CHAPTER

/

The Grand Design —A New Physics

The publication of Isaac Newton’s Principia in 1687.was one of
the most notable events in the whole history of physical science.
In it one may find the culmination of thousands of years pf striv-
ing to comprehend the system of the worl.d, the [.)rm'apl(‘es of
force and of motion, and the physics of bodies moving in differ-
ent media. It is no small testimony to the vitality of. N.ev.vton’s
scientific genius that although the physics of t.he Principia has
been altered, improved, and challenged ever since, we still set
about solving most problems of celestial mechanics and the phys-
ics of gross bodies by proceeding essentially as Newton ('ild some
300 years ago. Newtonian principles of celestial mechanics guide
our artificial satellites, our space shuttles, and every spacecra}ft we
launch to explore the vast reaches of our solar system. And if this
is not enough to satisfy the canons of greatness, Newtpn was
equally great as a pure mathematician. He invented the .dlﬁ"eren-
tial and integral calculus (produced simulta.neous.ly and md.ept'en-
dently by the German philosopher Gottfried Wilhelm L.elbm.z),
which is the language of physics; he developed the bmpmlal
theorem and various properties of infinite series; an(_i he laid the
foundations for the calculus of variations. In opucs, Nt?wton
began the experimental study of thc? analysis .amd composition of
light, showing that white light is a mixture of l‘lght of many colors,
each having a characteristic index of refraction. Upon these re-
searches have risen the science of spectroscopy and the methods
_of color analysis. Newton invented a reﬂecting t(.?les.cope and so
1showed astronomers how to transcend the limitations qf te.le-
“scopes built of lenses. All in all, his was a fantastic scientific
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achievement—of a kind that has never been equaled and may
never be equaled again.

In this book we shall deal exclusively with Newton’s system of
dynamics and gravitation, the central problems for which the
preceding chapters have been a preparation. If you have read
them carefully, you have in mind all but one of the major ingredi-
ents requisite to an understanding of the Newtonian system of
the world. But even if that one were to be given—the analysis of
uniform circular motion—the guiding hand of Newton would still
be required to put the ingredients together. It took genius to
supply the new concept of universal gravitation. Let us see what
Newton actually did.

First of all, it must be understood that Galileo himself never
attempted to display any scheme of forces that would account for
the movement of the planets, or of their satellites. As for Coper-
nicus, the De revolutionibus contains no important insight into a
celestial mechanics. Kepler had tried to supply a celestial mecha-
nism, but the result was never a very happy one. He held that the
anima motrix emanating from the sun would cause planets to
revolve about the sun in circles. He further supposed that mag-
netic interactions of the sun and a planet would shift the planet
during an otherwise circular revolution into an elliptical orbit.
Others who contemplated the problems of planetary motion pro-
posed systems of mechanics containing certain features that were
later to appear in Newtonian dynamics. One of these was Robert
Hooke, who quite understandably thought that Newton should
have given him more credit than a mere passing reference for
having anticipated parts of the laws of dynamics and gravitation.

NEWTONIAN ANTICIPATIONS

The climactic chapter in the discovery of the mechanics of the
universe starts with a pretty story. By the third quarter of the
seventeenth century, a group of men had become so eager to
advance the new mathematical experimental sciences that they
banded together to perform experiments in concert, to present
problems for solution to one another, and to report on their own
researches and on those of others as revealed by correspondence,
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books, and pamphlets. Thus it came about that Robert Hooke,
Edmond Halley, and Sir Christopher Wren, England’s foremost
architect, met to discuss the question, Under what law of force
would a planet follow an elliptical orbit? From Kepler’s laws—
especially the third or harmonic law, but also the second or law
of areas—it was clear that the sun somehow or other must control
or at least affect the motion of a planet in accordance with the
relative proximity of the planet to the sun. Even if the particular
mechanisms proposed by Kepler (an anima motrix and a magnetic
force) had to be rejected, there could be no doubt that some kind
of planet-sun interaction keeps the planets in their courses. Fur-
thermore, a more acute intuition than Kepler’s would sense that
any force emanating from the sun must spread out in all direc-
tions from that body, presumably diminishing according to the
inverse of the square of its distance from the sun—as the intensity
of light diminishes in relation to distance. But to say this much
is a very different thing from proving it mathematically. For to
prove it would require a complete physics with mathematical
methods for solving all the attendant and consequent problems.
When Newton declined to credit authors who tossed off general
statements without being able to prove them mathematically or
fit them into a valid framework of dynamics, he was quite justified

. in saying, as he did of Hooke’s claims: “Now is not this very fine?

Mathematicians that find out, settle, and do all the business must
content themselves with being nothing but dry calculators and
drudges; and another, that does nothing but pretend and grasp
at all things, must carry away all the invention, as well of those
that were to follow him as of those that went before.” (See,
further, Supplement 11).

In any event, by January 1684 Halley had concluded that the
force acting on planets to keep them in their orbits “decreased
in the proportion of the squares of the distances reciprocally,”

Feo—p

but he was not able to deduce from that hypothesis the observed
motions of the celestial bodies. When Wren and Hooke met later
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in the month, they agreed with Halley’s supposition of a solar
force. Hooke boasted “‘that upon that principle all the laws of the
celestial motions were to be [i.e., could be] demonstrated, and
that he himself had done it.” But despite repeated urgings and
Wren’s offer of a considerable monetary prize, Hooke did not—
and presumably could not—produce a solution. Six months later,
in August 1684, Halley decided to go to Cambridge to consult
Isaac Newton. On his arrival he learned the *“‘good news” that
Newton “had brought this demonstration to perfection.” Here is
DeMoivre’s almost contemporaneous account of that visit:

After they had been some time together, the Dr. [Halley] asked him
what he thought the curve would be that would be described by the
planets supposing the force of attraction towards the sun to be recip-
rocal to the square of their distance from it. Sir Isaac replied immedi-
ately that it would be an ellipsis. The Doctor, struck with joy and
amazement, asked him how he knew it. Why, saith he, I have calculated
it. Whereupon Dr. Halley asked him for his calculation without any
further delay. Sir Isaac looked among his papers but could not find it,
but he promised him to renew it and then to send it him. Sir Isaac, in
order to make good his promise, fell to work again, but he could not
come to that conclusion which he thought he had before examined
with care. However, he attempted a new way which, though longer
than the first, brought him again to his former conclusion. Then he
examined carefully what might be the reason why the calculation he
had undertaken before did not prove right, and he found that, having
drawn an ellipsis coarsely with his own hand, he had drawn the two
axes of the curve, instead of drawing two diameters somewhat inclined
to one another, whereby he might have fixed his imagination to any
two conjugate diameters, which was requisite he should do. That
being perceived, he made both his calculations agree together.

Spurred on by Halley’s visit, Newton resumed work on a sub-
Jject that had commanded his attention in his twenties when he
had laid the foundations of his other great scientific discoveries:
the nature of white light and color and the differential and inte-
gral calculus. He now put his investigations in order, made great
progress, and in the fall term of the year, discussed his research
in a series of lectures on dynamics that he gave at Cambridge
University, as required by his professorship. Eventually, with
Halley’s encouragement, a draft of these lectures, De motu cor-
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porum, grew into one of the greatest and most influential books
any man has yet conceived. Many a scientist has echoed the
sentiment that Halley expressed in the ode he wrote as a preface
to Newton’s Principia (or, to give Newton’s masterpiece its full
title, Philosophiae naturalis principia mathematica, Mathematical Princi-
ples of Natural Philosophy, London, 1687):

Then ye who now on heavenly nectar fare,
Come celebrate with me in song the name
Of Newton, to the Muses dear; for he
Unlocked the hidden treasuries of Truth:

So richly through his mind had Phoebus cast
The radiance of his own divinity.

Nearer the gods no mortal may approach.

THE PRINCIPIA

The Principia is divided into three parts or books; we shall con-
centrate on the first and third. In Book One Newton develops the
general principles of the dynamics of moving bodies, and in Book
Three he applies the principles to the mechanism of the universe.
Book Two deals with a facet of fluid mechanics, the theory of
waves, and other aspects of physics.

In Book One, following the preface, a set of definitions, and a
discussion of the nature of time and space, Newton presented the
“axioms, or laws of motion’:

Law I
Every body perseveres in its state of being at rest or of moving
uniformly straight forward, except insofar as it is compelled to change
its state by forces impressed upon it.

) Law 11
A change in motion is proportional to the motive force impressed
and takes place in the direction of the straight line along which that
force is impressed. [See Suppl. Note on p. 184.]

Observe that if a body is in uniform motion in a straight line,

a force at right angles to the direction of motion of the body will

not affect the forward motion. This follows from the fact that the
acceleration is always in the same direction as the force produc-
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ing it, so that the acceleration in this case is at right angles to the
direction of motion. Thus in the toy train experiment of Chapter
5, the chief force acting is the downward force of gravity, produc-
ing a vertical acceleration. The ball, whether moving forward or
at rest, is thus caused to slow down in its upward motion until it
comes to rest, and then be speeded up or accelerated on the way
down. :

A comparison of the two sets of photographs (p. 83) shows that
the upward and downward motions are exactly the same whether
the train is at rest or in uniform motion. In the forward direction
there is no effect ‘of weight or gravity, since this acts only in a
downward direction. The only force in the forward or horizontal
direction is the small amount of air friction, which is almost
negligible; so one may say that in the horizontal direction there
1s no force acting. According to Newton’s first law of motion, the
ball will continue to move in the forward direction with uniform
motion in a straight line just as the train does—a fact you can
check by inspecting the photograph. The ball remains above the
focomotive whether the train is at rest or in uniform motion in
a straight line. This law of motion is sometimes called the principle
of tnertia, and the property that material bodies have of continu-
ing in a state of rest or of uniform motion in a straight line is
sometimes known as the bodies’ inertia. *

Newton illustrated Law I by reference to projectiles that con-
tinue in their forward motions “so far as they are not retarded by
the resistance of the air, or impelled downward by the force of
gravity,” and he referred also to ‘“‘the greater bodies of planets
and comets.” (On the inertial aspect of the motion of *“‘greater
bodies’ such as “planets and comets,” see Supplement 12.) At

*The earliest known statement of this law was made by René Descartes in a
book that he did not publish. It appeared in print for the first time in a work by
Pierre Gassendi. But prior to Newton’s Prinapia there was no completely devel-
oped inertial physics. It is not without significance that this early book of Des-
cartes was based on the Copernican point of view; Descartes suppressed it on
learning of the condemnation of Galileo. Gassendi likewise was a Copernican. He
actually made experiments with objects let fall from moving ships and moving
carriages to test Galileo's conclusions about inertial motion. Descartes first pub-
lished his version of the law of inertia in his Principles of Philosophy (1644); the
earlier statement, in Descartes’s The World, was published after Descartes’s death
in 1650. See Suppl. 8.
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this one stroke Newton postulated the opposite view of Aris-
totelian physics. In the latter, no celestial body could move uni-
formly in a straight line in the absence of a force, because this
would be a “violent” motion and so contrary to its nature. Nor
could a terrestrial object, as we have seen, move along its “‘natu-
ral” straight line without an external mover or an internal motive
force. Newton, presenting a physics that applies simultaneously
to both terrestrial and celestial objects, stated that in the absence
of a force bodies do not necessarily stand still or come to rest as
Aristotle supposed, but they may move at constant rectilinear
speed. This “indifference” of all sorts of bodies to rest or uni-
form straight-line motion in the absence of a force clearly is an
advanced form of Galileo’s statement in his book on sunspots (p.
88), the difference being that in that work Galileo was writing
about uniform motion along a great spherical surface concentric
with the earth.

Newton said of the laws of motion that they were *“such princi-
ples as have been received by mathematicians, and . . . confirmed
by {an] abundance of experiments. By the first two Laws and the
first two Corollaries, Galileo discovered that the descent of bod-
ies varies as the square of the time and that the motion of projec-
tiles is in the curve of a parabola, experience agreeing with both,
unless so far as these motions are a little retarded by the resist-
ance of the air.” The “two Corollaries” deal with methods used
by Galileo and many of his predecessors to combine two different
forces or two independent motions. Fifty years after the publica-
tion of Galileo’s Two New Sciences it was difficult for Newton, who
had already established an inertial physics, to conceive that
Galileo could have come as close as he had to the concept of
inertia without having taken full leave of circularity and having
known the true principle of linear inertia. '

Newton was being very generous to Galileo because, however
it may be argued that Galileo “really did” have the law of inertia
or Newton’s Law I, a great stretch of the imagination is required
to assign any credit to Galileo for Law II. This law has two parts.
In the second half of Newton’s statement of Law II, the “change
in motion” produced by an “impressed” or “motive” force—
whether that is a change in the speed with which a body moves
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or a change in the direction in which it is moving—is said to be
t‘m the direction of the straight line along which that force is
impressed.” This much is certainly implied in Galileo’s analysis
of projectile motion because Galileo assumed that in the forward
direction there is no acceleration because there is no horizontal
force, except the negligible action of air friction; but in the verti-
cal direction there is an acceleration or continual increase of
downward speed, because of the downward-acting weight force.
But the first part of Law II—that the change in the magnitude of
the motion is related to the motive force—is something else
again; only a Newton could have seen it in Galileo’s studies of
falling bodies. This part of the law says that if an object were to
be acted on first by one force F, and then by some other force
F,, the accelerations or changes in speed produced, 4, and 4,,
would be proportional to the forces, or that

Fr 4
E_E’or
F,  Fy
A;  dg

But in analyzing falling, Galileo was dealing with a situation in
which only one force acted on each body, its weight W, and the
acceleration it produced was g the acceleration of a freely falling
body. (For the two forms of Newton’s Law II, see p. 184.)
Where Aristotle had said that a given force gives an object a
certain characteristic speed, Newton now said that a given force
always produces in that body a definite acceleration 4. To find
the speed ¥, we must know how long a time T the force has acted,
or how long the object has been accelerated, so that Galileo’s law

V =AT

may be applied.

At this point let us try a thought-experiment, in which we
assume we have two cubes of aluminum, one just twice the vol-
ume of the othey. (Incidentally, to *“‘duplicate’” a cube—or make
a cube having exactly twice the volume as some given cube—is

i ,
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as impossible within the framework of Euclidean geometry as to
trisect an angle or to square a circle.) We now subject the §maller
cube to a series of forces F,, F,, F3, . . . and determine the
corresponding accelerations 4, A4,,4,,...In accordance with
Law II, we would find that there is a certain constant value of the
ratio of force to acceleration

Fl F2 F3
Z—Az As

which for this object we may call m,. We now repeat the opera-
tions with the larger cube and find that the same set of fo.rces
F.,F,,Fy,... respectively produFes another s’et of accelerauolr:s
I P P In accordance with Newton§ second ‘law, .t e
force-acceleration ratio is again a constant which for this object
we may call m,

For the larger object the constant proves (o be ju§t twice as
large as the constant obtained for the smaller one ;}nd, in genera!,
so long as we deal with a single variety of matter like pure alumi-
num, this constant is proportional to the vo_lume a.nd S0 is @ measure
of the amount of aluminum in any sample. This part_lcular constant 1§
a measure of an object’s resistance to accelerat}on, or a measure
of the tendency of that object to stay as it is—elther at rest, or in
motion in a straight line. For observe that m; was twice to give
both objects the same acceleration or change in motion the force
required for the larger object is just twice wha_t it must be for the
smaller. The tendency of any object to continue In its state qf
motion (at constant speed in a straight line) or 1ts state of re§t 1s
called its inertia; hence, Newton’s Law L is also called the principle
of inertia. The constant determined by finding the constant
force-acceleration ratio for any given body may tbus be called the
body’s inertia. But for our aluminum blocks.thls same constant
is also a measure of the “quantity of matter” in the'o'b_]ect, which
is called its mass. We now make precise the condition that two
objects of different material—say one of brass and the other of
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wood—shall have the same ‘“‘quantity of matter’: it is that they
have the same mass as determined by the force-acceleration ratio,
or the same inertia.

In ordinary life, we do not compare the *“‘quantity of matter”
in objects in terms of their inertias, but in terms of their weight.
Newtonian physics makes it clear why we can, and through its
clarification we are able to understand why at any place on the
earth two unequal weights in a vacuum fall at the same rate. But
we may observe that in at least one common situation we always
compare the inertias of objects rather than their weights. This
happens when a person hefts two objects to find which is heavier,
or has the greater mass. He does not hold them out to see which
pulls down more on his arm; instead, he moves them up and
down to find which is easier to move. In this way he determines
which has the greater resistance to a change in its state of motion
in a straight line or of rest—that is, which has the greater inertia.
(On Newton’s concept of inertia, see Supplement 15.)

FINAL FORMULATION OF THE LAW OF INERTIA

At one point in his Discourses and Demonstrations Concerning Two New
Sciences, Galileo imagined a ball to be rolling along a plane and
noted that “equable motion on this plane would be perpetual if
the plane were of infinite extent.” A plane without limit is all right
for a pure mathematician, who is a Platonist in any case. But
Galileo was a man who combined just such a Platonism with a
concern for applications to the real world of sensory experience.
In the Two New Sciences, Galileo was not interested only in abstrac-
tions as such, but in the analysis of real motions on or near the
earth. So we understand that having talked about a plane without
limit, he does not continue with such a fancy, but asks what would
happen on such a plane if it were a real earthly plane, which for
him means that it is “ended, and [situated] on high.” The ball,

in the real world of physics, falls off the plane and begins to fall
to the ground. In this case, :

the movable (which I conceive of as being endowed with heaviness),
driven to the end of this plane and going on further, adds on to its

™~

{

w3



e

158 THE BIRTH OF A NEW PHYSICS

previous equable and indelible motion that downward tendency which
it has from its own heaviness. Thus there emerges a certain mouon,
compounded from equable horizontal and from naturally accelerated
downward [motion], which I call “projection.”

Unlike Galileo, Newton made a clear separation between the
world of abstract mathematics and the world of physics, which he
still called philosophy. Thus the Principia included both “math?-
matical principles” as such and those that could be applied in
“natural philosophy,” but Galileo’s Two New Sciences included
only those mathematical conditions exemplified in nature. For
instance, Newton plainly knew that the attractive force exerted by
the sun on a planet varies as the inverse-square of the distance

FCI—D—2

but in Book One of the Principia he explored the consequences
not only of this particular force but of others with quite different
dependence on the distance, including

F e D

““THE SYSTEM OF THE WORLD"’

At the beginning of Book Three, which was devoted to “The
System of the World,” Newton explained how it differed frqm the
preceding two, which had been dealing with “The Motion of
Bodies™:

In the preceding Books I have laid down . .. principles not philo-
sophical [pertaining to physics] but mathematical: such, namely, as we
may build our reasonings upon in philosophlcal inquiries. These prin-
ciples are laws and conditions of certain motions, and powers or
forces, which chiefly have respect to philosophy; but, lest they should
have appeared of themselves dry and barren, I have _ll!ustrated them
here and there with some philosophical scholiums, giving an account
of such things as are of a more general nature, and which phllt?sophy
seems chiefly to be founded on: such as the density and the resistance

\ of bodies, spaces void of all bodies, and the motion of light and
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sounds. It remains that, from the same principles, I now demonstrate
the structure of the System of the World.

I believe it fair to say that it was the freedom to consider
problems either in a purely mathematical way or in a “philosophi-
cal” (or physical) way that enabled Newton to express the first law

and to develop a complete inertial physics. After all, physics as |

a science may be developed in a mathematical way but it always
must rest on experience—and experience never shows us pure
inertial motion. Even in the limited examples of linear inertia
discussed by Galileo, there was always some air friction and the
motion ceased almost at once, as when a projectile strikes the
ground. In the whole range of physics explored by Galileo there
is no example of a physical object that has even a component of
pure inertial motion for more than a very short time. It was
perhaps for this reason that Galileo never framed a general law
of inertia. He was too much a physicist.

But as a mathematician Newton could easily conceive of a
body’s moving along a straight line at constant speed forever.
The concept *“‘forever,” which implies an infinite universe, held
no terror for him. Observe that his statement of the law of inertia,
that it is the natural condition for bodies to move in straight lines
at a constant speed, occurs in Book One of the Principia, the
portion said by him to be mathematical rather than physical.
Now, if it is the natural condition of maotion for badies to move
uniformly in straight lines, then this kind of inertial motion must
characterize the planets. The planets, however, do not move in
straight lines, but rather along ellipses. Using a kind of Galilean
approach to this single problem, Newton could say that the pla-
nets must therefore be subject to two motions: one inertial (along
a straight line at constant speed) and one always at right angles
to that straight line drawing each planet toward its orbit. (See,
further, Supplements 11 and 12.) '

Though not moving in a straight line, each planet nevertheless
represents the best example of inertial motion observable in the
universe. Were it not for that component of inertial motion, the
force that continually draws the planet away from the straight line
would draw the planet in toward the sun until the two bodies
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collided. Newton once used this argument to prove the existence
of God. If the planets had not received a push to give them an
inertial (or tangential) component of motion, he said, the solar
attractive force would not draw them into an orbit but instead
would move each planet in a straight line toward the sun itself.
Hence the universe could not be explained in terms of matter
alone.

For Galileo pure circular motion could still be inertial, as in the
example of an object on or near the surface of the earth.,Butféb
Newton pure circular motion was not inertial; it was accelerated
and required a force for its continuance. Thus it was Newton who
finally shattered the bonds of “circularity” which still had held
Galileo in thrall. And so we may understand that it was Newton
who showed how to build a celestial mechanics based on the laws
of motion, since the elliptical (or almost circular) orbital motion
of planets is not purely inertial, but requires additionally the
constant action of a force, which turns out to be the force of
universal gravitation.

Thus Newton, again unlike Galileo, set out to ‘‘demonstrate
the structure of the System of the World,” or—as we would say
today—to show how the general laws of terrestrial motion may
be applied to the planets and to their satellites.

In the first theorem of the Principia Newton showed that if a
body were to move with a purely inertial motion, then with re-
spect to any point not on the line of motion, the law of equal areas
must apply. In other words, a line drawn from any such body to
such a point will sweep out equal areas in equal times. Conceive
a body moving with purely inertial motion along the straight line
of which PQ is a segment. Then in a set of equal time intervals
(Fig. 30) the body will move through equal distances 48, BC, CD,
.. because, as Galileo showed, in uniform motion a body moves
through equal distances in equal times. But observe that a line
from the point O sweeps out equal areas in these equal times, or
that the areas of triangles O4B, OBC, OCD, . . . are equal. The
reason is that the area of a triangle is one-half the product of its
altitude and its base; and all these triangles have the same altitude
OH and equal bases. Since
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it is true that

VoABXOH =%BCXOH=%CDXOH=. . ...

or

area of AOAB =area of AOBC =area of AOCD =, ..

Thus_the very first theorem proved in the Principia showed that
purely inertial motion leads to a law of equal areas, and so is
related to Kepler’s second law. Newton then proved that if at
rfzgular intervals of time, a body moving with purely inertial mo-
tion were to receive a momentary impulse (a force acting for an
instant only), all these impulses being directed toward the same
point S, then the body would move in each of the equal time-
intervals between impulses so that aline from it to § would swee
out equal areas. This situation is shown in Fig. 1. When the bodp
reaches _the point B it receives an impulse toward S. The nevz
motion is a combination of the original motion along AB and a
motion toward S, which produces a uniform rectilinear motion
toward C, etc.: The triangles S4B, SBC, and SCD . . . have the
same area. The next step, according to Newton, is as follows:

... Now let the number of those triangl 1
v let | imber gles be augmented, and the

breadth diminished in infinitum; and (by Cor. iv, Lem. iii) their ultimatl;

perimeter ADF will be a curved line: and therefore the centripetal
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Fic. g1. If at B the body had received no impulse, it would, during time
T, have moved along the continuation of 4B to c. The impulse at B,
however, gives the body a component of motion toward §. During 7 if
the body’s only motion came from that impulse, it would have moved
from B to ¢’. The combination of these two movements, Bc and Bc’,
results during time 7 in a movement from B 1o C. Newton proved that
the area of the triangle SBC is equal to the area of the triangle SBc.
Hence, even when there is an impulsive force directed toward S, the law
of equal areas holds. :

force, by which the body is continually drawn back from the tangent
of this curve, will act continually; and any described areas S4DS, SAFS,
which are always proportional to the times of description, will, in this
case also, be proportional to those times. Q.E.D.

In this way Newton proceeded to prove:

Proposition 1. Theorem 1.
The areas which revolving bodies describe by radii drawn to an immovable
centre of force do lie in the same immovable planes, and are proportional to the
times in which they are described.
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In simple language, Newton proved in the first theorem of
Book One of the Principia that if a body is continually drawn
toward some center of force, its otherwise inertial motion will be
transformed into motion along a curve, and that a line from the
center of force to the body will sweep out equal areas in equal
times. In proposition 2 (theorem 2) he proved that if a body
moves along a curve so that the areas described by a line from
the body to any point are proportional to the times, there must
be a *“central” (centripetal) force continuously urging the body
toward that point. The significance of Kepler’s Law I does not
appear until proposition 11 when Newton sets out to find “the
law of the centripetal force tending to a focus of the ellipse.” This
force varies “inversely as the square of the distance.” Then New-
ton proves that if a body moving in an hyperbola or in a parabola
is acted on by a centripetal force tending to a focus, the force still
varies inversely as the square of the distance. Several theorems
later, in proposition 17, Newton proves the converse, that if a
body moves subject to a centripetal force varying inversely as the
square of the distance, the path of the body must be a conic
section: an ellipse, a parabola, or a hyperbola. (See Supplement
13).

We may note that Newton has treated Kepler’s laws exactly in
the same order as Kepler himself: first the law of areas as a
general theorem, and only later the particular shape of planetary
orbits as ellipses. What seemed at first to be a rather odd way of
proceeding has been shown to represent a fundamental logical
progression of a kind that is the opposite of the sequence that
would have been followed in an empirical or observational ap-
proach.

In Newton’s reasoning about the action of a centripetal force
on a body moving with purely inertial motion, mathematical anal-
ysis, for the first time, disclosed the true meaning of Kepler’s
second law, of equal areas! Newton’s reasoning showed that this
law implies a center of force for the motion of each planet. Since
the equal areas in planetary motion are reckoned with respect to
the sun, Kepler’s second law becomes in Newton’s treatment the
basis for proving rigorously that a central force emanating from
the sun attracts all the planets.
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So much for the problem raised by Halley. Had Newton
stopped his work at this point, we would still admire his achieve-
ment enormously. But Newton went on, and the results were
even more outstanding. ‘

THE MASTERSTROKE: UNIVERSAL GRAVITATION

In Book Three of the Principia, Newton showed that as Jupiter’s
satellites move in orbits around their planet, a line from Jupiter
to each satellite will ““describe areas proportional to the times of
description,” and that the ratio of the squares of their times to
the cubes of their mean distances from the center of Jupiter is a
constant, although a constant having a different value from the
-constant for the motion of the planets. Thus if T, T,, Ty, T,
be the periodic times of the satellites, and e, a,, a a, be their
respective mean distances from Jupiter, '
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Not only do these laws of Kepler apply to the Jovian system, but
they also apply to the five satellites of Saturn known to Newton
—a result wholly unknown to Kepler. The third law of Kepler
could not be applied to the earth’s moon because there is only
one moon, but Newton did state that its motion agrees with the
law of equal areas. Hence, one may see that there is a central
force, varying as the inverse-square of the distance, that holds
each planet to an orbit around the sun and each planetary satel-
lite to an orbit around its planet.

Now Newton makes the masterstroke. He shows that a single
universal force (a) keeps the planets in their orbits around the
sun, (b) holds the satellites in their orbits, (c) causes falling ob-
jects to descend as observed, (d) holds objects on the earth, and
(e) causes the tides. It is the force called universal gravity, and its
fundamental law may be written
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This law says that between any two bodies whatsoever, of masses
m and m’, wherever they may be in the universe, separated by a
distance D, there is a force of attraction that is mutual, and each
body attracts the other with a force of identical magnitude, which
Is directly proportional to the product of the two masses and inversely
proportional to the square of the distance between them. G is a constant
of proportionality, and it has the same value in all circumstances
—whether in the mutual attraction of a stone and the earth, of
the earth and the moon, of the sun and Jupiter, of one star and
another, or of two pebbles on a beach. This constant G is called
the constant of universal gravitation and may be compared to other
“universal” constants—of which there are not very many in the
whole of science—such as ¢, the speed of light, which figures so
prominently in relativity, or £, Planck’s constant, which is so basic
in quantum theory.

How did Newton find his law? It is difficult to tell in detail, but
we can reconstruct some of the basic aspects of the discovery.

From a later memorandum (about 1714), we learn that Newton
as a young man ‘“began to think of gravity extending to the orb
of the moon, and having found out how to estimate the force with
which [a] globe revolving within a sphere presses the surface of
the sphere, from Kepler’s rule of the periodical times of the
planets being in a sesquialterate proportion [i.e., as the 3/2
power] of their distances from the centers of their orbs, I de-
duced that the forces which keep the planets in their orbs must
[be] reciprocally as the squares of their distances from the centers
about which they revolve: and thereby compared the force requi-
site to keep the moon in her orb with the force of gravity at the
surface of the earth, and found them answer [i.e., agree] pretty
nearly.” .

With this statement as guide, let us consider first a globe of
mass m and speed v moving along a circle of radius r. Then, as
Newton found out, and as the great Dutch physicist Christiaan
Huygens (1629-1695) also discovered (and to Newton’s chagrin,
published first; see Supplement 14), there must be a central
acceleration, of magnitude v ?/r. That is, an acceleration follows
from the fact that the globe is not at rest nor moving at constant
speed in a straight line; from Law I and Law II, there must be a
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force and hence an acceleration. We shall not prove that this
acceleration has a magnitude v */r, but that it is directed toward
the center you can see if you whirl a ball in a circle at the end of
a string. A force is needed to pull the ball constantly toward the
center, and from Law II the acceleration must always have the
same direction as the accelerating force. Thus for a planet of
mass m, moving approximately in a circle of radius r at speed
v, there must be a central force F of magnitude

F=nu4=mv—.

If T is the period, or time for the planet to move through
360°, then in time 7" the planet moves once around a circle of
radius r, or through a circumference of 27r. Hence the speed
v is 27r/T, and

o 1 [21”]2 1
F=md =mve X —=m|—— —-
r T
4mr? 1
=m —_
T? T
172r? 1 r
=m X 3 X =X =
T r r

Since for every planet in the solar system, r3/7* has the same
value K (by Kepler’s rule or third law),

1m%m

2

F = X K = 4112Kl2.

r r

The radius r of the circular orbit corresponds in reality to D the
average distance of a planet from the sun. Hence, for any planet
the law of force keeping it in its orbit must be

'
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m
F = 4m2Kk—
D2

where m is the mass of the planet, D is the average distance of
the planet from the sun, X is “Kepler’s constant” for the solar
system (equal to the cube of the mean distance of any planet from
the sun divided by the square of its period of revolution), and
F is the force with which the sun attracts the planet and draws it
continually off its purely inertial path into an ellipse. Thus far
mathematics and logic may lead a man of superior wit who knows
the Newtonian laws of motion and the principles of circular mo-
tion. .
But now we rewrite the equation as

Mm
D2

172K
MS

where M is the mass of the sun and say that the quantity

4m2K _
7=

s

is a universal constant, that the law

Mm
F=0(6——
D2
is not limited to the force between the sun and a planet. It applies
also to every pair of objects in the universe, M, and m becoming
the masses m and m' of those two objects and D becoming the
distance between them:

f T
There is no mathematics—whether algebra, geometry, or the
calculus—to justify this bold step. One can say of it only that it
is one of those triumphs that humble ordinary men in the pres-
ence of genius. And just think what this law implies. For instance,
this book that you hold in your hands attracts the sun in a calcula-
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ble degree; the same force makes_the moon follow its orbit and
an apple fall from the tree. Late in life Newton said it was this last
comparison that inspired his great discovery. (See, further, Sup-
plement 14.)

The moon (see Fig. g2) if not attracted by the earth would have
a purely inertial motion and in a small time ¢ would move uni-
formly along a straight line (a tangent) from 4 to B. It does not,
said Newton, because while its inertial motion would have carried
it from A to B, the gravitational attraction of the earth will have
made it fall toward the earth from the line AB to C. Thus the
moon’s departure from a purely inertial rectilinear path is caused
by its continual *falling” toward the earth—and its falling is just
like the falling of an apple. Is this true? Well, Newton put the
proposition to a test, as follows:

Why does an apple of mass m fall to the earth? It does so, we
may now say, because there is a force of universal gravitation
between it and the earth, whose mass is M,. But what is the
distance between the earth and the apple? Is it the few feet from

. the apple to the ground? The answer to this question is far from
I obvious. Newton eventually was able to prove that the attraction

FIG. 32.
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between a small object and a more or less homogeneous and |

more or less spherical body is exactly the same as if all the large !
mass of the body were concentrated at its geometric center. This
theorem means that in considering the mutual attraction of earth
and apple, the distance D in the law of universal gravitation may
be taken to be the earth’s radius, R,. Hence the law states that
the attraction between the earth and an apple is:

mM,
F=06—2,

R,?
where m is the mass of the apple, M, the mass of the earth, and
R, the earth’s radius. But this is an expression for the weight W
of the apple, because the weight of any terrestrial object is merely
the magnitude of the force with which it is gravitationally at-
tracted by the earth. Thus,

mM,
W= G—nr.
R,?

There is a second way of writing an equation for the weight of
an apple or of any other terrestrial object of mass m. We use
Newton’s Law II, which says that the mass m of any object is the
ratio of the force acting on the object to the acceleration pro-
duced by that force, -

mo E
T4

or
F=md.

Note that when an apple falls from the tree, the force pulling it
down is its weight W, so that

W=md4.

Since we now have two different mathematical statements of the
same force or weight W, they must be equal to each other, or



170 THE BIRTH OF A NEW PHYSICS

mM,
md = G—=

[4

and we can divide both sides by m to get

M,
A= GF.

So, by Newtonian principles, we have at once explained why at
any spot on this earth all objects—whatever their mass m or
weight W may be—will have the same acceleration 4 when they
fall freely, as in a vacuum. The last equation shows that this
acceleration of free fall is determined by the mass M, and radius
R, of the earth and a universal constant G, none of which depends
in any way on the particular mass m or weight W of the falling
body.

Now let us write the last equation in a slightly different way,

where D, stands for the distance from the center of the earth. At
or near the earth’s surface D, is merely the earth’s radius R, . Now
consider a body placed at a distance D, of 60 earth-radii from the
earth’s center. With what acceleration 4’ will it fall toward the
center of the earth? The acceleration 4 will be

, M,

&M’ 1M,
"~ (60 R,)? 3600 R,2 3600 "R,?

We just saw that at the surface of the earth an apple or any other
object willhave adownward acceleration equal to Gﬁ, and now

we have proved that an object at 6o earth-radii ‘will have an
acceleration just 1/g60oth of that value. On the average, a body
at the earth’s surface falls in one second toward the earth through
a distance of 16.08 feet, so that out at a distance of 60 earth-radii
from the earth’s center a body should fall
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1/3600 X 16.08 feet = 1/3600 X 16.08 X 12 inches =

0.0536 inches.

It happens that there is a body, our moon, out in space at a
distance of 60 earth-radii and so Newton had an object for testing
his theory of universal gravitation. If the same gravitational force
makes both the apple and the moon fall, then in one second the
moon should fall through 0.0536 inches from its inertial path to
stay on its orbit. A rough computation, based on the simplifying
assumptions that the moon’s orbit is a perfect circle and that the
moon moves uniformly without being affected by the gravita-
tional attraction of the sun, yields a distance fallen in one second
of 0.0539 inches—or a remarkable agreement to within 0.0003
inches! Another way of seeing how closely observation agrees
with theory is to observe that the two values differ by g parts in
about 500, which is the same as 6 parts in 1000 or 0.6 parts per
hundred (0.6 per cent). Another way of seeing how this calcula-
tion can be made (perhaps following the lead Newton himself
gave in the quotation on page 165) is as follows:

1) For a body on earth (the apple), the acceleration (g) of free
fall is

M!

= G——an
4 R,

2) For the moon, the form of Kepler’s third law is

where R,, and T,, are respectively the radius of the moon’s orbit
and the moon’s period of revolution. If the gravitational force
is universal, then the relation derived earlier for planets moving
around the sun

_4n%k

G M,
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can be rewritten for the moon moving around the earth, in the
form

472k
M,

Hence, we may compute g from Equation (1), as follows:

2 M
M, | R,? R,
R,3 R,3 R
= 4 L2 = 4 ;2 {R—e]
Ta2|| R, T,2|| R, .
= 47? ﬁ 3| e .
R, Tm2

= 60, and R, = 4,000 X 5,280 feet
e

Since

T, = 284 = 28 X 24 X 3600 sec
we may compute that
g = 32 ft/sec?
or
g = 1000 cm/sec?.

Newton said, in the autobiographical memorandum I have
quoted, that he “‘compared the force requisite to keep the moon
in her orb with the force of gravity at the surface of the earth.”

In Book Three of the Principia, Newton shows that the moon,
in order to keep along its observed orbit, falls away from its
straight line inertial path through a distance of 15 1/12 Paris feet
(an old measure) in every minute. Imagine the moon, he says,
“deprived of all motion to be let go, so as to descend toward the
earth with the impulse of all that force by which . . . it is retained
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in its orb.” In one minute of time it will descend through the
same distance that it does when this descent occurs together with
the normal inertial motion. Next, assume that this motion toward
the earth is due to gravity, a force that varies inversely as the
square of the distance. Then, at the surface of the earth this force
would be greater by a factor 60 X 6o than at the moon’s orbit.
Since the acceleration is, by Newton’s second law, proportional
to the accelerating force, a body brought from the moon’s orbit
to the earth’s surface would have an increase in its acceleration
of 60 X 60. Thus, Newton argues, if gravity is a force varying
inversely as the square of the distance, a body at the earth’s
surface should fall, starting from rest, through a distance of
nearly 60 X 60 X 15 1/12 Paris feet in one minute, or 15 1/12
Paris feet in one second.

From Huygens’s pendulum experiment Newton obtained the
result that on earth (at the latitude of Paris) a body falls just about
that far. Thus he proved that it is the force of the earth’s gravity
that retains the moon in its orbit. In making the computation,
Newton predicted from observations of the moon’s motion and
from gravitation theory that the distance fallen by a body on earth
in one second would be 15 Paris feet, 1 inch and 1 4/9 lines (1
line = 1/12 inch). Huygens’s result for free fall at Paris was 15
Paris feet, 1 inch, 1 7/g lines. The difference was 3/9 or 1/g of
a line and hence 1/36 of an inch—a very small number indeed.
By the time Newton wrote the Principia, he had found a far better
agreement between theory and observation than in that rough
test he had made twenty years earlier.

Newton said that in this test observation agreed with predic-
tion “pretty nearly.” Two factors were involved in that phrase.
First, he chose a poor value of the earth’s radius and so obtained
bad numerical results, agreeing only roughly or “pretty nearly.”
Second, since he had not then been able to prove rigorously that
a homogeneous sphere attracts gravitationally as if all its mass
were concentrated at its center, the proof was at best rough and
approximate, '

But this test proved to Newton that his concept of universal
gravitation was valid. You can appreciate how remarkable it was
when you consider the nature of the constant G. We saw earlier
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and we may well ask what either X (the cube of

any planet’s ciistance from the sun divided by the square of the
periodic time of that planet’s revolution about the sun) or M
(the mass of the sun) has to do with either the earth’s pull'on a
stone or the earth’s pull on the moon. If the fact that the earth
happens to be within the solar system lessens the wonder that
G should apply to the stone and the moon, consider a system of
double stars located millions of light-years away from the solar
system. Such a pair of stars may form an eclipsing binary, in
which one of the stars encircles the other as the moon encircles
the earth. Way out there, beyond any possible influence of the

472K

sun, the same constant G =

applies to the attraction of
S

- each of the stars by the other. This is a universal constant in spite .
i of the fact that in the form in which Newton discovered it, it was
. based on elements in our solar system. Evidently, the act of dividing

the Kepler constant by the mass of the central body about which
the others revolve eliminates any special aspects of that particular

system—whether of planets revolving about the sun, or satellites

revolving about Jupiter or Saturn. (See, further, Supplement 15.)

THE DIMENSIONS OF THE ACHIEVEMENT

A few further achievements of Newtonian dynamics, or gravita-
tion theory, will enable us to comprehend its heroic dimensions.
Suppose the earth were not quite a perfect sphere, but were
oblate—flattened at the poles and bulging at the equator. Con-
sider now the acceleration 4 of a freely falling body at a pole, at
the equator, and at two intermediate points a and &. Clearly the
“radius’ R of the earth, or distance from the center, would
increase from the pole to the equator, so that

R, <R, <R,<R,.

As a result the acceleration 4 of free fall at those places would
have different values:

F.
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A =G£-Ab=CMe-A M M
» RP2' R,2 " RTTC R
so that
Ay >Ap>A;>4,.

The following data, obtained from actual experiment, show the
acceleration varies with latitude:

Latitude Acceleration of free fall

978.039 cm/sec? 32.0878 ft/sec?

0° (equator)

20° 978.641 32.1076
40° 980.171 32.1578
60° 981.918 32.2151
90° 983.217 32.2577

In Newton’s day, the acceleration of free fall was found by
determining the length of a seconds pendulum—one that has a
period of 2 seconds. The equation for the period T of a simple
pendulum swinging through a short arc is

T = 271'\[L
4

where [ is the length of the pendulum (computed from the point
of support to the center of the bob) and g is the acceleration of
free fall. Halley found that when he went from London to St.
Helena it was necessary to shorten the length of his pendulum in
order to have it continue to beat seconds. Newton’s mechanics
not only explains this variation but leads to a prediction of the
shape of the earth, an oblate spheroid, flattened at the poles and
bulging at the equator. :

The variations in g, the acceleration of free fall, imply concomi-
tant variations in the weight of any physical object transported
from one latitude to another. A complete analysis of this variation
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in weight requires the consideration of a second factor, the force
arising from the rotation of the object along with the earth. The
factor that enters here is v */r where v is the linear speed along
a circle and r the circle’s radius. At different latitudes, there will
be different values of both v and r. Furthermore, to relate the
rotational effect to weight, a component must be taken along a
line from the center of the earth to the position in question, since
the rotational effect occurs in the plane of circular motion, or
along a parallel of latitude. It is because of these rotational forces
that the earth, according to Newtonian physics, acquired its
shape. '

A second consequence of the equatorial bulge is the precession
of the equinoxes. In actual fact, the difference between the polar
and equatorial radii of the earth may not seem very great:

equatorial radius = 6378.388 km = 3963.44 miles
polar radius = 6356.909 km = 3949.99 miles

But if we represent the earth with an 18-inch globe, the difference
between the smallest and greatest diameters would be about
1/16th of an inch. Newton showed that precession occurs be-
cause the earth is spinning on an axis inclined to the plane of its
orbit, the plane of the ecliptic. In addition to the gravitational
attraction that keeps the earth in its orbit, the sun exerts a pull
on the bulge, thus tending to straighten the axis. This force of
the sun tends to make the earth’s axis perpendicular to the plane
of the ecliptic (Fig. 33A) or make the plane of the bulge (or of
the earth’s equator) coincide with the plane of the ecliptic. At the
same time the moon’s pull tends to make the plane of the bulge
coincide with the plane of its orbit (inclined at about 5 degrees
to the plane of the ecliptic). The moon’s force is somewhat
greater in this regard than the sun’s. If the earth were a perfect
sphere, the pull on it by the sun or moon would be symmetrical
and there would be no tendency for the axis of rotation to
“straighten out”; the lines of action of the gravitational pulls of
sun and moon would pass through the earth’s center. But if the
earth should be oblate, or flattened at the poles, as Newton
supposed, then there would be a net force tending to shift the
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axis of the earth. And accordingly there would be a predictable
effect.

Now it is a result in Newtonian physics that if a force is exerted
so as to change the orientation of the axis of a spinning body, the
effect will be that the axis itself, rather than changing its orienta-
tion, will undergo a conical motion. This effect may be seen in
a spinning top. The axis of rotation is usually not absolutely
vertical. The weight of the top acts therefore to turn the axis
about the spinning point so as to make the axis horizontal. The
weight tends to produce a rotation whose axis is at right angles
to that of the top’s spin, and the result is the conical motion of
the axis shown in Fig. 33B. The phenomenon of precession had
been known since its discovery in the second century B.c. by

i

!
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Hipparchus, but its cause had been wholly unknown before New-
ton. Newton’s explanation not only resolved an ancient mystery,
but was an example of how one could predict the precise shape
of the earth by applying theory to astronomical observations.
Newton’s predictions were verified when the French mathemati-
cian Pierre L. M. de Maupertuis measured the length of a degree
of arc along a meridian in Lapland and compared the result with
the length of a degree along the meridian nearer the equator.

The result was an impressive victory for the new science.

Yet another achievement of the Newtonian theory was a gen-
eral explanation of the tides relating them to gravitational action

tof the sun and moon on the waters of the oceans. We may well

understand the spirit of admiration that inspired Alexander
Pope’s famous couplet:

Nature, and Nature’s Laws lay hid in Night.
God said, Let Newton be! and All was Light.

In seeing how the Newtonian mechanics enabled man to ex-
plain the motions of planets, moons, falling stones, tides, trains,
automobiles, and anything else that is accelerated—speeded up,
slowed down, started in its motion or stopped—we have solved
our original problem. But there remain one or two items that
require a word or so more. It is true, as Galileo observed, that
for ordinary bodies on the earth (which may be considered as
revolving in a large elliptic orbit at an average distance from the
sun of about g3 million miles), the situation is very much like
being on something that is moving in a straight line, and there
is an indifference to uniform rectilinear motion and to rest so far
as all the dynamical problems are concerned. On the rotating
earth, where the arc during any time interval, such as the flight
of a bullet, is a part of a “circle” smaller than the annual orbit,
another Newtonian kind of principle can be invoked, the princi-
ple of the conservation of angular momentum.

The angular momentum of a small object rotating in a circle
(as a stone held on the top of a tower on a rotating earth) is given
by the expression mur where 7 is the radius of rotation, m the
mass, and v the speed along the circle. The principle says that
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under a large variety of conditions (specifically, in all circum-
stances in which there is no external force of a special kind), the
angular momentum remains constant.

An example may be given. A man stands on a whirling plat-
form, with his arms outstretched and clutching a 10-pound
weight in each hand. He is set whirling slowly on the turntable
and then is told to bring his hands in toward his body along a
horizontal plane so that he looks like Fig. 34. He finds that he
spins faster and faster. Stretching his arms out once again will
slow him down. For anyone who has never seen such a demon-
stration before (it is a standard figure in ice skating) the first
encounter can be quite startling. Now let us see why these
changes occurred. The speed v with which the masses m held in
his hands move around is

where ¢ is the time for a complete rotation, during which each
mass m moves through a circumference of a circle of radius 7. At
first the angular momentum is

2

2mr 2mmr
mur = m X _l_ Xr=

t
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But as the man brings his arms in to his chest he makes r very

2
much smaller. 1f 2277

is to keep the same value, as the law of

conservation demands, then ¢ must get smaller too, which means
that the time for a revolution becomes smaller as r diminishes.

What has this to do with a stone falling from a tower? At the
top of the tower the radius of rotation is R + r where R is the
radius of the earth and r the height of the tower. When the stone
strikes the ground, the radius of rotation is R. Therefore, like the
masses drawn inward by the whirling mass, the stone must be
moving around in a smaller circle when at the base of the tower
than at the top, and so will whirl more quickly. Far from being
left behind, the stone, according to our theory, should get a little
ahead of the tower. How great an effect is this? Since the problem
depends on ¢, the time for a rotation through 360 degrees, we can
get a much better idea of the magnitude of the problem if we
study the angular speed than if we consider some linear speed (as
we did in Chapter 1). Look at the moving hands of a clock, paying
particular attention to the hour hand. By how much does it ap-
pear to shift in, say, five minutes, which corresponds to dropping
a ball from a much greater height than the Empire State Build-
ing? Not by any discernible degree. Now the rotation of the earth
through 360 degrees takes just twice as much time as a complete
rotation of the hour hand (12 hours). Since in five minutes the
angular motion or rotation of the hour hand is not discernible to
the unaided eye, a motion that is twice as slow produces practi-
cally no effect. Except in problems of long-range artillery firing,
analysis of the movements of the trade winds, and other
phenomena on a vastly larger scale than the fall of a stone, we
may neglect the earth’s rotation.

Such was the great Newtonian revolution, which altered the
whole structure of science and, indeed, turned the course of
Western civilization. How has it fared in the last goo years? Is the
Newtonian mechanics still true?

All too often the misleading statement is made that relativity
theory has shown classical dynamics to be false. Nothing could
be further from the truth! Relativistic corrections apply to objects
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moving at speeds v for which the ratio v/c is a significant quan-
tity, ¢ being the speed of light, or 186,000 miles per second. At
the speeds attained in linear accelerators, cyclotrons, and other
devices for studying atomic and subatomic particles, it is no
longer true that the mass m of a physical object remains constant.
Rather, it is found that the mass in motion is given by the equa-
tion

mg
1—v2/c?

where m is the mass of an object moving at a speed v relative to
the observer and m, is the mass of that same object observed at
rest. Along with this revision goes Albert Einstein’s now familiar
equation relating mass and energy, £ = mc? and the denial of
the validity of Newton’s belief in an “absolute” space and an
‘“absolute” time. Well, then, might we agree with the new couplet
added by J. C. Squire to the one of Pope’s we have quoted?

1t did not last: the Devil howling ‘Ho,
Let Einstein be,’ restored the status quo.

But for the whole range of problems discussed by Newton—
exemplified today in the motion of stars, planets, moons, air-
planes, spaceships, artificial satellites, automobiles, baseballs,
rockets, and every other type of gross body—the speeds v attain-
able are such that v/c has to all intents and purposes the value
zero and we can still apply Newtonian dynamics without correc-
tion. (There is, however, one very conspicuous example of a
failure of Newtonian physics: a very small error in predicting the
advance of the perihelion of Mercury—40” per century!—for
which we need to invoke relativity theory.) Hence for engineering
and all physics except a portion of atomic and subatomic physics,
it is still the Newtonian physics that explains occurrences in the
external world. :

While it is true that the Newtonian mechanics is still applicable
in the range of phenomena for which it was intended, the student
should not make the mistake of thinking that the framework in
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which the system originally was set is equally valid. Newton be-
lieved that there was a sense in which space and time were “abso-
lute” physical entities. Any deep analysis of his writings shows
how in his mind his discoveries depended on these “absolutes.”
To be sure, Newton was aware that clocks do not measure abso-
lute time, but only local time, and that we deal in our experiments
with local space rather than absolute space. He actually devel-
oped not merely a law of gravitational force and a system of rules
for computing the answers to problems in mechanics, but con-
structed a complete system based on a world view, encompassing
ideas of space, time, and order. Today, following the Michelson-
Morley experiment and relativity, that world view can no longer
be considered a valid basis for physical science. The Newtonian
principles are considered to be only a special, though extremely
important, case of a more general system.

Some scientists hold that one of the greatest validations of
Newtonian physics has been the set of predictions concerning
satellite motions; they have enabled us to launch into orbit a
series of space vehicles and to predict what will happen to them
out in space. This may be so, but to the historian the greatest
achievement of Newtonian science must ever be the first full
explanation of the universe on mechanical principles—one set of
axioms and a law of universal gravitation that apply to all matter
everywhere: on earth as in the heavens. Newton recognized that
the one example in nature in which there is pure inertial motion
going on and on and on, without frictional or other interference
to bring it to a halt, is the orbital motion of moons and planets.
And yet this is not a uniform or unchanging motion along a single
straight line, but rather along a constantly changing straight line,
because planetary motions are a compounding of inertial motion
with a continuing falling away from it. To see that moons and
planets exemplify pure inertial motion required the same genius
necessary to realize that the planetary law could be generalized
into a law of universal attraction for all matter and that the mo-
tion of the moon partakes of the motion of the falling apple.

Isaac Newton’s system of mechanics came to symbolize the
rational order of the world, functioning under the “rule of na-
ture.” Not only could Newtonian science account for present and
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past phenomena; the principles could be applied to the predic-
tion of future events. In the Principia Newton proved that comets
are like the planets, moving in great orbits that must (according
to Newtonian rules) be conic sections. Some comets move in
ellipses and these must return periodically from far out in space
to the visible regions of our solar system, whereas others will
visit our solar system and never return. Edmond Halley applied
these Newtonian results to an-analysis of cometary records of the
past and found—among others—a comet with a period of some
seventy-five and a half years. He made a bold Newtonian predic-
tion that this comet would reappear in 1758. When it did so, right
on schedule, though long after Halley and Newton were dead,
men and women everywhere experienced a new feeling of awe for
the powers of human reason abetted by mathematics. This new
respect for science was expressed by such adjectives as ‘‘amaz-
ing,” “phenomenal,” or “extraordinary.” This successful predic-
tion of a future event symbolized the force of the new science: the
perfection of the mathematical understanding of nature, realized
in the ability to make reliable predictions of the future. Not sur-
prisingly, men and women everywhere saw a promise that all of
human knowledge and the regulation of human affairs would
yield to a similar rational system of deduction and mathematical
inference coupled with experiment and critical observation. The
eighteenth century not only was the Enlightenment, but became
“preeminently the age of faith in science.” Newton became the
symbol of successful science, the ideal for all thought—in philos-
ophy, psychology, government, and the science of society.
Newton'’s genius enables us to see the full significance of both
Galilean mechanics and Kepler’s laws of planetary motion as
manifested in the development of the inertial principles required
for the Copernican-Keplerian universe. A great French math-
ematician, Joseph Louis Lagrange (1736-1813), best defined
Newton’s achievement. There is only one law of the universe, he
said, and Newton discovered it. Newton did not develop modern
dynamics all by himself but depended heavily on certain of his
predecessors; the debt in no way lessens the magnitude of his
achievement. It cnly emphasizes the importance of such men as
Galileo and Kepler, and Descartes, Hooke, and Huygens, who
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were great enough to make significant com.ributions t’o the New-
tonian enterprise. Above all, we may see in Newton§ work' tbe
degree to which science is a collective and a cumulatuye activity
and we may find in it the measure of the influence of an md1v1dua,11
genius on the future of a cooperative scientific eifor?. In Ne».vton s
achievement, we see how science advances by heroic exercises of
the imagination, rather than by patient collec‘ting and son:ung of
myriads of individual facts. Who, after studying Newton’s mag-
nificent contribution to thought, could deny that pure science
exemplifies the creative accomplishment of the human spirit at its
pinnacle?

’
SUPPLEMENT NOTE ON THE TWO FORMS OF NEWTON S
SECOND LAW

Newton’s Principia contains two forms of the secopd law. SII.ICC
Newton’s day we usually consider only the case of a contmuopsly acting
force F acting on a body of mass m to produce an accelerauor} A, that
is F = mA. But Newton gave primacy to another case, that ofar} instanta-
neous force—an impact or blow—as when a tennis racquet strikes a ball
or one billiard ball strikes another. In such cases, the force does not
produce a continuous acceleration, but rather an insta.m:jmeous“change
in the body’s quantity of motion (or momentum). This lS.th char.lge
in motion” which is said to be proportional to ““‘the motive force im-
pressed” in Newton’s statement of Law II on page 152, Newton con-
ceived that F = md4 is a limiting case of the impact law, the situation
when the time between successive impacts decreases indeﬁnite.ly, 50 tha!t
the force ultimately achieves the limiting condition of acting conti-
nously. The law F = mA was thus considered by Newton as derived from
the impact law, as stated on page 152.

SUPPLEMENT

1

Galileo and the Telescope*

Galileo certainly did not invent the telescope and never claimed
to have done so. Nor was he the first observer to point such an
instrument toward the heavens. A newsletter of October 1608,
about a year before Galileo made his first instrument, carried the
news that the spyglass not only could make distant terrestrial
objects seem nearer, but enabled one to see “even the stars which
ordinarily are invisible to our eyes.” There is very good evidence
that Thomas Harriot had been observing the moon before
Galileo began his telescopic observations; Simon Marius’s claims

(e.g., that he had discovered the satellites of Jupiter) are less well
founded.

Galileo’s report (see pp. 56-57) is taken from his Sidereus nun-
cius (1610). He wrote other versions of his first encounter with
the telescope, which differ somewhat in detail, for instance, with

*This supplement is based on a report on this topic, by Albert Van Helden, at
an international congress on Galileo, held in Pisa, Padua, Venice, and Florence
in April 1983, published in the proceedings of this congress, edited by Paolo
Galluzzi: Novita celesti e crisi del sapere (Suppl. 1o Annali delllstituto ¢ Museo di Storia
della Scienza, Florence, 1983). See also the monograph by Van Helden in the
Guide to Further Reading on p. 243 below. .

In The Sidereal Messenger, Galileo states that he had only heard of the new device,
but had not actually seen one, when he applied his knowledge of the theory of
refraction to produce a spyglass. But, by this time, the new instruments were not
uncommon in Italy, and one had already arrived in Padua and was being dis-
cussed. Perhaps he was in Venice when the spyglass was being shown in Padua.
In The Assayer (1l Saggiatore) of 1623, he recounted the role he played in the
creation of the astronomical telescope and discussed in full the stages that led him
to reinvent this instrument. Here, however, we are less concerned with the inven-
tion of the telescope than with the use Galileo made of it,
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