Einstein for Everyone Lecture 4: Paradoxes; Minkowski Spacetime

Dr. Erik Curiel

Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität

1 Velocity Addition

2 Paradoxes

Spacetime and Spacetime Diagrams

- Basics
- Tilt
- Time Dilation
- Length Contraction

4 The Geometry of Minkowski Spacetime

- Space-Time Interval
- Geodesics

5 Paradoxes, Again

Twin Paradox

Light Speed

- Special properties of the speed of light
 - All observers measure same speed for something moving at the speed of light (*not true* for other speeds)
 - 2 All observers agree whether something is moving *slower* or *faster* than *c*
 - Speed limit: impossible to accelerate through speed of light
- ... must be reflected in new rule for adding velocities!

Light Speed

- Special properties of the speed of light
 - All observers measure same speed for something moving at the speed of light (*not true* for other speeds)
 - 2 All observers agree whether something is moving *slower* or *faster* than *c*
 - Speed limit: impossible to accelerate through speed of light
- ... must be reflected in new rule for adding velocities!

Velocity Addition

Setup:

- Al and Bob as before; toy car moves on Bob's train with velocity *u* (according to Bob)
- What is velocity according to AI?
- First guess: u + v
- But this is wrong!

Velocity Addition

Setup:

- Al and Bob as before; toy car moves on Bob's train with velocity *u* (according to Bob)
- What is velocity according to AI?
- First guess: u + v
- But this is wrong!

Velocity Addition, 2

Velocity according to AI:

- Bob: "The little car is zooming around at speed *u*. How fast does it look to you?"
- Al: "Bob, your clocks are synchronized wrong and your distance measurements are off. So I can't just add your *u* to *v*..."
- Need to find "corrected" velocity, $u_{\text{corrected}}$

Velocity Addition, 2

Velocity according to AI:

- Bob: "The little car is zooming around at speed *u*. How fast does it look to you?"
- Al: "Bob, your clocks are synchronized wrong and your distance measurements are off. So I can't just add your *u* to *v*..."
- Need to find "corrected" velocity, $u_{\text{corrected}}$

Velocity Addition, 3

Corrected Velocity

 Qualitatively: u_{corrected} = u (correction) Derive exact formula by considering how Al corrects Bob's measurements ⇒ correction factor = \$\begin{pmatrix} 1 - \frac{v^2}{c^2} \\ 1 + \frac{uv}{c^2} \\ 1 + \frac^2 \\ 1 + \frac{uv}{c^2} \\ 1 + \frac{uv}{c^2} \\ 1 + \frac{uv}

Rocket Science

Question:

Rocket able to reach relative velocity 1/2cWhy doesn't a multiple stage rocket exceed c?

Stage 1: $v_r = 1/2c$

Stage 2: Reduction factor = 5/4, $v_r = (4/5)c$

Stage 3: Reduction factor = 7/5, $v_r = (13/14)c$

Stage 4: Reduction factor = 41/28, $v_r = (40/41)c$

Stage 5: Reduction factor = 61/41, $v_r = (121/122)c$

... and so on ...

Rocket Science

Question:

Rocket able to reach relative velocity 1/2cWhy doesn't a multiple stage rocket exceed c?

Stage 1: $v_r = 1/2c$

Stage 2: Reduction factor = 5/4, $v_r = (4/5)c$ Stage 3: Reduction factor = 7/5, $v_r = (13/14)c$ Stage 4: Reduction factor = 41/28, $v_r = (40/41)c$ Stage 5: Reduction factor = 61/41, $v_r = (121/122)c$... and so on ...

Rocket Science

Question:

Rocket able to reach relative velocity 1/2cWhy doesn't a multiple stage rocket exceed c?

> Stage 1: $v_r = 1/2c$ Stage 2: Reduction factor = 5/4, $v_r = (4/5)c$ Stage 3: Reduction factor = 7/5, $v_r = (13/14)c$ Stage 4: Reduction factor = 41/28, $v_r = (40/41)c$ Stage 5: Reduction factor = 61/41, $v_r = (121/122)c$... and so on ...

Rocket Science

Question:

Rocket able to reach relative velocity 1/2cWhy doesn't a multiple stage rocket exceed c?

> Stage 1: $v_r = 1/2c$ Stage 2: Reduction factor = 5/4, $v_r = (4/5)c$ Stage 3: Reduction factor = 7/5, $v_r = (13/14)c$ Stage 4: Reduction factor = 41/28, $v_r = (40/41)c$ Stage 5: Reduction factor = 61/41, $v_r = (121/122)c$... and so on ...

Rocket Science

Question:

Rocket able to reach relative velocity 1/2cWhy doesn't a multiple stage rocket exceed c?

Stage 1: $v_r = 1/2c$ Stage 2: Reduction factor = 5/4, $v_r = (4/5)c$ Stage 3: Reduction factor = 7/5, $v_r = (13/14)c$ Stage 4: Reduction factor = 41/28, $v_r = (40/41)c$ Stage 5: Reduction factor = 61/41, $v_r = (121/122)c$... and so on ...

Rocket Science

Question:

Rocket able to reach relative velocity 1/2cWhy doesn't a multiple stage rocket exceed c?

Answer:

Boost provided by each stage contributes smaller change to relative velocity (as measured by earthbound observer) "Einstein tax": the reduction factor increases as the relative velocity increases, insuring that the rocket never reaches c

Summary: Velocity Addition

- Why does the usual velocity addition rule fail?
 - \bullet Velocity u measured by Bob based on $\mathit{his}\ \mathit{rods}\ \mathit{and}\ \mathit{clocks}$
 - Need to use $u_{\text{corrected}}$, leads to "reduction factor"
- Why does it usually work just fine?
 - For small relative velocities, the correction is extremely small and $u \approx u_{\rm corrected}$
- Special properties of light speed
 - If u < c, then u + v < c
 - If u = c, then u + v = c

Summary: Velocity Addition

- Why does the usual velocity addition rule fail?
 - \bullet Velocity u measured by Bob based on his rods and clocks
 - Need to use $u_{\text{corrected}}$, leads to "reduction factor"
- Why does it usually work just fine?
 - For small relative velocities, the correction is extremely small and $u\approx u_{\rm corrected}$
- Special properties of light speed
 - If u < c, then u + v < c
 - If u = c, then u + v = c

Summary: Velocity Addition

- Why does the usual velocity addition rule fail?
 - \bullet Velocity u measured by Bob based on his rods and clocks
 - Need to use $u_{\text{corrected}}$, leads to "reduction factor"
- Why does it usually work just fine?
 - For small relative velocities, the correction is extremely small and $u\approx u_{\rm corrected}$
- Special properties of light speed
 - If u < c, then u + v < c
 - If u = c, then u + v = c

1 Velocity Addition

2 Paradoxes

- Spacetime and Spacetime Diagrams
 - Basics
 - Tilt
 - Time Dilation
 - Length Contraction
- **4** The Geometry of Minkowski Spacetime
 - Space-Time Interval
 - Geodesics
- 5 Paradoxes, Again
 - Twin Paradox

Refuting Relativity?

- Relativity violates conceptual truths (e.g., time is absolute)
 - But what is the status of these truths?
- Relativity conflicts with other theories of physics (e.g., gravity)
 - True! But can we formulate a new theory compatible with relativity ...?
- O Relativity predicts contradictory results
 - Version 1: Length contraction and time dilation effects are in fact contradictory
 - *Version 2*: Other more subtle contradictions (e.g., twin paradox)

Refuting Relativity?

- Bob measures the distance between the clocks and finds that it is 10 meters
- Al measures a *different* value for the same distance
- Conclusion: the theory leads to contradictory results!

General Response

- What is actually being measured?
 - Carefully specify the situation to determine what is being measured
 - Several *different* ways to measure lengths or time intervals between events
 - Relativity of simultaneity: source of disagreements regarding what is actually measured
- Different results for different quantities!
 - Contradiction only apparent; comparing two different things

Length Contraction

Al and Bob differ on distance between P and Q:

- How do they measure the distance?
- Relativity of simultaneity: there is no procedure that they will both regard as correct way of measuring distance

Time Dilation

How to measure time dilation?

- Local comparison not sufficient (due to motion)
- Set up array of synchronized clocks along the train tracks
- Compare these to Bob's watch

Time Dilation

Derive a contradiction?

- Al says moving clock runs slow...
- Bob says it runs at normal rate.
- But Bob thinks Al's clocks aren't synchronized correctly

Summarizing

- Attempt to show that relativity is contradictory....
- Fails; relies on intuitions based on absolute simultaneity
- General strategy to rebut "contradictions" and "paradoxes":
 - Implications of relativity of simultaneity
 - Apparently contradictory accounts will *agree* on combination of spatial distances and time intervals; differences *merely perspectival*
 - All accounts will agree on underlying, objective, invariant quantities, such as spatiotemporal interval, energy-momentum, electromagnetic field, *etc*.

1 Velocity Addition

2 Paradoxes

3 Spacetime and Spacetime Diagrams

- Basics
- Tilt
- Time Dilation
- Length Contraction
- The Geometry of Minkowski Spacetime
 - Space-Time Interval
 - Geodesics
- Paradoxes, Again
 Twin Paradox

Basics

Minkowski's Pronouncement (1908)

The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
		000000000000000000000000000000000000000		

Basics

Space Diagrams

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
		000000000000000000000000000000000000000		

Basics

Spacetime Diagrams

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
		000000000000000000000000000000000000000		
Pasies				

Light Cone

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
		000000000000000000000000000000000000000		
Basics				

Terminology

Basics

Al and Bob in Spacetime

Basics

Al and Bob in Spacetime

Tilt

Simultaneity Slices

Velocity Addition Paradoxes Spacetime and Spacetime Diagrams October O

Moving Observers

Tilt

Explaining the Tilt

Tilt

Velocity Addition Paradoxes Spacetime and Spacetime Diagrams Occose Occo

Explaining the Tilt, part 2

Tilt

- Objection: time and space not orthogonal!
- Reply: contrast between *normal* geometry and *spacetime* geometry

Time Dilation

Illustration: Time Dilation

- Observer Moving with Rod
 - Light beam bouncing back and forth
 - Equal time intervals
- Earthbound Observer
 - Not equal time intervals

Time Dilation

Illustration: Time Dilation

Observer Moving with Rod

Earthbound Observer

Time Dilation

Illustration: Time Dilation

Rod Observer *according to Earthbound Observer*

Earthbound Observer

Time Dilation

"Half-Twin" Effect

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
		000000000000000		

Length Contraction

Length Contraction

- 1 Velocity Addition
- 2 Paradoxes
- Spacetime and Spacetime Diagrams
 - Basics
 - Tilt
 - Time Dilation
 - Length Contraction
- The Geometry of Minkowski Spacetime
 - Space-Time Interval
 - Geodesics
- 5 Paradoxes, Again• Twin Paradox

Newtonian Spacetime

From Roger Penrose, The Road to Reality

All observers: agree on time

- ... agree on acceleration
- ... agree on simultaneous spatial distance
- ... disagree on non-simultaneous spatial distance
- ... disagree on velocities
- *No shift* in simultaneity slices

Minkowski Spacetime

All observers: agree on spacetime interval

- ...agree on acceleration
- ... disagree on velocities except velocity of light
- ... disagree on space, time distances
- Shift in simultaneity slices

Space-Time Interval

Distance in Euclidean Geometry

• Setup: Al and Bob, measuring distance from P to Q

Space-Time Interval

Distance in Euclidean Geometry

- Distance from P to Q: Al: $PQ^2 = RQ^2 + PR^2$ Bob: $PQ^2 = SQ^2 + PS^2$
- Agree on this distance

Space-Time Interval

Spacetime Distance (Interval)

• Spacetime interval from *P* to *Q*:

Al:
$$PQ^2 = RQ^2 - PR^2$$

Bob:
$$PQ^2 = SQ^2 - PS^2$$

• Agree on this quantity

Space-Time Interval

Spacetime vs. Euclidean Distance

Euclidean Distance

$$(distance)^2 = (x-distance)^2 + (y-distance)^2$$

• Always positive, zero only for overlapping points

Spacetime Interval

 $(st-distance)^2 = c^2(time-distance)^2 - (space-distance)^2$

- Positive: temporal distance > spatial distance, *inside* light cone ("time-like")
- Zero: on the light cone ("light-like" or "null")
- Negative: spatial distance > temporal distance, outside light cone ("space-like")

Geodesics

Geodesics in Euclidean Geometry

Geodesic

A *geodesic* is the curve connecting two points that has the *shortest* possible length.

Geodesics

Geodesics in Euclidean and Minkowskian Geometry

- Euclidean geometry
 - Geodesics are straight lines
- Minkowski geometry
 - What are the geodesics for Minkowski spacetime?
 - Focus on *timelike curves*: length of a timelike curve measured by time elapsed by the watch of observer moving along the trajectory
 - What is the *longest* timelike curve passing through two points?

Geodesics

Saving Time Costs Money!

- Longest curve between p and q: straight line, inertial observer
- Shorter curves: accelerate along a zig-zag trajectory
 ... so saving time (shorter curve, less elapsed time) costs money (rocket fuel)

- Velocity Addition
- 2 Paradoxes
- Spacetime and Spacetime Diagrams
 - Basics
 - Tilt
 - Time Dilation
 - Length Contraction
- The Geometry of Minkowski Spacetime
 Space-Time Interval
 - Geodesics

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
				•000

Twin Paradox

Twin Paradox

Setup

- Twin A stays at home
- Twin B goes on a rocket ship

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
				0000

Twin Paradox

Twin Paradox

Paradox?

- Twin A: "B's clock runs slow. Therefore I should be younger at our reunion."
- Twin *B*: "*A*'s clock runs slow. Therefore I should be younger at our reunion."

Velocity Addition	Paradoxes	Spacetime and Spacetime Diagrams	The Geometry of Minkowski Spacetime	Paradoxes, Again
				0000

Twin Paradox

Paradox Lost

Twin Paradox

Twin Paradox and Geodesics

- Stay-at-home twin
 - Inertial observer has trajectory of *maximum* length, *longest* time elapsed
- Traveling twin
 - Uses money (acceleration of the rocket) to buy time (*shorter* spacetime trajectory)