter components such as a scalar field (Sec. 2.6) can avoid this conclusion, if
they dominate at early enough times; but this can only be when quantum fields
are significant, when the universe was at least 1012 smaller than at present.

Because Trad ∝ S−1 (eqn.(6)), a major conclusion is that a Hot Big Bang must
have occurred; densities and temperatures must have risen at least to high enough
energies that quantum fields were significant, at something like the GUT energy.
The universe must have reached those extreme temperatures and energies at which
classical theory breaks down.

2.2 The hot big bang

The matter and radiation in the universe gets hotter and hotter as we go back in
time towards the initial quantum state, because it was compressed into a smaller
volume. In this Hot Big Bang epoch in the early universe, we can use standard
physical laws to examine the processes going on in the expanding mixture of matter
and radiation [Weinberg, 1972; Perkins, 2005]. A key feature is that about 300,000
years after the start of the Hot Big Bang epoch, nuclei and electrons combined to
form atoms. At earlier times when the temperature was higher, atoms could not
exist, as the radiation then had so much energy it disrupted any atoms that tried to
form into their constituent parts (nuclei and electrons). Thus at earlier times mat-
ter was ionized, consisting of negatively charged electrons moving independently
of positively charged atomic nuclei. Under these conditions, the free electrons in-
teract strongly with radiation by Thomson scattering. Consequently matter and
radiation were tightly coupled in equilibrium at those times, and the Universe was
opaque to radiation. When the temperature dropped through the ionization tem-
perature of about 4000K, atoms formed from the nuclei and electrons, and this
scattering ceased: the Universe became very transparent (today we are able to see
galaxies at enormous distances from us). The time when this transition took place
is known as the time of decoupling — it was the time when matter and radiation
ceased to be tightly coupled to each other, at a redshift zdec 	 1100 [Dodelson,
2003]. By (6), the universe was radiation dominated (µrad 
 µmat) at early times
and matter dominated (µrad � µmat) at late times;7 matter-radiation density
equality occurred significantly before decoupling (the temperature Teq when this
equality occurred was Teq 	 104K; at that time the scale factor was Seq 	 104S0,
where S0 is the present-day value). The dynamics of both the background model
and of perturbations about that model differ significantly before and after Seq
[Dodelson, 2003].

7The dynamically dominant Cold Dark Matter (Sec. 2.3.6) obeys the same density law (6) as
baryons.
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2.2.1 Cosmic Blackbody Radiation

Radiation was emitted by matter at the time of decoupling, thereafter travelling
freely to us through the intervening space. When it was emitted, it had the form of
blackbody radiation, because this is a consequence of matter and radiation being
in thermodynamic equilibrium at earlier times. Thus the matter at z = zdec forms
the Last Scattering Surface (LSS) in the early universe, emitting Cosmic Blackbody
Background Radiation8 (‘CBR’) at 4000K, that since then has travelled freely with
its temperature T scaling inversely with the scale function of the universe.9 As
the radiation travelled towards us, the universe expanded by a factor of about
1100; consequently by the time it reaches us, it has cooled to 2.75 K (that is,
about 3 degrees above absolute zero, with a spectrum peaking in the microwave
region), and so is extremely hard to observe. It was however detected in 1965, and
its spectrum has since been intensively investigated, its blackbody nature being
confirmed to high accuracy [Partridge, 1995]. Its existence is now taken as solid
proof both that the Universe has indeed expanded from a hot early phase, and
that standard physics applied unchanged at that era in the early universe.

2.2.2 Particle interactions and element formation

The thermal capacity of the radiation is hugely greater than that of the matter. At
very early times before decoupling, the temperatures of the matter and radiation
were the same (because they were in equilibrium with each other), scaling as 1/S(t)
(eqn.(6)). The early universe exceeded any temperature that can ever be attained
on Earth or even in the centre of the Sun; as it dropped towards its present value
of 3 K, successive physical reactions took place that determined the nature of
the matter we see around us today. At very early times and high temperatures,
only elementary particles can survive and even neutrinos had a very small mean
free path; as the universe cooled down, neutrinos decoupled from the matter and
streamed freely through space. At these times the expansion of the universe was
radiation dominated, and we can approximate the universe then by models with
{k = 0, w = 1/3, Λ = 0}, the resulting simple solution of (14) uniquely relating
time to temperature:

(19) S(t) = S0 t1/2, t = 1.92 sec
[

T

1010K

]−2

.

(There are no free constants in the latter equation).
At very early times, even neutrinos were tightly coupled and in equilibrium

with the radiation; they decoupled at about 1010K [Dodelson, 2003, pp. 44-46],
resulting in a relic neutrino background density in the universe today of about
Ων0 	 10−5 if they are massless (but it could be higher depending on their masses).
Key events in the early universe are associated with out of equilibrium phenomena

8This is often called “Cosmic Microwave Background”, or CMB for short. However it is only
microwave at the present epoch.

9This scaling for freely propagating radiation follows from the discussion in Sec. 2.3.3.
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[Dodelson, 2003, p. 58]. An important event was the era of nucleosynthesis, the
time when the light elements were formed. Above about 109K, nuclei could not
exist because the radiation was so energetic that as fast as they formed, they were
disrupted into their constituent parts (protons and neutrons). However below this
temperature, if particles collided with each other with sufficient energy for nuclear
reactions to take place, the resultant nuclei remained intact (the radiation being
less energetic than their binding energy and hence unable to disrupt them). Thus
the nuclei of the light elements — deuterium, tritium, helium, and lithium — were
created by neutron capture. This process ceased when the temperature dropped
below about 108 K (the nuclear reaction threshold). In this way, the proportions
of these light elements at the end of nucleosynthesis were determined; they have
remained virtually unchanged since. The rate of reaction was extremely high; all
this took place within the first three minutes of the expansion of the Universe.
One of the major triumphs of Big Bang theory is that theory and observation are
in excellent agreement provided the density of baryons is low: Ωbar0 	 0.044. Then
the predicted abundances of these elements (25% Helium by weight, 75% Hydrogen,
the others being less than 1%) agrees very closely with the observed abundances.
Thus the standard model explains the origin of the light elements in terms of known
nuclear reactions taking place in the early Universe [Schramm and Turner, 1998].
However heavier elements cannot form in the time available (about 3 minutes).

In a similar way, physical processes in the very early Universe (before nucle-
osynthesis) can be invoked to explain the ratio of matter to anti-matter in the
present-day Universe: a small excess of matter over anti-matter must be created
then in the process of baryosynthesis, without which we could not exist today (if
there were no such excess, matter and antimatter would have all annihilated to
give just radiation [Silk, 2005]). However other quantities (such as electric charge)
are believed to have been conserved even in the extreme conditions of the early
Universe, so their present values result from given initial conditions at the origin
of the Universe, rather than from physical processes taking place as it evolved. In
the case of electric charge, the total conserved quantity appears to be zero: after
quarks form protons and neutrons at the time of baryosynthesis, there are equal
numbers of positively charged protons and negatively charged electrons, so that
at the time of decoupling there were just enough electrons to combine with the
nuclei and form uncharged atoms (it seems there is no net electrical charge on
astronomical bodies such as our galaxy; were this not true, electromagnetic forces
would dominate cosmology, rather than gravity).

After decoupling, matter formed large scale structures through gravitational
instability [Bothun, 1998, pp. 183-222] which eventually led to the formation of
the first generation of stars [Silk, 2005] and is probably associated with the re-
ionization of matter [Dodelson, 2003, p. 73]. However at that time planets could
not form for a very important reason: there were no heavy elements present in the
Universe. The first stars aggregated matter together by gravitational attraction,
the matter heating up as it became more and more concentrated, until its tem-
perature exceeded the thermonuclear ignition point and nuclear reactions started
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burning hydrogen to form helium. Eventually more complex nuclear reactions
started in concentric spheres around the centre, leading to a build-up of heavy
elements (carbon, nitrogen, oxygen for example), up to iron. These elements can
form in stars because there is a long time available (millions of years) for the reac-
tions to take place. Massive stars burn relatively rapidly, and eventually run out
of nuclear fuel. The star becomes unstable, and its core rapidly collapses because
of gravitational attraction. The consequent rise in temperature blows it apart in
a giant explosion, during which time new reactions take place that generate ele-
ments heavier than iron; this explosion is seen by us as a Supernova (“New Star”)
suddenly blazing in the sky, where previously there was just an ordinary star.
Such explosions blow into space the heavy elements that had been accumulating
in the star’s interior, forming vast filaments of dust around the remnant of the
star. It is this material that can later be accumulated, during the formation of
second generation stars, to form planetary systems around those stars. Thus the
elements of which we are made (the carbon, nitrogen, oxygen and iron nuclei for
example) were created in the extreme heat of stellar interiors, and made available
for our use by supernova explosions. Without these explosions, we could not exist.

2.3 Cosmological Observations

Cosmological models only become meaningful when related to astronomical obser-
vations [Hoyle, 1960; Sandage, 1961; Ellis, 1971a; Weinberg, 1972]. These are of
two kinds: astronomical observations of distant matter tells us what was happen-
ing far away in the universe and (because of the finite speed of light) a long time
ago. On the other hand observations of nearby objects (matter on Earth, the solar
system, nearby stars for example) when related to theories of origins tell us what
was happening very near our past world line a very long time ago. The first set
of observations may be characterized as “null cone” observations, the second as
“geological” observations, one of the most important being the determination of
local element abundances, which are then related to nucleosynthesis calculations
(Sec. 2.2.2).

Observations are totally dependent on telescope and detector technology [Har-
wit, 1984; Bothun, 1998]. After the initial establishment of distance scales and
the basic evidence of cosmic homogeneity and expansion in the 1920s and 1930s,
progress was slow until the 1960s when observations were extended from the op-
tical to the entire electromagnetic spectrum. In recent decades cosmology has
changed from a data-poor to a data-rich subject. Massive new data sets are now
available because of the extraordinary improvement of telescope, detector, and
computer technology in recent decades, particularly the advent of new detectors
such as Charge Coupled Devices (CCD’s) and fibre optics (enabling simultaneous
measurement of hundreds of redshifts). We now have not only optical, ultravi-
olet, and infrared observations of galaxies, determining luminosities and spectra
with unprecedented sensitivity, but also radio, X-ray, and gamma-ray sky sur-
veys. Galaxies have been detected up to a redshift of 6 and we have identified
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many quasi-stellar objects and gamma-ray bursters as well as multiple images of
very distant gravitationally-lensed galaxies [Harwit, 1984]. Large-scale structures
(clusters of galaxies, superclusters, walls, and voids) have been identified, with
associated large-scale velocity flows [Bothun, 1998, pp. 85-137].

In addition to large-scale number-count and redshift surveys, we have mea-
sured the background radiation spectrum and anisotropies at all wavelengths. We
identify the radiation as ‘background’ precisely when it is constant on very small
angular scales (as opposed to discrete sources, which appear as isolated objects).
There is a complex relation of this radiation to the intergalactic matter density
and thermal history. The most important component of the background radiation
is the Cosmic Blackbody Radiation (‘CBR’) mentioned above (Sec. 2.2); detailed
observations have mapped its temperature over the whole sky at a sensitivity of
better than one part in 105. However other components of the background radia-
tion (X-ray and radio in particular) convey important information on the temper-
ature and density of intergalactic matter, and hence strongly restrict its possible
thermal history. For example hot matter emits X-rays, so the X-ray background
measurement restricts the amount of hot intergalactic matter allowed; while neu-
tral hydrogen strongly absorbs Ultra-Violet radiation to give the Lyman alpha
spectral absorption line, so absence of such absorption gives strong limits on the
amount of neutral hydrogen and hence on the temperature of intergalactic matter.

2.3.1 Isotropy

The first important point about cosmological observations is that when averaged
on a large enough physical scale (clusters of galaxies and above) they are statis-
tically isotropic about us; there is no direction apparently pointing to the centre
of the universe. The high degree of isotropy of the CBR strongly supports this
conclusion: its temperature is the same in all directions about us to better than
one part in 10,000 after we have allowed for the motion of the Earth relative to
the cosmos (about 250 km/sec), which creates a temperature dipole at one part in
a thousand.10 Any inhomogeneities or anisotropies in the matter distribution lead
to anisotropies in this radiation, as recently measured at only one part in 105 by
the extremely sensitive detectors of the COBE and WMAP satellites. This high
degree of isotropy is the major reason we believe the Universe itself is spatially
homogeneous and isotropic to a good approximation (see Sec. 4.2.2), providing
good observational support for use of the FL universe models as accurate models
of the observed region of the universe.

2.3.2 Distance scale and ages

The underlying problem in all astronomy is determining the distances of observed
objects. This is done by a ‘cosmic distance ladder’ [Bothun, 1998, pp. 25-83]

10The CBR dipole that could be interpreted as due to a major cosmological inhomogene-
ity is rather interpreted as being due to our motion (‘peculiar velocity’) relative to a spatially
homogeneous universe.
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whereby nearest objects have their distance determined by parallax (i.e. essen-
tially by local trigonometry); and more distant ones by a series of consecutive
distance indicators (Cepheid variables, RR Lyrae variables, brightest red super-
giants) until at a cosmological distance, redshift z is a primary distance indicator,
but is contaminated by local velocities of matter relative to the rest-frame of the
universe. Other distance indicators (for example the Tully-Fisher method, the
luminosity function of planetary nebulae, the globular cluster luminosity function,
surface brightness fluctuations) serve to refine the estimates [Bothun, 1998].

Closely associated with the distance scale is determination of the Hubble con-
stant H0 (the present rate of expansion of the universe), because estimates of the
size of the observable region of the universe scale with the Hubble constant. But
the Hubble constant also determines the age of the universe, so its determination
underlies a crucial consistency condition for cosmology: the age of objects in the
universe (rocks, planets, stars, star clusters, galaxies) must be less than the age
of the universe. This condition has been a cause of concern ever since we have
had good estimates of ages and of the Hubble constant.11 It seems not to be vi-
olated by current observations of low redshift objects given the current estimates
of H0 	 70 km/sec/Mpc, giving an age of the universe of about 15 billion years
whereas the oldest star clusters seem to be about 14 billion years old. However it
is very tight, perhaps even problematic, for very distant (and so much younger)
objects [Jain and Dev, 2005].

2.3.3 Observational relations

Light travels on null geodesics xa(λ) in spacetime (the tangent vector ka := dxa/dλ
is such that ka;bk

b = 0, kaka = 0). In a RW geometry, it suffices to consider only
radial null geodesics (by the symmetries of the model, these are equivalent to
generic geodesics). Then from (2) we find that for light emitted at time te and
received at time t0, the comoving radial distance u(t0, t1) := r0 − r1 between
comoving emitters and receivers is given by

(20) {ds2 = 0, dθ = 0 = dφ} ⇒ u(t0, t1) =
∫ t0

t1

dt

S(t)
=
∫ S0

S1

dS

SṠ

with Ṡ given by the Friedmann equation (9). The key quantities related to cos-
mological observations are redshift, area distance (or apparent size), and local vol-
ume corresponding to some increment in distance (determining number counts)
[Sandage, 1961; Ellis, 1971a; Weinberg, 1972]. The redshift z measured for an ob-
ject emitting light of wavelength λe that is observed with wavelength λ0 is given
by

11Indeed Hubble himself never fully accepted the expanding universe theory because of age
difficulties, preferring to refer to a redshift-distance relation rather than a velocity distance
relation [Hubble, 1936]. However the problem has been eased by a series of revisions of the
value of the Hubble constant since then, due to a better understanding of the primary distance
indicators.
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(21) 1 + z :=
λ0

λe
= (1 + zc)(1 + zv),

where zv is the redshift caused by the local peculiar motion of the object observed
(zv = 0 for comoving objects), and zc is the cosmological redshift given by

(22) 1 + zc =
S(t0)
S(te)

.

From eqn.(21), the same ratio of observed to emitted light holds for all wave-
lengths: a key identifying property of redshift. The problem in using redshifts
of objects as a distance indicator is to separate out the cosmological from the
Doppler components, which lead to redshift-space distortions [Dodelson, 2003, pp.
275-282]; this can reasonably be done for a cluster of galaxies by appropriate av-
eraging over cluster members (〈zv〉 = 0 for a comoving cluster). The area distance
r0 of an object at redshift zc and of linear size l which subtends angular size α is
given by12

(23) r0(zc) :=
l

α
= f(u)S(te).

Thus measures of apparent sizes will determine the area distance if the source
physical size is known. The flux of radiation F measured from a point source of
luminosity L emitting radiation isotropically is given by the fraction of radiant
energy emitted by the source in a unit of time that is received by the telescope:

(24) F =
L

4π

1
f2(u)S2(t0)(1 + z)2

;

(the two redshift factors account firstly for time dilation observed between observer
and source, and secondly for loss of energy due to redshifting of photons). The
source’s apparent magnitude m is defined from the flux: m = −2.5log10F + const.
On using (22, 23), equation (24) becomes

(25) F =
L

4π

1
r2
0(1 + z)4

.

showing that measures of magnitudes will determine the area distance if the
source’s intrinsic luminosity is known. On using (23) it follows from (25) that
the point-wise surface brightness of extended objects (the flux received per unit
solid angle) depends only on redshift [Kristian and Sachs, 1966; Ellis, 1971a] —
a key feature in determining detection probabilities and in gravitational lensing
observations. It further follows from this result that a blackbody spectrum emitted
at temperature Te when observed with a redshift z remains a blackbody spectrum
but with observed temperature T0 = Te/(1 + z) — a crucial feature in analyzing
the CBR observations.

12This depends only on zc because apparent shapes and sizes are independent of the motion
of the source.
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Using the Friedmann equation and the relevant equation of state for matter,
the area distance can be determined as a function of redshift zc in terms of the
Hubble constant H0, deceleration parameter q0, and cosmological constant Λ. In
the case of pressure-free matter with vanishing cosmological constant, one obtains
from (20), (9), (22), and (23)13 the Mattig relation [Sandage, 1961]

(26) r0(zc) =
1

H0q2
0

(q0 − 1)(1 + 2q0zc)1/2 + (q0(zc − 1) + 1)
(1 + zc)2

.

Consequently measures of either apparent size of sources of known physical size,
or of radiant flux from sources of known intrinsic luminosity, will determine the
deceleration parameter q0. Generalizations of this relation hold if a cosmological
constant or radiation is present. An interesting aspect is that there is a minimum
apparent size for objects of fixed physical size at some redshift zc = z∗ depending
on the density parameter and the cosmological constant. The past light cone of the
observer attains a maximum area at z∗; the entire universe acts as a gravitational
lens for further off objects, magnifying their apparent size so that very distant
objects can appear to have the same angular size as nearby ones [Hoyle, 1960;
Sandage, 1961; Ellis, 1971a]. For the Einstein-de Sitter universe, the minimum
angular diameter is at z∗ = 1.25; in low density universes, it occurs at higher
redshifts.

The number of objects seen in a solid angle dΩ for a distance increment du (char-
acterized by increments dz, dm in the observable variables z and m) is given by

(27) dN = W (u) ρ(te)S3(te)f(u)dudΩ

where the detection probability or ‘selection function’ is W (u) [Dodelson, 2003,
p. 263] and ρ(te) is the number density of objects at the time of emission (spatial
homogeneity is expressed in the fact that this is independent of the spatial coordi-
nates). The observed total number N of objects measured in a survey is given by
integrating from the observer to the survey limit: in terms of the radial coordinate
re of the source (which can be related to redshifts or magnitudes), N =

∫ re

r0
dN .

If the number of objects is conserved (e.g. observing galaxies in an epoch when
they are neither created nor destroyed), ρ(te) = ρ(t0)(1 + z)3 and we find from
(27) that in the idealized case when W is independent of distance (a reasonable
assumption for relatively nearby objects),

(28) N = Wρ(t0)dΩ
∫ re

r0

f(u)du.

The simple integral has to be separately done for the cases k = +1, 0,−1 [Sandage,
1961].

The above equations enable one to determine observational relations between
observable variables, for example (m, z), (α, z) or (N,m) relations for objects
with known intrinsic properties (known size or luminosity, for example), and so

13Or, more elegantly, from the geodesic deviation equation (see [Ellis and van Elst, 1999b]).
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to observationally determine q0. These relations have to be modified if there
is absorption by an intergalactic medium, gravitational lensing, or anisotropic
emission of radiation; and detailed comparisons with observations have to take into
account the spectrum of the source as well as source detection and identification
probabilities [Harwit, 1984]. Here we encounter the contrast between image and
reality : there can be many objects out there that we either do not detect, or do
not recognize for what they are [Disney, 1976]. An “observational map” relating
source properties to the nature of their images gives a useful view of how this
occurs [Ellis et al., 1984].

One important feature here is that a specific object will look completely differ-
ent at different wavelengths (optical, radio, X-ray for example); indeed it may be
detectable at one wavelength and not at another. This shows very clearly how our
images of reality are dependent on the detectors we use. To get a full picture of
what is out there, we need to use multiple modes of investigation — imaging at
all wavelengths together with intensity, spectral, and polarization measurements
[Harwit, 1984], as well as watching for time variations. A second important feature
is observational selection effects such as the Malmquist bias — if we have a popu-
lation of objects with different luminosities, at large distances we will only see the
more luminous objects (the fainter ones will not be detected); hence the average
luminosity will appear to increase with distance, but this is just an observational
effect rather than the real state of affairs. Using different detection thresholds
controls this effect to some degree.

2.3.4 Number Counts and the visible matter density

Number counts of galaxies as a function of redshift or luminosity show approxi-
mate spatial homogeneity of the universe [Hubble, 1936]. However counts of radio
sources and quasi-stellar objects (qso’s) show that the universe has not been in a
steady state as proposed by Bondi, Gold, and Hoyle [Bondi, 1960]. Indeed num-
ber counts are only compatible with a RW geometry if there has been evolution of
source numbers and/or luminosities [Sciama, 1971].

Number counts also give estimates of the density of visible (luminous) matter
in the universe: Ωvm0 	 0.015. This is very low relative to the critical density
(Ω0 = 1) and is also considerably less than the amount of baryons determined by
nucleosynthesis studies (Ωbar0 	 0.044, see Sec. 2.2.2). Thus much of the baryonic
matter in the universe is in some hidden (non-luminous) form [Bothun, 1998, pp.
223-272], e.g. burnt out stars [Hogan, 1999].

2.3.5 Apparent Luminosities and sizes: Dark Energy

Apparent sizes or luminosities as a function of redshift can be used to determine
the deceleration parameter q0 (Sec. 2.1) if the intrinsic source sizes or luminosities
are known. The problem is that until recently there were not known enough
galaxies or other objects of standard size or luminosity to use to determine q0,
and scatter in their properties leads to biassing of observations by the Malmquist
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effect. However this dramatically changed with recent observations of the decay
curves of the luminosity of supernovae in distant galaxies. It turns out that the
peak luminosity of type Ia supernovae is closely correlated with their light curve
decay time, for the first time giving reliable ‘standard candles’ for galaxies at large
distances [Perlmutter et al., 1998]. The conclusion from these observations is that,
rather than slowing down as expected, the rate of expansion of the universe is
speeding up at a rate corresponding to a cosmological constant with ΩΛ0 = 0.7.
This evidence is concordant with that from CBR observations and number counts
[Dodelson, 2003; Silk, 2005].

The nature of the field or matter causing this acceleration is unclear. Its equa-
tion of state w := pc2/µ, is unknown, and many physical and unphysical proposals
are being made in this regard. From (7), it has to violate the strong energy con-
dition (8) and so must have a large negative pressure. It could indeed be due to
a cosmological constant (w = −1), which would have dominated the expansion of
the universe since a redshift z 	 0.33, and would have been negligible earlier (and
is also negligible on small scales — it does not affect local astrophysics). However
it could also be some other form of matter or field with effective negative pressure
so that w < −1/3, as can happen in the case of a scalar field (see eqn.(33) below).
In that case it is called ‘quintessence’. There are many speculations as to what
this might be, but there is no clarity on the matter. One should note here that
alternative explanations of the observations are possible, for they can be exactly re-
produced by a spherically symmetric inhomogeneous universe model where we are
near the centre [Mustapha et al., 1998], or could at least partly be due to the back-
reaction of inhomogeneities on the cosmic expansion [Ellis and Buchert, 2006] or
the effect of inhomogeneities on the effective area distance [Kantowski et al., 1995;
Kantowski, 1998]. These alternatives are being investigated, but the most prob-
able cause remains some unknown kind of matter or field with effective negative
energies.

In summary, the standard gravitational equations together with the supernovae
observations imply presence of a cosmological constant or some equivalent form of
‘dark energy’ with a large effective negative energy density µgrav (due to negative
pressure) dominating the present expansion of the universe; its physical nature is
unknown. There is no known physics reason why this force should exist at this level
where it is just detectable — quantum field theory relates the cosmological con-
stant to the zero-point energy of the vacuum, and suggests it should be enormously
larger than observed [Weinberg, 1989; 2000a; 2000b; Rugh and Zinkernagel, 2002;
Zinkernagel, 2002; Susskind, 2005]. It is a major mystery why it exists at the
small (just detectable) level that observations indicate [Seife, 2003]. A key aspect
of present day cosmology is trying on the one hand to observationally determine
the effective equation of state of this ‘dark energy’ (running the field equations
backwards to obtain w(z) from the observations [Saini et al., 2000], and in partic-
ular determining whether w is constant or varying over time), and on the other
attempting to give a plausible theoretical explanation for its physical origin.
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2.3.6 Matter Distribution and Motion: Dark Matter

Detailed studies have been made of the distribution of galaxies and their motions.
They occur in clusters, in turn making up superclusters imbedded in vast walls sur-
rounding relatively sparsely populated intergalactic voids. The galaxy luminosity
function characterizes the numbers of galaxies occurring within each luminosity
class; the covariance function characterizes their spatial clustering [Peebles, 1993b;
Dodelson, 2003]. Large scale motions occur for galaxies in clusters, and for the
clusters themselves. It is easy to conceive of matter that is hard to detect (for ex-
ample, small rocks distributed through space); studies of galactic rotation curves
and of motions of galaxies in clusters [Bothun, 1998, pp. 139-181] imply the
existence of huge amounts of unseen dark matter, dominating the dynamics of
the Universe: its density is Ωdm0 	 0.3, much greater than both visible mat-
ter (Ωvm0 = 0.015) and baryons (Ωbar0 = 0.044), but significantly less than the
critical density Ω0 = 1. Thus the dark matter is non-baryonic, meaning it has
some kind of exotic nature rather than being the protons and neutrons that are
the substance of ordinary matter [Seife, 2003]. In contrast to the ‘dark energy’
discussed in the previous section, dark matter is dynamically effective on astro-
physical scales as well as on cosmological scales. Many attempts have been made
to identify its nature, for example it might be axions, supersymmetric partners
of known particles, quark nuggets, or massive neutrinos [Gribbin and Rees, 1991;
Perkins, 2005], but what it is composed of is still unknown. Laboratory searches
are under way to try to detect this matter, so far without success. A key question
is whether its apparent existence is due to our using the wrong theory of gravity
on these scales. This is under investigation, with various proposals for modified
forms of the gravitational equations that might explain the observations without
the presence of large quantities of dark matter. This is a theoretical possibility,
but the current consensus is that this dark matter does indeed exist.

An important distinction is whether dark matter consists of

(i) weakly interacting massive particles that cooled down quickly, thereafter
forming cold dark matter (‘CDM’) moving slowly at the time of structure
formation (and resulting in a bottom-up process with large scale structure
forming from smaller scale structures), or

(ii) particles that have a low mass and cooled slowly, therefore for a long time
forming hot dark matter, moving very fast at the time of structure formation
(and resulting in a top-down galaxy formation scenario).

Structure formation studies currently support the CDM hypothesis, with hierarchi-
cal formation of gravitationally bound objects taking place in a complex bottom up
process involving interactions of CDM, baryons, and radiation, with dwarf galaxies
forming initially [Silk, 2005; Mouri and Taniguchi, 2005] and then aggregating to
form larger structures. These studies are based on massive numerical simulations,
with initial conditions provided by the inflationary scenario discussed below, see
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Sec. 2.6. Unlike ‘dark energy’, CDM has an ordinary baryonic equation of state
(it is a perfect fluid (4) with pcdm = 0 ⇔ wcdm = 0).

Another way of detecting dark matter in clusters is by its gravitational lensing
effects [Schneider et al., 1992]. The bending of light by massive objects was one
of the classic predictions of General Relativity theory. Rich clusters of galaxies
or galaxy cores can cause strong lensing of more distant objects, where multiple
images of distance galaxies and qso’s occur, sometimes forming rings or arcs; and
weaker lensing by closer masses results in characteristic patterns of distortions of
images of distant objects. Analysis of multiple images can be used to reconstruct
the lensing mass distributions, and statistical analysis of weak lensing patterns of
image distortions are now giving us detailed information on the matter distribution
in distant galaxies and clusters. These studies show that to get enough lenses in an
almost flat cosmology (Ω0 	 1) requires the presence of a cosmological constant
— there cannot be a critical density of dark matter present [Dodelson, 2003;
Silk, 2005].

A key feature of present-day cosmology is attempts to identify the nature of
this dark matter, and if possible to detect it in a laboratory situation. While
observations favour the CDM scenario, some residual problems as regards the
emergence of fine-scale structure still need resolution [Silk, 2005].

2.3.7 The CBR Power spectrum

The CBR angular anisotropies are characterized by an angular power spectrum
showing the amount of power in perturbations at each physical scale on the LSS
[Bennet et al., 2003; Seife, 2003; Dodelson, 2003]. In the time from the the end
of inflation to the LSS, modes of different wavelengths can complete a different
number of oscillations. This translates the characteristic periods of the waves into
characteristic lengths on the LSS, leading to a series of maxima (‘acoustic peaks’)
and minima in the inhomogeneities on the LSS and consequently in the CBR
angular anisotropy power spectrum [Hu and Sugiyama, 1995b; Hu and Sugiyama,
1995a; Peacock, 1999; Perkins, 2005]. These inhomogeneities then form the seeds
for structure formation and so are related to the power spectrum of physical scales
for structures that form later. They are characterised by a (3-dimensional) spatial
power spectrum on the LSS; because we receive the observed CBR radiation from
the 2-sphere S2:LSS where our past light cone intersects the LSS, this is seen by
us as a 2-dimensional power spectrum of anisotropies on the sky (characterised by
the unit sphere S2 of all direction vectors ea: eaea = 1, eaua = 0).

The apparent angular size of the largest CBR peak (about 1o) allows estimates
of the area distance to the LSS and hence of the density of matter in the universe for
various values of the cosmological constant, and determines the major cosmological
parameters [Spergel et al., 2003]:

“By combining WMAP data with other astronomical data sets, we con-
strain the geometry of the universe: Ωtot = 1.02 ± 0.02, the equation
of state of the dark energy, w < −0.78 (95% confidence limit), and the
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energy density in neutrinos, Ωνh2 < 0.0076 (95% confidence limit).
For 3 degenerate neutrino species, this limit implies that their mass
is less than 0.23 eV (95% confidence limit). The WMAP detection of
early reionization rules out warm dark matter.”

There is however a problem here: while the agreement of theory and observations
for all small angular scales is remarkable, there is a divergence at the largest
angular scales: the observations show less power than expected. Specifically, the
quadrupole and octopole are much lower than theory predicts. Also the axes of
the quadrupole and octopole are very precisely aligned with each other, and there
are other angular anomalies [Starkman and Schwarz, 2005]. These effects might be
due to (i) observational contamination by the galaxy (which gets in the way of our
view of the LSS), (ii) a contingent (‘chance’) event (it represents ‘cosmic variance’,
discussed below, see Sec. 3), (iii) our living in a well-proportioned ‘small universe’
which is spatially closed so that there is a maximum size to possible fluctuations
[Weeks et al., 2003], or (iv) some unexpected new physical effect or deeper problem
with our understanding of the early universe. The jury is out as to which the case
is; this could turn out to be a crisis for the CBR analysis, but on the other hand
one can always just resort to saying it is a statistical fluke (the underlying problem
here being the uniqueness of the universe, as discussed in Sec. 3).

There are similar expected peaks in the polarization spectrum of this radiation,
and polarization maps should have a mode associated with gravitational waves
predicted by inflation to exist in the very early universe (Sec. 2.6); detection of
such modes will be a crucial test of inflation [Dodelson, 2003; Sievers et al., 2005b].
Studies of polarization indicate that reionisation of the universe took place as
early as a redshift of 17, contrary to what is deduced from qso studies. More
detailed studies of anisotropies involve the Sunyaev-Zel’dovich effect (changes in
the observed temperature due to scattering by hot matter in galaxy clusters) and
gravitational lensing.

There is a huge amount of information in the CBR maps, and their more ac-
curate measurement and interpretation is a central feature of current cosmology
[Steinhardt, 1995; Peacock, 1999; Dodelson, 2003; Perkins, 2005].

2.4 Causal and visual horizons

A fundamental feature affecting the formation of structure and our observational
situation is the limits arising because causal influences cannot propagate at speeds
greater than the speed of light. Thus the region that can causally influence us is
bounded by our past null cone. Combined with the finite age of the universe, this
leads to the existence of particle horizons limiting the part of the universe with
which we can have had causal connection.14

A particle horizon is by definition comprised by the limiting worldlines of the
furthest matter that ever intersects our past null cone [Rindler, 1956; 2001]. This

14There are also event horizons and apparent horizons in some cosmological models [Rindler,
1956; Tipler et al., 1980] and [Rindler, 2001, pp. 376-383].
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is the limit of matter that can have had any kind of causal contact with since the
start of the universe, characterized by the comoving radial coordinate value

(29) uph =
∫ t0

0

dt

S(t)
.

The present physical distance to the matter comprising the horizon is

(30) dph = S(t0)uph.

The key question is whether the integral (29) converges or diverges as we go to the
limit of the initial singularity where S → 0. Horizons will exist in standard FL
cosmologies for all ordinary matter and radiation, for uph will be finite in those
cases; for example in the Einstein-de Sitter universe (see Sec. 2.1.1), uph = 3t

1/3
0 ,

dph = 3t0. We will then have seen only a fraction of what exists, unless we
live in a universe with spatially compact sections so small that light has indeed
had time to traverse the whole universe since its start; this will not be true for
universes with the standard simply-connected topology. Penrose’s powerful use
of conformal methods (see [Hawking and Ellis, 1973; Tipler et al., 1980]) gives
a very clear geometrical picture of the nature of horizons [Ellis and Williams,
2000]. They may not exist in non-FL universes, for example Bianchi (anisotropic)
models [Misner, 1969]. In universes with closed spatial sections, a supplementary
question arises: Is the scale of closure smaller than the horizon scale? There may
be a finite time when causal connectivity is attained, and particle horizons cease
to exist. In standard k = +1 FL models, this occurs just as the universe reaches
the final singularity; if however there is a positive cosmological constant or other
effective positive energy density field, it will occur earlier. The horizon always
grows, because (29) shows that uph is a monotonically increasing function of t0.
Despite many contrary statements in the literature, it is not possible that matter
leave the horizon once it has entered. In a (perturbed) FL model, once causal
contact has taken place, it remains until the end of the universe.

The importance of horizons is two-fold: they underlie causal limitations relevant
in the origin of structure and uniformity [Misner, 1969; Guth, 1981], and they
represent absolute limits on what is testable in the universe [Ellis, 1975; 1980].

2.4.1 Causal limitations

As to causal limitations, horizons are important in regard both to the smoothness
of the universe on large scales, and the lumpiness of the universe on small scales.
The issue of smoothness is encapsulated in the horizon problem: if we measure
the temperature of the CBR arriving here from opposite directions in the sky in
a standard FL model, it came from regions of the surface of last scattering that
can have had no causal contact of any kind with each other since the start of the
universe. In a radiation-dominated early universe with scale factor (19), the size
of the particle horizon at the time of last scattering appears as an angular scale of
about 1o in the sky today, and corresponds to a comoving physical length of about
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400,000 light years when evaluated today. Why then are conditions so similar in
these widely separated regions? [Misner, 1968; Guth, 1981; Blau and Guth, 1987;
Kolb and Turner, 1990]. Note that this question is of a philosophical rather than
physical nature, i.e. there is no contradiction here with any experiment, but
rather an unease with an apparent fine tuning in initial conditions. This problem
is claimed to be solved by the inflationary universe scenario mentioned below, see
Sec. 2.6.

Associated with the existence of horizons is the prediction that physical fields in
different regions in the universe should be uncorrelated after symmetry breaking
takes place, because they cannot have interacted causally. Consequently, if grand
unified theories are correct, topological defects such as monopoles and cosmic
strings may be expected as relics of the expansion of the very early universe [Kolb
and Turner, 1990]. In a standard cosmology, far too many monopoles are predicted.
This is also solved by inflation.

As to the lumpiness, the issue here is that if we believe there was a state of
the universe that was very smooth — as indicated at the time of decoupling, by
the low degree of anisotropy of the CBR, and represented by the RW geometry
of the FL models — then there are limits to the sizes of structures that can have
grown since then by causal physical processes, and to the relative velocities of
motion that can have been caused by gravitational attraction in the available time
(for example, the peculiar motion of our own galaxy relative to the CBR rest
frame caused by the huge overdensity called the ‘Great Attractor’). If there are
larger scale structures or higher velocities, these must have been imprinted in the
perturbations at the time of last scattering, for they cannot have been generated
in a causal way since that time. They are set into the initial conditions, rather
than having arisen by physical causation from a more uniform situation. This is a
key factor in the theory of growth of perturbations in the early universe where the
expansion damps their growth. The quantity determining the relevant physical
scales for local causal influences in an expanding universe is the comoving Hubble
radius λH := (SH)−1; the way perturbations of wavelength λ develop depends on
whether λ > λH or λ < λH [Dodelson, 2003, pp. 146-150].

Actually the domain of causal influence is even more tightly constricted than
indicated by the past light cone: the limits coming from the horizon size are limits
on what can be influenced by particles and forces acting at the speed of light.
However only freely travelling photons, massless neutrinos, and gravitons can move
at that speed; and such particles coming from cosmological distances have very
little influence on our galaxy or the solar system (indeed we need very delicate
experiments to detect them). Any massive particles, or massless particles that are
interacting with matter, will travel slower (for example before decoupling, light
has a very small mean free path and information will travel only by sound waves
and diffusion in the tightly coupled matter-radiation fluid). The characteristics
for pressure-free scalar and vector perturbations are timelike curves, moving at
zero velocity relative to the matter; while density perturbations with pressure can
move at the speed of sound, only tensor perturbations can travel at the speed



1206 George F R Ellis

of light. Thus the true domain that influences us significantly is much less than
indicated by the particle horizon. It is the small region round our past world line
characterised after decoupling by the comoving scale from which matter coalesced
into our galaxy: a present distance of about 1 to 1.95 Mpc,15 corresponding to an
observed angle of about 0.64 arcminutes on the LSS. Before decoupling it would
have been limited by the sound horizon [Dodelson, 2003, p. 257] rather than the
particle horizon.

2.4.2 Observational limitations

Clearly we cannot obtain any observational data on what is happening beyond
the particle horizon; indeed we cannot even see that far because the universe
was opaque before decoupling. Our view of the universe is limited by the visual
horizon, comprised of the worldlines of furthest matter we can observe — namely,
the matter that emitted the CBR at the time of last scattering [Ellis and Stoeger,
1988]. This occurred at the time of decoupling t = tdec (zdec 	 1100), and so the
visual horizon is characterized by r = uvh where

(31) uvh =
∫ t0

tdec

dt

S(t)
< uph.

Indeed the LSS delineates our visual horizon in two ways: we are unable to see
to earlier times than its occurrence (because the early universe was opaque for
t < tdec), and we are unable to detect matter at larger distances than that we
see on the LSS (we cannot receive radiation from matter at co-moving coordinate
values r > uvh). The picture we obtain of the LSS by measuring the CBR from
satellites such as COBE and WMAP is just a view of the matter comprising the
visual horizon, viewed by us at the time in the far distant past when it decoupled
from radiation. The position of the visual horizon is determined by the geometry
since decoupling. Visual horizons do indeed exist, unless we live in a small universe,
spatially closed with the closure scale so small that we can have seen right around
the universe since decoupling. This is a possibility that will be discussed below
(Sec. 4.3.1). There is no change in these visual horizons if there was an early
inflationary period, for inflation does not affect the expansion or null geodesics
during this later period. The major consequence of the existence of visual horizons
is that many present-day speculations about the super-horizon structure of the
universe — e.g. the chaotic inflationary theory (Sec. 2.6) — are not observationally
testable, because one can obtain no definite information whatever about what lies
beyond the visual horizon [Ellis, 1975; 1980]. This is one of the major limits to
be taken into account in our attempts to test the veracity of cosmological models
(Sec. 4.3).

15Dodelson [Dodelson, 2003], p. 283; W Stoeger, private communication.
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2.5 Theoretical Developments

The cosmological application of Einstein’s Theory of Gravitation has also pro-
gressed greatly in past decades, as regards exact solutions and generic properties
of the field equations; as regards approximate solutions; and in terms of under-
standing the relationship between them.

2.5.1 Exact solutions and generic properties

Theory initially predicted there must have been a start to the universe, but it was
not clear for a long time if this was simply due to the very special exactly isotropic
and spatially homogeneous geometry of the standard Friedmann-Lemâıtre mod-
els. It was possible that more realistic models with rotation and acceleration might
show the prediction was a mathematical artefact resulting from the idealized mod-
els used. The singularity theorems developed by Penrose and Hawking [Hawking
and Ellis, 1973; Tipler et al., 1980; Earman, 1999] showed this was not the case:
even for realistic geometries, classical gravitational theory predicts a beginning
to the universe at a space-time singularity, provided the usual energy conditions
were satisfied. This study has led inter alia to a greatly increased understanding
of causality and topology of generic universe models [Tipler et al., 1980], includ-
ing the fact that singularities may have a quite different nature than those in the
Robertson-Walker models, for example being anisotropic [Tipler et al., 1980] or of
a non-scalar nature [Ellis and King, 1974].

Various classes of exact cosmological solutions are known (Kantowski-Sachs and
Bianchi spatially homogeneous but anisotropic models, Tolman-Bondi spherically
symmetric inhomogeneous models, and ‘Swiss-Cheese’ non-analytic models) en-
abling understanding of dynamical and observational behaviour of more general
classes of models than just the FL models [Ellis and van Elst, 1999a]. Dynam-
ical systems studies [Wainwright and Ellis, 1996; Uggla et al., 2003] relate the
behaviour of whole classes of anisotropic models in suitable state spaces, enabling
identification of generic patterns of behaviour (fixed points, saddle points, attrac-
tors, etc.) and hence the relationship between dynamics of higher symmetry and
lower symmetry universes. These studies help understanding to what degree the
FL models are generic within the families of possible cosmological models, and
which models might give observations similar to those in the FL models. In par-
ticular they are relevant in considering the possible geometry of the universe at
very early or very late times.

2.5.2 Perturbation theory, the gauge issue, and back reaction

Sophisticated perturbation theory has been developed to underlie the theory of
structure formation in the expanding universe, examining the dynamics of per-
turbed FL models. The fluid flow in these models can have shear, vorticity, and
acceleration, and the Weyl tensor Cijkl (see (1)) is not zero, so that density varia-
tions, tidal forces, peculiar velocities, and gravitational waves can be present. De-
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tailed studies use the kinetic theory approximation for matter (electrons, protons,
dark matter) and radiation (photons, neutrinos), with their dynamics described
by the Boltzmann equation [Dodelson, 2003, Ch. 4]; [Uffink, 2006], interacting
with space-time inhomogeneities characterised by a perturbed FL metric. A key
issue here is the gauge problem — how to choose the background model in the per-
turbed spacetime [Ellis and Stoeger, 1987]. If this is not properly handled then one
may attain apparent perturbation solutions that are pure gauge (they are math-
ematical rather than physical), so that one can alter the apparent growth rate
simply by changing coordinates. The key to handling this is either to keep care-
ful track at all stages of remaining gauge freedom and possible changes of gauge,
or (preferably, in my view) to use gauge invariant variables (see [Bardeen, 1980;
Ellis and Bruni, 1989; Challinor and Lasenby, 1998]).

Most of the literature on perturbation theory deals with the linear case, but
some studies tackle the non-linear regime (e.g. [Langlois and Vernizzi, 2005]), and
some consider questions such as the origin of magnetic fields and the causes of
galactic rotation. A key problem here is properly relating relativistic analyses of
astrophysical dynamics to the Newtonian approaches most often used by astro-
physicists (e.g. [Bothun, 1998], pp. 183-222); this is not straightforward.16 A
further unresolved issue is the nature of gravitational entropy [Penrose, 1989b;
Ellis, 2002; Penrose, 2004]. Many statements about the nature of entropy in
physics textbooks are wrong when gravity is dominant, leading to the sponta-
neous formation of structures such as stars and galaxies. There is as yet no agreed
definition of gravitational entropy that is generally applicable; until there is, cos-
mological arguments relying on entropy concepts are ill-founded.

The existence of inhomogeneities in the universe raises the issue of fitting and
back-reaction. To what degree does the nature of the exactly smooth FL models
reflect the geometrical and dynamical nature of more realistic ‘lumpy’ universe
models? [Ellis and Stoeger, 1987]. Inhomogeneities lead to extra terms appearing
in the evolution equations for the idealized background models, representing the
back-reaction of the perturbations on their dynamics [Ellis, 1984]. These could
possibly be dynamically significant [Ellis and Buchert, 2006], but this is a matter
of dispute.

2.6 Inflation

Particle physics processes dominated the very early eras, when exotic processes
took place such as the condensation of a quark-gluon plasma to produce baryons.
Quantum field theory effects were significant then, and this leads to an impor-
tant possibility: scalar fields producing repulsive gravitational effects could have

16Some exact General Relativity results, which must necessarily apply in the Newtonian limit
of General Relativity, have no Newtonian analogue; an example is the shear-free theorem applying
to pressure-free matter [Ellis, 1967]. The underlying issue is that there are 10 field equations to
be satisfied in General Relativity, with 20 integrability conditions (the Bianchi identities), but
only one field equation to be satisfied in Newtonian theory (Poisson’s equation) together with 4
conservation equations.
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dominated the dynamics of the universe at those times. This leads to the the-
ory of the inflationary universe, proposed by Alan Guth [1981; 1997]: if µgrav =
µ + 3p/c2 < 0, which can happen if a scalar field dominates the dynamics of the
early universe, an extremely short period of accelerating expansion will precede
the hot big bang era [Blau and Guth, 1987]. This produces a very cold and smooth
vacuum-dominated state, and ends in ‘reheating’: conversion of the scalar field to
radiation, initiating the hot big bang epoch. This inflationary process is claimed
to explain the puzzles mentioned above (Sec. 2.4.1): why the universe is so special
(with spatially homogeneous and isotropic geometry and a very uniform distri-
bution of matter), and also why the space sections are so close to being flat at
present (we still do not know the sign of the spatial curvature), which requires
very fine tuning of initial conditions at very early times. Inflationary expansion
explains these features because particle horizons in inflationary FL models will be
much larger than in the standard models with ordinary matter, allowing causal
connection of matter on scales larger than the visual horizon, and inflation also
will sweep topological defects outside the visible domain.

In more detail: in the case of a single scalar field φ with spacelike surfaces of
constant density, on choosing ua orthogonal to these surfaces, the stress tensor has
a perfect fluid form with

(32) µ =
1
2
φ̇2 + V (φ), p/c2 =

1
2
φ̇2 − V (φ),

and so

(33) µ + 3p/c2 = 2φ̇2 − 2V (φ).

The slow-rolling case is φ̇2 � V (φ), leading to µ + p/c2 = 2φ̇2 	 0⇒ µ + 3p/c2 	
−2µ < 0. This then enables a resolution of the horizon problem in inflationary
FL models: if sufficient inflation took place in the early universe, then all the
regions from which we receive CBR were causally connected; indeed if the universe
began in an inflationary state, or was inflationary with compact spatial sections,
there may be no causal horizons at all. The inflationary models also cause initial
perturbations to die away, including velocity perturbations, hence explaining the
observed smoothness of the universe on large scales. This process is expected to
create a universe with spatially very flat sections at late times:

(34) Ω0 = Ωdm 0 + ΩΛ 0 	 1 ⇔ Ωk 	 0.

This theory led to a major bonus: a proposal that initial tiny quantum fluc-
tuations were expanded to such a large scale by inflation that they provided
seeds initiating growth by gravitational attraction of large scale structures such
as clusters of galaxies. This theory makes clear observational predictions for
the spectrum of CBR anisotropies, which have since been spectacularly veri-
fied by observations from balloons and satellites, such as WMAP [Spergel et al.,
2003]. Thus inflation has provided us with our first coherent theory of structure
formation. Inhomogeneities started as quantum fluctuations in the inflationary



1210 George F R Ellis

epoch which are then amplified in physical scale by the inflationary expansion
but remain constant in amplitude when larger than the contemporary Hubble
scale, leading to Gaussian scale-free perturbations at the start of the HBB era.
Starting from these fluctuations, Cold Dark Matter (‘CDM’) creates potential
wells for baryons to fall into, but the radiation (tightly coupled to the electrons
and baryons) resists collapse. Gravity wins if the wavelength λ is greater than
the Jean’s length λJ (which is proportional to the speed of sound [Rees, 1995;
Ellis and van Elst, 1999a]). There are acoustic oscillations (sound waves) when
λ < λJ ; these oscillations ceased at decoupling, which led to a dramatic decrease
in λJ and the growth of structure by gravitational instability in a ‘bottom up’ way
(Sec. 2.3.6).17

A popular version of inflation is chaotic inflation [Linde, 1990; Guth, 2001;
Susskind, 2005] where inflation ends at different times in different places, so that
one ends up with numerous ‘pocket universe’ (expanding universe domains like the
one we see around us, or perhaps very different) all imbedded in a still-inflating
universe region and starting at different times, the whole forming a fractal-like
structure. It is argued this is an inevitable consequence of the nature of plausible
scalar field potentials.

Inflation is not an inevitable conclusion, for there are some alternatives pro-
posed [Hollands and Wald, 2002; Khoury et al., 2001], and the WMAP results can
be reproduced by any scenario where Gaussian scale-free perturbations of suitable
amplitude occur at the start of the Hot Big Bang era. However inflation is re-
garded by most cosmologists as the best proposal available for the era prior to the
Hot Big Bang epoch, leading to the presence of such perturbations. Nevertheless
one should note it is a generic proposal for what happened, rather than a specific
physical theory. While a great many possibilities have been proposed (it could for
example be an effective field due to higher-order gravity effects, or it could involve
multiple scalar fields), at the present time the identity of the proposed inflationary
field (‘the inflaton’) has not been established or linked to any known particle or
field. The hoped-for link between early universe dynamics and particle physics is
potential rather than real [Earman and Mosterin, 1999]. Detailed studies of the
CBR anisotropies and structure formation in conjunction with the observations
hope to distinguish between the various possibilities, for example testing whether
the spectral index n takes the scale-free value: n = 1, or whether rather there is
a tilted power spectrum (n �= 1). A unique spectrum of gravitational waves will
also be produced at very early times in an inflationary universe, and detection of
these waves either directly by proposed gravitational wave detectors or indirectly
by measuring the associated curl mode in the CBR polarization will be an im-
portant test of inflation, for example determining the ratio r of scalar to tensor
perturbations in the early universe [Dodelson, 2003].

17This is a highly simplified account; for more detailed versions, see e.g. [Dodelson, 2003;
Silk, 2005].
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2.7 The very early universe

Quantum gravity processes are presumed to have dominated the very earliest
times, preceding inflation. There are many theories of the quantum origin of
the universe, but none has attained dominance. The problem is that we do not
have a good theory of quantum gravity [Rovelli, 2006], so all these attempts are
essentially different proposals for extrapolating known physics into the unknown.
A key issue is whether quantum effects can remove the initial singularity and make
possible universes without a beginning. Preliminary results suggest this may be
so [Bojowald, 2001; Rovelli, 2004; Mulryne et al., 2005].

2.7.1 Is there a quantum gravity epoch?

A preliminary issue is, can there be a non-singular start to the inflationary era,
thus avoiding the need to contemplate a preceding quantum gravity epoch? In the
inflationary epoch the existence of an effective scalar field leads to a violation of
the strong energy condition (8), therefore at first sight it seems that a bounce may
be possible preceding the start of the expanding inflationary era and avoiding the
inevitability of a quantum gravity epoch.

However a series of theorems suggest that inflationary models cannot bounce:
they are stated to be future infinite but not past infinite [Guth, 2001]. This is
an important issue, so it is worth looking at it further. There are two major re-
quirements to get a bounce. The Friedmann equation (9) relates the scale factor
S(t), curvature constant k, and the effective total energy density µ(t), which is de-
fined by this equation whatever dynamics may be involved (multiple scalar fields,
higher order gravity, higher dimensional theories leading to effective 4-dimensional
theories, etc.).18 The Raychaudhuri equation (7) includes the effective total pres-
sure p(t), which again is defined by this equation. In this section, a cosmological
constant Λ is represented as perfect fluid with µΛ + pΛ/c2 = 0. To get a bounce,
first one needs the curve S(t) of the scale factor as a function of time to bend up:
that is,

(35)
S̈

S
≥ 0⇔ µ + 3p/c2 < 0,

which is just a violation of the strong energy condition (8). This is the case if
µ+p/c2 = 0 (a vacuum); and indeed by eqn.(33) it is possible for example for any
slow-rolling scalar field. Second, one also needs a time when the scale factor is a
minimum. Thus there must be a time t∗ such that Ṡ(t∗) = 0. From the Friedmann
equation (9),

(36) Ṡ2(t∗) = 0⇔ κµ(t∗)
3

=
k

S2(t∗)
.

18See [Copeland et al., 2005] for the ways various quantum gravity theories result in modified
Friedmann equations.



1212 George F R Ellis

With k ≤ 0 this is possible only if µ(t∗) < 0. Even with a scalar field (see eqn.(32))
this can only be achieved by having negative potential energies, which appears to
be an unphysical requirement. With k = +1 this is possible with µ(t∗) > 0
[Robertson, 1933], which is compatible with ordinary matter.

Thus if you want a bounce in an inflationary universe, it is sensible to look to
k = +1 inflationary models, which indeed will turn around if a vacuum domain
occurs for long enough (curvature will eventually always win over a vacuum as
we go back into the past [Ellis et al., 2002b; Ellis et al., 2002a]). The theorems
mentioned above do not include this case (see [Guth, 2001]); they only consider
inflationary universes with k = 0 and k = −1. And one should note here that
although the scale-free k = 0 exponential case clearly is the model underlying the
way many people approach the problem, it is highly exceptional — it is of zero
measure within the space of all inflationary FL models.

Explicit non-singular models can be constructed, the simplest being the de
Sitter universe in the k = +1 frame (Sec. 2.1.1), which is an exact eternal solution
that bounces at a minimum radius S0. This model has the problem that it does
not exit inflation (it corresponds to an exactly constant potential), but variants
exist where exit is possible; there are also viable non-singular models that start off
asymptotic to the Einstein Static universe in the distant past and avoid the need
for a quantum gravity epoch [Ellis and Maartens, 2004]. These models start off in
a very special state, precisely because they are asymptotic to the Einstein static
universe in the distant past. This is a possible situation. It seems likely that the
options for the start of inflation are (i) avoiding the quantum gravity era, but at
the cost of having special (‘fine tuned’) initial conditions, or (ii) having a quantum
gravity epoch preceding the inflationary era. Thus a key issue is whether the start
of the universe was very special or generic.

2.7.2 Quantum gravity effects: The origin of the universe

Contemporary efforts to explain the beginning of the universe, and the particular
initial conditions that have shaped its evolution, usually adopt some approach
or other to applying quantum theory to the creation of the universe [Lemâıtre,
1931]. Many innovative attempts have been made here; as this article focuses on
General Relativity and its application to cosmology, and it would be impossible to
do justice to the various approaches to quantum cosmology [Rovelli, 2006] without
a very much longer article. I will just make a few comments on these approaches.

The attempt to develop a fully adequate quantum gravity approach to cosmol-
ogy is of course hampered by the lack of a fully adequate theory of quantum gravity,
as well as by the problems at the foundation of quantum theory (the measurement
problem, collapse of the wave function, etc., see [Isham, 1997; Dickson, 2006;
Landsman, 2006]) which can be ignored in many laboratory situations but have
to be faced in the cosmological context [Perez et al., 2005]. The various attempts
at quantum cosmology each develop in depth some specific aspect of quantum
theory that may be expected to emerge from a successful theory of quantum grav-
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ity applied to the universe as a whole, being for example based on either (i) the
Wheeler-DeWitt equation and the idea of the wave function of the universe, or (ii)
on some version of embedding in higher dimensional space time (inspired by string
theory), or (iii) an appropriate application of loop quantum gravity. In effect they
attempt either

(a) to give a true theory of creation ex nihilo [Vilenkin, 1982]; such efforts how-
ever cannot truly “solve” the issue of creation, for they rely on some struc-
tures or other (e.g. the elaborate framework of quantum field theory and
much of the standard model of particle physics) pre-existing the origin of
the universe, and hence themselves requiring explanation; or

(b) to describe a self-sustaining or self-referential universe which by-passes the
issue of creation, either by

(b1) originating from an eternally pre-existing state, via the recurring idea of
a Phoenix universe [Dicke and Peebles, 1979] (as in Veneziano’s ‘pre-big
bang theory’ based on analogues of the dualities of string theory, or self-
repeating universes such as the chaotic inflationary models of Linde);
creation from fluctuations in some quite different pre-existing structure
(e.g. emergence from de Sitter space time; or the ‘ekpyrotic universe’
initiated by a collision between pre-existing ‘branes’ in a higher dimen-
sional spacetime); or emerging from an eternal static initial state; or

(b2) starting from a state with different properties of time than usual (or
with an an emergent notion of time): as in the Hartle–Hawking no-
boundary proposal [Hawking, 1987; Hawking, 1993], and the Gott causal
violation proposal [Gott and Li, 1998] where the universe ‘creates it-
self’ and starts normal expansion in the domain without closed timelike
lines.

Any of these may be combined with one or other proposals for

(c) an effective ensemble of universes [Tegmark, 2003], realized either

(c1) in space-time regions that are part of either a larger entangled quantum
entity, or are part of a single classical space-time, but are effectively
disconnected from each other, or

(c2) in truly disconnected form.

All of these proposals however are strongly speculative, none being based solidly
in well-founded and tested physics, and none being in any serious sense supported
by observational evidence. They are all vast extrapolations from the known to the
unknown. They may or may not be true. One thing is certain: they can’t all be
true!



1214 George F R Ellis

2.8 The concordance model

Observational support for the idea of expansion from a Hot Big Bang epoch is
very strong, the linear magnitude-redshift relation for galaxies demonstrating the
expansion,19 with source number counts and the existence of the blackbody CBR
being strong evidence that there was indeed evolution from a hot early stage.
Agreement between measured light element abundances and the theory of nucle-
osynthesis in the early universe confirms this interpretation. This basic theory is
robust to critical probing. Much present activity attempts to link particle physics
interactions during very early stages of the expansion of the universe to the cre-
ation of structures by gravitational instability much later, traces of the early seed
fluctuations being accessible to us through present day CBR anisotropy patterns.
Thus the present dominant cosmological paradigm is a quantum gravity era of some
kind followed by inflation; a hot big bang epoch; decoupling of matter and radia-
tion; and then gravitational instability leading to formation of clusters of galaxies
from the seed density perturbations that occur on the LSS.

Together with supernova data, analysis of the CBR angular anisotropies and in
particular their peaks gives a concordance model of this kind [Bennet et al., 2003;
Tegmark, 2002; Tegmark et al., 2004; Dodelson, 2003; Scott, 2005] that is then
confirmed by the statistics of matter clustering [Eisenstein et al., 2005a] together
with observations of gravitational lensing and large-scale motions of matter [Silk,
2005]. This model is characterized by specific values for a set of cosmological
parameters [Liddle, 2004], in particular

(37) Ωcdm0 	 0.3, ΩΛ0 	 0.7, Tcbr0 = 2.75K, H0 	 65km/sec/mpc, t0 	 1.4 ×
1010years.

Also Ωbar0 	 0.044 is the density of baryons, Ωvis0 	 0.015 that of luminous
matter, and Ων0 	 10−5 that of massless neutrinos, implying Ω0 	 0.3 + 0.7 	 1
in agreement with the inflationary prediction (34). The sign of k is uncertain,
but if the combined evidence of all current observations is taken at face value it
is positive, with Ω0 = 1.02± 0.02 [Spergel et al., 2003]. As noted above, there are
some concerns firstly over age issues (see Sec. 2.3.2); secondly concerning the large
angle CBR anisotropies (see Sec. 2.3.7); and thirdly regarding details of CDM
structure formation at small scales (see Sec. 2.3.6); but none of these issues seems
to be crucial at present.

2.8.1 Some misunderstandings

Despite its simplicity, there are some common misconceptions about the standard
universe models (cf. [Lineweaver and Davis, 2005]) that can lead to philosophical
misunderstandings.

Misconception 1: The universe is expanding into something. It is not, as it
is all there is. It is just getting bigger, while always remaining all that is. One

19The alternative interpretation as gravitational redshifts in a static universe does not work
because of the linearity of the observed redshift-distance relation [Ellis et al., 1978].
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should note here that a RW universe can be represented as a 4-dimensional curved
spacetime expanding in a 5-dimensional flat embedding space time [Robertson,
1933]; however there is no necessity to view the 5-dimensional spacetime in this
representation as physically real. Furthermore this embedding is no longer possible
when we take perturbations into account; a 10 dimensional flat spacetime is needed
for locally embedding a realistic (perturbed) universe model (and to do so globally
requires many more dimensions, in general).

Misconception 2: The universe expands from a specific point, which is the centre
of the expansion. All spatial points are equivalent in these universes, and the
universe expands equally about all of them. Every fundamental observer sees
exactly the same thing in an exact RW geometry. There is no centre to a FL
universe.

Misconception 3: Matter cannot recede from us faster than light. It can, at an
instant; two distantly separated fundamental observers in a surface {t = const}
can have a relative velocity greater than c if their spatial separation is large enough
[Rothman and Ellis, 1993; Davis and Lineweaver, 2004]. No violation of special
relativity is implied, as this is not a local velocity difference, and no information is
transferred between distant galaxies moving apart at these speeds. For example,
there is presently a sphere around us of matter receding from us at the speed of
light;20 matter beyond this sphere is moving away from us at a speed greater than
the speed of light. The matter that emitted the CBR was moving away from us
at a speed of about 61c when it did so [Rothman and Ellis, 1993].

Misconception 4: The existence of a preferred RW frame (that in which the
universe appears isotropic) contradicts relativity theory, which says all reference
frames are equally good. But this equivalence of frames is true for the equations
rather than their solutions. Almost all particular solutions will have preferred
world lines and surfaces; this is just a particular example of a broken symmetry —
the occurrence of solutions of equations with less symmetries than the equations
display. This feature is a key theme in modern physics [Brading and Castellani,
2006; Harvey, 2006].

Misconception 5: The space sections are necessarily infinite if k = 0 or −1.
This is only true if they have their ‘natural’ simply connected topology. If their
topology is more complex (e.g. a 3-torus) they can be spatially finite [Ellis, 1971a;
Lachièze et al., 1995]. There are many ways this can happen; indeed if k = −1
there is an infinite number of possibilities.

Misconception 6: Inflation implies spatial flatness (k = 0 ⇔ Ωk = 1) exactly.
There is nothing in inflationary theory which determines the sign of the spatial
curvature. Inflationary universes are very nearly flat at late times; this is very
different from being exactly flat (a condition which requires infinite fine tuning of
initial conditions; if say the two millionth digit in the value of Ωk is non-zero at

20This sphere is not the same as the particle horizon, as is sometimes claimed (see [Rothman
and Ellis, 1993]).
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any time, then the universe is not spatially flat). Inflationary theory does not have
the theoretical teeth required to imply that the universe has exactly flat spatial
sections; hence a key issue for cosmology is observationally determining the sign
of the spatial curvature, which is potentially dynamically important in both the
very early universe [Ellis et al., 2002b; Ellis et al., 2002a] and the late universe (it
determines if recollapse is possible, should the dark energy decay away).

2.8.2 Overall

Cosmology has changed from a speculative enterprize into a data-driven science
that is part of standard physical theory [Barnett et al., 1996]; a wealth of obser-
vations supports this dominant theory [Peebles et al., 1991; Silk, 1997; Perkins,
2005]. Nevertheless some theoretical proposals are being made for the very early
stages that have no observational support; and sometimes it may be impossible to
ever obtain such support, both as regards the proposed physics and the geometry.
Thus in some respects it remains a principle driven enterprise, with observation
subordinate to theory.

We now explore the relation between cosmology and philosophy in terms of a
series of Theses clustered around a set of major Issues. One can obtain a synoptic
overview of the overall argument by simply considering the full set of Issues and
Theses. They are summarized in the Table at the end.

3 ISSUE A: THE UNIQUENESS OF THE UNIVERSE.

The first and most fundamental issue is that there is only one Universe [Munitz,
1962; McCrea, 1960; Ellis, 1991]. This essential uniqueness of its object of study
sets cosmology apart from all other sciences. In particular, the unique initial con-
ditions that led to the particular state of the universe we see were somehow “set”
by the time that physical laws as we know them started governing the evolution
of both the universe and its contents, whenever that time may be. We cannot
alter these unique initial conditions in any way — they are given to us as absolute
and unchangeable, even though they are understood as contingent rather than
necessary; that is, they could have been different while still being consistent with
all known physical laws. The implications are that

Thesis A1: The universe itself cannot be subjected to physical exper-
imentation. We cannot re-run the universe with the same or altered conditions
to see what would happen if they were different, so we cannot carry out scientific
experiments on the universe itself. Furthermore,

Thesis A2: The universe cannot be observationally compared with other
universes. We cannot compare the universe with any similar object, nor can we
test our hypotheses about it by observations determining statistical properties of a
known class of physically existing universes.
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Where this all becomes of observational relevance is in the idea of cosmic variance
[Dodelson, 2003, pp. 241, 343]. The theory of structure formation in the early
universe makes statistical predictions only (it cannot attempt to predict the specific
structures that will actually be formed). Testing the theory compares our universe
to a theoretical ensemble of universes, and declares a variance between what is
measured in the actual universe and the expected properties based on the ensemble
of models. If this variance is small enough, a deviation from expected values is
pronounced as a statistical deviation, i.e. of no physical significance — we do
not need to explain it any further; if it is large, it needs explanation. This is a
key issue for example in the analysis of the CBR anisotropy observations [White
et al., 1993; Kamionkowski and Loeb, 1997]. The power spectrum of the CBR as
measured by WMAP is less than expected at large angular scales (Sec. 2.3.7). One
school of thought claims this is just a statistical fluctuation; another that it needs
explanation, and might for example be evidence of a small universe [Luminet et
al., 2003; Luminet, 2005]. This debate arises because there is just one universe,
and on large angular scales there are just a few measurements that can possibly
be made (on small angular scales we can make many measurements and so this
uncertainty becomes very small).

Consequent on A1 and A2,

Thesis A3: The concept of ‘Laws of Physics’ that apply to only one ob-
ject is questionable. We cannot scientifically establish ‘laws of the universe’ that
might apply to the class of all such objects, for we cannot test any such proposed
law except in terms of being consistent with one object (the observed universe).

This is insufficient: one observational point cannot establish the nature of a causal
relation. Indeed the concept of a ‘law’ becomes doubtful when there is only one
given object to which it applies [Munitz, 1962]. The basic idea of a physical law is
that it applies to a set of objects all of which have the same invariant underlying
behaviour (as defined by that law), despite the apparent variation in properties
in specific instances, this variation resulting from varying initial conditions for
the systems on which the law acts. This understanding is tested by physical
experiments in which initial conditions for evolution of a set of similar systems are
varied, and observations by which the statistical nature of a set of objects of the
same broad kind is investigated. Neither is possible in the case of cosmology.

The laws of physics apply locally to the objects in the cosmos, and determine
the evolution of the cosmos as a whole when locally applied everywhere with
suitable initial/boundary conditions imposed (in the case of the RW models, via
the Friedmann equation for example). Apart from this, we cannot establish higher-
level effective laws that apply to all universes and determine their structure, as we
can at all other levels of the hierarchy of complexity. All that we can do at this
level of structure is observe and analyze the one unique object that exists. This
is expressed by McCrea as follows: “When we speak of the other solutions of the
equations of stellar structure, besides the one we are interested in at the moment,
as representing systems that could exist, we mean that they could exist in the
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universe as we know it. Clearly no such attitude is possible towards the universe
itself” [McCrea, 1953].

Since the restriction of a global solution to a local neighborhood is also a so-
lution, we have zillions of “mini-universe” on which to test the laws that control
the local nature of the universe. But a mini-universe is not the universe itself;
it is a small part of the whole. By examining these “mini-universes” and seeing
if they are essentially the same everywhere, we can to some degree check firstly
that the laws of physics are the same everywhere in the universe (a key feature of
all cosmological analysis, cf. Sec. 7.1), and secondly that the universe is spatially
homogeneous (this is discussed in depth below, see Sec. 4.2.2). But the latter fea-
ture is what has to be explained by a ‘law of the universe’; verifying homogeneity
does not explain why it is the case; this comes about because of specific initial
conditions, which some suggest are due to hypothesized ‘laws of the universe’,
applicable to the whole rather than to its parts. Finally,

Thesis A4: The concept of probability is problematic in the context of
existence of only one object. Problems arise in applying the idea of probability
to cosmology as a whole — it is not clear that this makes much sense in the context
of the existence of a single object which cannot be compared with any other existing
object.

But a concept of probability underlies much of modern argumentation in cosmol-
ogy. Talk of ‘fine tuning’ for example is based on the use of probability (it is
a way of saying something is improbable). This assumes both that things could
have been different, and that we can assign probabilities to the set of unrealized
possibilities in an invariant way. The issue here is to explain in what sense they
could have been different with well-defined probabilities assigned to the different
theoretical possibilities, if there is indeed only one universe with one set of initial
conditions fixed somehow before physics came into being, or perhaps as physics
came into being. We cannot scientifically establish laws of creation of the universe
that might determine such initial conditions and resulting probabilities. If we use
a Bayesian interpretation, which some suggest can be meaningfully applied to only
one object [Garrett and Coles, 1993], the results depend on our ‘prior knowledge’,
which in this case can be varied by changing our initial pre-physics assumptions.
Related issues arise concerning the meaning of ‘the wave function of the universe’,
at the heart of quantum cosmology. This wave function gives no unique prediction
for any specific single universe.

Two comments on the above. First, it is useful to distinguish between the ex-
perimental sciences — physics, chemistry, microbiology for example — on the one
hand, and the historical and geographical sciences — astronomy, geology, evolu-
tionary theory for example, on the other. It is the former that are usually in mind
in discussions of the scientific method. The understanding in these cases is that
we observe and experiment on a class of identical or almost identical objects and
establish their common behaviour. The problem then resides in just how iden-
tical those objects are. Quarks, protons, electrons, are all exactly identical to
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each other, and so have exactly the same behaviour (indeed this feature underlies
well-tested quantum statistics). All DNA molecules, frogs, human beings, and
ecosystems are somewhat different from each other, but are similar enough never-
theless that the same broad descriptions and laws apply to them; if this were not
so, then we would be wrong in claiming they belonged to the same class of objects
in the first place. Water molecules, gases, solids, liquids are in an intermediate
category — almost identical, certainly describable reliably by specific physical and
chemical laws.

As regards the geographical and historical sciences, here one explicitly studies
objects that are unique (the Rio Grande, the continent of Antarctica, the Solar
System, the Andromeda galaxy, etc.) or events that have occurred only once (the
origin of the Solar System, the evolution of life on Earth, the explosion of SN1987a,
etc.). Because of this uniqueness, comment A1 above applies in these cases also:
we can only observe rather than experiment; the initial conditions that led to
these unique objects or events cannot be altered or experimented with. However
comment A2 does not apply: at least in principle, there is a class of similar objects
out there (other rivers, continents, planetary systems, galaxies, etc.) or similar
events (the origin of other galaxies, the evolution of other planetary systems, the
explosion of other supernovae, etc.) which we can observe and compare with our
specific exemplar, also carrying out statistical analyses on many such cases to
determine underlying patterns of regularity; and in this respect these topics differ
from cosmology.

If we truly cannot carry out such analyses — that is, if A2 applies as well in
some particular case — then that subject partakes in this respect of the nature of
cosmology. One may claim that the dividing line here is that if we convince our-
selves that some large-scale physical phenomenon essentially occurs only once in
the entire universe, then it should be regarded as part of cosmology proper ; whereas
if we are convinced it occurs in many places or times, even if we cannot observa-
tionally access them (e.g. we believe that planets evolved around many stars in
other galaxies), then study of that class of objects or events can be distinguished
from cosmology proper precisely because there is a class of them to study. The
second comment is that some workers have tried to get around this set of problems
by essentially denying the uniqueness of the universe. This is done by proposing
the physical existence of ‘many universes’ to which concepts of probability can be
properly applied (cf. Sec. 2.7.2), envisaged either as widely separated regions of a
larger universe with very different properties in each region (as in chaotic inflation
for example), as multiple realizations of quantum outcomes, or as an ensemble
of completely disconnected universes — there is no physical connection whatever
between them — in which all possibilities are realized. We return to this in Sec.
9.2.
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4 ISSUE B: THE LARGE SCALE OF THE UNIVERSE IN SPACE AND
TIME.

The problems arising from the uniqueness of the universe are compounded by
its vast scale in both space and time, which poses major problems for observa-
tional cosmology. We therefore need to adduce various Principles in addition to
the observations, in order to attain unique models: theory comes in as basis for
interpreting observations.

4.1 Observations in a large scale universe

The distance to the nearest galaxy is about 106 light years, that is about 1024cm.,
while the size of the earth is about 109cm. The present size of the visible universe
is about 1010 light years, that is about 1028cm. This huge size relative to our own
physical scale (about 102cm) places major constraints on our ability to observe
distant regions (and certainly prevents us experimenting with them). The unique-
ness of cosmology in this respect is that it deals with this scale: the largest with
which we can have causal or observational contact.

Thesis B1: Astronomical observations are confined to the past null cone,
fading with distance. We can effectively only observe the universe, considered
on a cosmological scale, from one space-time event. Visual observations are pos-
sible only on our past light cone, so we are inevitably looking back into the past as
we observe to greater distances. Uncertainty grows with distance and time.

The vast scale of the universe implies we can effectively only view it from one
spacetime event (‘here and now’) [Ellis, 1971a; Ellis, 1975]. If we were to move
away from this spatial position at almost the speed of light for say 10, 000 years,
we would not succeed in leaving our own galaxy, much less in reaching another
one; and if we were to start a long-term astronomical experiment that would store
data for say 20, 000 years and then analyze it, the time at which we observe the
universe would be essentially unchanged (because its age is of the order of 1010

years: the extra time would make a negligible difference). This is quite unlike
other geographic sciences: we can travel everywhere on earth and see what is
there. The situation would be quite different if the universe were much smaller.
Given its actual scale, such that we are now seeing galaxies whose present distance
from us is about 109 light years, the effect is as if we were only able to observe
the earth from the top of one mountain, and had to deduce its nature from those
observations alone [Ellis, 1975].

Because we can only observe by means of particles — photons, massless neutri-
nos, gravitons — travelling to us at the speed of light, astronomical observations
of distant sources and background radiation by telescopes operating at all wave-
lengths (optical, infrared, ultraviolet, radio, X-ray) are constrained to rays lying in
our past light cone. These allow detailed observations (including visual pictures,
spectral information, and polarization measurements) of matter as it intersects our
past light cone. In observing distant regions, we can also aspire to use neutrino
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and gravitational wave telescopes, and perhaps cosmic rays, also representing in-
formation coming to us at the speed of light or less. However all our detailed data
about distant regions is gathered along our past light cone.

As a consequence, three interrelated problems occur in interpreting the astro-
nomical observations. The first is that (because we can only view the universe
from one point) we only obtain a 2-dimensional projection on the sky of the 3-
dimensional distribution of matter in the universe. To reconstruct the real distri-
bution, we need reliable distance measurements to the objects we see. However
because of variation in the properties of sources, most are not reliable standard
candles or standard size objects to use in calibrating distances, and in these cases
we have to study statistical properties of classes of sources to estimate distances.

Second, we necessarily see distant galaxies and other objects at earlier times
in their history (where their world lines intersect this past light cone).21 Thus
cosmology is both a geographic and a historical science combined into one: we see
distant sources at an earlier epoch, when their properties may have been different.
As we are looking back in the past, source evolution must be taken into account;
their properties at the time they emitted the light may be quite different from their
properties now. We can only determine the distances of objects if we understand
this evolution; but in practice it is one of the unknowns we have to try to determine
(cf. Sec. 4.2.3).

Third, distant sources appear very small and very faint, both because of their
physical distance, and because their light is highly redshifted (due to the expansion
of the universe). Simply detecting them, let alone determining their characteris-
tics, becomes rapidly more difficult with distance. Furthermore absorption by
intervening matter can interfere with light from distant objects. The further back
we look, the worse these problems become; thus our reliable knowledge of the
universe decreases rapidly with distance [Ellis, 1975].

The situation is however improved by the availability of geological-type data
[Hoyle, 1960]; that is, the present-day status of rocks, planets, star clusters, galax-
ies, and so on, which contains much information on the past history of the matter
comprising those objects. Thus we can obtain detailed information on conditions
near our past world-line in spacetime [Ellis, 1971a; Ellis, 1975] at very early times
if we can interpret this data reliably, for example by relating theories of structure
formation to statistical studies of source properties.

Thesis B2: ‘Geological’ type observations can probe the distant past
of our past world line. Physical and astrophysical observations tell us about
conditions near matter world-lines in the far distant past. They can be used also
to investigate the far distant past of more distant objects.

This involves us in physical cosmology: namely the study of the evolution of
structures in the universe, tested by comparison with astronomical observation.
Particularly useful are measurements of the abundances of elements which resulted

21For example we see the Andromeda galaxy as it was two million years ago, long before
humans existed on Earth [Silk, 2005].
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from nucleosynthesis in the Hot Big Bang, giving us data about conditions long
before decoupling (Sec. 2.2.2). If we can obtain adequate quality data of this kind
for objects at high redshifts, we can use this to probe conditions very early on
in their histories at some distance from our past worldline. Encouraging in this
regard is the possibility of determination of element abundances at high redshift
[Dodelson, 2003, pp. 11-12]; [Pettini, 1999]).

4.2 Determining Spacetime Geometry: Observational Limits.

The unique core business of observational cosmology is determining the large-scale
geometry of everything there is, or at least of everything we can observe.

4.2.1 Direct determination versus theory based approaches

One can go about this in a direct manner: trying to determine the geometry of
the universe directly from observations (assuming one has some understanding of
the sources observed). The way this can be done (curiously known as the ‘inverse
approach’) has been fully characterized [Kristian and Sachs, 1966; Ellis et al.,
1985]; indeed there is an interesting result here, namely

Observational Cosmology Theorem: The data in principle available on our
past null cone from astronomical observations is just necessary and sufficient to
determine the space-time geometry on that null cone [Ellis et al., 1985]. From this
data one can in principle determine the space time in the past of the null cone
and, if a no-interference conditions is assumed, to its future.

However this is difficult to carry out both because of the problem of estimating
distances for all observed sources, requiring a knowledge of the nature of the
sources (Sec. 4.2.3),22 and because of the serious difficulty in obtaining some of
the needed data (which include apparent distortions of all distant objects, and the
transverse velocities of all observed matter). The further we observe down the past
light cone, the larger the uncertainty becomes. This direct observational approach,
where no prior model is assumed for the space-time geometry, has been pursued to
some degree (and in essence underlies for example the observational studies that
discovered large-scale structure such as the great walls and voids). Nevertheless it
is not widely adopted as an overall approach to cosmology, both because of these
observational difficulties, but also because it has little explanatory value; it just
tells us what the geometry and matter distribution is, but not why it is of that
nature.

The usual option in cosmology proper is rather to use a theory-based approach:
we a priori assume a model based on a space-time geometry with high symmetry
(usually a FL model, see Sec. 2.1), and then determine its essential free parame-
ters from comparison of theoretical relations with astronomical observations (Sec.
2.3.3). Detailed observations of the matter distribution and large-scale velocities

22The link between observations and models always requires some theory, and is never direct.
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as well as CBR anisotropies then help us determine deviations from the exact
model, both statistically (an astrophysical description [Dodelson, 2003]) and in
detail (an astronomical description [Ellis and Stoeger, 1987]).

4.2.2 Indirect determination: justifying a Friedmann-Lemâıtre geometry

The standard models of cosmology are the Friedmann-Lemâıtre (FL) family of
universe models that are exactly spatially homogeneous and isotropic everywhere
(Sec. 2.1). They are easy to understand, and have tremendous explanatory power;
furthermore their major physical predictions (the existence of blackbody CBR
and specific light element production in the early universe) seem confirmed. The
issue is, to what degree does observational data uniquely indicate these universe
models for the expanding universe geometry? Here one is assuming a large enough
averaging scale for spatial homogeneity to be valid; this scale should be explicitly
indicated [Ellis, 1984] (it is about 100 Mpc at present [Dodelson, 2003]).23 These
are the background models for cosmology; perturbed FL models then characterize
the nature of deviations from the exact FL geometry that are expected on smaller
scales (Sec. 2.5.2).

The key feature here is the observed isotropy about our location (Sec. 2.3.1).
Considered on a large enough angular scale, astronomical observations are very
nearly isotropic about us, both as regards source observations and background
radiation; indeed the latter is spectacularly isotropic, better than one part in 104

after a dipole anisotropy, understood as resulting from our motion relative to
the rest frame of the universe, has been removed [Partridge, 1995]. Because this
applies to all observations (in particular, there are not major observed matter con-
centrations in some other universe region), this establishes that in the observable
region of the universe, to high accuracy both the space-time structure and the mat-
ter distribution are isotropic about us. We can easily construct exact spherically
symmetric universe models [Bondi, 1947; Ellis and van Elst, 1999a], as indicated
by these observations. In general they will be spatially inhomogeneous, with our
Galaxy located at or near the centre; this is currently a philosophically unpopular
proposal, but is certainly possible. The question is whether we can give convinc-
ing observational evidence for spatial homogeneity in addition to the spherical
symmetry. Various arguments are used for this purpose.

(a) The cosmological principle [Bondi, 1960; Weinberg, 1972]: Just assume spa-
tial homogeneity because it is the simplest case and you don’t need anything
more complex on the basis of current data. We simply adopt a philosophical
principle as the basis of argument. This is essentially an a priori prescrip-
tion for initial conditions for the universe (a universe that initially has a
RW geometry will have that geometry at later times, because symmetries of

23There exist hierarchical models where neither the fluid approximation nor homogeneity is
ever attained at any scale because of their fractal nature [de Vaucouleurs, 1970]. The regularity of
the observed galactic motions, as evidenced by the (m, z) relations, speaks against these models,
as do large-scale observations of the matter distribution [Peebles, 1993a].
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the initial data are preserved by the Einstein equations [Hawking and Ellis,
1973]); but it is not usually expressed that way.

(b) FL observational relations: If we could show that the source observational
relations had the unique FL form (26, 28) as a function of distance, this
would establish spatial homogeneity in addition to the isotropy, and hence a
RW geometry [Ellis et al., 1985]. This is essentially what is done for example
in using number counts towards establishing spatial homogeneity [Hubble,
1936]. However because of Thesis B1 above, the observational problems
mentioned earlier — specifically, unknown source evolution — prevent us
from carrying this through: we cannot measure distances reliably enough.
Astrophysical cosmology could resolve this in principle, but is unable to do
so in practice. Indeed the actual situation is the inverse: taking radio-source
number-count data at its face value, without allowing for source evolution,
contradicts a RW geometry.

In the face of this, the usual procedure is to assume that spatial homogene-
ity is known in some other way, and deduce the source evolution required
to make the observations compatible with this geometric assumption [Ellis,
1975]. It is always possible to find a source evolution that will achieve this
[Mustapha et al., 1998]. Thus attempts to observationally prove spatial ho-
mogeneity this way fail; indeed an alternative interpretation would be that
this data is evidence of spatial inhomogeneity, i.e. that we live in a spheri-
cally symmetric inhomogeneous universe where we are situated somewhere
near the centre, with the cosmological redshift being partly gravitational, cf.
[Ellis et al., 1978] (and conceivably with a contribution to the CBR dipole
from this inhomogeneity if we are a bit off-centre). Similarly the supernova
data usually understood as implying the existence of a cosmological constant
(Sec. 2.3.5) could also be interpreted in this way as evidence of inhomogene-
ity, without the need for ‘dark energy’. Most people regard such proposals
as very unappealing — but that does not prove they are incorrect.

(c) Physical arguments: One can claim that physical processes such as inflation
(Sec. 2.6) make the existence of almost-RW regions highly likely, indeed much
more probable than spherically symmetric inhomogeneous regions. This is
a viable argument, but we must be clear what is happening here — we are
replacing an observational test by a theoretical argument based on a phys-
ical process that may or may not have happened (for there is no definitive
observational proof that inflation indeed took place). It is strongly bolstered
because predictions for the detailed pattern of CBR anisotropy on small
scales [Hu and Sugiyama, 1995b], based on the inflationary universe theory,
have been confirmed [Perkins, 2005]; but that argument will only become
rigorous if it is shown that spherically symmetric inhomogeneous models
(with or without inflation) cannot produce similar patterns of anisotropy.
But they probably can, because the acoustic oscillations that lead to the
characteristic predicted anisotropy patterns in fact take place after inflation,
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and can equally happen if suitable initial conditions occur without a previous
inflationary phase.

What about alternative observational routes? Another proposal is,

(d) Uniform thermal histories: the idea is to use the uniformity in the nature
of the objects we see in the sky (we see the same types of galaxy at large
distances, for example) to deduce they must have all undergone essentially
the same thermal history, and then to prove from this homogeneity of ther-
mal histories that the universe must be spatially homogeneous. For exam-
ple, observations showing that element abundances at high redshift in many
directions are the same as locally, are very useful in constraining inhomo-
geneity by showing that conditions in the very early universe at the time
of nucleosynthesis must have been the same at distant locations in these di-
rections [82]. However turning this idea into a proper test of homogeneity
has not succeeded so far: indeed it is not clear if this can be done, because
some (rather special) counter-examples to this conjecture have been found
[Bonnor and Ellis, 1986]. Nevertheless the approach could be used to give
evidence against spatial homogeneity: for example, if element abundances
were measured to be different at high redshifts in any direction [Pettini, 1999;
Sigurdson and Furlanetto, 2005], or if ages of distant objects were incompat-
ible with local age estimates [Jain and Dev, 2005].

Finally the argument for spatial homogenity that is most generally accepted:

(e) Isotropy everywhere: If all observers see an isotropic universe, then spatial
homogeneity follows [Walker, 1944; Ehlers, 1993; Ellis, 1971a]; indeed ho-
mogeneity follows if only three spatially separated observers see isotropy.
Now we cannot observe the universe from any other point, so we cannot
observationally establish that far distant observers see an isotropic universe.
Hence the standard argument is to assume a Copernican Principle: that
we are not privileged observers. This is plausible in that all observable
regions of the universe look alike: we see no major changes in conditions
anywhere we look. Combined with the isotropy we see about ourselves,
this implies that all observers see an isotropic universe, and this estab-
lishes a RW geometry [Walker, 1944; Ellis, 1971a; Hawking and Ellis, 1973].
This result holds if we assume isotropy of all observations; a powerful en-
hancement was proved by Ehlers, Geren, and Sachs [Ehlers et al., 1968;
Hawking and Ellis, 1973], who showed that if one simply assumes isotropy of
freely-propagating radiation about each observer in an expanding universe
domain,24 the result follows from the Einstein and Liouville equations; that
is,

24This result does not hold in a static universe, for then the radiation temperature depends
only on the potential difference between the emitter and observer, hence the radiation is isotropic
everywhere even if the universe inhomogeneous, cf. [Ellis et al., 1978].
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EGS Theorem: Exact isotropy of the CBR for every geodesically moving
fundamental observer at each point in an expanding universe domain U im-
plies an exact RW geometry in U.

Thus we may establish spatial homogeneity by assuming a weak Copernican prin-
ciple: we are not in a privileged position where the CBR just happens to be highly
isotropic by chance; hence all comoving observers may be assumed to measure
highly isotropic CBR, and the result follows. This is currently the most persua-
sive observationally-based argument we have for spatial homogeneity.

A problem is that it is an exact result, assuming exact isotropy of the CBR;
is the result stable? Indeed it is: almost-isotropy of freely-propagating CBR for
an expanding family of geodesically-moving fundamental observers everywhere in
some region proves the universe geometry is almost-RW in that region [Stoeger et
al., 1995]. Thus the result applies to the real universe — provided we make the
Copernican assumption that all other observers, like us, see almost isotropic CBR.
And that is the best we can do at present. Weak tests of the isotropy of the CBR
at other spacetime points come from the Sunyaev-Zel’dovich effect [Goodman,
1995] and from CBR polarization measurements [Kamionkowski and Loeb, 1997],
giving broad support to this line of argument but not enough to give good limits
on spatial inhomogeneity.

The observational situation is clear:

Thesis B3: Establishing a Robertson-Walker geometry for the universe
relies on plausible philosophical assumptions. The deduction of spatial ho-
mogeneity follows not directly from astronomical data, but because we add to the
observations a philosophical principle that is plausible but untestable.

The purpose of the above analysis is not to seriously support the view that the
universe is spherically symmetric and inhomogeneous, as is allowed by the obser-
vations, but rather to show clearly the nature of the best observationally-based
argument by which we can (quite reasonably) justify the assumption of spatial
homogeneity.

Accepting this argument, the further question is, in which spacetime regions
does it establish a RW-like geometry? The CBR we detect probes the state
of the universe from the time of decoupling of matter and radiation (at a red-
shift of about 1100) to the present day, within the visual horizon. The argu-
ment from CBR isotropy can legitimately be applied for that epoch. However,
it does not necessarily imply isotropy of the universe at much earlier or much
later times, because there are spatially homogeneous anisotropic perturbation
modes that are unstable in both directions of time; and they will occur in a
generic situation. Indeed, if one examines the Bianchi (spatially homogeneous but
anisotropic) universes, using the powerful tools of dynamical systems theory, one
can show that intermediate isotropisation can occur [Wainwright and Ellis, 1996;
Wainright et al., 1998]: despite being highly anisotropic at very early and very
late times, such models can mimic a RW geometry arbitrarily closely for an ar-
bitrarily long time, and hence can reproduce within the errors any set of FL-like
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observations. We can obtain strong limits on the present-day strengths of these
anisotropic modes from CBR anisotropy measurements and from data on element
abundances, the latter being a powerful probe because (being of the ‘geological’
kind) they can test conditions at the time of element formation, long before decou-
pling. But however low these observational limits, anisotropic modes can dominate
at even earlier times as well as at late times (long after the present). If inflation
took place, this conclusion is reinforced: it washes out any information about very
early universe anisotropies and inhomogeneities in a very efficient way.

As well as this time limitation on when we can regard homogeneity as estab-
lished, there are major spatial limitations. The above argument does not apply
far outside the visual horizon, for we have no reason to believe the CBR is highly
isotropic there. Indeed if chaotic inflation is correct, conditions there are not the
same.

4.2.3 Determining the RW parameters

Given that a RW geometry is a good description of the observable universe on a
large scale, the further issue is what are the best-fit parameters that characterize
it, selecting the specific universe we observe from the family of all FL models (Sec.
2.1). Important observational issues are:

• Determining the Hubble parameter H0, which sets the overall scale of the
observed universe region.

• Determining the trio of the density parameter Ω0, deceleration parameter
q0, and cosmological constant Λ (or equivalently the density parameter ΩΛ),
which are the major defining characteristics of a specific FL model. The
CBR data, supernova observations, deep number counts, source covariance
functions, velocity measurements, and gravitational lensing observations can
determine these quantities.

• Determining the sign of the curvature k, showing whether the universe has
closed spatial sections and also whether it is possible for it to recollapse in
the future or not. Analyses of the observations should always attempt to
determine this sign, and not assume that k = 0 (as is often done) [Wright,
2006].

• Various parameters are used to characterize the nature of dark matter (Sec.
2.3.6) and dark energy (Sec. 2.3.5). As their dynamics is unknown, these too
have to be determined observationally.

We only obtain good estimates of these quantities by the observational relation-
ships characterized above (Sec. 2.3.3) using statistical analysis of the classes of
objects we observe. Problems arise because of our lack of adequate theories of
their historical development.
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Thesis B4: Interpreting cosmological observations depends on astro-
physical understanding. Observational analysis depends on assessing a variety
of auxiliary functions characterizing the sources observed and the observations
made. These introduce further parameters that have to be observationally or theo-
retically determined, allowing considerable freedom in fitting specific models to the
observations. Physical cosmology aims to characterize perturbed FL models (which
account for structure formation) rather than just the background exactly smooth
FL models; this introduces further parameters to be determined.

It is useful here to distinguish between methods aimed at determining the proper-
ties of the background (zeroth order) FL model directly, and those aimed at deter-
mining properties of the perturbations of these models [Tegmark, 2002]. Methods
for determining the parameters of the background model (Sec. 2.1) depend on
assuming properties of the distance indicators used (galaxies, radio sources, etc.).
They will have their own properties (brightness profiles, luminosities, physical
sizes, spectra, etc.) and dynamical evolution; but these are often not well under-
stood, and will have to be represented in a parametric way (e.g. by parameters
describing luminosity evolution). In each case we end up assuming important as-
pects of the astrophysics and evolutionary histories of the objects observed, which
are not part of the cosmological model proper. The statistical properties of the
sources observed are also characterized by parametrized functions (e.g. the lumi-
nosity function characterizing the numbers of galaxies in each luminosity class)
that have to be known in order to analyze the observations. This situation is an
exemple of Lakatos’ view of how scientific programmes work, with a belt of aux-
iliary hypotheses interposing between the core theoretical proposal and the data
used to test it [Lakatos, 1980]. This makes the analysis rather model-dependent,
where the models are only indirectly related to the background model — their
explanation is the aim of astrophysics rather than cosmology. Thus if observa-
tional results disagree with a particular cosmological model, one can always claim
it is the understanding of the auxiliary hypotheses that is at fault rather than the
model being proposed [Lakatos, 1980].

By contrast, many of the methods of estimating Ω0 (and to some degree Λ) de-
pend on studying the growth and nature of inhomogeneities in the universe, that
is they investigate perturbed FL models (Sec. 2.5.2), whose properties of course
depend on the background model, but introduce a whole set of further functions
and parameters describing the perturbations [Dodelson, 2003], for example the an-
gular correlation function for matter (or its Fourier transform, the 2-dimensional
power spectrum), the power spectrum of density fluctuations [Tegmark, 2002],
red-shift space correlation functions [Peebles, 1993a; Eisenstein et al., 2005a], and
correlation function for velocities [Dodelson, 2003]. Associated parameters include
a scalar spectral index (characterizing the spectrum of physical sizes of inhomo-
geneities), the bias parameter b (expressing how galaxy formation is biassed to-
wards density peaks in the inhomogeneities [Dodelson, 2003, p. 280]) and the
initial fluctuation magnitudes Q (the seeds for structure formation). Determining
these parameters is part of the task of cosmology proper: to fully characterize the
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perturbed cosmological model, we aim to determine both the background parame-
ters and the quantities describing the perturbations. Model selection then depends
on the parameters used to describe them — what is assumed known, and what is
to be determined [Liddle, 2004; Scott, 2005]. For example, standard inflationary
theory predicts a scale-invariant spectrum of Gaussian perturbations; do we test
that assumption, or take it for granted? This comes up in the issue of what ‘priors’
are assumed when conducting statistical tests.

4.2.4 Consistency tests

A key question for cosmology is what kinds of observations provide critical tests of
the standard FL models. If there were no observations that could disprove them,
the subject would be of questionable scientific status. An important such test is
obtaining estimates of the age of the universe t0, which is dependent on H0, Ω0,
and Λ, and comparing them with estimates of the ages of objects in the universe
(determined on astrophysical grounds):

Thesis B5: A crucial observational test for cosmology is that the age of
the universe must be greater than the ages of stars. The tension between
the age of the universe and ages of stars is one area where the standard models
are vulnerable to being shown to be inconsistent, hence the vital need to establish
reliable distance scales, basic to estimates of both H0 and the ages of stars, and
good limits on Λ. Other consistency tests help confirm the standard model and
consolidate cosmology’s standing as an empirical science.

At present this age issue is acceptable for local objects, because of a recent revision
of our distance scale estimates [Harris et al., 1998], assisted by data that Λ is
positive [Perlmutter et al., 1998]; but continued vigilance is needed on this front,
particularly as there are indications of problems for high redshift objects [Jain
and Dev, 2005]. If this ever became serious we might have to resort to spherically
symmetric inhomogeneous models rather than spatially homogeneous models, with
the ‘bang time’ (characterizing the start of the universe) dependent on distance
from us [Mustapha et al., 1998].

Note that this issue is crucially unlike the case of the large angle CBR anisotropies
(Sec. 2.3.7): the low CBR anisotropies at large angular scales can as a last resort
be dismissed as a statistical fluke; the age issue cannot. It is to do with the internal
consistency of individual cosmological models, not with probabilities. Thus it is a
plus for cosmology that the age issue exists. Other consistency tests include

• Showing that the CBR temperature Tcbr varies with redshift according to
Tcbr = 2.75 (1 + z) [Meyer, 1994];

• Confirming that helium abundances are consistent with a primordial value
of 25% at large distances (high redshifts) in all directions [Dodelson, 2003,
pp. 11-12]; also [Pettini, 1999; Sigurdson and Furlanetto, 2005]; and
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• Checking that there is a 2% number count dipole parallel to the CBR dipole
for all cosmological sources [Ellis and Baldwin, 1984].

4.3 The hidden universe

If we do not live in a small universe (Sec. 4.3.1), the further essential point is that
the region of the universe we can observe is restricted, firstly because we cannot
see to earlier times than the LSS (the universe was opaque before then (see Sec.
2.2)), and secondly because a finite time has elapsed since the universe became
transparent to radiation, and light can only have travelled a finite distance in
that time. As no signal can travel to us faster than light, we cannot receive any
information from galaxies more distant than our visual horizon [Ellis and Stoeger,
1988]. The most distant matter we can observe is that which emitted the CBR
(Sec. 2.4.2).

Thesis B6: Observational horizons limit our ability to observationally
determine the very large scale geometry of the universe. We can only
see back to the time of decoupling of matter and radiation, and so have no direct
information about earlier times; and unless we live in a ‘small universe’, most
of the matter in the universe is hidden behind the visual horizon. Conjectures as
to its geometry on larger scales cannot be observationally tested. The situation is
completely different in the small universe case: then we can see everything there
is in the universe, including our own galaxy at earlier times.

The key point here is that unless we live in a small universe, the universe itself is
much bigger than the observable universe. There are many galaxies — perhaps an
infinite number — at a greater distance than the horizon, that we cannot observe
by any electromagnetic radiation. Furthermore no causal influence can reach us
from matter more distant than our particle horizon — the distance light can have
travelled since the creation of the universe, so this is the furthest matter with which
we can have had any causal connection [Rindler, 1956; Hawking and Ellis, 1973;
Tipler et al., 1980]. We can hope to obtain information on matter lying between
the visual horizon and the particle horizon by neutrino or gravitational radiation
observatories; but we can obtain no reliable information whatever about what lies
beyond the particle horizon. We can in principle feel the gravitational effect of
matter beyond the horizon because of the force it exerts (for example, matter
beyond the horizon may influence velocities of matter within the horizon, even
though we cannot see it). This is possible because of the constraint equations
of general relativity theory, which are in effect instantaneous equations valid on
spacelike surfaces.25 However we cannot uniquely decode that signal to determine
what matter distribution outside the horizon caused it: a particular velocity field
might be caused by a relatively small mass near the horizon, or a much larger

25They are valid at any late time in a solution of the EFE because they were valid initially —
the initial data must satisfy constraint equations — and once they are satisfied, the constraints
are preserved by the dynamic field equations.
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mass much further away [Ellis and Sciama, 1972]. Claims about what conditions
are like on very large scales — that is, much bigger than the Hubble scale —
are unverifiable [Ellis, 1975], for we have no observational evidence as to what
conditions are like far beyond the visual horizon. The situation is like that of an
ant surveying the world from the top of a sand dune in the Sahara desert. Her
world model will be a world composed only of sand dunes — despite the existence
of cities, oceans, forests, tundra, mountains, and so on beyond her horizon.

It is commonly stated that if we live in a low-density universe and the cos-
mological constant vanishes, the universe has infinite spatial sections. However
this deduction only applies if firstly the RW-like nature of the universe within
the past light cone continues to be true indefinitely far outside it, and secondly
the space sections have their ‘natural’ simply-connected topology — and there is
no way we can obtain observational evidence that these conditions are both true.
In contrast to this, in chaotic inflationary models (Sec. 2.6), it is a definite pre-
diction that the universe will not be like a RW geometry on a very large scale
— rather it will consist of many RW-like domains, each with different parameter
values, separated from each other by highly inhomogeneous regions outside our
visual horizon [Linde, 1990], the whole forming a fractal-like structure. This pre-
diction is just as untestable as the previously prevalent assumption (based on a
Cosmological Principle) that the universe is RW-like on such scales [Bondi, 1960;
Weinberg, 1972]. Neither can be observationally confirmed or denied. The same
issue arises in an even more extreme form in relation to the idea of a multiverse.
We return to this below, see Sec. 9.2.

4.3.1 Small universes

There is one case where this kind of spatial observational limit does not obtain.
This is when a Small Universe occurs, that is, a universe which closes up on
itself spatially for topological reasons [Ellis, 1971b], and does so on such a small
scale that we have seen right round the universe since the time of decoupling.
Then we can see all the matter that exists, with multiple images of many objects
occurring [Ellis and Schreiber, 1986]. This possibility is observationally testable
by examining source statistics, by observation of low power in the large angle CBR
anisotropies, and by detecting identical temperature variation on various circles in
the CBR sky [Lachièze et al., 1995]. There are weak hints in the observed CBR
anisotropies (the lack of power on large angular scales) that this could actually be
the case [Luminet et al., 2003; Luminet, 2005], but this is not solidly confirmed.
Checking if the universe is a small universe or not is an important task; the nature
of our observational relationship to the universe is fundamentally different if it is
true [Ellis and Schreiber, 1986].

4.4 The observed universe

The observable part of the universe (i.e. back to the visual horizon) is strictly
limited, and we have already seen most of it. We can only observe distant objects
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by electromagnetic radiation at all wavelengths, by neutrinos, and by gravita-
tional waves. We already have very complete broad coverage of the entire sky by
electromagnetic observations at all wavelengths right back to the surface of last
scattering, which is the limit of what will ever be observable by electromagnetic
radiation. Detailed observations (such as the Hubble Deep Field) are available for
restricted domains in angle and depth. Detailed observations at suitable wave-
lengths are beginning to discern what lies behind the Milky Way, which tends
to obscure a substantial fraction of the sky. It is unlikely there are many new
astronomical phenomena undiscovered in this observable region, although it will
be crucial determining more detailed features of the phenomena we have already
discovered (e.g. the nature of dark matter and dark energy).

Thesis B7: We have made great progress towards observational com-
pleteness. We have already seen most of the part of the universe that is observable
by electromagnetic radiation. It is plausible that not many new astronomical phe-
nomena remain to be discovered by us observationally; we will determine more
details (so understanding more about what we have seen) and see more objects,
but not discover many new kinds of things.

Indeed Harwit [1984] has used the multiplicity of discovery of specific astronomical
phenomena to estimate how many new essentially different such phenomena there
are still waiting to be discovered.

Neutrinos and gravitational waves will in principle allow us to peer back to
much earlier times (the time of neutrino decoupling and the quantum gravity era
respectively), but are much harder to observe at all, let alone in useful directional
detail. Nevertheless the latter has the potential to open up to us access to eras quite
unobservable in any other way. Maybe they will give us unexpected information on
processes in the very early universe which would count as new features of physical
cosmology.

5 ISSUE C: THE UNBOUND ENERGIES IN THE EARLY UNIVERSE

The analogous problems for physical cosmology arise because energies occurring
in the Hot Big Bang early universe phase (Sec. 2.2) are essentially unbounded,
so the highest energies we can attain in particle accelerators cannot reach the
levels relevant to very early times. The uniqueness of cosmology in this regard is
that it is the only science contemplating spacetime regions that have experienced
such high energies, and with which we are in intimate causal contact despite the
huge timescales involved — indeed events at those early times determined much of
what we see around us today. The nuclear reactions underlying nucleosynthesis are
well understood, and their cross-sections reasonably well-known; the processes of
baryosynthesis and quark-gluon recombination are reasonably understood and are
on the border of being testable; but physical processes relevant at earlier times are
inaccessible to testing by laboratory or accelerator-based experiment. The Physics
Horizon by definition separates those aspects of physics we can hope to test by
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high-energy experiments on Earth or in the Solar System, from those where it is
reasonable to expect no such test will ever be possible:

Thesis C1: The Physics Horizon limits our knowledge of physics rele-
vant to the very early universe. We cannot experimentally test much of the
physics that is important in the very early universe because we cannot attain the
required energies in accelerators on Earth. We have to extrapolate from known
physics to the unknown and then test the implications; to do this, we assume some
specific features of known lower energy physics are the true key to how things are
at higher energies. We cannot experimentally test if we have got it right.

Note that this is independent of the issue of setting of initial conditions for the
universe, considered below, see Sec. 6.2: the problem arises after the initial con-
ditions have been set and the universe is running according to invariable physical
laws. We cannot be confident of the validity of the physics we presuppose then.
Rather than using known physics to predict the evolution of the universe, we end
up testing proposals for this physics by exploring their implications in the early
universe, which is the only ‘laboratory’ where we can test some of our ideas re-
garding fundamental physics at the highest energies [Yoshimura, 1988]; this is
particularly true in the case of quantum gravity proposals. The problem is we
cannot simultaneously do this and also carry out the aim of physical cosmology,
namely predicting the evolution of the early universe from known physical theory.

Our understanding of physics at those times has of necessity to be based on
extrapolation of known physics way beyond the circumstances in which it can be
tested. The trick is to identify which features are the key to use in that extrapo-
lation: for example, variational principles, broken symmetries and phase changes,
duality invariance, entropy limits are candidates. If we confirm our guesses for the
relevant physics by their satisfactory implications for the early universe, tested in
some suitable way, then this is impressive progress; but if this is the only way we
can test the proposed physics, the situation is problematic. If the hypothesis solves
only the specific issues it was designed to solve in the early universe and nothing
else, then in fact it has little explanatory power, rather it is just an alternative
(perhaps theoretically preferable) description of the known situation. One obtains
positive observational support for a particular proposal for the relevant physics
only if it predicts multiple confirmed outcomes (rather than just one), for example
predicting particles that are then confirmed to exist in a laboratory, so that a sin-
gle hypothesis simultaneously solves several different observational issues. Some
of the options may be preferred to others on various theoretical grounds; but one
must distinguish this from their having observational support. They lack phys-
ical power if they have no other testable consequences. A particular example is
the inflationary universe proposal (Sec. 2.6): the supposed inflaton field under-
lying an inflationary era of rapid expansion in the early universe [Guth, 1981;
Gibbons et al., 1983; Kolb and Turner, 1990; Guth, 1997] has not been identified,
much less shown to exist by any laboratory experiment. Because this field φ is un-
known, one can assign it an arbitrary potential V (φ), this arbitrariness reflecting
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our inability to experimentally determine the relevant behaviour. It can be shown
that virtually any desired scale evolution S(t) of the universe can be attained by
suitable choice of this potential [Ellis and Madsen, 1991]; and also almost any
desired perturbation spectrum can be obtained by a (possibly different) suitable
choice [Lidsey et al., 1997]. Indeed in each case one can run the mathematics back-
wards to determine the required potential V (φ) from the desired outcome (Sec.
9.3.1 below). The mathematical existence of such a theoretical potential of the
desired form for cosmological purposes does not by itself prove a particle or field
exists with that effective potential.

Thesis C2: The unknown nature of the inflaton means that inflationary
universe proposals are incomplete. The promise of inflationary theory in
terms of relating cosmology to particle physics has not been realized. This will only
be the case when the nature of the inflaton has been pinned down to a specific field
that experiment confirms or particle physics requires to exist.

The very impressive achievement of inflation is that the predicted CBR anisotropy
spectrum is verified and agrees with the matter power spectrum [Eisenstein et al.,
2005a]; but that prediction depends only on the physics from the era of tight
coupling of matter and radiation to the present day, given a suitable initial fluctu-
ation spectrum in the early universe, rather than on the specific hypothesis of an
inflationary origin for that spectrum. The true clincher would be if properties of
an inflationary field were predicted from the cosmology side and then confirmed
in the laboratory; indeed that would count as one of the great feats of theoreti-
cal physics. This may not happen however because of the experimental problems
focused on here, arising because we cannot reproduce on Earth all the conditions
relevant to very early cosmology.

One key application where this issue becomes significant is in respect of the
chaotic inflation theory (Sec. 2.6). As remarked above, see Sec. 4.3, its geomet-
ric predictions are observationally unverifiable. It would nevertheless be a good
physical prediction if it was a more or less inevitable outcome of known and tested
underlying physics. However this is not the case: the proposed underlying physics
is not experimentally tested, indeed it is not even uniquely defined or associated
with any specific known physical particle or field. The claim that it inevitably
follows from string theory [Susskind, 2005] suffers from the problem that string
theory is not a well-defined or tested part of physics.

6 ISSUE D: EXPLAINING THE UNIVERSE — THE QUESTION OF
ORIGINS.

This is the unique core business of physical cosmology: explaining both why the
universe has come into existence and evolved to the present very high-symmetry
FL geometry on large scales, and how structures come into existence on smaller
scales.
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6.1 Start to the universe

Did a start to the universe happen? If so, what was its nature? This has been dis-
cussed above (Sec. 2.7.2), and the issue is unresolved. The major related question
is whether the process of expansion only happens once in the life of the Universe,
or occurs repeatedly. The first option is the standard model, where the entire evo-
lution of the Universe is a once-off affair, with all the objects we see, and indeed the
Universe itself, being transient objects that will burn out like dead fireworks after
a firework display. In this case everything that ever happens occurs during one
expansion phase of the Universe (possibly followed by one collapse phase, which
could occur if k = +1 and the present ‘dark energy’ field dies away in the future).
This evolution might have a singular start at a space-time singularity; a beginning
where the nature of time changes character; a non-singular bounce from a single
previous collapse phase; or a start from a non-singular static initial state [Mulryne
et al., 2005]. An alternative is that many such phases have occurred in the past,
and many more will occur in the future; the Universe is a Phoenix Universe [Dicke
and Peebles, 1979], new expansion phases repeatedly arising from the ashes of the
old. While the idea of one or more bounces is an old one [Tolman, 1934], actual
mechanisms that might allow this bounce behaviour have not yet been elucidated
in a fully satisfactory way. A variant is the chaotic inflation idea of new expand-
ing universe regions arising from vacuum fluctuations in old expanding regions,
leading to a universe that has a fractal-like structure at the largest scales, with
many expanding regions with different properties emerging out of each other in a
universe that lasts forever (Sec. 2.6).

As discussed above, see Sec. 2.7.1, it is possible (if the universe has positive
spatial curvature) that the quantum gravity domain can be avoided and there was
no start to the universe; however this probably requires special initial conditions
[Ellis and Maartens, 2004]. If a quantum gravity domain indeed occurred, we
cannot come to a definite conclusion about whether there was a creation event or
not because we do not know the nature of quantum gravity, nor how to reliably
apply it in the cosmological context where the issue of initial conditions arises.
Loop quantum gravity suggests the universe may be singularity-free [Bojowald,
2001], with bounces or a non-singular start, but that theory is unconfirmed. Tested
physics cannot give a decisive answer; it is possible that testable physics also cannot
do so.

Thesis D1: An initial singularity may or may not have occurred. A start
to the universe may have occurred a finite time ago, but a variety of alternatives
are conceivable: eternal universes, or universes where time as we know it came
into existence in one or another way. We do not know which actually happened,
although quantum gravity ideas suggest a singularity might be avoided.

This is a key issue in terms of the nature of the universe: a space-time singularity
is a dramatic affair, where the universe (space, time, matter) has a beginning and
all of physics breaks down and so the ability to understand what happens on a
scientific basis comes to an end. However eternal existence is also problematic,



1236 George F R Ellis

leading for instance to the idea of Poincaré’s eternal return: everything that ever
happened will recur an infinite number of times in the future and has already
occurred an infinite number of times in the past [Barrow and Tipler, 1984]. This
is typical of the problems associated with the idea of infinity (discussed further
below, see Sec. 9.3.2). It is not clear in the end which is philosophically preferable:
a singularity or eternal existence. That decision will depend on what criteria of
desirability one uses (such criteria are discussed below, see Sec. 8.1).

6.2 The issue of initial conditions

While occurrence of an initial singularity is striking in that it is a start to physics
and spacetime as well as matter, whether it occurred or not is in a sense irrelevant
to the key issue of what determined the nature of the universe:

Thesis D2: Testable physics cannot explain the initial state and hence
specific nature of the universe. A choice between different contingent possi-
bilities has somehow occurred; the fundamental issue is what underlies this choice.
Why does the universe have one specific form rather than another, when other
forms consistent with physical laws seem perfectly possible? The reasons underly-
ing the choice between different contingent possibilities for the universe (why one
occurred rather than another) cannot be explored scientifically. It is an issue to be
examined through philosophy or metaphysics.

Even if a literal creation does not take place, as is the case in various of the present
proposals, this does not resolve the underlying issue of what determined why the
universe is the way it is, given that it could presumably have been otherwise. If the
proposal is evolution from a previous eternal state — Minkowski space for example
— then why did that come into existence, and why did the universe expansion as
a bubble from that vacuum start when it did, rather than at some previous time
in the pre-existent eternity? Whenever it started, it could have started before!
Some attempts involve avoiding a true beginning by going back to some form of
eternal or cyclic initial state, for example Tolman’s series of expansion and collapse
cycles [Tolman, 1934], proposals for creation of the universe as a bubble formed
in a flat space-time [Tryon, 1973], Linde’s eternal chaotic inflation [Linde, 1990],
Veneziano’s re-expansion from a previous collapse phase [Ghosh et al., 1998], the
ekpyrotic universe proposal [Khoury et al., 2001], and theories involving foun-
dational limits on information through a “holographic principle” [Susskind and
Lindesay, 2004]. These do not avoid the ultimate problem; it can be claimed they
simply postpone facing it, for one now has to ask all the same questions of origins
and uniqueness about the supposed prior state to the Hot Big Bang expansion
phase. The Hartle-Hawking ‘no-boundary’ proposal [Hawking, 1993] avoids the
initial singularity because of a change of space-time signature, and so gets round
the issue of a time of creation in an ingenious way; and Gott’s causality violation
in the early universe [Gott and Li, 1998] does the same kind of thing in a different
way. Such proposals cannot overcome the ultimate existential question: Why has
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one specific state occurred rather than any of the other possibilities? How was it
decided that this particular kind of universe would be the one actually instantiated?
This question cannot be solved by physics alone, unless one can show that only
one form of physics is self-consistent; but the variety of proposals made is evidence
against that suggestion.

The explanation of initial conditions has been the aim of the family of theories
one can label collectively as ‘quantum cosmology’ [Hawking, 1993; Gott and Li,
1998; Gibbons et al., 2003]; however as discussed earlier, here we inevitably reach
the limits to what the scientific study of the cosmos can ever say — if we assume
that such studies must of necessity involve an ability to observationally or experi-
mentally check our theories. No physical experiment at all can help here because of
the uniqueness of the universe, and the feature that no spacetime exists prior to (in
a causal sense) such a beginning; so brave attempts to define a ‘physics of creation’
stretch the meaning of ‘physics’. Prior to the start (if there was a start) physics
as we know it is not applicable and our ordinary language fails us because time
did not exist, so our natural tendency to contemplate what existed or happened
‘before the beginning’ is highly misleading — there was no ‘before’ then, indeed
there was no ‘then’ then! Talking as if there was is commonplace, but quite mis-
leading in trying to understand a scientific concept of ‘creation’ [Grunbaum, 1989].
We run full tilt into the impossibility of testing the causal mechanisms involved,
when physics did not exist. No experimental test can determine the nature of any
mechanisms that may be in operation in circumstances where even the concepts
of cause and effect are suspect. This comes particularly to the fore in proposing
‘laws of initial conditions for the universe’ — for here we are apparently proposing
a theory with only one object. Physics laws are by their nature supposed to cover
more than one event, and are untestable if they do not do so (Sec. 3).

6.3 Special or general

The present state of the universe is very special. Explanation of the present large-
scale isotropy and homogeneity of the universe means determining the dynamical
evolutionary trajectories relating initial to final conditions, and then essentially
either explaining initial conditions, where we run into difficulties (Sec. 6.2), or
showing they are irrelevant. The issue raised is whether the universe started off in
a very special geometrical state:

Thesis D3: The initial state of the universe may have been special or
general. Whether there was generality or speciality of geometrical initial condi-
tions for the universe is a key question. It seems likely that the initial state of the
observed part of the universe was not generic.

The assumption that the universe is geometrically special was encoded in the
Cosmological Principle, taken as a founding principle in cosmology until the 1960’s,
i.e. as an ‘explanation’ of special initial conditions [Bondi, 1960; Weinberg, 1972].
Then Misner introduced the chaotic cosmology programme [Misner, 1968], based
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on the idea of a universe with generic initial conditions being isotropised at later
times by physical processes such as viscosity, making initial conditions irrelevant.
This concept of isotropisation then became central to the inflationary family of
theories (Sec. 2.6), with the underlying assumption being that ‘fine tuning’ of
initial conditions is unphysical and to be avoided. Both programmes are however
only partially successful: one can explain a considerable degree of isotropisation
and homogenization of the physical universe by either process, but this will not
work in all circumstances. Inflation can get rid of much anisotropy [Wald, 1983] but
inhomogeneity must be restricted if inflation is to succeed in producing a universe
like that we see today, and the success of inflation in solving the horizon issue for FL
models — where exact homogeneity exists to start with — will not necessarily be
replicated in anisotropic models. Universes that are initially too anisotropic may
never inflate, and the horizon problem may not be solved in such models if they
do;26 and only rather special states lead to ordinary thermodynamics [Penrose,
1989a; Penrose, 2004; Wald, 2005; Carroll and Chen, 2005], which is taken to be
true in inflationary physics.

Inflation can only be guaranteed to succeed if initial conditions are somewhat
restricted; some degree of geometric speciality must have occurred at the start
of the observed region of the universe. This special domain might possibly occur
within the context of a much larger universe domain where conditions vary ran-
domly, and only isolated regions lead to inflation and eventually domains such as
that we see around us; attractive as this may be, it is an untestable hypothesis
(essentially a version of the multiverse proposal, see Sec. 9.2).

Special initial conditions (which inflation proposes to explain) might have just
occurred that way. The ultimate issue is that we have no proof as to whether initial
conditions for the universe were special or general; either could have occurred. If
we state these conditions must have been general, we are making a philosophical
claim, for it is not a provable physical statement. Part of the problem is that we
have no agreed measure on the space of possible universes; what seems special or
general depends on the choice of such a measure.

7 ISSUE E: THE UNIVERSE AS THE BACKGROUND FOR EXISTENCE

The universe provides the environment for all of science, by determining the initial
conditions within which all physical laws are constrained to operate, thus setting
boundary conditions for all local physics. Together with suitable equations of state
for the matter or structural equations for complex systems, these determine the
nature of physical outcomes. The uniqueness of cosmology lies in that it considers
the origin of such conditions.

26Most inflationary studies show only that the geometric horizon problem is solved in the very
special RW geometries; but there is no physical horizon problem in those geometries, for they
are by by assumption spatially homogeneous and isotropic ab initio.
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7.1 Laws and boundary conditions

A fundamental assumption underlying physical cosmology is the idea that the laws
of physics are the same everywhere in the physical universe: those we determine
in a laboratory here and now will be the same as apply at very distant places (e.g.
determining the astrophysics of qso’s at redshift z = 6), at very early times (e.g.
at the time of nucleosynthesis), and at very late times. Without this assumption,
explanatory theories have no solid foundation. However because of the uniqueness
of the universe discussed above (see Sec. 3), unlike the rest of physics where the
distinction is clear and fundamental, in the cosmological context the distinction
between laws and boundary conditions becomes blurred.

Thesis E1: Physical laws may depend on the nature of the universe. We
have an essential difficulty in distinguishing between laws of physics and boundary
conditions in the cosmological context of the origin of the universe. Effective phys-
ical laws may depend on the boundary conditions of the universe, and may even
vary in different spatial and/or temporal locations in the cosmos.

Because we cannot vary the initial conditions in any way, as far as we are concerned
they are necessary rather than contingent — so the essential distinction between
initial conditions and laws is missing. The distinction is clear once the cosmos
has come into existence — but we are concerned with ‘prior’ conditions associated
with the creation of the cosmos and the very existence of physical laws. Certainly
any proposal for distinguishing between laws of nature and boundary conditions
governing solutions to those laws is untestable in this context. Given the feature
that the universe is the unique background for all physics, it is therefore not far-
fetched to suggest that it is possible the cosmos influences the nature of local
physical laws, rather than just their initial conditions [Ellis and Sciama, 1972;
Ellis, 2002]. This has been examined over many decades in three specific cases.

(a) Varying ‘constants’ : It might be that there is a time variation in physical
constants of nature [Barrow, 2003] related to the expansion of the universe,
as proposed in the case of the gravitational constant G by Dirac [Dirac, 1938],
developed in depth by Jordan and then Brans and Dicke [Brans and Dicke,
1961]. Such proposals must be consistently developed in relation to the rest
of physics and should be related to dimensionless constants, as otherwise they
may simply be disguised variations in the units of measurements used, rather
than being a genuine physical change (various claims that the speed of light
‘c’ may vary fall into this category [Ellis and Uzan, 2005]). This proposal has
received impetus in recent times from ideas based in quantum field theory
and string theory, suggesting that many of the ‘constants of nature’ are in fact
contingent, depending on the nature of the vacuum state [Susskind, 2003;
Freivogel et al., 2005a]. This kind of proposal is to some degree open to
observational test [Cowie and Songaila, 1995; Will, 1979], and in the cases
where it has been investigated it seems that it does not occur in the visible
region of the universe — the constants of nature are indeed invariant, with
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one possible exception: the fine structure constant, where there is claimed
to be evidence of a very small change over astronomical timescales [Barrow,
2003]. That issue is still under investigation. Testing such invariance is
fundamentally important, precisely because cosmology usually assumes as a
ground rule that physics is the same everywhere in the universe. If this were
not true, local physics would not guide us adequately as to the behaviour of
matter elsewhere or at other times, and cosmology would become an arbi-
trary guessing game. In order to proceed in a scientific manner when such
variation is proposed, one needs then to hypothesize the manner of such
variation. Thus the old laws where G was constant are replaced by new laws
governing its time variation [Brans and Dicke, 1961]; the principle of nature
being governed by invariant (unchanging) physical laws and associated con-
stants remains.27 Thus in the end the proposal is to replace simpler old laws
by new more complex ones. These must then be assumed invariant, or we
cannot proceed scientifically.

(b) Inertia and Mach’s Principle: It might be that the local inertial properties of
matter are determined by the distant distribution of matter in the universe,
so that if the universe were different, inertia would be different. This is
the complex of ideas referred to as Mach’s principle [Barbour and Pfister,
1995], which served as a major impetus for Einstein’s cosmological ideas.
The precise meaning and implications of this idea remain controversial.

(c) The arrow of time: The existence and direction of the macroscopic arrow of
time in physics — and hence in chemistry, biology, psychology, and society —
is related to boundary conditions in the past and future of the universe. The
fundamental physical laws by themselves are time symmetric, and so unable
to explain this feature [Davies, 1974; Ellis and Sciama, 1972; Zeh, 1992;
Uffink, 2006]. A recent argument of this kind is Penrose’s claim that the
existence of the arrow of time is crucially based in the universe having had
rather special initial conditions [Penrose, 1989b; Penrose, 1989a; Wald, 2005].
Thus what appears in ordinary physics as an immutable law of nature (viz.
the Second Law of Thermodynamics with a given arrow of time) may well be
the result of specific boundary conditions at the start and end of the universe.
It might not be true in all universes, even if the underlying fundamental
physical laws are the same.

In each case proposals have been made as to the possible nature of the deeper un-
derlying unchanging laws, and the relations between the state of the universe and
the resultant effective laws in that context. This is also proposed in the ‘landscape’
of possibilities of string theory [Susskind, 2005]. These proposals are however in-
trinsically untestable, for the reasons explained above (Sec. 3): we cannot change

27“Despite the incessant change and dynamic of the visible world, there are aspects of the
fabric of the universe which are mysterious in their unshakeable constancy. It is these mysterious
unchanging things that make our universe what it is and distinguish it from other worlds we
might imagine” (Barrow [Barrow, 2003], p. 3).
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the boundary conditions of the universe and see what happens; but they do serve
as a continuing fertile source of ideas.

7.2 Alternative physics

In any case, the important conclusion is that it is certainly appropriate for cosmol-
ogy to consider what would have happened if, not only the boundary conditions
at the beginning of the universe, but also the laws of physics had been different
[Susskind, 2005]:

Thesis E2: We cannot take the nature of the laws of physics for granted.
Cosmology is interested in investigating hypothetical universes where the laws of
physics are different from those that obtain in the real universe in which we live
— for this may help us understand why the laws of physics are as they are (a
fundamental feature of the real physical universe).

One cannot take the existence and nature of the laws of physics (and hence of
chemistry) as unquestionable in cosmology — which seems to be the usual habit
in biological discussions on the origin and evolution of life. This is in stark contrast
to the rest of science, where we are content to take the existence and nature of the
laws describing the fundamental behaviour of matter as given and unchangeable.
Cosmological investigation is interested in the properties of hypothetical universes
with different physical behaviour. Consideration of ‘what might have been’ is a
useful cosmological speculation that may help throw light on what actually is; this
is a statement of the usefulness of ‘Gedanken experiments’ in cosmology.

Indeed if one wants to investigate issues such as why life exists in the universe,
consideration of this larger framework — in essence, a hypothetical ensemble of
universes with many varied properties — is essential (this is of course not the
same as assuming an ensemble of such universes actually exists, cf. the discussion
below in Sec. 9.2). However we need to be very cautious about using any claimed
statistics of universes in such a hypothetical ensemble of all possible or all conceiv-
able universes. This is usually not well defined, and in any case is only relevant
to physical processes if either the ensemble actually exists, rather than being a
hypothetical one, or if it is the outcome of processes that produce well-defined
probabilities — an untestable proposal. We can learn from such considerations
the nature of possible alternatives, but not necessarily the probability with which
they might occur (if that concept has any real meaning).

7.3 Emergence of complexity

As the universe evolves an increase of complexity takes place in local systems as
new kinds of objects come into being that did not exist before — nuclei, atoms,
stars and galaxies, planets, life, consciousness, and products of the mind such as
books and computers [Morowitz, 2002]. New kinds of physical states come into
being at late times such as Bose-Einstein condensates, that plausibly cannot exist
without the intervention of intelligent beings.
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Thesis E3: Physical novelty emerges in the expanding universe. New
kinds of physical existence come into being in the universe as it evolves, that did
not exist previously. Their existence is allowed by the boundary conditions provided
by the universe for local systems, together with the possibility space generated by
the underlying physics. While their physical existence is novel, every new thing
that comes into being is foreshadowed in possibility structures that precede their
existence.

Physical existence is new as the universe evolves, but there had to be precursors
of the novel in the possibility space allowed by physics, so that they could come
into being. In this sense the truly novel does not emerge ex nihilo but rather
is discovered. The universe is the environment that allows this to happen. The
nature of the features leading to the existence of life, and their possible causes, is
discussed in Sec. 9.1.

8 ISSUE F: THE EXPLICIT PHILOSOPHICAL BASIS

Consequent on the discussion above, and particularly items B6, C2, and D2, it
follows that

Thesis F1: Philosophical choices necessarily underly cosmological the-
ory. Unavoidable metaphysical issues inevitably arise in both observational and
physical cosmology. Philosophical choices are needed in order to shape the theory.

There is of course always a philosophical basis to any scientific analysis, namely
adoption of the basic scientific method and a commitment to the attempt to ex-
plain what we see as far as possible simply in terms of causal laws, ultimately
based in physics. This will clearly be true also in cosmology. However we need
further explicit philosophical input in order to attain specific geometric models —
for example a Copernican principle, as explained above, see Sec. 4.2.2 — and to
determine what form physical cosmology should take in the very early universe,
for example deciding which physical principle to use as the core of one’s extrapo-
lation of known physics to the unknown (Sec. 5). Underlying both sets of choices
are criteria for satisfactoriness of a cosmological model, which help decide which
feature to focus on in formulating a theory. Of particular importance is the scope
chosen for our cosmological theory; together with the choice of criteria for a good
theory, this is a philosophical decision that will shape the rest of the analysis.
Some cosmologists tend to ignore the philosophical choices underlying their theo-
ries; but simplistic or unexamined philosophical standpoints are still philosophical
standpoints!

8.1 Criteria for theories

As regards criteria for a good scientific theory [Kuhn, 1977], typical would be the
following four areas of assessment:
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1. Satisfactory structure: (a) internal consistency, (b) simplicity (Occam’s ra-
zor), and (c) aesthetic appeal (‘beauty’ or ‘elegance’).

2. Intrinsic explanatory power : (a) logical tightness, (b) scope of the theory
— the ability to unify otherwise separate phenomena, and (c) probability of
the theory or model with respect to some well-defined measure;

3. Extrinsic explanatory power, or relatedness: (a) connectedness to the rest
of science, (b) extendability — providing a basis for further development;

4. Observational and experimental support, in terms of (a) testability: the abil-
ity to make quantitative as well as qualitative predictions that can be tested;
and (b) confirmation: the extent to which the theory is supported by such
tests as have been made.

It is particularly the latter that characterizes a scientific theory, in contrast to other
types of theories claiming to explain features of the universe and why things happen
as they do. It should be noted that these criteria are philosophical in nature in
that they themselves cannot be proven to be correct by any experiment. Rather
their choice is based on past experience combined with philosophical reflection.
One could attempt to formulate criteria for good criteria for scientific theories,
but of course these too would need to be philosophically justified. The enterprise
will end in infinite regress unless it is ended at some stage by a simple acceptance
of a specific set of criteria.

Thesis F2: Criteria of satisfactoriness for theories cannot be scientifi-
cally chosen or validated. Criteria of satisfactoriness are necessary for choos-
ing good cosmological theories; these criteria have to be chosen on the basis of
philosophical considerations. They should include criteria for satisfactory struc-
ture of the theory, intrinsic explanatory power, extrinsic explanatory power, and
observational and experimental support.

The suggestion here is that the above proposed criteria are a good set to use in
investigating cosmology; they include those most typically used ([Kuhn, 1977]; and
see [Penrose, 2004; Susskind, 2005] for comments on such criteria).

8.1.1 Conflicts between criteria.

These criteria are all acknowledged as desirable. The point then is that generally in
pursuing historical sciences, and in particular in the cosmological context, they will
not all be satisfied to the same degree, and may even lead to opposing conclusions:

Thesis F3: Conflicts will inevitably arise in applying criteria for satisfac-
tory cosmological theories. Philosophical criteria for satisfactory cosmological
theories will in general come into conflict with each other, so that one will have
to choose between them to some degree; this choice will shape the resulting theory.
[Ellis, 1991].
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The thrust of much recent development has been away from observational tests
towards strongly theoretically based proposals, indeed sometimes almost discount-
ing observational tests. At present this is being corrected by a healthy move to
detailed observational analysis of the consequences of the proposed theories, mark-
ing a maturity of the subject. However because of all the limitations in terms of
observations and testing [criteria (4)], in the cosmological context we still have
to rely heavily on other criteria, and some criteria that are important in most of
science may not really make sense. This is true of 2(c) in particular, as discussed
above, see Sec. 3; nevertheless many approaches still give the idea of probability
great weight. At a minimum, the ways this can make sense needs exploration
and explication. Furthermore the meaning of some of the criteria may come into
dispute. 1(b) is clearly a case in point : for example, is the idea of an existent en-
semble of universes displaying all possible behaviours simple (because it is a single
idea that can be briefly stated), or immensely complex (because that statement
hides all the complexities and ambiguities involved in the idea of an infinity of
possibilities)? 1(c) is also controversial(‘beauty is in the eye of the beholder’), see
[Susskind, 2005] for a discussion.

The tenor of scientific understanding may change, altering the balance of what
is considered a good explanation and what is not. An example [Ellis, 1990] is the
way cosmologists strongly resisted the idea of an evolving universe in the 1920’s,
at a time when biological evolution was very well established but the idea of
continental drift was also being strongly resisted. The change to an appreciation
of the explanatory power of an evolving model came later in both cases; but even
then in the cosmological case, for either aesthetic or metaphysical reasons, some
still sought for a steady state description, resisting the implication of a beginning
to the universe. That tendency is still with us today, in the form of models that
are eternal in one way or another (e.g. some forms of chaotic inflation). Another
example is the change from supposition of underlying order, expressed in the idea of
a Cosmological Principle, to a broad supposition of generic disordered conditions,
embodied in the ideas of inflation. Associated with this is a shift from making
geometric assumptions to providing physical explanatory models. It is this shift
that underlies the major present support for inflation:

Thesis F4: The physical reason for believing in inflation is its explana-
tory power as regards structure growth in the universe. Inflation predicts
the existence of Gaussian scale-free perturbations in the early universe thereby
(given the presence of cold dark matter) explaining bottom-up structure formation
in a satisfactory way. This theory has been vindicated spectacularly through ob-
servations of the CBR and matter power spectra. It is this explanatory power that
makes it so acceptable to physicists, even though the underlying physics is nei-
ther well-defined nor tested, and its major large-scale observational predictions are
untestable.

The physical explanatory power of inflation in terms of structure formation, sup-
ported by the observational data on the fluctuation spectra, is spectacular. For
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most physicists, this trumps the lack of identification and experimental verification
of the underlying physics (Sec. 5). Inflation provides a causal model that brings
a wider range of phenomena into what can be explained by cosmology (Criterion
2(b)), rather than just assuming the initial data had a specific restricted form.
Explaining flatness (Ω0 	 1 as predicted by inflation) and homogeneity reinforces
the case, even though these are philosophical rather than physical problems (they
do not contradict any physical law; things could just have been that way). However
claims on the basis of this model as to what happens very far outside the visual
horizon (as in the chaotic inflationary theory) results from prioritizing theory over
the possibility of observational and experimental testing [Earman and Mosterin,
1999]. It will never be possible to prove these claims are correct.

8.2 The scope of cosmology

To sensibly choose priorities for the criteria just discussed, we need an answer to
the question, How much should we try to explain?

Thesis F5: Cosmological theory can have a wide or narrow scope of
enquiry. The scope we envisage for our cosmological theory shapes the questions
we seek to answer. The cosmological philosophical base becomes more or less dom-
inant in shaping our theory according to the degree that we pursue a theory with
more or less ambitious explanatory aims in terms of all of physics, geometry, and
underlying fundamental causation.

This is a choice one has to make, as regards both foundations and outcomes. Given
a decision on this, one can sensibly debate what is the appropriate philosophical
position to adopt in studying a cosmological theory with that scope. The study
of expansion of the universe and structure formation from nucleosynthesis to the
present day is essential and well-informed. The philosophical stance adapted is
minimal and highly plausible. The understanding of physical processes at earlier
times, back to quantum gravity, is less well founded. The philosophical stance
is more significant and more debatable. Developments in the quantum gravity
era are highly speculative; the philosophical position adopted is dominant because
experimental and observational limits on the theory are lacking.

One can choose the degree to which one will pursue the study of origins [Fabian,
1989] back to earlier and earlier times and to more fundamental causal issues, and
hence the degree to which specific philosophical choices are dominant in one’s
theory. The basic underlying cosmological questions are [Ellis, 1991]:

1. Why do the laws of physics have the form they do? Issues arise such as what
makes particular laws work? For example, what guarantees the behaviour
of a proton, the pull of gravity? What makes one set of physical laws ‘fly’
rather than another? If for example one bases a theory of cosmology on
string theory [Susskind, 2005], then who or what decided that quantum
gravity would have a nature well described by string theory? If one considers
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all possibilities, considering string theory alone amounts to a considerable
restriction.

2. Why do boundary conditions have the form they do ? The key point here
(Sec. 6.2), is how are specific contingent choices made between the various
possibilities, for example whether there was an origin to the universe or not.

3. Why do any laws of physics at all exist ? This relates to unsolved issues
concerning the nature of the laws of physics: are they descriptive or pre-
scriptive? (Sec. 9.3.3). Is the nature of matter really mathematically based
in some sense, or does it just happen that its behaviour can be described in
a mathematical way?

4. Why does anything exist ? This profound existential question is a mystery
whatever approach we take.28

Finally the adventurous also include in these questions the more profound
forms of the contentious Anthropic question [Carr and Rees, 1979; Davies,
1982; Barrow and Tipler, 1984; Tegmark, 1998; Susskind, 2005]:

5. Why does the universe allow the existence of intelligent life? This is of
somewhat different character than the others and largely rests on them but
is important enough to generate considerable debate in its own right.

The status of all these questions is philosophical rather than scientific, for they
cannot be resolved purely scientifically. How many of them — if any — should we
consider in our construction of and assessments of cosmological theories?

One option is to decide to treat cosmology in a strictly scientific way, excluding
all the above questions, because they cannot be solved scientifically. One ends
up with a solid technical subject that by definition excludes such philosophical
issues. This is a consistent and logically viable option. This logically unassailable
position however has little explanatory power; thus most tend to reject it because
of criteria 2(b) and 3 above.

The second option is to decide that these questions are of such interest and
importance that one will tackle some or all of them, even if that leads one outside
the strictly scientific arena. It is here that criteria 2 and 3 above are to some
degree in conflict with criterion 4. Thus if we try to explain the origin of the
universe itself, these philosophical choices become dominant precisely because the
experimental and observational limits on the theory are weak; this can be seen by
viewing the variety of such proposals that are at present on the market.

8.3 Limits of Representation and Knowledge of Reality

It follows from the above discussion that there are limits to what the scientific
method can achieve in explanatory terms. We need to respect these limits and

28But see Grunbaum [Grunbaum, 2004] for a dissenting view.
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acknowledge clearly when arguments and conclusions are based on some philosoph-
ical stance rather than purely on testable scientific argument. If we acknowledge
this and make that stance explicit, then the bases for different viewpoints are clear
and alternatives can be argued about rationally.

A crucial underlying feature here is relating the nature of epistemology to on-
tology: how do we relate evidence to our theories of existence? A further key issue
is the relation of models to reality:

Thesis F6: Reality is not fully reflected in either observations or the-
oretical models. Problems arise from confusion of epistemology (the theory of
knowledge) with ontology (the nature of existence): existence is not always man-
ifest clearly in the available evidence. The theories and models of reality we use
as our basis for understanding are necessarily partial and incomplete reflections of
the true nature of reality, helpful in many ways but also inevitably misleading in
others. They should not be confused with reality itself !

The confusion of epistemology with ontology occurs all the time, underlying for
example the errors of both logical positivism and extreme relativism. In particular,
it is erroneous to assume that lack of evidence for the existence of some entity is
proof of its non-existence. In cosmology it is clear for example that regions may
exist from which we can obtain no evidence (because of the existence of horizons);
so we can sometimes reasonably deduce the existence of unseen matter or regions
from a sound extrapolation of available evidence (no one believes matter ends at
or just beyond the visual horizon). However one must be cautious about the other
extreme, assuming existence can always be assumed because some theory says so,
regardless of whether there is any evidence of existence or not. This happens in
present day cosmology, for example in presentations of the case for multiverses,
even though the underlying physics has not been experimentally confirmed. It
may be suggested that arguments ignoring the need for experimental/observational
verification of theories ultimately arise because these theories are being confused
with reality, or at least are being taken as completely reliable total representations
of reality. This occurs in

• Confusing computer simulations of reality with reality itself, when they can
in fact represent only a highly simplified and stylized version of what actually
is;

• Confusing the laws of physics themselves with their abstract mathematical
representation (if indeed they are ontologically real, c.f. Sec. 10.1), or con-
fusing a construction of the human mind (‘Laws of Physics’) with the reliable
behaviour of ponderable matter (if they are not ontologically real);

• Confusing theoretically based outcomes of models with proven observational
results (e.g. claiming the universe necessarily has flat spatial sections: Ω0 =
1, and so this can be taken for granted, when the value of Ω0 can and
should be observationally determined precisely because this then tests that
prediction).
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No model (literary, intuitive, or scientific) can give a perfect reflection of reality.
Such models are always selective in what they represent and partial in the com-
pleteness with which they do so. The only model that would reflect reality fully is
a perfect fully detailed replica of reality itself! This understanding of the limits of
models and theories does not diminish the utility of these models; rather it helps
us use them in the proper way. This is particularly relevant when we consider how
laws of nature may relate to the origins of the universe itself, and to the existence
and nature of life in the expanding universe. The tendency to rely completely on
our theories, even when untested, seems sometimes to arise because we believe
they are the same as reality — when at most they are descriptions of reality.

9 KEY ISSUES

There are some interrelated key issues where the features identified above either
are at the heart of current debates, or are likely to be at the heart of future debates.
They are: the reason cosmological conditions allow the existence of life (anthropic
issues), the closely related issue of the possible existence of multiverses; and the
natures of existence, including the questions of the existence of infinities and the
nature of the laws of physics. We look at them in turn in this section. To some
degree they have already been considered above, but they are specifically featured
here because of the important role they will probably play in discussion in the
future.

9.1 Issue G: The anthropic question: Fine tuning for life

One of the most profound fundamental issues in cosmology is the Anthropic ques-
tion, see [Davies, 1982; Barrow and Tipler, 1984; Earman, 1987; Fabian, 1989;
Davies, 1987; Balashov, 1991; Rees, 1999; Rees, 2003; Barrow, 2003]: why does the
Universe have the very special nature required in order that life can exist?. The
point is that a great deal of “fine tuning” is required in order that life be possible.
There are many relationships embedded in physical laws that are not explained by
physics, but are required for life to be possible; in particular various fundamental
constants are highly constrained in their values if life as we know it is to exist:
“A universe hospitable to life — what we might call a biophilic universe — has to
be special in many ways ... Many recipes would lead to stillborn universes with no
atoms, no chemistry, and no planets; or to universes too short lived or too empty
to evolve beyond sterile uniformity” [Rees, 2003].
How has it come about that the Universe permits the evolution and existence
of intelligent beings at any time or place? “What features of the universe were
essential for creatures such as ourselves, and is it through coincidence or for some
deeper reason that our universe has these features?” [Gribbin and Rees, 1991].
Whether one regards this as an appropriate issue for cosmology to discuss depends,
as discussed above (Sec. 8.2), on the scope one envisages for cosmology. The
viewpoint taken here will be that this is one of the major issues one might wish
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to explain, and indeed a substantial literature considers this. Here we explore the
nature of this fine tuning, and then consider possible answers as to how it arises.
There are three aspects that we consider in turn (cf. [Susskind, 2005]).

9.1.1 Laws of physics and the existence of complexity

The laws of physics and chemistry are such as to allow the functioning of living
cells, individuals, and ecosystems of incredible complexity and variety, and it is
this that has made evolution possible. What requires explanation, is why the laws
of physics are such as to allow this complex functionality to work, without which
no evolution whatever would occur. We can conceive of universes where the laws
of physics (and so of chemistry) were different than in ours. Almost any change
in these laws will prevent life as know it from functioning.

The first requirement is the existence of laws of physics that guarantee the kind
of regularities that can underlie the existence of life. These laws as we know them
are based on variational and symmetry principles; we do not know if other kinds of
laws could produce complexity. If the laws are in broad terms what we presently
take them to be, the following inter alia need to be right, for life of the general
kind we know to exist [Davies, 1982; Gribbin and Rees, 1991]:

• Quantization that stabilizes matter and allows chemistry to exist through
the Pauli exclusion principle.

• The neutron-proton mass differential must be highly constrained. If the
neutron mass were just a little less than it is, proton decay could have taken
place so that by now no atoms would be left at all [Davies, 1982].

• Electron-proton charge equality is required to prevent massive electrostatic
forces overwhelming the weaker electromagnetic forces that govern chemistry.

• The strong nuclear force must be strong enough that stable nuclei exist
[Davies, 1982]; indeed complex matter exists only if the properties of the
nuclear strong force lies in a tightly constrained domain relative to the elec-
tromagnetic force [Tegmark, 2003].

• The chemistry on which the human body depends involves intricate folding
and bonding patterns that would be destroyed if the fine structure constant
(which controls the nature of chemical bonding) were a little bit different.

• The number D of large spatial dimensions must be just 3 for complexity to
exist [Tegmark, 2003; Rees, 2003].

Hogan has examined the freedom in the parameters of the standard model of
particle physics and concluded that 5 of the 17 free parameters of the standard
model must lie in a highly constrained domain if complex structures are to exist
[Hogan, 2003]. This is of course taking the basic nature of the standard model of
particle physics for granted. If this were not so, it is difficult to determine what the
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constraints would be. However his study is sufficient to show that whatever the
nature of fundamental physics, and in particular of particle physics, may be, only
a small subset of all possible laws of physics will be compatible with the existence
of complexity.

9.1.2 Laws of physics and the existence of congenial environments

The creation through astrophysical processes of suitable habitats for life to exist
(the existence of planets circling stable stars, for example) depends to some degree
on the nature of the fundamental physical laws. If the laws are in broad terms
what we presently take them to be, the requirements for such habitats to exist
include:

• The gravitational force must create large stable structures (planets and stars)
that can be the habitat for life and their energy source respectively. This
requires the gravitational force to be very weak relative to electrical forces.
The ratio N of the strength of the electromagnetic force to the gravitational
force must be close to the observed value: N 	 1036 [Rees, 1999, Ch. 3].

• The weak force must allow helium production that leaves sufficient hydrogen
over; it is related to gravity through a numerical factor of 10−11, which
cannot be much different. And for this to work, the neutron-proton mass
difference must be close to the mass of the electron [Davies, 1982].

• A stellar balance should allow a long lifetime for stars like the sun, so allowing
the transmutation of the light elements into heavy elements. This requires
that the nuclear fusion efficiency E be close to the observed value: E 	 0.007
[Rees, 1999, Ch. 4].

• One needs to overcome the beryllium “bottleneck” in the making of heavy el-
ements through nuclear reactions in stars [Gribbin and Rees, 1991; Susskind,
2005]. The production of carbon and oxygen in stars requires the careful
setting of two different nuclear energy levels to provide a resonance; if these
levels were just a little different, the elements we need for life would not exist
[Fabian, 1989]. Indeed it was on this basis that Hoyle famously predicted a
carbon-12 energy level that has since been experimentally confirmed.

• One needs something like the existence of neutrinos and the weak interaction
with its specific coupling constant in order to underly supernovae explosions
that spread heavy elements through space, as seeds for planetary formation
[Gribbin and Rees, 1991].

• The nuclear force must be weak enough that di-protons do not exist, other-
wise no protons will be left over to enable heavier elements to exist [Davies,
1982].

• The neutrino mass must not be too high, or the universe will not last long
enough [Davies, 1982].
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9.1.3 Cosmological boundary/initial conditions and congenial environments

Finally, given laws of physics that are suitable in terms of satisfying the require-
ments of both the previous sections, the universe itself must also be suitable, in
terms of its initial or boundary conditions, for life to exist. If the laws of physics are
basically the same as we now believe them to be, these cosmological requirements
include

• The size of the universe and its age must be large enough. There could be
universes that expanded and then recollapsed with a total lifetime of only
100,000 years; we need a sufficiently old universe for second generation stars
to come into existence and then for planets to have a stable life for long
enough that evolution could lead to the emergence of intelligent life. Thus
the universe must be at about 15 billion years old for life to exist [Gribbin
and Rees, 1991], hence we must have Ωmatter 	 0.3 [Rees, 1999, Ch. 6].

• The size of the cosmological constant must not be too large, or galaxies
will not form; we need |ΩΛ| < 1 for galaxies to exist [Rees, 1999, Ch. 7];
[Susskind, 2005].

• The seeds in the early universe for fluctuations that will later grow into
galaxies must be of the right size that structures form without collapsing
into black holes: the number Q characterizing the size of primordial ripples
on the LSS (and hence the geometry of the perturbed cosmological model,
see Sec. 2.5.2) must therefore be of the order Q 	 10−5 [Rees, 1999, Ch. 8].

The complex of interacting systems in a human body could not possibly work if
a series of delicate conditions were not maintained. For example, the background
radiation might never drop below 3000 K, so that matter was always ionized (elec-
trons and nuclei always remaining separate from each other); the molecules of life
could then never form. Black holes might be so common that they rapidly at-
tracted all the matter in the universe, and there never was a stable environment
in which life could develop. Cosmic rays could always be so abundant that any
tentative organic structures were destroyed before they could replicate. Overall,

• There must be non-interference with local systems. The concept of locality
is fundamental, allowing local systems to function effectively independently
of the detailed structure of the rest of the Universe. We need the universe
and the galaxies in it to be largely empty, and gravitational waves and tidal
forces to be weak enough,29 so that local systems can function in a largely
isolated way [Ellis, 2002].

• The fact that the night sky is dark (‘Olbers’ paradox’ [Bondi, 1960; Harrison,
2000]) is a consequence of the expansion of the universe together with the
photon to baryon ratio. This feature is a necessary condition for the existence

29Thus the Weyl tensor Cabcd must be suitably small everywhere, presumably implying an
almost-RW geometry, cf. [Stoeger et al., 1995].
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of life: the biosphere on Earth functions by disposing of waste energy to the
heat sink of the dark night sky [Penrose, 1989b]. Thus one way of explaining
why the sky is observed to be dark at night is that if this were not so, we
would not be here to observe it.

• The existence of the arrow of time, and hence of laws like the second law
of thermodynamics, are probably necessary for evolution and for conscious-
ness. This depends on boundary conditions at the beginning and end of the
Universe (Sec. 7.1).

• Presumably the emergence of a classical era out of a quantum state is re-
quired. The very early universe would be a domain where quantum physics
would dominate, leading to complete uncertainty and an inability to predict
the consequence of any initial situation; we need this to evolve to a state
where classical physics leads to the properties of regularity and predictabil-
ity that allow order to emerge.

• Physical conditions on planets must be in a quasi-equilibrium state for long
enough to allow the delicate balances that enable our existence, through the
very slow process of evolution, to be fulfilled.

Thus the existence of suitable local systems to be a habitat for life depends criti-
cally on the large-scale properties of very distant matter. These provides a stable
local environment within which life can develop.

9.1.4 Fine tuning overall

Thus there are many ways that conditions in a universe could prevent life occur-
ring. Life will occur only if: there exist heavy elements; there is sufficient time
for evolution of advanced life forms to take place; there are regions in the universe
that are neither too hot nor too cold; there are precisely restricted values of the
fundamental constants that control chemistry and local physics; and so on. These
conditions will not be true in a generic universe. In summary,

Thesis G1: Life is possible because both the laws of physics and
the boundary conditions for the universe have a very special nature.
Only particular laws of physics, and particular initial conditions in the Universe,
allow the existence of intelligent life of the kind we know. No evolutionary process
whatever is possible for any kind of life if these laws and conditions do not have
this restricted form.
Why is this so? One should note that we can only meaningfully refer here to
‘life as we know it’. One of the recurring issues is whether there could be some
other quite different basis for life. You can if you wish speculate that life might
exist in some immaterial form, or based only on light elements, or existent deep
in empty space without the need for stars or planets to provide a viable habitat.
The anthropic literature is based on assuming this is not viable, but we cannot
prove anything in this regard. We have no idea of any basis by which life might
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come into existence other than the broad principles we see in the life around us.
The basic principles of life as we understand it require a great degree of complex
organization enabling it to fulfil a complex variety of functions that can only, as
far as we know, be based in material existence with information storage, energy
usage, sensing of the external world, etc., which requires at a minimum heavy
elements (carbon, nitrogen, oxygen, phosphorus for example), a long-term energy
source (such as the flow of energy from the sun), and a stable environment (such as
the surface of a planet). When we abandon this basis for understanding — saying
‘yes but some other form of life might exist’ without providing any proposal for
its possible structure — one enters the unprofitable realm of speculation. It does
not seem to provide any useful way forward.

9.1.4.1 The Weak Anthropic Principle. There are two purely scientific
approaches to the Anthropic issue.30 The first is the Weak Anthropic Principle
(WAP), based on the comment: it is not surprising the observed Universe admits
the existence of life, for the Universe cannot be observed unless there are observers
in it [Barrow and Tipler, 1984; Balashov, 1991]. This seemingly empty statement
gains content when we turn it round and ask, at what times and places in the
Universe can life exist, and what are the inter-connections that are critical for
its existence? It could not for example exist too early in the present expansion
phase, for the night sky would then have been too hot. Furthermore one can
deduce various necessary relations between fundamental quantities in order that
the observers should exist (e.g. those mentioned above), so that if for example the
fundamental constants vary with time or place in the Universe, life will only be
possible in restricted regions where they take appropriate Anthropic values.

Hence this view basically interprets the Anthropic principle as a selection prin-
ciple: the necessary conditions for observers to exist restricts the times and places
from which the Universe can be observed. Because it is quite possible that con-
ditions would not be right for life to exist anywhere in an arbitrarily selected
universe, it is also usually conjoined with the idea of the existence of a multiverse,
as discussed below, see Sec. 9.2. This is an interesting and often illuminating view-
point. For example, neither the Chaotic Inflationary Universe idea (Sec. 2.6) nor
any other multiverse proposal works unless we add such an Anthropic component
into their interpretation to explain why we observe the Universe from a viewpoint
where life exists. It is now used by some physicists to explain the low value of the
cosmological constant (which quantum field theory predicts should have a very
much larger value than observed, see Sec. 9.2.5), and occurs in the context of the
possibility landscape of string theory [Susskind, 2005].

30I omit the so-called Final Anthropic Principle (FAP for short), which maintains that intelli-
gent life must necessarily evolve and then remain in existence until the end of the universe, for I
do not believe it merits serious discussion as a scientific proposal; indeed it led to a famous book
review referring to the Completely Ridiculous Anthropic Principle (CRAP for short) [Gardner,
1986].
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9.1.4.2 The Strong Anthropic Principle. By contrast, the Strong An-
thropic Principle (SAP) [Barrow and Tipler, 1984; Balashov, 1991] claims that
it is necessary that intelligent life exist in the Universe; the presence of life is
required in order that a universe model make sense. This is clearly a very con-
troversial claim, for it is hard to provide scientific reasons to support this view.
One can suggest that the most solid justification attempted is through the claim
that the existence of an observer is necessary in order that quantum theory can
make sense. However, this justification is based on one of a number of different
interpretations of quantum theory; the nature of these quantum foundations is
controversial, and not resolved [Isham, 1997; Dickson, 2006; Landsman, 2006].

Furthermore if we were to suppose this justification correct, then the next step
is to ask: Why does the Universe need quantum mechanics anyway? The argument
would be complete only if we could prove that quantum mechanics was absolutely
necessary for every self-consistent Universe; but that line of reasoning cannot be
completed at present, not least because quantum mechanics itself is not a fully
self-consistent theory. Apart from the conceptual problems at its foundation due
to the unresolved measurement issue [Isham, 1997], it suffers from divergences
that so far have proved irremediable in the sense that we can work our way round
them to calculate what we need, but cannot remove them. The SAP proposal has
no accepted physical foundation, and also raises problematic philosophical issues
[Earman, 1987]. I will not pursue it further here.

9.1.5 The relation to fundamental physical theories

Many physicists go further, rejecting any Anthropic form of reasoning. They
regard it as a cop-out resorted to when physical theories fail to give the needed
answers, and seek to obtain a full answer from physics alone [Scott, 2005; Susskind,
2005]. One possibility is that there is a fundamental theory of everything that
determines the nature of physics completely, with no arbitrary parameters left,
and this still to be discovered theory just happens to be of such a nature as to
admit life.

However in this case the Anthropic issue returns with a vengeance: How could
it be that such a theory, based for example on variational principles and the spe-
cific invariance groups of particle physics, could just happen to lead to biophilic
parameter values? There is no clear way to answer such a question. Uniqueness
of fundamental physics resolves the parameter freedom only at the expense of cre-
ating an even deeper mystery, with no way of resolution apparent. In effect, the
nature of the unified fundamental force would be pre-ordained to allow, or even
encourage, the existence of life; but there would be no apparent reason why this
should be so.

A second possibility is that physics allows many effective theories with varying
parameters — some form of multiverse, as for example may be implied by string
theory [Susskind, 2003; Freivogel et al., 2005a; Susskind, 2005]. If these varying
options are all equally real, life can occur because in some cases the parameters will
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lie in the restricted biophilic regime. Thus from this viewpoint the Anthropic idea
is intimately linked with the existence of multiverses, which provide a legitimate
domain for their application. We will turn to an examination of multiverses in
the next section, but before doing so we will consider the range of metaphysical
options for resolving the anthropic question.

9.1.6 The metaphysical options

To make progress on the Anthropic issue, we have to seriously consider the nature
of ultimate causation: What is the fundamental cause for the phenomena we see?
If we pursue the chain of physical cause and effect to its conclusion, we are still
left with the question: Why did this occur, and not something else? Whatever the
reason is, it is the ultimate cause we are seeking. Note that we are here leaving the
terrain of science itself, and starting to probe the domain of metaphysics — the
foundations of science and indeed of existence. As noted above, one can simply
decide not to pursue such issues. If we do continue to question, there appear to
be basically six approaches to the issue of ultimate causation: namely Random
Chance, Necessity, High Probability, Universality, Cosmological Natural Selection,
and Design. We briefly consider these in turn.

Option 1: Random Chance, signifying nothing. The initial conditions in the
Universe just happened, and led to things being the way they are now, by pure
chance. Probability does not apply. There is no further level of explanation that
applies; searching for ‘ultimate causes’ has no meaning.

This is certainly logically possible, but not satisfying as an explanation, as we
obtain no unification of ideas or predictive power from this approach. Nevertheless
some implicitly or explicitly hold this view.

Option 2: Necessity. Things have to be the way they are; there is no other
option. The features we see and the laws underlying them are demanded by the
unity of the Universe: coherence and consistency require that things must be the
way they are; the apparent alternatives are illusory. Only one kind of physics is
self-consistent: all logically possible universes must obey the same physics.

To really prove this would be a very powerful argument, potentially leading to
a self-consistent and complete scientific view. But we can imagine alternative
universes! — why are they excluded? Furthermore we run here into the problem
that we have not succeeded in devising a fully self-consistent view of physics:
neither the foundations of quantum physics nor of mathematics are on a really
solid consistent basis. Until these issues are resolved, this line cannot be pursued
to a successful conclusion.

Option 3: High probability. Although the structure of the Universe appears very
improbable, for physical reasons it is in fact highly probable.

These arguments are only partially successful, even in their own terms. They run
into problems if we consider the full set of possibilities: discussions proposing this
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kind of view actually implicitly or explicitly restrict the considered possibilities a
priori, for otherwise it is not very likely the Universe will be as we see it. Besides,
we do not have a proper measure to apply to the set of initial conditions, enabling
us to assess these probabilities. Furthermore, as discussed above, see Sec. 3, ap-
plication of probability arguments to the Universe itself is dubious, because the
Universe is unique. Despite these problems, this approach has considerable sup-
port in the scientific community, for example it underlies the chaotic inflationary
proposal (Sec. 2.6). It attains its greatest power in the context of the assumption
of universality:

Option 4: Universality. This is the stand that “All that is possible, happens”:
an ensemble of universes or of disjoint expanding universe domains is realized in
reality, in which all possibilities occur [Rees, 1999; Rees, 2003; Tegmark, 2003]. In
its full version, the anthropic principle is realized in both its strong form (if all
that is possible happens, then life must happen) and its weak form (life will only
occur in some of the possibilities that are realized; these are picked out from the
others by the WAP, viewed as a selection principle). There are four ways this has
been pursued.

1. Spatial variation. The variety of expanding universe domains is realised in
space through random initial conditions, as in chaotic inflation (Sec. 2.6).
While this provides a legitimate framework for application of probability,
from the viewpoint of ultimate explanation it does not really succeed, for
there is still then one unique Universe whose (random) initial conditions
need explanation. Initial conditions might be globally statistically homoge-
neous, but also there could be global gradients in some physical quantities
so that the Universe is not statistically homogeneous; and these conditions
might be restricted to some domain that does not allow life. It is a partial
implementation of the ensemble idea; insofar as it works, it is really a variant
of the “high probability” idea mentioned above. If it was the more or less
unique outcome of proven physics, then that would provide a good justifica-
tion; but the physics underlying such proposals is not even uniquely defined,
much less tested. Simply claiming a particular scalar field with some specific
stated potential exists does not prove that it exists!

2. Time variation. The variety of expanding universe domains could be re-
alised across time, in a universe that has many expansion phases (a Phoenix
universe), whether this occurs globally or locally. Much the same comments
apply as in the previous case.

3. Quantum Mechanical. It could occur through the existence of the Everett-
Wheeler “many worlds” of quantum cosmology, where all possibilities occur
through quantum branching [Deutsch, 1998]. This is one of the few genuine
alternatives proposed to the Copenhagen interpretation of quantum mechan-
ics, which leads to the necessity of an observer, and so potentially to the
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Strong Anthropic interpretation considered above (see Sec. 9.1). The many-
worlds proposal is controversial: it occurs in a variety of competing formu-
lations [Isham, 1997], none of which has attained universal acceptance. The
proposal does not provide a causal explanation for the particular events that
actually occur: if we hold to it, we then have to still explain the properties
of the particular history we observe (for example, why does our macroscopic
universe have high symmetries when almost all the branchings will not?).
And above all it is apparently untestable: there is no way to experimentally
prove the existence of all those other branching universes, precisely because
the theory gives the same observable predictions as the standard theory.

4. Completely disconnected. They could occur as completely disconnected uni-
verses: there really is an ensemble of universes in which all possibilities
occur, without any connection with each other [Lewis, 1986; Rees, 2003;
Tegmark, 2003]. A problem that arises then is, What determines what is
possible? For example, what about the laws of logic themselves? Are they
inviolable in considering all possibilities? We cannot answer, for we have no
access to this multitude of postulated worlds. We explore this further below
(Sec. 9.2).

In all these cases, major problems arise in relating this view to testability and
so we have to query the meaningfulness of the proposals as scientific explanations.
They all contradict Occam’s razor: we “solve” one issue at the expense of envis-
aging an enormously more complex existential reality. Furthermore, they do not
solve the ultimate question: Why does this ensemble of universes exist? One might
suggest that ultimate explanation of such a reality is even more problematic than
in the case of single universe. Nevertheless this approach has an internal logic of
its own which some find compelling. We consider this approach further below, see
Sec. 9.2.

Option 5: Cosmological Natural Selection. If a process of re-expansion after col-
lapse to a black hole were properly established, it opens the way to the concept
not merely of evolution of the Universe in the sense that its structure and contents
develop in time, but in the sense that the Darwinian selection of expanding uni-
verse regions could take place, as proposed by Smolin [Smolin, 1992]. The idea is
that there could be collapse to black holes followed by re-expansion, but with an
alteration of the constants of physics through each transition, so that each time
there is an expansion phase, the action of physics is a bit different. The crucial
point then is that some values of the constants will lead to production of more
black holes, while some will result in less. This allows for evolutionary selection
favouring the expanding universe regions that produce more black holes (because
of the favourable values of physical constants operative in those regions), for they
will have more “daughter” expanding universe regions. Thus one can envisage
natural selection favouring those physical constants that produce the maximum
number of black holes.



1258 George F R Ellis

The problem here is twofold. First, the supposed ‘bounce’ mechanism has never
been fully explicated. Second, it is not clear — assuming this proposed process can
be explicated in detail — that the physics which maximizes black hole production
is necessarily also the physics that favours the existence of life. If this argument
could be made water-tight, this would become probably the most powerful of the
multiverse proposals.

Option 6: Purpose or Design. The symmetries and delicate balances we observe
require an extraordinary coherence of conditions and cooperation of causes and
effects, suggesting that in some sense they have been purposefully designed. That
is, they give evidence of intention, both in the setting of the laws of physics and
in the choice of boundary conditions for the Universe. This is the sort of view
that underlies Judaeo-Christian theology. Unlike all the others, it introduces an
element of meaning, of signifying something. In all the other options, life exists
by accident; as a chance by-product of processes blindly at work.

The prime disadvantage of this view, from the scientific viewpoint, is its lack of
testable scientific consequences (“Because God exists, I predict that the density
of matter in the Universe should be x and the fine structure constant should be
y”). This is one of the reasons scientists generally try to avoid this approach.
There will be some who will reject this possibility out of hand, as meaningless
or as unworthy of consideration. However it is certainly logically possible. The
modern version, consistent with all the scientific discussion preceding, would see
some kind of purpose underlying the existence and specific nature of the laws of
physics and the boundary conditions for the Universe, in such a way that life (and
eventually humanity) would then come into existence through the operation of
those laws, then leading to the development of specific classes of animals through
the process of evolution as evidenced in the historical record. Given an acceptance
of evolutionary development, it is precisely in the choice and implementation of
particular physical laws and initial conditions, allowing such development, that
the profound creative activity takes place; and this is where one might conceive of
design taking place.31

However from the viewpoint of the physical sciences per se, there is no reason
to accept this argument. Indeed from this viewpoint there is really no difference
between design and chance, for they have not been shown to lead to different
physical predictions.

9.1.7 Metaphysical Uncertainty

In considering ultimate causation underlying the anthropic question, in the end we
are faced with a choice between one of the options above. As pointed out already
by Kant and Hume, although we may be able to argue strongly for one or other
of them, we cannot prove any of the options are correct [Hume, 1993].

31This is not the same as the view proposed by the ‘Intelligent Design’ movement. It does not
propose that God tweaks the outcome of evolutionary processes.
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Thesis G2: Metaphysical uncertainty remains about ultimate causa-
tion in cosmology. We cannot attain certainty on the underlying metaphysical
cosmological issues through either science or philosophy.

If we look at the anthropic question from a purely scientific basis, we end up
without any resolution, basically because science attains reasonable certainty by
limiting its considerations to restricted aspects of reality; even if it occasionally
strays into the area of ultimate causation, it is not designed to deal with it. By
itself, it cannot make a choice between these options; there is no relevant experi-
ment or set of observations that can conclusively solve the issue. Thus a broader
viewpoint is required to make progress, taking into account both the scientific and
broader considerations. The issue is of a philosophical rather than scientific na-
ture. One important issue that then arises is what kind of data is relevant to these
philosophical choices, in addition to that which can be characterized as purely
scientific data (Sec. 9.3.4).

9.2 Issue H: The possible existence of multiverses

If there is a large enough ensemble of numerous universes with varying properties,
it may be claimed that it becomes virtually certain that some of them will just
happen to get things right, so that life can exist; and this can help explain the
fine-tuned nature of many parameters whose values are otherwise unconstrained by
physics [Rees, 1999; Rees, 2003]. As discussed in the previous section, there are a
number of ways in which, theoretically, multiverses could be realized [Lewis, 1986;
Tegmark, 2003]. They provide a way of applying probability to the universe
[Sciama, 1971; Bostrom, 2002] (because they deny the uniqueness of the universe).
However, there are number of problems with this concept. Besides, this proposal
is observationally and experimentally untestable; thus its scientific status is de-
batable.

9.2.1 Definition

In justifying multiverses, it is often stated that ‘all that can occur, occurs’ (or
similarly). However that statement does not adequately specify a multiverse. To
define a multiverse properly requires two steps [Ellis et al., 2004]. First, one
needs to specify what is conceived of in the multiverse, by defining a possibility
space: a space M of all possible universes, each of which can be described in
terms of a set of states s in a state space S. Each universe m in M will be
characterized by a set of distinguishing parameters p, which are coordinates on
S. Choices are needed here. In geometrical terms, will it include only Robertson–
Walker models, or more general ones (e.g. Bianchi models, or models without
symmetries)? In gravitational terms, will it include only General Relativity, or
also brane theories, models with varying G, loop quantum gravity models, string
theory models with their associated possibility ‘landscapes’, and models based on
the wave function of the universe concept? Will it allow only standard physics but



1260 George F R Ellis

with varying constants, or a much wider spectrum of physical possibilities, e.g.
universes without quantum theory, some with five fundamental forces instead of
four, and others with Newtonian gravity? Defining the possibility space means
making some kind of assumptions about physics and geometry that will then
apply across the whole family of models considered possible in the multiverse,
and excluding all other possibilities.

Second, one needs to specify which of the possible universes are physically re-
alized in the multiverse, and how many times each one occurs. A multiverse must
be a physically realized multiverse and not a hypothetical or conceptual one if it is
to have genuine explanatory power. Thus one needs a distribution function f(m)
specifying how many times each type of possible universe m inM is realised. The
function f(m) expresses the contingency in any actualization. Things could have
been different! Thus, f(m) describes a specific ensemble of universes or multiverse
envisaged as being realised out of the set of possibilities. For example, f(m) might
be non-zero for all possible values of all the parameters p (‘all that can happen,
happens’); but it could be that f describes a multiverse where there are 10100 iden-
tical copies of one particular universe (the realization process finds a particularly
successful recipe, and then endlessly replicates it).

Additionally we need a measure dπ that enables this function to determine
numbers and probabilities of various properties in the multiverse: the number of
universes corresponding to a set of parameter increments will be dN given by

(38) dN = f(m)dπ

for continuous parameters; for discrete parameters, we add in the contribution from
all allowed parameter values. The total number of universes N in the ensemble
will be given by

(39) N =
∫
M

f(m)dπ

(which will often diverge), where the integral ranges over all allowed values of the
member parameters and we take it to include all relevant discrete summations.
The expectation value P of a quantity p(m) defined on the set of universes will be
given by

(40) P =
∫
M

p(m)f(m)dπ.

These three elements (the possibility space, the measure, and the distribution
function) must all be clearly defined in order to give a proper specification of a
multiverse [Ellis et al., 2004]. This is almost never done.

9.2.2 Non-uniqueness: Possibilities

There is non-uniqueness at both steps. Stating “all that is possible, happens” does
not resolve what is possible. The concept of multiverses is not well defined until the
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space of possible universes has been fully characterized; it is quite unclear how to
do this uniquely. The issue of what is to be regarded as an ensemble of ‘all possible’
universes can be manipulated to produce any result you want, by redefining what
is meant by this phrase — standard physics and logic have no necessary sway
over them: what I envisage as ‘possible’ in such an ensemble may be denied by
you. What super-ordinate principles are in operation to control the possibilities
in the multiverse, and why? A key point here is that our understandings of the
possibilities are always of necessity arrived at by extrapolation from what we know,
and my imagination may be more fertile than yours, and neither need correspond
to what really exists out there — if indeed there is anything there at all. Do we
include only

• Weak variation: e.g. only the values of the constants of physics are allowed to
vary? This is an interesting exercise but is certainly not an implementation
of the idea ‘all that can happen, happens’. It is an extremely constrained
set of variations.

• Moderate variation: different symmetry groups, or numbers of dimensions,
etc. We might for example consider the possibility landscapes of string theory
[Freivogel et al., 2005b] as realistic indications of what may rule multiverses
[Susskind, 2003; Freivogel et al., 2005a; Susskind, 2005]. But that is very far
indeed from ‘all that is possible’, for that should certainly include spacetimes
not ruled by string theory.

• Strong variation: different numbers and kinds of forces, universes without
quantum theory or in which relativity is untrue (e.g. there is an aether),
some in which string theory is a good theory for quantum gravity and others
where it is not, some with quite different bases for the laws of physics (e.g.
no variational principles).

• Extreme variation: universes where physics is not well described by mathe-
matics; with different logic; universes ruled by local deities; allowing magic as
in the Harry Potter series of books; with no laws of physics at all? Without
even mathematics or logic?

Which is claimed to be the properties of the multiverse, and why? We can express
our dilemma here through the paradoxical question: Are the laws of logic necessary
in all possible universes?

9.2.3 Non-uniqueness: existence and causation

A specific multiverse is defined by specifying the distribution function f(m) of
actually realized universes. It is unclear what mechanism can underlie such a
distribution, and any proposal for such a mechanism is completely untestable. We
need some indication as to what determines existence within the possibilities defined
by the supposed possibility space: What decides how many times each one happens?
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Unless we understood the supposed underlying mechanisms we can give no serious
answer; and there is no prospect whatever of testing any proposed mechanism. The
mechanisms supposed to underlie whatever regularities there are in the multiverse
must pre-exist the existence of not merely this universe but also every other one.
If one assumes a universe that is connected in the large but is locally separated
into causally disconnected domains with different physical properties(as in chaotic
inflation), one attains a plausible picture of a creation mechanism that can underlie
an effective multiverse — but at the expense of supposing the validity of untested
and perhaps untestable physics. Because of this one does not obtain a specification
of a unique multiverse: the physics could be different than what we assumed.

9.2.4 Explanatory power

What explanatory power do we get in return for these problems? It has been sug-
gested they explain the parameters of physics and of cosmology and in particular
the very problematic observed value of the cosmological constant [Weinberg, 2000a;
Weinberg, 2000b; Susskind, 2005]. The argument goes as follows: assume a mul-
tiverse exists; observers can only exist in one of the highly improbable biophilic
outliers where the value of the cosmological constant is very small [Hartle, 2004].
A similar argument has been proposed for neutrino masses [Tegmark et al., 2003].
If the multiverse has many varied locations with differing properties, that may in-
deed help us understand the Anthropic issue: some regions will allow life to exist,
others will not [Barrow and Tipler, 1984; Leslie, 1989]. This does provide a useful
modicum of explanatory power. However it is far from conclusive. Firstly, it is
unclear why the multiverse should have the restricted kinds of variations of the
cosmological constant assumed in the various analyses mentioned. If we assume
‘all that can happen, happens’ the variations will not be of that restricted kind;
those analyses will not apply.

Secondly, ultimate issues remain: Why does this unique larger whole have the
properties it does? Why this multiverse rather than any other one? Why is it a
multiverse that allows life to exist? Many multiverses will not allow any life at all.
To solve this, we can propose an ensemble of ensembles of universes, with even
greater explanatory power and even less prospect of observational verification; and
so on. The prospect of an infinite regress looms. Indeed if we declare (as suggested
at the start of this article) that ‘the Universe’ is the total of all that physically
exists, then when an ensemble of expanding universe domains exists, whether
causally connected or not, that ensemble itself should be called ‘the Universe’, for
it is then the totality of physically existing entities. All the foundational problems
for a single existing universe domain recur for the multiverse — because when
properly considered, it is indeed the Universe!

9.2.5 Testability

If an ensemble exists with members not connected in any physical way to the
observable universe, then we cannot interact with them in any way nor observe



Issues in the Philosophy of Cosmology 1263

them, so we can say anything we like about them without fear of disproof.32 Thus
any statements we make about them can have no solid scientific or explanatory
status; they are totally vulnerable to anyone else who claims an ensemble with
different properties (for example claiming different kinds of underlying logics are
possible in their ensemble, or claiming many physically effective gods and devils
in many universes in their ensemble).

Thesis H1: Multiverse proposals are unprovable by observation or ex-
periment, but some self-consistency tests are possible. Direct observations
cannot prove or disprove that a multiverse exists, for the necessary causal relations
allowing observation or testing of their existence are absent. Their existence can-
not be predicted from known physics, because the supposed causal or pre-causal
processes are either unproven or indeed untestable. However some self-consistency
conditions for specific multiverse models can be tested.

Any proposed physics underlying a multiverse proposal, such as Coleman-de Luc-
cia tunneling [Coleman and de Luccia, 1980], will be an extrapolation of known
physics; but the validity of that major extrapolation to cosmology is untestable.

Attempts have been made to justify the existence of multiverses as testable
firstly via Rees’ ‘slippery slope’ argument [Rees, 2003]. This runs as follows:
we can reasonably assume galaxies that we cannot see exist outside the visual
horizon (Sec. 8.3); why not extend this argument by small steps to show totally
disconnected universes exist? The problem is that this assumes a continuity of
existence that does not hold good. The domain outside our horizon is assumed to
exist with similar properties to those inside because they are a continuous extension
of it and have a largely common causal origin; their nature can be inferred from
what we can see. Disconnected multiverse domains are assumed to have quite
different properties, and their nature cannot be inferred from what we can see as
there is no continuity or causal connection.

Secondly, several authors (Leslie [Leslie, 1989], Weinberg [Weinberg, 2000a;
Weinberg, 2000b], and Rees [Rees, 2003] for example) have used arguments based
on the idea that the universe is no more special than it has to be; a form of
“speciality argument.” According to Rees, if our universe turns out to be even
more specially tuned than our presence requires, the existence of a multiverse to
explain such “over-tuning” would be refuted; but the actual universe is not more
special than this, so the multiverse is not refuted.

In more detail: naive quantum physics predicts the cosmological constant Λ to
be very large. But our presence in the universe requires it to be small enough that
galaxies and stars can form, so Λ must obviously be below that galaxy-forming
threshold. If our universe belongs to an ensemble in which Λ was equally likely to
take any value in the biophilic region (the uniform probability assumption),33 then

32But there are counter arguments by Leibniz [Wilson, 1989] and Lewis [Lewis, 1986, section
2.4, pp. 108–115].

33The probability distribution for Λ will plausibly peak far away from the biophilic region,
tailing down to a low value that will be approximately constant in that narrow region, cf.[Hartle,
2004].
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we would not expect it to be too far below this threshold. This is because, if it’s
too far below the threshold, the probability of randomly choosing that universe in
the ensemble becomes very small — there are very few universes with such small
values of Λ in the biophilic subset of the ensemble. That is, it would be more
likely that any bio-friendly universe in the ensemble would have a value of Λ closer
to the threshold value. Present data on this value indicates that it is not too far
below the threshold. Thus, our universe is not markedly more special that it needs
to be as far as Λ is concerned, and so explaining its fine-tuning by existence of a
multiverse is legitimate.

Is this argument compelling? It is a reasonable test of consistency for a multi-
verse that is known to exist, so that probability considerations apply; but they do
not apply if there is no multiverse (Sec. 3). Additionally, probability considerations
cannot ever be conclusive. Indeed,

Thesis H2: Probability-based arguments cannot demonstrate the exis-
tence of multiverses. Probability arguments cannot be used to prove the existence
of a multiverse, for they are only applicable if a multiverse exists. Furthermore
probability arguments can never prove anything for certain, as it is not possible to
violate any probability predictions, and this is a fortiori so when there is only one
case to consider, so that no statistical observations are possible.

All one can say on the basis of probability arguments is that some specific state is
very improbable. But this does not prove it is impossible, indeed if it is stated to
have a low probability, that is precisely a statement that it is possible. Thus such
arguments can at best only give plausibility indications even when they are appli-
cable. The assumption that probability arguments can be conclusive is equivalent
to the claim that the universe is generic rather than special; but whether this is so
or not is precisely the issue under debate (see Thesis D3). The argument is useful
as a plausibility argument for a multiverse, but is not proof of its existence.

Finally, it has been proposed that the existence of multiverses is an inevitable
consequence of the universe having infinite space sections [Tegmark, 2003; Seife,
2004], because that leads to infinite spatial repetition of conditions (cf. [Ellis and
Brundrit, 1979]). But this supposed spatial infinity is an untested philosophical
assumption, which certainly cannot be observationally proven to be correct. Apart
from the existence of horizons preventing confirmation of this supposition, even
if the entire universe were observable, proving it correct would still not be possi-
ble because by definition counting an infinite number of objects takes an infinite
amount of time. This is an untestable philosophical argument, not an empirically
testable one; furthermore, it can be argued to be implausible (Sec. 9.3.2). Indeed
current data suggest it is not the case; this is the one good consistency test one
can use for some multiverse proposals (Sec. 9.2.7).

9.2.6 Explanation vs Testability

The argument that this infinite ensemble actually exists can be claimed to have a
certain explanatory economy, although others would claim that Occam’s razor has



Issues in the Philosophy of Cosmology 1265

been completely abandoned in favour of a profligate excess of existential multi-
plicity, extravagantly hypothesized in order to explain the one universe that we do
know exists. Certainly the price is a lack of testability through either observations
or experiment — which is usually taken to be an essential element of any serious
scientific theory.34 It is not uniquely definable nor determinable, and there is a
complete loss of verifiability. There is no way to determine the properties of any
other universe in the multiverse if they do indeed exist, for they are forever outside
observational reach. The point is that there is not just an issue of showing a mul-
tiverse exists. If this is a scientific proposition one needs to be able to show which
specific multiverse exists; but there is no observational way to do this. Indeed if
you can’t show which particular one exists, it is doubtful you have shown any one
exists.

What does a claim for such existence mean in this context? Gardner puts it
this way: “There is not the slightest shred of reliable evidence that there is any
universe other than the one we are in. No multiverse theory has so far provided
a prediction that can be tested. As far as we can tell, universes are not even as
plentiful as even two blackberries” [Gardner, 2003].35

Thesis H3: Multiverses are a philosophical rather than scientific pro-
posal. The idea of a multiverse provides a possible route for the explanation
of fine tuning. But it is not uniquely defined, is not scientifically testable apart
from some possible consistency tests, and in the end simply postpones the ultimate
metaphysical questions.

The definitive consistency tests on some multiverse proposals (Sec. 9.2.7) are
necessary conditions for those specific multiverse proposals, but are hardly by
themselves indications that the multiverse proposal is true. The drive to believe
this is the case comes from theoretical and philosophical considerations (see e.g.
[Susskind, 2005]) rather than from data. The claim an ensemble physically ex-
ists36 is problematic as a proposal for scientific explanation, if science is taken
to involve testability. Indeed, adopting these explanations is a triumph of theory
over testability [Gardner, 2003], but the theories being assumed are not testable.
It is therefore a metaphysical choice made for philosophical reasons. That does
not mean it is unreasonable (it can be supported by quite persuasive plausibility
arguments); but its lack of scientific status should be made clear.

34In [Stoeger et al., 2004], the framework and conditions under which the multiverse hypothesis
would be testable within a retroductive framework, given the rigorous conditions formulated in
that paper; are indicated; these conditions are not fulfilled.

35This contrasts strongly, for example, with Deutsch’s and Lewis’s defence of the concept
[Deutsch, 1998; Lewis, 1986]. Lewis defends the thesis of “modal realism”: that the world we
are part of is but one of a plurality of worlds.

36As opposed to consideration of an explicitly hypothetical such ensemble, which can indeed
be useful, see Sec. 7.2.
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9.2.7 Observations and disproof

Despite the gloomy prognosis given above, there are some specific cases where
the existence of a chaotic inflation (multi-domain) type scenario (Sec. 2.6) can
be disproved. These are firstly when we live in a ‘small universe’ where we have
already seen right round the universe (Sec. 4.3.1), for then the universe closes up
on itself in a single FL-like domain, so that no further such domains can exist that
are causally connected to us in a single connected spacetime. This ‘small universe’
situation is observationally testable (Sec. 4.3.1); its confirmation would disprove
the usual chaotic inflationary scenario, but not a truly ‘disconnected’ multiverse
proposal, for that cannot be shown to be false by any observation. Neither can
it be shown to be true. Secondly, many versions of chaotic inflation, for example
those involving Coleman-de Luccia tunneling [Coleman and de Luccia, 1980] from
a de Sitter spacetime, demand k = −1⇔ Ω0 < 1 [Freivogel et al., 2005b; Susskind,
2005]. This requirement is currently marginally disproved by the 2 − σ bounds
on Ω0 when WMAP observations are combined with the best other available data
(Sec. 2.3.7). The best current data is marginally consistent with k = −1, but the
value indicated most strongly by that data is k = +1, indicating finite closed space
sections rather than an infinite multiverse such as that advocated by Susskind et
al [Freivogel et al., 2005b; Susskind, 2005].

9.2.8 Physical or biological paradigms — Adaptive Evolution?

Given that the multiverse idea must in the end be justified philosophically rather
than by scientific testing, is there a philosophically preferable version of the idea?
One can suggest there is: greater explanatory power is potentially available by
introducing the major constructive principle of biology into cosmology, namely
adaptive evolution, which is the most powerful process known that can produce
ordered structure where none pre-existed. This is realized in principle in Lee
Smolin’s idea (Sec. 9.1.6) of Darwinian adaptation when collapse to black holes is
followed by re-expansion, but with an alteration of the constants of physics each
time, so as to allow for evolutionary selection towards those regions that produce
the maximum number of black holes. The idea needs development, but is very
intriguing:

Thesis H4: The underlying physics paradigm of cosmology could be
extended to include biological insights. The dominant paradigm in cosmology
is that of theoretical physics. It may be that it will attain deeper explanatory
power by embracing biological insights, and specifically that of Darwinian evolution.
The Smolin proposal for evolution of populations of expanding universe domains
[Smolin, 1992] is an example of this kind of thinking.

The result is different in important ways from standard cosmological theory pre-
cisely because it embodies in one theory three of the major ideas of last century,
namely (i) Darwinian evolution of populations through competitive selection, (ii)
the evolution of the universe in the sense of major changes in its structure asso-
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ciated with its expansion, and (iii) quantum theory, underlying the only partly
explicated mechanism supposed to cause re-expansion out of collapse into a black
hole. There is a great contrast with the theoretical physics paradigm of dynamics
governed simply by variational principles shaped by symmetry considerations. It
seems worth pursuing as a very different route to the understanding of the creation
of structure.37

9.3 Issue I: Natures of Existence

Underlying all this is the issue of natures of existence, which has a number of
aspects, relating from the purely physical to more metaphysical issues.

9.3.1 Physical existence: kinds of matter

Unsolved key issues for physical cosmology relate to what kind of matter and/or
fields exist. While we understand matter in the solar system quite well, at present
we do not understand most of what exists in the universe at large:

Thesis I1: We do not understand the dominant dynamical matter com-
ponents of the universe at early or late times. A key goal for physical
cosmology is determining the nature of the inflaton, of dark matter, and of dark
energy. Until this is done, the causal understanding of cosmology is incomplete,
and in particular the far future fate of the universe is unknown.

This is the core activity of much work in cosmology at present. Until they are
all explicated, cosmology is not properly linked to physics, and the nature of the
matter that dominates the dynamics of the universe is unknown. Its explication
is surely one of the key concerns of cosmology [Durrer, 2002]. A key requirement
is that even if we cannot experimentally verify the proposed nature of the matter,
at least it should be physically plausible. This appears not to be the case for some
current proposals, e.g. so-called ‘phantom matter’ which has negative kinetic
energy terms.

The far future fate of the universe depends crucially on the effective equation
of state for dark matter (‘quintessence’). But the problem is that even if we
can determine these properties at the present time (for one particular range of
parameter values), this does not necessarily guarantee what they will be in the far
future (for a quite different range of parameter values that are probably outside
the range of possible experimental test). Furthermore adjusting a ‘dark energy’
model to fit the supernova data does not determine the underlying physics. One
can fit any monotonic evolution S(t) with a suitable choice of the equation of state
function p(µ). Specifically, for any S(t) and any k we define µ(t) and p(t) by

(41) κµ(t) = 3

[
Ṡ2(t)
S2(t)

+
k

S2(t)

]
, κp(t) =

[
Ṡ2(t)
S2(t)

+
k

S2(t)

]
− 2

S̈(t)
S(t)

,

37Cf. Chapter 13 of Susskind [Susskind, 2005].
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then (9), (7) will be exactly satisfied, and we have ‘solved’ the field equations for
this arbitrarily chosen monotonic evolution S(t). If we can observationally deter-
mine the form of S(t), for example from (m, z)–curves associated with supernovae
data, this is essentially how we can then determine that some kind of ‘dark energy’
or ‘quintessence’ is required to give that evolution, and we can find the equation
of state implied by eliminating t between these two equations. This is, however,
not a physical explanation until we have either in some independent experimen-
tal test demonstrated that matter of this form exists, or have theoretically shown
why this matter or field has the form it does in some more fundamental terms
than simply a phenomenological fit. If we assume the matter is a scalar field, the
kinetic energy term φ̇2 implied by (32), (41) may be negative — which is the case
for so-called ‘shadow matter’ models proposed recently by some worker. If normal
physics criteria are applied, this is a proof that this kind of matter is unphysical,
rather than an identification of the nature of the dark energy.

9.3.2 Existence of Infinities

The nature of existence is significantly different if there is a finite amount of
matter or objects in the universe, as opposed to there being an infinite quantity in
existence. Some proposals claim there may be an infinite number of universes in
a multiverse and many cosmological models have spatial sections that are infinite,
implying an infinite number of particles, stars, and galaxies. However, infinity is
quite different from a very large number! Following David Hilbert [Hilbert, 1964],
one can suggest these unverifiable proposals cannot be true: the word ‘infinity’
denotes a quantity or number that can never be attained, and so will never occur
in physical reality.38 He states
“Our principal result is that the infinite is nowhere to be found in reality. It neither
exists in nature nor provides a legitimate basis for rational thought . . . The role
that remains for the infinite to play is solely that of an idea . . . which transcends
all experience and which completes the concrete as a totality . . .” [Hilbert, 1964,
p. 151].
This suggests “infinity” cannot be arrived at, or realized, in a concrete physical
setting; on the contrary, the concept itself implies its inability to be realized!39

Thesis I2: The often claimed physical existence of infinities is ques-
tionable. The claimed existence of physically realized infinities in cosmology or
multiverses raises problematic issues. One can suggest they are unphysical; in any
case such claims are certainly unverifiable.

This applies in principle to both small and large scales in any single universe:

38An intriguing further issue is the dual question: Does the quantity zero occur in physical
reality? This is related to the idea of physical existence of nothingness, as contrasted with a
vacuum [Seife, 2000]. A vacuum is not nothing! (cf. [Susskind, 2005]).

39For a contrasting view, see Bernadete [Bernadete, 1964].
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• The existence of a physically existing spacetime continuum represented by
a real (number) manifold at the micro-level contrasts with quantum grav-
ity claims of a discrete spacetime structure at the Planck scale, which one
might suppose was a generic aspect of fully non-linear quantum gravity the-
ories [Rovelli, 2004]. In terms of physical reality, this promises to get rid of
the uncountable infinities the real line continuum engenders in all physical
variables and fields.40 There is no experiment that can prove there is a phys-
ical continuum in time or space; all we can do is test space-time structure
on smaller and smaller scales, but we cannot approach the Planck scale.

• Infinitely large space-sections at the macro-level raise problems as indicated
by Hilbert, and leads to the infinite duplication of life and all events [Ellis
and Brundrit, 1979]. We may assume space extends forever in Euclidean
geometry and in many cosmological models, but we can never prove that
any realised 3-space in the real universe continues in this way — it is an
untestable concept, and the real spatial geometry of the universe is almost
certainly not Euclidean. Thus Euclidean space is an abstraction that is
probably not physically real. The infinities supposed in chaotic inflation-
ary models derive from the presumption of pre-existing infinite Euclidean
space sections, and there is no reason why those should necessarily exist.
In the physical universe spatial infinities can be avoided by compact spatial
sections, resulting either from positive spatial curvature, or from a choice
of compact topologies in universes that have zero or negative spatial curva-
ture. Machian considerations to do with the boundary conditions for physics
suggest this is highly preferable [Wheeler, 1968]; and if one invokes string
theory as a fundamental basis for physics, then ‘dimensional democracy’ sug-
gests the three large spatial dimensions should also be compact, since the
small (‘compactified’) dimensions are all taken to be so. The best current
data from CBR and other observations (Sec. 2.3.7) indeed suggest k = +1,
implying closed space sections for the best-fit FL model.

• The existence of an eternal universe implies that an infinite time actually
exists, which has its own problems: if an event happens at any time t0, one
needs an explanation as to why it did not occur before that time (as there
was an infinite previous time available for it to occur); and Poincaré eternal
return (mentioned in Sec. 6.1) will be possible if the universe is truly cyclic.
In any case it is not possible to prove that the universe as a whole, or even
the part of the universe in which we live, is past infinite; observations cannot
do so, and the physics required to guarantee this would happen (if initial
conditions were right) is untestable. Even attempting to prove it is future
infinite is problematic (we cannot for example guarantee the properties of the

40To avoid infinities entirely would require that nothing whatever is a continuum in physical
reality (since any continuum interval contains an infinite number of points). Doing without that,
conceptually, would mean a complete rewrite of many things. Considering how to do so in a way
compatible with observation is in my view a worthwhile project.
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vacuum into the infinite future — it might decay into a state corresponding
to a negative effective cosmological constant).

• It applies to the possible nature of a multiverse. Specifying the geometry
of a generic universe requires an infinite amount of information because the
quantities necessary to do so are fields on spacetime, in general requiring
specification at each point (or equivalently, an infinite number of Fourier
coefficients): they will almost always not be algorithmically compressible.
All possible values of all these components in all possible combinations will
have to occur in a multiverse in which “all that can happen, does happen”.
There are also an infinite number of topological possibilities. This greatly
aggravates all the problems regarding infinity and the ensemble. Only in
highly symmetric cases, like the FL solutions, does this data reduce to a
finite number of parameters, each of which would have to occur in all possible
values (which themselves are usually taken to span an infinite set, namely the
entire real line). Many universes in the ensemble may themselves have infinite
spatial extent and contain an infinite amount of matter, with all the problems
that entails. To conceive of physical creation of an infinite set of universes
(most requiring an infinite amount of information for their prescription, and
many of which will themselves be spatially infinite) is at least an order of
magnitude more difficult than specifying an existent infinitude of finitely
specifiable objects.

One should note here particularly that problems arise in the multiverse context
from the continuum of values assigned by classical theories to physical quanti-
ties. Suppose for example that we identify corresponding times in the models in
an ensemble and then assume that all values of the density parameter and the
cosmological constant occur at each spatial point at that time. Because these
values lie in the real number continuum, this is a doubly uncountably infinite
set of models. Assuming genuine physical existence of such an uncountable in-
finitude of universes is the antithesis of Occam’s razor. But on the other hand,
if the set of realised models is either finite or countably infinite, then almost all
possible models are not realised. And in any case this assumption is absurdly
unprovable. We can’t observationally demonstrate a single other universe exists
[Gardner, 2003], let alone an infinitude. The concept of infinity is used with gay
abandon in some multiverse discussions [Knobe et al., 2005], without any con-
cern either for the philosophical problems associated with this statement [Hilbert,
1964], or for its completely unverifiable character. It is an extravagant claim that
should be treated with extreme caution.

9.3.3 The Nature of the Laws of Physics

Underlying all the above discussion is the basic concept of ordered behaviour of
matter, characterized by laws of physics of a mathematical nature that are the



Issues in the Philosophy of Cosmology 1271

same everywhere in the universe.41 Three interlinked issues arise.
(i) What is the ontological nature of the laws of physics: descriptive, just char-

acterizing the way things are, or prescriptive, enforcing them to be this way?
[Carroll, 2004]. If they are descriptive, the issue arising is, Why does all matter
have the same properties wherever it exists in the universe? Why are all electrons
everywhere in the universe identical, if the laws are only descriptive? If they are
prescriptive, then matter will necessarily be the same everywhere (assuming the
laws themselves are invariable); the issue arising then is, In what way do laws of
physics exist that enforce themselves on the matter in the universe? Do they for
example have an existence in some kind of Platonic space that controls the nature
of matter and existence? One can avoid talking about the laws of physics per se
by instead considering the space of possibilities underlying what exists physically,
rigorously constraining the possible natures of what actually comes into existence
[Ellis, 2004]. This space is more or less uniquely related to the underlying laws in
the same way that the space of solutions of differential equations is related to the
nature of the equations. This enables one to avoid the issue of the ontology of the
laws of physics, but does not solve it.

(ii) Why are the laws of physics so well explained by mathematical descriptions?
If they are prescriptive, this deep issue might be related to the suggested Platonic
nature of the space of mathematical reality [Penrose, 2004]. If they are descrip-
tive, then the mathematical expressions we use to encapsulate them are just a
convenient description but do not reflect their ultimate nature. Many writings in
physics and cosmology seem to assume that their ultimate existential nature is
indeed mathematical — perhaps a confusion of appearance and reality (see Sec.
8.3).

(iii) Do they pre-exist the universe and control its coming into being, or do they
come into being with the universe? This is where this issue relates deeply to the
nature of cosmology, and is clearly related to the other two questions raised above.
Many theories of creation of the universe assume that all these laws, or at least a
basic subset, pre-exist the coming into being of the physical universe, because they
are presumed to underlie the creation process, for example the entire apparatus of
quantum field theory is often taken for granted as pre-existing our universe (Sec.
6). This is of course an unprovable proposition

Thesis I3: A deep issue underlying the nature of cosmology is the na-
ture of the laws of physics. The nature of the possibility space for physical
existence is characterized by the laws of physics. However it is unclear if these
laws are prescriptive or descriptive; whether they come into being with space-time
and matter, or pre-exist them.

41The effective laws may vary from place to place because for example the vacuum state varies
[Susskind, 2005]; but the fundamental laws that underlie this behaviour are themselves taken to
be invariant.
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9.3.4 ‘Ultimate Reality’

Philosophers have debated for millennia whether the ultimate nature of existence
is purely material, or embodies some form of rationality (‘Logos’) and/or purpose
(‘Telos’). What in the end underlies it all? Is the ultimate nature of the universe
purely material, or does it in some way have an element of the mental? (cf. Sec.
9.1.6). That profound debate is informed by physical cosmology, but cannot be
resolved by the physical sciences alone (Sec. 9.1.7). Here, I will make just two
comments on this deep issue.

Firstly, even in order to understand just the material world, it can be claimed
that one needs to consider forms of existence other than the material only — for
example a Platonic world of mathematics and a mental world, both of which can
be claimed to exist and be causally effective in terms of affecting the material
world [Ellis, 2004; Penrose, 2004]. Our understanding of local causation will be
incomplete unless we take them into account.

Secondly, in examining these issues one needs to take into account data about
the natures of our existence that come from our daily lives and the broad historical
experience of humanity (our experiences of ethics and aesthetics, for example),
as well as those discoveries attained by the scientific method. Many writings
claim there is no purpose in the universe: it is all just a conglomerate of particles
proceeding at a fundamental level in a purposeless and meaningless algorithmic
way. But I would reply, the very fact that those writers engage in such discourse
undermines their own contention; they ignore the evidence provided by their own
actions. There is certainly meaning in the universe to this degree: the fact they
take the trouble to write such contentions is proof that they consider it meaningful
to argue about such issues; and this quality of existence has emerged out of the
nature of the physical universe (Sec. 7.3). Indeed the human mind is causally
effective in the real physical world precisely through many activities motivated
by meanings perceived by the human mind. Any attempt to relate physics and
cosmology to ultimate issues must take such real world experience seriously [Ellis,
2005], otherwise it will simply be ignoring a large body of undeniable data. This
data does not resolve the ultimate issues, but does indicate dimensions of existence
that indeed do occur.

10 CONCLUSION

The physical scale of the Universe is enormous, and the images of distant objects
from which we obtain our information are extremely faint. It is remarkable that
we are able to understand the Universe as well as we do. An intriguing feature is
the way in which the philosophy of cosmology is to a considerable degree shaped
by contingent aspects of the nature of the universe — its vast scale (Sec. 4), lead-
ing to the existence of visual horizons (Sec. 4.3), and the occurrence of extreme
energies in the early universe (Sec. 5), leading to the existence of physical hori-
zons. Philosophical issues arising in relation to cosmology (Sec. 8) would be quite
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different if its physical structure were very different. Furthermore in order that
philosophical analysis can engage with cosmology in depth, the detailed nature of
the relation between observations and theory in cosmology (Sec. 2) is relevant.

10.1 Are there laws of cosmology?

As we have discussed in detail, the uniqueness of the universe implies the unique
nature of cosmology. We now return to the initial issue, Are there Laws of the
Universe? (Sec. 3). At one level, the laws of the cosmos are simply the local laws
we know and love (e.g. Maxwell’s laws, Einstein’s field equations) applied to the
whole shebang. Of course, there is the problem of extrapolation from the local to
the global. But although the extrapolation is bigger in cosmology, it seems not to
be different in kind from what we always do in science. In that sense, there are
no special laws for the evolution of the universe. But that does not determine the
outcome: cosmology needs some prescription of boundary or initial conditions as
well, in order to determine the future. Is there a true “Cosmological principle”, a
law of initial conditions for the universe, that determines this outcome?

The idea of “Laws of initial conditions of the universe” seems not to be a
testable idea (Sec. 3). Scientifically, one can only describe what occurred rather
than relate it to generic principles, for such principles cannot be tested. In fact
any description of boundary or initial conditions for the universe seems to be just
that: a description of these conditions, rather than a testable prescription of how
they must be. The ‘Cosmological Principle’ — the universe is necessarily spatially
homogeneous and isotropic (Sec. 4.2.2) is of this kind: a description of the way
the initial data turned out, rather than a fundamental reason for why this should
be so. Justification of this view was based by some workers on a Copernican
Principle (the assumption we do not live in a privileged place in the universe),
strengthened to become a Cosmological Principle [Bondi, 1960; Weinberg, 1972;
Harrison, 2000]; but this is a philosophical assumption — essentially, a claim that
the universe must have very special initial conditions — which may or may not be
true, and does not attempt a physical explanation. This kind of argument is out
of fashion at present, because we now prefer generality to speciality and physical
argumentation to geometrical prescription; but it was previously strongly proposed
(e.g. [Weinberg, 1972], pp. 407-412). The tenor of philosophical argument has
changed.

Nevertheless there is one kind of Law of the Universe one might propose, fol-
lowing McCrea [McCrea, 1970]: namely an “Uncertainty principle in cosmology”,
dual to the uncertainty principle in quantum theory. Uncertainty applies on the
largest scale, as we have discussed above in some detail, and also on the smallest,
where it is a profound feature of quantum theory. Its basis is very different in
the two cases, on the one hand (in quantum theory) being ontological in nature,
on the other (in cosmology) being epistemological in nature.42 Nevertheless it is

42Assuming that quantum uncertainty is indeed ontological rather than epistemological. One
should however keep an open mind on this: just because it is the current dogma does not
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a key aspect of our relation to the cosmos, so that (following McCrea) we might
perhaps formalize it in order to emphasize its centrality to the relation between
cosmology and philosophy:

Thesis of Uncertainty: Ultimate uncertainty is a key aspect of cosmol-
ogy. Scientific exploration can tell us much about the universe but not about its
ultimate nature, or even much about some of its major geometrical and physical
characteristics. Some of this uncertainty may be resolved, but much will remain.
Cosmological theory should acknowledge this uncertainty.

10.2 What can we truly claim

Cosmology considers questions of physical origins in the uniquely existing physical
universe (Sec. 6) which provides the context of our existence (Sec. 7, Sec. 9.1).
These questions can be extended to include ultimate issues if we so desire (Sec.
8.2), but physical theory cannot resolve them (Sec. 9.1.7). In the end, there are a
variety of mysteries underlying the existence and nature of the universe (Sec. 9.3).
The scientific study of cosmology can help illuminate their nature, but cannot
resolve them.

As well as celebrating the achievements of cosmology, one should fully take
into account the limits and problems considered in this chapter, and not claim
for scientific cosmology more than it can actually achieve or more certainty than
is in fact attainable. Such claims will in the long term undermine cosmology’s
legitimate status as a project with solid scientific achievements to its name. That
status can be vigorously defended as regards the ‘Standard Model’ of cosmology
(Sec. 2.8), provided this standard model is characterized in conservative terms so
that it is not threatened by relatively detailed shifts in theory or data that do not
in fact threaten the core business of cosmology. Further, this defence must take
adequate cognisance of the difficult philosophical issues that arise if one pushes
the explanatory role of cosmological theory to its limits (Sec. 6); for example one
should not make too strong scientific claims in regard to the possible existence
of multiverses (Sec. 9.2); philosophically based plausibility arguments for them
are fine, if identified as such. Cosmology is not well served by claims that it can
achieve more explanatory power than is in fact attainable, or by statements that
its claims are verified when in fact the requisite evidence is unavailable, and in
some cases must forever remain so.
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Issues in the Philosophy of Cosmology

SUMMARY TABLE OF ISSUES AND THESES

Issue A: The uniqueness of the universe

Thesis A1 : The universe itself cannot be subjected to physical experimentation

Thesis A2 : The universe cannot be observationally compared with other universes

Thesis A3 : The concept of ‘Laws of Physics’ that apply to only one object is ques-

tionable

Thesis A4 : The concept of probability is problematic in the context of existence of

only one object

Issue B: The large scale of the Universe in space and time

Thesis B1 : Astronomical observations are confined to the past null cone, and fade

with distance

Thesis B2 : ‘Geological’ type observations can probe the distant past of our past

world line

Thesis B3 : Establishing a Robertson-Walker geometry relies on plausible philosoph-

ical assumptions

Thesis B4 : Interpreting cosmological observations depends on astrophysical under-

standing

Thesis B5 : A key test for cosmology is that the age of the universe must be greater

than the ages of stars

Thesis B6 : Horizons limit our ability to observationally determine the very large

scale geometry of the universe

Thesis B7 : We have made great progress towards observational completeness

Issue C: The unbound energies in the early universe

Thesis C1 : The Physics Horizon limits our knowledge of physics relevant to the very

early universe

Thesis C2 : The unknown nature of the inflaton means inflationary universe proposals

are incomplete

Issue D: Explaining the universe — the question of origins

Thesis D1 : An initial singularity may or may not have occurred

Thesis D2 : Testable physics cannot explain the initial state and hence specific nature

of the universe

Thesis D3 : The initial state of the universe may have been special or general

Issue E: The Universe as the background for existence

Thesis E1 : Physical laws may depend on the nature of the universe

Thesis E2 : We cannot take the nature of the laws of physics for granted

Thesis E3 : Physical novelty emerges in the expanding universe

Issue F: The explicit philosophical basis
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Thesis F1 : Philosophical choices necessarily underly cosmological theory

Thesis F2 : Criteria for choice between theories cannot be scientifically chosen or

validated

Thesis F3 : Conflicts will inevitably arise in applying criteria for satisfactory theories

Thesis F4 : The physical reason for believing in inflation is its explanatory power re

structure growth.

Thesis F5 : Cosmological theory can have a wide or narrow scope of enquiry

Thesis F6 : Reality is not fully reflected in either observations or theoretical models

Issue G: The Anthropic question: fine tuning for life

Thesis G1 : Life is possible because both the laws of physics and initial conditions

have a very special nature

Thesis G2 : Metaphysical uncertainty remains about ultimate causation in cosmology

Issue H: The possible existence of multiverses

Thesis H1 : The Multiverse proposal is unprovable by observation or experiment

Thesis H2 : Probability-based arguments cannot demonstrate the existence of mul-

tiverses

Thesis H3 : Multiverses are a philosophical rather than scientific proposal

Thesis H4 : The underlying physics paradigm of cosmology could be extended to

include biological insights

Issue I: The natures of existence

Thesis I1 : We do not understand the dominant dynamical matter components of the

universe at early or late times

Thesis I2 : The often claimed physical existence of infinities is questionable

Thesis I3 : A deep issue underlying the nature of cosmology is the nature of the laws

of physics.

Thesis of Uncertainty: Ultimate uncertainty is one of the key aspects of cosmology
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QUANTUM GRAVITY

Carlo Rovelli

1 INTRODUCTION

Quantum gravity (QG) is the problem of finding a theory that describes the quan-
tum effects on gravity. These effects escape the currently accepted physical the-
ories. Our present knowledge of the basic dynamical laws is given by quantum
mechanics (QM) and quantum field theory (QFT), general relativity (GR), and
the standard model of particle physics. This set of theories has obtained an em-
pirical success nearly unique in the history of science: so far there is no evidence
of observed phenomena that clearly escape or contradict this set of theories —
or a minor modification of the same. But these theories become meaningless in
the regimes where relativistic quantum gravitational effects are expected to be-
come relevant. These effects are not currently observed; they are negligible at
currently accessible scales and are expected to become relevant only in extreme
physical regimes. For instance, they should govern the end of the evaporation of
black holes, the beginning of the life of the Universe near the Big Bang, and any
measurement involving an extremely short length scale (∼ 10−33 cm, the “Planck
scale”) or a very high energy. “Quantum gravity” is the name given to the theory-
to-be-found that should describe these regimes.

The interest of the problem, however, goes far beyond the description of some
so far inaccessible physics. The physics of the early twentieth century has modi-
fied the roots of our understanding of the physical world. It has changed the very
meaning of the concepts we use to grasp it. GR, which is the field theory that
describes gravity when we can disregard its quantum properties, has changed our
understanding of space and time. QM, which has replaced classical mechanics as
our general theory of motion, has modified the notions of matter, field, and causal-
ity. At present, we haven’t yet found a consistent conceptual frame in which these
modifications make sense together. Thus, our understanding of the physical world
is currently badly fragmented. In spite of its empirical effectiveness, fundamen-
tal physics is in a phase of deep conceptual confusion. The problem of QG is to
combine the insights of GR and QM into a conceptual scheme in which they can
coexist. It is the problem of finding a novel picture of the world capable of bring-
ing the twentieth century scientific revolution to an end. For this reason, many
consider QG to be the most important open problem in fundamental physics.

In particular, QG is an investigation on the nature of space and time. The
structure and the nature of physical space are expected to change radically at
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the Planck scale; and the conventional way of conceptualizing of time evolution
is expected to cease to be viable at this scale. The theory is therefore likely to
require us to revise the way we think of space and time.

Research in QG has developed slowly for several decades of the twentieth cen-
tury, because general relativity had little impact on the rest of physics and the
interest of many physicists was concentrated on the development of quantum the-
ory and particle physics. In the last decade, the explosion of empirical confirma-
tions and concrete astrophysical, cosmological and even technological applications
of general relativity on the one hand, and the satisfactory solution of most of the
particle physics puzzles in the context of the particle physics “standard model” on
the other, have led to a strong concentration of interest in quantum gravity, and
the progressed has become rapid. Research is currently very active.

A few tentative theories of QG have been proposed. The best developed of
these are string theory [Green et al., 1987] and loop quantum gravity [Rovelli,
2004]. Other very active directions of investigation include noncommutative geom-
etry [Connes, 1994], dynamical triangulations [Ambjorn et al., 1997], the spinfoam
formalism [Perez, 2003] (strictly connected to the loop approach) and effective the-
ories. Currently, none of these approaches has found any empirical corroboration,
and none has won general theoretical consensus.

The problem of QG raises basic methodological issues and involves conceptual
and foundational questions. Some of these are similar to the foundational questions
that physics addressed at the time of other major conceptual shifts — the birth of
classical mechanics, field theory, relativity, or quantum mechanics. Old problems
demand new answers, in the light of the twentieth century’s novel insights. A
characteristic example is a revival of the cartesian-newtonian-leibnizian debate on
the relational nature of space.

No exhaustive discussion on our current understanding of the physical world,
and in particular on the current knowledge about space and time, can disregard
the issues and questions raised by this search.

1.1 Quantum spacetime

GR and QM have widely extended our understanding of the physical world. They
are solidly supported empirically, and have vast scientific and technological appli-
cations. But they have destroyed the coherent picture of the world provided by
prerelativistic classical physics because each of the two is formulated under as-
sumptions contradicted by the other theory. QM is formulated using an external
time variable, the t of the Schrödinger equation — or, in the case of QFT, using
a fixed, nondynamical background spacetime. Both an external time variable and
a fixed background spacetime are incompatible with GR.

In turn, GR is formulated in terms of Riemannian geometry: the gravitational
field is assumed to be a classical deterministic dynamical field, which can be iden-
tified with Riemann’s metric field. But QM requires all dynamical fields to have
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quantum properties. At small scales a field appears as made up of discrete quanta
and is governed by probabilistic laws.

Thus, GR and QM are formulated in terms of mutually contradictory assump-
tions. In spite of their empirical success, they offer a rather schizophrenic and
confused understanding of the physical world.

Roughly speaking, we learn from GR that spacetime is a dynamical field and we
learn from QM that a dynamical field is quantized. Therefore at small scales we
might expect a “quantum spacetime” formed by “quanta of space”, and allowing
“quantum superposition of spaces”. The problem of QG is to give a mathematical
and conceptual meaning to such a notion of a quantum spacetime.

Some general indications about the nature of quantum spacetime, and on the
problems this notion raises, can be obtained from elementary considerations based
on GR and QM. The size of quantum mechanical effects is determined by Planck’s
constant �. The strength of the gravitational force is determined by Newton’s
constant G, and the relativistic domain is determined by the speed of light c.
By combining these three fundamental constants we obtain a length, called the
Planck length lP =

√
�G/c3 ∼ 10−33 cm. Quantum-gravitational effects are likely

to be negligible at distances much larger than lP, because at these scales we can
neglect quantities of the order of G, � or 1/c. Therefore we expect that the GR
description of spacetime as a Riemannian space holds at scales larger than lP and
breaks down approaching this scale, where the full structure of quantum spacetime
becomes relevant. QG is therefore the study of the structure of spacetime at the
Planck scale.

Simple arguments indicate that lP may play the role of a minimal length, in the
same sense in which c is the maximal velocity and � the minimal exchanged action.
For instance, the Heisenberg principle requires that the position of an object of
mass m can only be determined with uncertainty x satisfying mvx > �, where v
is the uncertainty in the velocity; special relativity requires v < c; and according
to GR there is a limit to the amount of mass we can concentrate in a region of
size x, given by x > Gm/c2, after which the region itself collapses into a black
hole, removing itself from our observation. Combining these inequalities we obtain
x > lP ; that is, gravity, relativity and quantum theory, taken together, appear to
prevent position to be determined more precisely than the Planck scale. Various
considerations of this kind have suggested that space might not be infinitely di-
visible. It may have a quantum granularity at the Planck scale, analogous to the
granularity of the energy in a quantum oscillator. This granularity of space is fully
realized in certain QG theories, such as loop quantum gravity, and there are hints
of it also in string theory [Amati et al., 1989]. Since this is a quantum granularity,
it escapes the traditional objections to the atomic nature of space.

Time is affected even more radically by the quantization of gravity. In conven-
tional QM time is treated as an external parameter and transition probabilities
change in time. In GR there is no external time parameter. Coordinate time is a
gauge variable which is not observable, and the physical variable measured by a
clock is a complicated function of the gravitational field. Fundamental equations
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of QG might therefore not be written as evolution equations in an observable time
variable. Strictly speaking, this is already true in classical GR: GR does not de-
scribe evolution of physical variables in time — it describes the relative evolution
of physical variables with respect to one another. But a temporal interpretation
is still available in classical GR, because spacetime appears as a solution of the
dynamical equations of the gravitational field. However, a solution of the dynam-
ical equation is like a “trajectory” of a particle and in quantum theory there are
no physical trajectories: there are only transition probabilities between observable
eigenvalues. Therefore in QG it may be impossible to describe the world in terms
of a spacetime, in the same sense in which the motion of a quantum electron can-
not be described in terms of a single trajectory. It is possible that to make sense
of the world at the Planck scale, and to find a consistent conceptual framework
for GR and QM, we may have to give up the notion of time altogether, and learn
ways to describe the world in atemporal terms. Time might be a useful concept
only within an approximate description of the physical reality.

The following section sketches the historical development of QG research and
illustrates the main ideas, lines of research and current tentative theories. Various
issues raised by this research are then illustrated in Section 3. Section 4 discusees
in particular the changes in the notions of space and time forced by QG and Section
5 discusses the relation between the prolem of QG and other major open problems
in fundamental phyiscs.

2 APPROACHES

A full account of the numerous ideas and approaches towards quantum gravity is
outside the scope of this article. Only a few main research lines are illustrated here.
For additional references, see the bibliographical note at the end of the article.

2.1 History and directions of research

Early ideas

The fact that the gravitational field should have quantum properties, and there-
fore we need a theory for describing these properties, was recognized very early.
Already in 1916, one year after the birth of GR, Einstein pointed out that quan-
tum effects must lead to modifications of GR [Einstein, 1916]. In 1927 Oskar Klein
suggested that QG might ultimately modify the concepts of space and time [Klein,
1927].

In the early thirties Rosenfeld [Rosenfeld, 1930b; Rosenfeld, 1930a] wrote the
first technical papers on QG, soon followed by Fierz and Pauli [Fierz, 1939;
Pauli and Fierz, 1939] and later Gupta [Gupta, 1952]. The idea is to introduce a
fictitious “flat space”, to consider the small fluctuations of the metric around it
— gravitational waves moving on flat space, described by the linearized Einstein
equations — and to quantize these waves following the methods that had worked
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for the electromagnetic field. More precisely, the metric field gµν(x), which in
Einstein’s theory represents at the same time the spacetime metric and the gravi-
tational field, is written as the sum of the two terms

gµν(x) = ηµν(x) + hµν(x).(1)

ηµν(x) is interpreted as the metric of a fixed background spacetime; hµν(x) is
interpreted as the gravitational field, and quantized. A Hilbert space of states
representing quantum states of gravitational waves is introduced, where hµν(x) is
represented by a field operator ĥµν(x). This is called the “covariant approach”
to QG. The quantum of the field hµν(x), which is the gravitational analog of the
photon, is called the “graviton”, a name already in use in the early thirties.

In 1938, Heisenberg pointed out that the fact that the gravitational coupling
constant is dimensional is likely to cause problems with the quantum theory of the
gravitational field [Heisenberg, 1938]. In the mid thirties a young Russian physi-
cist, Matvei Petrovich Bronstein, realized that the unique features of gravitation
require a special treatment, when the full nonlinear theory is taken into account.
He realized that field quantization techniques must be generalized in such a way as
to be applicable in the absence of a background spacetime. Bronstein understan-
dood that the limitation posed by GR on the mass density radically distinguishes
the theory from quantum electrodynamics and would ultimate lead to the need to
“reject Riemannian geometry” and perhaps also to “reject our ordinary concepts
of space and time” [Bronstein, 1936].

A second line of investigation was opened in the forties by Peter Bergmann and
his group [Bergmann, 1949a; Bergmann, 1949b; Bergmann, 1958; Bergmann, 1961;
Bergmann and Komar, 1980]. The idea is to study and quantize the hamiltonian
formulation of full GR, not just its linearization around flat space. This approach
has the advantage that it does not assume a background spacetime on which to
define the theory. The idea is that the states in the Hilbert space represent the
quantum states of spacetime itself, and the full spacetime metric (maybe up to its
nondynamical components) becomes a quantum operator

gµν(x) −→ ĝµν(x).(2)

This is called the “canonical approach” to QG. The same program was started
independently by Dirac, who develops his constrained hamiltonian systems theory
for this task [Dirac, 1950; Dirac, 1964; Dirac, 1958; Dirac, 1959].

A third approach to QG was introduced in the late fifties by Charles Misner
[Misner, 1957], following a suggestion by John Wheeler. It is a quantization of
general relativity à la Feynman, formally defined by the “path integral over ge-
ometries”

Z =
∫

Dg e−iS[g](3)

where g is the metric field and S[g] is the action of GR.
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These three lines of research — covariant, canonical, and path integral — rep-
resented by equations (1), (2) and (3) respectively, still continue today. They have
often influenced one another and have at times partially merged, but they have
maintained a distinct flavor across more than half a century of research and are
still clearly recognizable.

The basic program of the three approaches was already clearly established at
the end of the fifties. The implementation of the initial programs has turned out to
be a rather formidable task, but was accomplished during the sixties, in particular
with the writing of the full set of Feynman rules in the covariant approach and the
Wheeler-DeWitt equation in the canonical approach. Each approach, however,
met serious stumbling blocks in the seventies: non-renormalizability in the covari-
ant approach, ill-defined equations in the canonical and path integral approach. In
the eighties, these stumbling blocks were overcome, in particular with the discov-
ery of string theory in the covariant direction, and of loop quantum gravity and
the (related) spinfoam formalism in the canonical and path integral directions.

The main lines of development are illustrated below.

Feynman rules and nonrenormalizability

The covariant formalism was developed during the sixties by Feynman [Feynman,
1963], DeWitt [DeWitt, 1964a; DeWitt, 1964b; DeWitt, 1965], Faddeev and Popov
[Faddeev and Popov, 1967]. The technical difficulties derive from the gauge in-
variance of the Einstein equations, and is solved with the introduction of “ghost”
particles, leading to the complete and consistent set of Feynman rules for pertur-
bative quantum GR [DeWitt, 1967b; DeWitt, 1967c; Faddeev and Popov, 1967].

But in the early seventies the works of t’Hooft, Veltman, and then Deser and
Van Nieuwenhuizen found indications that the theory does not work [’t Hooft,
1973; ’t Hooft and Veltman, 1974; Deser and van Nieuwenhuizen, 1974a; Deser
and van Nieuwenhuizen, 1974b], realizing Heisenberg’s early fears. The reason is
that the renormalization procedure, namely the technique used in QFT to remove
the infinities that appear when considering the effects of arbitrarily small (“ultra-
violet”) field fluctuations, fails in the case of gravity. The definitive rigorous proof
that the covariant quantization of general relativity fails because of nonrenormaliz-
able ultraviolet divergences was obtained only later, in the late eighties, by Goroff
and Sagnotti [Goroff and Sagnotti, 1985; Goroff and Sagnotti, 1986].

The interpretation of this failure is still controversial. There are two possibilities.
One possibility is that the mistake was to assume, to start with, the existence of a
background spacetime. The infinities come from short-distance fluctuations of the
quantum field. These exist only if spacetime is continuous down to arbitrarily small
scales. But the very fact that gravity is quantized questions the existence of such
arbitrarily small scales. If, instead, spacetime has a quantized granular short-scale
structure, the infinities might be just an artifact of the approximation taken in
equation (1) considering ηµν(x) (instead of the full gµν(x)) as the spacetime metric.
If so, the way out from the difficulty is to discard the background spacetime, and
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quantize the full gravitational field, as is done in the canonical or path integral
approaches.

The alternative possibility is that it is GR which is not the correct theory. GR
is strongly empirically supported, but only at large distances. At short distances,
the world might be described by a modification of GR, with better ultraviolet
behavior. There is a historical precedent: Fermi theory of weak interactions was
an empirically successful but non-renormalizable theory. In the case of Fermi
theory, the successful solution of the problem was to replace the theory with the
Glashow-Weinberg-Salam electroweak theory, which is renormalizable and corrects
Fermi theory at short scales.

Motivated by this analogy, the search for a short scale correction of GR, having
better finiteness properties, has spanned several decades. After numerous attempts
— some of which, like supergravity [Freedman et al., 1976], and high derivative
theories [Stelle, 1977] raised much hope, later disappointed — the search has lead
to string theory.

Wheeler DeWitt theory

During the fifties and sixties, Bergmann’s group and Dirac independently unrav-
eled the hamiltonian structure of full GR, a rather complicated task. This structure
was later clarified in the work of Arnowit Deser and Misner [Arnowitt et al., 1962],
using the metric qab(x) of a constant-time spacelike surface, Ashtekar [Ashtekar,
1986; Ashtekar, 1987], using a connection field analogous to a Yang Mills field,
and others.

In the early sixties, building on these results, Peres writes the Hamilton-Jacobi
equations of GR [Peres, 1962]

G2(qabqcd − 1
2
qacqbd)

δS(q)
δqac

δS(q)
δqbd

+ det q R = 0,(4)

were R its Ricci scalar curvature of the metric qab, and S(q) is the Hamilton-
Jacobi functional. In 1967, Bryce DeWitt and John Wheeler wrote the “Einstein-
Schrödinger equation” [DeWitt, 1967a] following the steps taken by Schrödinger
in deriving the Schrödinger equation from the Hamilton-Jacobi equation, namely
interpreting the Hamilton-Jacobi equation as the eikonal approximation of a wave
equation obtained replacing derivatives with derivative operators:(

(�G)2(qabqcd − 1
2
qacqbd)

δ

δqac

δ

δqbd
− det q R

)
Ψ(q) = 0.(5)

Today this is called the “Wheeler-DeWitt equation”. In principle, this equation
is expected to describe the full quantum dynamics of gravity. In practice, the
equation remained very ill-defined for a long time: until the late eighties, when
Ted Jacobson and Lee Smolin [Jacobson and Smolin, 1988] find some loop-like
solutions to this equation, reformulated in Ashtekar’s connection formalism, thus
opening the way to loop quantum gravity.
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Notice that the coordinate time variable t does not appear in the classical equa-
tion (4) nor in the quantum equation (5). This disappearance of the time variable
has raised an intense debate, and will be discussed below.

Misner-Hawking sum-over-geometries

In the seventies, Steven Hawking and his group [Hawking, 1979] revived and devel-
oped the Wheeler-Misner path integral (3) in the form of a “Euclidean” integral
over Riemannian (namely positive definite, as opposed to pseudo-Riemannian)
metrics

Z =
∫

Dg e−S[g].(6)

The hope was that the Euclidean functional integral would prove to be a better
calculational tool than the Wheeler-DeWitt equation. Hartle and Hawking [Hartle
and Hawking, 1983] introduced the notion of the “wave function of the universe”
and the “no-boundary” boundary condition for the Hawking integral, opening up a
new intuition on QG and quantum cosmology. Jim Hartle [Hartle, 1995] developed
the idea of a sum-over-histories formulation of GR into a fully fledged extension of
quantum mechanics to the general covariant setting. The idea was later developed
and formalized by Chris Isham [Isham, 1991].

But the Euclidean integral does not provide a way of computing genuine field
theoretical quantities in QG any better than the Wheeler-DeWitt equation, and
the atmosphere in QG in the middle of the eighties was rather gloomy.

The idea of a sum-over-histories definition of QG was revived again in the
mid nineties by the spinfoam formalism, which offer a discretized definition of
the integral (3) that appears to be better defined thanks to the same short-scale
spacetime discreteness implemented in loop quantum gravity.

Black hole thermodynamics

In 1974 Hawking [Hawking, 1974; Hawking, 1975] announced a theoretical deriva-
tion of black hole radiation. A (macroscopic) Schwarzschild black hole of mass M
emits thermal radiation at the temperature T = �/8πkGM (k is the Boltzmann
constant). The result came as a surprise, anticipated only by the observation
by Bekenstein, a year earlier, that entropy is naturally associated to a black hole
[Bekenstein, 1972; Bekenstein, 1973; Bekenstein, 1974] and by the Bardeen-Carter-
Hawking analysis of the analogy between laws of thermodynamics and dynamical
behavior of black holes [Bardeen et al., 1973]. In the light of Hawking’s result, the
Bekenstein entropy of a Schwarzschild black hole is

S =
kc3A

4�G
(7)

where A is the area of the black-hole surface. Hawking’s beautiful result is not
directly connected to quantum gravity — it is a skillful application of QFT in
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curved spacetime, namely QFT interacting with a fixed, non quantized, gravita-
tional field — but has a very strong impact on the field of QG. It opens a new
field of research — “black hole thermodynamics” — and it opens the quantum-
gravitational problems of understanding the statistical origin of the entropy (7).
This is a challenge for any quantum theory of gravity.

Two years later, an influential paper by Bill Unruh [1976] convincingly argued
that an observer that accelerates in the vacuum state of a conventional QFT
interacts with the quantum field as if this was in a thermal bath. This shed light
on black hole radiation, because an observer that remains at a fixed distance from
a black hole is in constant acceleration (in order not to freely fall), and therefore
black hole radiation can be interpreted simply as an Unruh effect. But at the same
time this result appears to suggest that there is a deep general relation, which we do
not yet understand, tying together gravity, thermodynamics and quantum theory.

In recent years, both the string and the loop approach to QG have been able to
derive equation (7) from first principles [Strominger and Vafa, 1996; Rovelli, 1996a;
Krasnov, 1997; Ashtekar et al., 1998]. This has been considered a major success
for both approaches. However, neither derivation is fully satisfactory. The string
derivation does not work for conventional black holes such as a Schwarzschild black
hole, but only for certain exotic black holes called extremal or nearly extremal;
the loop derivation gives a finite result but the result depends on a free parameter
of the theory (called the Immirzi parameter γ) that must be appropriately chosen
in order to give the factor 1/4 in (7).

Noncommutative geometry

A geometrical space M admits two alternative descriptions. One is as a set of
points x, the other is in terms of a commutative algebra A of functions on M .
In particular, a celebrated result by Gelfand shows that a (compact Hausdorff)
space M is determined by the abstract algebra A isomorphic to the algebra of the
continuous functions on M . This algebraic point of view leads to a generalization
of the notion of space, obtained by considering noncommutative algebras. In this
sense, a noncommutative algebra defines a “noncommutative space”.

Quantum theory is the discovery that the phase space of a dynamical system
(the set formed by its classical states) must be replaced by a noncommutative
space. In fact, the system’s observables — that represent the ways we can interact
with the system — form a commutative algebra of functions on the classical phase
space, which becomes a noncommutative algebra in QM.

In the case of physical space, A can be identified with an algebra of coor-
dinates, or with momentum space. If we interpret the elements of A as rep-
resenting physical measurements, it is natural, in the light of quantum theory,
to consider the possibility that the algebra be noncommutative. Accordingly,
the hypothesis has been made that the short-scale structure of physical space
might be described by a noncommutative geometry. This idea has been ex-
plored in a number of variants [Doplicher et al., 1994; Doplicher et al., 1995;
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Doplicher, 1996].
A connection with GR has appeared in the approach developed by Alain Connes

[Connes, 1994]. Connes has noticed that in the algebraic framework the notion
of distance is naturally encoded in the Dirac operator D. This is the derivative
operator that appears in Dirac’s spinor field equation for an electron. Let H be the
Hilbert space formed by the spinor fields on a given Riemannian (spin) manifold
M , D be the (curved) Dirac operator, and A an algebra of functions on M , seen
as (multiplicative) operators on H. From the triple (H, A,D), called a “spectral
triple”, we can reconstruct the Riemannian manifold. In particular, the distance
between two points x and y can be obtained as

d(x, y) = sup{f∈A,||[D,f ]||<1} |x(f)− y(f)|(8)

a beautiful and surprising algebraic definition of distance. A non-commutative
spacetime might be described by a spectral triple in which A is non-commutative.
Connes suggests that this algebra may be chosen on the basis of the symmetries of
the standard model, following the idea that the standard model might reveal the
short-scale structure of spacetime in the same manner in which Maxwell theory re-
vealed the structure of Minkowskian spacetime. The Connes-Chamseddine “spec-
tral action”, is simply the trace of the Dirac operator D, S = Tr[f(D2/(�G))],
where f is the characteristic function of the [0, 1] interval. Remarkably, this ac-
tion turns out to include the standard model action, including the poorly under-
stood Higgs sector, as well as the action of GR [Chamseddine and Connes, 1996;
Chamseddine and Connes, 1997]. The precise relation between the noncommu-
tativity of noncommutative geometry and of QM has not yet been extensively
investigated.

Other ideas and directions

A large number of other ideas and directions of investigation about QG have
been proposed. Some of these research directions are still active. Only a few are
mentioned below.

A project extensively explored is to define a quantum gravity in terms of the
continuum limit of a discrete lattice theory, a technique that works in the case of
quantum chromodynamics. Various attempts in this direction have failed in the
past, because the lattice theory considered turned out not to have a continuum
limit. One of the versions of this program, called dynamical triangulation is still
very active, although no proof of the existence of a continuum limit exists yet.

Raphael Sorkin and his group have long explored a discrete model in which
spacetime is replaced with a discrete set of points equipped with an ordering rep-
resenting the causal relations [Sorkin, 1983]. Remarkably, the model has predicted
a small but non-vanishing cosmological constant, of the correct order of magnitude,
a prediction recently confirmed.

Roger Penrose and his group have developed twistor theory as a reformulation of
metric geometry, with the hope of addressing the QG problem [Penrose, 1967]. So
far, the results of twistor theory are more of mathematical than physical relevance.
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Other research directions include Hartle’s quantum mechanics of spacetime
[Hartle, 1995], quantum Regge calculus [Williams and Tuckey, 1992; Williams,
1997], ’t Hooft’s deterministic approach [’t Hooft, 1996] and Finkelstein’s theory
[Finkelstein, 1997].

“Phenomenology” and Lorentz invariance

Until a few years ago, the research community was convinced that QG effects were
certainly far outside our current observational reach. This conviction has been
shaken by a number of recent suggestions that these effects might in fact be on the
verge of being observable. The suggestion has even been made that certain data
already observed, and which appear to be difficult to interpret with conventional
physics, might be affected by QG effects. These suggestions concern for instance
the cosmic propagation of high energy particles, fine details in the cosmological
density spectrum, and others.

The issue appears to be related to the problem whether QG breaks Lorentz
invariance. Small Lorentz noninvariant QG effects, if they exist, could be within
or near observational reach. Lorentz invariant effects, on the other hand, are
presumably far smaller, because Lorentz invariance forbids certain effects to hap-
pen. For instance, a small deviation from the Lorentz invariant dispersion relation
governing light propagation could accumulate over cosmological travel times and
yield observable frequency-dependent delays. In a Lorentz invariant context, light
travel-time is a meaningless notion.

Naively one might expect that the existence of a minimal length in QG neces-
sarily breaks Lorentz invariance. The argument is that the minimal length must
be Lorentz contracted under a change of inertial frame, and therefore could not
be minimal. But this argument is incorrect because it disregards quantum theory
[Rovelli and Speziale, 2003]. In quantum theory a discrete quantity appears as the
eigenvalue of an observable quantity, while a symmetry transformation transforms
states, and therefore means values, not eigenvalues.

To illustrate this phenomenon, recall that in classical mechanics the z compo-
nent Lz of the angular momentum transforms continuously under rotations. In
the quantum theory, let a system be in the eigenstate |ψ〉 = |�/2〉 of Lz. Seen
from a rotated reference frame, this system will appear to be in a superposition
|ψ〉 = α|�/2〉+ β| − �/2〉, where α and β vary continuously with the rotation an-
gle. Therefore the expectation value Lz = |α|2�/2−|β|2�/2 varies continuously in
the rotation, but the eigenvalues remain the same. In physical terms: we always
observe the discrete values Lz = ±�/2 in all reference systems — what changes
continuously in a rotation is the probability of seeing one or the other. In the same
fashon, in loop quantum gravity a (nonvanishing) minimal area is an eigenvalue.
A surface which is in an eigenstate of the area will appear in a superposition of
different area eigenstates if seeing from a boosted reference frame. The expecta-
tion value of the area of a surface can be smaller than the minimal area, but a
(nonvanishing) measurement outcome cannot.
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2.2 The main current tentative theories

The two currently most developed and most studied quantum theories of gravity
are string theory and loop quantum gravity.

Strings

The major reason for the interest in string theory is that it is a fundamental theory
of the world, including the gravitational field, which is likely to be free of ultraviolet
divergences, and which encodes in a natural and strictly unified structure all the
diverse ingredients we find in the world.

The starting point of the theory is the hypothesis that elementary objects are
not point-like particles but rather strings, namely one-dimensional objects. The
theory was initially studied as a tentative theory of the strong interactions, where
it turned out to be incorrect. Quantum string theory is only consistent if spacetime
has a certain dimension, called the critical dimension, which is 26 for the bosonic
string and 10 for the supersymmetric string which includes fermions. The problem
of reconciling the critical dimension with the fact that our world appears to be
four dimensional is still open.

In 1984, Green and Schwarz introduced the idea that string theory might be a
unified theory of all interactions, including gravity [Green and Schwarz, 1984]. In
fact, one of the vibration modes of the proposed string has spin two, and can be
identified with the graviton. Furthermore, a necessary (in general not sufficient)
condition for string theory to be well-defined is that the background spacetime
satisfies an equation that reduces to the Einstein equation in the large distance
limit.

Consistency restricts the string models to a few alternatives. A supersymmet-
ric model defined on a 10-dimensional flat spacetime using a large gauge group,
appears to include all the ingredients of our world: the gauge group includes a
subgroup which is the gauge group of the particle physics standard model, and
the lowest energy vibration modes of the string include fermions, gauge bosons,
and the graviton. Although no complete proof is available, the theory appears to
have no ultraviolet divergences.

The idea is that six of the ten dimensions of spacetime may be invisible to us,
because they are wrapped (“compactified”) into a very small space (or because
we are constrained to live on a four-dimensional surface). The effective physical
theory in the four visible dimensions depends on the way the six extra dimensions
are compactified. This can happen in a great number of different manners, giving
rise to a huge number of effective four-dimensional theories. For the moment, no
selection principle among this large number of possibilities has been found. Some
of the resulting low energy models appear to have a strong resemblance to the
standard model, but so far none seems to give precisely the physics we observe at
low energy.

String theory is defined in terms of a perturbation expansion on a 10 dimensional
fixed spacetime background. In the mid nineties, several nonperturbative aspects
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of string theory began to be investigated. Higher dimensional excitations, called
“branes” (from “membrane”) [Polchinski, 1995] appear to be needed in the the-
ory for consistency, besides the strings themselves. (It has been suggested that the
four-dimensional surface on which we live could be a four-dimensional brane.) The
different string models appear to be related to one another (and to 11-dimensional
supergravity) via simple transformations called “dualities”, suggesting that all
the different string models are actually different limits of a single unknown fun-
damental theory, tentatively-called “M-theory”. The actual construction of this
hypothetical fundamental theory — expected to be background independent —
is still missing, and so far string theory exists only in the form of a number of
(loosly) related models defined in terms of expansions over assigned background
spacetimes.

In 1998, a certain conformal field theory was shown to include a sector that
appears to be related to a supergravity theory on the product of Anti-deSitter
spacetime and spheres. This led to the conjecture that the compactifications of
string theory on an Anti-deSitter spacetimes is “dual” to a field theory on the
spacetime boundary. In turn, this led to a new proposal for defining M-theory
itself in term of a boundary theory: the idea is to reach background independence
for M-theory using background dependent methods for the boundary theory.

The difficulties of the theory are many. No selection mechanism for the com-
pactification is known — this is the problem of the selection of the “vacuum”; since
each compactification gives different physical predictions, and there are hundreds
of thousands of possible compactifications, string theory is effectively a collection
of a huge number of different theories, each with different predictions and each with
different physical parameters. As a result, the theory is incapable of computing the
values of the standard model parameters and almost completely nonpredictive, in
the sense that it can be compatible with almost any future experimental outcome.
According to some critics, this lack of predictivity undermines the very nature of
string theory as a scientific theory.

Even if we are willing to choose a compactification ad hoc, no compactifica-
tion giving precisely the standard model in the low-energy limit is known. The
theory requires supersymmetry, and the existence of observable supersymmetric
particles has repeatedly been claimed as the distinctive prediction of the theory;
but, in spite of several preliminary announcements, supersymmetric particles have
not been found in experimental particle physics. Similarly, the possibility of de-
tecting effects of the invisible dimensions has been considered, but experiments
have given negative results. The theory requires a huge baggage of new physics
(extra dimensions, an infinite number of fields with arbitrary masses and spins,
supersymmetric particles . . . ) but so far none of this appears to be present, or
have observable consequences, in the real world.
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Loops

The main reasons for interest in loop quantum gravity are: that its physical as-
sumptions are only QM and GR, namely well-tested theories; the fact that the
theory is background independent; and that it is a well developed attempt to
incorporate the general relativistic notions of space and time into QFT. The the-
ory makes no claim of being a final “Theory Of Everything”. It is ultraviolet
finite, without requiring high-energy modifications of GR, supersymmetry, extra
dimensions, or other unobserved physics.

Loop quantum gravity was introduced in 1988. The theory is the result of the
merging of two lines of research, which turn out to solve each others difficulties
[Rovelli and Smolin, 1988; Rovelli and Smolin, 1990].

The first of these was the Wheeler-deWitt theory. As in the Wheeler-deWitt
approach, loop quantum gravity is a straightforward quantization of GR, with its
conventional matter couplings, and is based on no specific physical assumption
other than GR and QM. Following the basic rules of QM, the quantum states of
loop quantum gravity are obtained from a representation of an algebra of field
variables of GR; their physical interpretation is obtained by diagonalizing self-
adjoint operators that represent physical quantities. The difference with respect
to the old Wheeler-DeWitt theory is in the choice of an algebra of loop-variables
as basic variables for the quantization. Thanks to this, the ill-defined Wheeler-
DeWitt theory becomes a well-defined formalism where finite physical quantities
can be computed.

The second input was the idea that gauge theories are naturally described in
terms of loop-like excitations. This idea can be traced back to the very beginning of
field theory, an intuition of Faraday’s. Faraday understood electric and magnetic
phenomena in terms of lines, the “Faraday lines”, that fill up space. In the presence
of charges, the Faraday lines can start and end on the charges; in the absence
of charges, they close, forming “loops”. Maxwell translated Faraday’s intuition
into mathematical physics, introducing the electric and magnetic field, which are
vector fields everywhere tangent to the Faraday lines, thus opening the way to
modern physics, which is entirely based on the notion of field. The idea that
gauge field theories are better understood in terms of loops has been defended by
many scientists, including Polyakov, Mandelstam, Wilson, and others. A quantum
excitation of a single Faraday line is called a “loop state”.

A formulation of a QFT in terms of loop states is viable and well understood
in the context of the lattice approximation; but it faces difficulties when defined
over a continuum spacetime background. However, these difficulties disappear
in a background independent context. The reason is that in the presence of a
background, the loop states are localized on the background spacetime: there is a
distinct state for each position of the loop in space. In the case of gravity, instead,
there is no background spacetime. The loop states themselves are the quantum
excitations of space. Therefore loop states are not immersed in space: they “weave-
up” physical space themselves, in the same manner in which an ensemble of threads
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can weave the fabric of a T-shirt.
More precisely, the loop states of QG have self-intersection points called “nodes”.

A node represents an elementary quantum excitation of space, or a single atom
of space. Two nodes directly connected along a loop represent adjacent atoms
of space. Nodes and links connecting nodes form a graph and carry quantum
numbers. These quantum numbers determine the quantized volume of the atoms
of space and the quantized area of the elementary surfaces separating adjacent
nodes. A graph with these quantum numbers is called a “spin-network”, because
the quantum numbers on the links turn out to be half-integers, or spins.

A spin network state does not have a position. Only combinatorial relations
defining the graph are significant, not its shape or its position in space. In fact, a
spin network state is not in space: it is space. Hence, in spite of its conservative
basic assumptions (QM and GR), loop quantum gravity leads to a radically novel
picture of space.

The possible values that the volume of a physical region or the area of a physical
surface can take are determined by the spectra of the corresponding operators,
following standard QM rules. These turn out to be discrete, giving the Planck-
scale granular structure of space. These spectra have been computed and represent
quantitative physical predictions of loop quantum gravity: a Planck-scale precision
measurement of any area or volume is predicted to give as a result only the values
in these spectra. For instance, the (main sequence of the) spectrum of the area is
given by the expression [Rovelli and Smolin, 1995]

A = 8πγ�G
∑
i

√
ji(ji + 1),(9)

where ji is an n-tuplet of half-integers (corresponding to the quantum numbers of
the links of the spin network state crossing the surface whose area is measured).
γ is the Immirzi parameter, mentioned in Section 2.1.

The dynamics is determined by a Wheeler-deWitt equation on the space of spin
network states. Its ultraviolet finiteness is a consequence of the granular structure
of space. Different finite and well-defined versions of this equation have been
constructed. At present it is not yet clear which of these, if any, is the physically
correct one.

Applications of the theory include a derivation of the Bekenstein black hole
entropy mentioned in Section 2.1, applications to the description of the classical
singularities, such as the ones at the center of bloack holes, and applications to
cosmology. The theory appears to be capable of controlling the black hole singu-
larities and the initial Big Bang singularity. Indirect empirical evidence supporting
predictions of the theory is actively searched in the astrophysical and cosmological
domains.

The main difficulties of loop quantum gravity lie in recovering low energy phe-
nomenology. Quantum states corresponding to the Minkowski vacuum and its
excitation have not yet been constructed, and particle scattering amplitudes have
not been computed. This deficiency weakens the strength of the finiteness claim,
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and bears on one of the key requirements on a quantum theory of gravity: full
recovery of low energy physics. The dynamics is still poorly understood: the
Wheeler-deWitt equation exists in more than one version. The lack of unitary
evolution in time and the overall radical conceptual novelty of the results of the
theory, where background spacetime is discarted altogether, are questioned by
some.

The loop-string debate

A theory begins to be credible only when its original predictions are reasonably
unique and are confirmed by new experiments. Neither loop quantum gravity nor
string theory — nor any other current tentative theory of QG — are yet credible
in this sense. Furthermore, in spite of much effort, both theories are still badly
incomplete and far from being clearly understood. The problem of QG must
therefore be considered still fully open.

Nevertheless, in both directions the research has progressed considerably in
recent years: many problems that appeared too hard ten years ago have now been
solved, and incomplete but possible solutions of the QG puzzle are now at hand.

However, the two theories differ profoundly in their hypotheses, achievements,
specific results, and in the conceptual frame they propose. The issues they raise
concern the foundations of the physical picture of the world, and the debate be-
tween the two approaches involves conceptual, methodological and philosophical
issues.

The lesson of string theory appears to be that in order to remove the difficulties
of the perturbative quantization of GR we have to couple the gravitational field
to matter. Finiteness is achieved by replacing the pointlike Feynman vertices of
conventional QFT with non-point-like interactions between strings, which are ex-
tended objects. The theory preserves the basic conceptual structure of QFT (back-
ground spacetime, unitarity, predictions in terms of an asymptotic S-matrix. . . ) at
the prices of renouncing a full implementation of the general covariance that char-
acterizes GR, of huge extra baggage (extra dimensions, supersymmetry, infinite
fields. . . ) and of a dramatic decrease in predictiveness.

Loop quantum gravity, on the other hand, is rooted in the general covariance
that characterizes GR. Ultraviolet finiteness is a consequence of the granular struc-
ture of space, which, in turn, is a standard quantum mechanical effect appearing
when we regard GR as a theory of spacetime itself, and not as a theory of small
perturbations around a background spacetime. The interest of the loop theory,
therefore, is that it is a determined effort towards a genuine merger of QFT with the
world view that we have discovered with GR. Furthermore, it leads to well-defined
physical predictions which are in principle falsifiable. However, even disregarding
the incompleteness of the theory, the conceptual price for this result is heavy: the
theory gives up unitarity, time evolution, Poincaré invariance at the fundamental
level, and the very notion that physical objects are localized in space and evolve
in time.
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Whether these radical conceptual steps are viable, and, if viable, whether they
are justified, is a hotly debated issue.

3 METHODOLOGICAL ISSUES

3.1 Justification of the quantum gravity search

Absence of empirical data

The first obvious question about the search towards QG is whether the search
is legitimate at all, given the total absence of empirical data directly about the
regimes QG is concerned with. We have no direct empirical guidance in searching
for QG — as, say, atomic spectra guided the discovery of quantum theory.

Some critics have argued that the QG search is futile, because anything might
happen in QG regimes, at scales far removed from our experience. Maybe the
search is impossible because the space of possible theories is too large.

At present, this worry is probably unjustified. If this were the problem, we would
have plenty of complete, predictive and coherent theories of QG, and the problem
would be the choice among them. Instead, the situation is the opposite: we haven’t
any. The fact is that we do have plenty of information about QG, because we have
QM and we have GR. Consistency with QM and GR, plus internal consistency,
form an extremely strict set of constraints. The problem currently debated is to
find at least one complete and consistent theory of QG. If more will be found, we
will have of course to resort to experiments to select the physically correct one.

Should gravity be quantized?

The possibility that quantum gravitational effects do not exist and gravity is in-
trinsically classical (non quantum) has been often suggested. The justification for
this suggestion is that gravity can be seen as an interaction profoundly different
from the others, since it admits a description in terms of spacetime geometry. This
suggestion has also generated a research program, aiming at testing the consistency
of a theory in which classical gravity interacts with QFT.

In its simpler form, this suggestion has today been largely abandoned. The
reason is that, as was noticed in the early days of QM, an interaction between a
classical and a quantum variable is always inconsistent. If Heisenberg uncertainty
relations are violated for one dynamical variable, they are violated for all other
variables as well. The idea of circumventing gravity quantization, however, has
reappeared under various forms.

One suggestion is that the gravitational field may not represent true microscopic
degrees of freedom, but only a collective, or “hydrodynamical”, large scale descrip-
tion of these. This hypothesis is supported by phenomena such as the relations
between gravity and thermodynamics revealed by the Unruh effect. Ted Jacobson
[Jacobson, 1995] has even been able to derive the Einstein equations from (7) and
standard thermodynamical relations, providing evidence that could be interpreted
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as supporting this idea. However, even if the gravitational field is just a collective
variable, this does not mean that it will not display quantum effects. QM does
not govern just elementary degrees of freedom; it governs all degrees of freedom,
including collective ones. Thus, this possibility, even if realized, would not refute
the need of a quantum theory of gravity.

Another suggestion is that gravity may be an emergent phenomenon induced by
the other quantum fields. This idea is suggested by the fact that the renormaliza-
tion process for a QFT on a curved spacetime generates terms in the action which
are proportional to polynomials in the Riemann curvature, and the lowest order
term is precisely the action of GR. The difficulty about this suggestion is that it
is ambiguous as regards the dynamical status of the metric field. The variational
principle states that dynamics is determined by the variation of the action with
respect to the dynamical variables only, not with respect to anything appearing in
it. If the metric field is assumed to be a dynamical variable, then it is a dynamical
field like any other, and the fact that the dependence of the action with respect
to it is modified by the renormalization of its interaction with other fields may
change the details of its dynamics, but not the fact that it is a quantum field. If,
on the other hand, the metric is not a dynamical field, then the action must not
be varied with respect to it (as it is not varied with respect to it in the special
relativistic context), and therefore the Einstein equations are not generated by
the new terms in the action. In the first case the gravitational field needs to be
quantized; while the second case is in contradiction with the empirical fact that
the classical Einstein equations are satisfied

3.2 Research attitudes

Different attitudes can be distinguished in the physics community with respect to
the methodology used for searching for a QG theory.

(a) The “pessimistic” attitude, already mentioned above, is that of those who
worry that too many possibilities are open, anything might happen between here
and the Planck scale, and the search for a quantum theory of gravity is therefore
futile.

As mentioned, this worry is unfounded, because we do not have too many
complete QG theories: we haven’t any.

(b) The view is often expressed that some totally new, radical and wild hy-
pothesis is needed for QG. This “wild” attitude is based on the observation that
great scientists had the courage to break with old and respected assumptions and
to explore some novel “strange” hypotheses. From this observation, the “wild”
scientist concludes that any strange hypothesis deserves to be investigated, even
if it violates well established facts.

On historical grounds, this expectation is probably ill-founded. Wild ideas
pulled out of the air have rarely made science advance. The radical hypotheses
that physics has successfully adopted have always been reluctantly adopted be-
cause they were forced by new empirical data — Kepler’s ellipses, Bohr’s quantiza-
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tion, Planck’s energy quanta — or by stringent theoretical deductions — Maxwell
displacement current, Einstein’s relativity. Generally, arbitrary novel hypotheses
have led nowhere. This consideration leads to the next attitude in (c).

(c) Part of the research in QG is motivated by the hope that the knowledge of
the world coded into GR and QM can be a good guide for finding a theory capable
of describing physical regimes that we have not yet explored.

A motivation for this hope is that today we are precisely in one of the typical
situations in which theoretical physics has worked at its best in the past. Many of
the most striking advances in theoretical physics have derived from the effort to
find a common theoretical framework for two basic and apparently conflicting dis-
coveries. For instance, the aim of combining special relativity and non-relativistic
quantum theory led to the theoretical discovery of antiparticles; combining special
relativity with Newtonian gravity led to general relativity; combining the Keple-
rian orbits with Galilean physics led to Newton’s mechanics; combining Maxwell
theory with Galilean relativity led to special relativity, and so on. In all these
cases, major advances have been obtained by “taking seriously” apparently con-
flicting theories, and exploring the implications of holding true the essential tenets
of both theories. Today we are in one of these characteristic situations. We have
learned two new very general “facts” about nature, expressed by QM and GR: we
have “just” to figure out what they imply, taken together.

(d) A different point of view on the problem is held by those who accept that
QM has been a conceptual revolution, but do not view GR in the same way.
According to this point of view, the discovery of GR was “just” the writing of one
more classical field theory. This field theory is likely to be only an approximation
to a theory we do not yet know, and its teachings should not be overestimated.
According to this opinion, GR should not be taken too seriously as a guidance for
theoretical developments.

A possible objection to this point of view is that it derives from the confusion
between (i) the specific form of the GR action and the GR field equations and
(ii) the modification of the notions of space and time engendered by GR. The GR
action could be a low energy approximation of something else. But the modifica-
tion of the notions of space and time has to do with the diffeomorphism invariance
and the background independence of the theory, not with its specific form. The
challenge of QG is to incorporate this novelty into QFT, not the specific form of
the GR action.

(e) A common attitude is the “pragmatic” attitude of the physicist who prefers
to disregard or postpone these foundational issues and, instead, develop and adjust
current theories. This style of research was effective during the sixties in the search
for the particle physics standard model, where a long process of adjustment of
existing QFT’s led to a very effective theory.

It is questionable whether this attitude could be effective in a situation of foun-
dational confusion like the present one. During the sixties empirical data were
flowing in daily, to keep research on track. Today no new data are available. The
“pragmatic” attitude may mislead the research: in the extreme case, the “prag-
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matic” physicist focuses only on the development of the theory at hand, without
caring if the world predicted by the theory resembles less and less the world we see.
Sometimes he is even excited that the theory looks so different from the world,
thinking that this is evidence of how far ahead he has advanced in knowledge.
But it is more likely that the difference between the theory and the world is only
evidence of how much he is lost. Unfortunately similar excesses plague theoretical
research today.

The cumulative aspect of scientific knowledge and influence of the philosophy of
science

The “pessimistic”, “wild” and “pragmatic” attitudes illustrated above may have
been influenced by a philosophy of science that under-emphasizes the cumulative
aspect of scientific knowledge, and emphasizes, instead the “incommensurability”
between an old theory and a new theory that historically supersedes it. More or
less informed awarness of this long standing debate in philosophy of science has
indeed affected the reserach attitude of many theoreticians.

On the other hand, attitude (c) described above is based on the expectation
that the central physical tenets of QM and GR represent our best guide for access-
ing the unexplored territories of the quantum-gravitational regime. In a difficult
research situation where cataclysmatic evolution is expected anyway in the conse-
quences of the theory (for instance, the change of the nature of space), conservative
assumptions based on the confidence on the cumulative aspect of knowledge can
play an important role.

This faith in a cumulative aspect of scientific knowledge is based on the idea
that there are discoveries that are “forever”. For instance, the Earth is not the
center of the universe, simultaneity is relative, absolute velocity is meaningless,
and we do not get rain by dancing.

The fact that major aspects of a theory can have value outside the domain
for which the theory was discovered may be at the root of much of the historical
effectiveness of theoretical physics, and in particular of spectacular predictions
such as Maxwell’s radio waves, Dirac’s antimatter or GR’s black holes. This can
perhaps be understood as just scientific induction: as a consequence of the fact
that Nature has regularities. This is not the place to enter this discussion; but
it is relevant to remark that the existence of these regularities is held by several
researchers in QG as a source of confidence — althought, of course, not certainty
— that the basic facts about the world found with QM and GR will be confirmed,
not violated, in the quantum gravitational regimes that we have not yet empirically
probed.

4 THE NATURE OF SPACE AND TIME

GR has modified the way we understand space and time. Combining GR with
QM requires a further modification of these notions. It is important, however, to
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clearly distinguish the modifications of the notions of space and time required by
QG from the ones already implied by GR alone. These are briefly summarized in
Section 4.1 below. Section 4.2 and 4.3 then discuss the notions of space and time
in QG.

4.1 The physical meaning of GR

GR is the discovery that spacetime and the gravitational field are the same entity.
What we call “spacetime” is itself a physical object, in many respects similar to
the electromagnetic field. We can say that GR is the discovery that there is no
spacetime at all. What Newton called “space”, and Minkowski called “spacetime”,
is nothing but a dynamical object — the gravitational field — in a regime in which
we neglect its dynamics.

In newtonian and special relativistic physics, if we take away the dynamical
entities — particles and fields — what remains is space and time. In general
relativistic physics, if we take away the dynamical entities, nothing remains. The
space and time of Newton and Minkowski are reinterpreted as a configuration of
one of the fields, the gravitational field. This implies that physical entities —
particles and fields — are not all immersed in space, and moving in time. They
do not live on spacetime. They live, so to speak, on one another.

In classical GR it is customary to maintain the expressions “space” and “time”
to indicate aspects of the gravitational field. But in the quantum theory, where
the field can have quantized “granular” properties and its dynamics is quantized
and therefore only probabilistic, most of the “spatial” and “temporal” features of
the gravitational field are probably lost.

This absence of the familiar spacetime “stage” is called the background indepen-
dence of the classical theory. Technically, background independence is realized by
the gauge invariance of the GR action under (active) diffeomorphism. A diffeomor-
phism is a transformation that smoothly drags all dynamical fields and particles
on the four-dimensional coordinate manifold. In turn, gauge invariance under
diffeomorphism (or diffeomorphism invariance) is the consequence of the combi-
nation of two properties of the action: its invariance under arbitrary changes of
coordinates (or general covariance) and the fact that there is no non-dynamical
“background” field. Thus: background independence = diffeomorphism invariance
= (general covariance+absence of non-dynamical background fields). These no-
tions are illustrated in more detail below.

Diffeomorphism invariance

Pre-general-relativistic field theories are formulated in terms of a spacetime mani-
fold M , and a set of fields ϕ1, . . . , ϕn on M . The manifold M is a (pseudo-)metric
space whose points P ∈M represent the physical points of spacetime. Spacetime
points are labelled by coordinates x = (x1, x2, x3, x0) that represent the read-
ing of measuring devices: clocks and distance-measuring devices (“rods”). More
precisely, M is equipped with a (pseudo-)distance function d(x, y) interpreted as
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the 4-interval between the two points x and y : a negative d2(x, y) gives the time
measured by a clock in inertial motion between x and y ; a positive d2(x, y) gives
the proper length of a rod with the ends on x and y, in a state of inertial motion
with respect to which x and y are simultaneous according to Einstein’s definition
of simultaneity; a null d(x, y) indicates that light travels in vacuum from x to
y. Notice that pre-general-relativistic physics deals with (relations between) two
distinct types of measurements: (i) spacetime measurements measuring spacetime
observables, performed by means of clocks and distance-measuring devices, and (ii)
field measurements, measuring field observables, namely the values (or functions)
of the fields ϕ1, . . . , ϕn.

This same interpretation framework is used in special-relativistic QFT. The only
difference is that field observables can be quantized. The number of excited quanta
has a particle interpretation. In a typical high energy scattering experiment, for
instance, the field observable (ii) is the number of particles revealed by a particle
detector (which is a field measuring device); while the spacetime observable (i) is
the momentum of the particle, determined by measuring the spacetime position
of the detector.

The theory does not predict the value of field observables ϕ alone, or spacetime
observables x alone, but only combinations of the two, such as the value ϕ(x) of a
field ϕ at a certain spacetime location x. Spacetime and field observables are both
quantities that have a direct operational interpretation; they can be called “partial
observables”. On the other hand, the quantities that can be predicted by the
theory, such as ϕ(x), for a given position x, can be called “complete observables”.

The interpretation of a general relativistic field theory is different. In such a
theory there is a field g representing the gravitational field and possibly other
fields, representing other dynamical variables. These fields are defined on a differ-
entiable manifold M , coordinatized by coordinates x. The formal structure of a
general relativistic field theory is therefore similar to the structure of a pre-general-
relativistic field theory. But two major differences force a different interpretation.
First, the manifold M on which the fields are defined is not a metric manifold. The
gravitational field g equips M with a metric structure dg(x, y).1 Therefore clocks
and distance-measuring-devices measure properties of the gravitational field g. It
follows that the distinction between spacetime observables of the kind (i) and field
observables of the kind (ii) is blurred. This blurring of the distinction between the
two kind of partial observables is a crucial conceptual novelty of GR.

Second, the field equations are invariant under a transformation of the fields
called active diffeomorphisms. An active diffeomorphism g → g̃ is determined by
(but should not be confused with) a smooth invertible function f : M →M . Under
a diffeomorphism transformation, the field g and all other fields are “dragged
along” M by f . For instance, the transformed field g̃ defines a new distance

1The length of a curve γµ(s) in M is dg(γ) =
R

ds
q

gµν(γ(s))
dγµ(s)
ds

dγν(s)
ds

and dg(x, y) is a

local extremum of dg(γ) over the curves that join x and y.
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function dg̃(x, y) which is related to the one defined by g by

dg̃(f(x), f(y)) = dg(x, y).(10)

In words: the distance between the two points f(x) and f(y), defined by the field
g̃ is the same as the distance between the two points x and y defined by g.

The importance of this invariance of the field equations is due to the follow-
ing. An active diffeomorphism may modify a solution of the GR equations in the
future of a certain time surface t0, without modifying it at all in the past of t0.
Therefore two distinct solutions of the equations of motion can be equal in the
past and differ in the future. This fact gives us a choice: either (i) we interpret
the theory as an indeterministic theory, where the future is not determined by
the past. Or (ii) we interpret active diffeomorphisms as a “gauge invariance”:
that is, we postulate that the complete observables of the theory are only given
by quantities that are invariant under this transformation. The alternative (i) is
not viable, because experience shows that classical gravitational physics is com-
pletely deterministic. We are therefore forced to alternative (ii), which has heavy
interpretative consequences.

To understand these consequences, let P be a point of M . Let ϕ(P ) be any
property of the fields at P . For instance, ϕ(P ) may represent a value of the electro-
magnetic field at P or the spacetime scalar curvature at P , or something similar.
None of these properties is invariant under active diffeomorphism. Therefore, it
follows from the argument above that none of these properties can be predicted
by the theory. Therefore the theory does not determine the physics at spacetime
points P ∈M .

At first this conclusion might sound bewildering: if physics does not predict
what happens at spacetime points, what can it predict? In fact, historically,
Einstein himself got at first confused and frustrated by this observation, to the
point of stepping back from the diffeomorphism invariance he previously expected
GR to have [Norton, 1984]. Einstein’s version of the argument given above is called
the “hole argument” (because Einstein considered a diffeomorphism affecting only
a finite region of spacetime, empty of matter, or a “hole”), and was presented
in [Einstein and Grossmann, 1914]. On this argument, and the discussion it has
raised, see for instance [Earman, 1987; Earman, 1989; Belot, 1998; Earman, 2001;
Pauri and Vallisneri, 2002] and references therein. Later however, Einstein changed
his mind and accepted both diffeomorphism invariance and the conclusion (ii),
realizing that this conclusion fully implemented his intuition on the very central
physical meaning of the general relativistic conceptual revolution.

The way out of the puzzle is to understand that in the general-relativistic con-
text the points of the manifold do not represent physical entities with an existence
independent from the fields. Asking what are the properties of the fields at P
is meaningless. Spacetime locations can only be determined by the fields them-
selves, or, by any other dynamical object we are considering. For instance, if the
theory we consider includes two particles and the trajectories of the two particles
happen to meet once, then the meeting of the particles determines a spacetime
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point. The theory is able to predict the value of the fields and any other physi-
cal properties at the spacetime point determined by the meeting of the particles.
However, this point cannot be naively identified as a point of M , because the same
physical situation can be represented by the set of dynamical variables obtained
by an active diffeomorphism, where the particles meet now at a different point,
say Q of M . The value of the fields at the point where the particle meet is in-
variant under such a transformation, because the particles’ trajectories and the
fields are dragged along M together. Einstein called this way of determining lo-
cation in terms of the dynamical objects (fields and particles) of the theory itself,
“spacetime coincidences”.

Thus, a general relativistic theory does not deal with values of dynamical quan-
tities at given spacetime points: it deals with values of dynamical quantities at
“where”’s and “when”’s determined by other dynamical quantities.

Strictly speaking also in the pre-general-relativistic context physics deals with
values of dynamical quantities at “where”’s and “when”’s determined by other
physical quantities, because the times and distances used to determine location
are physical quantities. But in the pre-general-relativistic context we can make
a strict separation between: (i) “spacetime”, viewed as a background entity, and
measured by clocks and rods that one considered non-dynamical, and (ii) dynami-
cal variables. In the general-relativistic context, on the other hand, this separation
is lost, time and distance measurements are reinterpreted as measurements of the
gravitational field, on the same footing as other field measurements, and there is no
distinction between non-dynamical background and dynamical physical variables.

Physical meaning of the coordinates

A consequence of the above is that in the general-relativistic context the physical
interpretation of the coordinates x is different from their interpretation in the non-
general-relativistic context. In the general-relativistic context the coordinates x
have no interpretation at all: observable quantities in GR correspond to quantities
of the theory that are independent of the coordinates x. Recall that the non-
general-relativistic coordinates represent the reading of clocks and rods: in the
general-relativistic context, the reading of clocks and rods is represented by the
non-local function dg(x, y) of the gravitational field. The fact that the non-general-
relativistic coordinates x and the general-relativistic coordinates x are denoted in
the same manner is only an unfortunate historical accident.

To illustrate in which sense observable quantities are independent of the coor-
dinates x, consider a typical general-relativistic measurement. A standard appli-
cation of GR is in precision measurements and precision modeling of solar system
dynamics. In this context, partial observable quantities are the “instantaneous”
distances dp between the Earth and the different planets, defined as the proper
time elapsed on Earth (measured by a clock at rest on Earth) while a radar sig-
nal goes from Earth to a planet p and back. Fixing an arbitrary initial event
on Earth, one additional partial observable can be obtained as the proper time
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τ from this event along the Earth trajectory. Complete observables are then the
values dp(τ) of the planet distances, at different local proper times τ . A general
relativistic model of the solar system, with appropriately chosen initial data, can
predict dp(τ) for all p’s and all τ ’s, and these predictions can be compared with
experience. In building up this model, we choose an arbitrary coordinatization x
of the solar system region, and express the gravitational field, the electromagnetic
field, and the planets’ positions in this coordinate system. The predicted quanti-
ties dp(τ) are complicated non-local functions of the fields and planets’ positions,
which are independent of the coordinates x chosen. To be sure, the observable τ is
introduced here only for convenience. We can equivalently express the predictions
of the theory simply as a set of relations f(dp) = 0 that must hold between the
partial observables dp.

General covariance and Kretschmann objection

The invariance of GR under active diffeomorphisms follows from two properties
of the GR field equations. First, they are generally covariant. That is, they
maintain the same form under any smooth change of coordinates x→ x′(x) on M .
This means that there is no coordinate systems on M which is preferred a priori.
Second, there are no fixed non-dynamical fields in the field equations.

The first property, namely general covariance, is the property that Einstein most
insisted upon, and that guided him in finding GR. The requirement of general
covariance still plays a major role in selecting physical theories compatible with
what we have understood about the world as a result of the general relativistic
revolution.

However, general covariance alone is not excessively significative. Indeed, any
field equation can be written in an arbitrary coordinate system. This fact was
pointed out by Kretschmann shortly after Einstein wrote GR [Kretschmann, 1917],
and has raised much discussion. As an example, consider the field equation

(∂2
T − ∂2

X − ∂2
Y − ∂2

Z) ϕ(X,Y,Z, T ) = 0.(11)

If we introduce arbitrary coordinates x (with components xµ) as functions xµ =
xµ(X,Y,Z, T ) (with inverse X(x), Y (x), Z(x), T (x)), the wave equation (11) be-
comes the generally covariant equation

�gϕ(x) ≡ ∂µ
√

det−g(x) gµν(x) ∂νϕ(x) = 0,(12)

In this equation, the unknown is ϕ(x), while gµν(x) and det g(x) are the inverse
and the determinant of the fixed field

gµν(x) =
∂X(x)
∂xµ

∂X(x)
∂xν

+
∂Y (x)
∂xµ

∂Y (x)
∂xν

+
∂Z(x)
∂xµ

∂Z(x)
∂xν

− ∂T (x)
∂xµ

∂T (x)
∂xν

.(13)

The field theory for the scalar field ϕ defined by equation (12) is not diffeomor-
phism invariant, because in distinct coordinate systems the field equations for
the unknown ϕ are different, in the sense that they are determined by different
functions gµν(x).
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Equation (12), on the other hand, can become one of the equations of a diffeo-
morphism invariant theory in which gµν(x) is also one of the unknown, namely a
dynamical field. Therefore whether or not a theory is diffeomorphism invariant is
not determined just by the aspect of an equation, but by the full specification of
the dynamical quantities and their equations of motion.

Eistein’s insistence on general covariance alone, however, should probably not
be interpreted as a lack of clarity on his part, but only as his effort to emphasize
the importance of a step that was necessary, not sufficient, to write a succeful
relativistic field theory.

In addition, like all formal properties of physical theories, even full diffeomor-
phism invariance, should probably not be interpreted as a rigid selection principle,
capable of selecting physical theories just by itself. With sufficient acrobatics, any
theory can perhaps be re-expressed in a diffeomorphism invariant language. The
same is true for any other formal invariance property. For instance, any theory can
be rewritten as a rotational invariant theory, or with any other desired invariance
property, by simply adding variables.

As an example, equation (11) can be viewed as physically equivalent to the
diffeomorphism invariant system

�gϕ(x) = 0, Riem[g] = 0,(14)

where Riem[g] is Riemann’s curvature and the unknowns are now the two fields ϕ
and g. But there are prices to pay. First, this theory has a “fake” dynamical field,
since g is constrained to a single solution up to gauges, by the second equation of
the system. Having no physical degrees of freedom, g is physically a fixed back-
ground field, in spite of the trick of declaring it a variable and then constraining
the variable to a single solution. Second, we can insist on a lagrangian formulation
of the theory (14) [Sorkin, 2002], but to do this we must introduce an additional
field, and it can then be argued that the resulting theory, having an additional
field is different from (12) [Earman, 1989].

Diffeomorphism invariance is the key property of the mathematical language
used to express the key conceptual shift introduced with GR: the world is not
formed by a fixed non-dynamical spacetime structure, which defines localization
and on which the dynamical fields live. Rather, it is formed solely by dynamical
fields in interactions with one another. Localization is only defined, relationally,
with respect to the fields themselves.

Relationalism and substantivalism

A non-dynamical background space was used by Newton. The first part of the
Principia, Newton argues very explicitly that we must assume the existence of
space as an entity. This part can be read as a polemic against the long dominant,
and in particular Descartes’s, relational understanding of space.

The two traditional views about space, absolute (“space is an entity”) and
relational (“space is a relation between entities”), suitably modified to take into
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account scientific progress, continue in contemporary philosophy of science under
the names of substantivalism and relationalism.

We can say that Einstein has “unmasked” the entity introduced by Newton
(which much disturbed Leibniz): Newton’s space is nothing else than a field like
the others, thought Newton considered it in a regime in which its dynamics could
be neglected. Localization in space and in time, introduced by Newton against
Descartes’s relational localization, is revealed by Einstein to be, after all, still a
relational location — in the sense of Descartes —, with respect to a specially chosen
entity: the gravitational field. In a sense, we can therefore say that GR realizes
a full return to a relational definition of space and time, after the Newtonian
substantivalist parenthesis.

In other words, in prerelativistic physics, spacetime is a sort of structured con-
tainer which is the home of the world. In general-relativistic physics, on the other
hand, there is nothing of the sort. There are only interacting fields (including the
gravitational field) and particles: the only notion of localization which is present
in the theory is relative: dynamical objects (fields and particles) are localized only
with respect to one another. This is the notion of relational space defended by
Aristotle and Descartes, against which Newton wrote the initial part of the Prin-
cipia. Newton had two points in his favor: the physical reality of inertial effects
such as the concavity of the water in the bucket of his famous bucket experiment,
and the immense empirical success of his theory based on absolute space. Einstein
has provided an alternative interpretation for the cause of the concavity — the
interaction with an entity: the local gravitational field — and a theory based on
relational space that is empirically far more effective than Newton theory. Einstein
has therefore reopened the possibility of a relational understanding of space and
time, which was closed by Newton’s bucket.

At the basis of Cartesian relationalism was the notion of “contiguity”. Two
objects are contiguous if they are adjacent to one another. Space is the order
of things with respect to such contiguity relation. At the basis of the spacetime
structure of GR there is a very similar notion: Einstein’s “spacetime coincidence”
is strictly analogous to Descartes’ “contiguity”.

The key to this novel relational understanding of space and time is Faraday’s
revolutionary idea that a field is a physical entity. Recall that Faraday visualized a
field as a family of real lines filling up everything. Einstein’s entire theoretical work
fully implements this realistic interpretation of the fields. In Einstein popular-
science writing, the gravitational field is a huge “jelly fish”, a better metaphor
than the lines of Faraday. Entities are not just particles, but also fields, the
gravitational field is one field among the others. These entities are localized only
with respect to one another.

A substantivalist position can nevertheless still be –and in fact is still– defended.
Einstein’s discovery that Newtonian spacetime and the gravitational field, are the
same entity, can also be expressed by saying that there is no gravitational field: it
is spacetime that has dynamical properties. This choice is not uncommon in the
literature. The difference with the laguage used here is only a matter of choice
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of words. The substantivalist can therefore claim use the that, according to GR,
“spacetime is an entity”: indeed, it is the gravitational field, which is an entity.
Since it is possible to define localization with respect to the gravitational field, the
substantivalist can also say that “spacetime is an entity that defines localization”.

However, this is an extremely weakened substantivalist position. To what ex-
tent is general-relativistic spacetime different from any other arbitrary entity with
respect to which we can define a relational localization? We can call “spacetime”
anything used to define localization. Newton’s acute formulation of substantival-
ism contains a precise characterization of “space” [Newton, 1962]:

“. . . So it is necessary that the definition of places, and hence of local
motion, be referred to some motionless thing such as extension alone
or “space”, in so far as space is seen to be truly distinct from moving
bodies.”

(My italic.) The characterizing feature of space, according to this substantivalist
manifesto, is to be “truly distinct from moving” bodies. In modern terms and
after the Faraday and Maxwell conceptual revolution, I believe this can only be
translated as being “truly distinct from dynamical entities such as particles or
fields”. This is not the case for the spacetime of GR. The modern substantivalist
can give up Newton’s strong substantivalism (“spacetime is a non-dynamical en-
tity”) for the much weaker thesis “we call spacetime the gravitational field, which
is a dynamical entity”. But then what is the difference between this position and
the relationalist one, if not just a choice of words?

To be sure, general relativistic relationalism doesn’t fit comfortably with tra-
ditional relationalism either. E.g. observables of GR, conceived as coincidence
quantities are non-substantival in that they don’t require spacetime points to sup-
port them. But neither are they relational in the traditional sense of involving
relations between “material” bodies or events in their histories.

The traditional substantivalist-relational alternative was formulated before the
Faraday-Maxwell conceptual revolution, without taking the existence of the fields
into account. After Farady and Maxwell, we understand the world also in terms
of a new set or dynamical entities, the fields. Once we accept the existence of
the fields, and Einstein’s discovery that Newton’s space is one of the fields, the
distinction between substantivalism and relationalism is largely reduced to mere
semantics.

When two opposite positions in a long-standing debate have come so close that
their distinction is reduced to semantics, one can perhaps say that the issue is
resolved. In this sense, it may be argued that GR has solved the long-standing
issue of the relational versus substantivalist interpretation of space.

4.2 Background independence

Is QM compatible with the general relativistic notions of space and time sketched
above? It is, but a sufficiently general formulation of QM must be used. For in-
stance, the Schrödinger picture is only viable for theories where there is a global
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observable time variable t; this conflicts with GR, where no such variable exists.
Therefore the Schrödinger picture makes little sense in a background independent
context. But formulations of QM have been proposed that are more general than
the Schrödinger picture. See for instance [Hartle, 1995] and [Rovelli, 2004]. For-
mulations of this kind are sometimes denoted “generalized quantum mechanics”,
although they might be called “quantum mechanics” in the same sense in which
“classical mechanics” is used to designate formalisms with different degrees of
generality, such as Newton’s, Lagrange’s, Hamilton’s or symplectic mechanics.

On the other hand, most of the conventional machinery of perturbative QFT is
profoundly incompatible with the general relativistic framework. There are many
reasons for this: (i) The conventional formalism of QFT relies on Poincaré in-
variance. In particular, it relies on the notion of energy and on the existence of
the nonvanishing hamiltonian operator that generates unitary time evolution. The
vacuum, for instance, is the state that minimizes the energy. But, in a general rela-
tivistic theory there is, in general, no global Poincaré invariance, no general notion
of energy and no nonvanishing hamiltonian operator. (ii) At the roots of conven-
tional QFT is the physical notion of particle. The theoretical experience with
QFT on curved spacetime [Fulling, 1989] and on the relation between acceleration
and temperature in QFT [Wald, 1994] indicates that in a generic gravitational
situation the notion of particle can be quite delicate. (iii) Consider a conventional
renormalized QFT. The physical content of the theory can be expressed in terms of
its n-point functions W (x1, . . . , xn). We expect the n-point functions to be invari-
ant under the invariances of the theory. In a general relativistic theory, invariance
under an arbitrary coordinate transformation x→ x′ = x′(x) implies immediately
that the n-point functions must satisfy

W (x1, . . . , xn) = W (x′(x1), . . . , x′(xn)).(15)

Since any set of n (distict) points (x1, . . . , xn) can be transformed into any other
set by a generic coordinate transformation, it follows that W is constant! It
does depend on its arguments! Clearly we are in a very different framework from
conventional QFT.

There is a possible escape strategy to circumvent these difficulties: write the
gravitational field as the sum of two terms, as in equation (1), and assume that
spacetime and causal relations are defined by the first term, rather than by the
full gravitational field. This escape strategy brings back a background spacetime.
A formulation of QG that does not take this escape strategy, and thus maintains
the full symmetry of GR, is called background independent.

The divide

Different research directions are oriented by different evaluations given to the gen-
eral relativistic spacetime conceptual revolution discussed above in Section 4.1. If
this conceptual revolution is taken seriously, and understood as a feature of the
world that we have learned, the problem of QG becomes the problem of under-
standing how to define and interpret a background independent QFT. This point
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of view orients a large part of the research in loop quantum gravity and similar
approaches. Not surprisingly, this line of research is more strongly influenced by
the GR research tradition.

On the other hand, if the GR conceptual shift is viewed as accidental, the
motivation for developing QG comes more from other open problems such as the
problem of the unification (see below). One argument often presented for this point
of view is that since QG affects microphysics, we can always choose a scale which is
sufficiently small to disregard macroscopic curvature effects and sufficiently large to
disregard QG effects. At this scale the world is Lorentz invariant. Therefore in QG
we can always assume the existence of an asymptotic Lorentz invariant region. This
suggests that we can use techniques associated with asymptotic Lorentz invariance.
This line of thinking, predominant in the string community, is more influenced by
the particle-physics tradition, which is deeply wedded to Poincaré invariance and
which has mostly neglected gravity throughout the twentieth century.

The cultural divide is sometimes very strong, in spite of repeated efforts to fill
the gap. Both sides feel that the other side is incapable of appreciating something
basic and essential: the structure of QFT as it has been understood in half a
century of investigation, for the particle-physics side; the novel physical under-
standing of space and time that has appeared with GR, for the relativity side.
Both sides expect that the other’s point of view will turn out, at the end of the
day, to be not very relevant. One side because GR is only a low energy limit of
a much more complex theory, and thus cannot be taken too seriously as an in-
dication about the deep structure of Nature. The other, because the experience
with QFT is on a fixed metric spacetime, and thus is irrelevant in a genuinely
background independent context.

4.3 The nature of time

Much has been written about the fact that the main equation of nonperturbative
QG, namely the Wheeler-DeWitt equation (5) does not contain the time variable
t. This presentation of the “problem of time in QG”, however, is misleading, since
it confuses the aspect of the problem that is specific to QG and the one which is
already present in classical GR. Indeed, classical GR can be entirely formulated in
the Hamilton-Jacobi formalism in terms of equation (4), where no time variable
appears either.

In the classical general-relativistic context, the notion of time differs strongly
from the one used in the special-relativistic context (and even more strongly from
the one used in the pre-relativistic context). In the pre-relativistic context, follow-
ing Newton, we assume that there is a universal physical variable t, measured by
clocks, such that all physical phenomena can be described in terms of evolution
equations in the independent variable t. In the special-relativistic concept, this
notion of time is weakened. Clocks do not measure an universal time variable,
but rather a proper time elapsed along inertial trajectories. If we fix a Lorentz
frame, however, we can still describe all physical phenomena in terms of evolution
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equations in the independent variable x0, even though this description hides the
covariance of the system.

In the general relativistic context, we must distinguish two kinds of problems,
that are often improperly confused. First, we can consider the problem of the
dynamics of matter interacting with a given gravitational field, or, equivalently,
on a given spacetime geometry. In this case, the fixed gravitational field still
determines the value of the proper time τ elapsed along any (timelike) spacetime
trajectory, measured by a clock moving along that trajectory. That is, a given
gravitational field determines a local notion of time.

A distinct problem is given by the dynamics of the gravitational field itself, or by
the interacting dynamics of gravity and matter. In this case, there is no external
time variable that can play the role of observable independent evolution variable.
The field equations are written in terms of an evolution parameter, which is the
time coordinate x0, but this coordinate, as explained above in section 4.1, does not
correspond to anything observable. In general, the proper time τ along spacetime
trajectories also cannot be used as an independent variable, as τ is a complicated
non-local function of the gravitational field itself. Therefore, properly speaking,
GR does not admit a description as a system evolving in terms of an observable
time variable. This is particularly evident in the Hamilton-Jacobi formulation
(4) of GR. This does not mean that GR lacks predictivity. Simply put, what
GR predicts are relations between partial observables, which cannot in general be
represented as dependence of dependent variables on a preferred independent time
variable.

To be sure, the ontological status of the time variable t is far from being straight-
forward in Newtonian physics either. In Newtonian physics we describe the world
in terms of physical variables A(t), B(t), . . . evolving in t. One may notice that
in a sense we never directly access t, but only physical variables A,B . . ., since
the clock devices used to measure t are themselves physical systems with an ob-
servable time-dependent variable C(t), such as the position of the clock’s hand.
Therefore, what we actually observe is always the relative evolution of observable
variables A(C), B(C), A(B) . . . and never t itself. Newton makes this point clearly
in the Principia, but also observes that the direct mathematicization of the ap-
parent motions A(C), B(C), A(B) . . . becomes greatly simplified by hypostatizing
the existence of t, and expressing all evolution in terms of t. This of course works
excellently in the nonrelativistic and nongravitational context. But it is not illogi-
cal that Newton’s strategy might fail in certain regimes. And in fact it fails in the
relativistic gravitational regime, where no universal t can be introduced, and we
can only describe the relative dependence of observable quantities. This is what
happens in GR.

In a sense, any partial observable variable can be chosen as the independent one
in GR. In general, none has the idealized properties assumed by the Newtonian
time t, which grows monotonically irrespectively of the state of the system. For
instance, in a closed cosmology the volume a of the universe and the proper time
tc since the Big Bang, along a galaxy worldline, are often used as independent
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variables. But a behaves badly if the Universe begins recontracting, and tc is only
defined in the approximation in which the Universe is assumed to be homogeneous
(what is the value of tc if two galaxies with different proper time from the big bang
meet?)

Such a weakening of the notion of time in classical GR is rarely emphasized,
because, after all, in classical physics we may disregard the full dynamical structure
of the dynamical theory and consider only a single solution of its equations of
motion. As mentioned, a single solution of the GR equations of motion determines
a spacetime, where a notion of proper time is associated to each timelike worldline.
In the quantum context, on the other hand, there is no single spacetime, as there
is no trajectory for a quantum particle, and the very concept of time becomes
fuzzy.

Attitudes towards the problem of time

Different attitudes can be found in the literature with regard to the problem of
time. For technical overviews and references (not completely up to date), see for
instance [Isham, 1992; Kuchar, 1992].

As already mentioned, a considerable part of QG research disregards the is-
sue, and maintains that Minkowski space, Poincaré invariance, with its associated
notion of time evolution (as a subgroup of the Poincaré group), should not be
abandoned in building QG, notwithstanding the features of GR.

Other authors maintain that even if Poincaré invariance is lost in GR and the
notion of time becomes more complex, still the idea that the world exists in time,
and that its description is the description of systems evolving in time, is a primary
notion that we cannot renounce.

Some of these authors have proposed minor modifications of GR, capable of
reintroducing a fundamental notion of observable time evolution in the theory.
One possibility is to choose a preferred gauge-fixing, in which diffeomorphism
invariance is partially broken, and the time coordinate is gauge fixed to be equal
to some function of the gravitational field. An example is York time, defined as the
trace of the extrinsic curvature of a spacelike surface. Alternatively, the dynamics
of GR can be modified, to get a theory with an independent time parameter.

Others accepts in full the challenge presented by GR of trying to conceptualize
the world in the absence of a fundamental notion of time and time evolution, as
illustrated in the following section.

Physics without space and time?

An illustrative example of how a formulation of mechanics might not use space and
time as independent variables is provided by the following proposal (see [Rovelli,
2004], Chapters 4 and 6). Consider a finite spacetime region R bounded by a closed
three-dimensional surface Σ. Let (ϕ, g) represent the value of all fields, including
the gravitational field g, on Σ, and let (Pϕ, Pg) represent the normal derivative of
the fields out of Σ. In principle, all predictions of classical GR can be expressed as
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constraints on the possible values that the set (ϕ, g), (Pϕ, Pg) can take. Similarly,
in principle all the predictions of QG can be expressed in terms of the probability
amplitude W (ϕ, g) of measuring the fields (ϕ, g). This is a generalization of Feyn-
man’s observation that the quantum dynamics of a particle is contained in the
propagator W (x′, t′;x, t). Diffeomorphism invariance implies that W (ϕ, g) does
not depend on the way Σ is imbedded into M . In other words, the entire quanti-
tative spatial and temporal dependence is encoded into the dependence of W (ϕ, g)
on the gravitational field g. If, for instance, we identify Σ with the surface of the
initial, final and boundary values of a scattering experiment, then it is only the
value of the gravitational field on the boundary that determines the time lapses
between the initial and final surfaces. Recall indeed that in GR spatial distances
and temporal intervals are functions of the gravitational field. W (ϕ, g) can then
be used in principle to determine all possible probabilistic predictions regarding
the experiment, without using independent spatial or temporal variables.

In order to understand the quantum gravitational field, some of the emphasis on
geometry should probably be abandoned. Geometry represents well the classical
gravitational field, not quantum spacetime. This is not a betrayal of Einstein’s
legacy: on the contrary, it is a step in the direction of “relativity” in the precise
sense meant by Einstein. The key conceptual difficulty of QG may therefore to find
a way to understand the physical world in the absence of the familiar stage of space
and time. What might be needed is to free ourselves from the prejudices associated
with the habit of thinking of the world as “inhabiting space” and “evolving in
time”.2

Whether it is logically possible to understand the world in the absence of fun-
damental notions of time and time evolution, and whether this may be consistent
with our experience of the world is an open question.

Unitarity

Absence of a fundamental notion of time evolution implies in particular that there
is no unitary time evolution in the theory. Absence of unitarity is viewed with
great suspicion by many physicists coming from the high energy tradition, where
the requirement of unitarity has repeatedly played a major historical role. The
argument is often put forward that a probabilistic theory without unitary time
evolution is inconsistent. This is not correct, since inconsistency follows from lack
of unitarity in the presence of a standard time evolution, and not in the absence
of it. If, for instance, we describe the evolution of the universe using the volume of

2If we take this extreme attitude, one problem is to recover the macroscopic notion of
time evolution and the specific features of the macroscopic time observable, from an atem-
poral microscopic theory. It is well known that it is surprisingly hard to pin-point with pre-
cision what characterizes the time variable in a dynamical system; on the other hand, the
thermodynamical and statistical behavior of physical systems is strongly temporally char-
acterized. Accordingly, the hypothesis has been considered [Rovelli, 1993a; Rovelli, 1993b;
Connes and Rovelli, 1994] that “temporal flow” is a feature of the world that appears only
in the context of a statistical-thermodynamical description. In other words, “time” could be an
artifact of our vaste ignorance of the microstate of the world.
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the universe a as independent variable, there is no reason to require the probability
for the universe to exist to be unit at all a. Indeed, there is a finite probability
that the universe reach only a maximum value of a and then re contracts. On the
other hand, the consistency of a probabilistic interpretation of QM in a context in
which evolution is not expressed in terms of an external variable t is still unclear.

5 RELATION WITH OTHER OPEN PROBLEMS

In the history of physics, often two open problems have found a common solution.
For instance, the problem of understanding the nature of light and the problem
of unifying the electric and magnetic theory found a common solution in Maxwell
theory. Often, however, the hope to solve two problems at once has been disap-
pointed. For instance, in the sixties the hope was strong to find a theory for the
strong interaction and at the same time get rid of renormalization theory; but
QCD turned out to be a good solution of the first problem without addressing the
second. The problem of QG has been suggested to be related to all sorts of open
problems in theoretical physics.

5.1 Unification

The current description of the physical world is composed by a number of field
theories: on the one hand GR, on the other hand the standard model which in turn
is composed of the electroweak theory and quantum chromodynamics; in addition,
fermions are present in several multiplets, and there are the Higgs scalars. The
theory has more than a dozen elementary constants. In the wake of the successful
unifications of electric and magnetic theory, and then of the electromagnetic and
the weak interactions theories, research has long aimed to reduce the complexity
of the standard model by providing a single coherent theory governed by a smaller
number of elementary constants.

Opinions diverge on the relation between this “unification” problem and the
problem of QG. A priori, there is no strict reason why the quantum properties
of gravity should be understood only in conjunction with the other field theories;
the quantum properties of electromagnetism, for instance, have been understood
in the context of QED without reference to the other interactions, and so have the
properties of the strong interactions.

Some arguments have been proposed to support the idea that the two problems
must be solved together. I mention three: the first is speculative and I think
weack. The second and third are technical and have some weight. First, there is
a widespread expectation that a final “Theory Of Everything” should be at hand
today. Historically, however, this expectation has been often present in theoretical
physics, and so far always erroneously.

The second argument comes from the early history of the attempts at replacing
GR with a renormalizable theory: supergravity has shown that the gravitational
ultraviolet divergences are suppressed (although, at the end of the day, not cured)
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by an appropriate coupling between gravity and matter (a fermion field, in the
case of supergravity).

The third argument supporting the relation between the two problems is the fol-
lowing. In the standard model, the coupling constants that determine the strength
of the electromagnetic, weak and strong interactions depend on the scale of the
phenomena considered. At normal scales, they are widely different in size, but
they converge at a scale which is quite close to the Planck scale. This suggests
that the scale at which unification might take place should be the same as the
scale at which quantum gravitational effects become manifest, indicating that the
two phenomena are likely to be related.

Concretely, QG is realized in string theory in the context of a tight unification,
while loop quantum gravity proposes a solution of the QG problem unrelated to
unification.

5.2 Interpretation of quantum mechanics

In spite of its enormous empirical success and its nowadays ubiquitous applications,
QM is a theory which is viewed by many as not yet completely understood. The
interpretation of the theory is relatively uncontroversial as long as we use it to
describe physical systems interacting with an external system (the “observer”)
whose quantum properties can be disregarded. But a number of difficulties appear
as soon as we take the quantum properties of the observer into account. In the
physics community, the attitudes to this problem vary widely, ranging from a
complete denial that a problem exists to various proposals for modifying QM in
order to solve it. But the number of physicists who consider this a genuine open
problem has been increasing in the last decade.

Various arguments have been proposed to tie the problem of the interpretation
of QM to the QG problem. One is, once more, the expectation that a final theory
might be at hand, and the final theory must be entirely self consistent.

Roger Penrose has proposed a specific mechanism via which quantum linearity
might be broken by gravity: gravity might the a physical factor inducing a physi-
cally realized wave-function collapse [Penrose, 1986]. The proposal is in principle
empirically testable.

In the context of Smolin’s and Adler’s attempts to derive quantum mechanics
from the statistical behavior of a statistical dynamics of matrix models [Smolin,
2002; Adler, 2004], the suggestion has been made that one might seek a common
origin for both gravitation and quantum field theory at a common deeper level of
physical phenomena from which quantum field theory emerges.

Finally, the suggestion has been made that the relational aspect of spatiotem-
poral structure revealed by GR could be connected with the relational aspect of
QM emphasized by the “relational” interpretations of QM [Rovelli, 1996b]. The
first is determined by the relation of contiguity between systems; the second by the
interaction between systems. But on the one hand locality implies that interac-
tion happens only between contiguous systems, and on the other hand contiguity
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is only manifest via a physical interaction, suggesting a strict connection between
the two relations. These ideas however, have not been developed beyond the stage
of suggestions.

5.3 The cosmological constant

An elusive aspect of the current description of the universe is given by the cos-
mological constant, a constant introduced by Einstein, describing a long range
gravitational coupling that can modify gravity at large distances. This constant
plays a major role in cosmology, in QFT (where quantum field theoretical effects
tend to make it unrealistically large), and recent cosmological observations seem
to indicate that its value is very small but not, as previously expected, vanishing.

Although nothing clear has so far appeared in QG research concerning this
constant, it must be noted that Raphael Sorkin’s QG theory predicted a small
value of the constant with the correct of order of magnitude, before its observation,
as mentioned in Section 2.1.7.

5.4 Quantum cosmology

“Quantum cosmology” indicates the study of the Universe as a whole as a quantum
system. There are two distinct problems that go under this name.

The first is the quantum version of the modelling of the dynamics of our Uni-
verse: in particular, the study of the quantum features of the dynamical systems
obtained under the drastic simplification that the Universe is homogenous. These
classical models, such as the Friedmann-Robertson-Walker model, play an impor-
tant role in cosmology and are believed to give a good description of the large
scale features of our Universe. Their quantization is of interest on several grounds.
First, it provides a simplified framework in which many of the conceptual diffi-
culties of QG can be examined and solutions can be tested. Second, they can be
used to study what a quantum theory of gravity could us concerning the physics
near and at the Big Bang itself, where quantum gravitational effects are expected
to dominate.

The study of these models has been started in the sixties by Bryce DeWitt
[DeWitt, 1967b; DeWitt, 1967c] and Charles Misner [Misner, 1969] and has seen
a great development in the following decades. The limitation of these models, of
course, is that they are based on the freezing of all the infinite numbers of degrees
of freedom of GR, except for a finite number of them, and therefore they miss the
entire field theoretical aspect of the QG problem.

A string cosmology has been developed by Gabriele Veneziano and collaborators,
with the hope of finding observational consequences of string theory [Gasperini and
Veneziano, 1993]. The application of loop quantum gravity to quantum cosmology
(“loop cosmology”) has recently led to a model which is finite and well-behaved
at the initial singularity [Bojowald, 2001; Bojowald and Morales-Tecotl, 2006].
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The second problem that goes under the name of “quantum cosmology” is the
conceptual problem of describing a quantum system that forms the entire universe,
and therefore for which there is no “external” observer: i.e., the study of quantum
mechanics in the case in which the observer is inside the system.

This second problem is very loosely related to the problem of quantum gravity.
It is true that it is impossible to be “external” with respect to the gravitational
field, but one should not confuse “external” in the spatiotemporal sense with
“external” in the dynamical sense. One cannot be “external” with respect to the
electromagnetic field either, in the spatiotemporal sense; but we can nevertheless
consider an electromagnetic system, viewed as a quantum system, interacting with
an external system, viewed as a classical observer. The same can be done for
a gravitational system. Therefore nothing a priori prevents us from using the
standard Copenhagen interpretation of QM (whether or not this is satisfactory)
in the context of QG. In other words, the problem of QG and this second problem
of quantum cosmology are not necessarily related.

On the other hand, the difficulties raised by considering the observer as part
of the system and the difficulties generated in QM by diffeomorphism invariance,
in particular the absence of an external time, are of a similar nature, and both
question the viability of the Copenhagen interpretation. A general scheme for
addressing both kinds of difficulties, and defining a generalized formalism for QM,
where there is no external time and no external observer, has been developed by
Jim Hartle [Hartle, 1995].

6 CONCLUSION

After 70 years of research, there is no consensus, no established theory, and no
QG theory has yet received any direct or indirect experimental support. In the
course of 70 years, many ideas have been explored, fashions have come and gone,
the discovery of the Holy Grail of QG has been several times announced, only to
be later greeted by much scorn.

However, in spite of this, research in QG has not been meandering meaning-
lessly. On the contrary, a consistent logic has guided the development of the
research, from the early formulation of the problem and the research directions in
the fifties to nowadays. The implementation of the programs has been laborious,
but has been achieved. Difficulties have appeared, and solutions have been pro-
posed, which, after much difficulty, have lead to the realization, at least partial,
of the initial hopes.

It was suggested in the early seventies that GR could perhaps be seen as the low
energy limit of a theory without uncontrollable divergences; today, 30 years later,
such a theory — string theory — is known. In 1957 Charles Misner indicated that
in the canonical framework one should be able to compute eigenvalues; and in
1995, 37 years later, eigenvalues were computed — within loop quantum gravity.
Much remains to be understood and some of the current developments might lead
nowhere. We are not at the end of the road, we are only half-way through the
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woods. But looking at the entire development of the subject, it is difficult to deny
that there has been substantial progress.

The progress cannot be just technical. The search for a quantum theory of
gravity raises again old questions such as: What is space? What is time? What is
the meaning of “being somewhere”? What is the meaning of “moving”? Is motion
to be defined with respect to objects or with respect to space? Can we formulate
physics without referring to time or to spacetime? And also: What is causality?
What is the role of the observer in physics?

Questions of this kind have played a central role in periods of major advances in
physics. For instance, they played a central role for Einstein, Heisenberg, Bohr and
their colleagues. But also for Descartes, Galileo, Newton and their contemporaries,
and for Faraday, Maxwell and their colleagues. Today some physicists view this
manner of posing problems as “too philosophical”. Most physicists of the second
half of the twentieth century, indeed, have viewed questions of this nature as
irrelevant. This view was appropriate for the problems they were facing. When
the basics are clear and the issue is problem-solving within a given conceptual
scheme, there is no reason to worry about foundations: a pragmatic approach is
the most effective one. Today the kind of difficulties that fundamental physics
faces has changed. To understand quantum spacetime, physics has to return,
once more, to those foundational issues. We have to find new answers to the old
foundational questions. The new answers have to take into account what we have
learned with QM and GR. The problem of QG will probably not be solved unless
these questions are carefully reconsidered.
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BIBLIOGRAPHICAL NOTE

For more details on the history of QG see the historical appendix in [Rovelli, 2004];
and, for early history see [Stachel, 1999b; Stachel, 1999a] and [Gorelik, 1992]. For
orientation on current research on QG, see the review papers [Horowitz, 2000; Car-
lip, 2001; Isham, 1991; Rovelli, 1998a]. An interesting panorama of points of view
on the problem and on philosophical issues it raises is in the various contributions
to the book [Callender and Huggett, 2001]. See also the discussion in [Rovelli, 1997;
Rovelli, 2000]. As a general introduction to QG ideas, see the old classic reviews,
which are rich in ideas and present different points of view, such as John Wheeler
1967 [Wheeler, 1968], Steven Weinberg 1979 [Weinberg, 1979], Stephen Hawking
1979 and 1980 [Hawking, 1979; Hawking, 1984], Karel Kuchar 1980 [Kuchar, 1984],
and Chris Isham’s magisterial syntheses [Isham, 1984a; Isham, 1984b; Isham,
1997]. On string theory, classic textbooks are Green, Schwarz and Witten, and
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Polchinksi [Green et al., 1987; Polchinski, 1998]. On loop QG, see [Rovelli, 1998b;
Rovelli, 2004]. For a discussion of the difficulties of string theory and a compari-
son of the results of strings and loops, see [Rovelli, 2003], written in the form of
a dialogue, and [Smolin, 2003]. Smolin’s popular book [Smolin, 2000] provides a
readable introduction to QG.
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SYMMETRIES AND INVARIANCES IN
CLASSICAL PHYSICS

Katherine Brading and Elena Castellani

1 INTRODUCTION

The term ‘symmetry’ comes with a variety of ancient connotations, including
beauty, harmony, correspondence between parts, balance, equality, proportion,
and regularity. These senses of the term are clearly related to one another; the
concept of symmetry used in modern physics arose out of this family of ideas.
We are familiar with the approximate symmetries of physical objects that we find
around us — the bilateral symmetry of the human face, the rotational symmetry
of a snowflake turned through 60o, and so forth. We may define a symmetry of
a given geometric figure as the invariance of that figure when equal component
parts are exchanged under a specified operation (such as rotation). The devel-
opment of the algebraic concept of a group, in the nineteenth century, allowed a
generalization and refinement of this idea; a precise mathematical notion of sym-
metry emerged which was applicable not just to physical objects and geometrical
figures, but also to mathematical equations — and thus, to what is of particular
interest to us, the laws of physics expressed as mathematical equations. The group
theoretical notion of symmetry is the notion of invariance under a specified group
of transformations. ‘Invariance’ is a mathematical term: something is invariant
when it is left unaltered by a given transformation. This mathematical notion
is used to express the notion of physical symmetry that we are interested in, i.e.
invariance under a group of transformations. This is the concept of symmetry that
has proved so successful in modern science, and the one that will concern us in
what follows.

We begin in Section 2 with the distinction between symmetries of objects and
of laws, and that between symmetry principles and symmetry arguments. This
section includes a discussion of Curie’s principle. Section 3 discusses the impor-
tant connection between symmetries, as studied in physics, and the mathematical
techniques of group theory. We offer a brief history of how group theory was ap-
plied first to geometry and then to physics in the course of the nineteenth century,
preluding to the central importance acquired by group theoretical techniques in
contemporary physics. With these considerations in mind, Section 4 offers an ac-
count of what is meant by symmetry in physics, and a taxonomy of the different
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types of symmetry that are found within physics. In Section 5 we discuss some ap-
plications of symmetries in classical physics, beginning with transformation theory
in classical mechanics, and then turning to Einstein’s Special and General Theories
of Relativity (see Section 6). We focus on the roles and meaning of symmetries in
these theories, and this leads into the discussion of Noether’s theorems in Section
7. Finally, in Section 8, we offer some concluding remarks concerning the place,
role and interpretation of symmetries in classical physics. Note that our emphasis
is resolutely on the classical. For the power and significance of symmetry in quan-
tum physics, we refer the reader to other chapters of this volume, such as Dickson
(ch. 4, Section 3.3), Landsman (ch. 5, Section 4.1), t’Hooft (ch. 7) and Halvorson
(ch. 8, Section 5.2).1

2 SYMMETRIES OF OBJECTS AND OF LAWS

That we must distinguish between symmetries of objects versus symmetries of
laws can be seen as follows. It is one thing to ask about the geometric symmetries
of certain objects — such as the 60o rotational symmetry of a snowflake and the
approximate bilateral symmetry of the human face mentioned above — and the
asymmetries of objects — such as the failure of a chair to be rotationally sym-
metric. It is another thing to ask about the symmetries of the laws governing the
time-evolution of those objects: we can apply the laws of mechanics to the evolu-
tion of our chair, considered as an isolated system, and these laws are rotationally
invariant (they do not pick out a preferred orientation in space) even though the
chair itself is not. Re-phrasing the same point, we should distinguish between
symmetries of states or solutions, versus symmetries of laws. Having distinguished
these two types of symmetry we can, of course, go on to ask about the relationship
between them: see, for example, current discussions of Curie’s principle, referred
to in Section 2.2, below.

2.1 Symmetry principles and symmetry arguments

It is also important to distinguish between symmetry principles and symmetry
arguments. The application of symmetry principles to laws was of central impor-
tance to physics in the twentieth century, as we shall see below in the context
of Eintein’s Special and General Theories of Relativity. Requiring that the laws
— whatever their precise form might be — satisfy certain symmetry properties,
became a central methodological tool of theoretical physicists in the process of
arriving at the detailed form of various laws.

Symmetry arguments, on the other hand, involve drawing specific consequences
with regard to particular phenomena on the basis of their symmetry properties.
This type of use of symmetry has a long history; examples include Anaximander’s
argument for the immobility of the Earth, Archimedes’s equilibrium law for the

1Further discussion can be found in Brading and Castellani [2003].



Symmetries and Invariances in Classical Physics 1333

balance, and the case of Buridan’s ass.2 In each case the associated argument
can be understood as an example of the application of the Leibnizean Principle of
Sufficient Reason (PSR): if there is no sufficient reason for one thing to happen in-
stead of another, then nothing happens (i.e. the initial situation does not change).
There is something more that the above cases have in common: in each of them
PSR is applied on the grounds that the initial situation has a certain symmetry.3

The symmetry of the initial situation implies the complete equivalence between
the offered alternatives. If the alternatives are completely equivalent, then there
is no sufficient reason for choosing between them and the initial situation remains
unchanged. Arguments of this kind most frequently take the following form: a
situation with a certain symmetry evolves in such a way that, in the absence of an
asymmetric cause, the initial symmetry is preserved. In other words, a breaking
of the initial symmetry cannot happen without a reason: an asymmetry cannot
originate spontaneously. This style of argumentation is also to be found in recent
discussions of ‘Curie’s principle’, the principle to which we now turn.

2.2 Curie’s principle

Pierre Curie (1859-1906) was led to reflect on the question of the relationship
between physical properties and symmetry properties of a physical system by his
studies on the thermal, electric and magnetic properties of crystals, since these
properties were directly related to the structure, and hence the symmetry, of the
crystals studied. More precisely, the question he addressed was the following:
in a given physical medium (for example, a crystalline medium) having specified
symmetry properties, which physical phenomena (for example, which electric and
magnetic phenomena) are allowed to happen? His conclusions, systematically
presented in his 1894 work ‘Sur la symétrie dans les phénomènes physiques’, can
be summarized as follows:4

(a1) When certain causes produce certain effects, the symmetry ele-
ments of the causes must be found in their effects.

(a2) When certain effects show a certain dissymmetry, this dissymme-
try must be found in the causes which gave rise to them.5

(a3) In practice, the converses of these two propositions are not true,
i.e., the effects can be more symmetric than their causes.

2For a discussion of these examples, see [Brading and Castellani, 2003, ch. 1, Section 2.2]).
3In the first case rotational symmetry, in the second and third bilateral symmetry.
4For an English translation of Curie’s paper, see [Curie, 1981]; some aspects of the translation

are misleading.
5Curie uses the term dissymmetry in his paper, as was current at his time. The sense is

the same of that of symmetry breaking in modern terminology, which is today often identified
with the sense of asymmetry. To be more precise one should distinguish between the result of
a symmetry-breaking process (broken symmetry), the absence of one of the possible symmetries
compatible with the situation considered (dissymmetry, as it was called in the nineteenth century
literature, notably by Louis Pasteur in his works on molecular dissymmetry), and the absence of
all the possible symmetries compatible with the situation considered (asymmetry).
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(b) A phenomenon may exist in a medium having the same character-
istic symmetry or the symmetry of a subgroup of its characteristic
symmetry. In other words, certain elements of symmetry can co-
exist with certain phenomena, but they are not necessary. What
is necessary, is that certain elements of symmetry do not exist.
Dissymmetry is what creates the phenomenon.

Conclusion (a1) is what is usually called Curie’s principle in the literature.
Conclusion (a2) is logically equivalent to (a1); the claim is that symmetries are
necessarily transferred from cause to effect, while dissymmetries are not. Con-
clusion (a3) clarifies this claim, emphasizing that since dissymmetries need not be
transferred from cause to effect, the effect may be more symmetric than the cause.6

Conclusion (b) invokes a distinction found in all of Curie’s examples, between the
‘medium’ and the ‘phenomena’. We have a medium with known symmetry proper-
ties, and Curie’s principle concerns the relationship between the phenomena that
can occur in the medium and the symmetry properties — or rather, ‘dissymmetry’
properties — of the medium. Conclusion (b) shows that Curie recognized the im-
portant function played by the concept of dissymmetry — of broken symmetries
in current terminology — in physics.

In order for Curie’s principle to be applicable, various conditions need to be
satisfied: the cause and effect must be well-defined, the causal connection between
them must hold good, and the symmetries of both the cause and the effect must
also be well-defined (this involves both the physical and the geometrical properties
of the physical systems considered). Curie’s principle then furnishes a necessary
condition for given phenomena to happen: only those phenomena can happen that
are compatible with the symmetry conditions stated by the principle. Curie’s prin-
ciple has thus an important methodological function: on the one hand, it furnishes
a kind of selection rule (given an initial situation with a specified symmetry, only
certain phenomena are allowed to happen); on the other hand, it offers a falsifi-
cation criterion for physical theories (a violation of Curie’s principle may indicate
that something is wrong in the physical description).

Such applications of Curie’s principle depend, of course, on our accepting its
truth, and this is something that has been questioned in the literature, especially
in relation to spontaneous symmetry breaking. Different proposals have been of-
fered for justifying the principle. Curie himself seems to have regarded it as a
form of causality principle, and the question in the recent literature has been
whether the principle can be demonstrated from premises that include a definition
of “cause” and “effect”. In this direction it has become current of late to un-
derstand the principle as following from the invariance properties of deterministic
physical laws. The seminal paper for this approach is [Chalmers, 1970], which in-
troduces the formulation of Curie’s principle in terms of the relationship between

6Note that for some authors conclusion (b) is a principle on its own. Radicati (1987) goes
further, describing conclusions (a1), (a2) and (b) as three different principles: Curie’s first, second
and third principle, respectively.



Symmetries and Invariances in Classical Physics 1335

the symmetries of earlier and later states of a system, and the laws connecting these
states. This “received view” can be criticized for offering a reformulation that is
significantly different from Curie’s intentions (so that the label ‘Curie’s principle’
is a misnomer), and for resting on an assumption that may undermine the interest
and importance of the view, as we discuss in the following brief remarks.7

The received view, by concerning itself with temporally ordered cause and effect
pairs (or states of systems), offers a diachronic or dynamic analysis. In fact, Curie
himself focusses on synchronic or static situations, concerning the compatibility
of different phenomena occurring at the same time, rather than the evolution
of one state of a system into another state. In other words, the ‘cause—effect’
terminology used by Curie is not intended to indicate a temporal ordering of
phenomena being considered. This is clear from his examples, and also from the
fact that discussion of the laws — so central to the diachronic version — is absent
from Curie’s own analysis. That the diachronic version has come to have the
label ‘Curie’s principle’ therefore misrepresents Curie’s original principle and his
discussion of that principle.

Is the diachronic version interesting and important, nevertheless? The account
can be understood as an application of PSR in which we pay careful attention
to whether the laws provide a “sufficient reason” for a symmetry to be broken
as a system evolves from its initial to final state by means of those laws. The
reformulation of the diachronic version by Earman [2004] has the strong merit of
being precise, and thereby enabling a proof that if the initial state possesses a given
symmetry, and the laws deterministically preserve that symmetry, then the final
state will also possess that symmetry. However, things are not so simple as they
might seem because the proof takes a state with a given symmetry. Specifying the
symmetries of a state requires, in general, recourse to a background structure —
such as space or spacetime, or the space of solutions. In some cases, the required
structure may seem trivial or minimal, but nevertheless the dynamics of the system
will not be independent of this structure (consider the examples of the spatial or
spatiotemporal structure or, more strongly still, the space of solutions). This has
the consequence that, in general, the structures on which the symmetries of a state
and the symmetries of the dynamics depend are not independent of one another,
and any appearance to the contrary in the “proof” needs to be handled with
caution. Indeed, we think that answering the question of whether the diachronic
version is interesting and important depends in part upon investigating this lack
of independence and the role it plays in the proof, something which has yet to be
provided in the literature on the diachronic version of ‘Curie’s principle’.

Both Curie’s original version of his principle, and the diachronic version, begin
with the symmetries of states of physical systems. In contemporary physics, focus
has shifted to symmetries of laws, and the significant connection between symme-
tries of physical systems and symmetries of laws has to do not with symmetries

7For detailed discussion see [Brading and Castellani, 2006]. The “received view” that we
attribute first to Chalmers is developed in [Ismael, 1997] and [Earman, 2004]. See also [Earman,
this vol., ch. 14, Section 2.3].
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of states of those systems, but with symmetries of ensembles of solutions.8 The
symmetries of a dynamical equation are not, in general, the symmetries of the
individual solutions (let alone states), but rather the symmetries of the whole set
of solutions, in the sense that a symmetry of a dynamical equation transforms a
given solution into another solution. Considering this relationship between laws
and solutions leads to an alternative version of Curie’s principle, which we propose
here.9 As with the diachronic version of Curie’s principle, our proposal departs
from Curie’s original proposal, but our contention is that it remains true to the
main motivation behind Curie’s original investigation. In this version we seek to
unite two things:

1. We understand Curie’s motivating question to be ‘which phenomena are
physically possible?’, and his suggestion to be that we can use symmetries
as a guide towards answering this question; and

2. We go beyond Curie in making use of symmetries of laws, something about
which he said nothing, but which has become a central concern in contem-
porary physics.

Combining these two ingredients, a “modern” version of Curie’s principle would
then simply state that the symmetries of the law (equation) are to be found in
the ensemble of its solutions. This version expresses Curie’s basic idea — that
“symmetry does not get lost (without a reason)” — in virtue of the fact that
the symmetry of the law is to be found in the ensemble of solutions. The fact
that this is how we define the relationship between symmetries and laws does not
render it empty of significance with respect to Curie’s motivating question. On the
contrary, the point is that we can use the symmetries of the law as a guide to finding
solutions, i.e. to determining which phenomena are physically possible, when not
all the solutions are known. We can ask, following Curie, ‘What phenomena are
possible?’, and we can use the connection between the symmetries of the law and
the symmetries of the ensemble of solutions as a guide to finding the physically
possible phenomena. Thus, what is on the one hand a definitional statement
(that the symmetries of the law (equation) are to be found in the ensemble of the
solutions) comes on the other hand to have epistemic bite when we don’t know all
the solutions. This, we believe, is true to Curie’s motivating question, as expressed
in item (1), above.

8By “solution” here we mean a temporally extended history of a system, the “state” of a
system being a “solution at an instant”.

9Notice that this version does not involve the temporal evolution from cause to effect (as in
the diachronic version), nor is it restricted to a state of a system at a given instant or during
a certain temporal period (as in the sychronic version); rather, it concerns the structure of an
ensemble of solutions, considered as a whole.
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3 SYMMETRY AND GROUP THEORY: EARLY HISTORY

Group theory is the powerful mathematical tool by means of which the symmetry
properties of theories are studied. In this section, we begin with the definition
of a group, and outline the origins of this notion in the mathematics of algebraic
equations. We then turn our attention to the manner in which group theory
was applied first to geometry and then to physics in the course of the nineteenth
century.

3.1 The introduction of the group concept and the first developments
of group theory

A group is a family G of elements g1, g2, g3... for which there is defined a multipli-
cation that assigns to every two elements gi and gj of the group a third element
(their product) gk = gigj ∈ G, in such a way that the following requirements
hold:10

• (gigj)gk = gi(gjgk) for all gi, gj , gk ∈ G (associativity of the product);

• there exists an identity element e ∈ G such that gie = egi for all gi ∈ G;
• for all gi ∈ G there exists an inverse element g−1

i ∈ G such that gig
−1
i =

g−1
i gi = e.

The concept of a group was introduced by Évariste Galois in the short time
he was able to contribute to mathematics (born in 1811, he died as a result of
a duel in 1832) in connection with the question of the resolution of equations by
radicals.11 The resolvent formulas for cubic and quartic equations were found
by the mathematicians of the Renaissance,12 while the existence of a formula for
solving the general equations of the fifth and higher degrees by radicals remained an
open question for a long time, stimulating developments in algebra. In particular,
the studies of the second half of the eighteenth century focussed on the role played
in the solution of equations by functions invariant under permutation of the roots,
so giving rise to the theory of permutations. In J. L. Lagrange’s Réflexions sur
la résolution algébrique des équations, the most influential text on the subject,
some fundamental results of permutation theory were obtained.13 Lagrange’s text

10The concept of a group can be weakened by relaxing these conditions (for example, dropping
the inverse requirement leads to the concept of a monoid, and retaining only associativity leads
to the concept of a semigroup). The question that then arises is whether the full group structure,
or some weaker structure, is related to the symmetry properties of a given theory.

11That is, in terms of a finite number of algebraic operations — addition, subtraction, multi-
plication, division, raising to a power and extracting roots — on the coefficients of the equations

12The resolvent formula for a quadratic equation was known since Babylonian times. A his-
torical survey on the question of the existence of resolvent formulas for algebraic equations is in
[Yaglom, 1988, 3 f.].

13Among other results, the so-called Lagrange’s theorem which states — in modern terminology
— that the order of a subgroup of a finite group is a divisor of the order of the group.
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served as a basis for successive algebraic developments, from P. Ruffini’s first proof
in 1799 of the impossibility of solving nth degree equations in radicals for n ≥ 5,
to the seminal works by A. L. Cauchy, N. H. Abel, and finally Galois.14

Galois’s works15 marked a turning point, providing answers to the open ques-
tions in the solutions of equations by using new methods and algebraic notions,
first of all the notion of a group. This notion was introduced by Galois in relation
to the properties of the set of permutations of the roots of equations (the permu-
tations constituting what he named a ‘group’), together with other basic notions
of group theory such as “subgroup”, “normal subgroup”, and “simple group”.16

By characterizing an equation in terms of its “degree of symmetry”, determined
by the permutation group of the roots preserving their algebraic relations (later
known as the Galois group of the equation), Galois could transform the problem of
the resolution of equations into that of studying the properties of the permutation
groups involved. In this way he obtained, among other things, the necessary and
sufficient conditions for solving equations by radicals.

Galois’s achievements in group theory, first brought to publication by Joseph
Liouville in 1846, were collected and expanded in Camille Jordan’s 1870 Traité des
substitutions et des équations algébriques. Jordan’s Treatise, the first systematic
textbook on group theory, had a decisive influence on the application of this new
theory, including its application to other domains of mathematical science, such
as geometry and mathematical physics.

3.2 Applications of group theory: the contributions of Klein and Lie

Projective geometry, the theory of invariants and group theory: Klein and Lie’s
starting point

In the same year as the appearance of Jordan’s Treatise, Sophus Lie and Felix
Klein, two young mathematicians who were to become the key figures in extending
the domain of application of group theory, moved for a period from Berlin to Paris
to enter into contact with the French school of mathematics. Lie and Klein had
just written a joint paper investigating the properties of some curves in terms
of the groups of projective transformations leaving them invariant. In fact they
were drawn to Paris mostly by their interest in projective geometry, the science
founded by J. V. Poncelet to study the properties of figures preserved under central
projections. Projective geometry had become, at the time, a particularly fruitful
research field for the combination of algebraic and geometrical methods based on
the notion of invariance. The theory of invariants was itself a flourishing branch

14Cauchy (1789—1857) generalized Ruffini’s results in 1815; Abel (1802—1829) published in
1824 a proof of the impossibility of solving the quintic equation by radicals and in 1826 the paper
Démonstrations de l’impossibilité de la résolution algébrique des équations générales qui passent
le quatrième degré.

15A few “m’emoires” submitted to the Académie des Sciences, three brief papers published in
1830 in the Académie’s ‘Bulletin’, and some letters, among which is the last one written to his
friend Auguste Chevalier in the night before the fatal duel.

16See [Yaglom, 1988, 9 f.], for details.
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of mathematics, centered on the systematic study of the invariants of “algebraic
forms”. Using the theory of invariants, the English algebraist Arthur Cayley17

had recently clarified the relationship between Euclidean and projective geometry,
showing the former to be a special case of the latter. Before leaving for France,
Klein had tried to extend Cayley’s results, based on the possibility of defining a
distance (a “metric”) in terms of a quadratic form defined on the projective space,
to the case of non-Euclidean geometries.

While in Paris Lie and Klein became acquainted not only with Jordan, but also
with the expert in differential geometry Gaston Darboux, who stimulated their
interest in the relations between differential geometry and projective geometry.

Klein’s Erlangen Program

The question of the relations between the different contemporary geometrical sys-
tems particularly interested Klein. He aimed at obtaining a unifying foundational
principle for the various branches into which geometry had apparently recently
separated. In this respect, he fruitfully combined (a) the application of the the-
ory of invariants to the study of geometrical properties, with (b) his and Lie’s
idea of applying algebraic group theory to treating also geometrical transforma-
tions. The new group theoretical conception of a geometrical theory which resulted
was announced in his famous Erlangen Program, as it became known following
the inaugural lecture entitled ‘Comparative Considerations on Recent Geometri-
cal Research’18 that the 23-year-old Klein delivered when entering, in 1872, as a
professor on the staff of the University of Erlangen. Guided by the idea that geom-
etry is in the end a unity, Klein’s solution to the problem posed by the existence
of different geometries was to propose a general characterization of a geometrical
theory by using the notion of invariance under a transformation group (i.e., the
notion of symmetry). According to his characterization a geometry is defined,
with respect to a given domain (the plane, the space, or a given “manifold”) and a
group of transformations acting on it, as the science studying the invariants under
the transformations of the group. Each specific geometry is thus determined by
the characterizing symmetry group (for example, planar Euclidean geometry is
determined by the group of affine transformations acting on the plane), and the
interrelations between geometries can be described by the relations between the
corresponding groups (for example, the equivalence of two geometries amounts to
the isomorphism between the corresponding groups).

With Klein’s definition of a geometry, geometrical and symmetrical properties
become very close: the symmetry of a figure, which is defined in a given “space”19

the “geometrical” properties of which are preserved by the transformations of a
group G, is determined by the subgroup of G leaving the figure invariant. The new

17Cayley was one of the three members of the ‘invariant trio’, as the French mathematician
Hermite dubbed them, the other two being James Sylvester, inventor of most of the terminology
of the theory including the word ‘invariant’, and George Salmon.

18‘Vergleichende Betrachtungen über neuere geometrische Vorschungen’.
19A set of points endowed with a structure.
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group theoretical techniques prompted a transition from an inductive approach
(familiar from the nineteenth century classifications of crystalline forms in terms
of their visible — and striking — symmetry properties)20 to a more abstract and
deductive approach. This is the procedure formulated in Weyl’s classic book on
symmetry (Symmetry, [1952]) as follows:

Whenever you have to do with a structure-endowed entity Σ try to
determine its group of automorphisms, the group of those element-
wise transformations which leave all structural relations undisturbed.
[...] After that you may start to investigate symmetric configurations
of elements, i.e. configurations which are invariant under a certain
subgroup of the group of all automorphisms [Weyl, 1952, 144, emphasis
in original].

In this way, the symmetry classifications could be extended to figures in “spaces”
different from the plane and space of common experience.

Klein himself contributed to the classification of symmetry groups of figures
with his works on discrete groups; in particular, he studied the transformation
groups related to the symmetry properties of regular polyhedra, which proved to
be useful in the solution of algebraic equations by radicals.

Lie’s theory of continuous groups

After 1872, while Klein was concerned especially with discrete transformation
groups, Lie devoted all his research work to building the theory of continuous
transformation groups, the results of which were systematically collected in his
three-volume Theorie der Transformationsgruppen [I: 1888, II: 1890, and III: 1893],
written with the collaboration of F. Engel. Lie’s interest in continuous groups arose
in relation to the theory of differential equations, which he took to be ‘the most
important discipline in modern mathematics’. By the time he was in Paris, Lie
had begun to study the theory of first-order partial differential equations, a theory
of particular interest because of the central role it played in the formulation given
by W. R. Hamilton and C. G. Jacobi to mechanics.21 His project was to extend to
the case of differential equations Galois’s method for solving algebraic equations:
that is, using the knowledge of the ‘Galois group’ of an equation (the symmetry
group formed by the transformations taking solutions into solutions) so as to solve
it or reduce it to a simpler equation. Thus Lie’s guiding idea was that continuous
transformation groups could, in the solution of differential equations, play a role
analogous to that of the permutation groups used by Galois in the case of algebraic
equations.

20A classic textbook in this respect is [Shubnikov and Koptsik, 1974]. See also Section 8,
below.

21For details on classical mechanics we refer the reader to [Butterfield, this vol., ch. 1] and the
references therein.
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Lie had already considered continuous groups of transformations in some earlier
geometrical works. In his studies with Klein on special kinds of curves (called by
them ‘W-curves’), he had examined transformations that were continuously related
in the sense that they were all generated by repeating an infinitesimal transfor-
mation.22 The relevance of infinitesimal transformations to continuous groups of
transformations was to become a central point in his studies of contact transfor-
mations, so called because they preserved the contact or tangency of surfaces.
Lie had started to investigate contact transformations in association with geo-
metrical reciprocities implied in his “line-to-sphere mapping”, a mapping between
a line geometry and a sphere geometry that he had discovered while in Paris.23

When he turned to considering first-order partial differential equations, he soon
realized that they admitted contact transformations as symmetry transformations
(i.e. transformations taking solutions into solutions). Thus contact transforma-
tions could form the “Galois group” of first-order partial differential equations.
This motivated him to develop the invariant theory of contact transformations,
which represented the first step of his general theory of continuous groups.

Lie’s crucial result, allowing him to pursue his program, was the discovery that
to each continuous transformation group could be assigned what is today called its
Lie algebra. Lie showed that the infinitesimal generators of a continuous transfor-
mation group obey a linearized version of the group law, involving the commutator
bracket (or Lie bracket); this linearized law then represents the structure of the
algebra. In short (and in modern terminology): we describe the elements (transfor-
mations) of a continuous group (now called a Lie group)24 as functions of a certain
number r of continuous parameters al (l = 1, 2, ...r). And these group elements
can be written in terms of a corresponding number r of infinitesimal operators Xl,
the generators of the group, which satisfy the “multiplication law” represented by
the Lie brackets

[Xs,Xt] = cqstXq ,

so forming what is called the Lie algebra of the group. The coefficients cqst are
constants characterizing the structure of the group and are called the structure
constants of the group.25

Thanks to this sort of result, the study and classification of continuous groups
could be conducted in terms of the corresponding Lie algebras. This proved to be
extremely fruitful in the successive developments, not only algebraic and geomet-
rical, but also physical. With regard first of all to the physics of Lie’s time, Lie
had arrived at the correspondence between continuous groups and Lie algebras by
reinterpreting, in the light of his program for solving differential equations, the

22See on this part [Hawkins, 2000, Section 1.2]. According to Hawkins (p. 15), with the works
of Lie and Klein on W-curves ‘for the first time not only is a continuous group the starting
point for an investigation, but also for the first time in print we have the idea that infinitesimal
transformations are a characteristic and useful feature of continuous systems of transformations’.

23See [Hawkins, 2000, Section 1.4].
24For a precise definition of this and other terms in this paragraph, see [Butterfield, this vol.,

ch. 1, Section 3].
25For more details, see [Butterfield, this vol., ch. 1, Sections 3.2 and 3.4].
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results obtained by Poisson and especially Jacobi about the integration of first-
order partial differential equations arising in mechanics.26 His achievements were
thus of great relevance to the solution of the dynamical problems discussed by his
contemporaries.

But it is in twentieth century physics, with the works of such figures as Hermann
Weyl, Emmy Noether and Eugene Wigner (just to recall the central figures who
first contributed to the applications of Lie’s theory to modern physics), that the
theory of Lie groups and Lie algebras acquired a fundamental role in the description
of physical phenomena. Today, the applications of the theory that originated from
Lie’s works include the whole of theoretical physics, of both the large and the
small: classical and quantum mechanics, relativity theories, quantum field theory,
and string theory.27

4 WHAT ARE SYMMETRIES IN PHYSICS? DEFINITIONS AND
VARIETIES

4.1 What is meant by ‘symmetry’ in physics

We can understand intuitively the generalization of the scientific notion of sym-
metry from physical or geometric objects to laws, as follows. We write down our
law as a mathematical equation, and appearing in this equation will be various
mathematical objects and operators. For a particular group of transformations,
these objects and operators transform according to rules that may be fixed either
by the mathematical nature of the object or operator concerned, or (where the
mathematics does not fix the transformation rules) by our specification. If the
“form” of the equation is preserved when we transform each of the objects and
operators appearing in our equation by any element of the group, then we say that
the group is a symmetry group of the equation.

More precisely, what we mean by the symmetry transformations of the laws in
physics can be formulated in either of the following ways, which are equivalent in
the sense that they pick out the same set of transformations:

(1) Transformations, applied to the independent and dependent variables of the
theory in question, that leave the form of the laws unchanged.

(2) Transformations that map solutions into solutions.

Symmetry transformations may be viewed either actively or passively. From the
passive point of view we re-describe the same physical evolution in two different
coordinate systems.28 That is, we transform the independent and dependent vari-
ables, as in (1). If the description in the original set of coordinates is a solution

26For details see [Hawkins, 2000, Section 2.5].
27In this volume, see especially t’Hooft (ch. 7), Dickson (ch. 4), and Belot (ch. 2).
28By ‘coordinates’ here we are referring to generalized coordinates; in general, one coordinate

for each degree of freedom of the system.
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of given equations, then the new description in the new set of coordinates is a
solution of the same equations. (If the transformation is not a symmetry transfor-
mation, then the new description in the new coordinates will not, in general, be a
solution of the same equations, but rather of different equations.) The mapping of
one solution into another solution of the same equations, by means of a symmetry
transformation, leads to the active interpretation of such transformations. On this
interpretation, the two solutions are viewed as different physical evolutions de-
scribed in the same coordinate system. Thus, formulation (2) lends itself naturally
to an active interpretation.

The ‘form of the law’ in (1) means the functional form of the law, expressed
in terms of the independent and dependent variables. A transformation of those
variables will, in general, lead to an expression whose functional form differs from
that of the original expression (x goes to x2, for example). At this point it will be
helpful to say a few words about “invariance” and “covariance”. Let the reader
beware that there is no unanimity over how these terms are used in discussing
the laws of physics, especially in the philosophy of physics literature. Often, the
term ‘invariant’ is reserved for objects, and ‘covariant’ is used for equations or
laws. However, this is a product of a more fundamental distinction, which when
understood correctly allows for the application of the notion of invariance to laws
as well.

We think that the discussion of Ohanian and Ruffini [1994, Section 7.1] is very
useful, and that it nicely distils much of the best of what can be found in the liter-
ature, both in physics and in philosophy of physics. The upshot is as follows. We
may say that an equation is covariant under a given transformation when its form
is left unchanged by that transformation. This is the notion at work in Definition
1. In a way, it is rather weak: given an equation that is not covariant under a given
transformation, we can always re-write it so that it becomes covariant. On the
other hand, this re-writing may involve the introduction of new functions of the
variables, and it is the physical interpretation of these new quantities that allows
covariance to gain physical significance. We will have more to say about this for
the specific case of general covariance and Einstein’s General Theory of Relativity
in Section 6.3 below.

Invariance of an equation, as characterized by Ohanian and Ruffini, is a stronger
requirement than covariance. Not only should the form of the equation remain
the same, but so too should the values of any non-dynamical quantities, including
“constants” such as the speed of light. By “non-dynamical quantities” we mean
all those objects which appear in the equations yet which do not themselves sat-
isfy equations of motion. We here enter the muddy waters of how to distinguish
between “absolute” and “dynamical” objects, as discussed by Anderson [1967].29

In both cases (covariance and invariance), the associated transformations —
when actively construed — take solutions into solutions. When using formulation

29See also Section 6.3, below. One difficulty in tackling the literature on this issue is the variety
of uses and meanings attaching to the common terminology of covariance, principle of covariance,
invariance, absolute and dynamical objects, and so forth.
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(2), it is important to be clear about what is meant by a solution. This does not
mean a solution-at-an-instant, i.e. an instantaneous state of a system; rather, it
means an entire history, i.e. possible time-evolution, of the system in question.30

4.2 Varieties of symmetry

Symmetries in physics come in a number of different varieties, distinguished by
such terms as ‘global’ and ‘local’; ‘internal’ and ‘external’; ‘continuous’ and ‘dis-
crete’. In this Section we briefly review this terminology and the associated dis-
tinctions.

The most familiar are the global spacetime symmetries, such as the Galilean
invariance of Newtonian mechanics, and the Lorentz invariance of the Special The-
ory of Relativity. Global spacetime symmetries are intended to be valid for all the
laws of nature, for all the processes that unfold in the spacetime. Symmetries with
this universal character were labelled ‘geometric’ by Wigner (see [1967, especially
p. 17]).

This universal character is not shared by some of the symmetries introduced into
physics during the twentieth century. Most of these were of an entirely new kind,
with no roots in the history of science, and in some cases expressly introduced to
describe specific forms of interactions — whence the name ‘dynamical symmetries’
due to Wigner [1967, see especially pp. 15, 17—18, 22—27, 33]).

The various symmetries of modern physics can also be classified according to a
second distinction: that between global and local symmetries. The terms ‘global’
and ‘local’ are used in physics, and in philosophy of physics, with a variety of mean-
ings. The distinction intended here is between symmetries that depend on constant
parameters (global symmetries) and symmetries that depend on arbitrary smooth
functions of space and time (local symmetries). While Lorentz invariance is an
example of a global symmetry, the gauge symmetry of classical electromagnetism
(an internal symmetry)31 and the diffeomorphism invariance in General Relativity
(a spacetime symmetry) are examples of local symmetries, since they are parame-
terized by arbitrary functions of space and time.32 Recalling Wigner’s distinction,
Lorentz invariance is a geometric symmetry, applying to all interactions, whereas
the gauge symmetry of electromagnetism concerns the electromagnetic interaction
specifically and is therefore a dynamical symmetry.

The gauge symmetry of classical electromagnetism is an internal symmetry
because the transformations of the vector potential occur in the internal space
of the field system, rather than in spacetime. The gauge symmetry of classical
electromagnetism can seem to be no more than a mathematical curiosity, specific
to this theory; but with the advent of quantum theory the use of internal degrees

30The distinction is important in, for example, our discussion of Curie’s principle, Section 2.2
above.

31For more on gauge and internal symmetries, see the following paragraph.
32We discuss the local symmetry of General Relativity further in Section 6.1 below. See also

[Belot, this vol., ch. 2].
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of freedom, and the related internal symmetries, became fundamental.33

The translations, rotations and boosts of the inhomogeneous Lorentz group are
all examples of continuous symmetries, for which any finite symmetry transforma-
tion can be built up of infinitesimal symmetry transformations. In contrast with
the continuous symmetries we have the discrete symmetries of charge conjugation,
parity, and time reversal (CPT), along with permutation invariance. Thus, Newto-
nian mechanics and classical electrodynamics are invariant under parity (left-right
inversion) and under time reversal (roughly: the laws hold for a sequence of states
evolved in the backwards time direction just as they hold for the states ordered in
the forwards direction). Classical electrodynamics is also invariant under charge
conjugation, so long as we correctly implement the associated transformations of
the electric and magnetic fields. Finally, there is a sense in which classical sta-
tistical mechanics is permutation invariant: the particles postulated are identical
to one another, and their permutation takes a solution into a solution. However,
the power and significance of the discrete symmetries achieves its full force only
in quantum theory.

In Section 8 below, we discuss some of the interpretative issues associated with
these different varieties of symmetry in classical physics.

5 SOME APPLICATIONS OF SYMMETRIES IN CLASSICAL PHYSICS

5.1 Transformation theory in classical mechanics

As we have seen, Lie’s interest in continuous groups arose in relation to his studies
of the theory of first-order partial differential equations, which played a central role
in the formulation given by Hamilton and Jacobi to mechanics. The transformation
theory of mechanics based on this formulation is indeed one of the first examples
of a systematic exploitation in physics of the invariance properties of dynamical
equations. These symmetries are exploited according to the following strategy: the
integration of the equations of motion is simplified by transforming — by means of
symmetry transformations — the original dynamical system into another system
with fewer degrees of freedom.

Historically, the road to the possibility of applying the above ‘transformation
strategy’ to solving dynamical problems was opened by the works of J. L. La-
grange and L. Euler. The Euler-Lagrange analytical formulation of mechanics,
grounded in the seminal Mécanique Analytique [1788] of Lagrange, expressed the
laws of motion in a form which was covariant (cf. Section 4.1) under all coor-
dinate transformations. This meant one could more easily choose coordinates to
suit the dynamical problem concerned. In particular, one hoped to find a coor-

33For interpretative issues associated with gauge symmetry in classical electromagnetism, see
Belot [1998]. Gauge symmetries came to prominence with the development of quantum theory.
The term ‘gauge symmetry’ itself stems from Weyl’s 1918 theory of gravitation and electromag-
netism. For discussions of all these aspects of gauge symmetry, see [Brading and Castellani,
2003].
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dinate system containing “cyclic” (a.k.a. “ignorable”) coordinates. The presence
of ignorable coordinates amounts to a partial integration of the equations: if all
the coordinates are ignorable, the problem is completely and trivially solved. The
method was thus to try to find (by applying coordinate transformations leaving the
dynamics unchanged) more and more ignorable variables, thus transforming the
problem of integrating the equations of motion into a problem of finding suitable
coordinate transformations.

The successive developments in the analytical approach to mechanics, from
Hamilton’s “canonical equations of motion” to the general transformation theory
of these equations (the theory of canonical transformations) obtained by Jacobi,
presented many advantages of the “transformation strategy” point of view. For
further details we refer the reader to Butterfield’s chapter of this volume, along
with classic references such as Lanczos [1949; 1962] and Whittaker [1904; 1989].
Butterfield [this vol., ch. 1], by expounding the theory of symplectic reduction in
classical mechanics, thoroughly illustrates the strategy of simplifying a mechanical
problem by exploiting a symmetry. This strategy is also the main subject of But-
terfield [2006], focussing on how symmetries yield conserved quantities according
to Noether’s first theorem (see Section 7, below), and thereby reduce the number
of variables that need to be considered in solving a problem.

We end these brief remarks on symmetry and transformation theory in classical
mechanics by emphasizing two points.

First, we note that a problem-solving strategy according to which a dynamical
problem (equation) is transformed into another equivalent problem (equation) by
means of a symmetry might be seen as an example of the application of Curie’s
principle in its modern version (see here Section 2.2): by transforming an equation
into another equivalent equation using a specific symmetry we may arrive at an
equation which we can solve; the solution of the new equation is related to the
unknown solution of the old equation by the specific symmetry; that is, we thereby
arrive at an equivalent solution.

Second, we emphasize that in all these developments the invariance properties
of the dynamical equations, though undoubtedly important, were considered ex-
clusively in an instrumental way. That is, canonical transformations were studied
only for the purpose of solving the dynamical problem at hand. The equations
were given, and their invariance properties were investigated to help find their
solutions. The formulation of Einstein’s Special Theory of Relativity at the begin-
ning of the twentieth century brings an inversion of this way of thinking about the
relationship between symmetries and physical laws, as we shall see in the following
section.

5.2 Symmetry principles as guides to theory construction

The principle of relativity, as expressed by Einstein in his 1905 paper announcing
the Special Theory of Relativity, asserts that

The laws by which the states of physical systems undergo changes are
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independent of whether these changes are referred to one or the other
of two coordinate systems moving relatively to each other in uniform
motion.34

It further turns out that these coordinate systems are to be inertial coordinate
systems, related to one another by the Lorentz transformations comprising the
inhomogeneous Lorentz group.

The principle of relativity thus stated meets the conditions listed above in Sec-
tion 1 for a symmetry principle:

• The Lorentz transformations, applied to the independent and dependent
variables of the theory, leave the form of the laws as stated in one inertial
system unchanged on transformation to another inertial coordinate system.

• The Lorentz transformations map a solution, given relative to an inertial
coordinate system, into another solution.

This principle was explicitly used by Einstein as a guide to theory construction:
it is a principle that must be satisfied whatever the final details of the theory.35

Indeed, using just the principle of relativity and the light postulate, Einstein de-
rives various results, including the Lorentz transformations. As noted above, this
represents a reversal in the priority that, since the time of Newton, had been given
to the relativity principle versus the dynamical laws. Huygens used the relativ-
ity principle as a basic postulate from which to derive dynamical results, but in
Newton the relativity principle, initially presented in his manuscripts as an inde-
pendent postulate, is relegated in the Principia to a corollary.36 From then until
Einstein, the relativity of inertial motion is seen as a consequence of the particular
laws under consideration, and something that could turn out to be false once the
details of the laws of some particular interaction are known. Similarly for classical
physics in general, symmetries — such as spatial translations and rotations —
were viewed as properties of the laws that hold as a consequence of those par-
ticular laws. With Einstein that changed: symmetries could be postulated prior
to details of the laws being known, and used to place restrictions on what laws
might be postulated. Thus, symmetries acquired a new status, being postulated
independently of the details of the laws, and as a result having strong heuristic
power. As Wigner wrote, Einstein’s papers on special relativity ‘mark the reversal
of a trend’: after Einstein’s works, ‘it is now natural to try to derive the laws of
nature and to test their validity by means of the laws of invariance, rather than
to derive the laws of invariance from what we believe to be the laws of nature’
[Wigner, 1967, 5].

34Miller’s [1981] translation, p. 395.
35For discussion of the principle/constructive theory distinction in Einstein, see [Brown, 2006,

ch. 6] and [Howard, 2007].
36In fact, it does not follow from Newton’s three laws of motion — we must further assume

the velocity independence of mass and force. See [Barbour, 1989, Section 1.2].
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The methodology that had served Einstein well with the Special Theory of Rel-
ativity (STR) also had a role in his development of the General Theory (GTR), for
which he used various different principles as restrictions on the possible form that
the eventual theory might take.37 One of these was, so Einstein maintained, an
extension of the principle of relativity found in STR to include coordinate systems
that are in accelerated motion relative to one another, implemented by means of
the requirement that the equations of his new theory be generally covariant. Ein-
stein was seeking a “Machian” solution to the challenge of Newton’s bucket, which
he took to require that there be no preferred reference frames. Thus, in his 1916
review article Einstein wrote that ‘The laws of physics must be of such a nature
that they apply to systems of reference in any kind of motion. Along this road we
arrive at an extension of the postulate of relativity’ (emphasis in original).

The questions of whether or not the principle of general covariance (a) makes
any arbitrary smooth coordinate transformation into a symmetry transformation,
and (b) is a generalization of the principle of relativity, have been much discussed.
The answer to (b) is a definitive ‘no’, but there is less consensus at present about
the answer to (a).38 In the following section we take up discussion of (a). Here we
close with a few brief remarks concerning (b).

Even if general covariance in GTR is a symmetry principle, it is not an extension
of the relativity principle. That is to say, general covariance says nothing about
the observational equivalence of distinct reference frames.39 As already noted, the
thought that general covariance might provide such a principle was, for Einstein,
connected with his attempts to provide a “Machian” resolution to the challenge
of Newton’s bucket, and with his principle of equivalence. However, the principle
of equivalence does not imply the observational equivalence of reference frames
in arbitrary states of motion (Einstein never thought that it did), and Einstein
eventually realized that GTR does not vindicate a solution to Newton’s bucket
that depends only on the relative motion of matter.40

Whatever the subtleties of whether, and to what extent, general covariance is a
symmetry principle, it is clear that it had enormous heuristic power, not just for
Einstein in his development of GTR, but also beyond. Think for example Hilbert’s
work on the axiomatization of physics (see [Corry, 2004], and references therein),
and Weyl’s attempts to construct a unified field theory (see [O’Raifeartaigh, 1997],
for an English translation of Weyl’s 1918 paper ‘Gravitation and Electricity’, and
see also [Weyl, 1922]). In all these cases, general covariance provided a power-
ful tool for theory construction. In the following Section we discuss further the

37Primarily the following: the principle of relativity, later (in 1918) distinguished from what
Einstein referred to as ‘Mach’s principle’; the principle of equivalence; and the principle of
conservation of energy–momentum.

38See for example [Torretti, 1983, 152–4]; Norton [1993], who also discusses the relationship
with the principle of equivalence; Anderson [1967].

39For further discussion see, for example, [Norton, 1993] and [Torretti, 1983, Section 5.5].
40For a clear and concise discussion, see [Janssen, 2005].
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significance and interpretation of general covariance in GTR.41

6 GENERAL COVARIANCE IN GENERAL RELATIVITY

In the preceding Section we noted the role of the principle of general covariance as a
guide to theory construction. In this Section we turn our attention to a number of
further issues relating to general covariance in GTR that have received attention
in the philosophical literature. We begin with the issue, raised in the preced-
ing section, concerning the status of arbitrary smooth coordinate transformations
as symmetry transformations. We then discuss various characteristics associated
with general covariance, including those pointed to by Einstein’s so-called ‘hole
argument’, before turning to the issue of whether or not general covariance has
physical content.42 We postpone discussion of Noether’s theorems to Section 7,
below.

6.1 General covariance and arbitrary coordinate transformations as
symmetry transformations

Does the principle of general covariance make any arbitrary smooth coordinate
transformation into a symmetry transformation? One way to approach this ques-
tion is to consider active rather than passive transformations (see Section 4.1,
above), and to compare the situation in GTR with that in STR.

In STR, a Lorentz transformation — actively construed — picks up the matter
fields and redistributes them with respect to the spacetime structure encoded in
the metric. The principle of relativity holds for such transformations because the
evolution of the matter fields in the two cases (related by the Lorentz transfor-
mation) are observationally indistinguishable: no observations, in practice or in
principle, could distinguish between the two scenarios. In GTR, active general
covariance is implemented by active diffeomorphisms on the spacetime manifold
(see [Rovelli, this vol., ch. 12, Section 4.1]). These involve transformations of not
just the matter fields, but also the metric field, in which both are redistributed
with respect to the spacetime manifold. Once again, the “two cases” are observa-
tionally “indistinguishable”, but this time the reason generally given is that the
“two cases” are in fact just one case.43

Why should we accept that there are two genuinely distinct cases when consider-
ing the Lorentz transformations in STR, and only one case for the diffeomorphisms
of GTR? One approach would be to claim that a crucial difference between the
two is that a Lorentz transformation can be implemented on an effectively iso-
lated sub-system of the matter fields, producing an observably distinct scenario in

41For detailed presentation of the Special and General Theories of Relativity, see [Malament,
this vol., ch. 3]. See also [Rovelli, this vol., ch 12, Section 4].

42See also [Belot, this vol., ch. 2].
43See also Section 6.2, penultimate paragraph.
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which, nevertheless, the evolution of the sub-system in question is indistinguish-
able assuming no reference is made to matter fields outside that subsystem. For
example, in Galileo’s famous ship experiment we consider two observably distinct
scenarios — one in which the ship is at rest with respect to the shore, and one
in which it moves uniformly with respect to the shore — and we notice that the
behaviour of physical systems within the cabin of the ship does not distinguish
between the two scenarios.44 No analogue of the Galilean ship experiment can be
generated for the general covariance of GTR.45

The importance of symmetry transformations being implementable to produce
observationally distinct scenarios has been emphasized by Kosso [2000]. On this
view, the observational significance of symmetry transformations rests on a combi-
nation of two observations being possible in principle. First, it must be possible to
confirm empirically the implementation of the transformation — hence the impor-
tance of being able to generate an observationally distinguishable scenario through
the transformation of a subsystem. Second, we must be able to observe that the
subsequent internal evolution of the subsystem is unaffected. That we cannot meet
the first of these requirements for arbitrary smooth coordinate transformations in
GTR marks a difference between these and the Lorentz transformations.46

On this approach, while the field equations of GTR take the same form for any
choice of coordinate system, this is not sufficient for arbitrary coordinate trans-
formations to be symmetries. In addition, the actively construed transformations
must have a physical interpretation — we must be transforming one thing with
respect to something else. When we perform a diffeomorphism, we get back the
same solution, not a new solution, for we are not re-arranging the matter fields
with respect to the metric.

We stress that this is only one way to approach the issue of whether general
covariance should be understood as a symmetry principle in GTR. A contrasting
position may be found in [Anderson, 1967, Section 10-3], who argues that we must
understand Einstein as viewing general covariance as a symmetry requirement,
and attempts to spell out the conditions under which it can function as such.

44This implementation can be only approximate, relying on the degree to which the subsystem
in question can be isolated from the “external” matter fields.

45One suggestion might be that we perform a transformation T which is the identity outside
some region R, and which differs from the identity within that region. This will not achieve the
desired result. The two scenarios must have observationally distinct consequences, at least in
principle. In the case of Galileo’s ship, if we allow the subsystem to interact with other matter
once again, we will see that in one case the ship crashes into rocks (for example), while in the
other it suffers no such collision. Thus, we have observational distinguishability in principle.
The transformation T does not produce a scenario which any future events could enable us to
distinguish from the original.

46Indeed, this result applies generally to local versus global symmetries. See also [Brading and
Brown, 2004].
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6.2 Characteristics of generally covariant theories

Any generally covariant theory will possess certain characteristics that are philo-
sophically noteworthy. First, there will be a prima facie problem with causality
and determinism within the theory, and second, there will be constraints on the
specification of the initial data. Einstein recognized aspects of the first character-
istic while he was searching for his theory of gravitation, maintaining from 1913
through until the fall of 1915 that his so-called ‘hole argument’ provided grounds
for concluding that no generally covariant theory could be physically acceptable.

In the ‘hole argument’, Einstein considers a region of spacetime in which there
are no matter fields (the “hole”), and then shows that in a generally covariant
theory no amount of data about the values of the matter and gravitational fields
outside the hole is sufficient to uniquely determine the values of the gravitational
field inside the hole. From this, Einstein concluded that no generally covariant
theory could be physically acceptable.47

The context to bear in mind here is that Einstein was searching for a theory in
which the matter fields plus the field equations would uniquely determine the met-
ric.48 In the summer of 1915 Einstein lectured on relativity theory in Göttingen
where his audience included David Hilbert. If we assume that Einstein’s presen-
tation included a version of his ‘hole argument’, then we can reasonably infer that
Hilbert was quick to reinterpret the issue that the ‘hole argument’ points to, and
to present the problem raised for generally covariant theories in terms of whether
such theories permit well-posed Cauchy problems.49

In the years immediately following the advent of GTR, Hilbert played a cen-
tral role in spelling out the problems of causality and determinism faced by any
generally covariant theory. He pointed out that in any such theory, including
GTR, there will be four fewer field equations than there are variables, leading to a
mathematical underdetermination in the theory. As Hilbert stressed, the Cauchy
problem is not well-posed: given a specification of initial data, the field equations
do not determine a unique evolution of the variables.

We can see the connection between the underdetermination problem and gen-
eral covariance as follows. For the Cauchy problem to be well-posed, we must be
able to express the second time derivatives of the metric in terms of the initial data
(plus the further spatial derivatives that can be calculated from the initial data).
However, if we re-express the 10 (source-free) Einstein field equations Gµν = 0
so as to explicitly display all the terms containing the second time derivative of
the metric, we see that we have ten equations for six unknowns gij,00, the remain-
ing four second time derivatives gµ0,00 failing to appear in the equations.50 This

47For presentation and discussion of the ‘hole argument’, see Norton [1984, 286–291] and [1993,
Sections 1-3], Stachel [1993], and Ryckman [2005, Section 2.2.2]. See also [Rovelli, this vol., ch.
12, Section 4.1.1].

48For more on Einstein’s (mis)appropriation of Mach’s principle, see [Barbour, 2005].
49Brading and Ryckman [2007]; see also [Brown and Brading, 2002, especially Section IV].
50See [Adler, Bazin and Schiffer, 1975, ch. 8] for details of the over- and under-determination

issues.
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is a direct consequence of general covariance: we can always make a coordinate
transformation in the neighborhood of the initial data surface such that the met-
ric components and their first derivatives are unchanged, while the second time
derivatives gµ0,00 vanish on that surface. Thus the field equations, which must be
valid in all coordinate systems, cannot possibly contain information on the second
time derivatives. The initial data do not determine the metric uniquely: there are
four arbitrary functions gµ0,00 that we are free to choose.

Today, it is customary to assert from the outset that solutions of Einstein’s
field equations differing only in the choice of these four arbitrary functions are
physically equivalent.51 But here we should note that this “gauge freedom” in-
terpretation of general covariance leads to problems of its own.52 For example,
within this framework the observables of the theory must be “gauge invariant”
quantities, but such quantities have (to date) turned out to be far removed from
anything “observable” in the operational sense. The gauge freedom interpretation
of general covariance is sometimes accompanied by the view that this freedom
— and therefore general covariance itself — lacks physical content. We turn to
consider this issue in Section 6.3, below.

In our explanation of the underdetermination problem, above, we noted that the
Einstein equations provide ten equations for the six unknowns gij,00. The other
face of the underdetermination problem is therefore an overdetermination problem
with respect to the gij,00, and what this means is that there will be constraints
on the specification of the data on the initial hypersurface. This is the second
characteristic of all generally covariant theories that we mentioned in our opening
remarks of the current subsection. Indeed, the presence of constraint equations
is a feature shared with other theories with a local symmetry structure, such as
electromagnetism. Philosophically, the significance lies in the relationship between
the theory and the initial data. In the seventeenth century Descartes wrote a story
of a world created in a state of disorder from which, by the ordinary operation of
the laws of nature, a world seemingly similar to our own emerged.53 This image
of the world emerging from an initial chaos has a long history, of course, but
the emergence of order by means of the operation of the laws of nature offered
a novel twist to the tale. It involves the separation of initial conditions, which
could be anything, from the subsequent law-governed evolution of the cosmos. In
modern terms, this is a theory without constraints: the theory determines which
properties of a system must be specified in order to give adequate initial data,
but we are then free to assign whatever values we please to these properties;
the equations of the theory are used to evolve that data forwards in time. A
theory with constraints, by contrast, contains two types of equations: constraint
equations that must be satisfied by the initial data, as well as evolution equations.

51Recall the discussion of Section 6.1, above.
52See [Belot, this vol., ch. 2].
53Written around 1633, Le Monde was not published in Descartes’s lifetime. For an English

translation see Descartes [1998]. The “order out of disorder” story is in the Treatise on Light,
chs. 6 and 7. Whether the ordinary operation of the laws of nature was sufficient to bring order
out of chaos became a much-disputed issue.
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In GTR, four of the ten field equations connect the curvature of the initial data
hypersurface with the distribution of mass–energy on that hypersurface, and the
remaining six field equations are evolution equations. To sum up, in a theory with
constraints, the initial “disorder” cannot be so disordered after all, but must itself
satisfy constraints set down by the laws of the theory.

6.3 Does general covariance have any physical significance?

As we saw in Section 5, Einstein treated general covariance as a symmetry prin-
ciple guiding the search that produced his General Theory of Relativity. There is
no doubt that general covariance proved a useful heuristic for Einstein, but there
remains an ongoing dispute over whether general covariance in fact has any phys-
ical significance. The issue was forcefully raised by Kretschmann already in 1917.
The thrust of the argument, which continues to reverberate today, is that any the-
ory can be given a generally covariant formulation given sufficient mathematical
ingenuity, and therefore the principle of general covariance places no restrictions
on the physical content of a theory. Indeed, Norton [2003] begins his discussion
of the issue by claiming that this negative view of general covariance has become
mainstream, before going on to give an alternative viewpoint (see below).

It seems clear to us that the characteristic features of generally covariant theories
discussed above may, in some theories at least (including GTR), be far from trivial,
and that the mainstream view — which would indeed render these issues trivial
— should be opposed. Those wishing to oppose the mainstream view adopt a two-
step general strategy: first, show under what conditions general covariance places
a restriction on the physical content of a theory; and second, demonstrate what
those implications for physical content consist in. Thus, the general mathematical
point that any theory can be put into generally covariant form is conceded, but
the implication that general covariance is therefore necessarily physically vacuous
is resisted by attention to the manner in which general covariance is implemented
in a given theory or class of theories.

For example, Anderson [1967], Ohanian and Ruffini [1994], Norton [2003], and
Earman [2006] each attempt to explain under what conditions the purely mathe-
matical feature of general covariance comes to have physical bite.54 Anderson dis-
tinguishes between the symmetries of a theory (which have physical significance)
and the covariance group of the equations (which need not). Anderson is the clas-
sic reference for the distinction between “absolute” and “dynamical” objects,55

54See also [Norton, 1993, especially Section 5], and [Rovelli, this vol., ch. 12, Section 4.1.3].
55It has proved difficult to make the distinction between absolute and dynamical objects pre-

cise, but the intuitive idea is clear enough. Dynamical objects satisfy field equations and interact
with other objects, whereas absolute objects are not affected by the dynamical behaviour of other
fields appearing in the theory. For a careful and detailed treatment of Anderson’s approach, and
the counter-examples that have been raised, see [Pitts, 2006]. The conclusion of this paper is
that Anderson’s intuition can be made sufficiently precise to cope with all counter-examples that
have appeared in the literature to date (including one due to Pitts himself), but that there is
another example, due to Geroch, that Pitts has been unable to resolve. The debate goes on!
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and in this terminology the covariance group of the equations of a theory becomes
a symmetry group if and only if the theory contains no absolute objects. Ohanian
and Ruffini [1994] appeal to the distinction they make between invariance and co-
variance of the equations of a theory.56 Covariance, they agree, is a mathematical
feature (perhaps simply an artefact of the particular formulation of the theory at
hand); but we require not only the covariance of the equations, but also that for
any objects (with one or more components) appearing in the theory that are nev-
ertheless independent of the state of matter (such as the speed of light, Planck’s
constant, etc.), their value should be unchanged by the general coordinate trans-
formations. Norton [2003] emphasizes the role of physical considerations in fixing
the content of a theory such that this restricts the formal games that we can play.
Earman [2006] begins by taking pains to emphasize the distinction between the
‘mere co-ordinate freedom’ (associated with arbitrary coordinate transformations,
passively construed) and ‘the substantive demand that diffeomorphism invariance
is a gauge symmetry of the theory at issue’. That is to say, he reminds us that the
issue at stake is not our ability to re-write a theory in generally covariant form (it
is conceded that this is something we can always do, given sufficient mathematical
ingenuity), but the relationship between the physical situations that are related by
diffeomorphisms, i.e. by (active) point transformations (see Section 6.1, above).
‘Substantive general covariance’ holds when diffeomorphically related models of
the theory represent different descriptions of the same physical situation. The
claim is that GTR satisfies substantive general covariance whereas generally co-
variant formulations of such theories as STR need not, and the goal is to show
that this requirement provides demarcation between theories in which general co-
variance represents a physically significant property of the theory, and those in
which it does not.57

Thus, Anderson, Ohanian and Ruffini, Norton, and Earman each seek to add
bite to the “merely mathematical” requirement of general covariance by placing
conditions on the manner in which it is implemented in the theory. Once these
requirements are added, various consequences follow for the content of the theory,
such as that the metric be a dynamical object. In each case, the aim is to elevate
general covariance as implemented in GTR to a symmetry principle.58

Considerations of the significance of general covariance in theories of gravitation
led to the formulation of three theorems important for the general interpretation
of symmetries in physics. These theorems are due to Emmy Noether and Felix
Klein, and will be discussed in the following section.

56See Section 4.1.
57One important tool for distinguishing genuine ‘gauge theories’ from those in which the local

symmetry in question is merely formal is Noether’s second theorem; see Section 7, below.
58Brown and Brading [2002] attempt to analyze in more detail, by means of Noether’s theorems

(see Section 7, below), what additional conditions must be added to general covariance in order
to arrive at specific aspects of the content of GTR.



Symmetries and Invariances in Classical Physics 1355

7 NOETHER’S THEOREMS

Any discussion of the significance of symmetries in physics would be incomplete
without mention of Noether’s theorems. These theorems relate symmetry proper-
ties of theories to other important properties, such as conservation laws.

Within physics, the term ‘Noether’s theorem’ is most frequently associated with
a connection between global continuous symmetries and conserved quantities. Fa-
miliar examples from classical mechanics include the connections between: spatial
translations and conservation of linear momentum; spatial rotations and conser-
vation of angular momentum; and time translations and conservation of energy.
In fact, this theorem is the first of two theorems presented in her 1918 paper
‘Invariante Variationsprobleme’.59

Before stating the two theorems, we begin with the following cautionary remark.
The connection between variational symmetries (connected to the invariance of the
action, and in terms of which Noether’s theorems are formulated) and dynamical
symmetries (concerning the dynamical laws, which is the topic of our discussion
here) is subtle (see [Olver, 1993, ch. 4]). Noether herself never addressed the
connection, and never used the word ‘symmetry’ in her paper. She discusses
integrals mathematically analogous to (but generalizations of) the action integrals
of Lagrangian physics, and uses variational techniques and group theory to elicit
a pair-wise correspondence between variational symmetries of the integral and a
set of identities.

Noether then proves two theorems, the first for the case where the variational
symmetry group depends on constant parameters, and the second for the case
where the variational symmetry group depends on arbitrary functions of the vari-
ables.60 In the following statement of her theorems we use the term ‘Noether
symmetry’ to refer to a symmetry of the field equations for which the change in
the action arising from the infinitesimal symmetry transformation is at most a
surface term. Using the terminology of Section 4.2, the first type of symmetry
then corresponds to a global dynamical symmetry, and the second to a local one.
We state the theorems in a form appropriate to Lagrangian field theory; Noether’s
own statement of the theorems involves no such specialization. For discussion
of the first theorem in the context of finite-dimensional classical mechanics see
[Butterfield, this vol., ch. 2, Section 2.1.3]. We state the theorems so that we can
refer back to them to characterize the conceptual content, but for discussion of the
mathematical detail of their derivation and content we refer the reader elsewhere
— see especially [Olver, 1993] and [Barbashov and Nesterenko, 1983].

We can state Noether’s two theorems, for a Lagrangian density L depending on
the fields φi(x) and their first derivatives, as follows.

59For an English translation see [Noether, 1971].
60See [Brading and Brown, 2007].
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Noether’s first theorem

If a continuous group of transformations depending smoothly on ρ constant param-
eters ωk (k = 1, 2, ..., ρ) is a Noether symmetry group of the Euler-Lagrange equa-
tions associated with a Lagrangian L(φi, ∂µφi, xµ), then the following ρ relations
are satisfied, one for every parameter on which the symmetry group depends:61∑

i

EL
i ξki = ∂µj

µ
k . (1)

On the left-hand side we have a linear combination of Euler expressions,

EL
m ≡

∂L

∂φm
− ∂µ

(
∂L

∂φm,µ

)
(2)

where
EL
m = 0 (3)

are the Euler-Lagrange equations for the field φm. (The ξmi depend on the partic-
ular symmetry transformations and fields under consideration, and the details are
not important for our current purposes.)

On the right-hand side we have the divergence of a current, jµk . When the
left-hand side vanishes, the divergence of the current is equal to zero, and this
expression can be converted into a conserved quantity subject to certain conditions.
Thus, Noether’s first theorem gives us a connection between global symmetries and
conserved quantities.62

Noether’s second theorem

If a continuous group of transformations depending smoothly on ρ arbitrary func-
tions of time and space pk(x) (k = 1, 2, ..., ρ) and their first derivatives is a Noether
symmetry group of the Euler-Lagrange equations associated with a Lagrangian
L(φi, ∂µφi, xµ), then the following ρ relations are satisfied, one for every function
on which the symmetry group depends:∑

i

EL
i aki =

∑
i

∂ν(bνkiE
L
i ). (4)

The aki and bνki depend on the particular transformations of the fields in ques-
tion, and while again the details need not concern us here, we note for use below
that while the aki arise even when the symmetry transformation is a global trans-
formation, the bνki occur only when it is local.63 What we have here, essentially,

61Note that we are using the Einstein summation convention to sum over repeated greek
indices.

62This theorem is widely discussed. See especially [Barbashov and Nesterenko, 1983]; [Doughty,
1990]. We refer the reader to [Butterfield, this vol., ch. 2] and [Butterfield, 2006] for further
discussion of Noether’s first theorem in the context of finite-dimensional classical mechanics.

63Once again, the reader is referred to [Brading and Brown, 2007] for further details.
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is a dependency between the Euler expressions and their first derivatives. This
dependency holds as a consequence of the local symmetry used in deriving the
theorem. In the case when all the fields are dynamical (i.e. satisfy Euler-Lagrange
equations) it follows that not all the field equations are independent of one an-
other. This formal underdetermination is characteristic of theories with a local
symmetry structure.64

As Hilbert recognized in the context of generally covariant theories of grav-
itation, the underdetermination is independent of the specific form of the La-
grangian.65 In the case of General Relativity, once we specify the Lagrangian and
substitute it into (4), we arrive at the (contracted) Bianchi identities.

For Noether herself, the impetus for the paper arose from the discussions over
the status of energy conservation in generally covariant theories between Hilbert,
Klein and Einstein, during which Hilbert commented that energy conservation for
the matter fields no longer has the same status in generally covariant theories as it
had in previous (non-generally covariant) theories, because it follows independently
of the field equations for the matter fields. Noether’s two theorems can be used
to support this conjecture (see [Brading, 2005]). The discussion over the status
of energy conservation in General Relativity continues, the root of the issue being
that energy-momentum cannot, in general, be defined locally.66

Today, the significance of Noether’s results lie in their generality. Many of
the specific connections between global spacetime symmetries and their associated
conserved quantities were known before Noether’s 1918 paper, and both Einstein
and Hilbert anticipated some aspects of the second theorem in their investigations
of energy conservation during and after the development of GTR.67 However, her
systematic treatment allows us to understand that these relations do not rely on
the detailed dynamics of a particular theory, but in fact follow from the structure
of Lagrangian theories and significantly weaker stipulations than the full dynam-
ics of the theory. For example, general covariance leads to energy conservation
in GTR given satisfaction of the gravitational field equations, but independently

64Whether the dependencies expressed by the second theorem are trivial or not depends on
the status of the fields with respect to which the local symmetry holds. It is in this way that
Noether’s second theorem can be used as a tool in the attempt to demarcate ‘true gauge theo-
ries’ from theories where the local symmetry is a ‘mere mathematical artefact’ (see Section 6.3
above, and [Earman, 2006]). For a ‘true gauge theory’ the dependencies have significant physical
implications.

65[Hilbert, 1915].
66The energy-momentum conservation law in General Relativity is formulated in terms of the

vanishing of the covariant divergence of the energy-momentum tensor associated with the matter
fields. Alternatively, we can express this in terms of the vanishing of the coordinate divergence
of the energy-momentum of the matter fields plus that of the gravitational field. The latter term
falling under the divergence operator is not uniquely defined and, pertinent the issue of non-
localizability, may vanish in some coordinate systems and not in others. We can understand this
coordinate dependence by reflecting on the equivalence principle, according to which partitioning
the inertial-gravitational field to obtain a division between inertial and gravitational forces is
itself a coordinate-dependent issue. For further discussion see, for example, [Misner, Thorne and
Wheeler, 1970, 467–8], and [Wald, 1984, 70]. See also [Malament, this vol., ch. 3].

67On Einstein, see [Janssen, 2005, 75–82]; and see [Sauer, 1999] on Hilbert.
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of the detailed form of those equations, and independently of the field equations
for the matter fields (indeed, independently of whether the matter fields satisfy
Euler-Lagrange equations at all).68 Noether’s theorems are a powerful tool for in-
vestigating the structure of theories — which assumptions are required to generate
which aspects of the theory, and so forth.69

It is worthwhile mentioning a third theorem, connected with Noether’s two
theorems and derived in the same context (i.e. the study of generally covariant
theories of gravitation and conservation of energy) by Felix Klein [1918]. We call it
the ‘Boundary theorem’ for reasons associated with its method of derivation.70 As
with Noether’s second theorem, the Boundary theorem concerns local symmetries,
and results in a series of identities (termed the ‘cascade equations’ by Julia and
Silva [1998]).71 We state here a simplified version of the Boundary theorem in
which the action is left unchanged by an infinitesimal symmetry transformation
(i.e. we do not allow for the possibility of a surface term).72

The Boundary theorem (restricted form)

If a continuous group of transformations depending smoothly on ρ arbitrary func-
tions of time and space pk(x) (k = 1, 2, ..., ρ) and their first derivatives is a Noether
symmetry group73 of the Euler-Lagrange equations associated with a Lagrangian
L(φi, ∂µφi, xµ), then the following three sets of ρ relations are satisfied, one for
every parameter on which the symmetry group depends:

∑
i

∂µ(b
µ
kiE

L
i ) = ∂µj

µ
k (5)

∑
i

(bµkiE
L
i ) = jµk −

∑
i

[
∂ν

(
∂L

∂(∂νφi)
bµki

)]
(6)

(
∂L

∂(∂µφi)
bνki

)
+
(

∂L

∂(∂νφi)
bµki

)
= 0. (7)

Once again, the bνki depend on the particular transformations of the fields in
question, the details of which need not concern us here. The first identity is

68See [Brading and Brown, 2007].
69For a discussion of this in the case of general covariance, see [Brading and Brown, 2002].
70The Boundary theorem also appears in the work of Hermann Weyl, specialized to the case

of his unified field theory (see [Weyl, 1922, 287–289]; the first appearance was in the 1919 third
edition), and was published in a non-theory-specific form by Utiyama [1956; 1959].

71As with Noether’s second theorem, the Boundary theorem is a useful tool in the attempt to
demarcate ‘true gauge theories’ from theories where the local symmetry is a ‘mere mathematical
artefact’, through inspection of the identities that result from the theorem, and through the
physical significance — or otherwise — of these identities.

72For further details of the Boundary theorem, including the generalization that allows for a
surface term, see [Brading and Brown, 2007].

73The Boundary theorem is here stated in a restricted form such that the Noether symmetry
group must belong to the restricted class of such groups associated with an invariant action.
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connected to the existence of superpotentials associated with local symmetries.74

The second equation can be used to investigate the relationship between a field
and its sources. For example, in the case of classical electromagnetism, we can
investigate the relationship between the local gauge symmetry of the theory and
the condition that:

jµ = ∂νF
µν , (8)

i.e. that Maxwell’s equations with dynamical sources hold. Using the case of clas-
sical electromagnetism as our example once again, the third equation becomes the
condition that the electromagnetic tensor be antisymmetric (showing the relation-
ship between this condition and the local gauge symmetry of that theory):

Fµν + F νµ = 0. (9)

These remarks have been necessarily brief, and the reader is referred to [Bar-
bashov and Nesterenko, 1983], along with Brading and Brown [2003; 2007], for
detailed derivations and discussion of these results. The identities of the Bound-
ary theorem and of Noether’s two theorems are not all independent of one another,
and which is most useful depends on the context and the question under consider-
ation. As with Noether’s theorems, the Boundary theorem holds independently of
the specific details of the dynamical equations, and together they allow us to in-
vestigate structural features of our theories that are associated with the symmetry
properties of those theories.

8 THE INTERPRETATION OF SYMMETRIES IN CLASSICAL PHYSICS

In what follows, we begin with ‘Wigner’s hierarchy’, which has become the canon-
ical view of the relationship between symmetries, laws and events. We supplement
this with a brief discussion of the connection between symmetry and irrelevance,
and how this bears on the interpretation of the various symmetries described in
Section 4.2, above.

The general interpretation of symmetries in physical theories can adopt a num-
ber of complementary approaches. We can ask about the different roles that var-
ious symmetries play; about the epistemological, ontological or other status that
various symmetries have; and about the significance of the structures left invariant
by symmetry transformations. We end with some remarks on each of these issues.

8.1 Wigner’s hierarchy

The starting point for contemporary philosophical discussion of the status and sig-
nificance of symmetries in physics is Wigner’s 1949 paper ‘Invariance in Physical
Theory’, along with his three later papers published in 1964.75 In these papers,

74See, for example, [Trautman, 1962, 179].
75Wigner’s papers can be found in the collection Symmetries and Reflections [Wigner, 1967].
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Wigner makes the distinction mentioned above (see Section 4.2) between geomet-
rical and dynamical symmetries, which we will return to below. He also presents
his view of the hierarchy of physical knowledge, according to which symmetries
are viewed as properties of laws:

There is a strange hierarchy in our knowledge of the world around us.
Every moment brings surprises and unforeseeable events — truly the
future is uncertain. There is, nevertheless, a structure in the events
around us, that is, correlations between the events of which we take
cognizance. It is this structure, these correlations, which science wishes
to discover, or at least the precise and sharply defined correlations.
. . . We know many laws of nature and we hope and expect to discover
more. Nobody can foresee the next such law that will be discovered.
Nevertheless, there is a structure in the laws of nature which we call
the laws of invariance. This structure is so far-reaching in some cases
that laws of nature were guessed on the basis of the postulate that
they fit into the invariance structure. . . . This then, the progression
from events to laws of nature, and from laws of nature to symmetry or
invariance principles, is what I meant by the hierarchy of our knowledge
of the world around us. [Wigner, 1967, 28–30].

This view of symmetries, as properties of laws, has become canonical.

8.2 Symmetry and irrelevance

There is a general property of laws, or of the underlying events, to which symme-
tries are connected: the irrelevance of certain quantities that might otherwise be
thought to have physical significance.76 In Section 4.2 we outlined the variety of
symmetries found in physics, and in each case the symmetry is associated with a
property that is deemed irrelevant for the purposes of describing the law-governed
behaviour of a system. For example, left-right symmetry means that whether a
system is left-handed or right-handed is irrelevant to its law-governed evolution.
Famously, this symmetry is violated in the weak interaction: the law-governed
behaviour of systems turns out to be sensitive to handedness for certain processes
(see [Pooley, 2003]).

In Section 4.2 we characterized the distinction between global and local sym-
metries mathematically, in terms of the dependence on constant parameters and
arbitrary functions of time (and space) respectively. The physical meaning of this
distinction can be understood through the associated properties that are deemed
irrelevant. A global symmetry reflects the irrelevance of absolute values of a cer-
tain quantity: only relative values are relevant. So in Newtonian mechanics, for
example, spatial translation invariance holds and absolute position is irrelevant to

76For an analysis of the connection between symmetry, equivalence and irrelevance, see [Castel-
lani, 2003].
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the behaviour of systems.77 Only relative positions matter, and this is reflected
in the structure of the theory through the equations being invariant under global
spatial translations — the equations do not depend upon, or invoke, a background
structure of absolute positions.

A global symmetry is a special case of a local symmetry. A local symmetry re-
flects the irrelevance not only of absolute values, but furthermore of relative values
specified at-a-distance: only local relative values (i.e. relative values specified at a
point) are relevant. This is reflected in the structure of the theory by the equations
of motion not depending upon some background structure that determines relative
values at-a-distance (i.e. there is no global background structure associated with
the property in question).78

8.3 Roles of symmetries

The various different roles in which symmetries are invoked in physics have become
much more evident with the advent of quantum theory.79 Nevertheless, already
with the classification of crystals using their remarkable and varied symmetry
properties, we see the powerful classificatory role at work. Indeed, it was with
René-Just Haüy’s use of symmetries in this way that crystallography emerged
in 1801 as a discipline distinct from mineralogy.80 Furthermore, the heuristic
and/or normative role is clear for the principle of relativity in the construction of
both Special and General Relativity (see above, Section 5). The unificatory role,
so prominent now in the attempts to unify the fundamental forces, was already
present (although differing methodologically somewhat) in Hilbert’s attempt to
construct a generally covariant theory of gravitation and electromagnetism (see
[Sauer, 1999]) and in Weyl’s 1918 unified theory of gravitation and electromag-
netism, for example. Symmetries may also be invoked in a variety of explanatory
roles. For example, on the basis of Noether’s first theorem (see Section 7) we might
say that it is because of the translational symmetry of classical mechanics (plus

77We are considering here Newtonian mechanics, without Newton’s absolute space.
78Instead, we require the explicit appearance of a connection in our theory, which provides the

rules by which two distant objects may be brought together so that comparisons between them
may be made locally.

79The application of the theory of groups and their representations for the exploitation of
symmetries in the quantum mechanics of the 1920s represents a dramatic step-change in the
significance of symmetries in physics, with respect to both the foundations and the phenomeno-
logical interpretation of the theory. As Wigner emphasized on many occasions, one essential
reason for the ‘increased effectiveness of invariance principles in quantum theory’ [Wigner, 1967,
47] is the linear nature of the state space of a quantum physical system, corresponding to the
possibility of superposing quantum states. For details on the application of symmetries in quan-
tum physics we refer the reader to [Dickson, this vol., ch. 4, Section 3.3], [Landsman, this vol.,
ch. 5, Section 4.1], and [Halvorson, this vol., ch. 8, Section 5.2]. For philosophical discussions
see [Brading and Castellani, 2003].

80The use of discrete symmetries in crystallography continued through the nineteenth century
in the work of J. F. Hessel and A. Bravais, leading to the 32 point transformation crystal classes
and the 14 Bravais lattices. These were combined into the 230 space groups in the 1890s by E. S.
Fedorov, A. Schönflies, and W. Barlow. The theory of discrete groups continues to be important
in such fields as solid state physics, chemistry, and materials science.
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satisfaction of other conditions) that linear momentum is conserved in that theory.
Another example would be an appeal to symmetry principles as an explanation,
via Wigner’s hierarchy, for (i) aspects of the form of the laws, and thereby (ii) why
certain events occur and others do not.

8.4 Status of symmetries

Are symmetries ontological, epistemological, or methodological in status? It is
clear that symmetries have an important heuristic function, as discussed above
(Section 5) in the context of relativity. This indicates a methodological status,
something that becomes further developed within the context of quantum theory.
We can also ask whether we should attribute an ontological or epistemological
status to symmetries.

According to an ontological viewpoint, symmetries are seen as “existing in na-
ture”, or characterizing the structure of the physical world. One reason for at-
tributing symmetries to nature is the so-called geometrical interpretation of spa-
tiotemporal symmetries, according to which the spatiotemporal symmetries of
physical laws are interpreted as symmetries of spacetime itself, the “geometrical
structure” of the physical world. Moreover, this way of seeing symmetries can be
extended to non-external symmetries, by considering them as properties of other
kinds of spaces, usually known as “internal spaces”.81 The question of exactly
what a realist would be committed to on such a view of internal spaces remains
open, and an interesting topic for discussion.

One approach to investigating the limits of an ontological stance with respect
to symmetries would be to investigate their empirical or observational status: can
the symmetries in question be directly observed? We first have to address what it
means for a symmetry to be observable, and indeed whether all symmetries have
the same observational status. Kosso [2000] arrives at the conclusion that there are
important differences in the empirical status of the different kinds of symmetries.
In particular, while global continuous symmetries can be directly observed — via
such experiments as the Galilean ship experiment — a local continuous symmetry
can have only indirect empirical evidence.82

The direct observational status of the familiar global spacetime symmetries
leads us to an epistemological aspect of symmetries. According to Wigner, the
spatiotemporal invariance principles play the role of a prerequisite for the very
possibility of discovering the laws of nature: ‘if the correlations between events
changed from day to day, and would be different for different points of space, it
would be impossible to discover them’ [Wigner, 1967]. For Wigner, this conception
of symmetry principles is essentially related to our ignorance (if we could directly
know all the laws of nature, we would not need to use symmetry principles in our
search for them). Such a view might be given a methodological interpretation, ac-

81See Section 4.2, above, for the varieties of symmetry.
82See Section 6.1, above; and Brading and Brown [2003b], who argue for a different interpre-

tation of Kosso’s examples.
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cording to which such spatiotemporal regularities are presupposed in order for the
enterprize of discovering the laws of physics to get off the ground.83 Others have
arrived at a view according to which symmetry principles function as “transcen-
dental principles” in the Kantian sense (see for instance [Mainzer, 1996]). It should
be noted in this regard that Wigner’s starting point, as quoted above, does not im-
ply exact symmetries — all that is needed epistemologically (or methodologically)
is that the global symmetries hold approximately, for suitable spatiotemporal re-
gions, so that there is sufficient stability and regularity in the events for the laws
of nature to be discovered.

As this discussion, and that of the preceding Subsections, indicate, the dif-
ferences between various types of symmetry become important before we have
ventured very far into interpretational issues. For this reason, much recent work
on the interpretation of symmetry in physical theory has focussed not on gen-
eral questions, such as those sketched above, but on addressing interpretational
questions specific to particular symmetries.84

8.5 Symmetries, objectivity, and objects

Turning now to the issue of the structures left invariant by symmetry transforma-
tions, the old and natural idea that what is objective should not depend upon the
particular perspective under which it is taken into consideration is reformulated in
the following group theoretical terms: what is objective is what is invariant with
respect to the relevant transformation group. This connection between symme-
tries and objectivity is something that has a long history going back to the early
twentieth century at least. It was highlighted by Weyl [1952], where he writes
that ‘We found that objectivity means invariance with respect to the group of au-
tomorphisms.’ This connection between objectivity and invariance was discussed
particularly in the context of Relativity Theory, both Special and General. We
recall Minkowski’s famous phrase ([1908] 1923, 75) that ‘Henceforth space by it-
self, and time by itself, are doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent reality’, following his ge-
ometrization of Einstein’s Special Theory of Relativity, and the recognition of the
spacetime interval (rather than intervals of space and of time) as the geometrically
invariant quantity. The connection between objectivity and invariance in General
Relativity was discussed by, amongst others, Hilbert and Weyl, and continues to
be an issue today.85

83We are grateful to Brandon Fogel for this point, and for the comparison he suggested be-
tween this view of spatiotemporal symmetries and the methodological face of Einstein’s notion
of separability.

84These include the varieties of gauge invariance found in classical electromagnetism and in
quantum theories, along with general covariance in GTR (these being continuous symmetries),
plus the discrete symmetries of parity (violated in the weak interaction) and permutation in-
variance, both of which are found in classical theory but require reconsideration in the light of
quantum theory. See [Brading and Castellani, 2003].

85We saw above (Sections 6.2 and 6.3) some aspects of this debate in the discussion of Einstein’s
‘hole argument’ and of the status of observables in GTR.
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Related to this is the use of symmetries to characterize the objects of physics
as sets of invariants. Originally developed in the context of quantum theory,
this approach can also be applied in classical physics.86 The basic idea is that
the invariant quantities — such as mass and charge — are those by which we
characterize objects. Thus, through the application of group theory we can use
symmetry considerations to determine the invariant quantities and “construct” or
“constitute” objects as sets of these invariants.87

In conclusion, then, the philosophical questions associated with symmetries in
classical physics are wide-ranging. What we have offered here is nothing more than
an overview, influenced by our own interests and puzzles, which we hope will be
of service in further explorations of this philosophically and physically rich field.
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ASPECTS OF DETERMINISM IN
MODERN PHYSICS

John Earman

1 INTRODUCTION

The aims of this chapter are to review some aspects of determinism that are famil-
iar to physicists but are little discussed in the philosophical literature and to show
how these aspects connect determinism to issues about symmetries in physics, the
structure and ontological status of spacetime, predictability, and computability.1

It will emerge that in some respects determinism is a robust doctrine and is quite
hard to kill, while in other respects it is fragile and requires various enabling as-
sumptions to give it a fighting chance. It will also be seen that determinism is far
from a dead issue. Whether or not ordinary non-relativistic quantum mechanics
(QM) admits a viable deterministic underpinning is still a matter of debate. Less
well known is the fact that in some cases QM turns out to be more deterministic
than its classical counterpart. Quantum field theory (QFT) assumes determinism,
at least at the classical level, in order to construct the field algebra of quantum
observables. Determinism is at the heart of the cosmic censorship hypothesis, the
most important unsolved issue in classical general relativity theory (GTR). And
issues about the nature and status of determinism lie at the heart of key foundation
issues in the search for a theory of quantum gravity.

2 PRELIMINARIES

2.1 The metaphysics of determinism

The proposal is to begin by getting a grip on the doctrine of determinism as it was
understood pre-GTR and pre-QM, and then subsequently to try to understand
how the doctrine has to be adjusted to accommodate these theories. In pre-GTR
physics, spacetime serves as a fixed background against which the drama of physics
is enacted. In pre-QM physics it was also assumed that there is a set O of gen-
uine physical magnitudes (a.k.a. “observables”) each of which takes a determinate

1Recent surveys of determinism are found in Butterfield [1998], Earman [2004a], and Hoefer
[2003]. A collection of articles on various aspects of determinism is found in Atmanspacher and
Bishop [2002].
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value at every moment of time; call these the occurrent magnitudes. Other phys-
ical magnitudes may be dispositional in character and may take on determinate
values only in appropriate contexts; but it was assumed that these dispositional
magnitudes supervene on the nondispositional magnitudes.2 A history H is a map
from R to tuples of values of the basic magnitudes, where for any t ∈ R the state
H(t) gives a snapshot of behavior of the basic magnitudes at time t. The world is
Laplacian deterministic with respect to O just in case for any pair of histories H1,
H2 satisfying the laws of physics, if H1(t) = H2(t) for some t, then H1(t) = H2(t)
for all t.

Several remarks are in order. First, the ‘t’ which appears in the above definition
is supposed to be a global time function. This notion can be defined in a manner
that applies to classical, special relativistic, and general relativistic spacetimes:
a global time function is a smooth map t : M → R, where M is the spacetime
manifold, such that for any p, q ∈ M, t(p) < t(q) just in case there is a future
directed timelike curve from p to q.3 In classical spacetimes, all of which possess
an absolute (or observer independent) notion of simultaneity, a timelike curve
is one which is oblique to the planes of absolute simultaneity. And the levels
t = const of a global time function must coincide with the planes of simultaneity;
thus, in the classical setting t is determined up to a transformation of the form
t → t′ = t′(t). In the relativistic setting a timelike curve is one whose tangent at
any point lies inside the light cone at that point. In causally pathological general
relativistic spacetimes (e.g. Gödel spacetime — see Section 6.1) there can be no
global time function, and the global sense of Laplacian determinism as defined
above makes no sense.4 But if one global time function exists for a relativistic
spacetime, then many exist. A poor choice of global time function can lead to the
failure of Laplacian determinism on the above definition. Thus, in the relativistic
setting, the definition of determinism must be construed as applying to a suitable
choice of time function, the nature of which will be clarified below.

Second, the above formulation of determinism assumes a distinction between
laws of nature on one hand and initial/boundary conditions on the other. Where
this distinction becomes mushy, so does the doctrine of determinism. There is a

2The general idea of supervenience is that X supervenes on Y iff within the range of possible
cases, there is no difference in X without a difference in Y . The strength and type of superve-
nience depends on what are counted as possible cases. Here the concern is mainly with physical
supervenience where the possible cases are those compatible with the laws of physics.

3This definition presupposes that the spacetime is temporally orientable and that one of the
orientations has been singled out as giving the future direction of time. The first presupposition
is satisfied for classical and special relativistic spacetimes. A general relativistic spacetime (see
[Malament, this vol.]) may not be temporally orientable, but a covering spacetime always is
since temporal orientability fails only if the spacetime is not simply connected. The second
presupposition implies that some solution to the problem of the direction of time has been found
(see [Uffink, this vol.]).

4A necessary and sufficient condition for the existence of a global time function for a relativistic
spacetime is stable causality which (roughly speaking) requires that there exists a widening of
the null cones that does not result in closed timelike curves; for a precise definition, see [Wald,
1984, 198-199]. Not only does Gödel spacetime not admit a global time function, it does not
admit any global time slices (i.e. spacelike hypersurfaces without edges).
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huge philosophical literature on laws of nature.5 Since most of it is unilluminating
when it comes to understanding the nature and function of laws in the practice of
physics, it will be largely ignored here. For present purposes I will simply stipulate
that an acceptable account of laws must satisfy the empiricist constraint that
the laws supervene on the totality of non-modal, particular facts.6 Philosophers
like to speculate about non-empiricist laws; but such entities, should they exist,
would seem to be beyond the ken of science, and as such they are irrelevant for
present purposes. I prefer David Lewis’ [1973, 72-77] way of fulfilling the empiricist
constraint since it connects the account of laws to the practice of physics: the
laws of physics are the axioms or postulates that appear in the ideal theory of
physics, where the ideal theory is the one that, within the class of true theories,
achieves the best balance between simplicity and information content. All of the
historical examples we have of candidates for deterministic laws involve a relatively
small subset B ⊂ O of basic occurrent magnitudes, the assumption being that the
remaining ones supervene on those of B.7 This is hardly surprising if, as has been
claimed, simplicity is a crucial feature of physical laws. Hermann Weyl shared
the conviction that simplicity must figure into an account of laws, but he noted
that “this circumstance is apt to weaken the metaphysical power of determinism,
since it makes the meaning of natural law depend on the fluctuating distinction
between simple and complicated functions or classes of functions” [1932, 42]. This
is, I think, a consequence that has to be swallowed and digested. Philosophers
who are answerable only to their armchairs are free to think otherwise.

Third, it is conceptually possible that the world could be partially deterministic,
i.e. deterministic with respect to partial histories defined by the values of mag-
nitudes in some proper subset D ⊂ O of the occurrent physical magnitudes but
non-deterministic with respect to partial histories defined by the values of magni-
tudes in some other proper subset N ⊂ O. But it is hard to imagine a scenario in
which this could happen if both D and N are basic magnitudes. For in order that
the non-deterministic evolution of the elements N not upset deterministic evolu-
tion for D, the magnitudes in N must not interact with those in D, or else there
would have to be a conspiracy in which the upsetting effects of the N magnitudes
on D cancel out, which is operationally the same. However, this plausibility con-
sideration fails to operate when the N are non-basic magnitudes; in particular, as
discussed below, stochastic processes on one level can supervene on deterministic
processes at a lower level (see [Butterfield, 1998]). This fact makes the inference
from observed stochastic behavior to indeterminism fraught with peril.

Fourth, the laws of physics typically take the form of differential equations,
in which case the issue of Laplacian determinism translates into the question of
whether the equations admit an initial value formulation, i.e. whether for ar-

5For an overview of different accounts of laws of nature, see [Carroll, 2004].
6This is what David Lewis has termed “Humean supervenience” with regards to laws of

nature; for a defense, see [Earman and Roberts, 2006].
7For example, in classical particle mechanics the elements of B are the positions and momenta

of the particles, and it is assumed that any other genuine mechanical magnitude can be expressed
as a functional of these basic magnitudes.
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bitrary initial data there exists a unique solution agreeing with the given initial
data.8 What counts as initial data depends on the details of the case, but typically
it consists of the instantaneous values of the independent variables in the equa-
tions, together with the instantaneous values of a finite number of time derivatives
of these variables. “Arbitrary” initial data might be thought to include any kine-
matically possible values of the relevant variable — as with the initial values of
particle positions and velocities in Newtonian mechanics — but “arbitrary” must
be taken to mean arbitrary within the bounds of compatibility with the equations
of motion, which may impose non-trivial constraints on the initial data. This leads
to the next remark.

Fifth, in the relativistic setting, field equations often factor into constraint
equations, which place restrictions on the initial data, and the evolution equa-
tions, which govern how initial data satisfying the constraint equations evolve over
time — Maxwell’s equations for electromagnetism and Einstein’s gravitational field
equations being prime examples. In these instances the evolution equations guar-
antee that once the constraint equations are satisfied they continue to be satisfied
over time. This should be a feature of deterministic equations, for if the data
at some future time in the unique solution picked out by the initial data do not
satisfy the constraints, then the laws are self-undermining. It could be argued
that a basic feature of time in relativistic worlds — perhaps the key feature that
separates the time dimension from the space dimensions — lies precisely in this
separation of evolution and constraint equations.9

Sixth, while there is no a priori guarantee that the laws of the ideal theory
of physics will be deterministic, the history of physics shows that determinism is
taken to be what might be termed a ‘defeasible methodological imperative’: start
by assuming that determinism is true; if the candidate laws discovered so far are
not deterministic, then presume that there are other laws to be discovered, or
that the ones so far discovered are only approximations to the correct laws; only
after long and repeated failure may we entertain the hypothesis that the failure
to find deterministic laws does not represent a lack of imagination or diligence
on our part but reflects the fact that Nature is non-deterministic. An expression
of this sentiment can be found in the work of Max Planck, one of the founders
of quantum physics: determinism (a.k.a. the law of causality), he wrote, is a
“heuristic principle, a signpost and in my opinion the most valuable signpost
we possess, to guide us through the motley disorder of events and to indicate
the direction in which scientific inquiry should proceed in order to attain fruitful
results” [1932, 26; my translation].10

8And as will be discussed below, there are further issues, such as whether the solution depends
continuously on the initial data.

9See [Callender, 2005] and [Skow, 2005] for defenses of related views on the difference between
space and time.

10For a history of the debates about the status of determinism among the founding fathers of
QM, see [Cushing, 1994] and [Stöltzner, 2003].
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2.2 Varieties of determinism

There is a tendency in the philosophical literature to fixate on the Laplacian
variety of determinism. But other kinds of determinism crop up in physics. For
example, some processes are described by delay-differential equations for which
instantaneous initial data may not suffice to single out a unique solution. A simple
example is given by the first order ordinary differential equation (ode) ẋ(t) =
x(t − C) with a constant delay C > 0. Laplacian determinism fails since given
initial data x(0) is compatible with multiple solutions. However, a near cousin
of Laplacian determinism holds since a specification of x(t) for the interval of
time t ∈ [−C, 0] fixes a unique solution.11 If the constant delay C replaced by a
function τ(t) of t which is unbounded, or if the delay-differential equation has a
more complicated form than in the simple example, then even the weakened forms
of Laplacian determinism can fail. An illustration of the latter is given by the
equation of motion is ẋ(t) = f(t)x(t− 1) where f(t) is a continuous function that
vanishes outside of [0, 1] and satisfies

∫
f(t)dt = −1. Raju [1994, 120ff] gives an

example of an f such that unless x(t) is identically 0 for all t ≥ 1, the equation of
motion admits no solutions for t < 0; whereas if x(t) is identically zero for t ≥ 1,
then the equation of motion admits an infinity of solutions for t < 0. Changing
the delay term x(t− 1) in this example to an advance term x(t + 1) produces an
example where an entire past history fails to fix a unique future solution. Very
little is known about the initial value problem for what is probably the most
important physical application of delay/advance differential equations; namely,
charged particles moving under their mutual retarded/advanced interactions.12

For sake of definiteness, fix on the Laplacian variety of determinism. Within this
variety there is a distinction between future and past determinism. Past Laplacian
determinism means that for any pair of histories H1, H2 satisfying the laws of
physics, if H1(t) = H2(t) for some t, then H1(t′) = H2(t′) for all t′ > t. Future
Laplacian determinism is defined analogously. In principle, Laplacian determinism
can hold in one direction of time but not in the other. However, if the laws of
motion are time reversal invariant, then future and past determinism stand or
fall together. Time reversal invariance is the property that if H is a history
satisfying the laws, then so is the ‘time reverse’ history HT , where HT (t) :=
RH(−t) and where ‘R’ is the reversal operation that is defined on a case-by-
case basis, usually by analogy with classical particle mechanics where H(t) =
(x(t),p(t)), with x(t) and p(t) being specifications respectively of the particle
positions and momenta at t, and RH(t) = (x(t),−p(t)).13 Since all of the plausible
candidates for fundamental laws of physics, save those for the weak interactions

11See [Driver, 1977] for relevant results concerning delay-differential equations.
12Driver [1979] studied the special case of identically charged particles confined to move sym-

metrically on the x-axis under half-retarded and half-advanced interactions. He showed that,
provided the particles are sufficiently far apart when they come to rest, a unique solution is
determined by their positions when they come to rest.

13A different account of time reversal invariance is given in [Albert, 2000, Ch. 1]; but see
[Earman, 2002] and [Malament, 2004].
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of elementary particles, are time reversal invariant, the distinction between past
and future determinism is often ignored.

This is the first hint that there are interesting connections between determinism
and symmetry properties.14 Many other examples will be encountered below,
starting with the following section.

2.3 Determinism and symmetries: Curie’s Principle

The statement of what is now called ‘Curie’s Principle’ was announced in 1894 by
Pierre Curie:

(CP) When certain effects show a certain asymmetry, this asymmetry
must be found in the causes which gave rise to it. [Curie 1894, 401]

Some commentators see in this Principle profound truth, while others see only
falsity, and still others see triviality (compare [Chalmers, 1970]; [Radicati, 1987];
[van Fraassen, 1991, 23–24], and [Ismael, 1997]). My reading of (CP) makes it a
necessary truth. It takes (CP) to assert a conditional:

If

(CP1) the laws of motion governing the system are deterministic; and
(CP2) the laws of motion governing the system are invariant under a
symmetry transformation; and (CP3) the initial state of the system is
invariant under said symmetry

then

(CP4) the final state of the system is also invariant under said symme-
try

When the first clause (CP1) in the antecedent holds, the second clause (CP2) can
be understood as follows: if an initial state is evolved for a period ∆t and then
the said symmetry is applied to the (unique) evolved state, the result is the same
as first applying the symmetry to the initial state and evolving the resulting state
for a period ∆t. With this understanding, the reader can easily derive (CP4) from
(CP1)-(CP3). Concrete instantiations of Curie’s principle at work in classical and
relativistic physics can be found in [Earman, 2004b]. An instantiation for GTR is
mentioned in Section 6.3 below.15

Although (CP) is a necessary truth, it is far from a triviality since it helps to
guide the search for a causal explanation of an asymmetry in what is regarded as
the final state of system: either the asymmetry is already present in the initial
state; or else the initial state is symmetric and the asymmetry creeps in over time,

14See [Brading and Castellani, this vol.] for a discussion of symmetries and invariances in
modern physics.

15For additional remarks on Curie’s principle, see [Brading and Castellani, this vol.].
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either because the laws that govern the evolution of the system do not respect
the symmetry or because they are non-deterministic. If, as is often the case, the
latter two possibilities are ruled out, then the asymmetry in the final state must
be traceable to an asymmetry in the initial state. It is also worth noting that the
use of (CP) has ramifications for the never ending debate over scientific realism;
for the asymmetry in the initial state may be imperceptible not only to the naked
eye but to any macroscopic means of detection.16

3 DETERMINISM AND INDETERMINISM IN CLASSICAL PHYSICS

3.1 The hard road to determinism in classical physics

Classical physics is widely assumed to provide a friendly environment for deter-
minism. In fact, determinism must overcome a number of obstacles in order to
achieve success in this setting. First, classical spacetime structure may not be
sufficiently rich to support Laplacian determinism for particle motions. Second,
even if the spacetime structure is rich, uniqueness can fail in the initial value
problem for Newtonian equations of motion if the force function does not satisfy
suitable continuity conditions. Third, the equations of motion that typically arise
for classical particles plus classical fields, or for classical fields alone, do not admit
an initial value formulation unless supplementary conditions are imposed. Fourth,
even in cases where local (in time) uniqueness holds for the initial value problem,
solutions can break down after a finite time.

The following subsection takes up the first of these topics — the connection
between determinism and the structure and ontology of classical spacetimes. The
others are taken up in due course.

3.2 Determinism, spacetime structure, and spacetime ontology

Here is the (naive) reason for thinking that neither Laplacian determinism nor
any of its cousins stands a chance unless supported by enough spacetime struc-
ture of the right kind. Assume that the (fixed) classical spacetime background is
characterized by a differentiable manifold M and various geometric object fields
O1, O2, ..., OM on M. And assume that the laws of physics take the form of
equations whose variables are the Oi’s and additional object fields P1, P2, ..., PN
describing the physical contents of the spacetime. (For the sake of concreteness,
the reader might want to think of the case where the Pj ’s are vector fields whose
integral curves are supposed to be the world lines of particles.) A symmetry of the
spacetime is a diffeomorphism d ofM onto itself which preserves the background
structure given by the Oi’s — symbolically, d∗Oi = Oi for all values if i, where

16For a more detailed discussion of Curie’s Principle and its connection to spontaneous symme-
try breaking in quantum field theory see [Earman, 2004b]; for spontaneous symmetry breaking
in quantum statistical physics, see [Emch, this vol.].
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d∗ denotes the drag along by d.17 By the assumption on the form of the laws, a
spacetime symmetry d must also be a symmetry of the laws of motion in the sense
that if 〈M, O1, O2, ..., OM , P1, P2, ..., PN 〉 satisfies the laws of motion, then so does
〈M, O1, O2, ..., OM , d∗P1, d

∗P2, ..., d
∗PN 〉.18

Now the poorer the structure of the background spacetime, the richer the space-
time symmetries. And if the spacetime symmetry group is sufficiently rich, it will
contain elements that are the identity map on the portion of spacetime on or below
some time slice t = const but non-identity above. We can call such a map a ‘deter-
minism killing symmetry’ because when applied to any solution of the equations
of motion, it produces another solution that is the same as the first for all past
times but is different from the first at future times, which is a violation of even
the weakest version of future Laplacian determinism.

As an example, take Leibnizian spacetime,19 whose structure consists of all and
only the following: a notion of absolute or observer-independent simultaneity; a
temporal metric (giving the lapse of time between non-simultaneous events); and
a Euclidean spatial metric (giving the spatial distance between events lying on a
given plane of absolute simultaneity). In a coordinate system (xα, t), α = 1, 2, 3
adapted to this structure, the spacetime symmetries are

xα → x′α = Rα
β (t)xβ + aα(t) α, β = 1, 2, 3(1)

t → t′ = t + const

where Rα
β (t) is an orthogonal time dependent matrix and the aα(t) are arbitrary

smooth functions of t. Clearly, the symmetries (1) contain determinism killing
symmetries.

It is also worth noting that if the structure of spacetime becomes very minimal,
no interesting laws of motion, deterministic or not, seem possible. For example,
suppose that the time metric and the space metric are stripped from Leibnizian
spacetime, leaving only the planes of absolute simultaneity. And suppose that the
laws of physics specify that the world is filled with a plenum of constant mass dust
particles and that the world lines of these particles are smooth curves that never
cross. Then either every smooth, non-crossing motion of the dust is allowed by the
laws of motion or none is, for any two such motions are connected by a symmetry
of this minimal spacetime.

Two different strategies for saving determinism in the face of the above con-
struction can be tried. They correspond to radically different attitudes towards

17A diffeomorphism d of the manifoldM is a one-one mapping ofM onto itself that preserves
M’s differentiable structure. For the sake of concreteness, assume that d is C∞.

18For on the assumption that the laws are (say) differential equations relating the Oi and Pj ,
they cannot be sensitive to the “bare identity” of the points of M at which the Oi and Pj take
some given values. This diffeomorphism invariance of the laws is one of the ingredients of what is
called substantive general covariance (see section 6.2). One might contemplate breaking diffeo-
morphism invariance by introducing names for individual spacetime points; but the occurrence
of such names would violate the “universal” character that laws are supposed to have.

19The details of various classical spacetime structures are to be found in [Earman, 1989].
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the ontology of spacetime. The first strategy is to beef up the structure of the
background spacetime. Adding a standard of rotation kills the time dependence
in Rα

β (t), producing what is called Maxwellian spacetime. But since the aα(t) are
still arbitrary functions of t there remain determinism killing symmetries. Adding
a standard of inertial or straight line motion linearizes the aα(t) to vαt + cα,
where the vα and cα are constants, producing neo-Newtonian spacetime20 whose
symmetries are given by the familiar Galilean transformations

xα → x′α = Rα
βxβ + vαt + cα α, β = 1, 2, 3.(2)

t → t′ = t + const

The mappings indicated by (2) do not contain determinism killing symmetries
since if such a map is the identity map for a finite stretch of time, no matter how
short, then it is the identity map period. Note that this way of saving determinism
carries with it an allegiance to “absolute” quantities of motion: in neo-Newtonian
spacetime it makes good sense to ask whether an isolated particle is accelerating
or whether an isolated extended body is rotating. To be sure, this absolute ac-
celeration and rotation can be called ‘relational’ quantities, but the second place
in the relation is provided by the structure of the spacetime — in particular, by
the inertial structure — and not by other material bodies, as is contemplated by
those who champion relational accounts of motion.

The second strategy for saving determinism proceeds not by beefing up the
structure of the background spacetime but by attacking a hidden assumption of
the above construction — the “container view” of spacetime. Picturesquely, this
assumption amounts to thinking of spacetime as a medium in which particles and
fields reside. More precisely, in terms of the above apparatus, it amounts to the
assumption that 〈M, O1, O2, ..., OM , P1, P2, ..., PN 〉 and 〈M, O1, O2, ..., OM , d∗P1,
d∗P2, ..., d

∗PN 〉, where d is any diffeomorphism ofM such that d∗Pj �= Pj for some
j, describe different physical situations, even when d is a spacetime symmetry, i.e.
d∗Oi = Oi for all i. Rejecting the container view leads to (one form of) relation-
ism about spacetime. A spacetime relationist will take the above construction to
show that, on pain of abandoning the possibility of determinism, those who are
relationists about motion should also be relationists about spacetime. Relationists
about motion hold that talk of absolute motion is nonsensical and that all mean-
ingful talk about motion must be construed as talk about the relative motions of
material bodies. They are, thus, unable to avail themselves of the beef-up strategy
for saving determinism; so, if they want determinism, they must grasp the lifeline
of relationism about spacetime.

Relationalism about motion is a venerable position, but historically it has been
characterized more by promises than performances. Newton produced a stunningly
successful theory of the motions of terrestrial and celestial bodies. Newton’s op-
ponents promised that they could produce theories just as empirically adequate

20Full Newtonian spacetime adds a distinguished inertial frame — ‘absolute space’ — thus
killing the velocity term in (2).
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and as explanatorily powerful as his without resorting to the absolute quantities
of motion he postulated. But mainly what they produced was bluster rather than
workable theories.21 Only in the twentieth century were such theories constructed
(see [Barbour, 1974] and [Barbour and Bertotti, 1977]; and see [Barbour, 1999]
for the historical antecedents of these theories), well after Einstein’s GTR swept
away the notion of a fixed background spacetime and radically altered the terms
of the absolute vs. relational debate.

3.3 Determinism and gauge symmetries

When philosophers hear the word “gauge” they think of elementary particle physics,
Yang-Mills theories, etc. This is a myopic view. Examples of non-trivial gauge
freedom arise even in classical physics — in fact, we just encountered an example
in the preceding subsection. The gauge notion arises for a theory where there
is “surplus structure” (to use Michael Redhead’s phrase) in the sense that the
state descriptions provided by the theory correspond many-one to physical states.
For such a theory a gauge transformation is, by definition, a transformation that
connects those descriptions that correspond to the same physical state.

The history of physics shows that the primary reason for seeing gauge freedom
at work is to maintain determinism. This thesis has solid support for the class
of cases of most relevance to modern physics, viz. where the equations of mo-
tion/field equations are derivable from an action principle and, thus, the equations
of motion are in the form of Euler-Lagrange equations.22 When the Lagrangian
is non-singular, the appropriate initial data picks out a unique solution of the
Euler-Lagrange equations and Laplacian determinism holds.23 If, however, the ac-
tion admits as variational symmetries a Lie group whose parameters are arbitrary
functions of the independent variables, then we have a case of underdetermina-
tion because Noether’s second theorem tells us that the Euler-Lagrange equations
have to satisfy a set of mathematical identities.24 When these independent vari-
ables include time, arbitrary functions of time will show up in solutions to the
Euler-Lagrange equations, apparently wrecking determinism.

The point can be illustrated with the help of a humble example of particle me-
chanics constructed within the Maxwellian spacetime introduced in the preceding
subsection. An appropriate Lagrangian invariant under the symmetries of this
spacetime is given by

L =
∑∑

j<k

mjmk

2M
(ẋj − ẋk)2 − V (|xj − xk|), M :=

∑
i

mi.(3)

21Newton’s opponents were correct in one respect: Newton’s postulation of absolute space, in
the sense of a distinguished inertial frame was not needed to support his laws of motion.

22See [Butterfield, this vol.] and [Belot, this vol.] for accounts of the Lagrangian and Hamil-
tonian formalisms.

23At least if the continuity assumptions discussed in Section 3.5 below are imposed.
24For an account of the Noether theorems, see [Brading and Brown, 2003] and [Brading and

Castellani, this vol.].
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This Lagrangian is singular in the sense that Hessian matrix ∂2L/∂ẋi∂ẋj does not
have an inverse. The Euler-Lagrange equations are

d

dt

(
mi(ẋj − 1

M

∑
k

mkẋk)

)
=

∂V

∂ẋi
.(4)

These equations do not determine the evolution of the particle positions uniquely:
if xi(t) is a solution, so is x′

i(t) = xi(t) + f(t), for arbitrary f(t), confirming
the intuitive argument given above for the apparent breakdown of determinism.
Determinism can be restored by taking the transformation xi(t)→ xi(t) + f(t) as
a gauge transformation.

The systematic development of this approach to gauge was carried out by P. A.
M. Dirac in the context of the Hamiltonian formalism.25 A singular Lagrangian
system corresponds to a constrained Hamiltonian system. The primary constraints
appear as a result of the definition of the canonical momenta. (In the simple
case of a first-order Lagrangian L(q, q̇, t), where q stands for the configuration
variables and q̇ := dq/dt, the canonical momentum is p := ∂L/∂q̇.) The secondary
constraints arise as a consequence of the demand that the primary constraints
be preserved by the motion. The total set of constraints picks out the constraint
surface C(q, p) of the Hamiltonian phase space Γ(q, p). The first class constraints
are those that commute on C(q, p) with all of the constraints. It is these first class
constraints that are taken as the generators of the gauge transformations. The
gauge invariant quantities (a.k.a. “observables”) are then the phase function F :
Γ(q, p)→ R that are constant along the gauge orbits.

Applying the formalism to our toy case of particle mechanics in Maxwellian
spacetime, the canonical momenta are:

pi :=
∂L

∂ẋi
=

mi

M

∑
k

mk(ẋi − ẋk) = miẋi − mi

M

∑
k

mkẋk.(5)

These momenta are not independent but must satisfy three primary constraints,
which require the vanishing of the x, y, and z-components of the total momentum:

φα =
∑
i

pαi = 0, α = 1, 2, 3.(6)

These primary constraints are the only constraints — there are no secondary
constraints — and they are all first class. These constraints generate in each
configuration variable xi the same gauge freedom; namely, a Euclidean shift given
by the same arbitrary function of time. The gauge invariant variables, such relative
particle positions and relative particle momenta, do evolve deterministically.

The technical elaboration of the constraint formalism is complicated, but one
should not lose sight of the fact that the desire to save determinism is the mo-
tivation driving the enterprise. Here is a relevant passage from [Henneaux and

25The standard reference on these matters is [Henneaux and Teitelboim, 1992]. For a user
friendly treatment of this formalism, see [Earman, 2003].
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Teitelboim, 1992], one of the standard references on constrained Hamiltonian sys-
tems:

The presence of arbitrary functions . . . in the total Hamiltonian tells
us that not all the q’s and p’s [the configuration variables and their
canonical momenta] are observable [i.e. genuine physical magnitudes].
In other words, although the physical state is uniquely defined once a
set of q’s and p’s is given, the converse is not true — i.e., there is more
than one set of values of the canonical variables representing a given
physical state. To see how this conclusion comes about, we note that
if we are given an initial set of canonical variables at the time t1 and
thereby completely define the physical state at that time, we expect
the equations of motion to fully determine the physical state at other
times. Thus, by definition, any ambiguity in the value of the canonical
variables at t2 �= t1 should be a physically irrelevant ambiguity. [pp.
16–17]

As suggested by the quotation, the standard reaction to the apparent failure of
determinism is to blame the appearance on the redundancy of the descriptive ap-
paratus: the correspondence between the state descriptions in terms of the original
variables — the q’s and p’s — and the physical state is many-to-one; when this
descriptive redundancy is removed, the physical state is seen to evolve determin-
istically. There may be technical difficulties is carrying through this reaction. For
example, attempting to produce a reduced phase space — whose state descriptions
corresponding one-one to physical states — by quotienting out the gauge orbits
can result in singularities. But when such technical obstructions are not met,
normal (i.e. unconstrained) Hamiltonian dynamics applies to the reduced phase
space, and the reduced phase space variables evolve deterministically.

In addition to this standard reaction to the apparent failure of determinism in
the above examples, two others are possible. The first heterodoxy takes the ap-
parent violation of determinism to be genuine. This amounts to (a) treating what
the constraint formalism counts as gauge dependent quantities as genuine physical
magnitudes, and (b) denying that these magnitudes are governed by laws which,
when conjoined with the laws already in play, restore determinism. The second
heterodoxy accepts the orthodox conclusion that the apparent failure of determin-
ism is merely apparent; but it departs from orthodoxy by accepting (a), and it
departs from the first heterodoxy by denying (b) and, accordingly, postulates the
existence of additional laws that restore determinism. Instances that superficially
conform to part (a) of the two heterodoxies are easy to construct from examples
found in physics texts where the initial value problem is solved by supplement-
ing the equations of motion, stated in terms of gauge-dependent variables, with
a gauge condition that fixes a unique solution. For instance, Maxwell’s equations
written in terms of electromagnetic potentials do not determine a unique solution
corresponding to the initial values of the potentials and their time derivatives.
Imposing the Lorentz gauge condition converts Maxwell’s equations to second or-
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der hyperbolic partial differential equations (pdes) that do admit an initial value
formulation (see Section 4.2).26 Similar examples can be concocted in general
relativity theory where orthodoxy treats the metric potentials as gauge variables
(see Section 6.2). In these examples orthodoxy is aiming to get at the values of
the gauge independent variables via a choice of gauge. If this aim is not kept
clearly in mind, the procedure creates the illusion that gauge-dependent variables
have physical significance. It is exactly this illusion that the two heterodoxies take
as real. The second heterodoxy amounts to taking the gauge conditions not as
matters of calculational convenience but as additional physical laws. I know of
no historical examples where this heterodoxy has led to fruitful developments in
physics.

Since there is no a priori guarantee that determinism is true, the fact that
the orthodox reading of the constraint formalism guarantees that the equations of
motion admit an initial value formulation must mean that substantive assumptions
that favor determinism are built into the formalism. That is indeed the case, for the
Lagrangian/Hamiltonian formalism imposes a structure on the space of solutions:
in the geometric language explained in Chapters 1 and 2 of this volume, the space
of solutions has a symplectic or pre-symplectic structure. This formalism certainly
is not guaranteed to be applicable to all of the equations of motion the Creator
might have chosen as laws of motion; indeed, it is not even guaranteed to be
applicable to all Newtonian type second order odes. In the 1880s Helmholtz found
a set of necessary conditions for equations of this type to be derivable from an
action principle; these conditions were later proved to be (locally) sufficient as
well as necessary. After more than a century, the problem of finding necessary
and sufficient conditions for more general types of equations of motion, whether in
the form of odes or pdes, to be derivable from an action principle is still an active
research topic.27

3.4 Determinism for fields and fluids in Newtonian physics

Newtonian gravitational theory can be construed as a field theory. The gravita-
tional force is given by Fgrav = −∇ϕ, where the gravitational potential ϕ satisfies
the Poisson equation

∇2ϕ = ρ(7)

with ρ being the mass density. If ϕ is a solution to Poisson’s equation, then so is
ϕ′ = ϕ + g(x)f(t) where g(x) is a linear function of the spatial variables and f(t)

26Where A is the vector potential and Φ is the scalar potential, the Lorentz gauge requires
that

∇ ·A+
∂Φ

∂t
= 0

(with the velocity of light set to unity).
27Mathematicians discuss this issue under the heading of the “inverse problem.” For precise

formulations of the problem and surveys of results, see [Anderson and Thompson, 1992] and
[Prince, 2000].
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is an arbitrary function of t. Choose f so that f(t) = 0 for t ≤ 0 but f(t) > 0
for t > 0. The extra gravitational force, proportional to f(t), that a test particle
experiences in the primed solution after t = 0 is undetermined by anything in the
past.

The determinism wrecking solutions to (7) can be ruled out by demanding that
gravitational forces be tied to sources. But to dismiss homogeneous solutions to
the Poisson equation is to move in the direction of treating the Newtonian gravita-
tional field as a mere mathematical device that is useful in describing gravitational
interactions which, at base, are really direct particle interactions.28 In this way
determinism helps to settle the ontology of Newtonian physics: the insistence on
determinism in Newtonian physics demotes fields to second-class status. In rel-
ativistic physics fields come into their own, and one of the reasons is that the
relativistic spacetime structure supports field equations that guarantee determin-
istic evolution of the fields (see Section 4.2).

In the Newtonian setting the field equations that naturally arise are elliptic
(e.g. the Poisson equation) or parabolic, and neither type supports determinism-
without-crutches. An example of the latter type of equation is the classical heat
equation

∇2Φ = κ
∂Φ
∂t

(8)

where Φ is the temperature variable and κ is the coefficient of heat conductivity.29

Solutions to (8) can cease to exist after a finite time because the temperature
“blows up.” Uniqueness also fails since, using the fact that the heat equation
propagates heat arbitrarily fast, it is possible to construct surprise solutions Φs
with the properties that (i) Φs is infinitely differentiable, and (ii) Φs(x, t) = 0 for
all t ≤ 0 but Φs(x, t) �= 0 for t > 0 (see [John, 1982, Sec. 7.1]). Because (8) is
linear, if Φ is a solution then so is Φ′ = Φ + Φs. And since Φ and Φ′ agree for all
t ≤ 0 but differ for t > 0, the existence of the surprise solutions completely wrecks
determinism.

Uniqueness of solution to (8) can be restored by adding the requirement that
Φ ≥ 0, as befits its intended interpretation of Φ as temperature; for Widder [1975,
157] has shown that if a solution of Φ(x, t) of (8) vanishes at t = 0 and is non-
negative for all x and all t ≥ 0, then it must be identically zero. But one could
have wished that, rather than having to use a stipulation of non-negativity to
shore up determinism, determinism could be established and then used to show
that if the temperature distribution at t = 0 is non-negative for all x, then the
uniquely determined evolution keeps the temperature non-negative. Alternatively,
both uniqueness and existence of solutions of (8) can be obtained by limiting the

28This demotion of the status of the Newtonian gravitational field can also be supported by
the fact that, unlike the fields that will be encountered in relativistic theories, it carries no energy
or momentum.

29The fact that this equation is not Galilean invariant need cause no concern since Φ implicitly
refers to the temperature of a medium whose rest frame is the preferred frame for describing
heat diffusion.
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growth of |Φ(x, t)| as |x| → ∞. But again one could have wished that such limits
on growth could be derived as a consequence of the deterministic evolution rather
than having to be stipulated as conditions that enable determinism.

Appearances of begging the question in favor of determinism could be avoided
by providing at the outset a clear distinction between kinematics and dynamics,
the former being a specification of the space of possible states. For example, a limit
on the growth of quantum mechanical wave functions does not beg the question
of determinism provided by the Schrödinger equation since the limit follows from
the condition that the wave function is an element of a Hilbert space, which is
part of the kinematical prescription of QM (see Section 5). Since this prescription
is concocted to underwrite the probability interpretation of the wave function, we
get the ironic result that the introduction of probabilities, which seems to doom
determinism, also serves to support it. The example immediately above, as well
as the examples of the preceding subsection and the one at the beginning of this
subsection, indicate that in classical physics the kinematical/dynamical distinction
can sometimes be relatively fluid and that considerations of determinism are used
in deciding where to draw the line. The following example will reinforce this
moral.30

The Navier-Stokes equations for an incompressible fluid moving in R
N , N = 2, 3,

read

Du
dt

= −∇p + υ∆u (9a)

div(u) = 0 (9b)

where u(x, t) = (u1, u2, ..., uN ) is the velocity of the fluid, p(x, t) is the pressure,

υ = const. ≥ 0 is the coefficient of viscosity, and D/dt := ∂/∂t +
N∑
j=1

uj∂/∂xj is

the convective derivative (see Foias at al. 2001 for a comprehensive survey). If the
fluid is subject to an external force, an extra term has to be added to the right
hand side of (9a). The Euler equations are the special case where υ = 0. The
initial value problem for (9a-b) is posed by giving the initial data

u(x, 0) = u0(x)(9)

30Another reaction to the problems of determinism posed by (8) is to postpone them on the
grounds that (8) is merely a phenomenological equation; heat is molecular motion and, thus,
the fate of determinism ultimately rests with the character of laws of particle motion. It will
be seen below, however, that in order to guarantee determinism for particle motion the helping
hand of the stipulation of boundary conditions at infinity is sometimes needed. In any case,
the postponement strategy taken to its logical conclusion would mean that no judgment about
determinism would be forthcoming until we are in possession of the final theory-of-everything.
It seems a better strategy to do today the philosophy of today’s physics while recognizing, of
course, that today’s best theory may be superseded by a better future theory that delivers a
different message about determinism.
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where u0(x) is a smooth (C∞) divergence-free vector field, and is solved by smooth
functions u, p ∈ C∞(RNx[0,∞)) satisfying (9)-(10). For physically reasonable
solutions it is required both that u0(x) should not grow too large as |x| → ∞ and
that the energy of the fluid is bounded for all time:

∫
RN

|u(x, t)|2dx <∞ for all t > 0.(10)

When υ = 0 the energy is conserved, whereas for υ > 0 it dissipates.
For N = 2 it is known that a physically reasonable smooth solution exists for

any given u0(x). For N = 3 the problem is open. However, for this case it is
known that the problem has a positive solution if the time interval [0,∞) for
which the solution is required to exist is replaced by [0, T ) where T is a possibly
finite number that depends on u0(x). When T is finite it is known as the “blowup
time” since |u(x, t)| must become unbounded as t approaches T . For the Euler
equations a finite blowup time implies that the vorticity (i.e. the curl of u(x, t))
becomes unbounded as t approaches T .

Smooth solutions to the Navier-Stokes equations, when they exist, are known
to be unique. This claim would seem to be belied by the symmetries of the Navier-
Stokes equations since if u(x, t) = f(x, t), p(x, t) = g(x, t) is a solution then so is
the transformed ũ(x, t) = f(x− εα(t), t) + εαt, p̃(x, t) = g(x− εα(t), t)− εx ·αt +
1
2ε2αtt, where α(t) is an arbitrary smooth function of t alone (see Olver 1993, pp.
130 and 177 (Exer. 2.15)). Choosing α(t) such that α(0) = αt(0) = αtt(0) = 0
but α(t) �= 0 for t > 0 results in different solutions for the same initial data unless
f(x − εα(t), t) + εαt = f(x, t). However, the transformed solution violates the
finiteness of energy condition (11).

The situation on the existence of solutions can be improved as follows. Mul-
tiplying (9a-b) by a smooth test function and integrating by parts over x and t
produces integral equations that are well-defined for any u(x, t) and p(x, t) that
are respectively L2 (square integrable) and L1 (integrable). Such a pair is called
a weak solution if it satisfies the integral equations for all test functions. Moving
from smooth to weak solutions permits the proof of the existence of a solution for
all time. But the move reopens the issue of uniqueness, for the uniqueness of weak
solutions for the Navier-Stokes equations is not settled. A striking non-uniqueness
result for weak solutions of the Euler equations comes from the construction by
Scheffer [1994] and Shnirelman [1997] of self-exciting/self-destroying weak solu-
tions: u(x, t) ≡ 0 for t < −1 and t > 1, but is non-zero between these times in a
compact region of R

3.
It is remarkable that basic questions about determinism for classical equations

of motion remain unsettled and that these questions turn on issues that mathe-
maticians regard as worthy of attention. Settling the existence question for smooth
solutions for the Navier-Stokes equations in the case of N = 3 brings a $1 million
award from the Clay Mathematics Institute (see [Fefferman, 2000]).
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3.5 Continuity issues

Consider a single particle of mass m moving on the real line R in a potential V (x),
x ∈ R. The standard existence and uniqueness theorems for the initial value
problem of odes can be used to show that the Newtonian equation of motion

mẍ = F (x) := −dV

dx
(11)

has a locally (in time) unique solution if the force function F (x) satisfies a Lipschitz
condition.31 An example of a potential that violates the Lipschitz condition at
the origin is − 9

2 |x|4/3. For the initial data x(0) = 0 = ẋ(0) there are multiple
solutions of (12): x(t) ≡ 0, x(t) = t3, and x(t) = −t3, where m has been set to
unity for convenience. In addition, there are also solutions x(t) where x(t) = 0
for t < k and ±(t − k)3 for t ≥ k, where k is any positive constant. That such
force functions do not turn up in realistic physical situations is an indication that
Nature has some respect for determinism. In QM it turns out that Nature can
respect determinism while accommodating some of the non-Lipschitz potentials
that would wreck Newtonian determinism (see Section 5.2).

3.6 The breakdown of classical solutions

Consider again the case of a single particle of mass m moving on the real line
R in a potential V (x), and suppose that V (x) satisfies the Lipschitz condition,
guaranteeing a temporally local unique solution for the initial value problem for
the Newtonian equations of motion. However, determinism can fail if the potential
is such that the particle is accelerated off to −∞ or +∞ in a finite time.32 Past
determinism is violated because two such solutions can agree for all future times
t ≥ t∗ (say) — no particle is present at these times anywhere in space — but
disagree at past times t < t∗ on the position and/or velocity of the particle when
it is present in space. Since the potential is assumed to be time independent, the
equations of motion are time reversal invariant, so taking the time reverses of these
escape solutions produces solutions in which hitherto empty space is invaded by
particles appearing from spatial infinity. These invader solutions provide violations
of future determinism. Piecing together escape and invader solutions produces
further insults to determinism.

In the 1890’s Paul Painlevé conjectured that for N > 3 point mass particles
moving in R

3 under their mutually attractive Newtonian gravitational forces, there
exist solutions to the Newtonian equations of motion exhibiting non-collision sin-
gularities, i.e. although the particles do not collide, the solution ceases to exist

31F (x) satisfies the Lipschitz condition in an interval (a, b) ⊂ R if there is a constant K > 0
such that |F (x1) − F (x2)| ≤ K|x1 − x2| for all x1, x2 ∈ (a, b). A sufficient condition for this is
that dF/dx exists, is continuous, and |dF/dx| ≤ K on (a, b) for some K > 0.

32See [Reed and Simon, 1975, Theorem X.5] for necessary and sufficient conditions for this to
happen.
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after a finite time. Hugo von Zeipel [1908] showed that in such a solution the par-
ticle positions must become unbounded in a finite time. Finally, near the close of
the 20th century Xia [1992] proved Painlevé conjecture by showing that for N = 5
point mass particles, the Newtonian equations of motion admit solutions in which
the particles do not collide but nevertheless manage to accelerate themselves off to
spatial infinity in a finite time (see [Saari and Xia, 1995] for an accessible survey).

Determinism can recoup its fortunes by means of the device, already mentioned
above, of supplementing the usual initial conditions with boundary conditions at
infinity. Or consolation can be taken from two remarks. The first remark is that
in the natural phase space measure, the set of initial conditions that lead to Xia
type escape solutions has measure zero. But it is unknown whether the same is
true of all non-collision singularities. The second remark is that the non-collision
singularities result from the unrealistic idealization of point mass particles that
can achieve unbounded velocities in a finite time by drawing on an infinitely deep
potential well. This remark does not suffice to save determinism when an infinity
of finite sized particles are considered, as we will see in the next subsection.

It is interesting to note that for point particles moving under mutually attractive
Newtonian gravitational forces, QM cures both the collision33 and non-collision
singularities that can spell the breakdown of classical solutions (see Section 5.2).
This is more than a mere mathematical curiosity since it is an important ingredient
in the explanation of the existence and stability of the hydrogen atom.

3.7 Infinite collections

Consider a collection of billiard balls confined to move along a straight line in
Euclidean space. Suppose that the balls act only by contact, that only binary col-
lisions occur, and that each such collision obeys the classical laws of elastic impact.
Surely, the reader will say, such a system is as deterministic as it gets. This is so,
if the collection is finite. But if the collection is infinite and unbounded velocities
are permitted, then determinism fails because even with all of the announced re-
strictions in place the system can seemingly self-excite itself (see [Lanford, 1974]).
Pérez Laraudogoitia [2001] shows how to use such infinite collections to create an
analogue of the escape solution of the preceding subsection where all of the parti-
cles disappear in a finite amount of time. The time reverse of this scenario is one
in which space is initially empty, and then without warning an infinite stream of
billiard balls pour in from spatial infinity.

Legislating against unbounded velocities or imposing boundary conditions at
infinity does not suffice to restore determinism if the billiard balls can be made
arbitrarily small [Pérez Laraudogoitia, 2001]. For then a countably infinite collec-
tion of them can be Zeno packed into a finite spatial interval, say (0, 1], by placing
the center of the first ball at 1, the second at 1/2, the third at 1/4, etc. Assume
for ease of illustration that all the balls have equal mass (≡ 1). A unit mass cue

33A collision singularity occurs when two or more of the point particles collide and the solution
cannot be continued through the collision time.
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ball moving with unit speed from right to left collides with the first ball and sends
a ripple through the Zeno string that lasts for unit time, at the end of which all
of the balls are at rest. The boring history in which all the balls are at rest for
all time is, of course, also a solution of the laws of impact. Comparing this boring
history with the previous one shows that past Laplacian determinism is violated.34

This failure of determinism carries with it a violation of the conservation and
energy momentum, albeit in a weak sense; namely, in the inertial frame in which
the object balls are initially at rest, the total energy and the total momentum
each have different values before and after the collisions start, but in every other
inertial frame there is no violation simply because the values are infinite both
before and after the collisions.35 Pérez Laraudogoitia [2005] has shown how to
construct scenarios in which there is a strong violation of conservation of energy
and momentum in that the violation occurs in every inertial frame.

3.8 Domains of dependence

With some artificiality one of the threats to classical determinism discussed above
can be summarized using a concept that will also prove very helpful in compar-
ing the fortunes of determinism in classical physics and in relativistic physics.
By a causal curve let us understand a (piecewise) smooth curve in spacetime
that represents the spacetime trajectory for a physically possible transfer of en-
ergy/momentum. Define the future domain of dependence, D+(S), of a spacetime
region S as the set of all spacetime points p such that any past directed causal
curve with future endpoint at p and no past endpoint intersects S. The past do-
main of dependence D−(S) of S is defined analogously. And the total domain of
dependence D(S) is the union D+(S) ∪ D−(S). If p /∈ D(S) then it would seem
that the state in region S does not suffice to determine the state at p since there
is a possible causal process that passes through p but never registers on S.

Since neither the kinematics nor the dynamics of classical physics place an upper
bound on the velocity at which energy/momentum can be transferred, it would
seem that in principle any timelike curve — i.e. any (piecewise) smooth curve
oblique to the planes of absolute simultaneity — can count as a causal curve, and
as a consequence D(S) = ∅ even when S is taken to be an entire plane of absolute
simultaneity. The examples from Sections 3.4, 3.6, and 3.7 show how the “in
principle” can be realized by some systems satisfying Newtonian laws of motion.

We have seen that some threats to classical determinism can be met by beefing
up the structure of classical spacetime. And so it is with the threat currently un-
der consideration. Full Newtonian spacetime is what results from neo-Newtonian

34The time reverse of the interesting history starts with all the balls initially at rest, and
then subsequently the collection self-excites, sending a ripple of collisions from left to right and
ejecting the cue ball. If this self-exciting history is physically possible, then future laplacian
determinism is violated. However, it might rejected on the grounds that it violated Newton’s
first law of motion.

35For a comment on how the availability of an infinite amount of momentum/energy renders
the indeterminism unsurprising, see [Norton, 1999, 1268].
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spacetime by adding absolute space in the form of a distinguished inertial frame
(‘absolute space’). In this setting the spacetime symmetries are small enough that
there are now finite invariant velocities (intuitively, velocities as measured relative
to absolute space), and thus laws can be formulated that set a finite upper bound
on the absolute velocity of causal propagation. Nor is this move necessarily ad
hoc as shown, for example, by the fact that the formulation of Maxwell’s laws of
electromagnetism in a classical spacetime setting evidently requires the services of
a distinguished inertial frame, the velocity of light c being the velocity as measured
in this frame.

But, as is well known, such a formulation is embarrassed by the undetectability
of motion with respect to absolute space. This embarrassment provides a direct
(albeit anachronistic) route from classical to relativistic spacetime. Adopting for
classical spacetimes the same geometric language used in the special and general
theories of relativity (see [Earman, 1989, Ch. 2]), absolute space is represented
by a covariantly constant timelike vector field Aa, the integral curves of which are
the world lines of the points of absolute space. The space metric is represented
by a degenerate second rank contravariant tensor hab, which together with Aa

defines a tensor that is formally a Minkowski metric: ηab := hab − AaAb. The
unobservability of absolute motion means that there is no preferred way to split
ηab into an hab part and a AaAb part, suggesting that ηab is physically as well as
formally a Lorentz metric. As we will see in Section 4.1, this puts determinism on
much firmer ground in that domains of dependence of local or global time slices
are non-empty in the spacetime setting of STR.

3.9 Determinism, predictability, and chaos

Laplace’s vision of a deterministic universe makes reference to an “intelligence”
(which commentators have dubbed ‘Laplace’s Demon’):

We ought to regard the present state of the universe as the effect of
its antecedent state and as the cause of the state that is to follow. An
intelligence knowing all of the forces acting in nature at a given instant,
as well as the momentary positions of all things in the universe, would
be able to comprehend in one single formula the motions of the largest
bodies as well as the lightest atoms in the world, provided that its
intellect were sufficiently powerful to subject all data to analysis; to it
nothing would be uncertain, the future as well as the past would be
present to its eyes.36

36[Laplace, 1820]. English translation from [Nagel, 1961, 281-282]. More than a century earlier
Leibniz espoused a similar view: “[O]ne sees then that everything proceeds mathematically —
that is, infallibly — in the whole wide world, so that if someone could have sufficient insight into
the inner parts of things, and in addition has remembrance and intelligence enough to consider
all the circumstances and to take them into account, he would be a prophet and would see the
future in the present as in a mirror.” Quoted from [Cassirer, 1956, 12].
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Perhaps by taking Laplace’s vision too literally, philosophers and physicists alike
conflate determinism and predictability. The conflation leads them to reason as
follows: here is a case where predictability fails; thus, here is a case where determin-
ism fails.37 This is a mistake that derives from a failure to distinguish determinism
— an ontological doctrine about how the world evolves — from predictability —
an epistemic doctrine about what can inferred, by various restricted means, about
the future (or past) state of the world from a knowledge of its present state.

There is, however, an interesting connection between determinism and practi-
cal predictability for laws of motion that admit an initial value problem that is
well-posed in the sense that, in some appropriate topology, the solutions depend
continuously on the initial data.38 The standard existence and uniqueness proofs
for the initial value problem for the odes used in particle mechanics also furnish a
proof of well-posedness, which can be traced to the fact that the existence proof is
constructive in that it gives a procedure for constructing a series of approximations
that converge to the solution determined by the initial data.

To illustrate the implications of well-posedness for predictability, consider the
toy case of a system consisting of a single massive particle obeying Newtonian
equations of motion. If a suitable Lipschitz condition is satisfied, then for any given
values of the position q(0) and velocity q̇(0) of the particle at t = 0 there exists
(for some finite time interval surrounding t = 0) a unique solution: symbolically
q(t) = F (q(0), q̇(0), t). And further, since this initial value problem is well-posed,
for any fixed t > 0 (within the interval for which the solution is guaranteed to
exist), F is a continuous function of q(0) and q̇(0). Suppose then that the practical
prediction task is to forecast the actual position q̄(t∗) of the particle at some given
t∗ > 0 with an accuracy of ε > 0, and suppose that although measurements of
position or velocity are not error free, the errors can be made arbitrarily small.
By the continuity of F , there exist δ1 > 0 and δ2 > 0 such that if |q(0)− q̄(0)| <
δ1 and |q̇(0) − q̇(0)| < δ2, then |q(t∗) − q̄(t∗)| < ε. Thus, measuring at t = 0 the
actual particle position and velocity with accuracies ±δ1/2 and ±δ2/2 respectively
ensures that when the measured values are plugged into F , the value of the function
for t = t∗ answers to the assigned prediction task. (Note, however, that since the
actual initial state is unknown, so are the required accuracies ±δ1/2 and ±δ2/2,
which may depend on the unknown state as well as on ε and t∗. This hitch
could be overcome if there were minimum but non-zero values of δ1 and δ2 that

37On the philosophical side, Karl Popper is the prime example. Popper [1982] goes so far as to
formulate the doctrine of “scientific determinism” in terms of prediction tasks. An example on
the physics side is Reichl [1992]: “[W]e now know that the assumption that Newton’s equations
are deterministic is a fallacy! Newton’s equations are, of course, the correct starting point of
mechanics, but in general they only allow us to determine [read: predict] the long time behavior
of integrable mechanical systems, few of which can be found in nature” (pp. 2–3). I am happy
to say that in the second edition of Reichl’s book this passage is changed to “[W]e now know
that the assumption that Newton’s equations can predict the future is a fallacy!” [Reichl 2004,
3; italics added].

38When the topology is that induced by a norm || · || on the instantaneous states represented
by a function s(t) of time, well-posedness requires that there is a non-decreasing, nonnegative
function C(t) such that ||s(t)|| ≤ C(t)||s(0)||, t > 0, for any solution s(t).
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answered to the given prediction task whatever the initial state; but there is no
a priori guarantee that such minimum values exist. A prior measurement with
known accuracy of the position and velocity at some t∗∗ < 0 will put bounds,
which can be calculated from F , on the position and velocity at t = 0. And then
the minimum values can be calculated for accuracies δ1 and δ2 of measurements
at t = 0 that suffice for the required prediction task for any values of the position
and velocity within the calculated bounds.)

Jacques Hadamard, who made seminal contributions to the Cauchy or initial
value problem for pdes, took the terminology of “well-posed” (a.k.a. “properly
posed”) quite literally. For he took it as a criterion for the proper mathematical
description of a physical system that the equations of motion admit an initial
value formulation in which the solution depends continuously on the initial data
(see [Hadamard, 1923, 32]). However, the standard Courant-Hilbert reference
work, Methods of Mathematical Physics, opines that

“properly posed” problems are by far not the only ones which appro-
priately reflect real phenomena. So far, unfortunately, little mathemat-
ical progress has been made in the important task of solving or even
identifying such problems that are not “properly posed” but still are
important and motivated by realistic situations. [1962, Vol. 2, 230].

Some progress can be found in [Payne, 1975] and the references cited therein.
Hadamard was of the opinion that if the time development of a system failed to

depend continuously on the initial conditions, then “it would appear to us as being
governed by pure chance (which, since Poincaré,39 has been known to consist pre-
cisely in such a discontinuity in determinism) and not obeying any law whatever”
[1923, 38]. Currently the opinion is that the appearance of chance in classical
systems is due not to the failure of well-posedness but to the presence of chaos.

The introduction of deterministic chaos does not change any of the above con-
clusions about determinism and predictability. There is no generally agreed upon
definition of chaos, but the target class of cases can be picked out either in terms
of cause or effects. The cause is sensitive dependence of solutions on initial con-
ditions, as indicated, for example, by positive Lyapunov exponents. The effects
are various higher order ergodic properties, such as being a mixing system, being
a K-system, being a Bernoulli system, etc.40 Generally a sensitive dependence on
initial conditions plus compactness of the state space is sufficient to secure such
properties. The sensitive dependence of initial condition that is the root cause of
chaotic behavior does not contradict the continuous dependence of solutions on
initial data, and, therefore, does not undermine the task of predicting with any
desired finite accuracy the state at a fixed future time, assuming that error in
measuring the initial conditions can be made arbitrarily small. If, however, there

39See Poincaré’s essay “Chance” in Science and Method [1952].
40See Uffink, this volume, section 6.2, or [Lichtenberg and Lieberman, 1991] for definitions of

these concepts.
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is a fixed lower bound on the accuracy of measurements — say, because the mea-
suring instruments are macroscopic and cannot make discriminations below some
natural macroscopic scale — then the presence of deterministic chaos can make
some prediction tasks impossible. In addition, the presence of chaos means that
no matter how small the error (if non zero) in ascertaining the initial conditions,
the accuracy with which the future state can be forecast degrades rapidly with
time. To ensure the ability to predict with some given accuracy ε > 0 for all t > 0
by ascertaining the initial conditions at t = 0 with sufficiently small error δ > 0,
it would be necessary to require not only well-posedness but stability, which is
incompatible with chaos.41

Cases of classical chaos also show that determinism on the microlevel is not
only compatible with stochastic behavior at the macro level but also that the
deterministic microdynamics can ground the macro-stochasticity. For instance,
the lowest order ergodic property — ergodicity — arguably justifies the use of
the microcanonical probability distribution and provides for a relative frequency
interpretation; for it implies that the microcanonical distribution is the only sta-
tionary distribution absolutely continuous with respect to Lebesque measure and
that the measure of a phase volume is equal to the limiting relative frequency of
the time the phase point spends in the volume. In these cases there does not seem
to be a valid contrast between “objective” and “epistemic” probabilities. The
probabilities are epistemic in the sense that conditionalizing on a mathematically
precise knowledge of the initial state reduces the outcome probability to 0 or 1.
But the probabilities are not merely epistemic in the sense of merely expressing
our ignorance, for they are supervenient on the underlying microdynamics.

Patrick Suppes [1991; 1993] has used such cases to argue that, because we are
confined to the macrolevel, determinism becomes for us a “transcendental” issue
since we cannot tell whether we are dealing with a case of irreducible stochasticity
or a case of deterministic chaos. Although I feel some force to the argument, I am
not entirely persuaded. There are two competing hypotheses to explain observed
macro-stochasticity: it is due to micro-determinism plus sensitive dependence on
initial conditions vs. it is due to irreducible micro-stochasticity. The work in recent
decades on deterministic chaos supplies the details on how the first hypothesis can
be implemented. The details of the second hypothesis need to be filled in; particu-
lar, it has to be explained how the observed macro-stochasticity supervenes on the
postulated micro-stochasticity.42 And then it has to be demonstrated that the two
hypotheses are underdetermined by all possible observations on the macrolevel. If
both of these demands were met, we would be faced with a particular instance of
the general challenge to scientific realism posed by underdetermination of theory
by observational evidence, and all of the well-rehearsed moves and countermoves
in the realism debate would come into play. But it is futile to fight these battles
until some concrete version of the second hypothesis is presented.

41Stability with respect to a norm on states s(t) requires that there is a constant C such that
||s(t)|| ≤ C||s(0)||, t > 0, for any solution s(t). Compare to footnote 38.

42It is not obvious that micro-stochasticity always percolates up to the macro-level.
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3.10 Laplacian demons, prediction, and computability

Since we are free to imagine demons with whatever powers we like, let us suppose
that Laplace’s Demon can ascertain the initial conditions of the system of interest
with absolute mathematical precision. As for computational ability, let us suppose
that the Demon has at its disposal a universal Turing machine. As impressive as
these abilities are, they may not enable the Demon to predict the future state of
the system even if it is deterministic. Returning to the example of the Newtonian
particle from the preceding subsection, if the values of the position and velocity of
the particle at time t = 0 are plugged into the function F (q(0), q̇(0), t) that specifies
the solution q(t), the result is a function F(t) of t; and plugging different values
of the initial conditions results in different F(t) — indeed, by the assumption of
determinism, the F(t)’s corresponding to different initial conditions must differ
on any finite interval of time no matter how small. Since there is a continuum of
distinct initial conditions, there is thus a continuum of distinct F(t)’s. But only
a countable number of these F(t)’s will be Turing computable functions.43 Thus,
for most of the initial conditions the Demon encounters, it is unable to predict the
corresponding particle position q(t) at t > 0 by using its universal Turing machine
to compute the value of F(t) at the relevant value of t — in Pitowsky’s [1996]
happy turn of phrase, the Demon must consult an Oracle in order to make a sure
fire prediction.

However, if q(0) and q̇(0) are both Turing computable real numbers, then an
Oracle need not be consulted since the corresponding F(t) is a Turing computable
function; and if t is a Turing computable real number, then so is F(t). This follows
from the fact that the existence and uniqueness proofs for odes gives an effective
procedure for generating a series of approximations that converges effectively to
the solution; hence, if computable initial data are fed into the procedure, the
result is an effectively computable solution function. Analogous results need not
hold when the equations of motion are pdes. Jumping ahead to the relativistic
context, the wave equation for a scalar field provides an example where Turing
computability of initial conditions is not preserved by deterministic evolution (see
Section 4.4).

A more interesting example where our version of Laplace’s Demon must consult
an Oracle has been discussed by Moore [1990; 1991] and Pitowsky [1996]. Moore
constructed an embedding of an abstract universal Turing machine into a concrete
classical mechanical system consisting of a particle bouncing between parabolic
and flat mirrors arranged so that the motion of the particle is confined to a unit

43The familiar notion of a Turing computable or recursive function is formulated for functions
of the natural numbers, but it can be generalized so as to apply to functions of the real numbers.
First, a computable real number x is defined as a limit of a computable sequence {rn} of rationals
that converges effectively, i.e. there is a recursive function f(n) such that k ≥ f(n) entails
|x − rk| ≤ 10n. Next, a sequence {xn} of reals is said to be computable iff there is a double
sequence {rkn} such that rkn → xn as k → ∞ effectively in both k and n. Finally, a function
of the reals is said to be computable iff it maps every computable sequence in its domain into
a computable sequence and, moreover, it is effectively uniformly continuous. For details, see
[Pour-el and Richards, 1989].
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square. Using this embedding Moore was able to show how recursively unsolvable
problems can be translated into prediction tasks about the future behavior of the
particle that the Demon cannot carry out without help from an Oracle, even if
it knows the initial state of the particle with absolute precision! For example,
Turing’s theorem says that there is no recursive algorithm to decide whether a
universal Turing machine halts on a given input. Since the halting state of the
universal Turing machine that has been embedded in the particle-mirror system
corresponds to the particle’s entering a certain region of the unit square to which
it is thereafter confined, the Demon cannot predict whether the particle will ever
enter this region. The generalization of Turing’s theorem by Rice [1953] shows that
many questions about the behavior of a universal Turing machine in the unbounded
future are recursively unsolvable, and these logical questions will translate into
physical questions about the behavior of the particle in the unbounded future that
the Demon cannot answer without consulting an Oracle.

The reader might ask why we should fixate on the Turing notion of computabil-
ity. Why not think of a deterministic mechanical system as an analogue computer,
regardless of whether an abstract Turing machine can be embedded in the system?
For instance, in the above example of the Newtonian particle with deterministic
motion, why not say that the particle is an analogue computer whose motion
“computes,” for any given initial conditions q(0), q̇(0), the possibly non-Turing
computable function q(t) = F (q(0), q̇(0), t)? I see nothing wrong with removing
the scare quotes and developing a notion of analogue computability along these
lines. But the practical value of such a notion is dubious. Determining which func-
tion of t is being computed and accessing the value computed for various values
of t requires ascertaining the particle position with unbounded accuracy.

Connections between non-Turing computability and general relativistic space-
times that are inhospitable to a global version of Laplacian determinism will be
mentioned below in Section 6.6.

4 DETERMINISM IN SPECIAL RELATIVISTIC PHYSICS

4.1 How the relativistic structure of spacetime improves the fortunes
of determinism

Special relativistic theories preserve the Newtonian idea of a fixed spacetime back-
ground against which the drama of physics plays itself out, but they replace the
background classical spacetimes with Minkowski spacetime. This replacement
makes for a tremendous boost in the fortunes of determinism. For the symme-
tries of Minkowski spacetime are given by the Poincaré group, which admits a
finite invariant speed c, the speed of light, making it possible to formulate laws of
motion/field equations which satisfy the basic requirement that the symmetries of
the spacetime are symmetries of the laws and which propagate energy-momentum
no faster than c. For such laws all of the threats to classical determinism that
derive from unbounded velocities are swept away.
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The last point can be expounded in terms of the apparatus introduced in Section
3.8. For the type of law in question, a causal curve is a spacetime worldline whose
tangent at any point lies inside or on the null cone at that point, with the upshot
that domains of dependence are now non-trivial. Minkowski spacetime admits a
plethora of global time functions. But in contrast with classical spacetimes, such
a function t can be chosen so that the domains of dependence D(t = const) of the
level surfaces of t are non-empty. Indeed, t can be chosen so that for each and
every t = const the domain of dependence D(t = const) is a Cauchy surface, i.e.
D(t = const) is the entire spacetime. In fact, any inertial time coordinate is an
example of a global time function, all of whose levels are Cauchy surfaces.44 In the
context of STR, the definition of Laplacian determinism given above in Section
2.1 is to be understood as applying to a t with this Cauchy property.

It is important to realize that these determinism friendly features just discussed
are not automatic consequences of STR itself but involve additional substantive
assumptions. The stress-energy tensor T ab used in both special and general rel-
ativistic physics describes how matter-energy is distributed through spacetime.
What is sometimes called the local conservation law for T ab, ∇aT ab = 0, where
∇a is the covariant derivative determined by the spacetime metric, does not guar-
antee that the local energy-momentum flow as measured by any observer is always
non-spacelike. That guarantee requires also that for any future pointing timelike
Ua, −T abUa is a future pointing, non-spacelike vector.45 Combining this require-
ment with the further demand that the local energy density as measured by any
observer is non-negative, i.e. T abUaUb ≥ 0 for any non-spacelike vector field Ua,
produces what is called the dominant energy condition. Not surprisingly, this con-
dition, together with the local conservation of T ab, does guarantee that the matter
fields that give rise to T ab cannot travel faster than light in the sense that if T ab

vanishes on some spacelike region S, then it must also vanish on D(S) (see [Hawk-
ing and Ellis, 1973, 91-94]). The dominant energy conditions is thought to be
satisfied by all the matter-fields encountered in the actual world, but occasionally
what are purported to be counterexamples appear in the physics literature.

4.2 Fundamental fields

In Section 3.4 examples were given to illustrate how fields have a hard time living
up to the ideals of Laplacian determinism in classical spacetimes. The situation
changes dramatically in Minkowski spacetime, which supports field equations in
the form of hyperbolic pdes.46 For example, the Klein-Gordon equation for a
scalar field φ of mass m ≥ 0 obeys the equation

∇a∇aφ−m2φ = 0(12)

44Exercise for the reader: Construct a global time function t for Minkowski spacetime such
that none of the level surfaces of t are Cauchy.

45The minus sign comes from the choice of the signature (+ + +−) for the spacetime metric.
46A standard reference on the classification of pdes relevant to physical applications is [Courant

and Hilbert, 1962, Vol. 2]. See also [Beig, 2004].
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which is a special case of a linear, diagonal, second order hyperbolic pde. For such
equations there is a global existence and uniqueness proof for the initial value
problem: given a Cauchy surface Σ of Minkowski spacetime and C∞ initial data,
consisting of the value of φ on Σ and the normal derivative of φ with respect to Σ,
there exists a unique C∞ solution of (13) throughout spacetime. Furthermore, the
initial value problem is well-posed in that (in an appropriate topology) the unique
solution depends continuously on the initial data. And finally the Klein-Gordon
field propagates causally in that if the initial data are varied outside a closed
subset S ⊂ Σ, the unique solution on D(S) does not vary. Notice that we have
a completely clean example of Laplacian determinism at work — no boundary
conditions at infinity or any other enabling measures are needed to fill loopholes
through which indeterminism can creep in. By contrast, giving initial data on a
timelike hypersurface of Minkowski spacetime is known to lead to an improperly
posed Cauchy problem; indeed, not only do solutions not depend continuously on
the initial data, but there are C∞ initial data for which there is no corresponding
solution. This asymmetry between the fortunes of determinism in timelike vs.
spacelike directions, could, as noted above, be turned around and used as a basis
for singling out the time dimension.

It should be emphasized that only restricted classes of hyperbolic pdes are
known to have well-posed initial value problems. It is a challenge to mathematical
physics to show that the field equations encountered in physical theories can be
massaged into a form that belongs to one of these classes. It is a comparatively easy
exercise to show that, when written in terms of potentials, the source-free Maxwell
equations for the electromagnetic field take the form of a system of linear, diagonal,
second order hyperbolic pdes if an appropriate gauge condition is applied to the
potentials. In other cases the challenge requires real ingenuity.47

Physicists are so convinced of determinism in classical (= non-quantum) special
relativistic physics that they sort “fundamental” from “non-fundamental” matter
fields according as the field does or does not fulfill Laplacian determinism in the
form of global existence and uniqueness theorems for the initial value problem
on Minkowski spacetime. The Klein-Gordon field and the source-free Maxwell
electromagnetic field qualify as fundamental by this criterion. A dust matter
field, however, fails to make the cut since singularities can develop from regular
initial data since, for example, in a collapsing ball of dust the density of the dust
can become infinite if the outer shells fall inward fast enough that they cross
the inner shells. Such shell-crossing singularities can develop even for physically
reasonable initial data for the Maxwell-Lorentz equations where the source for the
electromagnetic field consists of a charged dust obeying the Lorentz force law. But
no great faith in determinism is needed to brush aside the failure of determinism
in such examples; they can also be dismissed on the grounds that dust matter is
an idealization and, like all idealizations, it ceases to work in some circumstances.
Faith in determinism, however, is required to deal with what happens when the
Klein-Gordon equation is converted into a non-linear equation by adding terms to

47See [Beig, 2004] for examples.
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the right hand side of (13), e.g.

∇a∇aφ−m2φ = λφ2(13)

where λ is a constant. It is known that solutions of (14) corresponding to regular
initial data can become infinite at a finite value of t and that such data has non-zero
measure (see [Keller, 1957]).

A number of attempts have been made to modify the classical Navier-Stokes
equations (see Section 3.4) for dissipative fluids in order to make them consis-
tent with STR in the sense that they become a system of hyperbolic pdes with
causal propagation. A criterion of success is typically taken to be that the result-
ing system admits an initial value formulation, confirming once again the faith in
determinism in the special relativistic setting. One difficulty in carrying out this
program is that it necessitates the introduction of additional dynamical variables
and additional dynamical equations, and as a result many different relativistic
generalizations of the classical equations have been produced. Geroch [1995] has
argued that we need not be troubled by this embarras des riches because the differ-
ences among the relativistic generalizations wash out at the level of the empirical
observations that are captured by the Navier-Stokes theory.

4.3 Predictability in special relativistic physics

The null cone structure of Minkowski spacetime that makes possible clean exam-
ples of Laplacian determinism works against predictability for embodied observers
who are not simply “given” initial data but must ferret it out for themselves by
causal contact with the system whose future they are attempting to predict. Con-
sider, for example, the predicament of an observer O whose world line is labeled γ
in Fig. 1. At spacetime location p this observer decides she wants to predict what
will happen to her three days hence (as measured in her proper time).

γ

σ

p'

p

I-(p')t

Figure 1. The failure of predictability in Minkowski spacetime
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Suppose that, in fact, three-days-hence for O corresponds to the spacetime
location p′. And suppose that the equations governing the variables relevant to
the prediction are such that initial data on a spacelike hypersurface Σ fixes a unique
solution in D(Σ). Then to carry out the prediction by way of solving the relevant
equations, O must ascertain the state on a local spacelike hypersurface that slices
through the past null cone of p′, such as σ in Fig. 1. As O’s “now” creeps up
her world line, the past light of the “now” sweeps out increasingly large portions
of σ, but until her “now” reaches p′ she does not have causal access to all of σ.
And the same goes for any other local slice through the past cone of p′. Thus, the
very spacetime structure that provides a secure basis for Laplacian determinism
prevents O from acquiring the information she needs before the occurrence of the
event that was to be predicted.

This predictability predicament can be formalized in a way that will be useful
when it comes to investigating predictability in a general relativistic spacetime
M, gab, whereM is a differentiable manifold and gab is a Lorentz signature metric
defined on all of M, Minkowski spacetime being the special case where M = R

n

and gab is the Minkowski metric. Geroch (1977) defines the domain of prediction
P (q) of a point q ∈ M to consist of all points p ∈ M such that (i) every past
directed timelike curve with future endpoint at p and no past endpoint enters the
chronological past I−(q) of q,48 and (ii) I−(p) � I−(q). Condition (i) is needed to
ensure that causal processes that can influence events at p register on the region
I−(q) that is causally accessible to an observer whose “now” is q, and condition
(ii) is needed to ensure that from the perspective of q, the events to be predicted
at p have not already occurred. The predictability predicament for Minkowski
spacetime can now be stated as the theorem that for every point q of Minkowski
spacetime, P (q) = ∅.

Note that the predictability predicament arises not just because of the local null
cone structure of Minkowski spacetime but also because of its global topological
structure. To drive home this point, suppose that space in (1 + 1)-Minkowski
spacetime is compactified to produce the cylindrical spacetime C pictured in Fig.
2. Now predictability is possible since I−(q) for any q contains a Cauchy surface,
e.g. Σ in Fig. 2. As a result P (q) = C − I−(q).

For standard Minkowski spacetime and other spacetimes for which P (q) = ∅ for
every spacetime point q, one can wonder how secure predictions are possible. The
answer is that if complete security is required, the only secure predictions have a
conditional form, where the antecedent refers to events that are not causally acces-
sible from q. But there will be many such conditionals, with different antecedents
and different consequents, and since one will not be in a position to know which
of the antecedents is actualized, the best one can do is a “prediction” (all too
familiar from economic forecasts) consisting of a big set of conditionals. On the
other hand, if complete security is not demanded, then unconditional predictions

48For a point q in a relativistic spacetime M, gab, the chronological past I−(q) consists of all
p ∈ M such that there is a future directed timelike curve from p to q. The chronological future
I+(q) of a point q is defined analogously.
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Σ

p
q

I-(q)t

Figure 2. The improved fortunes of predictability when the spatial aspect of
Minkowski spacetime is compactified

carrying probability instead of certainty are obtainable if inductive inference from
past observations points to one of the antecedents of the set of conditionals as
being highly likely.

If one wants predictions that are in principle verifiable, then a third condition
needs to be added to the definition of the domain of prediction; namely, (iii)
p ∈ I+(q). The point p in Fig. 2 satisfies clauses (i) and (ii) but not (iii).

4.4 Special relativity and computability

Pour-el and Richards [1981] constructed an example in which deterministic evolu-
tion does not preserve Turing computability. The equation of motion at issue is
the relativistic wave equation, which in inertial coordinates is written

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
− ∂2u

∂t2
= 0, c ≡ 1(14)

Pour-el and Richards studied solutions corresponding to initial data at t = 0 of
the form u(x, y, z, 0) = f(x, y, z), ∂u(x, y, z, 0)/∂t = 0. They showed that there
is a Turing computable f(x, y, z) such that the corresponding solution u(x, y, z, t)
is not Turing computable at t = 1. However, such a solution is necessarily a
weak solution (in the sense of Section 3.4) to the wave equation since it must
be non-differentiable. And the non-preservation result is sensitive to the norm
used to define convergence. Indeed, if Turing computability is defined using the
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energy norm,49 then for any Turing computable functions f and g, the solution
u(x, y, z, t) corresponding to u(x, y, z, 0) = f(x, y, z), ∂u(x, y, z, 0)/∂t = g(x, y, z)
is Turing computable (see [Pour-el and Richards, 1989, 116-118]).

5 DETERMINISM AND INDETERMINISM IN ORDINARY QM

The folklore on determinism has it that QM is the paradigm example of an in-
deterministic theory. Like most folklore, this bit contains elements of truth. But
like most folklore it ignores important subtleties — in this instance, the fact that
in some respects QM is more deterministic and more predictable than classical
physics. And to distill the elements of truth from the folklore takes considerable
effort — in particular, the folkloric notion that quantum indeterminism arises be-
cause the “reduction of the wave packet” is based on a controversial interpretation
of the quantum measurement process. Before turning to these matters, I will dis-
cuss in Section 5.1 an issue that links to the some of the themes developed above
and in Secs. 5.2-5.4 some issues unjustly neglected in the philosophical literature.

5.1 Determinism and Galilean invariance in QM

Here is another example of how linking determinism and symmetry considerations
is fruitful in producing physical insights. Consider the motion of a single spinless
particle on the real line R, and work in the familiar Hilbert space H of wave
functions, i.e. H = L2

C
(R, dx). The evolution of the state ψ(x) ∈ H of the

quantum particle is governed by the Schrödinger equation

i�
∂ψ

∂t
= Ĥψ(15)

where Ĥ is the Hamiltonian operator. This evolution is deterministic, or so it is
said. But a puzzle is quickly generated by conjoining the presumed determinism
with the presumed Galilean invariance of (16).50 Since (16) is first order in time,
giving the value of the wave function ψ(x, 0) for all x ∈ R at t = 0 should fix the
value of ψ(x, t) for all t > 0. But how can this be if the Schrödinger equation is
Galilean invariant? A proper Galilean transformation x → x′ = x − vt, v �= 0,
is the identity map for t = 0 but non-identity for t > 0. Assuming Galilean
invariance of (16), this map must carry a solution to a solution. Since the map in
question is the identity for t = 0 the two solutions should have the same initial data
ψ(x, 0); but since the map is not the identity for t > 0 the original solution and

49For initial conditions f, g the energy norm is given by
||f, g||2 :=

R R R
[(∇f)2 + g2]dxdydz.

And for functions u on R
4 the norm is ||u(x, y, z, t)|| = supt E(u, t), where

E(u, t)2 :=
R R R

[∇u +
“∂u

∂t

”2

]dxdydz.

If u is a solution of the wave equation, then E(u, t) is independent of t.
50For a treatment of the Galilean invariance of the Schrödinger equation, see [Brown, 1999].
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its image under a Galilean boost should diverge in the future, violating Laplacian
determinism. The resolution of this little puzzle is to reject the implicit assumption
that ψ behaves as a scalar under a Galilean transformation. In fact, Galilean
invariance of the Schrödinger equation can be shown to imply that the Galilean
transformation of ψ depends on the mass of the particle. And this in turn entails
a “superselection rule” for mass (discovered by Bargmann [1954]) which means
that a superposition of states corresponding to different masses is not physically
meaningful in non-relativistic QM.

5.2 How QM can be more deterministic than classical mechanics

Physics textbooks on QM offer a procedure for quantization that starts with a
Hamiltonian formulation of the classical dynamics for the system of interest and
produces, modulo operator ordering ambiguities, a formal expression for the quan-
tum Hamiltonian operator Ĥ that is inserted into equation (16).51 But to make the
formal expression into a genuine operator a domain of definition must be specified
since, typically, Ĥ is an unbounded operator and, therefore, is defined at best for
a dense domain of the Hilbert space. Usually it is not too difficult to find a dense
domain on which Ĥ acts as a symmetric operator. The question then becomes
whether or not this operator is essentially self-adjoint, i.e. has a unique self-adjoint
(SA) extension — which will also be denoted by Ĥ.52 If so, Û(t) := exp(−iĤt)
is unitary for all t ∈ R, and since Û(t) is defined for the entire Hilbert space, the
time evolute ψ(t) := Û(t)ψ for every vector in the Hilbert space is defined for all
times. (The Schrödinger equation (16) is just the “infinitesimal” version of this
evolution equation.) Thus, if Ĥ is essentially SA, none of the problems which be-
set the deterministic evolution of the classical state can trouble the deterministic
evolution of the quantum state.

What is, perhaps, surprising is that the quantum Hamiltonian operator can
be essentially SA in some cases where the counterpart classical system does not
display deterministic evolution. Recall from Section 3.5 the example of a particle
moving on the real line R in a (real-valued) potential V (x), x ∈ R. As we saw, when
the potential is proportional to −|x|4/3 near the origin, the initial value problem
for the Newtonian equation of motion does not have a unique solution. But the

quantum Hamiltonian operator Ĥ = − �
2

2m

d2

dx2
− V (x) is essentially SA provided

that V (x) is locally integrable and bounded below. And this can be satisfied by
the classically non-deterministic potential by suitably modifying it away from the
origin.53

51See [Landsman, this vol.] for details on various approaches to quantization.
52A linear operator Ô defined on the dense domain D(Ô) of the Hilbert space H is symmetric

just in case for all ψ, ϕ ∈ D(Ô), (Ôϕ, ψ) = (ϕ, Ôψ), where (·, ·) is the inner product on H. That

Ô is self-adjoint means that Ô = Ô∗, i.e. Ô is symmetric and D(Ô) = D(Ô∗), where Ô∗ is

adjoint of Ô∗. Here D(Ô∗) is defined to be the set of ϕ ∈ H such that there is a χ ∈ H such

that (Ôψ, ϕ) = (ψ, χ) for all ψ ∈ D(Ô); then Ô∗ϕ := χ.
53An appropriate dense domain is {ψ ∈ L2

C
(R, dx) : ψ, ψ′ ∈ AC(R) & Ĥψ ∈ L2

C
(R, dx)} where



Aspects of Determinism in Modern Physics 1401

Another form of classical indeterminism occurs when the initial value problem
has locally in time a unique solution but the solution breaks down after a finite
time. The example given in Section 3.6 was that of a system of classical point
mass particles moving under the influence of their mutual pairwise attractive 1/r2

force, and it was noted that the solution can break down either because of collision
or non-collision singularities. Neither type of singularity occurs in the quantum
analogue since again the quantum Hamiltonian operator for this case is essentially
SA.54

QM also cures the indeterminism of the Zeno version of classical billiards dis-
cussed in Section 3.7, at least in a backhanded sense. A putative quantum analogue
would mimic the Zeno construction of an infinite number of distinct particles in the
unit interval (0, 1] by squeezing into that interval an infinite number of wave pack-
ets with substantial non-overlap. The latter would require that the uncertainty in
position ∆x associated with a wave packet becomes arbitrarily small as the origin
is approached. By the uncertainty principle, the uncertainty in momentum ∆p
would have to become unboundedly large as the origin is approached. This rep-
resents a breakdown in the putative quantum analogue if ∆x and ∆p both small
in comparison with some specified macroscopic standard is required for mimicing
classical behavior.55

5.3 How QM (even without state vector reduction) can be a lot less
deterministic than classical mechanics

Determinism for the evolution of the quantum state is an all-or-nothing affair.
If Ĥ is essentially SA then the “all” alternative applies since, as already noted,
the exponentiation of the unique SA extension gives a unitary evolution operator
which is defined for all times and all vectors in the Hilbert space. If Ĥ is not
essentially SA there are two possibilities to consider. The first is that Ĥ has no SA
extensions. This can be dismissed on the grounds that Ĥ should be a real operator,
and every real symmetric operator has SA extensions. The second possibility is
that Ĥ has many SA extensions. Then the “nothing” alternative applies; for
the exponentiations of the different SA extensions give physically distinct time
evolutions. Roughly speaking, the different self-adjoint extensions correspond to
different boundary conditions at the boundary points of the configuration space.
Perhaps some boundary condition can be singled out and promoted to lawlike

AC(R) stands for the absolutely continuous functions.
54This result is known as Kato’s theorem; see [Kato, 1995, Remark 5.6]. For a more detailed

discussion of the issue of essential self-adjointness and its implications for quantum determinism,
see [Earman, 2005].

55Mimicking a classical state in which a particle has given values of position and momentum
requires a quantum state ψ that not only returns the given values as expectation values but
also gives (∆x)ψ and (∆p)ψ small in comparison with the relevant macroscopic standard; for if
(∆x)ψ (respectively, (∆p)ψ) is large in comparison with the standard, there is an appreciable
probability that the particle will be found with a position (respectively, momentum) different
from the given value.
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status, thus providing for a unique quantum dynamics. But restoring determinism
by this route would require a justification for the hypothesized singling out and
promotion. Alternatively, the effects of the non-essential self-adjointness of the
Hamiltonian can be down played if it can be shown that the quantum dynamics
associated with different self-adjoint extensions all have the same classical limit
(see [Earman, 2005b]).

A toy example of the second possibility is given by a particle moving on the
positive real line R+ in a potential V (x), x ∈ R. If the potential has the form C/x2,
with C > 0, then the Newtonian initial value problem has a unique solution, and
the solution is defined for all times. The intuitive explanation is that no matter how
much energy it has, the classical particle cannot climb over the indefinitely high
potential to reach the singularity at the origin, and it cannot reach x = +∞ in finite
time. However, the quantum Hamiltonian operator for this case is not essentially

SA on L2
C
(R+, dx) if C <

3
4

(see [Reed and Simon, 1975, Thm X.10]). The intuitive
explanation is that the quantum particle can tunnel through the barrier to reach
the singularity, allowing probability to leak away. This leakage is incompatible
with unitary evolution, which would obtain as the result of exponentiating the
unique SA extension of an essentially SA Ĥ.

The singularity in the configuration space of the toy example is wholly artificial,
being created by deleting half of the real line. But analogues in the form of naked or
timelike singularities occur in general relativistic spacetimes (see Section 6.4). One
can ask whether a relativistic quantum particle propagating on the background of
negative mass Schwarzschild spacetime can tunnel through the effective repulsive
barrier that surrounds the origin r = 0. Horowitz and Marolf [1995] show that the
answer is positive.

Essential self-adjointness of the Hamiltonian might be promoted as a selec-
tion principle to help decide what systems are “quantum possible,” guaranteeing
that (barring state vector collapse) the evolution of the quantum is deterministic.
Those who think that determinism is an a priori truth may look favorably on this
promotion, but otherwise its merits are hard to discern.

5.4 Chaos and predictability in QM

QM can not only be more deterministic than classical mechanics, but it can also
be more predictable as well. Classical predictability is compromised or completely
wrecked for observers who cannot ascertain initial conditions with complete preci-
sion if the systems whose behavior they are attempting to predict display sensitive
dependence on initial conditions. But if the quantum Hamiltonian operator is
essentially SA, then not only is the evolution of the quantum state completely
deterministic, its predictability is not compromised by sensitive dependence on
initial conditions. The point is simply that the linear, unitary nature of the evo-
lution preserves the Hilbert space norm: ||U(t)ψ2 − U(t)ψ1|| = ||U(t)(ψ2 − ψ1)||
= ||ψ2 − ψ1||. In words, if two states are close (as measured in the Hilbert space
norm) to begin with, they remain close for all times, i.e. the evolution is stable.
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This stability causes trouble for anyone seeking chaos in QM itself — they are
driven to such extremes as resorting to open systems (whose evolution is not
unitary) or to hidden variables whose evolution is not stable.56 But in itself
the stability of quantum evolution poses no a priori barrier to explaining how
chaos can emerge from quantum dynamics in some appropriate classical limit. For
that project only requires showing that the expectation values of relevant classical
quantities can diverge rapidly enough (in some appropriate metric) to underwrite
higher order ergodic properties that constitute the chaotic behavior observed on
the macrolevel (see [Belot and Earman, 1997]). One obvious way to carry out this
project is to use Ehrenfest’s theorem to show that in the position representation
the centroid of a quantum wave packet will follow a classical trajectory, as long
as the mean square width of the wave packet remains sufficiently small. However,
for classically chaotic trajectories the time interval in which the latter condition
holds is uncomfortably short — for example, [Zurek, 1998] estimates that for the
chaotic tumbling of Hyperion (a moon of Jupiter) it is of the order of 20 years.
Several authors have argued that quantum decoherence comes to the rescue (see,
for example, [Zurek, 1998; 2003]), but that is a topic that is beyond the scope
of this chapter. Clearly, classical chaos poses a challenge to our understanding of
how the classical world emerges from quantum physics.57 Another aspect of the
classical-quantum correspondence is treated in the next section.

5.5 State vector reduction, hidden variables, and all that

Showing that the Hamiltonian operator Ĥ for a quantum system of interest is
essentially SA is not enough to secure the fortunes of determinism for this system,
and this for two reasons. The first is that the deterministic evolution of the quan-
tum state might be interrupted by “state vector reduction,” as is postulated in
some treatments of the measurement problem in QM, by which the unitary evo-
lution ψ(0) → ψ(t) = exp(−iĤt)ψ(0) is suspended and the quantum state jumps
into an eigenstate of the observable being measured. In its crudest form state
vector reduction is a literal miracle — a violation of the laws of nature — making
it an inappropriate topic for the present forum. But there are more sophisticated
forms of state vector reduction that model the reduction as a dynamical process.
Stochastic models in which the reduction occurs discontinuously and continuously
have been studied respectively by Ghirardi et al. [1986] and Pearle [1989]. Reduc-
tion by means of a non-linear term added to the Schrödinger equation was studied
by Pearle [1976]. If the stochastic models of reduction are on the right track
and if the stochastic mechanisms they postulate represent irreducible randomness,
then obviously determinism is breached. By contrast, the scheme of Pearle [1976]

56See the discussions of Kronz [1998] and Cushing and Bowman [1999]. By contrast, physicists
who study “quantum chaos” do not try to find chaos in QM itself but rather study the distinguish-
ing properties of quantum systems whose classical counterparts display chaos. For this reason
Michael Berry suggested replacing “quantum chaos” with “quantum chaology.” Unfortunately
the suggestion did not stick.

57For a comprehensive survey of this problem, see [Landsman, this vol.].
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achieves a deterministic state vector reduction with the help of hidden variables.58

None of these alternatives to standard non-relativistic QM has been generalized
to a viable relativistic quantum field theory, and as far as I am aware none of
them play any role in the main lines of research on quantum gravity that come
from string theory or loop quantum gravity (see Section 8). Thus, at present it
does not seem productive to speculate about the implications for determinism of
possible modifications to QM that may or may not become part of some future
physics. However, the motivation for introducing state vector reduction is relevant
here, for it leads to the second set of reasons why the conventional quantum state
dynamics may not be sufficient to secure determinism for the quantum domain.

Classical (= non-quantum) theories wear their interpretations on their sleeves.59

For example, for a classical theory that admits an (unconstrained) Hamiltonian
formulation, observables are in one-one correspondence with functions from the
phase space Γ(q, p) to (say) the reals R. The intended interpretation is that if
fO is the function corresponding to the observable O, then the value of O at t is
o iff the state (q(t), p(t)) at t is such that fO(q(t), p(t)) = o. This scheme can
be liberalized to allow for dispositional observables which have definite values in
only some states; for such an O the representing function fO is only a partial
function. Another liberalization is to allow that the range of fO includes “fuzzy”
(e.g. interval) values. To get an interpretation of QM along similar lines requires
adding to the formalism at least two things: (i) an account of which SA operators
correspond to quantum observables, and (ii) a semantics for quantum observables
in the form of a value assignment rule that specifies what values the observables
take under what conditions. I will simply assume that part (i) of the interpretation
problem has been solved.

The most obvious way to supply part (ii) would be to ape the classical value
assignment rule, replacing the classical state space Γ(q, p) by the quantum state
space to get a value assignment rule of the form: the value of quantum observable
O at t is o iff the state vector ψ(t) is such that fO(ψ(t)) = o where fO is the
representing function for the quantum observable O. If, as implicitly assumed in
this formulation, the quantum state space is taken to be the the unit sphere SH
of the Hilbert space H of the system (i.e. {ψ ∈ H : (ψ,ψ) = 1}), then as far as
standard QM is concerned, gauge freedom is present since any two elements of
SH that differ by a phase factor correspond to the same physical state in that all
expectation values of observables are the same for the two quantum states. This
gauge redundancy can be removed by taking the state space to be the projective
Hilbert space PH, defined as the quotient of SH by the action of ψ → ςψ where
ς ∈ C with |ς| = 1; equivalently, PH is the space of rays or one-dimensional
subspaces of H. Thus, from the point of view of conventional QM, the value
assignment rule should obey the restriction that fO(ψ) = fO(ψ′) whenever the

58The hidden variables are the phase angles, an idea revived by Ax and Kochen [1999]; see
below.

59But recall from Section 3 that if determinism is demanded, then the initial on-the-sleeve
interpretation may have to be modified by seeing gauge freedom at work.
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unit vectors ψ′ and ψ belong to the same ray. Allowing the value assignment
to depend on the phase would amount to introducing “hidden variables,” in the
terminology used below.

In any case, if the quantum value assignment rule takes the form under discus-
sion and if the problems discussed in Section 5.3 are waived, then arguably QM is a
deterministic theory, and this is so even if fO is a partial function (i.e. is undefined
for some quantum states) or even if fO can take fuzzy values. For assuming no
state vector reduction, the state ψ(0) at t = 0 uniquely determines the state ψ(t)
at any t > 0; and assuming the implementation of (ii) under discussion, the state
ψ(0) at t = 0 uniquely determines the value assignments at any later time t > 0.
That an observable is assigned no value or a fuzzy value at t does not represent
a failure of determinism, which requires only that the laws plus the initial state
determine the present and future values of all observables to the extent that these
values are determinate at all. Thus, on the present option it is a mistake to view
the Kochen-Specker theorem, and other subsequent no-go theorems, as showing
that QM does not admit a deterministic interpretation. Rather, what these no-
go results show is that, subject to certain natural constraints,60 some subset of
quantum observables cannot all be assigned simultaneously sharp values.61 The
same goes for the Bell-type theorems, which are best interpreted as extensions of
the Kochen-Specker no-go result to an even smaller set of observables (see [Fine,
1982a; 1982b]).

One example of the type of value assignment rule at issue is the eigenvalue-
eigenvector rule which says that, for an observable O whose quantum operator
Ô has a discrete spectrum, O has a sharp value at t iff Ôψ(t) = oψ(t), in which
case O(t) = o. But it is just this eigenvalue-eigenvector link that leads to the
notorious measurement problem in QM in the form of the inability of the theory
to explain why measurements have definite outcomes, and it is this problem that
motivated the idea of state vector reduction. In essence the problem arises because
of the insistence that “measurement” should not be taken as a primitive term
but should be analyzed within QM itself as a physical interaction between the
object system and a measuring instrument. But while the application of the
standard linear, unitary dynamics to the composite object-system + measurement-
apparatus-system can establish a one-one correlation between the eigenstates of
the object observable of interest and the eigenstates of the “pointer observable”
of the measuring instrument, the application of the eigenvector-eigenvalue rule to
the post measurement composite state function yields the unacceptable result that
the “pointer” on the measuring instrument is not pointing to any definite value

60For example, it is natural to require that if the quantum value assignment rule for O assigns
O a definite value, that value lies in the spectrum of the operator Ô corresponding to O. And it
is natural to require that for suitable functions g, Fg(O) = g ◦ FO.

61It follows from Gleason’s theorem that, subject to very plausible constraints on value assign-
ments, not all of the (uncountably infinite number of) self-adjoint operators in a Hilbert space of
dimension 3 or greater can be assigned simultaneously definite values belonging to the spectra of
these operators. The Kochen-Specker theorem shows that the same conclusion can be drawn for
a finite set of quantum observables. See [Redhead, 1987] for an account of these no-go results.
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(see [Albert, 1992] for a detailed exposition). The Schrödinger cat paradox is a
cruel illustration of this conundrum in which “live cat” and “dead cat” serve as
the “pointer positions.”

Thus, if the eigenvalue-eigenvector link is maintained, there are compelling rea-
sons to contemplate a modification of the standard quantum dynamics in order to
ensure that in measurement interactions the quantum state evolves into an eigen-
state of the relevant observables. But since the decision was made above not to
treat such modifications, the discussion that follows will be confined to the other
option, namely, the use of a value assignment rule that breaks the eigenvalue-
eigenvector link, possibly with the help of “hidden variables” that supplement the
quantum state. If hidden variables X are used, the value assignment rule takes the
form: the value of quantum observable O at t is o iff the total state (ψ(t),X(t)) is
such that fO(ψ(t),X(t)) = o, where again fO stands for the representing function
for the observable O but is now a function defined on the augmented state space.
If the evolution of the total state is deterministic, then by the same argument
as before, the quantum domain is fully deterministic if QM is true. An exam-
ple is supplied by the Bohm interpretation where X(t) specifies the positions of
the particles at t. The quantum component of the total state evolves according to
Schrödinger dynamics, and the postulated equation of motion for particle positions
guarantees that (ψ(0),X(0)) uniquely determines (ψ(t),X(t)) for t > 0 (see [Hol-
land, 1993] for a survey). On the Bohm interpretation many quantum observables
have a dispositional character, taking on determinate values only in adequately
specified contexts (typically including a measurement apparatus together with its
hidden variables). For example, in the context of a Stern-Gerlach experiment a
spin 1

2 particle will have spin-up (or spin down) just in case the position of the
particle lies the appropriate region of the apparatus. The validity of the claim that
the Bohm interpretation resolves the measurement problem thus turns on whether
all measurements can be reduced to position measurements.

The family of modal interpretations of QM also attempt to resolve the mea-
surement problem by breaking open the eigenvalue-eigenvector link wide enough
to allow measurements to have definite outcomes but not so wide as to run afoul of
the Kochen-Specker type impossibility results (see [Bub, 1997] and [Dickson, this
vol.] for overviews), but in contrast to the Bohm interpretation the modal interpre-
tations have no commitment to maintaining determinism. Very roughly the idea
is that an observable associated with a subsystem of a composite system in state
ψ(t) has a definite value just in case the reduced density matrix of the subsystem
is a weighted sum of projectors associated with an eigenbasis of the observable.
This guarantees that in an idealized non-disturbing measurement interaction in
which the pointer positions of the measuring instrument are perfectly correlated
with the possible values of the object system observable being measured, both the
pointer observable and the object system observable have definite values.62

62More generally, the interaction of a system with its environment will mean that “measure-
ment” of the system is going on all the time. Thus, decoherence aids the modal interpretation
by providing the conditions of applicability of the interpretation. In the other direction, deco-
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Most forms of the modal interpretation supply the probabilities for an observ-
able to have particular values, assuming that the conditions are appropriate for the
observable to have a determinate value; but they are silent as to what the actual
value is. Nevertheless, the actual possessed values of quantum observables can be
taken to play the role of the hidden variables X, and one can ask whether the total
state (ψ,X) can be given a deterministic dynamics. The answer is negative for
versions of the modal interpretation discussed in the philosophy literature since
these versions do not supply enough hidden variables to allow for determinism. For
example, at the time t > 0 when an ideal measurement interaction is completed
and the eigenstates of pointer position are perfectly correlated with eigenstates of
the object observable, the standard modal interpretations say that both the object
observable and the pointer observable have definite values. In different runs of the
experiment these correlated observables have different values. But in all the runs
the initial quantum state ψ(0) is the same, and the experimental situation can be
arranged so that modal interpretations say that the initial possessed values X(0)
are the same. This failure of determinism is of no concern to the modal theorist
whose goal is to solve the measurement problem. To this end it is enough to show
that there is a stochastic dynamics for possessed values that is compatible with
the statistical predictions of QM. In fact, there is a vast array of such dynamics
(see [Dickson, 1997] and [Bacciagaluppi, and Dickson, 1998]).

A different version of the modal interpretation, proposed by Ax and Kochen
[1999], takes the option mentioned above of extending the standard quantum state
space of rays PH to unit vectors SH. Elements of the former are supposed to char-
acterize statistical ensembles of systems while elements of the latter characterize
individual systems. This extension allows the modal interpretation to specify what
value an observable has, in circumstances when it has a definite value, and also
to provide for a deterministic evolution of the augmented quantum state. It is
postulated that the ensemble corresponding to a ray ςψ, |ς| = 1, is composed
of individual systems with phase factors ς having an initial uniformly random
distribution, which accounts for the apparent failure of determinism.

Both the Bohm interpretation and the family of modal interpretations have
difficulties coping with relativistic considerations. The former does not have any
natural generalization to QFT, at least not one which takes seriously the lesson
that in QFT fields are the fundamental entities and particles are epiphenomena
of field behavior. The latter does possess a natural generalization to QFT, but it
yields the unfortunate consequence that in situations that are standardly discussed,
no subsystem observable has a definite value (see [Earman and Ruetsche, 2005]
and the references therein).

Many worlds interpretations of QM can be given a literal or a figurative reading
(see [Barrett, 1999] for an overview). On the literal reading there are literally
many worlds in that spacetime splits into many branches which, from the branch

herence requires something akin to the modal interpretation, for otherwise it does not, contrary
to the claims of its promoters, resolve the measurement problem. For more on decoherence, see
[Landsman, this vol.].
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time onwards, are topologically disconnected from one another (see, for example,
[McCall, 1995]).63 This form of many worlds can be described as a hidden variable
interpretation by taking the hidden variables X to describe the spacetime branch-
ing and by taking the representing function fO to be a mapping from the total
state (ψ(t),X(t)) to a vector, possibly with infinitely many components labeled
α, where the component α supplies the value at t of O in branch α. The fate of
determinism then depends on whether or not the story of when and how branching
takes place makes the evolution of the total state (ψ,X) deterministic. On the
figurative reading of “many worlds” there is literally only one world, but there are
many minds, contexts, perspectives, or whatever. Also there is no such thing as
an observable O simpliciter but rather an observable O-in-context-α, denoted by
Oα. If the representing function fOα

is a function of the quantum state only, then
determinism seems to be secured. However, our notation is defective in disguising
the need for a specification of the contexts that are available at any given time.
That specification is determined by the quantum state ψ(t) alone if there is a
“democracy of bases,” i.e. any “branch” of ψ(t) expressed as a linear combina-
tion of the vectors of any orthonormal basis of the Hilbert space of the system
defines a context. Such a radical democracy seems incompatible with experience,
e.g. in the Schrödinger cat experiment we either see a live cat or we see a dead
cat, and we never experience a superposition of seeing a live and seeing a dead
cat.64 To overcome this difficulty some many world theorists propose to work with
a preferred set of bases. The issue of determinism then devolves on the question
of whether the specification of the set of preferred bases is deterministic. Even
if the many worlds interpretation — on either the literal or figurative version —
secures ontological determinism, the price seems to be a radical epistemic indeter-
minism: How do I know which branch of a splitting world or which context of a
non-splitting world I am in? Being told that there is no “I” only an “I-in-branch-
α” or an “I-in-context-α ”is of no help when I — whichever I that is — have to
make a prediction about the outcome of a measurement. Here all I can do is fall
back on the statistical algorithm of QM. The many worlds interpretation seems to
guarantee that even if the world is ontologically deterministic, it behaves, as far
as anyone can judge, as if there is an irreducible stochasticity.

Although the discussion of the quantum measurement problem and its ramifi-
cations has been very sketchy, I trust it is sufficient to indicate why it is vain to
hope for a simple and clean answer to the question of whether the truth of QM
entails the falsity of determinism. To arrive at an answer to that question calls for
winnowing the various competing interpretations of QM, a task that is far from
straightforward, especially since judgments about how to perform the winnowing

63How to describe branching spacetimes within the context of conventional spacetime theories
is a ticklish matter. Perhaps the most promising move is to hold on to the assumption that
spacetime is a differentiable manifold but abandon the assumption that it is a Hausdorff mani-
fold. However, non-Hausdorff manifolds can display various pathological properties that threaten
determinism, e.g. geodesics can bifurcate. See Section 6.1.

64But how can we be sure? Perhaps momentary mental confusion is a superposition phe-
nomenon.
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are inevitably colored by attitudes towards determinism.

6 DETERMINISM IN CLASSICAL GTR

6.1 Einstein’s revolution

Einstein’s GTR was revolutionary in many respects, but for present purposes
the initially most important innovation is that GTR sweeps away the notion —
shared by all pre-GTR theories — of a fixed spacetime background against which
the evolution of particles and fields takes place. In GTR the spacetime metric is a
dynamical field whose evolution is governed by Einstein’s gravitational field equa-
tions (EFE). Before discussing the issue of whether this evolution is deterministic,
two preliminary matters need attention.

First, general relativists typically assume that the manifold M of a relativistic
spacetime M, gab is Hausdorff.65 Without this stipulation determinism would be
in deep trouble. For example, non-Hausdorff spacetimes can admit a bifurcating
geodesics; that is, there can be smooth mappings γ1 and γ2 from, say, [0, 1] intoM
such that the image curves γ1[0, 1] and γ1[0, 1] are geodesics that agree for [0, b),
0 < b < 1, but have different endpoints γ1(1) and γ2(1). According to GTR, the
worldline of a massive test particle not acted upon by non-gravitational forces is a
timelike geodesic. But how would such a particle know which branch of bifurcating
geodesic to follow? Additionally, the (local) uniqueness of solutions to the initial
value problem for EFE discussed below in Section 6.3 would fail if non-Hausdorff
attachments were allowed.

Second, the reader is reminded that attention is being restricted to relativistic
spacetimes M, gab that are temporally orientable, and it is assumed that one of
the orientations has been singled out as giving a directionality to time. But even
with this restriction in place, some of the spacetimes embodied in solutions to
EFE are inimical to the formulation of global Laplacian determinism given in
Section 2.1. For example, such spacetimes may not admit a global time function.
Indeed, the spacetime of the Gödel cosmological model not only does not admit a
global time function, but it does not even admit a single global time slice (spacelike
hypersurface without edges) so that one cannot meaningfully speak of the universe-
at-a-given-moment.66

One response would be to narrow down the class of physically acceptable models
of GTR by requiring that, in addition to satisfying EFE, such models must also
fulfill restrictions on the global causal structure of spacetime that rule out such
monstrosities as Gödel’s model and other models which contains closed timelike

65M is Hausdorff iff for any p, q ∈M with p 
= q, there are neighborhoods N(p) and N(q) such
that N(p) ∩N(q) = ∅. Of course, a manifold is (by definition) locally Euclidean and, therefore,
locally Hausdorff.

66This is a consequence of three features of Gödel spacetime: it is temporally orientable (i.e.
it admits a continuous non-vanishing timelike vector field), it is simply connected, and through
every spacetime point there passes a closed future directed timelike curve. For a description of
the Gödel solution, see [Hawking and Ellis, 1973, 168–170] and [Malament, 1984].
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curves. This move has the independent motivation of avoiding the “paradoxes of
time travel.”67 But much stronger causality conditions are needed to underwrite
the global version of Laplacian determinism in the general relativistic setting.

In the first place, to carry over the classical conception of Laplacian determinism
to the context of a general relativistic spacetime requires that the spacetime admit
a global time function, which is not guaranteed by the absence of closed timelike
curves. But even the requirement of a global time function is not strong enough
because it provides no guarantee that the level surfaces of any such function will
have the Cauchy property. To be at home, Laplacian determinism requires a space-
timeM, gab that is globally hyperbolic, which is the conjunction of two conditions:
first, M, gab must be strongly causal in that for any p ∈ M and any neighbor-
hood p there is a subneighborhood such that once a future directed causal curve
leaves, it never reenters (intuitively, there are no almost closed causal curves);
and second, for every p, q ∈ M, the causal diamond J+(p) ∩ J−(q) is compact.68

Global hyperbolicity guarantees that M, gab can be foliated by Cauchy surfaces
and thatM is diffeomorphically Σ x R, where Σ is an n− 1 dimensional manifold
if dim(M) = n. But simply stipulating global hyperbolicity has all the virtues of
theft over honest toil. So let us see what can be achieved by honest toil.

6.2 Determinism and gauge freedom in GTR

For pre-relativistic theories a constant theme was that creating an environment
friendly to determinism requires willingness to either beef up the structure of the
background spacetime or else to see gauge freedom at work in sopping up the ap-
parent indeterminism (recall Section 3.3). But in GTR there is no fixed background
structure. Thus, one would expect that GTR either produces indeterminism or
else that there is a non-trivial gauge symmetry at work. This expectation is not
disappointed.

To see why it is necessary to be more detailed about the EFE:

Rab − 1
2
Rgab + Λgab = κTab(16)

where Rab and R := Rc
c are respectively the Ricci tensor (which is defined in terms

of gab and its derivatives) and the Ricci scalar, Λ is the cosmological constant, and
Tab is the stress-energy tensor. The cosmological constant can be ignored for
present purposes, but it is currently the object of intense interest in cosmology
since a positive Λ is one of the candidates for the “dark energy” which is driving
the accelerating expansion of the universe (see [Ellis, this vol.]).

A potential model of the theory is then a triple 〈M, gab, Tab〉 where gab, Tab
satisfy (17) at all points of M. Building such a model seems all too easy: start

67But see [Earman, Smeenk, and Wüthrich, 2005] which argues that the so-called paradoxes
of time travel do not show that time travel is conceptually or physically impossible.

68J+(p) (respectively, J−(p)) denotes the causal future (respectively, causal past) of p, i.e.,
the set of all points q such that there is a future directed causal curve from p to q (respectively,
from q to p).
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with any any general relativistic spacetime M, gab, compute the Einstein tensor
Gab := Rab− 1

2Rgab, and define the stress-energy tensor by Tab := κGab. Thus, the
understanding must be that Tab arises from a known matter field. And in order to
make the environment as friendly as possible for determinism, it will be assumed
that the Tab’s that are plugged into the right hand side of (17) fulfill the dominant
energy condition (see Section 4.1) which, together with the local conservation law
∇aTab = 0 (which itself is a logical consequence of (17)), guarantees that matter-
energy does not propagate faster than light.

Even with these enabling stipulations in place, it seems at first glance that
determinism gets no traction, at least not if a naively realistic interpretation is
given to the models of the theory. The difficulty can be made apparent by repeating
a variant of the construction given in Section 3.2. Let 〈M, gab, Tab〉 be a model
satisfying all of the above stipulations, and suppose that the spacetime M, gab
satisfies all of the causality conditions you like, e.g. that it is globally hyperbolic.
Since there is no fixed background structure to respect, save for the topological and
differentiable structure ofM, one is free to choose a diffeomorphism d :M→M
such that d is the identity map on and to the past of some Cauchy surface Σ
of M, gab but non-identity to the future of Σ. Then 〈M, d∗gab, d∗Tab〉, where d∗

indicates the drag along by d, will also be a model satisfying all of the stipulations
imposed on 〈M, gab, Tab〉. By construction, d∗gab(p) = gab(p) and d∗Tab(p) =
Tab(p) for all p on or to the past of Σ, but d∗gab(p) �= gab(p) and d∗Tab(p) �= Tab(p)
for some points p to the future of Σ (unless we have inadvertently chosen a d
that is a symmetry of gab and Tab, which can always be avoided). The existence
of this pair of models that agree for all past times but disagree in the future is
a violation of even the weakest cousin of Laplacian determinism, at least if the
surface structure of the theory — tensor fields on a manifold — is taken at face
value.

When this sort of construction threatened to undermine determinism in a pre-
GTR setting, two options were available for shoring up determinism: add more
structure to the background spacetime or reject the container view of spacetime.
The first option is ineffective unless the additional elements of spacetime struc-
ture are non-dynamical objects, but this represents a retreat from one of the key
features Einstein’s revolution. If there is to be no retreat, then the second option
must be exercised. In the present context the option of rejecting the container view
of spacetime takes the form of rejecting the naive realism that reads the theory as
describing tensor fields living on a manifold.

Choosing the second option has a principled motivation which is not invented
to save determinism in GTR but which follows in line with the treatment of gauge
symmetries in pre-general relativistic theories. The field equations (17) of GTR
are the Euler-Lagrange equations derived from an action principle that admits the
diffeomorphism group as a variational symmetry group. Thus, Noether’s second
theorem applies, indicating that we have a case of underdetermination — more
“unknowns” than there are independent field equations — and that arbitrary
functions of the spacetime variables will show up in solutions to the field equations.
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Switching from the Lagrangian to the Hamiltonian formulation, it is found, as
expected, that GTR is a constrained Hamiltonian theory. There are two families
of first class constraints, the momentum constraints and the Hamiltonian con-
straints.69 Unfortunately the Poisson bracket algebra of these constraints is not a
Lie algebra,70 and consequently one cannot directly associate the diffeomorphism
group, which acts on the spacetime, with a group which acts on the Hamiltonian
phase space by finding a natural homomorphism of the Lie algebra of the diffeo-
morphism group into the constraint algebra. This glitch is overcome by Isham
and Kuchař [1986a; 1986b] who show that if appropriate embedding variables and
their conjugate momenta are used to enlarge the phase space, then the enlarged
constraint algebra is a Lie algebra, and that there exists a homomorphism of the
Lie algebra of the spacetime diffeomorphism group into the new constraint alge-
bra. Thus, the standard apparatus for treating gauge symmetries can be applied,
yielding the verdict that the diffeomorphism invariance of GTR is to be inter-
preted as a gauge symmetry. On this interpretation, the above construction does
not demonstrate that GTR is indeterministic but rather produces a faux violation
of determinism by taking advantage of the redundancy of the surface structure the-
ory in the sense of the many-to-one correspondence between the surface structure
models and the intrinsic physical situation they describe; in particular, the mod-
els 〈M, d∗gab, d∗Tab〉 and 〈M, gab, Tab〉 in the above construction cannot threaten
determinism since they are to be interpreted as different descriptions of the same
physical situation. Of course, the apparatus at issue has built into it a commit-
ment to determinism, so its application to GTR cannot be taken as part of a proof
that the correct interpretation of GTR makes it a deterministic theory. The only
claim being made here is that this determinism-saving move for GTR is not ad hoc
but is part of a systematic approach to gauge symmetries that is taken to yield
the “correct” results for pre-GTR theories.71

What is so clear using hindsight wisdom took Einstein many years of struggle to
understand. His infamous “hole argument” can be seen as a discovery of this un-
derdetermination problem.72 What muddied the waters was a confusion between
two senses of general covariance. Formal general covariance demands that the
laws of motion/field equations of a theory be written in a form that makes them

69The plural is used here since there is a momentum constraint and a Hamiltonian constraint
for every point of space.

70The bracket of a pair of the constraints is not always a linear combination of the constraints
multiplied by a “structure constant.” This failure of the constraint algebra to form a Lie algebra
means that GTR is not a gauge theory in the sense of Yang-Mills. But it certainly does not
mean that GTR does not contain non-trivial degrees of gauge freedom.

71Because these matters are surrounded by so much controversy in the philosophical literature,
I want to emphasize as strongly as possible that I am not proposing a new way of looking at
GTR but am simply expounding what is the standard view among general relativists; see, for
example, [Wald, 1984].

72See [Norton, 1984] and [Stachel, 1986] for accounts of how the “hole argument” figured in
Einstein’s search for his gravitational field equations. And see [Rovelli, this. vol, Ch. 12] for an
account of how reflecting on the lessons of the “hole argument” influenced his understanding of
classical GTR and his approach to quantum gravity.
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covariant under arbitrary coordinate transformations. The terminology “formal”
was chosen with malice aforethought since the demand of formal general covari-
ance is a demand on the form rather than on the content of theory. For example,
Newtonian and special relativistic theories can be reformulated, without change of
content, so as to meet this demand. Indeed, the fact that Newtonian and special
relativistic theories can be formulated in a completely coordinate-free manner al-
ready should make it clear that coordinates cannot matter.73 Substantive general
covariance demands diffeomorphism invariance (e.g. that for arbitrary diffeomor-
phism of M, (M, d∗gab, d∗Tab) is a model of the theory if (M, gab, Tab) is) and
that this diffeomorphism invariance is a gauge symmetry. Again the terminology
“substantive” was chosen with malice aforethought since the demand of substan-
tive general covariance is not automatically met, without change of content, for
formally generally covariant Newtonian and special relativistic theories, at least
not by the lights of apparatus for treating gauge symmetries that has been touted
here (see [Earman, 2006]).

What invites confusion is the fact that a spacetime coordinate transformation
can be taken to indicate either a relabeling of spacetime points or as indicating a
(local) diffeomorphism. In the first guise these transformations are gauge trans-
formations of an innocent kind: they relate the various coordinate representations
of the intrinsic coordinate-free objects gab and Tab obtained by taking the compo-
nents of these objects in different coordinate systems. But there is nothing new
here as regards GTR since exactly the same story holds for intrinsic coordinate-free
presentations of pre-GTR theories. In the second guise, however, these transfor-
mations may or may not be gauge transformations — it depends on the content
of the theory.

When he first discovered the underdetermination problem by means of the “hole
argument,” Einstein took it to reveal a real and intolerable form of underdeter-
mination. To avoid it, he thought he had to reject formal general covariance as a
desideratum for gravitational field equations. Only after wandering in the wilder-
ness of non-covariant equations for almost three years did he re-embrace general
covariance. In effecting the re-embrace Einstein did not speak the language of
gauge symmetries (the terminology and the apparatus had not been invented),
so he did not say that the gauge interpretation of GTR lowers the hurdle for de-
terminism in that it requires only the uniqueness of evolution for gauge invariant
quantities. But he said what amounts to the same thing; or rather he said it for
a subclass of the gauge invariant quantities of GTR — what are called “point
coincidences,” i.e. things like the intersection of light rays.74

Many philosophers have traced Einstein’s path in various ways. Very few of
them, however, have owned up to the implications of where the path leads. If

73In the above presentation I have intentionally used the “abstract index” notation. Thus,
gab stands for a symmetric, covariant tensor field that is defined in a coordinate-free manner
as a bilinear map of pairs of tangent vectors to R. This object can be represented by its co-
ordinate components gjk in a coordinate system {xi}. The transformations between two such
representations are gauge transformations, albeit trivial ones.

74See [Howard, 1999] for an account of Einstein’s use of this term.
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determinism in GTR is saved by treating diffeomorphism invariance as a gauge
symmetry, then the only “observables” (= genuine physical magnitudes) of GTR
are gauge invariant quantities. This is easy enough to say, but what exactly is
the nature of the gauge invariant structure that underlies the surface structure?
This is a crucial issue for those physicists who pursue a quantum theory of gravity
by applying some version of the canonical quantization program to GTR, for on
this program it is the “observables” of classical GTR that will be turned into
quantum observables in the sense of self-adjoint operators on the Hilbert space
of quantum gravity. There is no standard answer to the question of how best
to characterize the observables of classical GTR. But one thing is sure: none of
the familiar quantities used in textbook presentations of GTR, not even scalar
curvature invariants such as the Ricci scalar appearing in the field equations (17),
count as observables in the sense under discussion. And more particularly, no
local quantities — quantities attached to spacetime points or finite regions — are
gauge invariants. In this respect the gauge-free content of the theory has a non-
substantivalist flavor. Whether this content can be characterized in a way that
also satisfies traditional relationalist scruples remains to be seen.

A second closely related implication of treating the diffeomorphism invariance of
GTR as a gauge symmetry concerns the nature of time and change. In the Hamil-
tonian formalism the implication takes the form of a “frozen dynamics.” Applying
to the Hamiltonian constraint of GTR the doctrine that first class constraints
generate gauge transformations leads directly to the conclusion that motion in
GTR is pure gauge. Put another way, the instantaneous states in the Hamiltonian
formulation of the theory contain redundant structure, and any two such states,
where one is generated from another by solving the Hamiltonian form of EFE, are
equivalent descriptions of the same intrinsic, gauge invariant situation.75

For those who find these implications unpalatable, the heterodox moves men-
tioned in Section 3.3 may be attractive. As far as I am aware, however, such
heterodoxy as applied to GTR has not been seriously pursued by the physics
community.

6.3 The initial value problem in GTR

For the sake of simplicity consider the initial value problem for the source-free or
vacuum EFE, i.e. (17) with Tab ≡ 0. Since these equations are second order in
time, presumably the appropriate initial data consist of the values, at some given
time, of the spacetime metric and its first time derivative. The technical formu-
lation of this idea is to take an initial data set to consist of a triple (Σ, hab, kab),
with the following features and intended interpretations. Σ is a three-manifold,
which is to be embedded as a spacelike hypersurface of spacetime M, gab. hab is
a smooth Riemann metric on Σ, which will coincide with the metric induced on
Σ by the spacetime metric gab when Σ is embedded as a spacelike hypersurface

75For more on the problem of time in GTR and quantum gravity, see [Belot and Earman,
1999], [Belot, this vol.], and [Rovelli, this vol.].
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of M, gab. And kab is a smooth symmetric tensor field on Σ that coincides with
the normal derivative of hab when Σ is embedded as a spacelike hypersurface of
M, gab. A spacetime M, gab that fulfills all of these roles is said to be a develop-
ment of the initial data set (Σ, hab, kab). If the development M, gab of the initial
data set (Σ, hab, kab) satisfies the source-free EFE, then hab and kab cannot be
specified arbitrarily but must satisfy a set of constraint equations. The existence
and uniqueness result for the source-free EFE takes the following form76: Let
(Σ, hab, kab) be an initial value set satisfying the constraint equations; then there
exits a developmentM, gab of the initial data that is the unique — up to diffeomor-
phism — maximal Cauchy development satisfying the source-free field equations.
Furthermore, gab depends continuously on the initial data (see [Hawking and Ellis,
1973] for details of the relevant topology).

Just as the proof of the well-posedness of the initial value problem for the ho-
mogeneous Maxwell equations exploits the gauge freedom in the electromagnetic
potentials (see Section 4.2), so the existence and uniqueness proof for EFE exploits
the idea that diffeomorphism invariance is a gauge symmetry of GTR. When the
metric potentials gij (i.e. the coordinate components of the metric gab) are sub-
jected to a gauge condition (called the harmonic coordinate condition), the EFE
take the form of a system of quasi-linear, diagonal, second order hyperbolic pdes,
which are known to have locally well-posed initial value problem.

That the developmentM, gab of the given initial data is a Cauchy development
means that Σ is a Cauchy surface of M, gab (and, thus, that this spacetime is
globally hyperbolic). That it is the maximal Cauchy development means that there
is no proper extension ofM, gab which is a solution of the source-free EFE and for
which Σ is a Cauchy surface. The up-to-diffeomorphism qualifier to uniqueness was
to be expected from the discussion of gauge freedom in the previous subsection,
and in turn the presence of this qualifier shows that the heuristic discussion given
there can be given precise content. Here the qualifier means that if M′, g′ab is
any other maximal development satisfying the source-free EFE, then there is a
diffeomorphism d :M→M′ such that d∗gab = g′ab.

Curie’s Principle (see Section 2.3 above) would lead one to believe that a symme-
try of the initial value set (Σ, hab, kab) for the vacuum EFE should be inherited by
the corresponding solution. And so it is. Let ϕ : Σ→ Σ be a diffeomorphism that
is a symmetry of the initial data in the sense that ϕ∗hab = hab and ϕ∗kab = kab.
Then as shown by Friedrich and Rendall [2000, 216–217], if ψ is an embedding of
Σ into the maximal Cauchy development determined by (Σ, hab, kab), there exists
an isometry ψ̄ of this development onto itself such that ψ̄ ◦ϕ = ϕ ◦ψ, i.e. there is
an isometry of the maximal Cauchy development whose restriction to ϕ(Σ) is ψ.
Moreover, this extension of the symmetry of the initial data is unique.

The initial value problem for the sourced EFE involves not only the stress-energy
tensor Tab but also the equations of motion for the matter fields that give rise to Tab
and, in particular, the coupling of these matter fields to gravity and to each other.
Whether the coupled Einstein-matter equations admit an initial value formulation

76This formulation is taken from Wald [1984, Theorem 10.2.2].
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and, if so, whether the initial value problem is well-posed are issues that have to
be studied on a case-by-case basis. For what seem to be appropriate choices of
coupling, the initial value problem for the combined Einstein-Klein-Gordon equa-
tions and the Einstein-Maxwell equations have existence and uniqueness results
similar to that for the source-free Einstein equations. For other cases the results
are not as nice.77

The results mentioned above demonstrate that substantive general covariance
(in the sense that diffeomorphism invariance is a gauge symmetry) is compatible
with having a well-posed initial value problem. But there is clearly a tension
between the two, and so one can wonder just how tightly the combination of these
two requirements constrains possible laws.78

6.4 Cosmic censorship and chronology protection

The positive results reported in the preceding section hardly exhaust the issue of
determinism in GTR. One key concern is what happens when the maximal Cauchy
developmentM, gab of initial data (Σ, hab, kab) satisfying the constraint equations
is not maximal simpliciter, i.e. when M, gab can be imbedded isometrically as a
proper subset of a larger spacetime M′, g′ab satisfying the source-free EFE. The
analogous issue can also be raised for the case when Tab �= 0. The future boundary
H+(Σ) of the (image of) the future domain of dependence D+(Σ) in the larger
spacetime is called the future Cauchy horizon of Σ; the past Cauchy horizon H−(Σ)
of Σ is defined analogously.79 Intuitively, beyond the Cauchy horizons of Σ lie the
regions of spacetime where the state of things is not uniquely fixed by the given
initial data on Σ; for generally if the maximal Cauchy developmentM, gab of the
initial data is not maximal simpliciter, then the larger extensions for which Σ is
not a Cauchy surface are not unique (even up-to-diffeomorphism).

A relatively uninteresting reason why the maximal Cauchy development might
be non-maximal simpliciter is that Σ was a poor choice of initial value hypersurface.
A trivial but useful example is given by choosing Σ to be the spacelike hyperboloid
of Minkowski spacetime pictured in Fig. 3. Here H+(Σ) is the past null cone of
the point p.

Some features of this example generalize; in particular, H+(Σ) is always a
null surface generated by null geodesics. The unfortunate case can be excluded by
requiring, say, that Σ be compact or that it be asymptotically flat. Of course, these
conditions exclude many cases of physical relevance, but for sake of discussion let
us leave them in place. Even so, the maximal Cauchy development may fail to be
maximal simpliciter for more interesting and more disturbing reasons.

77For comprehensive reviews of what is known, see [Friedrich and Rendall, 2000] and [Rendall,
2002].

78An analysis of gauge symmetries different from the one advertised here is given in [Geroch,
2004]. He gives only two examples of laws that have an initial value formulation and that have
diffeomorphism invariance as a gauge symmetry (in his sense).

79More precisely, H+(Σ) := D+(Σ)− I−(D+(Σ)), and analogously for H−(Σ).
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Σ

p

I-(p)t

Figure 3. A poor choice of initial value hypersurface

One reason is that a spacetime can start with nice causal properties and evolve
in such a way that these properties are lost. The point is illustrated by Misner’s
(1 + 1)-dim spacetime that captures some of the causal features of Taub-NUT
spacetime, which is a solution to the source-free EFE. The Σ in Fig. 4 is a compact
spacelike slice in the causally well behaved Taub portion of the spacetime, and its
future Cauchy horizon H+(Σ) is a closed null curve. Crossing over this horizon
takes one into a region of spacetime where there are closed timelike curves.

H+(Σ)

CTCNUT
region

Taub
region

Σ

Figure 4. Misner spacetime

Another reason that the maximal Cauchy development may fail to be maximal
simpliciter is illustrated in Fig. 5 which shows a non-compact asymptotically flat
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spacelike slice Σ on which a spherically symmetric ball of matter starts to undergo
gravitational collapse. After a finite time the density of collapsing matter becomes
infinite, creating a curvature singularity that is pictured as a timelike line in the
figure. Strictly speaking, however, it makes no sense to call the singularity a
timelike line since the singularity is not part of the spacetime.80 But this makes
no difference to the main point of relevance here; namely, a causal curve that
terminates at a point to the future of H+(Σ) and that is extended into the past
may fail to reach Σ, not because it has a past endpoint or because it gets trapped
on H+(Σ) (as can happen in the spacetime of Fig. 4) but because it “runs into a
singularity” or, better (since the singularity is not part of the spacetime), because
it “runs off the edge of the spacetime.”

H+(Σ)

Σ

t

collapsing
matter

singularity

Figure 5. The development of a naked singularity in spherical gravitational collapse

It is known that EFE plus the imposition of the various energy conditions on
Tab discussed above do not suffice to prevent the kind of pathologies indicated
by Figs. 4 and 5. But in all of such known examples there is something suspi-
cious: either the matter fields involved are not “fundamental,” i.e. even when
gravity is turned off these matter fields are not well behaved in the sense that in
Minkowski spacetime the initial value problem for their equations of motion do
not admit global existence and uniqueness results (see Section 4.2), or else the
initial conditions that eventuate in the singularity are very special, e.g. the ini-
tial configuration of matter in Fig. 5 required to produce the singularity must be
perfectly spherically symmetric. One might conjecture that what holds for these
examples holds generally: Consider a fundamental matter field that can serve as a

80One could try to attach the singular points as boundary points of the spacetime manifold.
However, the extant prescriptions for doing this lead to counterintuitive features, e.g. the singular
points need not be Hausdorff separated from interior points of the manifold; see [Geroch et al.,
1982].
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source for gravitation. Then the subset of initial data for the Einstein-matter field
equations for which the unique (up to diffeomorphism) maximal Cauchy develop-
ment is not maximal simpliciter is of measure zero in the full space of such data,
assuming poor choices of initial value hypersurfaces are excluded. To make this
vague claim into a precise conjecture would require a specification of what matter
fields are to be counted as fundamental, a specification of a suitable measure on
the space of initial data, and a non-question begging specification of what counts
as a poor choice of initial value hypersurface. The aimed-for conjecture is referred
to as Penrose’s cosmic censorship conjecture.

Less sweeping versions of the conjecture might focus specifically on one or an-
other of the two types of pathologies illustrated in Figs. 4 and 5. Hawking’s
chronology protection conjecture aims to show that cases where closed timelike
curves develop from a causally innocent past are highly non-generic among solu-
tions to Einstein-fundamental-matter-field equations. The weak cosmic censorship
conjecture aims to show that in generic solutions with asymptotically flat space-
times, singularities are not “naked” in the sense of being visible to observers at
infinity because whatever singularities develop (say, in gravitational collapse) are
hidden inside of the event horizons of black holes which serve as one-way causal
membranes that shield external observers from any of the pathologies of indeter-
minism that might develop within the horizon. Some progress has been made in
formulating and proving precise versions of chronology protection and weak cosmic
censorship, but the juries are still out on strong cosmic censorship.81

6.5 Predictability in general relativistic spacetimes

In Section 4.3 it was seen that the structure of Minkowski spacetimes has a double-
edged quality with respect to determinism and predictability: while this structure
makes possible clean examples of determinism, it also makes it impossible for em-
bodied observers who must gather their information about initial conditions by
means of causal interactions with the world to use determinism to perform gen-
uine predictions. The point was formalized by defining the domain of predictability
P (q) of a point q ∈M of a spacetimeM, gab and noting that in Minkowski space-
time P (q) = ∅ for every q. Non-empty domains of predictability are obtained in
the modified version of Minkowski spacetime with compactified space slices illus-
trated in Fig. 2. A feature of this case generalizes to arbitrary general relativistic
spacetimes; namely, if the spacetime M, gab possesses a Cauchy surface Σ such
that Σ ⊂ I−(q) for some q ∈ M, then Σ is compact. Since a spacetime with a
Cauchy surface Σ is diffeomorphically Σ x R, the kind of complete predictability
that comes with having Σ ⊂ I−(q) for some q is possible only in a spatially finite
universe. The converse is not true: the existence of a compact Cauchy surface does
not guarantee that there is a Cauchy surface Σ such that Σ ⊂ I−(q) for some q, de

81For an overview of progress on cosmic censorship, see [Chruściel, 1992; Isenberg, 1992; [Pen-
rose, 1998; Wald, 1998]. And for an overview of progress on chronology protection, see [Earman
et al., 2005].
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Sitter spacetime providing a relevant counterexample. Many interesting features
of predictability in general relativistic spacetime are studied in [Hogarth, 1993].

6.6 Determinism and computability in general relativistic spacetimes

A Plato machine for gaining mathematical knowledge about an unresolved conjec-
ture of number theory, whose prenex normal form is (∀n1)(∀n2)...(∀nm)F (n1, n2, ...,
nm) or (∃n1)(∃n2)...(∃nm)F (n1, n2, ..., nm) with F recursive, can be conceptual-
ized as an ordinary Turing machine run in Zeno fashion: enumerate the m-tuples
of natural numbers and have the computer check in the first 1/2 minute whether
F holds of the first tuple, check in the next 1/4 minute whether F holds of the
second tuple, etc. At the end of the minute the truth of the conjecture is settled.
Despite various claims to the contrary, I see no conceptual incoherency in such a
device. But STR militates against the physical instantiation of such a device since
the Zeno speed up would seem to require that some of the parts of the device must
eventually move faster than the speed of light.82

General relativistic spacetimes seem to open the possibility of creating the func-
tional equivalent of a Plato machine without Zeno tricks and without running afoul
of the prohibition on superluminal propagation. Consider a spacetime with the
following features. First, there is a timelike half-curve γ1 with past endpoint, no
future endpoint, and an infinite proper length. Second, there is another timelike
half-curve γ2 with past endpoint p and a point q ∈ γ2 such that the proper time
elapsed along γ2 from p to q is finite and such that γ1 ∈ I−(q). Such a spacetime
has been dubbed a Malament-Hogarth spacetime. The theorems of any recursively
axiomatizable theory — say, Zermelo-Frankel set theory — can be recursively
enumerated, and a device whose worldline is γ1 can utilize a Turing machine to
effectively check each of these theorems to see one has the form “0 = 1”. The
device can be programmed to send out a signal — “Eureka!”— to an observer
whose world line is γ2 just in case “0 = 1” is found among the theorems. Assum-
ing that the observer γ2 is aware of this arrangement, she gains knowledge of the
consistency/inconsistency of ZF: she knows that ZF is consistent just in case she
has not received a “Eureka!” signal by the time she reaches the point q.

Similar arrangements can be used to “decide,” at least in principle, Turing unde-
cidable questions and to “compute” Turing uncomputable functions (see [Hogarth,
1994]). They, thus, threaten to falsify the physical Church-Turing thesis which as-
serts, roughly, that any physical computing device can be simulated by a Turing
machine (see [Etsei and Németi, 2002] for a careful formulation of this thesis).
In contrast to the original Church-Turing thesis which belongs to mathematical
logic, the physical Church-Turing thesis lies in the borderland of mathematical
logic and physics (see [Deutsch et al., 2000]), and it is much harder to evaluate,
especially if it is understood to require the physical realizability of the devices that
implement the bifurcated supertask. Here I will confine myself to a few remarks

82Perhaps conflict with STR can be avoided by Zeno shrinking the parts, but this maneuver
may run afoul of quantum restrictions.
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on this matter and refer the interested reader to Németi and David [2005] for a
fuller discussion.

Malament-Hogarth spacetimes are among the solutions of EFE — e.g. Reissner-
Nordström spacetime and (the universal covering spacetime of) anti-De Sitter
spacetimes. These particular spacetimes do not involve causal anomalies in the
sense that they admit global time functions. However, all Malament-Hogarth
spacetimes fail to be globally hyperbolic. Indeed, it can shown of such spacetimes
that if Σ ⊂ M is any spacelike hypersurface such that the above defined γ1 lies
in I+(Σ), then any Malament-Hogarth point q whose chronological past contains
γ1 must lie on or beyond H+(Σ) (see Lemma 4.3 of [Earman, 1995, 117]). The
possibility of non-deterministic influences, which might open the possibility that
γ1 receives a false “Eureka!” message, seems to undermine the use of Malament-
Hogarth spacetimes for gaining knowledge in the sense of certainty. However,
one should not draw hasty conclusions here since, as discussed in the following
subsection, it is possible to have deterministic dynamics for fields propagating
on a non-globally hyperbolic spacetime. Also it might seem that the problem is
avoided by the fact that it can be arranged so that any signal from γ1 arrives
at γ2 before the Malament-Hogarth point q and, thus, within D+(Σ). But since
a “Eureka!” message can arrive arbitrarily close to q, the receiver must possess
arbitrarily accurate discriminatory powers to separate signals that arrive before q
from the potentially false signals that arrive after q.

6.7 The possibility of deterministic dynamics in non-globally hyper-
bolic spacetimes

For fields that propagate on a general relativistic spacetime, the failure of global
hyperbolicity can undermine the initial value problem. For example, it is known
that in generic two-dimensional spacetimes with closed timelike curves (CTCs)
the scalar wave equation may fail to have smooth solutions or else may admit
multiple solutions for the same initial data specified on a spacelike hypersurface.
But remarkably, existence and uniqueness results have been proven for some four-
dimensional spacetimes with CTCs (see [Friedman, 2004] for a review).

For spacetimes that do not have such blatant causal anomalies as CTCs but
which nevertheless fail to be globally hyperbolic, Hilbert space techniques can
sometimes be used to cure breakdowns in existence and uniqueness.83 Consider
a general relativistic spacetime M, gab that is static and possesses a global time
function. The first condition means that there is a timelike Killing field V a that is
hypersurface orthogonal.84 The second condition can be guaranteed by choosing

83The use of Hilbert space techniques to study problems in classical physics was pioneered by
Koopman [1931]. However, Koopman’s approach assumes determinism at the classical level and
then shows how to represent this determinism as unitary evolution on a Hilbert space.

84The Killing condition is∇(cgab) = 0 where∇a is the covariant derivative operator compatible
with gab. Staticity guarantees that locally a local coordinate system (xα, t) can be chosen so
that the line element takes the form ds2 = gαβ(xγ)dxαdxβ − g44(xγ)dt2. Cf. Malament, this
volume, section 2.7.



1422 John Earman

a spacelike hypersurface Σ orthogonal to V a and by requiring that every integral
curve of V a meets Σ in exactly one point. Then every point p ∈M can be labeled
by (x, t), where x ∈ Σ is the point where the integral curve of V a through p meets
Σ, and t is the value of the Killing parameter along this integral curve. Such
a causally well behaved spacetime can nevertheless fail to be globally hyperbolic
because, intuitively speaking, it possess a naked, timelike singularity. (To help fix
intuitions, think of Minkowski spacetime with a timelike world tube removed. Or
the reader familiar with GTR can think of the negative mass Schwarzschild solution
to EFE, which is static and contains a timelike naked singularity at r = 0.) Now
consider a massive m ≥ 0 scalar field φ propagating on this background spacetime
in accord with the Klein-Gordon equation (13). For the type of spacetime in
question this equation can be rewritten in the form

∂2φ

∂t2
= −Aφ(17)

where t is the Killing parameter (see [Wald, 1980a], [Horowitz and Marolf, 1995]).
The differential operator A can be considered a Hilbert space Â operator acting
on L2

R
(Σ, dϑ), where dϑ is the volume element of Σ divided by

√−V aVa. With
the domain initially taken to be C∞

0 (Σ), Â is a positive symmetric operator. The
proposal is to replace the partial differential equation (18) with the ordinary dif-
ferential equation

d2φ

dt2
= −Âφ(18)

where the time derivative in (19) is a Hilbert space derivative. Since the Hilbert
space operator Â is real it has self-adjoint extensions, and since Â is positive the
positive square root of a self-adjoint extension Âe can be extracted to give

φ(t) := cos(
√

Âet)φ(0) + sin(
√

Âet)φ̇(0)(19)

which is valid for all t and all φ(0), φ̇(0) ∈ H. Since φ(t) is a solution throughout
the spacetime of the Klein-Gordon equation (13) and since it is the unique solution
for given initial data φ(0), φ̇(0) on Σ, it provides (relative to the chosen self-adjoint
extension) a deterministic prescription for the dynamics of the Klein-Gordon field.
There are other possible prescriptions for obtaining the dynamics of φ, but Ishibashi
and Wald [2003] have shown that the one just reviewed is the only one satisfying
the following set of restrictions: it agrees locally with (18); it admits a suitable
conserved energy; it propagates the field causally; and it obeys time translation
and time reflection invariance. If the Hilbert space operator Â is essentially self-
adjoint, then the unique self-adjoint extension Âe provides the dynamics for the
φ field satisfying the said restrictions. And this dynamics is fully deterministic
despite the fact that the background spacetime on which the field propagates is
not globally hyperbolic. Not surprisingly, however, Â fails to be essentially self-
adjoint for many examples of static but non-globally hyperbolic spacetimes, and
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unless further restrictions are added to single out one of the self-adjoint extensions,
no unambiguous dynamics is specified by the above procedure. But remarkably,
Horowitz and Marolf [1995] have provided examples of static, non-globally hyper-
bolic spacetimes where Â is essentially self-adjoint, and in these cases the above
prescription produces a dynamics of the φ field that is fully deterministic despite
the presence of naked singularities.

7 DETERMINISM IN RELATIVISTIC QFT

Ordinary QM starts from a classical mechanical description of a system of particles
— specifically, a Hamiltonian description — and attempts to produce a quantized
version. Similarly, QFT starts from a classical relativistic description of a field and
attempts to produce a quantized version. However, some classical fields do not
lend themselves to a QFT that physicists find acceptable. Consider, for example,
the non-linear wave equation (13) as a candidate for describing boson-boson inter-
actions. A heuristic quantization procedure leads to the conclusion that there is no
lowest energy state, leaving the system vulnerable to radiative collapse. On these
grounds quantum field theorists have categorized the hypothetical interaction as
“not physically realizable” (see [Baym, 1960]). That difficulties are encountered
in QFT is perhaps not surprising when it is realized that the field in question is
ill-behaved at the classical level in that regular initial data can pick out solutions
that develop singularities within a finite amount of time. Is it plausible that deter-
ministic behavior at the classical relativistic level can serve as a selection principle
for what fields it is appropriate to quantize?

Determinism also plays a more constructive role in QFT. In ordinary QM, quan-
tization involves the choice of a suitable representation of the canonical commuta-
tion relations [x̂j , p̂k] = iδjk (CCR). Since unbounded operators are involved, this
form of the CCR only makes sense when the domains of the operators are specified.
Such worries can be avoided by working with the Weyl, or exponentiated, form of
the CCR, which also makes available the Stone-von Neumann theorem: for a finite
number of degrees of freedom, the irreducible strongly continuous representations
of the Weyl CCR are all unitarily equivalent — in fact, all are equivalent to the
familiar Schrödinger representation. This theorem no longer applies when there
are an infinite number of degrees of freedom, as in QFT, a feature of QFT that
raises a number of interesting interpretational issues that are not relevant here.
What is relevant is the fact that the construction of the CCR algebra for, say,
the Klein-Gordon field in Minkowski spacetime, makes essential use of the deter-
ministic propagation of this field (see [Wald, 1994]). This construction can be
generalized to a Klein-Gordon field propagating in an arbitrary general relativistic
background spacetime that is globally hyperbolic since the deterministic nature of
the propagation carries over to the more general setting.

For a non-globally hyperbolic spacetime M, gab it is still the case that for any
p ∈M there is a neighborhoodN (p) such thatN , gab|N , considered as a spacetime
in its own right, is globally hyperbolic, and thus the field algebra A(N ) for this
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mini-spacetime can be constructed by the usual means. One can then ask whether
these local algebras can be fitted together to form a global algebra A(M) with
the natural net properties (e.g. each such A(N ) is a subalgebra of A(M), and if
N1 ⊂ N2 then A(N 1) is a subalgebra of A(N 2)). Kay (1992) calls the spacetimes
for which the answer is affirmative quantum compatible, the idea being that non-
quantum compatible spacetimes are not suitable arenas for QFT. A variety of non-
globally hyperbolic spacetimes are not quantum compatible, e.g. 2-dim cylindrical
spacetimes obtained from two-dimensional Minkowski spacetime by identifications
along the time axis. But, remarkably, some acausal spacetimes have been shown
to be quantum compatible (see [Fewster and Higuchi, 1996] and [Fewster, 1999]).

8 DETERMINISM AND QUANTUM GRAVITY

Arguably the biggest challenge in theoretical physics today is to combine the in-
sights of GTR and QFT so as to produce a quantum theory of gravity (see [Rovelli,
this vol.]). Some inkling of what this sought after theory will yield can perhaps
be gained from semi-classical quantum gravity, which is a kind of shot-gun mar-
riage of GTR and QFT. Semi-classical means that there is no attempt to quantize
the metric of spacetime, but rather than merely treating a general relativistic
spacetime as a fixed background on which quantum fields propagate (as in the
preceding section), an attempt is made to calculate the back-reaction on the met-
ric by inserting the quantum expectation value of the (renormalized) stress-energy
in place of the classical stress-energy tensor on the right hand side of EFE (17).
Although there may be no consistent theory underlying such a procedure, good
theoretical physicists know how to extract usable information from it. Perhaps
the most spectacular extraction is Hawking’s conclusion that a black hole is not
black but radiates exactly like a black body at temperature proportional to the
surface gravity of the black hole. This Hawking effect is taken as confirmation
that the formula for black hole entropy,85 which had been derived by independent
means, is more than a formal expression; it shows that black hole entropy is the
ordinary thermodynamic entropy of a black hole (see [Wald, 1994]).86 Theoretical
physicists of different schools are in agreement that this is a stable result that has
to be accommodated by an adequate quantum theory of gravity. But from this
point on, the disagreements increase to the point of stridency.

The Hawking effect means that, when quantum effects are taken into account,
black holes are not stable objects because the Hawking radiation must be accom-
panied by a diminution of the mass of the black hole. Presumably, as this process

85Sbh =
kc3

4G�
A, where A is the surface area of the black hole.

86The Hawking effect is related to, but distinct from, the Unruh effect. The latter effect is
analyzed in terms of the apparatus of quantum statistical mechanics discussed in [Emch, this
vol.]. In Minkowski spacetime the essence of the Unruh effect is that what an observer uniformly
accelerated through the Minkowski vacuum experiences is described by a KMS state. The Unruh
effect has been generalized to general relativistic spacetime; see [Kay and Wald, 1991].
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goes deeper and deeper into the quantum regime, the semi-classical calculation will
eventually break down. But if the continuation of the calculation can be trusted,
then in the fullness of time the black hole will completely evaporate. (The esti-
mated evaporation time for a black hole of solar mass is the order of 1067 years,
much greater than the age of the universe. But this is no problem in a universe
with an infinite future, as the latest cosmological measurements indicate is the
case for our universe.) And if the result of the evaporation can be described by a
classical general relativistic spacetime, the result is a momentarily naked singular-
ity and a breakdown in global hyperbolicity, as is indicated in Fig. 6.87 So even if
some form of cosmic censorship holds for classical GTR, quantum effects seem to
undo it.

Σ2

Σ1

singularity

center of
symmetry

ι0

R1

ℑ+

black hole
interior

Figure 6. Conformal representation of black hole evaporation

Having gotten this far it is not difficult to establish that if at a time Σ1 prior to
the evaporation of the black hole the quantum field is in a pure state and if Hawking
radiation has established correlations between relatively spacelike regions, such as
the region R1 in the black hole interior (see Fig. 6) and the region consisting of
a “sandwich” about the post evaporation time Σ2, then the state of the quantum
field will be mixed at a post evaporation time Σ2.88 Since a pure-to-mixed state
transition is necessarily non-unitary, the upshot is a loss of unitarity.89

87Following the conventions of conformal diagrams (see [Hawking and Ellis, 1973]), I+ denotes
future null infinity (the terminus of outgoing null rays), and ιo denotes spatial infinity.

88This can be rigorously established in the algebraic formulation of QFT; see [Earman, 2002].
89And, incidentally, there is also a violation of time reversal invariance; see [Wald, 1986] and

[Earman, 2002].
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This “information loss paradox,” as it is often referred to in the physics and
the popular literature, has evoked an amazing variety of reactions; see [Belot et
al., 1999] for an overview. Most notable are the reactions from those who are so
desperate to avoid the conclusion that they are willing to deploy “black hole com-
plementarity”90 and thereby abandon the mainstream reading of relativity theory,
namely, that what the theory teaches us is that there is an intrinsic observer-
independent reality — the very opposite of vulgar relativism that has it that
everything is relative-to-an-observer.

But stepping back from the fray allows one to see that there is no need for
such desperate measures. The pure-to-mixed evolution that is at the heart of the
“paradox” need not be seen as a breakdown of quantum theory.91 Nor is it surpris-
ing that consequences labeled ‘paradoxical’ flow from loss of global hyperbolicity.
What needs to be questioned is whether this loss of global hyperbolicity is a plausi-
ble expectation of quantum gravity. Semi-classical quantum gravity suggests such
a loss, but this way of bringing GTR and QFT together is at best a stepping stone
to a full theory of quantum gravity. And just as ordinary QM showed the ability to
smooth away singularities of classical mechanics, so the correct theory of quantum
gravity may show the ability to smooth away the singularities of classical GTR.

Some positive indications come from the work of string theorists who are able to
point to mechanisms that can smooth out singularities in classical general relativis-
tic models; for example, Johnson et al. [2000] show that brane repulsion smooths
out a class of naked singularities dubbed the repulsion. String theorists can also
give a back door argument for exclusion of some types of classical singularities:
postulate or prove that the sought after M-theory gives a stable ground state, and
then note that this rules out analogues of the negative mass Schwarzschild solution
and the like.

Other encouraging results come from loop quantum gravity (LQG), which aims
to produce a quantum theory of gravity by applying to GTR a version of the
canonical quantization based on a new set of canonical variables introduced by
Amitaba Sen and exploited by Abay Ashtekar.92 In the Friedmann-Robertson-
Walker big bang models of classical GTR the scale factor a of spacetime goes to
zero as the big bang singularity is approached, and the curvature blows up since

90Consider the case in STR of two inertial observers, O and O′, who describe an ambient
electromagnetic field using electric and magnetic fields (E,B) and (E′,B′) respectively. There
is a translation between the two descriptions which gives E′and B′ as functions of E, B, and
the relative velocity of O and O′ and vice versa with O and O′ exchanged. The existence of
such a translation follows from the fact that there an intrinsic, observer independent reality —
in this case, the electromagnetic field as specified by the Maxwell tensor field. This tensor field is
independent of coordinate systems, reference, frame, and observers. Contracting it with different
velocity fields, representing the motions of different observers, results in different descriptions
in terms of electric and magnetic fields. Whatever else it means, the “complementarity” part
of “black hole complementarity” means that the different descriptions of an evaporating black
hole given by two observers, one who falls through the black hole horizon and one who remains
outside the horizon, are not related in the way the descriptions of O and O′ are related.

91See [Wald, 1994, 181–182] and [Belot et al., 1999].
92See [Rovelli, 2004] and [this vol.] for surveys of loop quantum gravity.
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it scales as 1/a2.93 Since there is no physically motivated way to extend such a
solution through the initial singularity, the question of what happens “before” the
big band belongs to theology or science fiction rather than science. The situa-
tion is startlingly different in LQG. Corresponding to the classical quantity 1/a
there is a self-adjoint operator, acting on the Hilbert space of spatially homoge-
neous, isotropic quantum kinematical states, and its spectrum is bounded from
above, giving a first indication that the classical singularity has been removed (see
[Bojowald, 2001]). A complete proof of removal would require that the quantum
dynamics gives an unambiguous evolution through the classical singularity. In
LQG the “dynamics” is obtained by solving the Hamiltonian constraint equation,
which restricts the physically allowed states. For the case at issue this constraint
equation comes in the form of a difference equation rather than a differential equa-
tion. If the scale factor a is regarded as a “clock variable,” then the constraint
equation provides a “time evolution” of the quantum state through discrete steps
of the clock variable. The key point is that this evolution equation does determine
a unique continuation through the classical singularity.94 However, what happens
at the classical singularity is undetermined because the coefficient corresponding
to this stage decouples from the other coefficients in the evolution equation (see
[Ashtekar and Bojowald, 2003] for details).

From the point of view of determinism this last result means that the situation
is somewhat ironic. Determinism is not threatened in classical GTR by the initial
big bang singularity of the Friedmann-Robertson-Walker models because these
models are globally hyperbolic, and because there is no physically motivated way
to extend through the initial singularity. In LQG the initial singularity is banished
both in the sense that curvature remains bounded and in the sense that there is a
sensible way to extend through the classical singularity. But the price to be paid
is a loss of determinism in LQG at the classical singularity, which can be seen as
a Cheshire grin of the classical singularity.

Recently LQG has been used to resolve black hole singularities, leading to a
new perspective on the Hawking information loss paradox in which Fig. 6 is not a
valid depiction of black hole evaporation (see [Ashtekar et al., 2005]). It is argued
that, analogously to the FRW case, the quantum evolution continues through the
classical singularity.95 The new picture is not one in which global hyperbolicity is
restored; indeed, that concept is not meaningful since what replaces the classical
singularity is a region which cannot be described even approximately by the space-
time geometry of classical GTR. Nevertheless, it is argued that in the quantum

93The line element of FRW models can be written in the form ds2 = a(t)dσ2− dt2, where dσ2

is the spatial line element.
94But see [Green and Unruh, 2004] where it is shown that in a spatially closed FRW model, the

use of the scale factor as a “clock variable” is problematic. And the situation in inhomogeneous
cosmologies is much more delicate and complicated; see [Brunnemann and Thiemann, 2006a;
2006b].

95As in the FRW case, the Hamiltonian constraint equation becomes a difference equation.
The “quantum evolution” comes from this equation by choosing a suitable “clock variable” and
then following the quantum state through discrete steps of the clock variable.
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evolution a pure state remains pure and, in this sense, no information is lost. In
its present form the argument has a heuristic character, and detailed calculations
are needed to make it rigorous.

9 CONCLUSION

Is the world deterministic? Without the aid of metaphysical revelation, the only
way we have to tackle this question is to examine the fruits of scientific theorizing.
We can thus set ourselves the task of going through the theories of modern physics
and asking for each: If the world is the way it would have to be in order for the
theory to be true, is it deterministic? One of the things we discovered is that
this task is far from straightforward, for the way in which theories are interpreted
is colored by our attitudes towards determinism. For example, the unwillingness
to see determinism fail at the starting gate in Newtonian gravitational theory
militates in favor of taking gravitation to be a direct interparticle interaction and
against assigning independent degrees of freedom to the Newtonian gravitational
field. And an unwillingness to see determinism fail at the starting gate in GTR
leads to the rejection of a naively realistic interpretation of the textbook version
of the theory’s description of spacetime and to the acceptance of diffeomorphism
invariance as a gauge symmetry — which entails that none of the variables used
in textbook presentations is counted as a genuine (= gauge invariant) physical
magnitude.

The fortunes of determinism are too complicated to admit of a summary that
is both short and accurate, but roughly speaking the story for classical (= non-
quantum theories) is this. In Newtonian theories determinism is hard to achieve
without the aid of various supplementary assumptions that threaten to become
question-begging. For special relativistic theories determinism appears so secure
that it is used as a selection criterion for “fundamental fields.” GTR, under the
appropriate gauge interpretation, is deterministic locally in time; but whether it
is deterministic non-locally in time devolves into the unsettled issues of cosmic
censorship and chronology protection.

Quantum physics is the strangest and most difficult case. Ordinary QM is in
some respects more deterministic than Newtonian mechanics; for example, QM
is able to cure some of the failures of Newtonian determinism which occur either
because of non-uniqueness of solutions or the breakdown of solutions. But the
fortunes of determinism in QM ultimately ride on unresolved interpretational is-
sues. The main driving force behind these issues is the need to explain how QM
can account for definite outcomes of experiments or more generally, the apparent
definiteness of the classical world — an ironic situation since QM is the most accu-
rate physical theory yet devised. Some of the extant responses to this explanatory
challenge would bury determinism while others give it new life.

A new arena for testing the mettle of determinism is provided by the nascent
quantum theories of gravity. There are some preliminary indications that just
as ordinary QM was able to smooth out singularities of Newtonian mechanics,
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so quantum gravity effects may smooth out singularities of classical GTR. If this
smoothing ability is broad enough it would alleviate worries that there are ana-
logues in quantum gravity of breakdowns in determinism in classical GTR asso-
ciated with failures of cosmic censorship. Quantum gravity will likely put a new
face on the measurement problem and related interpretational issues that arise
in ordinary QM. But it is too early to say whether this new face will smile on
determinism.
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Galilean transformation, 299, 337, 649,

1375, 1397, 1398
Galois, É., 1337–1338
gauge conditions

Lorentz gauge, 1378, 1379
gauge fixing, 153, 688, 692, 704, 716,

1318, 1378
gauge freedom, 151–153, 177–191, 1352,

1376, 1378–1380, 1410, 1413
gauge symmetry, 197, 203, 467, 685,

687, 719, 806, 809, 811, 815,
830, 846–848, 853, 854, 1124,
1355, 1359, 1378–1380, 1410,

1413
general covariance, 133, 136, 196–219,

1302, 1306, 1310, 1311, 1343,
1348–54, 1357, 1358, 1363,
1409, 1411, 1414

general linear group, 44, 49, 409
geometric quantization, 462–467, 471,

see quantization
functorial reinterpretation, 470

geometry of the universe, 1222
Ghirardi, G.-C., 379–381, 420, 522,

645, 1403
GHZ (Greenberger–Horne–Zeilinger)

theorem, 361, 387
Gibbs’ statistical mechanics, 992–1005,

see BBGKY approach
Gisin, N., 379, 569
Gleason’s theorem, 281, 282, 286, 295,

308, 634, 644, 654, 1089, 1405
global hyperbolicity, 1410, 1421–1424,

see Cauchy surface
global observable, 1101, 1109, see macro-

scopic observables
global time function, 1370, 1410, 1411,

1419
GNS (Gelfand–Naimark–Segal) con-

struction (or representation),
318, 442, 445, 498, 499, 502,
503, 505, 508, 510, 732, 740,
758, 759, 782, 800, 806, 827,
829, 830–833, 836, 843, 845,
851, 1089, 1101, 1109, 1110–
1113, 1117, 1119, 1120, 1121,
1124–1127, 1133, 1144, 1148,
1152, 1154, 1163

Goroff, M., 1292
gravitational lensing, 1197–1199, 1202,

1203, 1214, 1227
gravitational instability, 1193, 1210,

1214
gravitational waves, 1186, 1203, 1207,

1210, 1232, 1252, 1290, 1291
GR, see GTR (general theory of rel-

ativity)
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Green, M., 1288, 1298
groups and group theory, 299, 409,

685, 1337–1342
amenable, 740, 1113
continuous, 44, 1340–1342
discrete, 1340
Lie, 7, 8, 15, 19, 20, 29, 37, 40,

44–79, 147, 1341, 1342, 1376
matrix, 44, 50, 51, 71, 72
semi-simple, 1113
compact, 900, 901

GRW (Ghirardi–Rimimi–Webber) ‘col-
lapse theory’, 645, 651

GTR (general theory of relativity),
133–138, 147, 156, 172, 178.
184, 196–221, 229, 246, 263,
384, 467, 724, 1185, 1230,
1287, 1348–1354, 1409–1423,
see Einstein field equations

Gupta, S., 1290
Gutzwiller trace formula, 487, 488

H-theorem, 962–969
objections and responses, 970–

974
Haag, R., 738ff, 777, 781ff, 1099, 1124,

1125
Hadamard gate, 616, 632
Hadamard transformation, 618, 620–

622, 624–626
Hadamard, J., 1105, 1390
Halvorson, H., 569, 632, 633
Hamilton’s equations, 11, 85, 87, 90,

141
Hamilton–Jacobi equations of GR, 1293
Hamiltonian approach to mechanics

and field theory, 8–13, 79–
119, 140–143, 147–154, 165–
168, 180, 193

Hamiltonian, 303, 304–307, 323, 325
Hamiltonian symmetries, 12, 58
Hamiltonian system, 12, 150
Hamiltonian vector field, 12, 85, 458

Hardy’s axioms (for quantum mechan-
ics), 320–322

Hardy’s no-go theorem, 387–389
Hartle, J., 518, 522, 528, 530, 546,

1262, 1264, 1294, 1315, 1323
Hartle–Hawking ‘no-boundary’ pro-

posal, 1213, 1236
Hausdorff property (of topological spaces),

63, 147, 155, 175, 445, 457,
507, 635, 885, 894, 1295, 1409,
1418

Hawking effect, 1143, 1144, 1294, 1424,
see Unruh effect

Hawking, S., 244, 271, 1143, 1207,
1213, 1236, 1294, 1424

Healey, R., 191, 209, 375, 421
heat equation, 927, 1096, 1380–1381
Heisenberg, W., 340, 342, 417, 418,

420, 421, 426–448, 459, 471,
484, 486, 515, 523, 529, 555,
641, 1126, 1291, 1292

Heisenberg cut, 418, 437–441, 446,
518

Heisenberg picture, 306, 307, 448, 475,
520, 521, 523, 635, 1115, see
Schrödinger picture

Heisenberg equation, 307, 509
Heisenberg’s matrix mechanics, see ma-

trix mechanics
Helmholtz, H. von, 159, 339, 1381
Helmholtz free energy, 939, 1091
Henneaux, M., 153, 467, 1379–1380
Hepp, K., 477, 492, 493, 499, 502,

512, 513, 1163
Hertz, H., 28
Hertz, P., 995
hidden variables (in quantum mechan-

ics), 372–376, 384–395, 431,
446, 646, 648, 653, 754, 1401–
1406, see Bohm interpreta-
tion

Higgs mechanism, see Brout–Englert–
Higgs mechanism

high temperature limit, 1078, 1081,
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1157–1159
Hilbert, D., 1076, 1268, 1270, 1348,

1351, 1357, 1361, 1363
Hilbert space, 397–400

formalism for quantum statisti-
cal physics, 1089–1094

limitations of, 1094–1099
hole argument, see Einstein’s hole ar-

gument
Holevo bound, 582, 585, 593

derivation, 583
holism, 395
horizons, see physics horizon

event, 1203, 1417
Cauchy, 216, 1414, 1415
causal, 1203, 1204, 1209
particle, 1203, 1204, 1206, 1209,

1215, 1230
visual, 1203, 1204, 1206, 1209,

1226, 1227, 1230, 1231, 1247,
1272

horizon problem, 1204, 1209, 1238
hot big bang, see big bang
Hubble constant (or parameter), 1186,

1187, 1190, 1196, 1197, 1227
Hughston–Jozsa–Wootters theorem,

569, 590
Husimi function, 480
hydrodynamics as part of statistical

physics, 926
Hyperion, 418, 478, 519, 1403

ideal fluid, 8, 15, 16, 82
ignorable coordinates, see cyclic co-

ordinates
ignorance interpretation (of mixed

states), 357, 432, 433, 439,
440, 512, 516, 544, 749

Immirzi parameter, 1295, 1301
improper mixture, see mixed state,

improper
impulsive measurement, 321–324, 327,

337, 377
incompatible observables, 285, 308,

346–349
incomplete motion, 491, 492, 1382,

1385, 1400
inductive limit C∗-algebra, 496, 504,

739, 765, 829, 879, 900, 901,
911, 920, 921, 1099, 1100,
1107, 1129, 1141, 1151, 1152

inertial frame, 140, 164, 169, 170, 188,
206, 334–339, 350, 451, 648,
649, 1297, 1375, 1376

inflationary model (or universe), 1209–
1212, 1215, 1224, 1233, 1234,
1284

chaotic, 1206, 1210, 1213, 1219,
1227, 1231, 1234–1236, 1244,
1245, 1256, 1262, 1266, 1269

information
accessible, 582
channel, 562
classical, 557, 576, 577
compressibility, 576, 577
compression, 562, 578

‘block coding’, 561
blind, 586
classical, 557
quantum, 585
visible, 586

compression rate, 560, 586
inaccessible, 577
mutual, 562, 564, 575, 577
quantum, 565, 576, 577
represented physically, 576
Shannon’s sense, 575
source, 557, 561

ergodic, 558
stationary, 557

information loss paradox, 1424, 1426
initial singularity (of the universe),

1188, 1190, 1204, 1211, 1232,
1235, 1236, 1284, 1426, see
big bang

initial conditions for the universe, 1223,
1233, 1237, 1238, 1273, 1426

initial value formulation/problem, 1370,
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1381, 1385
properly posed, 1390
well posed, 1388–1390, 1395,1414

instantons, 719
integrable system, 482, 483, 485

classical limit, 482
integral manifold, 42, 43, 98, 151
interaction Hamiltonian, 322, 324, 336,

364
interaction picture, 306, 1161
interference pattern, 345–347, 378, 441,

see wave-particle duality
intermediate isotropisation, 1226
invariance, 328, 333, 337, 1331, 1343
invariant means and states, 740, 1108
involution, 42
Isham, C., 209, 452, 462, 522–525,

1212, 1254, 1257, 1294, 1313,
1318, 1324

isotropic universe, 1225, 1226, see
Copernican Principle

isotropy group, 65, 66, 68, 120, 128

Jacobson, T., 1293, 1303
Jaynes, E., 569, 932, 943, 977, 993,

1003, 1010, 1090
Jozsa, R., 557, 569, 580, 585, 588,

590, 616, 618, 621, 627, 630–
632

Kaluza–Klein theory, 28, 29
Kent, A., 517, 522, 527, 602, 608
Kepler, J., 1305
Kepler problem, 5, 15, 174–175, 483,

484
key distribution and storage, 556, 594,

595–596, 599
public, 617
secure, 602, 650

Killing fields, 165, 199, 215, 252–256,
1421

kinematic independence, 633, 635, 636,
639, see microcausality

kinematics on Lie groups, 75
kinetic theory of gases, 927, 941–952

Klein, F.
and group theory, 1338–1342
and his Erlangen Program, 1339–

1340
Klein, M., 649, 930, 931, 957, 962,

965, 974, 990
Klein, O., 1290
Klein-Gordon equation, 154, 192, 207,

208, 1394, 1396, 1416, 1422
KMS (Kubo–Martin–Schwinger) states,

1114–1154
extremal KMS states and pure

phases, 499, 1144–1154
in BCS theory, Bose gas and Heisen-

berg model, 1122–1128
in QFT, 1142–1144
stability conditions, 1128–1142
Tomita–Takesaki theory, 1119–

1122
toy-model, 1115–1119

Kochen-Specker theorem, 359–362, 387,
1405

Kolmogorov axioms, 644, 1089
Kosso, P., 1350
Kraus operator, 570, 756
Kretschmann, E., 206, 1353
Kuhn, T., 423

Lagrange, J. L., 1337, 1345
Lagrangian approach to mechanics and

field theory, 143–146, 154–
164, 179, 192

Lagrangian submanifold, 485
Landau, L., 417
Landsman’s theorem, 320
Lanford’s theorem, 1031–1033
Laplace’s demon, 1388, 1392
Laplace, P.-S., 942–943, 1388
large scale of the universe, 1220
Last Scattering Surface, see LSS
lattice of propositions, 309–312, 403–

405, 641
laws of creation of the universe, 1218
laws of nature
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empiricist conception, 1371
local algebras, 745–750, see global ob-

servables
Lebowitz, J., 596
left action, 56
left translation, 45
left-invariant function, 123
Leggett’s argument against decoher-

ence, 516
Leibniz, G., 1313
Lewis, D., 155, 1371
Lie algebra, 35, 1341
Lie algebra of a Lie group, 45, 46
Lie bracket, 37
Lie derivative, 33
Lie group, see groups and group the-

ory, Lie algebra
Lie groupoids, 462
Lie subgroup, 50
Lie, S., 15

and group theory, 1338–1342
Lie–Poisson bracket, 88, 124, 125
Lie–Poisson reduction theorem, 19,

77, 82, 88
limit �→ 0, see classical limit
limit N →∞, see classical limit
limit to size of structure, 1205
Linden, N., 631
Lipschitz condition, 1383, 1387
Lo, H.-K., 594, 601
locality, 308, 351, 381, 391, 396
localizability of particles, 481
Lorentz theory, 649, 651
Lorentz, H., 417
Lorentz-invariance, 383, 388, 396
LSS (Last Scattering Surface), 1192,

1202, 1206, 1214, 1230
Lüder’s rule, 284, 289, see collapse

postulate

Mackey’s theorem, 331–334, 447–452,
461–462, see system of im-
primitivity

Mackey, G., 447

macroscopic average, 494
macroscopic observables, 493–496, 504–

506, 512, see global observ-
able

magnetic monopoles, 718
magnitude-redshift relation, 1214
Malmquist bias, 1199
many universes, 1219, 1259–1266
many-somethings interpretation of

quantum mechanics, 370, 646,
1407–1408

Marsden–Weinstein reduction, 467
Marsden–Weinstein–Meyer theorem,

127
matrix mechanics, 277, 417, 427, 428,

641
matrix representation of quantum states,

282, 298, 364
Maudlin, T., 183, 184, 191, 209
Maxwell, J., 944–952, 1300
Maxwell’s equations, 188–190, 1395,

1416
Mayers, D., 594, 601, 608
measurement, 321–325, 327, 328, 334–

337, 345, 352, 355–359, 362,
569

first kind, 324
generalized, 569, 573, 579
impulsive, 323, 326, 338, 376
non-selective measurement, 394,

575
operator, 323, 570–572, 579
projective, 570, 571

and entropy, 579
repeated, 311, 325
second kind, 324
selective, 575
weak, 324–327

measurement problem, 275, 355–368,
376–381, 431–433, 512, 518,
526, 1163–1168, see Schrödinger’s
problem

microcausality, 739, 741–743, 746, 749–
753, 766, 771, 772, 807, 839,
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see kinematic independence
microlocal analysis, 419, 476, 482
microscopic quantum observables, 506
Milne model, 1189
minimum apparent size, 1198
Minkowski spacetime, 256–263
Minkowski, H., 1363
misconceptions about cosmology, 1214
Misner, C., 1291
mixed state, 284, 289, 290, 316, 356,

364, 430–433, 439, 473, 479,
494, 501, 502, 565, 568–571,
574, 576–578, 588–592, 636,
639, 643, 749, see ignorance
interpretation

improper, 289, 366
maximally mixed, 749
proper, 289, 366, 605

mixture, see mixed state
modal interpretations of quantum the-

ory, 375, 646, 761–766, 1406–
1407

model selection, 1229
module, 876
momentum(or non-relativistic quan-

tum mechanics), 287, 329,
335, 340, 349–352

momentum function, 114
momentum map, 6, 106, 464
momentum map on cotangent bun-

dle, 114
monic, 874
monoid, 876

absorbing, 902, 913
module, 876
quotient, 878

n-Body problem, 175–177, see New-
tonian n-body problem

Naimark’s dilation theorem, 453
naive realism, 359
natural transformation, 864

monoidal, 866

Navier–Stokes equations, 1383–1384,
1396

Neumann, J. von, 430, 432
Newton, I., 1312, 1314
Newton’s equations of motion, 1385
Newton–Wigner position operator, 451
Newtonian n-body problem, 139–146,

1385
Newtonian gravitation theory, 245, 263–

270, 1385
Nieuwenhuizen, P. van, 1292
‘no go’ theorems, 383, 645
no-signaling theorem, 391
Noether’s theorems, 4, 6, 11, 108, 161,

253, 1355–1359, 1378, 1411
noisy channel, 562, 564
non-baryonic matter, see dark matter
non-contextuality, 360, 387
non-locality, 308, 381–397

in quantum field theory, 750–756
non-localizability of particles, see lo-

calizability of particles
non-singular start of universe, 1211
Norton, J., 197
NP-complete, 615
nucleosynthesis, 1192, 1199, 1214, 1222,

1232
null cone observation, 1194
number count dipole, 1230
number counts, 1198, 1199, 1214, 1224,

1227

object
conjugate, 869
irreducible, 870
projective, 875

observable, 277, 282, 283, 289, 312,
328, 337, 359, see POVM,
PVM

positive-operator-valued measure-
ment, 277, 569–575

observable universe, 1183, 1198, 1206,
1222, 1230

observational cosmology theorem, 1222
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observational completeness, 1232
observed isotropy, 1223
Ohanian, H., 1343
one-time pad, 594
operators introduced, 277f., 401–403

at a point in quantum field the-
ory, 766–777

origin of the light elements, 1193
origin of the universe, 1212, see big

bang
outcome independence, 390, 395

Painlevé’s conjecture, 1385
parameter independence, 390 395
partial observable, 1308, 1317
particles in quantum field theory, 756–

761, see Unruh effect
passage to the quotients, 63, 76
past distinguishing, see causal prop-

erties of relativistic space-
times

Pauli, W., 443, 555, 1290
Pearle, P., 379, 381, 645, 1403
Penrose, R., 1419
Peres, A., 590, 608, 1293
perfect (anti-)correlation, 288, 323,

349, 365, 381, 383
permutation-invariant state, 500
Perron–Frobenius theorem, 1048, 1050
phase gate, 616, 632
phase space quantization, 452, 456
phenomenon for Bohr, 434, 442
Phoenix universe, 1213
physical proposition, 310, 311–312, 316–

317
physics horizon, 1232, 1233
π/8 gate, 616, 632
Piron’s theorem, 312
Planck scale, 1287, 1289
Planck, M., 423, 1075–1079, 1370
pocket universe, 1210, see inflation-

ary model, chaotic
Podolsky, B., 349

Poincaré’s recurrence theorem, 983–
984

pointer state, 323, 519
Poisson antimorphism, 104, 105, 108,

115
Poisson bracket, 84, 307, 318, 319
Poisson equation, 1379
Poisson manifold, 6, 14, 24, 79, 84,

317, 458
quotient of, 101

Poisson map, 93
Poisson reduction theorem, 101
Poisson space, 506
Poisson submanifold, 95
Poisson structure, 91
polarization spectrum, 1203
Polyakov, V., 1300
Popov, V., 1292
position in non-relativistic quantum

mechanics, 330–333, 335–338,
340, 349–352, 375, 382, 451

POVM (positive operator valued mea-
sure), 277–283, 321, 327, 453,
569–575

pre- and post-selected states, 326, 596
predictability, 1388, see domain of pre-

diction
and chaos, 1388–1389
and determinism, 1386–1390
in general relativistic physics, 1419
in quantum mechanics, 1402–1403
in special relativistic physics, 1396–

1398
preferred basis, 372
prequantization, 463

line bundle, 464
presymplectic manifold, 151, 172, 179–

180, 189
primary states, 498
Primas, H., 444
Primas–Zurek cut, 518
prime factorization, 557
principle vs. constructive theories,

647–652
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probabilities in the Copenhagen in-
terpretation, 440

probability, 279, 282, 283, 298, 300,
318, 929, 941–943

problem of time, 133, 136, 137, 196–
221, 1316

projective representation, 301
projector morphism, 869
proper map, 64
protective measurement, see measure-

ment, weak
public-key cryptography, 617
pure state in quantum mechanics, 284,

285, 289, 293, 296, 301, 302,
312, 314–317, 320–322, 358

purification, 568, 569, 574
PVM (projection-valued measure), 278,

279, 281, 331, 571

quantization, 153, 154, 177, 195, 220–
221, 304, 446, 467, 669, see
geometric quantization and
system of imprimitivity and
Weyl quantization

quantum information and computa-
tion, see key distribution, bit
commitment, information

algorithms, 617
communication, 556, 590, 592
computation, 295, 556, 614
computer, 556

circuit model, 616
cluster state, 616
one-way, 616

cryptography, 556, 594, 595
dense coding, 593
information, 565, 576, 577, see

information
operation, 574
parallelism, 631
qubit, 577
teleportation, 556, 590, 591

quantum cosmology, 1183, 1212, 1294
quantum ergodic theory, 1092–1094

for time, 1102–1106
for space, 1106–1114

quantum gravity, 1211, 1212, 1214,
1287

quantum logic, 309, 369
quantum object in Primas’ sense, 444
quantum postulate, 438
quantum probability theory, 283, 1089
quantum theory of infinite systems,

492, 496, 738–750, 1094–1102
quantum world, 434, 526
quasi-equivalent representations, 498,

732, 745, 843, see represen-
tation

quasilocal observables, 496
quintessence, 1200
quotient space, 6, 62, 63

Raggio’s theorem, 445
randomized algorithm, 629
Raussendorff, R., 616
Raychaudhuri equation, 1186, 1188,

1190, 1211
Redhead, M., 191
redshift-distance relation, 1184, 1196–

1198
reduced density operator, 288, 366,

367, 375, 568
reduced phase space, 14, 21, 24, 128,

152, 183, 189, 202
reduced state, see reduced density op-

erator
reduction of dynamics, 102, 126, 129
Reeh–Schlieder theorem, 742–743
reference frame, 329, 335, 337, 339,

347
Regge calculus, 1296
relationism, 17–18, 1312
relative configuration space, 18, 21
relative phase space, 21
relative states, 370, 568
relativistic spacetime structure

causal structure, see causal prop-
erties of relativistic space-
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times
conformal structure, 232–233, 270–

271
projective structure, 232–233

reliable distance measurement, 1221
remote steering, 590, 591, 637, see

biorthogonal decomposition
renormalization, 683, 705–711, 714
representation, 57, 409

inequivalent representations, 778f.
right action, 56
right translation, 45
right-invariant function, 123
right-invariant vector field, 47
rigid body, 15, 61, 80, 90
Rimini, A., 645
Roberts, J., 800, 801, 815, 837, 840,

845, 855, 886
Robertson-Walker cosmological mod-

els, 1186–1188, 1207, 1215,
1223–1227, 1231

robust state, 518
Rosen, N. 349
Rosenfeld, L., 1290
rotation in relativity theory, 249–252
rotation group, 44, 52, 60, 72, 74, 90,

98
RSA, 617
Ruetsche, L., 221
Ruffini, R., 1343
Rynasiewicz, R., 206

Sagnotti, A., 1292
Saunders, S., 646
scars, 490
Schmidt decomposition, see biorthog-

onal decomposition
Schrödinger, E., 418, 428, 556, 569,

590, 591, 637, 639
Schrödinger coherent states, 455, 473,

480
Schrödinger equation, 305, 323, 355,

373, 474, 1399–1400

Schrödinger picture, 306, see Heisen-
berg picture

Schrödinger’s cat, 355, 364, 418–422,
514, 527, 640, see measure-
ment problem

Schrödinger’s problem, 641–644, 651,
see measurement problem

Schumacher, B. 585
Schumacher’s quantum source coding

theorem (noiseless channel
coding theorem), 578, 586,
589

Schwarz, J., 1298
selection criterion for representations,

502, 781f.
self-adjointness, 403, 1400–1402, 1421–

1423
semiclassical analysis, 476
semiclassical regime, 471
semidirect product Poisson structure,

461
Shannon, C., 557, 558
Shannon entropy, 557, 558, 562, 564,

576, 577
Shannon’s noisy channel coding the-

orem, 562, 564
Shannon’s source coding theorem (noise-

less channel coding theorem),
557, 560, 562, 577

Shor, P., 557, 617
Shor’s algorithm, 617, 626
signaling, 373, 391, 392, 582, see re-

mote steering
Simon, D., 617, 623
Simon’s algorithm, 617, 623
simultaneity in relativity theory, 237,

248, 256–263
singlet state, 349, 381, 384
singularity theorems, 1190, 1207
size of the visible universe, 1220
small universe, 1203, 1206, 1230, 1231
Smolin, J., 575
Smolin, L., 1293
Soler’s theorem, 312
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Sorkin, R., 1296
source evolution, 1221
space, public and private in relativity

theory, 249–252
space of states, see state space
spacetime

classical, 263–270
full Newtonian, 1387
Leibnizian, 1376
Maxwellian, 1377
neo-Newtonian, 263–270, 1377

relativistic, 230–249, see Friedmann-
Robertson-Walker model and
causal properties of

Gödel spacetime, 1407–1409
Malament-Hogarth spacetimes,

1420–1421
Minkowski spacetime, 256–263,

1394, 1396–1398
Misner spacetime, 1417
negative mass, 1422
Reissner-Nordström, 1421

relativistic, see causal properties
of

Schwarzschild spacetime, 1422
Taub-NUT spacetime, 1417

spatial coordinates contrasted with body
coordinates, 54, 76

spatial homogeneity of universe, 1185,
1209, 1218, 1223–1226

spatial isotropy of universe, 1185, 1195,
1223

special initial conditions, see fine tun-
ing

specific heat of solids, 1080
spectral action, 1296
spectral family, 278, see PVM
spectral modal interpretations, 375,

see modal interpretations of
quantum theory

spectral theorem, 278, see PVM
spectral triple, 1296
spectrum of the area, 1301
spherically symmetric universe mod-

els, 1223
spin, 291–298, 320, 336, 375, 450, 462
spin- 1

2 , 290, 402
spin-network, 1301
‘square root of NOT’ gate, 616
semiclassical analysis, 472
STC∗ (symmetric tensor category),

817, 853, 870, 872, 881–888,
896–900, 905–907, 910–913,
919, 920

STR (special theory of relativity), 154,
164, 188, 256–263, 397, 1347,
1393–1399

stable causality, 1370, see causal prop-
erties of relativistic space-
times

standard candles, 1200, 1221
standard model of particle physics,

683–723, 1287
standard models of cosmology, 1188,

1223
start of the universe, see big bang
state space in quantum mechanics,

280–282, 284, 289, 300, 308,
313–322, see mixed state, KMS
states, state space

Steane, A., 630, 631, 650
Stein, H., 258, 259
Stern–Gerlach device, 291, 385
Stinespring’s theorem, 456
stochastic dynamics, 1037–1062

approach to equilibrium and ob-
jections, 1046–1056

ergodic theorem for Markov pro-
cesses, 1049

interventionism, 1037, 1054–1057
Markov processes and irreversibil-

ity, 1038–1039, 1057–1062
Markov processes defined, 1039–

1043
Stone’s theorem, 301, 304
Stone-von Neumann theorem, 342, 447,

450, 1423
stress-energy tensor, 1394, 1410, see
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energy conditions
strong energy condition, 1187, 1211
strong non-disturbance, 353, 354
structure constants, 37
structure formation, 1201, 1202, 1207,

1209, 1210, 1214, 1217, 1221,
1228, 1244, 1245

structure function, 86
subadditivity inequality, 578
subcategory, 864

monoidal, 865
submanifold, 40
submersion, 40
substantivalism, 18, 1312, 1411, see

container view of spacetime
super

-Hilbert space, 885
-fiber functor, 886
-group, 885

super-horizon structure of the universe,
1206, see observable universe

supernovae, 1194, 1200, 1224, 1227
superposition, 280, 281, 317, 318, 356–

358, 378
superselection sector, 501–506, 778f.
supersymmetry, 724, 1299
surface brightness, 1197
symmetric algebra, 911
symmetric sequence, 494
symmetry, 252–256, 301, 321, 331, 337–

339, 867, see gauge symme-
try, general covariance,
Noether’s theorems

and group theory, 1337–1342
and irrelevance, 1360–1361
and Leibniz’s Principle of Suffi-

cient Reason (PSR), 1333,
1335

and objectivity, 1363
arguments, 1332
broken, 668–669, 693, 839–840,

1334–1336
classification of, 1344–1345
continuous, 1345

discrete, 1345
gauge, 1344, 1345
geometric, 1344
global, 1360, 1361
group, 1342
Hamiltonian, 12, 58
internal/external, 1344
Lagrangian, 161
local, 1359, 1361
meaning of, 1342–1345
of laws, 1332
of objects, 1332
of solutions, 1332, 1336
of states, 1332, 1335, 1336
quantum field theory, 764–766
principles, 1332
transformations, active and pas-

sive, 1342
variational, 161

symplectic foliation of Poisson mani-
folds, 91, 95, see symplectic
leaf

symplectic form, 8
symplectic group, 55
symplectic leaf, 96, 318, 458, 508
symplectic manifold, 8, 149–151
symplectic map, 55
symplectic vector field, 12
system of covariance, 329
system of imprimitivity, 331–334, 410,

447–454, 461–462, see Mackey’s
theorem

generalized, 454
relation to deformation quanti-

zation, 461

’t Hooft, G., 1292, 1296
Tannaka, T., 883
TC∗ (tensor ∗-category), 870
temporal orientability, 1409
tensor

category, 865
category, braided, 867
category, finitely generated, 900
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category, symmetric, 867
functor, 866
subcategory, 865

thermodynamics, 925, 932–941, 994,
see thermodynamic limit

thermodynamic limit, 1017–1028, 1159–
1160

Thomas, R., 221
Thomas–Fermi model, 1085
time homogeneity, 304
time of decoupling, 1191
time-dependent systems, 191–196
time-energy uncertainty relation, 344
Timpson, C., 632
Tomita–Takesaki theory, 735–738, see

KMS states
trace, 871
transformation group C∗-algebra, 452
transformation theory, 1345–1346
transition probability, 318–321, 479,

502
classical limit, 473

transition probability space, 319, 320,
503

transport equation, 484
tunnelling, 1156–1157, 1402
Turing, A., 614
Turing computability, 1418, see Tur-

ing machine
Turing machine, 614

nondeterministic (probabilistic) ,
615

universal, 556, 614, 1392
twist, 872
two-slit experiment, 347, see double

slit experiment
typical sequence, 558, 559

Umdeutung
functorial quantization, 471
Heisenberg, 427
of classical pure states, 474
quantization, 446
Rieffel, 459

Schrödinger, 428
von Neumann, 430

unbounded energies, 1232
uncertainty relation, 341–349, 1289

algebraic derivation of, 344
optical derivation of, 343
wavefunctional derivation of, 343

uniform thermal histories, 1225
uniqueness of the universe, 1216, 1219
uniqueness of cosmology, 1232
unitarily equivalent representations,

447, 732, 843, see represen-
tation

unitarity of a Hamiltonian flow, 509
unitary representation, 301
Unruh effect, 1143, 1295, 1303, 1424,

see Hawking effect
Unruh, W., 1295

Vaidman, L., 597
van Fraassen, B., 647
van Hove limit, 1135, 1160–1162
Veltman, F., 1292
Vidal, G., 631
von Neumann, J., 430, 432
von Neumann algebra, 443, 498, 506,

522, 730, 731, 742, 744–756,
762–766, 782, 802, 806–808,
812, 839, 1101–1105, 1110–
1114, 1118–1121, 1126, 1144,
1146, 1148, 1163, see
C∗-algebra

hyperfinite, 569
type classification, 733–738

von Neumann chain, 432, 515
von Neumann entropy, 575, 577, 579,

1091
von Neumann’s imprimitivity theo-

rem, 450
von Neumann’s infinite tensor prod-

uct, 504
von Plato, J., 962, 967

Wallace, D., 646
wave packet revival, 429, 519
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wave-particle duality, 345,
wavefunction, 281, 343, 373, 379–381
weak non-disturbance, 352, 354, see

state in quantum mechanics
Weber, T., 645
Weyl algebra, 758
Weyl quantization, 460, 473
Weyl relations, 333, 340–3411
Weyl, H., 233, 234, 1340, 1363, 1369
Wheeler, J., 650, 1291
Wheeler-DeWitt equation, 1293
Wien’s law for blackbody radiation,

423, 1078
Wiesner, S., 556, 593
Wigner function, 479

classical limit, 480
Wigner’s friend, 377, 1164, 1166
Wigner’s theorem, 300
Wigner, E. P., 1362

and his hierarchy, 1359–1360
geometric symmetries, 1344

Wilson, K., 1300
Wittgenstein, L., 514
WKB approximation, 484
Wootters, W., 580, 590

yes–no experiments, 310

Zeilinger, A., 632
Zurek, W., 580
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